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Results in C∗ algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen,

apply to the R. Thompson groups F ≤ T ≤ V . These results together show that F is
non-amenable if and only if T has a simple reduced C∗-algebra.

In further investigations into the structure of C∗-algebras, Breuillard, Kalantar,
Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group G. They

show that if a group G admits no non-trivial finite normal subgroups and no normalish

amenable subgroups then it has a simple reduced C∗-algebra. Our chief result concerns
the R. Thompson groups F < T < V ; we show that there is an elementary amenable

group E < F [where here, E ∼= . . .) o Z) o Z) o Z] with E normalish in V .

The proof given uses a natural partial action of the group V on a regular language
determined by a synchronising automaton in order to verify a certain stability condition:

once again highlighting the existence of interesting intersections of the theory of V with

various forms of formal language theory.
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1. Introduction

In this note we show that for the R. Thompson groups F ≤ T ≤ V there is an

elementary amenable group E ≤ F so that E is normalish in each of the groups

F , T , and V .

This article is a fuller version of the note [6]: it has a large percentage of text in

common, but it also gives some fuller proofs and discussion, and it corrects various

minor typos appearing in [6].

1.1. General motivating background

Various weakenings of the notion of normal subgroup were introduced between 2014

and 2018 in order to obtain insight into the C∗-simplicity of the (reduced) group

algebra C∗r (G) of a group G. This has had particular impact for infinite simple

groups such as the R. Thompson groups T and V . The concept of a normalish

subgroup of a group was introduced by in the seminal paper of Breuilliard, Kalantar,

Kennedy, and Ozawa [8]. They show that a discrete group G with no non-trivial
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finite normal subgroups and no amenable normalish subgroups is C∗-simple. In

that paper, they also obtain the just-previously-announced result of Haagerup and

Olesen [11] that if the reduced group C∗-algebra C∗r (T ) is simple, then F is non-

amenable.

Meanwhile, Kennedy in [13] shows that a countable group G is C∗-simple (has

simple reduced C∗-algebra) if and only if G admits no non-trivial amenable URS

(uniformly recurrent subgroup). Using this, Le Boudec and Matte Bon in [15] show

the converse of the stated Haagerup-Olesen result, if F is non-amenable, then the

reduced C∗-algebra of T must be simple.

Indeed, for those interested in the question of the non-amenability of the R.

Thompson group F , the focus has passed through the exploration of the uniformly

recurrent subgroups of T to understanding the point stabilisers of the action of T

on its Furstenberg boundary. Here, there are two possible cases, and F will be non-

amenable precisely if these point stabilisers are trivial (see [15]). Despite this shift,

we find the concept of normalish subgroups of “nearly simple” or simple groups like

F and T to be of interest, and that is the focus of this note.

1.2. Core results

Let G ≤ H be groups. The group G is normalish in H if for any finite set of

elements {c1, c2, . . . , ck} the intersection

k⋂
i=1

Gci

is infinite.

Our chief result is the following:

Theorem 1. There is an embedding of the elementary amenable group

∞(Z o Z) = . . . o Z) o Z) o Z

into R. Thompson’s group F so that the image group E is normalish in V .

Observe the corollary that E is then an amenable normalish subgroup of both

F and of T as well.

1.3. Specific history of the core result

We should mention some other history related to this result. In [5] we showed the

existence of an infinite direct sum of copies of Z that could be found embedded as a

normalish amenable subgroup of F , and discussed our conjecture (disproven here)

that any normalish amenable subgroup of T should either contain an embedded

subgroup isomorphic to R. Thompson’s group F or to a non-abelian free subgroup.

Meanwhile, the paper [15] shows that V contains an amenable normalish torsion

group Λ: the subgroup of V consisting of those elements which are automorphisms of
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the infinite rooted binary tree T2. These automorphisms arise as finite compositions

of the tree automorphisms that swap the two child vertices of any particular vertex

(copying the dependent trees identically). The group Λ is normalish for reasons that

are very similar to why our own group E is normalish, and it is a limit of finite

groups hence elementary amenable. However, the group Λ is not a subgroup of F

nor of T .

