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Abstract 

As global society transitions away from fossil fuels there is a need to produce 
chemical products from renewable precursors. Microbial fermentation is one method 
to achieve this aim which can be developed through metabolic engineering. 
Progressively, computational systems modelling and functional multi-omics 
analysis, are being applied to guide these metabolic engineering strategies. The 
research aimed to develop computational tools and acquire metabolic data to 
support this integrated system metabolic engineering approach for the thermophilic, 
facultative anaerobe P. thermoglucosidasius NCIMB 11955, a microbial chassis 
which offers the potential of being developed for sustainable bioconversion of 
renewable lignocellulosic waste to numerous products through its thermophilicity 
and catabolic versatility. This research built upon the foundation of an existing 
genome-scale metabolic model (GSMM) of P. thermoglucosidasius NCIMB 11955 
such that it could perform genome-wide analysis of P. thermoglucosidasius 
metabolism. This predicted experimentally-supported results demonstrating that a 
combination of thiamine, biotin and iron(III) could support anaerobic growth of P. 
thermoglucosidasius and identified potentially oxygen-dependent biochemical 
pathways to critical metabolites for anaerobic growth. This research also generated 
fluxomic data of P. thermoglucosidasius metabolism through a dynamic feeding in 
vivo isotopic tracer approach, known as isotopically instationary 13C-Metabolic Flux 
Analysis (INST-13C-MFA). This research presents the first INST-13C-MFA data sets 
for a Parageobacillus species grown on glucose and xylose under aerobic and 
anaerobic conditions at a range of growth rates. A workflow for this analysis was 
established involving the evaluation of custom micro-bioreactors run as chemostats 
and a combined HPLC and GC-MS approach. However, statistically acceptable flux 
distributions models to represent this data remain a work in progress. Ultimately, 
with a more accurate, and ideally fluxomics-constrained, GSMM to act as a 
reference, existing strain design techniques could be used to develop P. 
thermoglucosidasius as microbial chassis for sustainable bioprocesses that could 
use waste lignocellulosic material as feedstocks. 
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1. Chapter 1: Introduction 

1.1 Biotechnology and Sustainable Development Biotechnological 
fermentation – An advantageous sustainable solution to finite 
resources 
 

A pervasive issue with the modern synthetic chemical industry is that many of the 
fine and commodity chemicals produced are reliant on the underlying use of finite, 
petroleum-derived feedstocks. Such feedstocks are extracted, processed, and used 
in manners that are unsustainable and ultimately contribute towards greenhouse 
gas production and climate change1. As a result, there is an ongoing culturally 
driven industrial shift away from these finite fossil fuel resources towards more 
environmentally friendly production of bio-based chemicals and materials derived 
from renewable resources to reduce contributions towards climate change.  

This has spurred research to investigate alternative, and more sustainable chemical 
technologies able to meet our current chemical production demands in a manner 
which is sustainable for the nations of global society. 

1.1.1 What are the UN sustainable development goals? 

In order to establish a global consensus on how to develop society in a more 
sustainable manner, in 2016 the United Nations published a collection of 17 
Sustainable Development Goals (SDGs) and 169 targets, representing the three 
main pillars of sustainability of environmental protection, economic viability and 
social equity (Figure 1). This drive towards sustainable development underpins the 
purpose of the research presented in this thesis. 

 

Figure 1. Promotional material detailing the 17 UN Sustainable Development goals.  
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1.1.2 Microbial biotechnological fermentation – part of a sustainable 
solution? 

One biotechnological strategy that could be part of a sustainable solution which 
addresses these goals is microbial fermentation for the production of organic 
chemicals. This can utilise the biosynthetic capabilities of the microbial cells 
themselves to produce both naturally occurring and non-natural commodity and fine 
chemicals, polymers and alternative “renewable fuel” molecules such as biofuels 
and hydrogen 2. 
 
Microbial fermentations, even when integrated as an upstream process into the 
existing architecture of synthetic organic manufacture, can offer several potential 
sustainability benefits 3. The sustainability benefits of these microbial fermentations 
can include simultaneously economically and environmentally beneficial factors 
such as:  high atom efficiencies, little reliance on external heavy metal catalysts and 
regular performance in water, the greenest of solvents 4. Furthermore, microbial 
fermentations typically operate at more ambient temperatures, lower pressures, and 
milder pH values close to neutrality 5 . Several of the host microbes of these 
fermentations also naturally utilize carbon substrates that can be derived from 
renewable, inedible and inexpensive plant-based feedstocks. Some microbial hosts 
are even able to utilize C1 carbon sources which can operate as greenhouse gases, 
including: methane (CH4) 6 , CO2 and even CO 7, offering the promise of 
bioprocesses able to simultaneously sequester greenhouse gases, and produce 
renewable carbon products. 
 
The use of microbes is of particular advantage when targeting large and complex 
natural products from secondary metabolic pathways of microbes including complex 
antibiotics such as erythromycin 8, polyketide products and non-ribosomal peptide 
products9 . Indeed, many terpenoid natural products, which can be found naturally in 
microbes as well as higher organisms, can conventionally require low yield 
extractions from plants and animals or could otherwise require long and inefficient 
total chemical syntheses. As such, microbial fermentations that can uncouple the 
synthesis of such natural products from the environment and operate under 
controlled conditions can offer the additional advantage of ensuring a consistent and 
reliable supply of geographically distant or seasonal products, unaffected by 
geopolitics and climate change.  
 
Notably, a cost-benefit analysis by Straathof and Bampouli (2017) of potential 
microbial production of commodity chemicals versus petrochemical production 
suggested that more oxidized commodity chemicals such as: 1,4-butanediol, acrylic 
acid and acrylate esters could be competitively produced from carbohydrate 
sources10.  
 
Indeed, they suggested that the best chemicals to target would be those that would 
otherwise require multiple conversion steps if produced from petrochemical sources. 
However, as microbial cells have usually not evolved to maximize the production of 
a chemical of human interest, yields are often lower than their theoretical maxima 
and infrequently achieve the approximately 50 g/L yields suggested by Sun and 
Alper (2015) to be required for industrial scale processes of some commodity 
chemicals 11. These processes have therefore only seen limited application as they 

https://pubmed.ncbi.nlm.nih.gov/16897819/
https://www.sciencedirect.com/science/article/pii/S1096717615000361
https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01650-y
https://onlinelibrary.wiley.com/doi/10.1002/bbb.1786
https://academic.oup.com/jimb/article/42/3/423/5995523
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are commonly less economically competitive than their petroleum-based 
alternatives 3. 
 
One strategy to improve the competitiveness of these more sustainable microbial 
fermentation approaches is to increase the titres, yields and productivity of the 
‘microbial cell factories’ themselves through genetic modification of the cell’s 
metabolic pathways 12 13. 

1.1.3 Microbial Metabolic Engineering and Synthetic Biology 

Metabolic engineering (ME) enables the rationally guided modification of cellular 
networks through genetic engineering strategies for the introduction, deletion or 
exchange of target pieces of DNA to redirect the flow of carbon through microbial 
metabolism, in order to achieve new strains of microbes with enhanced production 
properties that can be termed ‘microbial cell factories’ 14. These properties can 
directly include the key performance indicators of chemical production such as the 
product titre, rate of formation and the product yield per unit feedstock, but can also 
include enhancements to overall performance through modifications to make the 
microbe generally more resilient to imposed culture conditions, such as enhanced 
tolerance to potentially toxic products 15 . 

Inspired by the engineering principles of modularity and the standardization of parts, 
and bolstered through an increased understanding of genomics, metabolism and 
genetic engineering, modern ME is often applied as part of the emerging discipline 
of “Synthetic Biology” (SB). SB can broadly be categorized into aims and 
methodologies to introduce characterization, standardization and modularisation of 
these pieces of DNA, or ‘parts’, to enable more rapid metabolic pathway 
optimization and microbial strain development 16 .  

These genetic engineering strategies can include: the targeted removal of existing 
native enzymes or biosynthetic pathways, the up- or down-regulation of regulatory 
elements, the introduction of non-native heterologous genes to construct hybrid or 
whole completely new created pathways with non-native functionalities 17 to create 
non-native or even non-natural products (such as the bio-based production of 1,4 
butanediol discussed in 1.3.4). Furthermore, additional strategies can focus on 
larger cellular architecture, such as the channelling of target substrates through the 
co-localization of pathways through the application of micro-compartments and 
synthetic protein scaffolds 18 .  

SB relies on a ‘chassis’, which is an engineering term applied to the choice of 
microbial host which serves as the cell factory upon which the genetic engineering 
is performed. For a bacterial chassis, a common tool for DNA transfer into a cell is 
using modified plasmids as vectors to introduce new genes. Plasmids are a circular, 
horizontally transferrable extrachromosomal form of DNA that can encode 
situationally advantageous genes such as enhanced resistance to antibiotics or 
other xenobiotics or niche catabolic abilities. Plasmids are typically described in 
terms of their average ‘copy number’ (CN), which refers to the average number of 
copies of a given plasmid per cell. The CN spectrum ranges from ‘high’ (500–700) 
to ‘low’ (5–20), depending on the mechanism of control of replication and therefore 
the choice of plasmid vector can be considered a rough way of tuning overall protein 
expression. 

https://pubs.acs.org/doi/10.1021/acssynbio.1c00138
https://link.springer.com/protocol/10.1007%2F978-1-4939-7528-0_2
https://www.sciencedirect.com/science/article/pii/S0966842X1500102X
https://www.frontiersin.org/articles/10.3389/fbioe.2014.00060/full
https://www.sciencedirect.com/science/article/pii/S1096717618303306
https://pubs.acs.org/doi/10.1021/acssynbio.6b00141
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A SB methodology can seek to engineer modularity into plasmids for the insertion of 
specific genes, for example through the introduction of collection specific enzymatic 
restriction recognition sites known as Multiple Cloning Sites (MCSs).  A simple 
plasmid-based DNA vector consists of one or more origins of replication, which 
enable the plasmid to be replicated in a specific host, a gene encoding a selection 
marker, such as antibiotic resistance, and a modular unit for gene transcription 
called an expression cassette (Figure. 2), which can be inserted into an MCS. The 
vector may also contain additional genes and sequences which enable transfer by 
conjugation between different host organisms. Alternatively, in several cases 
plasmids could soon be forgone entirely in favour of techniques which enable direct 
modification of the organism’s chromosome, such as recent CRISPR/Cas systems, 
useful for gene knockouts and small modifications 13. 

A model synthetic expression cassette contains the gene of interest as well as 
regulatory DNA sequences in the forms of: a promoter sequence, a sequence 
encoding a ribosome binding site (RBS), and a sequence encoding a transcriptional 
terminator 19 (Figure 2). Expression cassettes can also include additional sites 
called operators which can affect the ability of genes to be transcribed.  Through the 
lens of SB these ‘parts’ (the gene of interest and each of these control elements) 
can be separately manipulated to get the desired level of expression of an individual 
gene or operon. Due to the falling costs of DNA synthesis, direct synthesis of 
libraries of these parts is now becoming increasingly possible too. Therefore, the 
synthetic expression cassette matters for ME approaches to design new microbial 
cell factories as this ability to screen combinations of parts tune protein expression 
can help tackle issues associated with that expression and help key performance 
indicators of any process. 

Examples of this can be seen for each element of the standard expression cassette. 
The DNA of the gene of interest is a coding sequence for a protein of interest. 
Metabolic engineering can seek to develop attributes of the expressed protein itself, 
particularly if that protein is an enzyme able to carry out catalysis of key metabolic 
reactions. Enzyme engineering can be performed to design novel enzymes which 
are better suited to catalyse a reaction or use a particular substrate, or to design 
enzymes which are more durable, with enhanced properties such as thermostability. 
Furthermore, particularly in the case of heterologous genes, the DNA sequences 
interest can also be ‘codon-harmonized’ to better align the gene to the codon usage 
frequencies of the microbial host expressing the protein 20, and hence improve the 
rate of transcription. 

https://pubs.acs.org/doi/10.1021/acssynbio.1c00138
https://pubmed.ncbi.nlm.nih.gov/19680472/
https://amb-express.springeropen.com/articles/10.1186/s13568-019-0890-6
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The promoter sequence in an expression cassette acts as a control element for the 
initiation of transcription of the gene, defining where bacterial RNA polymerase, and 
some associated transcription factors, can bind to start transcription. They are 
typically classed as either constitutively expressed (i.e., always transcribing its 
associated gene/s) or as inducible by the presence or absence of a particular 
chemical signal or environmental stimulus 21.  

The RBS sequence is located upstream of the start of the coding sequence of the 
gene of interest which, when transcribed, recruits the ribosome for the initiation of 
translation of the mRNA transcript and therefore acts as an mRNA-based control 
element of translation 22. As a result, variations in the RBS sequence can be tuned 
for target translation initiation rates and, therefore, for the regulation of protein 
expression. In some cases, this can even be predicted from sequence alone. For 
example, ‘the RBS calculator’ algorithm developed by Howard Salis (2011) can not 
only predict rates of bacterial translation initiation based on start codons but can 
inversely generate synthetic RBS sequences designed for a particular rate of 
translation initiation.  

Lastly, the choice of transcriptional terminator codon and terminator DNA sequence 
represent the end point in an operon, where transcription is terminated. These are 
arguably also targetable factors to influence overall rates of protein expression, 
depending on how they stabilize the mRNA transcript, as efficient termination of 
transcription will reduce the metabolic energy drain of transcription 23. These 
termination strategies are classed as either intrinsic, relying on a G-C rich sequence 
which results in an RNA-polymerase-complex-destabilizing secondary structure 
architecture, or factor-dependent, relying on a circular ATP-driven protein Rho 
which translocates the mRNA sequence but blocks the RNA polymerase 24.  

Ultimately, from a metabolic engineering perspective, the varying sequences for 
promoters, RBSs and terminators combined can therefore act as distinct ‘tuning 
knobs’ for the rate of protein production in microbial chasses and are often 

Figure 2. Schematic of a basic expression cassette within an MCS. A promoter, RBS, gene of 

interest and terminator are located within an MCS defined by 5 restriction sites. Bars labelled 1-100 

with colour gradients represent a potential for creating libraries of different strengths for the associated 

control element.  
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described in terms of their relative ‘strengths’, that is, a relative spectrum of the 
capacity and effectiveness of these control element sequences when performing 
their specific roles. As metabolic engineering often demands fine control of protein 
expression, engineering-inspired research seeks also to construct libraries of RBSs 
and either constitutive or inducible promoters with different expression strengths, to 
fine tune the expression of a target proteins to pool levels desired25. Key examples 
of this are discussed for the organism central to this thesis in 1.3.4. However, 
despite the variety of possible approaches available to tune protein expression to 
solve ME problems, an ME strategy alone can miss the bigger picture of whole-cell 
metabolism. 

1.1.4 The need for a systems view in metabolic engineering approaches 

Cellular metabolism is a large, genetically encoded network (or genotype) of 
interconnected biochemical conversions. These conversions are predominantly 
catalysed by enzymes and their associated cofactors. This genotype is acted upon 
by environmental stimuli presented to the cells and converts nutrient substrates into 
the necessary macromolecules to maintain life and to produce new cells in an 
expressed pattern of metabolic behaviour known as a phenotype 26.  

Often when aiming to developing the metabolism of an organism into a phenotype 
the production of a particular biochemical product, focus is understandably applied 
to metabolic engineering approaches which aim to divert as much carbon flux as 
possible towards increasing the product yield of a desired metabolite under a set of 
environmental growth conditions. 

However, while proof of principle systems can be engineered (as discussed for P. 
thermoglucosidasius in 1.3.4), many of these rationally designed overexpression 
systems can be metabolically throttled and therefore unable to reach industrially 
acceptable product yields. 
 
Recurrent problems can occur when these proof of principle strategies do not 
consider the inter-dependent nature of cellular metabolism operating as a whole 
network. The potential global impacts of enhancing metabolic flux towards a target 
compound can distort the overall metabolic homeostasis of the cell, particularly if 
overproduction of the target compound is in direct competition for resources needed 
for survival and growth. This competition for carbon, cofactors and energy can result 
in metabolic carbon imbalances, like the accumulation of carbon intermediates such 
as pyruvate 27, as well as imbalances in redox metabolism which can diminish yields 
28 29. For example, an introduced and deliberately overexpressed biosynthetic 
pathway for a biochemical product could demand a particular universal co-factor 
such as: NADH, NADPH or FADH or draw from or distort a key pool of carbon 
metabolites, such as glyceraldehyde-3-phosphate, pyruvate or acetyl-CoA, that 
would otherwise contribute towards cell growth. If this demand was not accounted 
for with a compensatory change to ensure redox balance, enhanced carbon uptake 
and/or tie the product to cell growth, the process would not only fail to reach its 
theoretical potential, but could also impact upon the cell’s growth rate, further 
reducing potential overall fermentation yields of product 30.  
 
Underpinning an efficient ME approach therefore is the requirement of a systems-
level understanding of the metabolic reaction network of the organism in order to 

https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01661-9
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design a ME strategy which achieves both over-production and balanced growth. 
Thus, there is a need to leverage systems biology approaches 3.  

1.2 Systems Metabolic Engineering for Sustainable Development 
 

In parallel with the advances in SB, there have been concurrent developments in 
systems biology generating experimental genomic, transcriptomic, proteomic, 
metabolomic and fluxomic data which underpins the biochemical networks of 
cellular metabolism, as well as the construction and validation of genome-scale in 
silico models able to predict cellular behaviours and suggest modifications for 
particular strain design criteria 31 32. 

This integration of the inter-dependent fields of traditional ME approaches with 
computational modelling and so-called ‘-omics’ data analysis results in the design-
build-test philosophy for the development of microbial cell factories that has been 
termed ‘Systems Metabolic Engineering’ (SysME)33. From the perspective of 
sustainable development, the SysME approach for the generation of compounds 
from renewable feedstocks has been directly discussed by Yang et al. (2017) as 
supporting up to 9 of the 17 UN SDGs (Figure 3) 34. 
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1.2.1 Computational modelling: Genome-scale metabolic modelling and 
Flux Balance Analysis  

From the perspective of computational modelling, as the whole-genome sequencing 
of organisms has become cheaper, more and more genome sequences of different 
organisms have become available. Concurrent to this, our computational processing 
power has increased and computational applications of these knowledge databases 
of genetic information have enabled (gene-protein) predictive tools to be developed 
and refined using these genomes to enhance our understanding of the whole 
metabolic genotype–phenotype relationships of organisms we wish to develop 35. A 
particular form of computational modelling focused upon in this thesis has been the 
emergence of the aforementioned organism-specific genome-scale metabolic model 
(commonly abbreviated as GSMMs or GEMs) which catalogues all known genes, 
metabolites and metabolic reactions of an organism 36, forming a knowledge base in 
which the presence of each reaction in the network is supported by an annotated 
gene sequence encoding a particular enzyme 35 36. While such metabolic network 

Figure 3. The interplay between SysME and the UN Sustainable Development goals. Taken 

from Yang, Cho et al. (2017)34. 

https://academic.oup.com/bioinformatics/article/33/16/2596/3738797?login=true
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databases are valuable on their own, the accurate metabolic behaviours of 
organisms cannot be described without also describing the behaviour and influence 
of the environments which they inhabit 38. Therefore, to gain an accurate insight into 
this unified field of behaviour of metabolic reactions and environment, or phenotype, 
these knowledge databases need to be interrogated on a systems or network level 
where there can be thousands of difficult to measure variables influencing cellular 
metabolic behaviour simultaneously.  

To enable us to comprehend the number of variables involved in describing and 
interrogating this metabolic behaviour, genome-scale metabolic modelling has 
typically relied on the Constraint-Based Reconstruction and Analysis (COBRA) 
methodology Flux Balance Analysis (FBA) approach, under an assumption of 
intracellular steady-state concentrations of metabolites, to predict particular 
phenotypes 39 40 41. This approach converts this knowledge database of a metabolic 
network into a mathematical structural model which quantitatively describes the 
relationships between the species or metabolites involved in the system and, 
through the application of constraints and objective functions, enables the prediction 
of optimal steady-state flux distributions for all metabolite species in all reactions in 
the metabolic network reconstruction. 
 
Once the metabolic structural framework is formulated, experimental measurements 
such as substrate uptake rates, growth rates, growth yields and maintenance 
energy can be incorporated to constrain this framework. FBA can then be performed 
on a genome-scale metabolic model to establish the theoretical maximum and 
minimum flux limits of the metabolic network of an organism. This enables the rapid 
in silico simulation of specific phenotype hypotheses concerning in vivo 
maintenance requirements and growth rates of organisms: on specific substrates 
and media compositions, along the boundaries of theoretically feasible or infeasible 
cell growth and under niche or difficult to achieve experimental conditions, such as 
the 50% carbon monoxide atmosphere demonstrated by Mohr et al. (2018) to 
enable H2 production in P. thermoglucosidasius DSM 2542 42 .  

From a systems metabolic engineering perspective, FBA of a completed model 
allows it to be used to identify metabolic imbalances in the network that could 
throttle product yields, such as redox co-factor asymmetry or the accumulation of 
metabolic intermediates. Additionally, a completed GSMM can also be used as a 
platform for in-silico metabolic pathway design and testing to suggest system-wide 
genetic modifications of an organism to achieve the theoretical maximum yields of a 
particular metabolite 43 44, evaluate the systems-wide effects of those alterations and 
evaluate the impact of specific environmental conditions, such as oxygen availability 
and nutrient supplementation on the growth of the organism. A deeper explanation 
of GSMMs and FBA is provided at the start of Chapter 3. 

