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1. Introduction

The [4 + 2] cycloaddition reaction of phencyclone 1 and maleic anhydride 2 in refluxing
benzene [1] or toluene [2] affords cycloadduct 3 as the sole product (Scheme 1).
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Scheme 1. Diels–Alder reaction of phencyclone (1) with maleic anhydride (2) to form cycloadduct 3.

Cycloadduct 3 was used in studies on the control of reactivity and regioselectivity of
cycloaddition reactions of phencyclone with a range of electron-deficient dieneophiles [1].
Compound 3 has also featured in studies of photochemical decarbonylation reactions
of norbornene-7-ones [3]. More recently, 3 has been used as an intermediate to prepare
maleimides, and the formation of compound 5 is shown as an example in Scheme 2 [2].
Compound 5 is an example of a “molecular balance”: this type of molecule allows interac-
tions between alkyl C—H bonds and aryl π-systems to be investigated [2,4–6]. Maleimides
such as 5 (Figure 1) exhibit restricted rotation around the N–C bond, and the resulting
“unfolded” (5a) and “folded” (5b) conformers can be probed using 1H NMR spectroscopy.
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Figure 1. “Unfolded” and “folded” conformers of maleimide 5 (the CH–π interaction is indicated on
5b as a dashed line).

2. Results

Phencyclone 1 readily reacts with maleic anhydride 2 in refluxing benzene or toluene,
however, toluene was preferred for use in this work. The reaction is usually complete
within 20–30 min, the end point is readily identified since phencyclone forms a dark green
solution in toluene, which fades as the starting material is consumed. Phencyclone can
be purchased from commercial suppliers, alternatively, it can easily be prepared from
1,3-diphenylacetone and 9,10-phenanthraquinone [7,8]. Cycloadduct 3 can be stored in
a cool, dark place for several years without significant decomposition, however, it is not
stable if heated to melting point. Under these conditions, decomposition will occur, and
the vigorous release of CO gas will take place as soon as the melting point is reached [1].
The stability of 3 is also limited if stored in hygroscopic solvents, on prolonged storage, the
hydrolysis of the cyclic anhydride can take place.

Material that was satisfactory for study by X-ray crystallography was obtained by
dissolving samples of compound 3 (0.05–0.1 g) in ethyl acetate (5–10 mL). Where necessary,
the mixtures were heated to ensure that all the solid material had dissolved. The samples
were stored for several days, until suitable crystals were formed and isolated. The crystal
structure of 3 (Figure 2) confirms the results from earlier studies that the compound is
isolated as the endo-isomer [1,2]. As noted above, cycloadduct 3 releases carbon monoxide
gas when heated to the melting point, and this phenomenon is known to occur in other
phencyclone cycloadducts [8,9] and it is attributed to a cheletropic CO extrusion reaction.
In a published study, crystallography techniques were used to survey certain structural
characteristics of bridged cyclopentenones and comparisons were made to their reactivity
in cheletropic decarbonylation reactions [9]. It was concluded that the C=O and highlighted
C–C bond distances in bridged cyclopentenones can be useful indicators of the potential
for cheletropic decarbonylation to take place. The survey of bridged cyclopentenone
structures indicated that C-C bonds broken during the cheletropic reaction are typically
longer than those expected for the associated cyclopentanone. In contrast, the C=O bond
(that can be lost as CO) is shorter than would be expected in the corresponding bridged
cyclopentanone [9]. The crystal structure of 3 has allowed the relevant bond distances to
be measured and compared with those expected. In this case, the C1–O1 bond distance
is 1.199(4) Å, the C2–C3 bond distance is 1.539(4) Å and the C16–C17 bond distance is
1.535(4) Å. These data are consistent with similar structures reported in the literature [8,9],
for comparison, the relevant C–C and C=O bond distances in bridged cyclopentanones are
typically 1.519 Å and 1.207 Å, respectively [9].
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The IR spectrum of 3 would be expected to show a high-frequency C=O stretch due
to bond angle compression in the cyclopentenone ring [10] (the crystal structure shows
that the C2–C1–C17 bond angle is 99.4(2)◦). There is an absorption at 1792 cm−1 which
is consistent with this expectation (an IR spectrum has been provided in the Supporting
Information document), however, the anhydride C=O (asymmetric, out of phase stretch)
signal also likely occurs in the same region of the IR spectrum [11]. In this case, both C=O
signals are likely to be very close together and may not be resolved. The anhydride C=O
(symmetric, in-phase stretch) signal is less intense but is visible at 1855 cm−1. The 13C NMR
spectrum of compound 3 confirms the presence of the ketone and anhydride carbonyl
groups (195.0 and 170.6 ppm, respectively, are present).

The NMR spectra indicate that the bridgehead phenyl groups exhibit restricted rotation
around the C(sp2)–C(sp3) bond (1H and 13C NMR spectra have been provided in the
Supporting Information document). Rapid C–C rotation on the NMR timescale would
be expected to lead to the observation of three chemical shift environments associated
with the phenyl groups. In this example, five signals in the 1H NMR spectrum can be
attributed to the phenyl ring protons. This phenomenon has previously been noted in the
spectra of [4 + 2] cycloadducts obtained from phencyclone and maleimides and detailed
spectroscopic studies of these compounds have been reported [12]. The restricted rotation
of phenyl groups in this class of compounds was ascribed to steric interactions between
the ortho-protons of the phenyl ring and protons in close proximity from the adjacent
phenanthrene ring system (Figure 3).