1.4. An unexpected visitor? (Controlling synchronising automata)

A note on the proof: for experts on R. Thompson groups, the embedded copy of

E that we find will clearly be normalish in V after short inspection. However,

the technical proof of this requires a bit of work in that the conjugation action

on our generators needs to not introduce too many breakpoints into our group

elements, and also in that we need to have an infinite set XS of group elements in

E so that XS is ‘largely closed’ under translations by arbitrary elements in V . The

second task is the harder one if we are to avoid having subgroups isomorphic to

R. Thompson’s group F . We approach this by introducing a partial action of V on

a regular language W which is determined by a synchronising automaton, and we

show that there is a sub-language S so that for any v ∈ V and long enough word

w ∈ S (length depending on the choice of v), we have that w is in the image of the

partial action of v on S. We then link this to a partial action of V on a corresponding

infinite specified subset XS of E. It follows from the above considerations that the

intersection of any finite collection of conjugates of the set XS (and therefore of E)

remains an infinite set.

This is not the first time that connections between the theory of the group

V and language theory have become apparent. Indeed, the definition of elements

of V as acting on the finite prefixes of infinite binary strings leads one to consider

connections between V and the theory of push-down automata, and this perspective

is central to the proof of Lehnert and Schweitzer [16] that any finitely generated

subgroup of V is a CoCF group (see [12]), and to the current form of Lehnert’s

conjecture, that this last statement is actually an “if and only if” (see [7]).

Thanks:

We would like to thank Adrienne Le Boudec for kind and informative conversations

where he has helped the author of the present note to understand some of the

amazing events that have transpired in the field of C∗-algebras over the last six

years.

2. The interval and the circle as quotients of Cantor space, and

some related language

Let I := [0, 1] ⊂ R represent the unit interval in the real numbers. Let C := {0, 1}ω
represent the Cantor space that arises as the infinite cartesian product of the discrete

space {0, 1} with itself, with the product indexed by the ordinal ω. As we will act
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on our Cantor space from the right via prefix substitutions, we will express elements

of Cantor space as left infinite strings, so a typical element
�
x of C will be written as

�
x = . . . x2x1x0 where each xi is either a 0 or a 1. Note that in this usage, and for

such left-infinite strings, we will refer to any finite rightmost contiguous substring

as a prefix of the infinite string (and we will use the word prefix in this way as well

when comparing finite strings, which we will formalise below). The monoid {0, 1}∗ of

finite strings under the concatenation operator “ˆ” (e.g., 00110ˆ1001 = 001101001)

will be central to our analysis and we might refer to an element of {0, 1}∗ as an

address, for reasons which will become clear.

We give the monoid of finite words {0, 1}∗ the prefix-based partial ordering

as follows: if p1, p2 ∈ {0, 1}∗ with p1 = xjxj−1 . . . x1x0 and p2 = ykyk−1 . . . y1y0
(where each xi and yi is in the set {0, 1} for each valid index i), we say p1 ≤
p2 if and only if j ≤ k and for all indices 0 ≤ i ≤ j we have xi = yi. Recall

that with this partial ordering, a complete antichain A of {0, 1}∗ is a finite set

{p1, p2, . . . , pk} so that for each pair of distinct indices i and j we have that pi and

pj are incomparable (written p1 ⊥ p2, and meaning that both p1 6≤ p2 and p2 6≤ p1
are true) and for any w ∈ {0, 1}∗ we have some index r so that either w ≤ pr or

pr ≤ w.
The monoid {0, 1}∗ with the partial order above can be naturally drawn as a

rooted infinite binary tree, with its vertices being the elements of {0, 1}∗, and where

we draw an edge from a vertex r to a vertex s if r ≤ s and the length of s (denoted

|s|) is one greater than the length of r. We will denote this tree as T2 and sketch a

small neighbourhood of its root in the figure below (the tree T2 is often drawn so

as to “open out” as one descends).

0

00 0110

011 111

11

1

Fig. 1. A neighbourhood of the root ε of the tree T2

For any finite word w = wkwk−1 . . . w1w0 ∈ {0, 1}∗ we obtain the basic open set

Cw for the topology of C. Specifically, Cw is the set of all points in Cantor space

with prefix w:

Cw = {�
xˆw :

�
x ∈ C}.