Ultimately however, metabolic flux predictions generated by FBA are only a good as 
the accuracy of the underlying networks and choice of assumed constraints. Thus, 
not only is ensuring adequate curation a necessity but, as a huge number of 
assumptions underpin simulation outputs, any results also need to be validated 
against experimental measurements under the same simulated conditions before it 
can be used to inform new metabolic engineering designs 45 46. 

 

https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-018-0954-3
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1.2.2 The umbrella field of ‘-omics’ data analysis 

In systems biology, experimental quantifiable measurements are achieved through 
the different ‘-omics’ analyses of: genomics, transcriptomics, proteomics, 
metabolomics and fluxomics, all of which can help inform strain development 
strategies 47 Each type of these analyses is dedicated to the investigation of cellular 
physiology and metabolism through the lenses of the different scales and stages of 
the central dogma of molecular biology (Figure. 4). 

 

Genomics is the analysis of the structures and functions of the coding and non-
coding DNA sequences which collectively constitute the genome of an organism. 
Genomics can therefore aid in the identification and understanding of the genetic 
basis of a particular metabolic behaviour and forms the basis of the P. 
thermoglucosidasius GSMM of Chapter 3. However, while FBA on a GSMM can 
predict pathway fluxes, without verification or applied constraints derived from the 
other ‘-omics’ analyses, the predicted flux distribution may not be an accurate 
representation of cellular metabolic behaviour under target growth environments 
studies. Indeed, the presence of a gene or associated final enzymatic reaction does 
not guarantee its expression. 

Such information can be measured and integrated by using transcriptomics, the 
study of expression levels of all the RNA molecules in a cell, and by using 
proteomics, the study of the complete protein expression profile of a cellular network 
under a given set of conditions 48, but this research focuses on metabolomics and 
fluxomics.  

Metabolomics is the study of the complete profile of cellular metabolites produced 
by a system under particular conditions, including: amino acids, lipids, 

Figure 4. Schematic of the central dogma of molecular biology describing the associated -

omics fields of study.  
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carbohydrates, nucleotides and any target metabolite products such as lactic acid 
and ethanol 49. The concentrations of metabolites observed through metabolomics 
studies represent the final biochemical products of metabolism. Hence, these 
metabolites can signify the final behavioural responses of a metabolically 
engineering system to its environment and any genetic modifications. Fluxomics is 
an applied extension of metabolomics and is the study of the complete profile of the 
metabolic fluxes which produce the metabolome, a profile called a fluxome or flux 
distribution.  

1.2.3 Fluxomics and 13C Metabolic flux analysis 

This research focuses primarily on fluxomics, in particular 13C metabolic flux 
analysis (13C-MFA) informed by 13C isotope labelling experiments (ILEs). Fluxomics 
enables the estimation of in-vivo intracellular activity of not directly measurable 
metabolic reaction rates for both reactions and whole metabolic pathways through 
post-hoc analysis of cell growth experiments 50. It is most commonly based on the 
feeding of growing cells with heavy stable isotope labelled tracers (including 2H, 13C, 
15N, 34S, etc.) which incorporate into metabolites in fixed and predictable ways 51. 
Such downstream metabolites (typically stable proteinogenic amino acids and fatty 
acids) can be analysed and measured by Gas Chromatography-Mass Spectrometry 
(GC-MS) and/or Nuclear Magnetic Resonance (NMR) to reveal their heavy isotope 
labelling patterns. Having developed out of the computational FBA field, the 
quantification of fluxes in 13C-MFA is performed through defining a stoichiometric 
metabolic reaction network featuring, at its centre, the carbon atom transitions 
associated with each reaction leading from the substrate to the analyte 52. The in 
silico metabolic flux through this carbon transition network is then constrained to 
match the experimentally measured rates of carbon consumption and excretion and, 
most importantly, the 13C labelling patterns of downstream metabolites. Non-linear 
programming is used to minimize the sum of the squared residuals (SSR) between 
the (forward) simulated flux distributions derived from the metabolic network and 
choice of isotopic tracer, and the experimentally determined isotope labelling 
patterns themselves. If an acceptable fit, as determined by a certain SSR threshold, 
13C-MFA yields a model which describes the 13C labelling pattern data of the 
analysed metabolites in terms of a flux distribution for the reactions for central 
carbon metabolism, complete with associated flux error. This therefore quantitatively 
describes the in vivo metabolic phenotype of the cell under the specific growth 
conditions used. These metabolic flux rates represent a function of the final catalytic 
rates of enzymes in pathways and for this reason are particularly valuable when 
knowledge of the underlying genomic to proteomic networks are not well 
understood, as is the case for the organism central to this thesis. 

As a result, fluxomics and 13C-MFA enables the most accurate systems level 
description of cellular metabolism among the ‘-omics’ strategies and can help 
explain the phenotypic behaviours of both Wild-Type and ME organisms 48. In 
addition to being directly relatable to FBA solutions of GSMMs, 13C-MFA flux 
distribution outputs can also identify targets for further metabolic engineering. 
Fluxomics and 13C-MFA are described in more detail in Chapter 4.1.  

1.2.4 The combined SysME approach 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286601/
https://www.frontiersin.org/research-topics/7614/fluxomics-and-metabolic-flux-analysis-in-systems-microbiology
https://pubmed.ncbi.nlm.nih.gov/20638432/
https://www.sciencedirect.com/science/article/pii/S0167779919300034
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Through the integration of genetic engineering, computational modelling and -omics 
analysis, SysME’s design-build-test framework has been used to develop strains 
beyond the point which purely genetic engineering strategies could accomplish 
alone. 

A key sustainability-centric example which brings these fields together, is the 
research concerning the hereteologus bio-catalytic production of 1-4-Butanediol 
(BDO) in E.coli from renewable carbohydrate feedstocks. The non-natural chemical 
intermediate BDO is typically synthesised through petrochemical processes and can 
be used in the manufacture of plastic and elastic polymers, such as those in 
Lyrca/Spandex. Yim et al. (2011), used an iterative SysME design-test-build cycle of 
host improvement to reach industrially viable titres of BDO 53. Initially, Yim et al. 
(2011) constructed a synthetic operon a high-copy number plasmid of: a lactose-
regulated inducible promoter PA1, the sucCD, sucD and 4hbd genes each with 
individual RBSs and a T1 transcriptional terminator. This was coupled with a 4-
hydroxybutyryl-CoA transferase (cat2) on a separate medium-copy number plasmid 
and then both plasmids were transformed into E coli. This was then followed by the 
application of the FBA-variant OptKnock, discussed in 3.1.8, on a highly curated 
GSMM of E. coli, which suggested gene knockouts of: lactate dehydrogenase A 
(ΔldhA), pyruvate formate lyase (ΔpflB), alcohol dehydrogenase (ΔadhE) and 
malate dehydrogenase (ΔmdhA) to improve the anaerobic capabilities of the 
chassis citric acid cycle. When applied to the E. coli chassis, this led to a fed-batch 
fermentation yield of 18 g L−1 of BDO after 130 hours 53. Notably from a 
sustainability perspective, while the highest BDO yields were obtained from growth 
on dextrose, BDO production was observed to be equally efficient on a range of 
pure and mixed C5 and C6 sugars. This suggests that a future process could be 
developed to use lignocellulosic biomass hydrolysates as a feedstock. 

In a later study, the use of transcriptomics and 13C fluxomics on this strain was then 
able to identify a metabolic bottleneck resulting in the accumulation of pyruvate and 
acetate, which suggested competition for flux between the heterologous BDO 
pathway and growth. This led to the deletion of two succinate semialdehyde 
dehydrogenases and a resulting elevated titre of 29 g/L of BDO 53 . A further 
competing route from the BDO pathway to the TCA cycle was identified and 
removed, enzyme engineering was performed to generate improved variants of the 
4-hydroxybutyryl-CoA transferase and aldehyde dehydrogenase enzymes, and the 
complete operon was integrated into the E. coli chassis chromosome. This led to a 
final, commercially viable, yield of BDO of over 110 g/L 53. 

Overall, this demonstrates the value of the holistic SysME approach in identifying 
and addressing metabolic bottlenecks for the development of high-performance 
microbial chassis and industrially viable sustainable bioprocesses. With the 
underpinning methodology of the thesis defined, the selected microbial chassis to 
which this strategy aims to be applied can be introduced. 
 

1.3 What is P. thermoglucosidasius NCIMB 11955? 
 

Parageobaciillus thermoglucosidasius (Occasionally referred to as P. 
thermoglucosidans 54 NCIMB 11955 is a Gram-positive, facultative anaerobic, spore-
forming, thermophilic bacteria ripe for development as an industrial microbial chassis 
and is the organism central to this thesis 55. 

https://www.nature.com/articles/nchembio.580
https://www.sciencedirect.com/science/article/pii/S0958166916301240#bib0255
https://pubmed.ncbi.nlm.nih.gov/27132123/


31 
 

1.3.1 Phylogenetic history 

Parageobacillus thermoglucosidasius was initially described and classified as a 
thermophilic species of genus Bacillus in 198356. However, after a full suite of 16s 
rRNA and morphological characterisation by Nazina et al. (2001), a new genus of 
Geobacillus, containing the thermophilic group 5 of the former Bacillus genus 
including the species, thermoglucosidasius, was defined 57.  

More recently, the genus Geobacillus was differentiated further into two 
phylogenetically close, but distinct clades 54. The first of these clades, with a G-C 
content range of 48.5-53.1% remained as the genus Geobacillus. However, the 
second of these clades, with a G-C content range of 42.1-44.4%, was separated 
into the new genus Parageobaciillus containing our organism of interest 
Parageobacillus thermoglucosidasius NCIMB 11955. A review of the taxonomy of 
the genera Geobacillus and Parageobacillus by Najar and Thakur in 2020 58 
suggests that there are currently 4-5 species of Parageobacillus and 13-14 species 
of Geobacillus. 

Theorised to be as a result of being spore-forming extremophiles with very low 
buoyant density and easy to disperse spores, Parageobaciillus and Geobacillus 
species have also been of particular ecological interest as they have been isolated 
from a diverse range of environments 59 60 . These include the isolation of: a 
Geobacillus species from the Mariana trench 61, a Parageobacillus species from 
marine sediment 62, a Parageobacillus thermoglucosidasius strain C56-Y93 from hot 
springs 63, isolation of Geobacillus tobeii from hay compost 64, a P. 
thermoglucosidasius strain TNO-09.020 from a dairy processing environment 65 and 
a strain of Geobacillus thermodenitrificans from a 2000 m deep oil reservoir 66. 

Furthermore, observation of rapid adaptation and gene-diversity in the genus 
Geobacillus by Hirokazu Suzuki (2018) have even led the author to postulate that 
Geobacillus sp. adapt so quickly due to a combination of high horizontal-gene 
transfer 67 and an ability to perform stress-induced mutagenesis when faced with 
nutrient limitation or xenobiotic stressors 68 . For example, exposure of G. 
thermoantarticus to UV radiation, water and temperature conditions reflecting outer 
space by Di Donato et al. (2018) did not kill the organism, and it was suggested to 
have survived through rapid adaptation of its protein and lipid composition and 
additional protection of its DNA 69.  

1.3.2 What makes P. thermoglucosidasius interesting from a 
sustainable industrial biotechnology perspective? 

There is currently a narrow range of model bacterial chassis frequently used for 
industrial microbial fermentation, but these may not represent the best organisms for 
biosynthetic processes or target chemicals. In that respect, P. thermoglucosidasius 
has several metabolic characteristics which confer advantages when compared to 
such conventional model bacterial chassis including Escherichia coli 70 and Bacillus 
subtilis 71 72. 

Thermophilicity 

The first of these traits is the moderately thermophilic (or ‘heat-loving’) nature of both 
Parageobaciillus and Geobacillus species, with growth temperatures which range 

https://pubmed.ncbi.nlm.nih.gov/32744496/
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.071696-0
https://ore.exeter.ac.uk/repository/handle/10871/16493
https://pubmed.ncbi.nlm.nih.gov/30310966/
https://www.sciencedirect.com/science/article/pii/S1096717618300740?via%3Dihub
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from 42-69°C 73. While the molecular basis of this thermoadaptation is not yet clear, 
it is suggested to be connected to their high genomic G-C content and their abilities 
to synthesise protamine and spermidine, compounds thought to be able to stabilise 
nucleic acids 74. The ability of P. thermoglucosidasius to grow between 50°C and 60°C 
is of value for large scale fermentations compared with mesophiles for several 
reasons.  

Not only do enhanced temperatures enable higher chemical conversion rates and 
processes with multi-stage temperature procedures, but they also reduce the 
general risk of fermentation contamination with mesophilic species 75. Notably, as 
biotechnological fermentations are exothermic processes, operating temperatures of 
50-60°C remove the need for significant cooling of large-scale fermentations 76 . 
Furthermore, at their optimum growth temperatures, Parageobaciillus and 
Geobacillus species can achieve growth rates that rival mesophilic industry favourite 
Escherichia coli. Additionally, 50-55oC is the optimum temperature for many 
commercial cellulases, making simultaneous saccharification and fermentation a 
realistic prospect. 

Catabolic Versatility 

The second key trait of P. thermoglucosidasius is their catabolic versatility which 
supports them in degrading a broad range of polymeric substrates. This could 
ultimately enable them to feature as more efficient whole-cell biocatalysts 77. 

Lignocellulosic biomass, derived from waste plant material, represents a globally 
abundant potential source of renewable carbon for fermentation 78. This complex 
polymeric material can contain between 65-85% carbohydrate, with hemicellulose 
(mainly composed of pentoses) and cellulose (hexose) being the main components, 
depending on its source. While this requires physico-chemical pre-treatment to 
separate these sugars from the aromatic polymer lignin and other non-fermentable 
components, hydrolysates of these sugars can be microbially fermented 79. Thus, in 
the development of more sustainable bioprocesses, a microbial chassis capable of 
valorising as much of this carbon as possible would be advantageous.  
 
Parageobacillus and Geobacillus species are known to synthesise thermostable 
glucanases 80, xylanases 81 , arabinanases and pectinases 82 to digest these 
polysaccharides. P. thermoglucosidasius can then directly transport and metabolise 
both the pentose and hexose monomers and some short-chain oligosaccharides 83 . 
The ability to transport short oligosaccharides, including cellobiose and branched 
hemicellulose-derived oligosaccharides for intracellular degradation offers 
considerable savings in enzyme pretreatment costs and is not found in any 
conventional industrial yeasts 84. Overall, P. thermoglucosidasius represents a 
promising bacterial chassis that could be engineered into microbial cell factories for 
new, industrial viable sustainable bioprocesses 85. 

1.3.3 What genetic engineering tools are available for P. 
thermoglucosidasius NCIMB 11955? 

To facilitate the improvement of P. thermoglucosidasius as a biotechnological 
chassis, several specific tools have been developed to enable its genetic 
modification, resulting in it being described by Lau et al. (2021) as one of the few 
thermophiles that can currently be genetically manipulated 86 . 

https://pubmed.ncbi.nlm.nih.gov/28512003/
https://www.frontiersin.org/articles/10.3389/fmicb.2015.00430/full
https://annalsmicrobiology.biomedcentral.com/articles/10.1007/s13213-011-0217-6
https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-836
file:///C:/Users/Martyn/Desktop/84
https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-1-7
https://pubs.acs.org/doi/10.1021/acssynbio.1c00138
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These include strategies for cell manipulation and DNA transfer to introduce new 
genes of interest, as well as the development of various genetic parts for operon 
and pathway engineering, tuning and validation. Transforming new genes into the 
‘undomesticated’ gram-positive P. thermoglucosidasius is more challenging than 
with gram-negative species like E. coli as the gram-positive bacteria cell wall 
contains a thick peptidoglycan layer which can impact upon DNA uptake87. While 
initially electroporation was the preferred technique of DNA transfer, alternate DNA 
transformation strategies which rely on the conjugative horizontal transfer of 
plasmids to P. thermoglucosidasius from an E. coli donor have also been 
developed. In most cases, the initial plasmid vectors were derived from 
Parageobacillus species themselves. In most cases, the initial plasmid vectors were 
derived from Parageobacillus species themselves. These include the shuttle 
plasmid pUCG18 developed by Taylor et al. (2008) 88 and pTMO19 and pTMO31 
developed by Cripps et al. (2009) 89 with the first conjugative vector, a pUCG18 
derivative bearing an origin of transfer (or oriT) gene to enable conjugative transfer, 
developed by Suzuki and Yoshida (2012) 90 ; Kananavičiūtė and Čitavičius (2015) 91.  

Other more direct genetic engineering strategies that introduce DNA directly into the 
chromosome of P. thermoglucosidasius have also been developed. For example, 
Bacon et al. (2017) streamlined a technique for the targeted integration or deletion 
of a gene of interest in the chromosome through a double-crossover, homologous 
recombination process which eliminated a previous negative screening step from 
the overall procedure 92. Most recently, Lau et al. (2021) demonstrated not only 
deletion of the two native plasmids in P. thermoglucosidasius, but also the insertion 
of a gene encoding a fluorescent reporter through the development and testing of a 
CRISPR (clustered regularly interspaced short palindromic repeats)/ Cas9 genome 
editing system based on two Cas9 nucleases derived from Streptococcus 
thermophilus, a species of streptococcus which grows at slightly higher 
temperatures than S. pyogenes, the source of the original Cas9 93.  

At the same time, several research groups have developed additional synthetic 
biology tools for tuneable control over P. thermoglucosidasius gene expression. 
Two examples of this are Reeve et al. (2016) 94 and Pogrebynakov et al. (2017) 95  
who took similar approaches to develop more modular genetic toolkits for 
engineering operons and pathways in P. thermoglucosidasius. 

Reeve et al. (2016) 94 assembled two high copy number plasmids, ‘PG1’ and ‘PG2’ 
for P. thermoglucosidasius which possessed a multiple restriction cloning site and 
three reporter genes (including a gene for a super-folder green fluorescent protein 
(sf-GFP)), whereas Pogrebynakov et al. (2017) 95 modified the conjugative pUCG18 
plasmid into the ‘pIPGE’ plasmid which incorporated a singular super-folded Green 
Florescent Protein (sf-GFP) reporter. 

Both groups generated libraries of new promoters of various expression strengths to 
enable tuneable gene expression.  Reeve et al. (2016) generated a library of 20 
promoters through mutagenesis PCR of a constitutive high expression promoter 
PRP1 and tested their expression levels in both P. thermoglucosidasius and E. coli in 
order to consider both plasmid propagation in E. coli and the conjugative 
transformation process also involving E. coli. While only one of the new promoters 
had a higher expression level than the PRP1 template, the library generated did cover 
over a 100-fold range in expression levels in P. thermoglucosidasius between the 
weakest and strongest promoters. Comparably, Pogrebynakov et al. (2017) 

https://www.sciencedirect.com/science/article/pii/S0147619X08000395
https://pubmed.ncbi.nlm.nih.gov/22814504/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5289569/
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generated a library of 17 constitutive promoters based on the groESL promoter. 
While again generating an over 100-fold range of expression strengths, the ‘P1’ and 
‘P2’ promoters demonstrated higher levels of expression than the wild-type 
promoter. Additionally, Pogrebynakov et al. (2017) also isolated and validated a 
xylose-sensitive inducible promoter PxylA, which could be of specific value to 
processes designed with hemicellulosic biomass in mind as particular production of 
any target product could be induced by xylose after initial cell growth. 

Both groups also generated ribosome binding site sequence libraries using a 
predictive design method developed by Salis et al. (2009) 96. Interestingly however, 
all the RBS sequences generated by both groups demonstrated transcript 
expression levels lower than their original parent RBS sequences, suggesting that 
the method, while able to generate initial expression libraries, may be less 
applicable to P. thermoglucosidasius and potentially thermophiles in general. 

Overall, what these genetic engineering developments indicated is that the 
genetic toolkits for P. thermoglucosidasius are expanding and becoming 
increasingly accessible, suggesting that the bacterium is ripe for more diverse 
metabolic engineering strategies for new bioprocesses. 

1.3.4 What has P. thermoglucosidasius been used to produce? 

Using such genetic engineering tools, P. thermoglucosidasius has been engineered 
to produce a variety of biofuels and fine chemicals.  
For example, the generation of the P. thermoglucosidasius TM242 strain by Cripps 
et al. (2009) produced a strain which able to achieve up to 95% of the theoretical 
yield of bioethanol 89, while the production of isobutanol in P. thermoglucosidasius 
by Lin et al. (2014) 97 achieved a maximum titre of 3.3 g/L isobutanol. From a 
sustainable fuel perspective, perhaps one of the most interesting recently 
discovered abilities of several P. thermoglucosidasius strains is the ability to 
produce the alternative biofuel of hydrogen from carbon monoxide via the Water-
gas-shift reaction (CO + H2O -> CO2 + H2) 98. Further analysis indicated this reaction 
was catalysed by a genomically-encoded carbon monoxide dehydrogenase 
complex, suggesting that P. thermoglucosidasius could be developed further as a 
source of cleaner fuel from renewable lignocellulosic biomass 98 99. Notably from the 
perspective of understanding the metabolism of P. thermoglucosidasius, 
transcriptomic analysis of P. thermoglucosidasius grown under CO and air 
suggested that the decrease in biomass and the start of expression of sporulation 
genes by P. thermoglucosidasius when O2 is removed could be rescued through the 
introduction of CO98. This suggests that anaerobic growth is possible through 
feeding of CO which has the additional benefit of producing potentially valuable H2 
as a by-product of that growth. 
 