In summary, the first X-ray crystal structure of 3 was obtained which confirms the
findings of previous studies that endo-cycloadduct 3 is the product from the [4 + 2] cy-
cloaddition reaction of phencyclone 1 with maleic anhydride 2. The crystallographic data
provides useful insight into certain spectroscopic properties and thermal decomposition
behaviour of the title compound.
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Figure 3. Illustration of the protons associated with steric interactions that result in the restricted
rotation of bridgehead phenyl group.

3. Experimental Section

Melting points were recorded on an SMP3 melting point apparatus and are uncorrected.
IR spectra were recorded on a Perkin Elmer Spectrum Two instrument with DTGS detector
and diamond ATR attachment. NMR spectra were obtained for 1H at 500 MHz and for 13C
at 125 MHz using a Bruker AVIII 500 instrument. Spectra were run at 25 ◦C in CD3SOCD3.
Chemical shifts are reported in ppm to high frequency of the reference and coupling
constants J are reported in Hz.

(9R,9aS,12aR,13S)-9,13-Diphenyl-9,9a,12a,13-tetrahydro-9,13-methanotriphenyleno[2,3-
c]furan-10,12,14-trione (3)

A solution of phencyclone 1 (0.5 g, 1.3 mmol) and maleic anhydride 2 (0.32 g, 3.25 mmol)
in toluene (10 mL) was heated under reflux for 15–20 min (until the green colour due to
dissolved phencylone was no longer visible). Upon cooling to room temperature, methanol
(5 mL) was added to the reaction flask and the resulting mixture was cooled in an ice bath
for 15 min. A colourless solid was formed, which was filtered off and washed with ice-cold
methanol (3 × 5 mL) to afford product 3 (0.45 g, 72%) as a colourless solid, mp 298–300 ◦C
(lit. [1] 296–298 ◦C). IR (ATR) 3035 (ArCH) 1855 (C=O), 1792 (C=O), 1498, 1448, 900, 770,
758, 695, 508 cm−1; 1H NMR (500 MHz, CD3SOCD3); 8.93 (2H, d, J = 8.4 Hz, ArH), 8.18 (2H,
d, J = 7.8 Hz, PhH), 7.82 (2H, apparent t, J = 7.7 Hz, PhH), 7.71–7.55 (4H, m, overlapping
ArH and PhH), 7.50 (2H, apparent t, J = 7.5 Hz, PhH), 7.30 (2H, apparent t, J = 7.8 Hz, ArH),
7.23 (2H, d, J = 7.8 Hz, PhH), 7.06 (2H, d, J = 8.4 Hz, ArH), 5.17 (2H, s, CH); 13C NMR
(125 MHz, CD3SOCD3) 195.0 (C=O), 170.6 (C=O), 133.9 (ArCq), 133.7 (ArCq), 131.4 (ArCq),
131.4 (ArCH), 129.8 (ArCH), 129.0 (overlapping, 3 × ArCH), 127.9 (ArCH), 127.1 (ArCH),
126.0 (ArCq), 125.4 (ArCH), 124.3 (ArCH), 63.0 (C-Ph), 46.9 (CH).

Colourless X-ray quality crystals of 3 were grown from ethyl acetate solution. X-ray
diffraction data for compound 6 were collected at 173 K using a Rigaku FR-X Ultrahigh
Brilliance Microfocus RA generator/confocal optics with XtaLAB P200 diffractometer [Mo
Kα radiation (λ = 0.71073 Å)]. Intensity data were collected using ω steps accumulating
area detector images spanning at least a hemisphere of reciprocal space. Data were collected
using CrystalClear [13] and processed (including correction for Lorentz, polarization and
absorption) using CrysAlisPro [14]. The structure was solved by dual-space methods
(SHELXT) [15] and refined by full-matrix least-squares against F2 (SHELXL-2018/3) [16].
Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined using
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a riding model. All calculations were performed using the Olex2 [17] interface. The showed
structure was refined as a two-component, non-merohedral twin, with refined twin fractions
of 0.704(5):0.296(5). CCDC 2192702 contains supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/structures.

Crystal data for C33H20O4 (M = 480.49): triclinic, space group P1 (no. 2), a = 9.9060(6),
b = 11.1504(7), c = 11.9180(11) Å, α = 117.827(8), β = 94.797(6), γ = 100.060(5)◦, V = 1125.47(16)
Å3, Z = 2, T = 173 K, µ(Mo Kα) = 0.093 mm−1, ρ (calc) = 1.418 g/cm3, 14793 reflections
measured (3.936◦ ≤ 2θ ≤ 58.010◦), 4911 unique (Rint = 0.0472, Rsigma = 0.2), which were
used in all calculations. The final R1 [I > 2σ(I)] was 0.0757 and wR2 (all data) was 0.2567.

Supplementary Materials: The following are available online, Figure S1: IR spectrum of 3; Figure S2:
1H NMR spectrum of 3; Figure S3: 13C NMR spectrum of 3; Cif and check-cif files for compound 3.
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