(Above, we are using the natural extension of the concatenation operator to allow

us to concatenate a left infinite string with a finite string to its right.) We will refer

to such basic open sets as cones, and for a given finite word w ∈ {0, 1}∗ the set Cw
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will be called the cone at (address) w. It is a standard fact that one can identify

the Cantor space C with the boundary of T2, or with the set of infinite descending

paths in the tree (which correspond to infinite sequences of edge labels, if one labels

each edge of T2 with a 0 or a 1, depending on the letter of the extension connecting

the shorter address to the longer address.)

Recall there is a standard quotient map q : C � [0, 1], which we define fully here

in order to give some practice with our right-to-left indexing notation. Let

�
x = . . . x2x1x0 ∈ C.

We have

(
�
x)q :=

∞∑
i=0

xi ·
1

2i+1
,

which we can think of as the ordinary map which interprets a real number in [0, 1]

from its binary expansion (using the binary sequence moving leftward of the “binary

point” as progressively smaller fractional parts of the unit).

We further recall that given any prefix w = wkwk−1 . . . w1w0 the map q identifies

the two points 10wkwk−1 . . . w1w0 and 01wkwk−1 . . . w1w0. The resulting two-point

equivalence classes map onto the dyadic rationals in Z[1/2]∩(0, 1) ⊂ R, and further,

the cone Cw at w maps to the closed interval Iw of radius (1/2)k+2 centered at the

diadic point dw which is defined by the infinite sum

dw :=

∞∑
i=0

wi ·
1

2i+1
.

where we set wk+1 = 1 and wm = 0 for all m > k+ 1. For example, if w = 01, then

k = 1 and we have w0 = 1, w1 = 0, w2 = 1 and wm = 0 for all m > 2. Then, d01 is

computed as

d01 =

(
w0 ·

1

21
+ w1 ·

1

22
+ w2 ·

1

23
+ 0

)
=

(
1 · 1

2
+ 0 · 1

4
+ 1 · 1

8

)
=

5

8

and the interval I01 is of radius 1/(21+2) = 1/8 centered at d01 = 5/8. In particular,

we have I01 = [1/2, 3/4] = [5/8− 1/8, 5/8 + 1/8].

For w ∈ {0, 1}∗, we call the interval Iw constructed as above the standard

dyadic interval at address w (or “the standard dyadic interval centred at dw”),

noting that these intervals are naturally in a one-one correspondence with the words

in the monoid {0, 1}∗ (we set k = −1 when w = ε, the empty word, so that we

produce the interval [0, 1], that is, the closed interval of radius 1/2 centred at 1/2).

To obtain the circle as a quotient of Cantor space we add one further identifica-

tion, that is, we identify the point . . . 000 = 00 with the point . . . 111 = 11, noting

that this simply identifies the real numbers 0 and 1 from the interval I.

When working in the unit interval, we will mostly use the real number param-

eterisation of points, but sometimes it is convenient to name a point by one of its
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names arising from the map q−1. Similarly, for points on the circle, we will use either

the parameterisation arising from the quotient map I → I/(0 ∼ 1) = R/Z (this is

equivalent to applying the map p : I → S1 given by t 7→ e2πit where we consider S1
as the unit circle in the complex plane) or, we will use the parameterisation arising

from the map q · p : C→ S1, where a point on the circle is referred to by one of its

preimage left-infinite strings under the map q · p.
Our group elements will act on the right, and induce permutations of the un-

derlying sets of the spaces under consideration. We establish some notation for our

context. Let Y be a set. We will use the notation Sym(Y ) for the group of bijections

from Y to itself. For any element g ∈ Sym(Y ) we define the support of g, written

supt(g), as the set

supt(g) := {y ∈ Y : yg 6= y},

that is, the set of points moved by g. In keeping with our right-actions notation, if

g, h ∈ Sym(Y ), then the conjugate of g by h, denoted gh, is the map h−1gh. That

is, we apply h−1, then g, and finally h again. The following is a standard lemma

from the theory of permutation groups.

Lemma 2. Let Y be a set, and g, h ∈ Sym(Y ). We have

supt(gh) = supt(g)h.

It is quite useful in calculations to recall this way of thinking of the support of

a conjugate: the support of gh is the image of the support of g under the function

h. As a fun aside for those readers not coming from a group theory background,

this underlies one of the supporting principles for solving Rubik’s Cube or other

permutation puzzles: commutators have a fair chance of being elements of small

support, and then conjugates of commutators are elements with targeted small and

controlled impact.