Examples of commodity and fine chemicals that have been produced using P. 
thermoglucosidasius also include: the metabolic engineering of P. 
thermoglucosidasius to produce 1.03 g/L of Vitamin B2/riboflavin 100, the production 
of the production of 7.2 g/L 2-3-butanediol by Zhou et al. (2020) in the P. 
thermoglucosidasius strain DSM2542 101 , and the recent proof of principle 
biosynthesis of isoprenoids from waste bread by Styles et al. (2020) 102.  
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Alternatively, when conventional mesophilic enzymes employed in industry are 
rendered inefficient by high temperature conditions 103, thermophilic variants of 
these enzymes sourced from Parageobacillus and Geobacillus species have the 
potential to be used instead. Examples of such thermostable enzymes include: 
amylases 104, carboxylesterases 105 106, lipases 107 108 109, proteases 110 111 and a DNA 
polymerase I from G. stearathermophilus GIM1.543 112. 

1.3.5 Why is there a need to understand more about P. 
thermoglucosidasius?  

P. thermoglucosidasius is a bacterial chassis that is ripe for further development, 
offering the potential of sustainable bioconversion of renewable lignocellulosic 
waste to numerous products through its thermophilicity and catabolic versatility. 
Galvanising progress towards that goal, a burgeoning suite of metabolic engineering 
tools and standardized genetic parts have been developed. However, while several 
proof of principle fermentations for biochemical products have been performed, with 
even a few niche commercialized roles to produce ethanol and lactic acid, few have 
achieved economically viable yields. 
 
A critical reason for this is that, despite increasing interest, P. thermoglucosidasius, 
and related Geobacillus species, remain understudied compared to more common 
bacterial chassis such as E. coli and Bacillus subtilis. As a result, a full system 
understanding is still lacking. Although it is understood that P. thermoglucosidasius 
cells maintain redox balance under micro-aerobic conditions through expression of 
genes for mixed-acid fermentation (acetic, lactic, and formic acid/formate) and 
ethanol fermentation, there remains a need to better understand the metabolic 
behaviour of P. thermoglucosidasius cells under micro-aerobic and truly anaerobic 
conditions for future metabolic engineering designs. For example, a recurring 
observation of anaerobic chemostat growth experiments of P. thermoglucosidasius 
cells is that washout will occur without supplementation of oxygen or yeast extract 89 
56 113, suggesting a particular nutrient may be required for anaerobic growth. 
Furthermore, a transcriptomic analysis study by Loftie-Eaton et al. (2012) focused 
on the metabolic transcriptome changes P. thermoglucosidasius NCIMB 11955 cells 
as oxygen conditions were restricted 114. In a comparison of the transcripts the 
authors suggested that, rather than substitute the respiratory electron transport 
chain for an anaerobic growth strategy when oxygen conditions were restricted, P. 
thermoglucosidasius NCIMB 11955 cells were continuing to operate in an oxygen-
scavenging state and struggled under arguably their most valuable growth 
conditions from an industrial perspective. 
 

1.4 Overall aims: The development of Systems Tools for Metabolic 
Engineering of P. thermoglucosidasius NCIMB 11955 for 
Bioprocess development 

 
As a facultative anaerobe, P. thermoglucosidasius performs aerobic respiration and 
fermentation (production of: acetate, formate, lactate and ethanol) in response to 
intracellular oxygen conditions and largely influenced by environmental oxygen 
concentrations. Indeed, an understanding of the hierarchy of products of P. 
thermoglucosidasius fermentation metabolism led to the development of a high 
ethanol yielding strain through ME 89.  
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To aid the development of P. thermoglucosidasius NCIMB 11955 as a microbial 
chassis for sustainable biotechnological bioprocesses, there is a need to both better 
understand the fermentative metabolic behaviours of P. thermoglucosidasius 
NCIMB 11955 and to develop computational tools for strain design able to 
accurately predict cellular processes based on extracellular measurements (eg. 
dissolved oxygen concentration). 
 
To help realise this overall aim, this researched has focused on the ‘computational 
modelling’ and ‘(flux)omics’ analysis fields of the SysME approach. The objectives 
within these fields are as follows: 

1.4.1 Computational genome-scale metabolic modelling and Flux 
Balance Analysis 

Aim: The improvement and validation of a GSMM of P. thermoglucosidasius 
NCIMB 11955 

The availability of a reliable GSMM of P. thermoglucosidasius would create a 
foundational platform for P. thermoglucosidasius strain design able to optimize flux 
through central metabolic pathways in a manner which would balance both target 
metabolite production and cell growth for maximum overall metabolite yields. This 
research developed a GSMM for P. thermoglucosidasius NCIMB 11955 which was 
initially annotated, curated and constrained by Dr. Beata Lisowska 113. When this 
research began network evaluation investigations it discovered a combination of 
issues with the initial model including: several stoichiometrically and mass 
unbalanced reactions, reaction connectivity issues and a few unrealistic transport 
reactions. This meant that model in its original state did not yet accurately represent 
growth of P. thermoglucosidasisus NCIMB 11955.  

The overall objectives of the research were therefore as follows: 
 

1. To identify and improve existing inaccuracies and issues within the model; 
2. To validate the in-silico model against existing experimental data; and 
3. To use the model to suggest how P. thermoglucosidasius grows under 

anaerobic conditions and what could be done to support anaerobic growth. 
 
The research towards these objectives is described in Chapter 3. 

1.4.2 Fluxomics Data Analysis 

Aim: INST-13C-MFA of P. thermoglucosidasius NCIMB 11955 

The use of a fluxomics technique is of particular advantage in this case as the 
metabolic behaviours of P. thermoglucosidasius are poorly understood when 
compared to many model chassis. This research performed 13C-MFA to combine 
new experimentally determined 13C labelling data, and previously unprocessed 
anaerobic 13C-xylose data (Masakapalli S.K. (2014), unpublished) with the 
additional novel development of detailing isotopically in-stationary 13C isotope 
labelling of P. thermoglucosidasius NCIMB 11955 amino acids over time (INST-13C-
MFA). 
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The overall objectives of the research were therefore as follows: 
 

1. To establish a workflow for 13C-MFA at the University of Bath. 
2. To perform isotopically instationary 13C labelling experiments for cultures of 

P. thermoglucosidasius NCIMB 11955 when grown: 
a) Under aerobic and anaerobic/fermentative conditions; 
b) At a range of growth rates; and 
c) On lignocellulosic biomass model substrates of either glucose or xylose 

as sole carbon sources. 
3. To quantify the resulting amino acid labelling patterns and generate in vivo 

metabolic flux distributions of P. thermoglucosidasius NCIMB 11955 central 
carbon metabolism under the above growth conditions. 

 
The research towards these objectives in described in Chapter 4. 
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2. Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 Bacterial strain and culture medias for storage, maintenance 
and bioreactor experiments  

 

Organism used in this research 

Bacterial species 
and strain 

Commentary Source 

Parageobacillus 
thermoglucosidasius 
NCIMB 11955 

Glycerol stocks 
maintained at University 
of Bath and IIT Mandi. 
Despite minor genome 
sequence differences, this 
strain is the same as 
DSM2542.   

National 
Collection of 
Industrial & 
Marine Bacteria 
(Aberdeen, UK) 

 

Glycerol stocks 

Stocks of P. thermoglucosidasius NCIMB 11955 for long term storage were 
maintained as glycerol stocks. P. thermoglucosidasius cells were first grown in a 
New Brunswick Scientific Co. Innova 44 Stackable Incubator Shaker for 12-14 
hours in 50 mL conical-bottom centrifuge tubes containing 10 mL 2TY medium 
at 60°C, 210 rotations per minute (RPM) shaking. 500 µL of this culture was 
combined with 500 µL of 60% w/v glycerol solution in a cryogenic vial (Thermo 
Scientific, Nalgene, Loughborough, UK). These mixed solutions were then then 
flash-frozen in liquid nitrogen and immediately stored as glycerol stocks in a -
80°C freezer until required. 

Media for Maintenance and Routine Growth 

For short term maintenance, P. thermoglucosidasius NCIMB 11955 cells were 
grown overnight at 55 oC on Tryptone Soya Broth Agar (TSBA) (17 g/L 
Tryptone, 3 g/L Soytone, 5 g/L NaCl, 2.5 g/L K2HPO4, 15 g/L Agar) and for 
routine growth in liquid 2x Tryptone (2TY) (16 g/L Tryptone, 10 g/L Yeast 
extract, 5 g/L NaCl, pH 7) medium.  

Ammonium Salts Medium (ASM) – Minimal defined media for bioreactor 
growth experiments 

For all bioreactor experiments, P. thermoglucosidasius NCIMB 11955 cells were 
initially grown in filter-sterilized fully defined Ammonium Salts Media (ASM) 
(Table 2) containing 0.3% w/v naturally labelled ᴰ-(+)-glucose (99.5% pure, 
Merck, UK) or 0.3% w/v naturally labelled ᴰ-(+)-xylose (≥99% pure, Merck, UK) 
and 5 mL/L sulphate trace elements. 

Table 1: The bacterial strain utilised in this research. 
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For the instationary 13C-MFA glucose experiments, 0.3% w/v (60% 1-13C and 
40% U-13C) ᴰ-(+)-glucose (Cambridge Isotope Laboratories, USA) was the 
carbon source. The chemical purity of both 13C glucose isotopes was >99 % and 
13C-enrichment was >98%. 
For the instationary 13C-MFA xylose experiments, 0.3% w/v (75% 1-13C and 25% 
naturally labelled) ᴰ-(+)-xylose (Cambridge Isotope Laboratories, USA and 
Merck, UK, respectively) was the carbon source. The chemical purity of the 1-
13C xylose was 98 % and 13C-enrichment was 99%.  
When used as a pre-inoculation sub-culture media, 500 mL batches of ASM 
were corrected to a pH of 7 before filter-sterilization. When being prepared as a 
reservoir for continuous culture experiments, the ASM was adjusted to a pH of 
4.15 before filter-sterilization to reduce the growth of contaminants once the 
reservoirs were connected to the bioreactor system. Foaming was supressed for 
all 13C-MFA experiments by inclusion of 0.0125% Antifoam 204 (Sigma-Aldrich) 
in the ASM reservoir. 

Chemical Final 
Concentration 

Concentration 
(gL-1) 

NaH2PO4.2H2O 20 mM 3.12 

K2SO4 10 mM 1.74 

Citric Acid.H2O 8 mM 1.68 

MgSO4.7H2O 5 mM 1.23 

CaCl2 0.08 mM 0.09 

Na2MoO4.2H2O 1.65 µM 0.0004 

(NH4)2SO4 25 mM 3.3 

Glucose/xylose 0.3% 3 

Biotin 12 µM 0.00292 

Thiamine 12 µM 0.0036 

Sulphate Trace 
Elements 
Solution* 

See Below 5 mL 

 

Chemical Final 
Concentration 

Volume (mL) 

Conc. H2SO4  5 mL 

ZnSO4.7H2O 25 µM 1.44 

FeSO4.7H2O 100 µM 5.56 

MnSO4.H2O 50 µM 1.69 

CuSO4.5H2O 5 µM 0.25 

CoSO4.7H2O 10 µM 0.562 

Table 2: Composition of the minimal, defined ammonium salts media (ASM). 

 

Table 3: Composition of Sulphate Trace Elements stock solution used in 

ASM. 
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NiSO4.6H2O 16.85 µM 0.886 

H3BO3  0.08 

dH2O  1000 mL 

2.1.2 Bench-top bioreactors and microbial fermentation control 
systems 

To achieve the experimental steady-state conditions, it was necessary to have 
Continuous Stirred Tank Reactor (CSTR) bioreactor systems which were able to 
operate as chemostat cultures (continuous cultures in which input rates of media 
and output flow rates of culture are equal).  

2.1.2.1 The Custom MKI and MKII Bioreactor systems for aerobic 
INST-13C-MFA experiments 

On account of the high isotope sugar costs, all aerobic pilot experiments were 
performed in one of two miniature ‘micro-bioreactors’ of either a 45 mL (MKI) or 
90 mL (MKII) working volume vessels. Based on the oxygen transfer issues 
discussed in chapter 4.3.3 all 13C MFA experiments were performed with the 90 
mL working volume MK II system.  

The shared control unit and feed line setup: 

The bioreactor control system for both the MKI and MKII reactors was 
comprised of a modified Biostat B Fermentation Cell Culture Bioreactor Control 
Tower (B. Braun Biotech Industries (now Sartorius), De) (Figure. 5) (hereafter 
referred to as the ‘Braun unit’), which maintained the target temperature, pH, 
and air flow rate process variables of each experiment through inbuilt 
proportional integral derivative (PID) controllers, and a custom peristaltic-pump 
feed line set up for controlling media flow rates.  
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Temperature control 

The Braun unit incorporated a Pt-100 temperature probe which fitted a 
thermowell in the MKI and MKII units. Maintenance of the target 60°C 
temperature was achieved by heating and cooling as required an internal 
reservoir under PID control which supplied a continuous flow (and return) of 
water around the water-jackets of the MKI and MKII vessels via silicon tubing. 

During these experiments, the heating element of the Braun unit’s temperature 
control suffered two separate over-runs, requiring repair. After this point, a 
Julabo FE-500 Refrigerated Circulator was sourced to pre-cool the water that 
entered the control unit’s reservoir for temperature control. 

Additionally, both the MKI and MKII vessels were fitted with a custom 10 cm 
reflux condenser (Chemglass Life Sciences, USA) fitted with a 0.2 µm MiniSart 
filter (Sartorius Stedim, Ger) to minimise evaporation and any loss of volatile 
compounds from the culture as well as equalise air pressure within the sealed 
vessel. The flow of chilled water around the condenser system was maintained 
from an ice-chilled water reservoir by repurposing the antifoam control pump on 
the Braun unit to operate in manual pumping mode. 

pH control 

Figure 5: Biostat B Fermentation Cell Culture 

Bioreactor Control Tower or ‘Braun unit’. A) 

Profile of ‘Braun unit’ featuring 4 peristaltic 

pumps and inactive integrated air flowmeter B) 

User interface demonstrating process values 

which can be set as PID control loops. 

B A 
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The pH of the culture was measured using the pH probe specific to either the 
MKI or MKII system immersed in the culture medium. The target pH 7 
(deadband ± 0.05) condition of the culture was maintained using the Braun unit’s 
integrated pH controller and pump system. To maintain this pH, the control unit 
automatically pumped either 0.9M KOH or 0.2M HCl to the culture from separate 
1L reservoirs via 2 mm (id) silicon tubing connected to separate 15.2 cm 
stainless steel needles (Thermo Scientific, UK) which were pierced through 
septa in entry ports on the glass top plates of the MKI and MKII vessels. 

For each experiment, the PID pH controller was calibrated through the MKI- or 
MKII-specific pH probe (detailed below) and using known pH standards. 

Air flow control 

As the in-built air flow meter of the Braun unit was non-functional from the start 
of the research, the flow rate of compressed air was controlled through insertion 
of one of two air flow meters (10-150 mL/min and 0.1-1.3 L/min, Omega, UK) 
into the outlet gas line of the Braun unit depending on the aeration requirements 
(Figure. 6B). The compressed air was then pumped through silicon tubing via an 
in-line 0.2 µm MiniSart filter (Sartorius Stedim, Ger) and introduced to the 
culture at the bottom of the MKI and MKII vessels through a ring sparger 
(Figure. 6A). Air and liquid leakage detection was performed for all connections 
at the before inoculation using Snoop liquid leak detector (Swagelok, USA).  

Figure 6: The 

complete aeration 

control set up. A) 

Top plate of MKII 

vessel featuring ring 

sparger. B) Auxiliary 

flowmeters (OMEGA, 

UK) for control of air 

flow rates. 

 I) Maximum air flow 

rate: 1.3 L/min.  

II) Maximum air flow 

rate: 150 mL/min. 

 III) Maximum air flow 

rate: 8 mL/min.  

I I

I 

II

I

B A 
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High-Performance Liquid Chromatography (HPLC) and GC-MS data from the 1-
13C xylose-fed anaerobic growth of P. thermoglucosidasius NCIMB 11955 was 
generated in an older iteration of the MKI which utilized a 101U peristaltic pump 
(Watson-Marlow Falmouth, UK) to control air flow rate rather than the air flow 
meters described above. 

Control of media feed rates 

ASM was delivered into the vessels from the reservoirs via a 15.2 cm stainless 
steel needle (Thermo Scientific, UK) pieced through a septum in a port on the 
top plate and connected to 3.2 mm (id) silicon tubing. This system incorporated 
an anti-grow back tube to prevent cells growing back into the media reservoir. 
Continuous culture was achieved by incorporating two additional peristaltic 
pumps (101U Watson Marlow, Falmouth, Cornwall) on the inflow and outflow 
tubing and the incorporation of a 3-way water connector enabling a sterile switch 
from continuous pumping of 12C glucose ASM to 13C labelled ASM without 
affecting flow rate (Figure. 7).  

Waste culture was removed from the vessel via a 10 mm (id) silicon tube 
connected to the overflow port and pumped to discourage outlet biofilm 
formation and build-up.  

 

Measurement of redox potential 

The continuous measurement of the redox potential of the cultures was used an 
important indicator of fermentation status of P. thermoglucosidasius cultures. 
This was done using one of two ordinary redox potential pH / Redox (ORP) 

Figure 7: Three-way connector enabling a sterile switch from continuous 

pumping of 
12

C glucose ASM to 
13

C-labelled ASM. 
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probes linked to an HPT63 display console (LTH Electronics Ltd. UK). For each 
experiment, the system was calibrated using +220mV and +468mV standards. 

The MKI vessel 

The MKI 45 mL working volume bioreactor was the first to be constructed and 
evaluated (Figure 8). The original custom glass water-jacketed vessel and triple 
port top plate were designed by Jeremy Bartosiak-Jentys and manufactured by 
Soham Scientific (Soham, UK) based on a modification of their simulated gut 
reactors developed with Reading University115. 

Culture mixing in the MKI was provided by an 8 mm micro magnetic stirring bar 
and analogue magnetic stirrer plate (Thermo Scientific, Loughborough, UK). The 
measurement of culture pH and redox potential was performed for all 
experiments using a 120 x 12 mm autoclavable F-995 redox electrode 
(Broadley-James, Silsoe, UK) and an autoclavable 120 x 12 mm F-995 pH 
probe (Broadley-James, Silsoe, UK).  
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Figure 8: Set up of the ‘MKI’ bioreactor 45 mL culture system. A) Schematic of the MKI 

system detailing how: agitation, continuous feeding, pH, gas flow, pressure and temperature 

regulation were maintained when growing P. thermoglucosidasius cultures. Stirring controlled 

by magnetic flea and magnetic stirrer plate. Sampling performed with syringe through port. 

glass ‘anti-grow back’ system prevents contamination of reservoir ASM. B) Image of complete 

set up of MKI system. C) P. thermoglucosidasius cultures growing as an oxygen rich chemostat 

culture in the MKI microbioreactor. I) F-995 redox electrode (Broadley-James, Silsoe, UK). II) F-

995 pH probe (Broadley-James, Silsoe, UK). III) Media inlet featuring glass ‘anti-grow back’ 

system IV) Sampling syringe and port V) Analogue magnetic stirrer plate (Thermo Scientific, 

Loughborough, UK).  
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The MKII vessel 

The MKII 90 mL working volume bioreactor was the second reactor to be 
constructed and evaluated and was used for all aerobic 13C-MFA experiments. 
This custom glass water-jacketed vessel was designed by Prof. David Leak 
based on the results of Jeremy Bartosiak-Jentys and manufactured by Soham 
Scientific (Soham, UK).  

In addition to a having a greater working volume, the MKII system incorporated 
several improvements. The MKII vessel incorporated a 26° angled side inlet port 
to function as a thermowell for the temperature probe. The MKII top plate design 
was flatter instead of bevelled to increase the number of ports (Figure 9) and 
incorporated a port for a programmable motor-driven flat blade agitator, used for 
every experiment to support more reliable mixing at greater RPM values and to 
improve oxygen mass transfer to the culture media.  

The pH of the culture was measured by an EasyFerm Plus VP pH/RX 225 pH 
probe (Hamilton, UK) and the culture redox potential was measured using a 
EasyFerm Plus PHI K8 225 S8 redox probe (Hamilton, UK).  
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Figure 9: Set up of the ‘MKII’ bioreactor 90 mL culture system. A) Schematic of the MKII 

system detailing how: agitation, continuous feeding, pH, gas flow, pressure and temperature 

regulation were maintained when growing P. thermoglucosidasius cultures. Gas flow rate 

controlled by external flowmeter. Stirring controlled by a programmable rotor. Sampling 

performed with syringe through port. glass ‘anti-grow back’ system prevents contamination of 

reservoir ASM. B) Complete set up of the MKII system. At the time of this image, the chiller unit 

had not yet been installed. C) P. thermoglucosidasius cells growing as an aerobic chemostat 

culture in the MKII microbioreactor. I) Digital programmable agitator. II) Sampling syringe. III) 

Media inlet featuring glass ‘anti-grow back’ attachment. IV) EasyFerm Plus PHI K8 225 S8 redox 

probe (Hamilton, UK). V) EasyFerm Plus VP pH/RX 225 pH probe (Hamilton, UK). 



48 
 

2.1.2.2 Applikon® MiniBio2 250 system 

At the Indian Institute of Technology Mandi, India, an Applikon® Biotechnology 
MiniBio2 250 bioreactor system (Figure 10, Applikon® Biotechnology) was used 
for the first aerobic glucose 0.075 h-1 growth rate 13C-MFA experiment. The 
complete system consisted of a 50-250 mL working volume borosilicate glass 
vessel with a detachable stainless steel top plate bearing: an L-type sparger for 
aeration, thermowell for temperature sensor, motor-driven Rushton impeller, 
conductivity-based level sensor and ports for: inoculation, sampling, culture 
transport and two ports for pH, redox potential or dissolved oxygen probes. The 
measurement of culture pH was performed for all experiments using an 
incorporated pH probe and the measurement of dissolved oxygen (DO2) using 
an AppliSens DO2-sensor. Additionally, each system incorporated a computer-
linked control unit which was used to control and maintain: a temperature of 
60°C, a pH of 7, the media flow rates of the inlet and, the agitation speed of the 
impeller and the inlet air flow rate. Air and liquid leakage detection was 
performed for all connections at the before inoculation using Snoop liquid leak 
detector (Swagelok, USA). 