3. The R. Thompson groups F < T < V

The Thompson groups F < T < V are groups of homeomorphisms which have been

well studied. In this note, we generally take F , T , and V as each being groups of

homeomorphisms of the Cantor space C.

3.1. Describing elements of F , T , and V

For two words w1, w2 ∈ {0, 1}∗ with |w1| > 0 and |w2| > 0 we define the cone map

φw1,w2
: Cw1 → Cw2 by the rule

�
xw1 7→

�
xw2, for each point

�
x of C. It is immediate

that this map is a homeomorphism from the Cantor space Cw1 to the Cantor space

Cw2. Note that the map φw1,w2
induces a map Iw1

→ Iw2
which is a restriction of

an affine map on the reals R, and for this reason we might refer to φw1,w2 as an

“affine map” between the two subspaces of our larger Cantor space C. Note further

that any such cone map φw1,w2
is not just a homeomorphism from its domain to its
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range but also that it has many extensions to homeomorphisms from C → C, and

we can think of φw1,w2
as being a subset of a larger (if w1 6= ε 6= w2) function from

C to C (which we in turn consider as a subset of C× C).

We are now in a position to define the R. Thompson groups F < T < V .

An element g ∈ Homeo(C) is an element of V if and only if we can write g as a

prefix replacement map, as follows.

The element g is a prefix replacement map if and only if it admits some nat-

ural number n > 1, two complete antichains D = {a1, a2, . . . , an} and R =

{r1, r2, . . . , rn} for {0, 1}∗, and a bijection σ : D → R, so that when restricted

to any cone Cai (for valid index i), the map g restricts and co-restricts to the cone

map φai,ai·σ. In this context, we will write

g = ({a1, a2, . . . , an}, {r1, r2, . . . , rn}, σ) .

One could argue that the indices on the elements of D and R ought to be assigned

so that the order preserving bijection determines g, so that σ becomes unnecessary.

However, when composing many maps, it is often convenient to list the sets D and

R in dictionary order, and then to determine σ as the requisite permutation. Thus,

in typical usage the permutation σ is included explicitly. We observe in passing

that any element of V admits infinitely many distinct prefix replacement maps

representing it, but it is a standard exercise in R. Thompson theory that there is a

unique, minimal (in the size of the set D) prefix-map representation of g.

We observe that any complete antichain {a1, a2, . . . , an} for {0, 1}∗ admits a

natural left-to-right ordering ≺ induced from the arrangement of the addresses ai
on the tree (this is simply the dictionary order, when we take 0 ≺ 1 and read our

strings from right to left). An element g ∈ V is in the subgroup F if and only

if, when expressed as a prefix replacement map, the permutation σ preserves the

ordering ≺. An element g ∈ V is in the subgroup T if and only if, when expressed

as a prefix replacement map, the permutation σ preserves the ordering ≺ up to

some cyclic rotation. The group V has no restriction on the type of permutations

σ allowed. From this one can check that elements of F induce homeomorphisms

of I through the quotient map q which are piecewise affine, respect the dyadic

rationals, and where all slopes are powers of two and all breaks in slope occur

over dyadic rationals. Similarly, the reader may check that elements of T induce

homeomorphisms of S1 through the quotient q ·p which are piecewise affine, respect

the dyadic rationals, and where all slopes are powers of two and all breaks in slope

occur over dyadic rationals.

A standard introductory reference for the general theory of the R. Thompson

groups F , T , and V is the paper [9].

3.2. The element family X

We now single out a family

X := {xw : w ∈ {0, 1}∗}



8

of elements of V of specific interest to our discussion.

Given a word w ∈ {0, 1}∗, we specify the element xw as the element of V which

acts as the identity over the complement of the cone Cw, and on the cone Cw,

acts according to the prefix map specified below (we only express the actual prefix

substitutions here):

xw :=


00ˆw 7→ 0ˆw

10ˆw 7→ 01ˆw

1ˆw 7→ 11ˆw

In particular, the element xw is the extension of the partial function

φ00ˆw,0ˆw t φ10ˆw,01ˆw t φ1ˆw,11ˆw

by the identity map away from the cone Cw.

Note that it is easy to extend the set {00ˆw, 01ˆw, 1ˆw} to a complete antichain

{a1, a2, . . . , ak−1, 00ˆw, 10ˆw, 1ˆw} for {0, 1}∗ where |w| = k, and that in this case

{a1, a2, . . . , ak−1, 0ˆw, 01ˆw, 11ˆw} is also a complete antichain for {0, 1}∗ (the set

of addresses {ai : 1 ≤ i ≤ k − 1} represents the minimal set of addresses one can

use so that {ai : i ∈ 1 ≤ i ≤ k − 1} ∪ {w} is a complete antichain). Our map xw
acts as cone maps on each of the cones at the set of addresses {00ˆw, 01ˆw, 1ˆw},
and otherwise takes each cone Cai to itself with the identity map.

It is easy to see that X ⊂ F so also X ⊂ T and X ⊂ V . The figure below depicts

the graphs of xε and x10 as homeomorphisms of I as examples.

0 11/4 1/2 3/4

1/2

3/4
x

x
10

0 11/4 1/2

1/2

5/16

3/8

3/8
7/16

1 1

ε

Fig. 2. The elements xε and x10.

The family X plays a central role in the dissertation [14] of Nayab Khalid, where

Khalid works to provide a normal form for elements of F using X as a natural in-

finite generating set. A key point is that a generator xw has the effect of applying

a rotation to the tree T2 at location w, and Khalid’s normal forms potentially rep-

resent minimal length sequences of rotations (in the sense of Thurston, et al. in

[17]) connecting one finite tree with k leaves to another. In theory, the algorithe-

orem in [14] runs in exponential time on the size of the tree, but, there are clear

improvements that can be made and it remains unclear if the algoritheorem can be
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improved to run in polynomial time. Our small practice with it so far indicates that

one can generally implement the algoritheorem by hand for reasonably small trees.

3.3. The element family G

For each natural n ∈ N, set gn := x(10)n . The set G := {gi : i ∈ N} will be our

second family of elements of F of interest. Note that we use N to represent the

natural numbers, which we take to be the non-negative integers.

We observe that Figure 2 also depicts g0 and g1 since g0 = xε and g1 = x10.

4. Realising ∞(Z o Z) in F

Set E := 〈G〉 ≤ F ≤ T ≤ V . For each index n, consider the group

Wn := 〈{gi : i ∈ N, i < n}〉,

where for clarity we specify W0 = {1V }. It is immediate that Wm ≤ Wn when

m < n. Direct calculation shows that supt(gn)∩supt(ggmn ) = ∅ whenever m < n (the

content of the following lemma, which is not hard to prove). Specifically, following

the arguments of [2, 3] for natural index n we have Wn
∼= (. . . ((Z oZ) oZ) . . . oZ) oZ

(with n appearances of Z in this expression), which is a solvable group of derived

length n. We immediately obtain E ∼= ∞(Z o Z) = . . . o Z) o Z) o Z, as described in

detail in [4]. As E admits a decomposition as a direct union of the solvable groups

Wn, we obtain that E is elementary amenable (see Chou’s paper [10] for details on

the class of elementary amenable groups).

For what follows, set Gm,n := 〈gm, gn〉 for all natural numbers m < n.

Lemma 3. Let m < n be two natural numbers. We have

(1) there is an isomorphism Gm,n ∼= G0,(n−m) which is induced by a restriction

map followed by a topological conjugacy,

(2) supt(gn) ∩ supt(ggmn ) = ∅, and therefore

(3) Gm,n ∼= Z o Z.

Proof.

We first prove Point (1) that there is an isomorphism Gm,n := 〈gm, gn〉 ∼=
〈g0, gn−m〉 = G0,(n−m) which is induced by a restriction map followed by a topo-

logical conjugacy.

To see this point, first observe that both of the elements gn and gm are sup-

ported wholly in the cone C(10)m, so, the restriction of the maps gn and gm to

the cone C(10)m results in an isomorphism of groups between the homeomorphism

group Gm,n = 〈gm, gn〉, which acts on the Cantor space C, to a homeomorphism

group Ĝm,n = 〈ĝm, ĝn〉 (these generators being the restrictions of the generators

gm and gn respectively.to the Cantor space C(10)m), so that the group Ĝm,n is a

group of homeomorphisms of the Cantor space C(10)m. Now, the homeomorphism

θm : C(10)m → C which is induced by deleting the prefix (10)m from all points in
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the Cantor space C(10)m provides a topological conjugacy which induces an iso-

morphism from the group Ĝm,n to the group G0,n−m = 〈g0, g(n−m)〉, as under this

topological conjugacy the image of the ĝm is the element g0 and the image of ĝ(n)
is the element g(n−m).