Real-time monitoring and data-logging of: redox potential, temperature, air flow, 
pH and agitator speed were perfored for all growth experiments through the 
linked computer using the Lucullus Process Information Management System 
version 3.5.2 (Applikon® Biotechnology). 
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Figure 10: Set up of complete Applikon® Biotechnology MiniBio2 250 culture system.  

A) Schematic of the MiniBio2 250 system detailing how: agitation, continuous feeding, pH, 

foam level, gas flow, pressure and temperature regulation were maintained when growing P. 

thermoglucosidasius cultures. Temperature regulation provided by heating jacket. Stirring 

controlled by a programmable rotor. Sampling performed with syringe through port. ASM. B) 

Complete set up of MiniBio2 250 mL system and workstation. C) Close up of MiniBio2 250 

system and associated control unit. 
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2.1.2.3 Biostat® B system for anaerobic and ‘micro-aerobic’ 13C-MFA 
experiments 

All anaerobic and ‘micro-aerobic’ pilots and INST-13C-MFA experiments were 
performed using a Biostat® B benchtop bioreactor system (Sartorius, DE.). This 
consisted of the Biostat® B control tower for overview and control of process 
parameters and a stirred tank bioreactor (Figure 11A). 

Through in-built PID controllers, the Biostat® B control tower was able to 
maintain pH and redox potential using a 200 mm EasyFerm Plus VP8 Pt-1000 
dual pH/ORP sensor (Hamilton, CH), temperature using an incorporated 151mm 
Pt-1000 temperature probe and oxygen saturation levels using a 215mm 
OxyFerm FDA VP8 225 DO2sensor (Hamilton, CH). The Biostat® B system also 
utilised inbuilt mass flow controllers to control the rates compressed air and 
compressed nitrogen to aid in the creation of low oxygen and low redox potential 
environments for anaerobic cell growth. 

The stirred-tank bioreactor consisted of a 2 L water-jacketed boro-silicate glass 
vessel used at its minimum working volume of 350 mL with a stainless-steel top-
plate. The top-plate had ports for sampling, media inlet and outlet, a stainless-
steel condenser to minimize evaporation and loss of volatile products, a 
thermowell for the temperature probe, a ring sparger to introduce gas to the 
culture underneath the impeller and a motor-driven 6-blade dual disc Rushton 
impeller for culture agitation and mixing controlled by the Biostat® B control 
tower. 

The complete vessel and top plate were placed on an integrated weighing scale 
(Sartorius, DE) connected to the Biostat® B control tower. For the 13C MFA 
continuous culture experiments, the system was adapted to feature a 101U 
peristaltic pump (Watson-Marlow Pumps Group, Falmouth, Cornwall) to 
introduce a fixed flow rate of ASM through 3.2 mm internal diameter silicon 
tubing. On account of recurrent vessel pressure issues and condenser failures 
with the Biostat B bioreactor system, a tygon® tubing outlet line was fixed to the 
top of the non-functional condenser to a dreschel gas wash bottle filled with 100 
mL water, submersed in a flask of ice. Under the assumption that any 
evaporated products would no longer condense back into the culture, a single 
500 µL sample of the dreschel bottle was taken alongside each time point of the 
glucose anaerobic 0.075 h-1 13C-MFA experiment.  

As with the smaller reactors, two media reservoirs were connected via a 3-way 
connector, enabling a sterile switch from continuous pumping of naturally 
labelled ASM to 13C labelled ASM without affecting flow rate. Flow of culture out 
of the bioreactor was controlled gravimetrically by the Biostat® B tower by setting 
a fixed weight for the vessel and top plate determined at 350 mL working volume 
with all lines in and out of the bioreactor at full capacity. Thus, the dilution rate of 
a continuous experiment was entirely controlled via the input flow rate of media. 
Sampling was performed through a 3-port vacuum sampling system (Figure 
11.B) which prevented contamination from sampling by uni-directional flow. 
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Figure 11: Set up Biostat® B bioreactor 1.5 L culture system. A) Schematic of the Biostat® B 

bioreactor system detailing how: agitation, continuous feeding, pH, gas flow, pressure and 

temperature regulation were maintained when growing P. thermoglucosidasius cultures. Stirring 

controlled by a programmable rotor. Continuous flow maintained by fixed input flow rate and weight 

balance set to maintain a target weigh by removal of culture. Sampling performed with sterile 

pressure sampling system (C). B) P. thermoglucosidasius cells growing under oxygen limited 

conditions as a chemostat culture in the Biostat® B bioreactor. C) Biostat® B bioreactor sterile 

pressure sampling system. Roller clamp II opened, and pressure differential created via a syringe 

applied to filter III which draws culture into the intermediary vial. Roller clamp II is then closed, and 

roller clamp I is opened, allowing culture samples to be drawn via syringe from the intermediary vial. 
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2.1.3 Computational Materials for INST-13C-MFA  

2.1.3.1 IsoCor v2.2 

In order to obtain an accurate understanding of the metabolite mass isotopomer 
distributions and labelling ratios as a result of the introduced 13C-labelled 
carbon, it was necessary to remove the influence of other anticipated naturally 
abundant isotopes i.e. 2H, 13C, 15N, 17-18O,  29-30Si, and 33-36S) on the obtained 13C 
MS data116.  

Natural isotope correction was performed using the IsoCor v2.2 tool117 (Figure 
12) using the manually generated metabolite and derivative tables (Tables 4 and 
5) and yielding the corrected mass isotopomer distributions for each amino acid 
fragment and their relative abundances.  

 

Figure 12: Graphical User-Interface of IsoCor v.2.2.0. Data is loaded as individual note files of 

each sample featuring the: sample, metabolite fragment formula, chemical derivative associated 

with each metabolite fragment and the uncorrected peak area and processed with respect to 

user defined metabolites, derivatives and isotopic tracer purity. 
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2.1.3.2 Isotopomer Network Compartmental Analysis (INCA) 
Due to its ability to perform isotopically instationary metabolic flux analysis, the 
metabolic network model definition and all 13C informed metabolic flux 
estimation of P. thermoglucosidasius was performed using INCA v.1.7 software 
package118 in MATLAB R2017b (The MathWorks Inc, USA). 

2.1.3.3 The COBRA toolbox v3.0 
All flux balance, parsimonius flux balance and flux variability analysis was 
performed using the COBRA Toolbox v3.0 software suite119 in either MATLAB 
R2017b (The MathWorks Inc, USA) or Python 3.0. 

2.1.3.4 Memote 
Throughout the genome-scale metabolic model refinement and improvement 
process, the quality of the genome scale model was evaluated with the 
MEMOTE tool120 and used it to identify areas of further model refinement. 
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2.2  Methods 
2.2.1 Instationary 13C-MFA methods 
2.2.1.1 Experimental Design 

13C isotopic labelling strategy  
The 13C isotope labelling strategy for the 13C-MFA experiments in which glucose 
was the sole substrate at 0.3% w/v contained 60% 1-13C and 40% U-13C ᴰ-(+)-
glucose. This was selected based on Dr. Charlotte Ward’s observation that 
successful and improved resolution of some P. thermoglucosidasius metabolic 
pathways could be achieved with this mix of labelled sugars121.  

The 13C isotope labelling strategy for the 13C-MFA experiments in which xylose 
was the sole substrate at 0.3% w/v contained 75% 1-13C and 25% natural 
labelled ᴰ-(+)-xylose, chosen in order to directly incorporate an anaerobic xylose 
13C-MFA experiment performed by Shyam Maskapalli in 2014 into the overall 
analysis which used 0.5% w/v (75% 1-13C and 25% natural labelled) ᴰ-(+)-xylose 
as the sole substrate. 

Preparation of ASM for 13C-MFA experiments 
To improve the accuracy of the dynamic isotope incorporation trends obtained, it 
was important to ensure any metabolic variation observed between the 13C 
labelled sugar and unlabelled sugar was only down to the carbon source and not 
batch-to-batch variation in ASM preparation. Therefore, for every instationary 
13C-MFA experiment, all reservoir ASM was first prepared as a single batch and 
pH adjusted to 4.15 before being split, the requisite sugar added and final ASM 
filter-sterilized (Figure 13): 

 

Figure 13: Depiction of the ASM preparation strategy employed to minimize batch-to-batch variation 

for all 13C-MFA experiments, featuring the weights and volumes of an aerobic glucose experiment.  
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2.2.1.2 Micro-bioreactor growth experiments 
Inlet feed-line flow rate calibration 
A fundamental assumption of metabolic flux analysis experiments in chemostat 
systems is that, once the cells reach a metabolic steady state, the growth rate of the 
cells in the culture is equal to the dilution rate of the chemostat122. Therefore, for an 
accurate observation of cellular metabolic behavior at a target growth rate within the 
chemostat system, it is necessary to precisely calibrate the flow rate of media added 
through the feed line. In order to ensure this precise sub-100 µL/min media flow 
rates, peristaltic pump rotation speeds (RPM) versus media flow rate standard 
curves were routinely generated for all media inlet lines for the two potential media 
reservoirs prior to each 13C-MFA experiment. For each rotation speed on the 101U 
peristaltic pump (Watson-Marlow Pumps Group, Falmouth, Cornwall) a flow rate 
was determined by weighing the amount of water that flowed into a pre-weighed 
measuring cylinder over a fixed time (3 minutes). Using the density of water this was 
converted to a volumetric flow rate (mL/min) associated with each speed setting of 
the pump.  Lastly, dilution rate was calculated by dividing the flow rate by the 
working volume of the bioreactor in millilitres. It was assumed that the viscosities 
and densities of 0.3% glucose or xylose ASM at room temperature and pressure 
were equivalent to that of water. 

Bioreactor assembly and sterilization 
To ensure effective sterilisation by autoclaving, every bioreactor was first assembled 
as a complete glass vessel with: 10% total working volume of de-ionised water (DI-
H2O), integrated autoclavable pH and redox potential probes and tube feed lines 
connected to empty reservoir bottles. While still an open system with respect to 
ensuring a balance of pressure in the vessels during autoclaving, to prevent 
microbial contamination the only system boundaries of the bioreactor systems were 
silicon tube lines which allowed air flow through 0.2 µm MiniSart filters (Sartorius 
Stedim, Ger). For the MKII system, the flat blade agitator used to mix the culture 
was also wrapped in aluminium foil and autoclaved separately at the same time.  

All bioreactor vessels connected place-holder reservoir bottles and foil-wrapped flat 
blade agitator were sterilized through autoclaving at 121 °C and 1.03 bar pressure 
for 40 minutes. 

Once autoclaved, the media, acid, and base reservoirs (and the MKII flat blade 
agitator), were connected to the system in a class II microbiological safety cabinet to 
minimize the risk of microbial contamination. 

Seed culture 
For each bioreactor growth experiment, fresh working plates of P. 
thermoglucosidasius cells were prepared by streaking from a glycerol stock onto a 
50°C pre-warmed solid 2TY agar plate. Cells were then incubator for 14-18 hours in 
a 55°C static incubator. Single colonies from those plates were used to inoculate 
12.5 mL of liquid 2TY media in a 50 mL centrifuge tube. This seed culture was then 
grown at 55°C, 220 RPM in an Innova 44 shaking incubator (New Brunswick 
Scientific, UK) for 14-18 hours. 

Sub-culture and inoculation  
In order to acclimate the P. thermoglucosidasius cells as they transitioned from rich 
media to minimal media, 2 mL of the 2TY seed culture was sub-cultured into 10 mL 
of sterile, pre-warmed (60oC) ASM at pH 7 in a 50 mL centrifuge tube. This was 
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then incubated at 60°C with shaking at 220 rpm in an Innova 44 shaking incubator 
(New Brunswick Scientific, UK) until the culture reached an OD600 of approximately 
1.5.  

At this point, 5 mL of culture was aseptically inoculated into either the MKI or MKII 
bioreactors containing ASM which had been previously equilibrated to pH 7, 60°C 
and the air flow rate of the specific experiment. Cells were grown in batch mode 
under the specific parameters of each experiment until an OD600 value of 
approximately 1 was reached. At this point, continuous culture conditions were 
initiated at the dilution rate of the specific experiment.  

Continuous culture growth experiments  
For all P. thermoglucosidasius growth experiments, cells were first grown under the 
target continuous culture conditions of the experiment in naturally labelled ASM until 
reaching a metabolic steady state after approximately 3.5 cell culture volume 
changes (CCVCs). This metabolic steady state was determined by obtaining 
consistent OD600 values and consistent fermentation product concentrations of three 
samples taken at different time points as indicated HPLC analysis of sample cell 
culture filtrate (CCF) fermentation products from three separate time points. Once 
metabolic steady state was achieved and target fermentation status was concluded 
to have been met, naturally labelled and/or pilot growth experiments were ended. 

Procedure for starting the INST-13C-MFA ILEs 
For all P. thermoglucosidasius INST-13C-MFA ILEs, cells were first grown in 
naturally labelled ASM until reaching a metabolic steady state as defined above. 
Once shown to be growing at a metabolic steady state, the system was aseptically 
switched to grow on either the 0.3% 13C glucose or 0.3% 13C xylose labelled ASM, 
starting theInstationary 13C-MFA experiment.  
 

2.2.1.3 Sampling cell culture during chemostat growth experiments  
As the P. thermoglucosidasius continuous culture growth experiments progressed, 
500 µL technical triplicate samples of cell culture were taken at experiment-specific 
time points for: OD600 readings, HPLC analysis of cell culture filtrates and GC-MS 
analysis of proteinogenic 13C amino acids.  
Under the assumption that any evaporated products in the Biostat B bioreactor 
system would no longer condense back into the culture due to an issue with the 
condenser, a single 500 µL sample of the condenser outlet dreschel bottle was 
taken at each time point of the glucose anaerobic 0.075 h-1 13C-MFA experiment. 
For each sample, the culture supernatant was immediately separated from the cell 
pellet by centrifugation at 14,000g for 10 minutes. For each culture sample taken, 
the separated supernatant was filtered through a 0.22 µM syringe filter 
(Phenomenex, USA) into a 1.5 mL micro-centrifuge tube to obtain a sterile, cell-free 
CCF. 100 µL of CCF from aerobic experiments or 200 µL of CCF from anaerobic 
experiments was then pipetted and mixed into either 900 or 800 µL respectively of 
dH2O in a sealed glass HPLC vial for HPLC analysis. The separated cell pellets 
were stored at -20°C until later cell hydrolysis. 

Optical density of samples at 600nm (OD600) 
The optical density of cell culture samples at a wavelength of 600 nm (OD600) was 
used to monitor the growth of the cells in all experiments. The OD600 was measured 
using 1:10 culture: water dilutions using a Jenway 6305 UV/Visible 
Spectrophotometer (VWR, UK). 
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Biomass Composition estimation 
The biomass compositions of P. thermoglucosidasius NCIMB 11955 used in this 
research were measured under chemostat growth conditions by Dr. Shyam 
Masakapalli in 2014 according to the method of Durot et al. (2009)123. Biomass 
compositions were determined for P. thermoglucosidasius NCIMB 11955 cells 
grown at 60°C, pH 7 on 1% Glucose ASM under aerobic and anaerobic 
conditions (indicated by redox potential) and was repeated in biological 
duplicate. 

2.2.1.4 High-Performance Liquid Chromatography (HPLC) analysis 
of extracellular cell culture metabolites and residual sugars 

In order to gauge the fermentation status of P. thermoglucosidasius cells during 
continuous culture growth and to quantify the extracellular concentrations of 
fermentation products and any residual sugars, CCFs were analysed via either a 
High-Performance Liquid-Chromatography-Refractive Index Detector (RID)-
Variable-Wavelength Detector (VWD) (HPLC-RID-VWD) system (University of 
Bath) or a HPLC-Diode Array Detector (DAD)-RID (HPLC-DAD-RID) system (IIT 
Mandi). 
 
All CCF samples were then analysed for the extracellular concentrations of the 
metabolites: ethanol, acetate, formate, lactate and pyruvate and any residual 
glucose or xylose (Table 6). 

 

HPLC-RID-UVD - The University of Bath, UK 
At the University of Bath, CCF analysis was performed using an Agilent 1200 
Series HPLC system (Agilent, USA) equipped with a Rezex™ RHM 
Monosaccharide-H-column (300 x 7.8 mm, 8 μm, Phenomenex, USA) with 
compound separation achieved using a mobile phase of 5 mM H2SO4 at a 0.6 
mL/min flow rate and a column temperature of 65°C. 
Ethanol, glucose and xylose were detected and quantified using the Agilent 
1200 Series’ integrated G1362A Infinity Refractive Index Detector (Agilent, 
USA).The organic acids acetate, formate, lactate and pyruvate were detected 
and quantitated using a G1314B VWD set to an absorption wavelength of 215 
nm. The resulting chromatograms and peak areas were visualised and 
integrated using the ChemStation software and the resulting concentrations of 
metabolites were derived using standard curves for each chemical generated 

Detector Cell Culture 
Filtrate 
Compound 

University of Bath 
Retention Time 
Range (mins) 

IIT Mandi 
Retention Time 
Range (mins) 

RID Glucose 9.7 -> 10.4 10.5 -> 10.6 

Xylose 10.7 11.2 

Ethanol 21 -> 23 22.8 -> 23 

UV/DAD Pyruvate 9.9 -> 10 9.9 -> 10 

Lactate 13 -> 13.5 13.6 -> 13.8 

Formate 14 -> 14.5 15.7 -> 16.0 

Acetate 15 -> 15.5 14.5 -> 14.7 

Table 6: Table of expected retention times (mins) on HPLC columns at the University of Bath 

and IIT Mandi. 
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over a concentration range of 2.5-100 mM. Peak areas below the range of these 
standard curves were assumed to be below the limit of detection of the 
instruments and were thus recorded as zero values for further analysis. 

HPLC-DAD-RID - The Indian Institute of Technology, Mandi 
At the IIT Mandi, CCF compound separation was achieved on an Agilent 1260 
Infinity HPLC system (Agilent, In.) equipped with either a Rezex™ ROA-Organic 
Acid H+ (8%), LC Column (300 x 7.8 mm, 8 μm, Phenomenex, UK) or a 
SUPELCOGEL C-610H LC column (300 x 7.8 mm, Sigma-Aldrich, In). CCF 
compound separation was achieved with an injection volume of 10 µL at a 
column temperature of a 65°C using a mobile phase of 5 mM H2SO4 at a flow 
rate of 0.6 mL/min.  

All CCF compounds were separated over an elution time of 30 minutes and 
were identified based on the retention times of authentic standards (Appendix 
Table 3). The resulting chromatograms and peak areas were visualised and 
integrated using the Agilent EZChrom Elite software (Agilent, In).  

The cell culture filtrate concentrations of glucose, xylose and ethanol were 
quantified with the integrated Agilent 1260 Infinity RID using standard curves 
derived from seperate 2, 4, 6, 8, and 10 g/L glucose and xylose in water 
standards and 0.2, 0.4, 0.6, 0.8, and 1 g/L ethanol in water standards 
respectively. The cell culture filtrate concentrations of acetate, lactate, formate 
and pyruvate were quantified using the integrated Agilent 1260 DAD (Agilent, 
In.) set to an absorption wavelength of 214 nm and standard curves derived 
from 0.2, 0.4, 0.6, 0.8, and 1 g/L standards. 

2.2.1.5 Gas chromatography mass spectrometry (GC-MS) analysis of 
proteinogenic amino acids and extracellular compounds 

The complete proteinogenic amino acid analysis procedure was developed from 
a combination of: You et al. (2012)124 and in particular Antoniewicz et al. 
(2019)125. 

Cell hydrolysis  
In order to convert all cellular protein to its constituent proteinogenic amino 
acids, all biomass pellets were first re-suspended through the addition of 500 µL 
of 6N HCl and then transferred to acid resistant 2 mL cryogenic storage vials 
(Fisher scientific, UK). Each sealed cryogenic storage vial was then incubated at 
100°C for 20 hours in an oven to fully hydrolyse the biomass to amino acids. A 
metal block was placed on top of the vials to prevent evaporation.  
 

Hydrolysate separation and drying  
After hydrolysis, the samples were transferred to separate 1.5 mL 
microcentrifuge tubes and centrifuged at 14,000g for 5 minutes to concentrate 
residual cellular material.  
450 µL of supernatant of each sample were then transferred to another new 1.5 
mL microcentrifugre tube. Samples were then dried at 60°C under an air stream 
for 12-14 hours in order to prepare the amino acids for the subsequent moisture-
sensitive silylation. 
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Amino acid Derivatization with MtBSTFA + 1% t-BDMCS  
Derivatization of the polar -OH, -NH2 and -SH moieties of the amino acids in the 
hydrolysates is required to make the amino acids both less reactive and volatile 
enough such that they can be adequately separated by GC. 

Firstly, 35 µL of pyridine was added to each dried sample to act as a solvent and 
the samples were resuspended through gentle aspiration. The sample mixtures 
were incubated at 60oC for 15 minutes on a static heat block to dissolve the 
amino acids and to equilibrate the reaction mixture. Then 50 µL of the N-tert-
butyldimethylsilyl-N-methyltrifluoroacetamide (MtBSTFA) + 1% tert-
butyldimethylchlorosilane (t-BDMSCl) derivatization agent (Merck, UK) was 
added to each sample and the samples were incubated at 60 oC for 35 minutes 
on a static heat block. (Figure. 14). 

 

The active hydrogens in exposed -OH, -NH2 and –SH moieties then undergo 
substitution to be replaced with a tert -Butyldimethylsilyl (TBDMS) moiety. This 
adds 114 per substitution to the molecular weight of the final TBDMS amino acid 
derivatives. Once derivitized, the samples in microcentrifuge tubes were 
centrifuged at 14,000g for 1 minute to condense any remaining cell debris and 
75 µL of each derivitized sample was transferred to a labelled GC vial with 100 
µL insert for GC-MS analysis.  

Gas chromatographic separation and detection programmes 

The University of Bath, UK  
Compound separation and analysis was performed at the University of Bath 
using electrospray ionisation (EI) on an 8890-gas chromatography (GC, Agilent) 
system coupled with a 5977B MSD (MS, Agilent) GC-ALS-MS-5977B (GC-MS) 
system (Agilent, UK) equipped with a HP-5MS (5%-Phenyl)-methylpolysiloxane 
column (30 m, 0.25 mm, 0.25 µm, Agilent, UK) and quadrupole detector using 
He (BOC) as a carrier gas at a constant flow rate of 1.0 mL/min.  

Figure 14: The amino acid chemical derivitization process featuring the 

structures of N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MtBSTFA) and 

tert-butyldimethylchlorosilane (t-BDMSCl).  
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Split injections of 1 µL sample were performed, with a 10:1 split ratio (split flow 
of 10 mL/min), using a split inlet liner, lined with deactivated glass wool (210-
4022-5 Agilent, UK).  The inlet temperature was 280oC with a 3.0 mL/min 
septum purge flow. The column oven was initially held at 100oC for 1.5 minutes 
before a 20 oC/min ramp to 130oC, followed by a 10 oC/min ramp to 220oC with a 
3-minute hold. This was then followed by a 5oC/min ramp to 280oC with a 4-
minute hold, resulting in a total analysis time of 31 minutes. The MSD transfer 
line was set at 280°C, the MSD source set at 230°C, and the MSD quad 
temperature was set at 150°C.  

After a 7-minute solvent delay, full scan mode detection was performed over a 
180-550 m/z range, with a scan time of 1562 µs, and a gain factor of 15.  

The Indian institute of technology, Mandi  
Compound separation was performed at IIT Mandi using electrospray ionisation 
(EI) on a GC-ALS-5977B-MSD (GC-MS) system (Agilent, In) equipped with a 
HP-5MS (5%-Phenyl)-methylpolysiloxane column (30 m x 250 µm x 0.2 µm, 
Agilent, In) and quadropole detector using He (BOC) as a carrier gas at a 
constant flow rate of 1.3 mL/min. The inlet temperature was 270oC. After 1 µL 
splitless injection, the column oven gradient was initially held at 120oC with a 5-
minute hold before a subsequent 4 oC/min ramp to 270oC where it was held for 3 
minutes. This was then followed by a 20oC/min ramp to 320oC, and which was 
held for 1 minute. Baseline correction of all raw chromatograms was then 
performed using the metAlign 3.0 tool126 in MATLAB version R2017b (The 
MathWorks Inc, Natick, USA). 

At both institutions and for each GC-MS analysis run, the retention time for each 
TBDMS-derivitized amino acid was identified through triplicate 20, 15 10 5 1 0.5 
and 0.1 ng/µL amino acid standards subjected to the same hydrolysis, drying 
and derivatization protocol detailed in 2.2.1.5. 

2.2.2 Computational methods for instationary 13C-MFA 
2.2.1.2 GC-MS data processing and TBDMS-derivitized molecular 

mass fragment validation 

GC-MS data visualization and identification of metabolites 
Raw GC-MS chromatograms were visualized, and initial data interrogation was 
performed using Agilent MassHunter Workstation Qualitative analysis v.10.0 
(Agilent, UK). Each GC peak of the amino acid standard chromatograms was 
interrogated, and TBDMS-derivitized amino acid fragments were identified, 
through spectral matching to the National Institute of Standards and Technology 
(NIST) 17 mass spectral database. The retention times for the peaks 
corresponding to the fragments were then recorded and the process was 
repeated for the naturally labelled samples to identify other TBDMS-derivitized 
compounds of interest. 

Total Ion Current (TIC) chromatogram extraction 
For each sample, individual total ion current (TIC) chromatograms for the 180-
550 m/z range were extracted for each retention time range corresponding to 
the peak area of a TBDMS-derivitized amino acid or compound of interest. 
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Natural isotope abundance mass correction using IsoCor v2.2.0 
As the obtained mass isotopomer distributions will also be affected by the presence 
of the naturally occurring stable heavy mass isotopes: 2H, 13C, 15N, 17-18O, 29-30Si, and 
33-36S in both the metabolites and TBDMS derivatives, natural isotope correction is 
required. Natural isotope correction was performed for each extracted compound 
TIC through the IsoCor v2.2.0 tool117 in Python 3.5 using the manually generated 
metabolite and derivative tables in described in materials 2.1.3.1 and yielding the 
corrected mass isotopomer distributions of each amino acid molecular weight ion.  

For each technical triplicate sample, an average 13C incorporation was then 
determined from for each mass isotopomer from the resulting corrected fractional 
abundances.  

Defining the validity of TBDMS-derivitized molecular mass fragments for flux 
analysis  
 
As the natural isotope abundance corrected TICs pertaining to each amino acid also 
contain background noise ion counts as well as the desired molecular fragment ion 
counts, it is necessary to determine which of the characteristic TBDMS-derivitized 
amino acid and other molecular ion mass fragments (Figure 15 and Table 7) should 
be used for metabolic flux analysis.  

Amino Acid 

Base 
Molecula
r Weight 
(g/mol) 

Assumed 
TBDMS 
groups post-
derivitization 

Full TBDMS 
derivitized 
Molecular 
Weight (g/mol) 
[M-0]+ 

Mass Fragment (m/z) 

[M-15]+ 
(-CH3) 

[M-57]+ 
(-C4H9) 

[M-85]+ 
(-C4H9 + 
CO) 

[M-
159]+ 
(CO-O-

Figure 15: Depiction of the structures commonly examined molecular ion mass fragments 

resulting from electrospray ionization. [M-15]+ represents the loss of a -CH3 or methyl group, 

[M-57]+ represents the loss of a -C4H9 or tert-butyl group, [M-85]+ represents the loss of a-C4H9 

tert-butyl group and a -CO group and [M-159]+ represents the loss of a -CO-O-TBDMS moiety. 

Table 7: Anticipated metabolites and expected m/z ions corresponding to mass fragments. 
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TBDMS
) 

Alanine 89.00 2 317 302 260 232 158 

Glycine 75.07 2 303 288 246 218 144 

Valine 117.15 2 345 330 288 260 186 

Leucine 131.17 2 359 344 302 274 200 

Isoleucine 131.17 2 359 344 302 274 200 

Proline 115.13 2 343 328 286 258 184 

Methionine 149.21 2 377 362 320 292 218 

Serine 105.09 3 447 432 390 362 288 

Threonine 119.12 3 461 446 404 376 303 

Phenylalanine 165.19 2 393 378 336 308 234 

Aspartate 133.11 3 475 460 418 390 316 

Histidine 155.15 3 497 482 440 412 338 

Glutamate 147.13 3 489 474 432 404 330 

Lysine 146.19 3 488 473 431 403 329 

Tyrosine 181.19 3 523 508 466 438 436 

 

In this case, the fragments after natural isotope correction were qualified as 
either ‘Valid’, ‘Conditional Valid’ or ‘Invalid’. The characteristic molecular weight 
ions considered ‘Valid’ to represent each amino acid or compound in flux 
analysis estimation all had a calculated mean enrichment value for the 
unlabeled samples as less than or equal to the assumed natural abundance of 
carbon-13 of 1.11%. In cases where none of the characteristic molecular weight 
ions for a particular amino acid had an appropriate enrichment percentage, any 
of the characteristic molecular weight ions with natural enrichment of <2% was 
taken as “Conditionally Valid”. Those that did not fit those criteria were 
considered ‘Invalid’ for further use in flux analysis.  
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Complete mass isotopomer distributions of fractional abundances 
encompassing each isotopically instationary 13C-MFA growth experiment were 
then created for all ‘Valid’ and ‘Conditional Valid’ molecular weight ions. 

2.2.1.3 Flux estimation 
 

Carbon Transition Network Construction 
 

A network model of stoichiometric, carbon transition reactions representing P. 
thermoglucosidasius Central Carbon Metabolism (CCM) was defined in the 
Isotopomer Network Compartmental Analysis (INCA) v.2.0 software package118 
run in MATLAB R2017b (The MathWorks Inc, USA). This metabolic network and 
associated reaction directionality was adapted first from the carbon transition 
network defined by Cordova et al. (2016)125 for Geobacillus LC300 and 
influenced by the metabolic networks devised by: Tang et al. (2009)128 for 
Parageobacillus thermoglucosidasius M10EXG, the PhD thesis of Dr. Charlotte 
Ward (2014) for P. thermoglucosidasius NCIMB 11955121 and the total network 
for the p-thermo GSMM presented in Chapter 3. The carbon transition network 
was built using the elementary metabolite unit (EMU) algorithm which combines 
the reaction stoichiometry, reversibility, and positional carbon information into 
each atom transition reaction. To act as additional constraints, reactions 
included the generation and usage of ATP, NADH, NADPH and one carbon 
metabolism metabolites methylenetetrahydrofolate (MEETHF), 
methyltetrahydrofolate (METHF) and formyltetrahydrofolate (FTHF). The 
metabolites succinate, fumarate which can act as symmetrical substrates to 
produce two products were defined as being symmetrical in the INCA software 
to prevent 13C scrambling throughout the network. 

The network itself represented the major pathways of upper metabolism, 
including glycolysis, gluconeogenesis and the pentose phosphate pathway, 
lower metabolism, including the Citric acid cycle, glyoxylate pathway and 
anaplerotic reactions, condensed amino acid synthesis pathways, fermentation 
efflux pathways and a biomass formation pseudo-reaction to operate as a sink 
for amino acids and carbon intermediates needed for growth. The proportion of 
protein in P. thermoglucosidasius NCIMB 11955 biomass, and the amino acid 
composition of that protein that was required for the biomass equation 
coefficients, had been measured previously by Shyam Masakapali and reported 
in Lisowska (2016)113. The coefficients of each biomass component were 
normalized to the rate of substrate uptake and input the units of millimole per 
gram of Dry Cell Weight per hour (mmol g-1 DCW h-1). For pathways not 
included in the model, such as nucleotide, cell wall and lipid biosynthesis, the 
central carbon metabolite which operates as a precursor was used to represent 
it in the biomass equation. These stoichiometric values were taken from 
Codrova et al. (2016)125 and assumed as constant for all ILEs. Measured yields 
of fermentation products were also normalized to the rate of substrate uptake 
and were applied to the respective upper and lower bounds of the respective 
efflux reactions. This effectively forces efflux of each fermentation product to its 
experimentally measured value (i.e., the lower bound for each amino acid sink 
reaction was set to a positive value).  
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This carbon transition network, with reactions included or omitted based on 
growth conditions, was used as the metabolic network framework for all the 
INST-13C-MFA ILEs, which and is discussed in 4.4.4.1. The complete reaction 
network is available in Appendix 4. 

2.2.1.4 Experimentally derived metabolic network constraints 

The flux values for the amino acid sink pseudo-reactions were ultimately normalized 
to the specific sugar uptake rates of P. thermoglucosidasius in each INST-13C-MFA 
experiment. 

OD600nm to gDCW conversion 
The conversion factor used for OD600 to gDCW for P. thermoglucosidasius NCIMB 
11955 was measured by Jinghui Liang (pers. Comm.) to be 0.42 g/L DCW per 1 AU 
measured at OD600. 

Adapting metabolite concentrations into reaction constraints 
For each isotope labelling experiment, the concentrations of extracellular 
fermentation products, overflow pyruvate and the concentrations of sugar in the 
culture and 13C ASM reservoir were measured from CCF samples by HPLC 
analysis.  A technical triplicate sample of media in the 13C ASM reservoir was taken 
at the end of the experiment to determine the concentration of either glucose or 
xylose in the 13C substrate reservoir.   
The combination of biomass composition measurements, OD600nm and specific rates 
of substrate uptake were used to calculate fluxes for amino acid coefficients in the 
biomass equation, and for fermentation product transport reactions, in units of mmol 
g-1 DCW h-1.  

  
For fermentation product transport reactions, the measured concentrations of 
product were normalized to the specific substrate uptake rate of the cells. As values 
were calculated for every time point, the maximum calculated value was set as the 
upper bound of the reaction and the minimum calculated value was set as the lower 
bound of the reaction. However, only one value could be applied to represent the 
biomass coefficient reactions in INCA, despite the dynamic nature of the 
experiments. Thus, for each experiment, to account for the effects of the variation in 
the OD600nm measurements and sugar concentration in the media (which underpin 
the specific substrate uptake rate), an average value was calculated for each amino 
acid considering every sample taken during the 13C portion of each isotope labelling 
experiment.   
 

Metabolic model simulation using experimental data 
Each experiment’s fully processed and normalized mass isotopomer distributions of 
validated TBDMS derivitized amino acid fragments, and their respective standard 
errors, were input into INCA.  

The positional and purity information of the 13C tracer for each experiment was 
defined as input pools and applied to the relevant experiments. Additionally, on 
account of carboxylation reactions within the network, naturally labelled CO2 (i.e., 
CO2 with an enrichment of 1.13 % 13C) was defined as a third potential ‘tracer’. 
Flux estimation was performed for each experiment in INCA through a Levenberg-
Marquardt (local search) algorithm for 10 independent resets to minimize the 
variance-weighted SSR between forward the (forward) simulated flux networks and 
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the experimentally determined measurements until the best fit, complete with 
associated individual reaction flux error values, was achieved. 

2.2.1.5 Statistical analysis 
Goodness-of-fit of the experimentally determined Mass Isotopomer Distributions 
(MIDs) and the minimum SSR fit solution for each data set was assessed through a 
χ2-statistical test which calculates threshold SSR values for different confidence 
intervals based on the number of fitted MIDs and independent fluxes of the network 
as part of the inbuilt capabilities of the INCA v.1.7 software package. 

This can be set to a confidence interval of choice, but flux distributions are 
conventionally deemed as successful fits if the resulting variance weighted SSR 
falls below a threshold value representing a confidence interval of 95%. If the target 
SSR threshold value has been surpassed, a statistically reliable metabolic flux 
distribution representing a best fit flux solution for metabolic phenotype under the 
cellular growth conditions has been obtained. In situations where the minimized 
SSR failed to reach the target threshold value, the metabolic flux distribution was 
regarded as a local flux distribution solution. 
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3. Chapter 3: GSMM to platform for design and 
discovery 

3.1 Introduction: 

3.1.1 Reconstructing the metabolic network topology of an organism 
 

The first stage in generating a GSMM of a specific organism is to reconstruct the 
foundational topology of the metabolic network of interest from annotated whole 
genome sequencing data.  

This strategy identifies open reading frames (ORFs) in the genomic sequence and 
aims to identify and annotate the functional role/s of the corresponding proteins in 
the metabolic network, commonly known as gene-protein-reaction (GPR) 
associations, by comparing their similarity to existing annotated sequences129,130. 

Several published tools can automatically carry out annotation of genomic features 
of draft genomes including: the RAST server131, SEED132, Prokka133, BG7134 and the 
NCBI’s Prokaryotic Genome Annotation Pipeline135. Initial genome annotation was 
performed for the GSMM of P. thermoglucosidasius NCIMB 11955 by Lisowska 
(2016) 113 using the RAST server. 

Recently, pipelines have also been developed which can perform both genome 
assembly and functional gene annotations such as GAAP136 and the BRAKER2 
pipeline for eukaryotes137. In this way, enzyme coding sequences annotated in 
these draft genome reconstructions can effectively be connected to known 
metabolic functions and reactions in the model. However, a recurring issue with 
these metabolic network reconstructions is that automatic annotation can result in 
erroneous, incomplete and/or lower confidence annotations. This can result from a 
combination of failure to account for potentially multi-functional proteins, failure to 
suggest singular metabolic function which results from multiple gene product or the 
underlying quality of the genome sequencing data itself138. 

Additionally, in cases of less-well annotated organisms with infrequent codon 
usages or specialised growth characteristics, such as the thermophilic nature of P. 
thermoglucosidasius, automatic annotation tools that rely on sequence homology 
may mis-annotate or fail to recognise more novel enzymes or pathways. 

As a result, before meaningful predictions can be made with these models, a degree 
of manual assessment, verification, and curation of the suggested GPRs in the draft 
reconstruction is typically required138. Such curation can be manual or semi-
automated139 and can draw on a range of catalogued reference databases that can 
provide organism-specific evidence for the functions of proteins and larger 
metabolic reaction pathways (Table 8). 

Name Relevant information for GSMM curation URL Reference 

BiGG Repository of over 70 curated GSMMs. http://bigg
.ucsd.edu
/  

King et al. 
(2015)141   

Table 8: Databases of biochemical information available online with their relevancy for reconstruction 

and curation of GSMMs. Table adapted from Simeonidis and Price (2015)140  

 

http://bigg.ucsd.edu/
http://bigg.ucsd.edu/
http://bigg.ucsd.edu/
http://dx.doi.org/10.1093/nar/gkv1049
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BRENDA Enzyme reaction database with organism-
specific enzyme activity, specificity and 
localization data annotated with GPR 
associations and references.  

 

https://ww
w.brenda-
enzymes.
org  

Chang et al. 
(2020)142 

EC2PDB Enzyme database of the Protein Data Bank 
(PDB) with curated catalytic reactions of 
proteins and structural information 

https://ww
w.ebi.ac.u
k/thornton
-
srv/datab
ases/enzy
mes/ 

Lakowski et 
al. (2017)143 

KEGG Knowledgebase of organism-specific 
genomic, reaction and metabolic pathway 
function information. Provides tools to map 
whole-genome sequencing information onto 
standardized metabolic pathway maps of 
metabolites and reactions. 

https://ww
w.genom
e.jp/kegg/  

Kanehisa 
and Goto 
(2000)144  

MetaCyc Database of annotated metabolic genes, 
proteins, metabolites and reaction pathways 
for over 3000 organisms. 

https://me
tacyc.org/  

Caspi et al. 
(2013)145 

MetaNetX  Platform for accessing GSMMs with tools 
for FBA, gap-filling and pathway 
modification 

https://ww
w.metane
tx.org/ 

Moretti et al. 
(2020)146  

NCBI Sequenced gene, whole genome and 
protein database. Annotated gene and 
protein functions with taxonomic data. 

https://ww
w.ncbi.nl
m.nih.gov
/  

NCBI 
Resource 
Coordinators
147 

Reactome Metabolic pathway database with tools to 
visualise the enzymes, reactions and 
directionality in gene-sequencing supported 
metabolic networks.  

https://rea
ctome.org
/  

Jassal et al. 
(2019)148 

TransportDB Membrane transporter database with 
reaction equation and directionality data 
along with gene and protein sequence-
informed taxonomic classifications. 

http://ww
w.membr
anetransp
ort.org/tra
nsportDB
2/index.ht
ml  

Elbourne et 
al. (2016)149  

UniProtKB Protein knowledgebase with manually 
annotated (UniProtKB/Swiss-Prot) and 
automatically annotated 
(UniProtKB/TrEMBL) protein activity, 
kinetics, gene expression, metabolic 
pathway and sequencing data. 

https://ww
w.uniprot.
org/  

Bateman et 
al. (2020)150 

In addition, several existing GSMMs have been deposited on the BiGG database141. 
In cases where organism-specific literature is scarce, the presence of reactions in 

https://www.brenda-enzymes.org/
https://www.brenda-enzymes.org/
https://www.brenda-enzymes.org/
https://www.brenda-enzymes.org/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://doi.org/10.1093/nar/28.1.27
https://metacyc.org/
https://metacyc.org/
https://doi.org/10.1093/nar/gkt1103
https://academic.oup.com/nar/article/49/D1/D570/5958493
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://reactome.org/
https://reactome.org/
https://reactome.org/
https://doi.org/10.1093/nar/gkz1031
http://www.membranetransport.org/transportDB2/index.html
http://www.membranetransport.org/transportDB2/index.html
http://www.membranetransport.org/transportDB2/index.html
http://www.membranetransport.org/transportDB2/index.html
http://www.membranetransport.org/transportDB2/index.html
http://www.membranetransport.org/transportDB2/index.html
http://www.membranetransport.org/transportDB2/index.html
https://www.uniprot.org/
https://www.uniprot.org/
https://www.uniprot.org/
https://doi.org/10.1093/nar/gkaa1100
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phylogenetically related organisms can help inform decisions on whether a 
particular reaction should be included in the overall metabolic network138. 

3.1.2 Iterative Model validation and curation using MEMOTE: 
 
In addition to these reference compendia of biochemical and metabolic pathway 
knowledge, this research made particular use of the recently published MEMOTE 
tool developed by Lieven et al. (2020)120. This tool can evaluate metabolic models 
and highlight particular issues with the user-submitted metabolic network relating to 
its: Stoichiometric Consistency, Mass and Charge Balance and its Metabolite 
connectivity. 

Once curated in this way, the accurate reconstruction can be considered a genome 
scale metabolic model ready for FBA.   