For Point (2), we observe that the restrictions applied in the argument for Point

(1) only removed areas from the domain of the elements gm and gn where these

elements already acted as the identity. Therefore the support of gn and of ggmn will

be disjoint if and only if the supports of the elements g(n−m) and of gg0(n−m) are

disjoint. In particular, we have our result if we prove that for any positive integer

k, we have supt(gk) ∩ supt(gg0k ) = ∅.
However, g0 = xε, which acts over the cone C10 as a cone map, affinely taking

the cone C10 rightward to the cone C01 by the prefix substitution 10 7→ 01. Now,

the support of gk is contained in the cone C(10)k, a subset of the cone C(10).

Direct calculation now shows that the cone C(10)k is carried affinely to the cone

C(10)k−1(01) by g0, so Lemma 2 implies our result. We note in passing that we have

shown that gg0k = x(10)k−101, or more specifically, that xxε

(01)k
= x(10)k−101, since our

conjugator acted affinely.

For Point (3), recall Section 1.2.1 of [2], where an argument is given that two

elements α1 and α2 of F generate a group isomorphic to Z oZ, with the element α1

generating the top group of the wreath product. It happens that the element α1 of

that paper is the element we call xε here, while the element α2 is the element we

call x10 here. The proof of Section 1.2.1 essentially relies on only three facts: 1) the

support of α2 is contained in the support of α1, 2) every point in the support of α1

is on an infinite orbit under the action of 〈α1〉, and 3) the support of α2 is moved

entirely off of itself by α1. In our case with gm and gn, we again have these three

conditions (with gm playing the role of α1), so we have our claimed Point (3).

The discussion above indicates the following lemma.

Lemma 4. Let v ∈ V . There are {a1, a2, . . . , an} and {b1, b2, . . . , bn}, minimal

cardinality (finite) antichains, together with a bijection σ between them, so that v

can be described as the prefix replacement map

v = ({a1, a2, . . . , an}, {b1, b2, . . . , bn}, σ) .

If u ∈ {0, 1}∗ then xvuˆai = xuˆ(aiσ) for all i.

Proof. By definition, we have xvuˆai = v−1xuˆaiv. We note that the initial map v−1

restricts to a cone map from C(aiσ) to Cai, that is, an affine map with image con-

taining the support of xuˆai . The action of xuˆai off the cone Cai is as the identity,

and in general it acts as a prefix replacement map, which modifies only the prefixes

which begin with u ˆ ai (so these modifications only appear in entries at indices

larger than the length |uˆai|). Finally, v acts on the cone Cai by affinely returning

it to C(aiσ) as a cone map, (it simply transforms the prefix ai to the prefix aiσ,

and preserves all later entries (with index offset of size |aiσ|− |ai|) at larger indices,
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for any point in the Cantor space C(ai)). Therefore, xvuˆai = xuˆ(aiσ).

5. On partial actions

The proof of Lemma 4 suggests the well-known fact that V has a natural partial ac-

tion on the addresses in {0, 1}∗. Let v ∈ V and suppose that n is the minimal natural

number so that there exist antichains A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}
and a bijection σ between them so that v can be described as the prefix replacement

map v = (A,B, σ). The partial action of v on {0, 1}∗ is defined precisely on the set

of words in {0, 1}∗ which admit one of the ai as a prefix. Let us suppose w ∈ {0, 1}∗
and w = uˆai. We set w · v := uˆ(aiσ).

We can now re-express the result of Lemma 4 in terms of the partial action of

V on the set {0, 1}∗.

Corollary 5. Let v ∈ V and w1, w2 ∈ {0, 1}∗ so that w1 · v = w2 under the partial

action of V on {0, 1}∗. If u ∈ {0, 1}∗ then xvuˆw1
= xuˆw2 .

That is, we see that the group V admits a partial action on the set X which parallels

its partial action on {0, 1}∗. We now work to understand the action of V on elements

of the group E.