3.1.3 Flux Balance Analysis: Metabolites, reactions and the 
stoichiometric matrix  

 
A classical FBA problem begins with the conversion of all reactions in the genomic 
reconstruction of an organism, and their associated metabolites, to a mathematical 
model. This is performed through tabulation of this metabolic network in terms of a 
size m×n matrix formalization of interconnected linear mass balance equations 
known as a stoichiometric matrix (S)152 : 
 

S = (Si,j)m×n{i = 1,…,m|j = 1,…,n}                                        (1) 
 
Whereby, the column vectors of the stoichiometric matrix represent the mass 
balance reactions (nj) in the metabolic network, including transport and exchange 
reactions, the rows of the stoichiometric matrix represent unique 
species/metabolites (mi) which operate as the reactants and/or products for those 
reactions and the matrix elements themselves (Si,j) denote the stoichiometric 
coefficients representing the relative number of moles for each metabolite i with 
respect to every reaction j in the network (Figure 16). Once completed, this defines 
the feasible space of all possible phenotypes of the organism151.  
 
Alongside the stoichiometric matrix, two additional vectors are defined. The first is a 
column vector of fluxes ( �⃗⃗� ) with a length of (n) which represents the flux rates (𝓿) 
through each reaction in the stoichiometric matrix and the second is a vector of 
metabolite concentrations (𝑥) of length (m). 
In the stoichiometric matrix, describing the change in concentration of a particular 
metabolite,𝑥𝑖, in a particular reaction j (i.e. a matrix element Si,j), a positive 
coefficient indicates that the metabolite i is being generated in the reaction j and that 
the corresponding position in the flux vector ( �⃗⃗� ) there is a positive flux or gain of 
material (𝓿j). A negative stoichiometric coefficient indicates that metabolite i is 
consumed in the reaction j and will have a negative flux or loss of material and a 
coefficient of zero indicates the metabolite i is not involved in the reaction j. 
Additionally, if a reaction is conditionally reversible and operates in the reverse 
direction, this will reverse the sign of the corresponding coefficients: 
  

𝑑𝑥𝑖

𝑑𝑡
= ∑ (𝑆𝑖,𝑗

+ 𝓿𝑗)
𝑛

𝑗=1
− ∑ (𝑆𝑖,𝑗

− 𝓿𝑗)
𝑛

𝑗=1
           i = 1,…,m                             (2) 
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As every reaction in the matrix is a column vector which includes the coefficients of 
every species/metabolite in the metabolic network, the matrix’s number of columns 
is also equal to the number of rows in the flux vector.  
As a result, the fluxes and concentrations of metabolites for the entire metabolic 
reaction network can be defined as a dot product problem as follows: 
 

                                                          
𝑑

𝑥
→

𝑑𝑡
= S · �⃗⃗�                                                     (3)                          
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A B 

C D 

E 

Figure 16: Mathematical and conceptual descriptions of reaction networks and FBA.  

A) A reaction network for metabolites (m
i
) A, B, C, D and E is defined featuring: Intracellular 

Reactions (j, R1-5, Green), Transport reactions (T1-3), an Exchange reaction (EX1) and a demand 

reaction known as a biomass pseudo-reaction (R_Biomass). B) The five-metabolite reaction 

network of A formalized as an mxn stoichiometric matrix (S) with accompanying column flux vector ( 

�⃗⃗� ). Consumption of a metabolite in a particular reaction is represented by a negative coefficient, 

production by a positive coefficient and no involvement with a coefficient of zero. C) The conceptual 

boundaries of compartments in the GSMM. D) A pictorial representation of the five-metabolite 

reaction network featuring compartmentalisation and transport across boundaries. E) The 

applications of constraints to reach a solution in FBA. A mass balanced reaction network will yield 

an unconstrained solution space. The application of the steady-state assumption, reaction 

thermodynamic constraints (𝑳𝑩𝑗𝑀𝑖𝑛 and 𝑼𝑩𝑗𝑀𝑎𝑥  ) and extracellular media constraints generates a 

feasible solution space. The application of an objective function, in this case maximizing the flux 

through a biomass reaction (Max 𝓿𝑏𝑖𝑜𝑚𝑎𝑠𝑠), yields an optimal flux distribution solution.  
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3.1.3.1 Compartmentalisation, transport and exchange reactions 
Each reaction is then considered in terms of the defined conceptual compartment in 
which it would take place (i.e., does a reaction take place inside or outside a cell?). 
In its simplest form, a model has two compartments (Figure 16 C+D). The first 
compartment is the external environment. This compartment is assumed as the 
environment surrounding and proximal enough to the cell such that metabolites 
within it can be moved into the cell by transport reactions.  
The second is the cytosolic environment, compartmentalised by a systems 
boundary representing the cell membrane, in which most cellular metabolic 
reactions take place. 

The compartment in which any metabolite in the model resides is defined, in this 
case, with a suffix _e for being present in the extracellular environment or _c for 
being present in the cytosol. Representing the boundary of the cell membrane, the 
movement of metabolite ‘A’ between the external environment and cytosolic 
compartments requires the definition of a stoichiometric exchange or transport 
reaction to enable the model to function: 

A_e <-> A_c                                                             (4) 

Transport reactions are typically defined by supporting genomic data which 
suggests the presence of a key metabolite transporter. However, not only is such 
genomic evidence for transporters often limited153, metabolites which can enter or 
leave via diffusion gradients or passive transport without inferred proteins must also 
be included. 

While not defined as a separate compartment from the external environment, nor 
acting as an additional systems boundary, due to possessing a variety of transport 
mechanisms our model chose to include the concept of the zone outside the 
external extracellular environment in its the conceptual framework. Through what 
this research has defined as exchange reactions (separate from transport reactions) 
these metabolites are assumed to enter the external environment proximal to the 
cell from the outer zone. 

With the definition of external and cytosolic metabolites, mass balanced reactions 
and the inclusion of transport and exchange reactions, a basic metabolic network of 
an organism could therefore be represented in stoichiometric matrix form (Figure 
16.B).  
 

3.1.4 Constraining metabolism: Constraint-based mathematical 
background  

The validity and usefulness of predicted flux distributions constrained only by the 
mass balance stoichiometries in the stoichiometric matrix will be limited because 
they are not restricted by bounds of feasibility (Figure 16 E). 

Thus, to interrogate this metabolic network in a meaningful way that accurately 
simulates metabolism, several constraints introducing thermodynamic and 
physicochemical principles must be applied to the metabolic network to restrict the 
overall solution space of flux distributions. The constraints include: the steady-state 
assumption, reaction thermodynamic constraints, the ionisation state of metabolites 
in both reactions and in free solution, extracellular media constraints and notably the 
objective function, an assumption of metabolic optimality, for defining a flux 
distribution of interest. When such constraints are applied, the restricted solution 
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spaces of stoichiometric matrices can be used to simulate all feasible cellular 
phenotypes of an organism under a set series of conditions and enables the 
characterisation of the functions of the metabolic network154. 

3.1.4.1 Steady-state 
FBA of metabolic networks applies the physicochemical constraint of an assumption 
of a (pseudo) metabolic steady state. Under this constraint, it is assumed that all 
metabolite concentrations do not change with respect to time, i.e., the rates of 
generation and consumption of each metabolite are assumed to cancel each other 
out122. 

As a result of invoking this assumption, the dot-product problem of EQ. (3) can be 
simplified to: 

𝑑
𝑥
→

𝑑𝑡
= S · �⃗⃗�   = 0                                                     (5) 

S�⃗⃗�   = 0                                                        (6) 

This simplification reduces the overall problem to a set of linear equations 
representing each reaction. 

3.1.4.2 Thermodynamic Constraints: Reaction reversibility, upper 
and lower bounds 

 
The thermodynamic constraints are typically applied to reactions within the network 
and define both the reversibility and overall directionality of each reaction, 
establishing a bounded range of potential flux rates for each reaction in the 
stoichiometric matrix with respect to the target environmental conditions of the 
simulation154.  
 

Reaction reversibility and directionality 
The application of these thermodynamic constraints, such as reaction directionality 
and flux rate limits, are required to constrain reactions within the network to realistic 
levels. For example, without such constraints, not only could flux through a given 
reaction be infinite, but it could also operate at an infinite rate in an energetically 
infeasible direction. 
 
Directionality and reversibility are typically determined by the Gibbs free energy of a 
reaction under the target environmental conditions of the simulation and can be 
further informed through in vivo observations or kinetic studies of related 
enzymes156. Likewise, flux rates limits can be measured experimentally and can 
also incorporate enzyme concentrations and kinetic constants under specific 
environmental conditions. These can be applied to any reaction, together with an 
associated error, to improve the accuracy of reactions in the metabolic network. 
Notably, this can also include transport reactions like substrate uptake or product 
excretion to constrain the edges of the solution space of the network. In situations 
where this flux rate information is not known, a baseline rate limit can be applied on 
top of the directionality constraint. 
Additionally, in situations where genomic annotation has not indicated the presence 
of certain suspected reactions, Gibbs free energy calculations can indicate the 
feasibility of potentially spontaneous reactions.  
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Reaction flux bounds 
 
These reaction directionality and rate constraints are codified in the form of applied 
upper and lower flux bounds (UBs, LBs), defining the flux rate maxima (𝓿𝑗𝑀𝑎𝑥) and 

minima (𝓿𝑗𝑀𝑖𝑛) for every reaction j in the metabolic network, narrowing the overall 

range of feasible fluxes in the solution space151.  

For every reaction rate in the network (𝓿𝑗), these bounds are set as follows: 

𝓿𝑗𝑀𝑖𝑛 ≤ 𝓿𝑗 ≤ 𝓿𝑗𝑀𝑎𝑥                                                 (7) 

Where 𝓿𝑗𝑀𝑖𝑛represents the lower bound of the reaction and 𝓿𝑗𝑀𝑎𝑥 the upper bound.  

For a reaction which is only thermodynamically feasible in a single direction (as 
informed by ΔG0’) , i.e., an irreversible reaction, the bound in the infeasible direction 
will be set to 0 mmol g-1 DCW h-1. In this way, simple enzyme knock-out simulations 
can also be introduced by setting both the UB and LB to 0 mmol g-1 DCW h-1. 
Alternatively, setting non-zero values for the lower bound will force the model to 
carry minimal flux through the reaction if the substrates are available. Combined, 
these easy to apply changes enable rapid testing of genetic engineering hypotheses 
and different growth environments.  
 

External Environment Constraints – an in-silico media 
To accurately simulate the metabolic behaviour of organisms, it is important to apply 
as a constraint a precise definition of the growth media composition used for in silico 
cell growth that is represented in the extracellular environment of the metabolic 
model152. 

To change the environmental or media conditions, nutrients, carbon sources and 
other potentially importable metabolites must be defined as available in the in-silico 
growth media, and have a corresponding transport reaction, to be taken up and 
used in the model. Changing the upper and lower bounds of these transport 
reactions can also help represent substrate availability in the media. For example, if 
experimental measurements of the uptake or excretion rates of external metabolites 
exist, these can be applied to the metabolic model as upper and/or lower bounds 
constraints on the respective transport reactions151. If the metabolic network of the 
organism is dependent on any of these components for growth or particular 
phenotypes, their presence or absence acts as a constraint to the overall model154. 
To accurately reflect real-world growth scenarios, the composition of this in silico 
media can be defined to replicate known growth media recipes, or hypothetical 
substrate mixtures to evaluate what impact they may have on cell growth.  

Together, these thermodynamic and environmental constraints improve the 
precision of any FBA solution obtained. However, even with these constraints 
applied, the system of equations is typically still underdetermined, with more 
unknown variables (reactions/fluxes) than metabolites (j > i). Therefore, rather than 
a unique flux vector solution to the system of equations, the stoichiometric matrix 
dot product instead yields a multi-dimensional solution space representing all 
possible cellular phenotypes under a defined set of environmental conditions151 
(Figure 16. E).  
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3.1.5 The objective function 
This multi-dimensional flux solution space alone is of limited value for understanding 
metabolic flux distributions as it operates under the assumption that each reaction 
within the metabolic network is of equal weighting152. 
To narrow the FBA solution space to single vectors representing flux distributions of 
biological interest, the most important constraint to perform FBA that needs to be 
applied to the metabolic network is the assumption of optimality for a defined 
metabolic objective, such as the common targets of cell growth and efficient ATP 
generation or for flux through a reaction that affects target product yield26. 
This optimality is defined through an objective function, which usually involves the 
minimisation or maximization of flux through a single reaction in the metabolic 
network. This is introduced as an additional vector (C) to the network which defines 
the proportional contribution of each reaction in the network to the user-designated 
objective or phenotype of interest. Therefore, the vector C is usually comprised 
almost entirely of zeroes for every reaction but has a value of one at the position of 
the corresponding reaction of interest151. 
 

3.1.6 The Biomass Reaction 
 
A conventional example of a FBA objective function is that of maximizing the flux 
through a demand reaction known as a biomass pseudo-reaction (Max 𝓿𝑏𝑖𝑜𝑚𝑎𝑠𝑠), 
which is used as a proxy for predicting maximum cell growth rate157. 
 
The biomass reaction is a mass balance reaction added to the stoichiometric matrix 
which consumes stoichiometric quantities of the constituent biomass components 
defined in the rows of the matrix, (including nucleic acids, amino acids, cell 
membrane and wall lipid components) and generates an artificial ‘biomass’ 
metabolite 26. The stoichiometries of the biomass reaction can be derived 
experimentally from the dry weight composition of a cell156. To make it more 
accurate, the flux through this conversion reaction can also be scaled so that it is 
equal to an experimentally measured maximum cell growth rate158.  
 
The final maximization or minimization optimization problem for the whole metabolic 
field of behaviour of interest can therefore be simplified to:  
 

Max 𝓿𝑏𝑖𝑜𝑚𝑎𝑠𝑠                                                  (8) 
 
                             Subject to:              S�⃗⃗�   = 0 

𝓿𝑗𝑀𝑖𝑛 ≤ 𝓿𝑗 ≤ 𝓿𝑗𝑀𝑎𝑥   ∀𝑗 

 
Where the objective function in this case is defined as the maximization of biomass 
generation through the solving of the stoichiometric matrix dot product, under the 
steady state assumption and with the applied thermodynamic and environmental 
constraints127. Through linear programming algorithms, this optimisation problem 
can then be solved to narrow the solution space output to a singular, vector filled 
with flux values ( �⃗⃗� ), which satisfies the objective function157. Therefore, this flux 
vector represents an optimal and feasible flux distribution for the metabolism of a 
modelled organism of interest which provides flux values, defined in units of mmol 
per gram of dry cell weight per hour (mmol g-1 DCW h-1), for every reaction in the 
whole-organism metabolic network.  
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3.1.7 Limitations 
FBA based purely on constrained stoichiometric matrices does have a few 
limitations which curtail the overall accuracy of this approach for modelling 
metabolism which are considered below. 
 

3.1.7.1 Steady-state and Dynamic behaviour  
 
As one of the key assumptions with classical FBA flux outputs is that the system is 
operating under a metabolic steady-state, actual dynamic kinetics, and 
concentrations of metabolites within the system cannot be accurately predicted35, 
and there is a much more limited capacity to predict metabolic phenotypes which 
would result from any cascade responses to stimuli or structural changes to the 
stoichiometric matrix/metabolic network itself. 
 
Indeed, while arguably accounted for in experimentally derived growth and non-
growth associated maintenance energy calculations, classical FBA does not 
inherently take into account the energetic impact of: genetic regulation mechanisms, 
protein synthesis and potential enzyme activation by specific protein kinases159. 
As a result of not incorporating this information, seemingly more energy-efficient 
optimal paths may be taken through the metabolic network which do not accurately 
reflect their true energetic costs.   
 

3.1.7.2 Optimisation 
FBA will yield a vector predicting optimal flux distributions for a specific objective 
function. However, there is also a more philosophical question about the validity of 
having a biological ‘objective’, such as biomass production or ATP generation, as 
assumed ‘goals’ that cells have evolved towards in order to survive160. 
 

3.1.7.3 Insufficient gap-filling of the network: 
Additionally, any FBA flux predictions will only be as accurate and valid as the 
metabolic network used to make them. Thus, poor gene annotation, insufficient gap-
filling and limited reaction thermodynamic curation of the metabolic network will 
result in inaccurate flux prediction outputs. 

3.1.8 Variations on objective functions and FBA improvements 
 
Although maximizing the production of the ‘biomass’ pseudo-metabolite is one of 
the most common optimization targets, variation on the objective function used, and 
modified versions of FBA itself, can improve predicted flux distributions and help to 
mitigate some of the limitations of ‘classical’ FBA.  

Alternatives to the standard biomass objective function typically revolve around the 
minimization and maximization theme. This can include things like minimizing 
substrate consumption fluxes to find the most efficient growth strategy, maximizing 
the yield of ATP as a direct alternative to biomass, maximizing the production of 
desirable metabolites, maximizing the consumption of a naturally low-priority 
substrate such as in bioremediation approaches or even maintaining certain ratios 
of ATP to NADH to support the production of a range of high energy cost 
metabolites 155. 
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From a systems metabolic engineering perspective, alternate objectives can also be 
used in silico to rapidly suggest, create and evaluate gene modifications to the 
metabolic network to produce metabolites of interest. Indeed, FBA-based algorithms 
that can better accommodate genetic engineering strategies can be more accurate 
predictors of modified phenotypes than standard FBA and hence more useful for 
evaluating strain designs. Two examples of these alternate objective strategies are 
the OptKnock 161 and the Minimization of Metabolic Adjustment (MOMA) 162 
frameworks. 
 

3.1.8.1 OPTKNOCK 
 
OptKnock was developed by Burgard, Pharkya and Maranas (2003)161 to use 
GSMMs more effectively to suggest and evaluate potential in vivo gene knockout 
strategies to produce metabolites of interest. The strategy embeds the assumption 
that cells have not evolved for the over-production of, potentially non-native, 
metabolites into a bi-level optimization problem. This problem introduces additional 
stoichiometry to reactions essential for growth, coupling these reactions to the 
production of the target metabolite such that the target metabolite effectively 
becomes a by-product of growth itself. 
 
With this framing, OptKnock solves the bi-level optimization problem by optimizing 
for the maximum production of the target metabolite, subject to the maximization of 
the objective function. As an output, OptKnock identifies various combinations of 
gene knockouts, and the corresponding objective function values, that enable the 
maximum achievable flux towards the metabolite of interest. 
 

3.1.8.2 The Minimization of Metabolic Adjustment (MOMA) framework 
 
The Minimization of Metabolic Adjustment (MOMA) framework factors in an 
underlying assumption that new mutant strains may need adjustment to adapt to 
growing in a new optimal manner for their new metabolic network 162. MOMA uses 
quadratic programming to effectively map the optimal wild-type flux distribution onto 
the new flux solution space of the modified metabolic network 161. If in silico growth 
is feasible with the modified metabolic network, the most likely optimal flux 
distribution will therefore be one that can get as close as possible (in Euclidean 
distance terms) to the original optimal FBA solution with the minimal redistribution of 
fluxes across pathways.  

Alternatively, modified versions of classical FBA can include strategies such as 
regulatory flux balance analysis (rFBA) which can introduce Boolean gene 
transcription and gene regulatory constraints to improve the sensitivity of a 
metabolic model to the specified environment and dynamic flux balance analysis 
(dFBA) which aims to account for metabolite concentration changes over time by 
performing several interative FBAs for discrete time intervals, then integrating over 
each time interval to yield a change in concentration 35. 

Two similar variations on classical FBA performed in the validation of the P. 
thermoglucosidasius model are flux variability analysis (FVA) and parsimonious flux 
balance analysis (pFBA). 
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3.1.8.3 Flux Variability Analysis (FVA) 
Although FBA should yield a single optimal solution, for a larger and 
underdetermined metabolic network this solution is not necessarily unique. Several 
different flux distributions through reactions could exist which return the same 
maximum value for the objective function e.g., the same growth rate or phenotype. 

FVA can be used to identify alternate flux distributions which yield optimal solutions 
by holding the optimal objective function solution as a constraint and performing 
FBA to return the flux ranges for every reaction in the network165. FVA can therefore 
not only be used to identify alternate flux distributions but also the flexibility of the 
metabolic network and potential redundant reactions and can act as a form of 
sensitivity analysis of a particular FBA solution. Reactions that return a lower flux 
variability are of greater importance to achieving the objective function than those 
with higher variability166.  

Alternatively, by not setting an objective function and effectively giving every flux 
distribution equal weighting, FVA can also be used to establish what the maximum 
and minimum flux ranges of each reaction in the network could be167. 

3.1.8.4 Parsimonious FBA (pFBA) 
pFBA is a variation of FBA which qualifies the influence of genes and their reactions 
in the network in achieving the optimal flux distribution under the specified 
constraints. Lewis et al. (2010) 168.   
 
Once again, pFBA takes the optimal objective function solution as a constraint, then 
minimises the flux for reaction in the metabolic network. This assumes that the 
strains which grow the fastest and most efficiently will require the minimal amount of 
flux to achieve the optimal solution. 
With these results, classifications are then assigned to each metabolic gene/s 
underpinning the reactions, based on the extent to which flux through those 
reactions contributes to the optimal solution under the specified constraints. These 
genes are defined by Lewis et al. (2010) 168 as either: 

1. Essential genes, which are necessary for growth, 
2. pFBA optima, which are non-essential genes predicted to contribute towards 

growth, 
3. Enzymatically less efficient (ELE), which are genes whose reactions can 

meet the target solution but represent a less efficient pathway than other 
available pathways.  

4. Metabolically less efficient (MLE), which are genes predicted to be 
detrimental to growth, and  

5. pFBA no-flux, which are genes whose associated reactions are unable to 
carry flux. 

3.1.9 Flux Balance Analysis of P. thermoglucosidasius: 
For the duration of the research, only two GSMMs of P. thermoglucosidasius were 
publicly available. The second of these was a GSMM of P. thermoglucosidasius 
C56-YS93 (designated iGT736) published by Ahmad et al. in 2017 and remains the 
only other formally published model 169. As discussed in this chapter, this model 
could not be used for meaningful analysis as it lacked a biomass reaction, had an 
incomplete stoichiometric balance, and lacked several transports/exchange 
reactions. 
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This chapter however is built upon the foundation of the P. thermoglucosidasius (P. 
thermoglucosidasius NCIMB 11955) model reconstructed, annotated and initially 
evaluated by Dr. Beata Lisowska in 2016113. Lisowska performed the initial 
automatic genome annotation using the RAST server and subsequently performed 
extensive reaction network gap analysis and identified reaction stoichiometries, 
kinetics, directionality though Gibbs fee energy calculations, while cross-referencing 
it all to the sequenced genome of P. thermoglucosidasius NCIMB 11955 to shed 
light on it’s broad substrate utilisation capabilities. Additionally, Lisowska noted that 
the genome of P. thermoglucosidasius NCIMB 11955 seemingly featured a blend of 
genes for enzymes in the aerobic and anaerobic biosynthetic pathways to Vitamin 
B12. On this basis, Lisowska proposed a theoretical novel route to Vitamin B12 
synthesis which uses a combination both pathways. Lastly, analysis of the genome 
identified the presence of a NADP-dependent Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) and quantified its activity with NADP using a linked 
enzyme assay. 

However, network evaluation investigations as part of this research identified 
several stoichiometrically and mass unbalanced reactions. Notably, analysis of the 
provided FBA solution results of growth of P. thermoglucosidasius NCIMB 11955 on 
a rich media under aerobic conditions pointed towards missing transport reactions 
and an undefined growth media which could have greatly diminished the predictive 
potential of the GSMM in its original state. In particular, the original model lacked 
transport reactions for both CO2 and oxygen. As a result, CO2 demand seemed to 
be met through H2CO3 generated through reversal of pyruvate carbon dioxide ligase 
(Table 9). Due to an absence of oxygen import under nominally aerobic conditions, 
in the provided results nitrate was instead imported and nitrate was used both as a 
terminal electron acceptor and to meet the oxygen demand of the rest of 
metabolism by a reaction for an NADPH2: oxygen oxidoreductase operating to 
produce O2 from Nitrate (Table 9). 
 

Name of reaction Reaction Equation 
Enzyme Commission 
Number 

KEGG 
Reaction ID  
 

Flux 
aerobic 

Carbonic acid hydro--‐lyase |H+| + |H2CO3| <=> |H2O|+ |CO2| 4.2.1.1 R00132 650.863 

Pyruvate: Carbon--‐dioxide ligase 
(ADP--‐forming) 

|ATP| + |Pyruvate| + |H2CO3| <=> |ADP| + |Phosphate| +|Oxaloacetate| 
+|H+| 

6.4.1.1 R00344 ‐914.722 

Nitrate transport in via proton symport |H+[e]|+|Nitrate[e]|<=> |H+| + |Nitrate| Undetermined None ‐997.48 
 

Nitrite transport in Via proton symport |H+[e]| + |Nitrite[e]| <=> |H+| + |Nitrite| Undetermined None 997.48 
 

Nitric oxide, NADPH2:oxygen 
oxidoreductase 

|NADPH| + (2)|O2| + (2)|NO| <=> |NADP| +|H+|+ (2)|Nitrate| 1.14.12.17 R05725 ‐1000 
 

Nitric oxide, NAD(P)H2:oxygen 
oxidoreductase 

|NADH| + (2)|O2| + (2)|NO| <=> |NAD| +|H+|+ (2)|Nitrate| 1.14.12.17 R05724 1000 
 

Nitrate reductase (Menaquinol--‐8) 2)|H+| + |Nitrate| + |Menaquinol 8| <=> |H2O| + (2)|H+[e]| + |Nitrite| + 
|Menaquinone 8| 

Undetermined None ‐997.48 
 

cytochrome--‐c oxidase (H+/e--‐=2) (0.5) |O2| + (6)|H+| + (2)|Cytochrome c2+| <=> |H2O| 
+ (4)|H+[e]|+ (2)|Cytochrome c3+| 

1.9.3.1,,1.9.3.1, None  
 

1000 

Ferrocytochrome--‐c:oxygen 
oxidoreductase 

|O2|+ (4)|H+| + (4)|Cytochrome c2+|<=> (2)|H2O|+ (4)|Cytochrome c3+ | 1.9.3.1 R00081 ‐405.687 

 

 
As a result, the provided solution showed production, and where possible export, of 
known P. thermoglucosidasius fermentation products: acetate, lactate, formate and 
succinate (Table 10). Additionally, no transport reactions were present in the 
network for known excreted metabolites: acetate, pyruvate and ethanol. 

Table 9: GSMM Reactions displaying usage of CO2 and nitrate. Flux units in mmol g-1 DCW h-1. 

Table data taken from the PhD thesis of Dr. Beata Lisowska113. 
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Name of reaction Reaction Equation Enzyme Commission Number 
KEGG Reaction ID  
 

Flux 
aerobic 

Acetyl--‐CoA:formate C-- 
acetyltransferase  
 

|Acetyl--‐CoA| + |Formate| <=> |CoA| + 
|Pyruvate| 
 

2.3.1.54  
 

R00212 ‐1000 

Acetate:CoA ligase (AMP--‐forming) |ATP| + |CoA| + |Acetate| + |H+| <=> |PPi| + 
|AMP| + |Acetyl--‐CoA| 

6.2.1.1 R00235 ‐133.974 

ATP:acetate phosphotransferase |ATP| + |Acetate| + |H+| <=> |ADP| + 
|Acetylphosphate| 

2.7.2.1,2.7.2.15 R00315 ‐865.74 

(S)--‐Lactate:NAD+ oxidoreductase |NAD| + |L--‐Lactate| <=> |NADH| + |Pyruvate| + 
|H+| 

1.1.1.27 R00703 ‐1000 

L--‐lactate reversible transport 
Via proton symport 

|H+[e]| + |L--‐Lactate[e]| <=> |H+| + |L--‐Lactate| Undetermined None ‐811.375 

Succinate transporter in/out via proton 
symport 

|Succinate[e]| + |H+[e]| <=> |Succinate| + |H+| TC--‐2.A.56,2.A.56 None ‐1000 
 

Formate transport in via proton 
symport 

|Formate[e]| + |H+[e]| <=> |Formate| + |H+| Undetermined None ‐950.569 

  
Additionally, due to the lack of definition of the rich media external to the cellular 
compartment, the result was growth in an unconstrained media which could have 
every form of carbon substrate from carbohydrates to amino acids. While the 
potential for operation of these reactions may have genetic support, the 
unconstrained media likely resulted in an unrealistic optimal FBA solution involving 
the import of a mixture of carbon substrates, carbon intermediates and amino acids 
(Table 11). 

Name of reaction Reaction Equation 
Enzyme 
Commission 
Number 

KEGG 
Reaction ID 
 

Flux 
aerobic 

Carbon Substrates 

Glucose--‐phosphotransferase (PTS) 
system 

|D--‐Glucose[e]| + |Phosphoenolpyruvate| <=> |Pyruvate| + |D--‐glucose--6--‐
phosphate| 

Undetermined None 770.125 

Syn--‐Glycerol ABC transport |H2O| + |ATP| + |Glycerol--‐3--‐phosphate[e]| => |ADP| + |Phosphate| + |H+| + 
|Glycerol--‐3--‐phosphate| 

Undetermined None 863.762 

Mannitol transport via PEP:Pyr PTS |Phosphoenolpyruvate| + |D-- Mannitol[e]| <=> |Pyruvate| + |D--‐mannitol--‐1--
‐phosphate| 

Undetermined None 1000 

Cellobiose transport via PEP:Pyr PTS |Phosphoenolpyruvate| + |CELB[e]| <=> |Pyruvate| + |cellobiose 6--‐phoshate| Undetermined None 832.238 

Carbon Intermediates 

Malate transport via proton symport (2H) (2)|H+[e]| + |L--‐Malate[e]| <=> (2)|H+|+ |L--‐Malate| Undetermined None 664.289 

Fumarate transport via proton 
symport 

(2H) (2) |H+[e]| + |Fumarate[e]| <=> (2) |H+| + |Fumarate| Undetermined None 1000 

Xanthine ion--‐coupled transport |H+[e]| + |XAN[e]| <=> |H+| + |XAN| TC--‐
2.A.40,2.A.40 

None 1000 

Cytosine transport in via proton 
symport 

|H+[e]| + |Cytosine[e]| <=> |H+| + |Cytosine| Undetermined None 829.041 

D--‐glucosamine transport via 
PEP:Pyr PTS 

|Phosphoenolpyruvate| + |GLUM[e]| <=> |Pyruvate| + |D--‐Glucosamine 
phosphate| 

Undetermined None 365.679 

Amino Acids 

PHEt6 |L--‐Phenylalanine[e]| + |H+[e]| <=> |L--‐Phenylalanine| + |H+| TC--‐
2.A.3.1,2.A.3.1 

None 
 

27.9564 

Aspartate transport via proton 
symport 

(2H)|L--‐Aspartate[e]| + (2)|H+[e]| 
<=> |L--‐Aspartate| + (2)|H+| 

Undetermined None 1000 

Arginine/ornithine antiporter |L--‐Arginine[e]| + |Ornithine| <=> |L--‐Arginine| + |Ornithine[e]| Undetermined None 1000 

L--‐proline transport in via proton 
symport 

|H+[e]| + |L--‐Proline[e]| <=> |H+| + |L--‐Proline| Undetermined None 1000 

L--‐lysine reversible transport via 
proton symport 

|L--‐Lysine[e]| + |H+[e]| <=> |L--‐Lysine| + |H+| Undetermined None 51.3618 

GLUt2  |L--‐Glutamate[e]| + |H+[e]| <=> |L--‐Glutamate| + |H+| Undetermined None 41.518 
Na+:proline symport |L--‐Proline[e]| + |Na+[e]| <=> |L--‐Proline| + |Na+| Undetermined None 1000 
Branched chain amino acid:H+ 
symporter (Leucine) 

|H+[e]| + |L--‐Leucine[e]| <=> |H+| + |L--‐Leucine| Undetermined None 20.516 

L--‐valine transport in via proton 
symport 

|H+[e]| + |L--‐Valine[e]|<=> |H+| + |L--‐Valine| Undetermined None 23.7121 

Branched chain amino acid:H+ 
symporter (Isoleucine) 

|H+[e]| + |L-Isoleucine[e]| <=> |H+| + |L--‐Isoleucine| Undetermined None 56.1028 

 

Table 10: GSMM reactions displaying production and export of excreted metabolites. Flux units 

in mmol g-1 DCW h-1. Table data taken from the PhD thesis of Dr. Beata Lisowska113. 

 

Table 11: GSMM reactions displaying import of varied carbon sources. Flux units in mmol g-1 

DCW h-1. Table data taken from the PhD thesis of Dr. Beata Lisowska.113 



81 
 

Primarily, the accuracy of a GSMM and the flux predictions generated from it is of 
particular importance for mutant strain ME algorithms, such as the OptKnock and 
MOMA, which rely on an accurate simulation of the wild-type strain. If a GSMM is 
inaccurate, this will likely lead to incosistencies between the in silico generated flux 
distributions and experimentally obtained in vivo data. As a result, this research 
continued the development of Lisowska’s GSMM for P. thermoglucosidasius NCIMB 
11955 at the stage of manual refinement and curation of the reactions in the model, 
with the aim of developing it for use as a predictive model for the ME of P. 
thermoglucosidasius metabolism. The publication describing p-thermo, which 
appears as part of this chapter, represents the most complete GSMM of the genus 
Parageobacillus to date. 
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A B S T R A C T   

 

Parageobacillus thermoglucosidasius represents a thermophilic, facultative anaerobic bacterial chassis, with several 

desirable traits for metabolic engineering and industrial production. To further optimize strain productivity, a 

systems level understanding of its metabolism is needed, which can be facilitated by a genome-scale metabolic 

model. Here, we present p-thermo, the most complete, curated and validated genome-scale model (to date) of 

Parageobacillus thermoglucosidasius NCIMB 11955. It spans a total of 890 metabolites, 1175 reactions and 917 

metabolic genes, forming an extensive knowledge base for P. thermoglucosidasius NCIMB 11955 metabolism. The 

model accurately predicts aerobic utilization of 22 carbon sources, and the predictive quality of internal fluxes was 

validated with previously published 13C-fluxomics data. In an application case, p-thermo was used to facilitate more 

in-depth analysis of reported metabolic engineering efforts, giving additional insight into fermentative metabolism.  

Finally, p-thermo   was used to resolve a previously uncharacterised bottleneck in anaerobic metabolism, by 

identifying the minimal required supplemented nutrients (thiamin, biotin and iron (III)) needed to sustain 

anaerobic growth. This highlights the usefulness of p-thermo for guiding the generation of experimental 

hypotheses and for faci l i tating data-driven  metabolic  engineering,  expanding  the  use  of P. 

thermoglucosidasius as a high yield production platform
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Introduction 
 

As the global transition away from petroleum-derived feedstocks continues, the need to produce commodity 

and fine chemicals using sustainable feedstocks has accelerated the interest in establishing microbial bioprocesses 

with lower environmental footprints (Steen et al., 2010; Lee and Kim, 2015; Nielsen and Keasling, 2016). The 

microbial ‘chassis’ organisms of these bioprocesses have been developed through modern metabolic engineering 

strategies. Such strategies have enabled the r e d i r e c t i o n  o f  c a r b o n  flux in metabolic p a t h w a y s  o f  

the corresponding microbes towards target products, in what are commonly termed ‘microbial cell factories’ 

(Hollinshead et al., 2014). Without an accurate picture of how cellular metabolism operates as a whole, metabolic 

engineering strategies can produce flux imbalances, resulting in the accumulation of carbon intermediates, 

metabolic bottlenecks and/or imbalances in the overall cellular redox ratio (Liu et al., 2017; Ma et al., 2018). As a 

result, there can be large upfront costs in microbial strain engineering to ensure economically viable biochemical 

product yields (Nielsen and Keasling, 2016; Tang et al., 2009). To bolster traditional metabolic engineering efforts 

and help elucidate genotype-phenotype relationships, systems metabolic engineering aims to describe a more 

holistic representation of cellular metabolism though the integration of stoichiometric modeling and -omics data 

analyses (Choi et al., 2019). 

 

Abbreviations 
Metabolites 

13dpg 3-Phosphoglyceroyl phosphate  

2pg 2-phosphoglycerate 

3pg 3-phosphoglycerate 
6pgl 6-phosphogluconolactone  

ac acetate 

acald acetaldehyde 
accoa acetyl-CoA 
actp acetyl phosphate 

akg α-ketoglutarate 
asp aspartate 
cit citrate 
dhp dihydroxyacetone phosphate  

e4p erythrose 4-phosphate 

etoh ethanol 
f6p fructose-6-phosphate 
fdp fructose 1,6-bisphosphate  

for formate 

fum fumarate 
g3p glyceraldehyde-3-phosphate  

g6p glucose-6-phosphate 

glc glucose 

gly glycine 
icit iso-citrate 
lac L-lactate 
mal malate 
oaa oxaloacetate 
pep phosphoenolpyruvate 
phe phenylalanine 
pyr pyruvate 
r5p ribose-5-phosphate 

ru5p ribulose-5-phosphate 

s7p sedoheptulose 7-phosphate  

ser serine 

succ succinate 
succoa succinyl-CoA 
udpg                uridine diphosphate glucose 

xu5p                xylulose-5 -phosphate 

 
 
 
 

Reactions 

ACKr                Acetate kinase  

ACONTa       Aconitase 

ALCD2x           Alcohol dehydrogenase  

ASPTA            Aspartate transaminase  

CS Citrate synthase 

DDPA              3-deoxy-D-arabino-heptulosonate 

        7-phosphate synthetase  

ENO          Enolase 

FBA Fructose-bisphosphate aldolase  

FUM Fumarate hydratase 

G6PDH2r        Glucose 6-phosphate dehydrogenase 
GALUi UTP-glucose-1-phosphate 

uridylyltransferase  

GHMT Glycine hydroxymethyltransferase 

GLCtpts  Glucose phosphotransferase trransporter 

GLUSy Glutamate synthase 

ICL Isocitrate lyase 

LDH_L L-lactate dehydrogenase  

MDH Malate dehydrogenase  

PC Pyruvate carboxylase  

PDH Pyruvate dehydrogenase  

PFL Pyruvate formate lyase 

PGCD Phosphoglycerate dehydrogenase  

PGI Glucose-6-phosphate isomerase  

PGK Phosphoglycerate kinase 

PPCK Phosphoenolpyruvate carboxykinase  

PRPPS Phosphoribosylpyrophosphate 

synthetase 

PSCVT 3-phosphoshikimate 1-

carboxyvinyltransferase  

SUCDi Succinate dehydrogenase 

SUCOAS  Succinyl-CoA synthetase  

TALA Transaldolase 

TKT1 Transketolase  

TKT2 Transketolase 
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In particular, the advent of cheaper DNA sequencing has given rise to genome-scale metabolic models (GEMs), in 

silico reconstructions of the metabolic reaction networks of a given organism, derived from its an- notated genome 

sequence (Durot et al., 2009). In addition to operating as a knowledge base of metabolic information for a particular 

organism, GEMs can be used via constraint-based flux balance analysis to simulate carbon flux through metabolic 

reaction networks, enabling the rapid screening of metabolic behaviours under a range of environmental variables 

and biological contexts (Orth et al., 2010). Through comprehensive in silico predictions of metabolic phenotypes 

under target conditions, GEMs can also identify potential cellular redox imbalances (Zhang et al., 2016) and metabolic 

bottlenecks and generate hypotheses for rational, targeted genetic modifications for improved performance (Choi et 

al., 2019). GEMs can even guide the construction and optimization of carbon flux for either endogenous or novel 

heterologous microbial strain pathways towards high yields of desired products (Pharkya et al., 2004; Jensen et al., 

2019). 

Parageobacillus thermoglucosidasius NCIMB 11955 represents a Gram-positive, facultative anaerobic, 

thermophilic bacterial chassis with several advantageous traits for industrial bioprocesses when compared to many 

model bacterial chassis such as Escherichia coli and Bacillus subtilis (Hussein et al., 2015; Wada and Suzuki, 

2018). Firstly, the thermophilicity of Parageobacillus spp. enables fermentations between 48 and 70◦C (Zeigler, 

2014; Suzuki, 2018) at growth rates surpassing other thermophilic organisms (Dahal et al., 2016) and comparable to 

that of E. coli (Panikov et al., 2003). Compared to equivalent mesophilic fermentations, these process temperatures 

enable a reduction in both the cooling costs of large-scale exothermic fermentations, and a reduction in the risk of 

contamination from mesophilic microbes (Choi et al., 2019; Krüger et al., 2018). Furthermore, for industrial 

bioprocesses aiming for simultaneous saccharification and fermentation (SSF), the thermophilicity of P. 

thermoglucosidasius is complemented by a catabolic versa- tility. Through extracellular secretions of thermostable 

amylases (Hussein et al., 2015), xylanases (Bartosiak-Jentys et al., 2013; Huang et al., 2017; Bibra et al., 2018) and 

other hemicellulases (Liu et al., 2012; Balazs et al., 2013; Maayer et al., 2014), Parageobacillus spp. are able to 

metabolize a wide range of C5 and C6 sugar monomers. Notably, they are able to transport then metabolize complex 

hemicellulosic (Maayer et al., 2014) and cellulosic (Hussein et al., 2015) polysaccharides derived from hydrolysates of 

lignocellulosic biomass, potentially reducing the reliance on externally supplied hydrolases involved in lignocellulosic 

pre-treatment. 

A number of synthetic biology tools applicable to P. thermoglucosidasius have been devised including: shuttle 

vectors for reliable transformation (Bartosiak-Jentys et al., 2013; Taylor et al., 2008), chromosomal integration 

strategies (Bacon et al., 2017) promoter and RBS libraries to enable tuneable gene expression and validated reporter 

genes  (Kananavičiūtė  and  Čitavičius,  2015;  Reeve  et  al.,  2016;  Pog- rebnyakov et al., 2017; Drejer et al., 2018). 

Such tools have enabled P. thermoglucosidasius, and genetically similar (Para)geobacillus spp., to be used in the 

production of fuels such as bioethanol (Cripps et al., 2009; Niu et al., 2015), isobutanol (Lin et al., 2014) and 

hydrogen gas (Mohr et al., 2018; Aliyu et al., 2020) and also in fine chemicals including 2–3 butanediol (Kulyashov 

et al., 2020; Zhou et al., 2020), riboflavin (Yang et al., 2020) and isoprenoids (Styles et al., 2020). Parageobacillus 

spp. and Geobacillus spp. have also been the source of thermostable variants of industrially useful proteases (Zhu et 

al., 2007), carboxyl esterases (Ewis et al., 2004; Zhu et al., 2015; Chen et al., 2020), lipases (Zhu et al., 2015; Fotouh 

et al., 2016) along with a thermostable DNA polymerase I from G. stearothermophilus GIM1.543 (Ma et al., 2016). 