Our first step in understanding this partial action is to analyse a formal language.

5.1. A regular language and an action

Define the set T ⊂ {0, 1}∗ of tokens as follows:

T := {10k, 01k : k ∈ N, k 6= 0}.

We build a formal languageW over the alphabet {0, 1} as follows. The language

W is the set of all words which decompose as w = wj ˆwj−1 ˆ . . . ˆw1 for some

natural j, where each wi is a token. The languageW is actually a regular language,

which is recognised by the automaton A depicted in Figure 3. The state q0 of A is

both the start and accept state of A.

A

q0a b

0

1

0

1

1

0

Fig. 3. The automaton A which accepts the language W

Recall that an automaton is a finite directed edge-labelled graph with a subset

of its set of states called the start states of the automaton, and another subset of its
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set of states called the accept states of the automaton. Then, the language accepted

by the automaton is precisely the set of all finite-length words which arise as the

concatenated edge-labels of some finite path in the automaton from a start state to

an end state.

One can see that our formal language W is indeed the language accepted by A;

the paths which leave the state q0 and then eventually return (exactly once) have

labels of the form 10k or 01k, for some non-zero natural number k. In particular, the

language accepted by A is precisely the language of words built by concatenating

tokens from T .

We now set some terminology describing the structure of elements of the lan-

guageW. Observe firstly that the decomposition of any word inW into a concatena-

tion of tokens is unique. Therefore, for each w ∈ W we can define the token length

of w as the number of tokens in its decomposition as a concatenation of tokens.

Note that we index these tokens from right to left: w = wkˆwk−1ˆ . . . ˆw2ˆw1.

We now observe that the partial action of V on {0, 1}∗ restricts to an action of

〈g0〉 on the set T . Below, the proofs of Lemmas 6 and 8 follow by simple inductions

on a basic calculation.

Lemma 6. For each integer k, the restriction of gk0 to the cone C10 produces a

cone map from the cone C10 to the cone Cwk, where wk is given by the formula

below:

wk = 10 · gk0 =

{
10|k−1| k ≤ 0

01k k > 0.

Proof. This proof is a simple induction. Recall that g0 = xε.

If k = 0 we observe that our formula works as g00 = 1V , which maps the cone

C10 to the cone C10 by the identity map, which is a cone map. If k = 1 then g0
takes C10 to C01 as a cone map, in accordance with the definiton of xε. For all

k ≥ 2, gk0 acts as xε · xk−1ε , so first as a cone map from C10 to C01, and then it will

continue to act as xk−1ε on this resulting cone. However, the cone C01 is contained

in the cone C1, and so the prefix replacement of xε here replaces the initial prefix

1 with the prefix 11, and this process repeats so inductively we have our desired

result for all integers k ≥ 0. For negative integers k, the argument follows as x−1ε
replaces the prefix 0 with the prefix 00, and so inductively, the cone at 10 is carried

by a cone map to the cone at 10|k−1| by xkε .

A translation of the above result is as follows.

Corollary 7. The partial action of V on the set {0, 1}∗ restricts to a free, transitive

action of 〈g0〉 on the set T of tokens.

The following lemma simply extends the result of Lemma 6.

Lemma 8. For each integer k and natural number i, the restriction of gki to the

cone C(10)i+1 produces a cone map from the cone C(10)i+1 to the cone Cwi,k, where
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wi,k is given by the formula below:

wi,k = (10)i+1 · gki =

{
10|k−1|(10)i k ≤ 0

01k(10)i k > 0.

Proof. The proof is similar to the proof of Lemma 6; gi = x(10)i acts as the identity

off of the cone C(10)i, and acts on the cone C(10)i in the same way that g0 acts on

the cone Cε = C (this is essentially the content of the proof of Lemma 3(1). That

is, the prefix (10)i is fixed by all powers of gi, but the word (10)i+1 is changed by

gi on the final token “10” (the “0” at index 2i and the “1” at index 2i+ 1).

Lemma 8 has the following related corollary.

Corollary 9. Let i be a natural number. The partial action of V on the set {0, 1}∗
restricts to a transitive and free action of 〈gi〉 on the set of words {tˆ(10)i : t ∈ T }.

6. Visiting the family X

We now discuss the intersection of the group E = 〈G〉 with the family X .

Lemma 10. Let w ∈ W, and k ∈ N so that w has token decomposition w =

wkˆwk−1ˆ . . . ˆw2ˆw1. For each token wi, let ji be the integer so that 10 · xjiε = wi
and also, recall that xε = g0. If we set θw to be the product

θw := gjkk−1g
jk−1

k−2 · · · g
j2
1 g

j1
0

then we have

xw = gθwk .

Proof. We construct θw as a product of (powers of) the generators in G so as to

create an element that modifies the prefix (10)k to the prefix w. To do this, we act on

one token at a time, starting with the leftmost token (the kth token wk), and then

working rightward to the first token w1. Progressively, each term in the product

decomposition of θw acts on a cone containing the impact of the previous terms

which have acted, the actions stack to create the following sequence of prefixes for

the locations of the actions of the (partially) conjugated versions of x(10)k .

(10)k 7→
wk(10)k−1 7→
wkwk−1(10)k−2 7→
. . .

wkwk−1 . . . w210 7→
wkwk−1 . . . w2w1.

We therefore have the following corollary.
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Corollary 11. Let XW := {xw : w ∈ W}. Then XW ⊂ E.

We now consider a special subset of W. Set

S := {100ˆw, 011ˆw : w ∈ {0, 1}∗}.

Lemma 12. The set S is a subset of W.

Proof. The automaton A of Figure 3 has further properties not mentioned pre-

viously; it is highly connected and synchronising. These properties together mean

that given any particular state (let us say q0), there is a non-empty set of synchro-

nising words Wq0 associated with q0 so that, starting from any particular state s

of the automaton and following a path labelled by any word in Wq0 , perforce, one

will be lead to the state q0.

Note that the words 100 and 011 are synchronising words for the state q0; no

matter what state one starts in, after following the path labelled by the word 100

from that state, or the path labelled by the word 011 from that state, one arrives

in the state q0 (recall that we are reading these words from right-to-left!).

Thus, if we have some general word w and we append a suffix 011 or 100 to

produce either z = 011ˆw or z = 100ˆw (that is, a general word z in S), then upon

reading this resulting word on the automaton A starting from the start state q0, we

will return to q0; our word z is in the language W accepted by A.

In the proof above, we made essential use of the fact that our automaton was

synchronising. The theory of synchronising automata has a long and interesting

history, see [19, 18, 1], a woefully incomplete list of some of the many influential

publications in this area.

Below, we will actually be interested in the subset of XW where the words

involved come from S. Set

XS := {xw : w ∈ S}.

Corollary 13. The set XS is a subset of the group E.

We now consider how V interacts with the set XS under conjugation. The following

lemma follows quickly by an application of Corollary 5.

Lemma 14. Let v ∈ V . There is a natural number n so that for all w ∈ S with

|w| ≥ n there is z ∈ S so that xvz = xw.

Proof. Let us assume that we can represent v by some prefix replacement map

v = ({a1, a2, . . . , am}, {b1, b2, . . . , bm}, σ)

where we assume that n is at least three larger than the length of the largest string

in the range antichain {b1, b2, . . . , bm}. We then set b as the prefix of w appearing in

the set {b1, b2, . . . , bm}, and set a = bσ−1 ∈ {a1, a2, . . . , am}. Then, w = cˆb where
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c is some string of length at least three, and we have (cˆa) · v = (cˆb) = w, so that,

in particular, if we take z := cˆa, then Corollary 5 assures us that xvz = xcˆb = xw.

But now, as the word c has length at least three, we see that it must end with

the string 100 or the string 011 (since w has one of these two length three suffixes),

and in particular, z ∈ S.

Thus, we have found that all sufficiently long strings w in S have that xw is the

conjugate image of xz under v, for z another string in S.

Theorem 1: There is an embedding of the elementary amenable group

∞(Z o Z) = . . . o Z) o Z) o Z

into R. Thompson’s group F so that the image group E is normalish in V .

Proof. The group E of this note is infinite and amenable. We can further see that

for any finite set C := {v1, v2, . . . , vk} ⊂ V , the elements xw, for w ∈ S with w long

enough (given by some particular integer dependent on the set C), all appear in all

of the groups Evi . In particular, the intersection⋂
vi∈C

Evi

is an infinite set, so that E is normalish in each of F , T , and V .
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