In spite of these advances, (with the exception of natural end products of glycolytic metabolism, such as ethanol) 

none of these engineered pathways have approached their potential maximum yields. In general, they have relied on 

natural flux to their metabolic precursors and its inherent control. The availability of a reliable GEM would enable a 

systems metabolic engineering approach of P. thermoglucosidasius to address the optimization of flux through central 

metabolic pathways to balance the requirements of both production and growth. At present, only one publicly 

available GEM of a P. thermoglucosidasius exists, the related strain P. thermoglucosidasius C56-YS93 (denoted 

iGT736) (Ahmad et al., 2017). While comprising 1159 reactions and 1163 metabolites, analysis of iGT736 using the 

GEM assessment tool Memote developed by Lieven et al. (2020) suggests that it currently lacks some fundamental 

features, including a biomass equation, transport reactions and stoichiometric balance (Supplementary File 1), 

preventing mean- ingful application for quantitative analysis. Additionally, a few examples exist of smaller central 

carbon metabolism scale models derived from experimental 13C isotopic tracer experiments. This includes models 

representing P. thermoglucosidasius M10EXG (Tang et al., 2009) under aerobic and anaerobic growth conditions, and 

similar Geobacillus spp. G. icigianus (Kulyashov et al., 2020) and Geobacillus LC300 (Cordova et al., 2015). However, 

they are less useful for illustrating the scale and complexity of whole cell metabolism. 

The newly constructed genome-scale metabolic model of P. thermo- glucosidasius NCIMB 11955 presented herein 

(named hereafter as p- thermo) represents 917 genes and comprises of 890 metabolites and 1175 reactions across 

two compartments: cytosolic and extracellular space (representing the medium). After iterative cycles of manual 

curation, model refinement and analysis with Memote (Lieven et al., 2020), p-thermo exhibits a 100% stoichiometric 

consistency, 100% charge balance and a 99.9% mass balance. It accurately captures experimentally determined 

utilization of 22 carbon sources using the sole input of measured production and consumption rates (Lisowska, 2016) 

and is represented in the Systems Biology Markup Language (SBML) (Hucka et al., 2019) compliant format, making 

it compatible with commonly used constraint-based modeling software such as COBRApy (Ebrahim et al., 2013) and 

the COBRA Toolbox v3.0 (Heirendt et al., 2019) as well as more specialised software facilitating systems metabolic 
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engineering (Cardoso et al., 2018; Rocha et al., 2010). Validation of the predictive quality of p-thermo under aerobic, 

oxygen limited and anaerobic conditions is demonstrated through mapping the resulting in silico fluxes to 

experimentally determined 13C-flux data ob- tained  from  13C-isotopic  labelling  experiments of the  genetically and 

metabolically similar P. thermoglucosidasius M10EXG strain (Tang et al., 2009). The predictive power of p-thermo is 

further demonstrated through recapitulation of a metabolically engineered homoethanolo- genic strain of P. 

thermoglucosidasius (Cripps et al., 2009). Lastly, p-thermo was used to investigate the fundamental requirements 

and metabolic bottlenecks of P. thermoglucosidasius during anaerobic growth. Currently, p-thermo represents the most 

complete, curated and experimentally validated genome-scale metabolic model for a Parageobacillus sp, and 

will be a foundational platform for guiding rational metabolic engineering strategies, -omic data integration, and 

strain optimization to further the potential of P. thermoglucosidasius NCIMB 11955 to operate as microbial chassis 

for sustainable bioprocesses. 

Results 
 
1.1. Model reconstruction 

The presented genome-scale metabolic reconstruction of P. thermoglucosidasius NCIMB 11955 is based on genome 
sequencing by ERGO™ Integrated Genomics (Overbeek et al., 2003) and Sheng et al. (2016). Genome annotation 
was performed through the ERGO™ Integrated Genomics suite (Overbeek et al., 2003) and the RAST annotation 
server (Aziz et al., 2008), followed by gap filling with Pathway Booster (Liberal et al., 2015). The reconstruction was 
extensively manually curated using available literature and databases (KEGG, BRENDA, MetaCyc, MetaNetX and 
EC2PDB), according to benchmark approaches (Thiele and Palsson, 2010). Detailed manual curation and refinement 
can be followed in Lisowska (Hussein et al., 2015) and in the GitHub repository. Specific attention was given to ensure 
nucleotide, amino acid and co-factor metabolism was accurate based on the current available knowledge. Additionally, 
extra care was paid to the selection and stoichiometry of the biomass precursors and their respective biosynthetic 

pathways, with particular focus on a more accurate representation of fatty acid and lipid biosynthesis (Sánchez et al., 
2019). 

This metabolic model consists of 890 metabolites, involved in a total of 1175 reactions, encoded for by 917 genes, 

across two compartments: cytosolic and extracellular space (representing the medium). Manual curation was critical 

to ensure complete consistency of the model (Supplementary report 1). Central carbon metabolism of the model re- 

sembles that of previously reported (Para)geobacillus spp (Tang et al., 2009; Cordova and Antoniewicz, 2015) (Fig. 

1A). Of all reactions, 9.3% are involved in transport or exchange, highlighting the flexibility of the strain to grow on 

various carbon sources (Fig. 1B). Predominantly manual gap filling, based on available literature, was used to 

ensure correct active metabolic pathways, accounting for 20.6% of the final p-thermo reactions. After gap filling, 17 

dead end and 22 orphan metabolites remained, resulting in 148 universally blocked reactions (12.6% of total 

reactions). All dead end and orphan metabolites were manually reviewed, but a lack of conclusive evidence 

surrounding them with respect to Parageobacillus sp. prevented these gaps from being filled with sufficient accuracy 

and so have been deliberately unmodified until further knowledge is accrued. 

The model as well as scripts used in the reconstruction and manual curation are made publicly available through 
Github, at https://github. com/biosustain/p-thermo/releases/v1.0. The model is stored using the community standard 
SMBL format (Level 3, FBC Version 2) (Olivier and Bergmann, 2015) and can additionally be accessed as 
Supplementary File 2. 

1.2. Biomass composition and growth energetics 

To capture biological growth in stoichiometric models, a demand reaction referred to as a biomass pseudo-reaction, 

was added. An overview of how the biomass pseudo-reaction was defined is explained in Materials & Methods, with 

the final reaction components and associated stoichiometry given in Supplementary Table 1. Energetic parameters 

were fitted from aerobically grown chemostat experiments (Lisowska, 2016). The energy required to maintain cellular 

homeostasis is reflected in the non-growth associated maintenance (NGAM) and was found to be 3.141 

mmolATP/gDWh—1 in p-thermo. The growth associated maintenance, (GAM), was estimated as 152.3 mmolATP/gDW and 

reflects the energy needed for cell replication, including macromolecule synthesis. The contribution of polymerization 

energy, required for macro-molecule synthesis, to the obtained GAM was estimated to be approximately 20% 

(Supplementary Table 2); relatively low compared to previously reported mesophiles (30–40%) (Verduyn  et  al., 

1991; Förster et al., 2003; Monk et al., 2017; Neidhardt et al., 1996). It was previously observed that thermophilic 

organisms tend to require higher levels of energy for growth and homeostasis at elevated temperatures and thus 

have a reduced growth efficiency, shown in the high mainte- nance estimated (Dahal et al., 2016; Robb et al., 

2007). This trait of thermophiles makes them valuable hosts for bioproduction as it leads to higher production rates 

of catabolic products compared to other organisms. 

https://github.com/biosustain/p-thermo/releases/v1.0
https://github.com/biosustain/p-thermo/releases/v1.0
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Fig. 1. A) Central carbon metabolism map, with several reaction IDs highlighted. For a more detailed overview, see Supplementary 
File 3. B) The number of reactions in the model for several reaction class types. 

1.3. Overview of Metabolism 
To provide a comprehensive overview, two pathway maps of the model were drawn using Escher (King et al. 

Escher, 2015) corresponding to central carbon and amino acid metabolism (Supplementary Files 3 and 4) and 

deposited in the GitHub repository at p-thermo/maps. Traits specific to Geobacillus spp. and P. 

Fig. 2. Anaerobic (left) and aerobic (right) predicted biomass yields for 22 different carbon sources, for which aerobic 

growth has been experimentally confirmed (Lisowska, 2016). Carbon substrates were all supplied in the model at 30°C 

mol/gDWh to account for differences in composition between the carbon sources. 
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thermoglucosidasius NCIMB 11955, presented in the literature, were used to validate the model’s metabolism. 

Detailed step-by-step decisions that were made, can be followed in the GitHub repository at “p-thermo/notebooks”. 

As an example, in central carbon metabolism research has shown that Geobacillius spp., unlike many mesophilic 

Bacillus species, lack genes for a 6-phosphoglu- conolactonase (6PGL), responsible for part of the oxidative 

pentose phosphate pathway (PPP) (Hussein et al., 2015). Instead, the reaction can occur spontaneously and, at 

thermophilic temperatures, has been hypothesized to be sufficiently rapid to maintain the requisite PPP flux (Miclet 

et al., 2001). The absence of 6PGL was captured in the model, but to reflect the active PPP pathway, a pseudo-

reaction was added to allow the complete oxidative PPP to function. (Para)geobacillus species are known to be 

capable of growth on a wide range of carbohydrates, and have been shown to secrete various polysaccharide 

degrading enzymes such as xylanases and other hemi- cellulose degrading enzymes (Hussein et al., 2015; Liu 

et al., 2012; Balazs et al., 2013; Maayer et al., 2014). To assess the metabolic capacity of the model, growth on 

various carbon sources was simulated (Fig. 2). The choice of carbon sources was made based on previous 

qualitative growth experiments which demonstrate a range of sole carbon sources which allow aerobic growth of 

P. thermoglucosidasius NCIMB 11955 (Lisowska, 2016). Additionally, anaerobic growth on these substrates was 

computationally predicted. In both cases, carbon supply was normalized to 30 Cmols/gDWh, to accommodate 

different polymeric substrate forms being present in the data set. Initially, the model showed no aerobic growth on 

arbutin, salicin and rhamnose, due to dead-end metabolites being formed as side products in the first steps of 

their break down. Available literature was used to fill the gaps in the catabolic pathways, which enabled aerobic 

growth on all three carbon sources. Anaerobically, in silico growth on arbutin and salicin was unfeasible, as current 

knowledge suggests that their catabolism is oxygen dependent. Both arbutin and salicin are non-conventional 

carbon sources and are glycosides, composed of either a hydroquinone or salicyl alcohol func- tional group 

attached to glucose, respectively. It is known that meta- bolism of these glycosides occurs through splitting of the 

glycosidic bond, with the two functional groups being catabolized individually. With currently available knowledge, 

the further breakdown of the salicyl alcohol and hydroquinone functional groups is dependent on oxygen, 

deeming the in-silico prediction of anaerobic growth unfeasible. As there is little knowledge about microbial 

catabolism of these carbon substrates, this hypothesis would warrant experimental validation. 

1.4. Assessment of predictive power through 13C-flux fitting 

Prior to using a genome-scale model for metabolic analyses or ab initio predictions, it is critical to validate its 

predictive power based on previously attained experimental data. This was done by analysis of how well the 

simulated fluxes of p-thermo match published flux distributions of P. thermoglucosidasius. 13C-isotopic labelling is a 

standard tool used to elucidate intracellular fluxes in central carbon metabolism, through extensive experimental 

work and data analysis. Flux variability analysis (FVA) is an in silico approach that can allow ab initio analysis of 

metabolism without the need for laborious experimental data (Mahadevan and Schilling, 2003). Comparing the two 

data types can give insights into metabolism and allow the generation of hypotheses for metabolic engineering 

purposes. 

To make this comparison, 13C-flux data from P. thermoglucosidasius M10EXG subject to varying oxygen 

conditions was used to qualitatively assess the predictive quality of p-thermo (Tang et al., 2009). Whole proteome 

analysis (on a sequence basis) of the P. thermoglucosidaius M10EXG and NCIMB 11955 strains shows that the 

ORFs between the two strains are highly similar (Supplementary Fig. 1, Supplementary Table 3). Importantly, 

considering the metabolic genes that would be captured as reactions in a metabolic model, there are only 11 and 

12 unique reactions in P. thermoglucosidasius NCIMB 11955 and P. thermoglucosidasius M10EXG respectively 

(Supplementary Tables 3, 4 and 5). Therefore, based on the overall metabolic similarity between the two strains, 

we assume that the 13C-flux data from P. thermoglucosidasius M10EXG can be utilized for a qualitative assessment 

of p-thermo. 

 

In order to test if p-thermo can predict intracellular fluxes close to the 13C-flux data, the measured production and 
consumption rates were fixed in the model as exchange rates, and internal fluxes were predicted in a sensitivity 
analysis with FVA. Parsimonious enzyme usage flux balance analysis (pFBA), which has previously been shown to 
predict fluxes that correlate with experimental measurements, was also performed (Lewis et al., 2010). The in-silico 
fluxes and pFBA results were mapped to experimentally determined fluxes in aerobic, oxygen limited and anaerobic 
conditions (Fig. 3A, B and C respectively). pFBA showed good correlation to the measured data for each condition 
(Supplementary Fig. 2), and together with FVA showed accurate predictions of the internal central carbon fluxes 
(Fig. 3A, B, and  C). Biomass yields (Fig. 3D) and oxygen consumption rates (Supplementary Fig. 3) were 
adequately predicted as well. These analyses validate the predictive quality of the created model and highlight the 
power of using metabolic models for understanding intracellular fluxes when only extracellular consumption or 
production rates are available. 

1.5. Recapitulating & interpreting knockout physiology 

To evaluate the utility of p-thermo for metabolic engineering applications, we recreated previously reported 

homoethanologenic mutants of P. thermoglucosidasius NCIMB 11955 in silico. Cripps et al. (2009) engineered 
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lactate dehydrogenase (ldh) and pyruvate formate lyase (pfl) knockouts in vivo, and supplemented their ethanol 

yields with an upre- gulation of  pyruvate dehydrogenase expression (PDHup).  Using p-thermo, the wild type 

(WT), Δldh and ΔldhΔpfl(PDHup) strains were recreated, as stoichiometric modeling cannot distinguish between 

upregulated expression levels (i.e. between ΔldhΔpfl and ΔldhΔpfl PDHup). Exchange rates of the main 

fermentation metabolites were predicted using p-thermo and their accuracy evaluated based on measured data 

(Fig. 4). In performing the analysis, two distinct thresh- olds for Flux Variability Analysis (FVA) were selected, 95% 

and 99% of optimum biomass production (Mahadevan and Schilling, 2003), to assess the flexibility of exchange 

rates to the simulated conditions. 

The performed simulations show a substantial discrepancy between predicted and measured yields in the WT 
and Δldh strains, whereas simulations tightly match the measured yields in the ΔldhΔpfl PDHup strain. Still, the 
mismatch between the experimental and in silico data, p-thermo can be used to understand metabolic branch points. 
The main discrepancy observed lies in the lactate and formate yields for the WT and Δldh strains, which can be 
traced to the cellular decision of what to do with the synthesized pyruvate (Fig. 4). In this regard, there are three 
options: 1) conversion into lactate by lactate dehydrogenase (LDH), 2) anaerobic conversion into acetyl-CoA by 
pyruvate formate lyase (PFL) or  3) aerobic conversion into acetyl-CoA by pyruvate dehydrogenase (PDH). In both 
the WT and Δldh strain, p-thermo showed flux from pyruvate to acetyl-CoA to be exclusively carried through PFL, 
fitting with experimental expectations under anaerobic conditions due to high [NADH] (Kim et al., 2008). 
Additionally, the conversion of pyruvate into acetate and ethanol results in one additional ATP per glucose, 
compared to converting pyruvate into lactate (Wang et al., 2010). Therefore, from a stoichiometric perspective, p-
thermo predicts this to be the most optimal pathway for growth, explaining the high concentrations of formate, 
ethanol and acetate predicted in the simulation. 
However, this was not observed in the experimental yields, presumably because of subtle differences in dissolved 

oxygen availability in the experimental setup that influence multiple levels of regulation in vivo, intrinsically not 

accurately captured by stoichiometric models. In the experimental dataset, undefined oxygen limited conditions 

were used in which a gradual decline in available dissolved oxygen concentration would have occurred during 

growth, whereas simulations were performed under anaerobic conditions. Under oxygen-limited conditions, PDH is 

expressed in the wild type P. thermoglucosidasius (Cripps et al., 2009), where PFL is typically only active under 

completely anaerobic conditions (Sawers and Bock, 1988). The transition of physiological states in response to 

decreasing oxygen availability results in excess NADH and creates a redox imbalance in the cell which is alleviated 

through production of lactate as the production of formate by PFL is restricted. This could explain the discrepancy 

between the experimentally measured low formate and high lactate production in the WT strain and the prediction 

by p-thermo. In the LDH knockout at low dissolved oxygen conditions, which prevents PFL activity, PDH instead 

predominantly carries flux to acetyl-CoA. In this instance, in order to maintain cellular redox balance, the Δldh 

cells increase the produced ethanol/acetate ratio. This picture highlights the complexity of cellular and enzymatic 

regulation that is poorly captured in stoichiometric models, as well as the difficulty in simulating uncontrolled 

environments accurately. 
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Fig. 3. Results of fixing experimentally measured exchange rates and predicting intracellular flux distributions (Tang et al., 

2009) in aerobic (A), oxygen limited (B) and anaerobic (C) conditions, normalized to the glucose uptake rate. Fig. 1A shows 

the stoichiometry of all the reactions shown on the x-axis. FVA sensitivity analysis is shown in line ranges. Predicted and 

measured maximum biomass yields, for a FVA threshold set at 99% of optimum biomass, are shown in (D). 
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However, the performed simulations can still be 
used to visualize and understand the burden that 
lactate production can have on cellular growth. 
The inability to induce PFL at moderate levels of 
oxygen limi- tation, puts a larger reliance on 
fermentative metabolism to lactate, providing less 
energy. We used p-thermo to investigate the 
possible impact this has. First, all measured 
exchange rates for the three strains were fitted to 
the model and used in subsequent determination 
of pre- dicted biomass yields. This showed that 
the model is physiologically capable of capturing 
the measured data, albeit with a lower predicted 
biomass yield than was experimentally measured, 
suggesting that stoi- chiometrically sub-optimal 
fermentation pathways were active in vivo 
(Supplementary Fig. 4A). Finally, the effect of 
increasing lactate pro- duction on biomass yield 
was computed, showing the energetic loss that 
occurs from lactate production (Supplementary 
Fig. 4B). Overall, this highlights the importance of 
complex regulation in dictating in vivo 
metabolism, over pure stoichiometric optima per 
se. 

 

1.1. Genome-scale metabolic modeling allows the 

elucidation of metabolic bottlenecks 

 

The availability of a comprehensive GEM can 

also facilitate the elucidation of metabolic 

bottlenecks and identification and optimization of 

chemically defined growth media (Branco dos 

Santos et al., 2017). Thus, p-thermo was used to 

help resolve known issues of the anaerobic 

metabolic physiology of P. thermoglucosidasius. 

Although P. thermoglucosidasius is clearly capable 

of classical mixed acid fermentation and shows 

elements of a regulated aerobic-anaerobic switch 

as revealed by transcriptomic analysis (Loftie-

Eaton et al., 2013) (although oxygen-scavenging 

state under fermentative conditions), it has long been known that 

growth under anaerobic conditions on existing mini- mal defined 

growth medias requires additional supplements in comparison to 

growth under aerobic conditions. Typically, this was resolved by 

supplementation with a small amount of oxygen or yeast 

extract (Hussein et al., 2015; Cripps et al., 2009; Lisowska, 

2016). Therefore, here we used simulations of p-thermo to find 

a minimal set of defined nutrients that can achieve anaerobic 

growth of P. thermoglucosidasius. As a first observation, when 

fed true minimal, anaerobic medium, the model predicted no 

growth, in accordance with experimental observa- tions. 

However, fermentative energy generation was observed, 

which highlights that oxygen requirement comes from critical 

secondary me- tabolites or cofactors that cannot be 

synthesized anaerobically, which is corroborated by previous 

observations (Hussein et al., 2015). By mini- mizing the 

oxygen uptake in the model, a critical reaction set requiring 

oxygen was generated (Table 1). This analysis highlighted a 

complex combination of components that cannot be 

synthesized anaerobically: thiamine, biotin, folate, vitamin 

B12, spermine, spermidine and hemin. Additionally, iron(III) 

must be available in the medium to allow porphyrin 

biosynthesis. 

In silico supplementation of these components rescued 

anaerobic growth, providing a combination of candidates for 

experi- mental validation. P. thermoglucosidasius DSM 2542 

was obtained from the DSM stock center (Leibniz Institute.-G, 

2021). While DSM 2542 carries several mutations (11 SNPs and 

2 indels) compared to the NCIMB 11955 sequence (Sheng et al., 

2016), the only differences found in coding sequences are 

annotated as hypothetical proteins. Thus, it is expected that they 

would not impact the predictive outcome of the model between 

Fig. 4. Comparison of in silico predictions of fermentation product yields in three engi- neered strains with experimentally 

deter- mined data from Cripps et al. (Cripps et al., 2009), when solely the carbon uptake rate and knockouts were fixed in 

the model. Yield (gx/gs) is shown for predicted and measured exchange rates.  Each panel highlights a different strain: wild 

type (WT), Δldh and ΔldhΔpfl (PDHup). Two varying thresholds for FVA were run: 95% and 99% of the optimum biomass 

production. The in silico predicted biomass yield (Yxs) for 99% of the optimum biomass production is shown for each 

condition. 

. 
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the two strains. The simulated essential 

components were experimentally added together 

in trace amounts to form a supplementation mix 

(see Materials and Methods); to assess if it 

would allow anaerobic growth. This was compared 

to Wolfe’s vitamin solution,a commonly used mix 

of vitamins in base thermophilic minimal medium 

(TMM) (Pogrebnyakov et al., 2017; Fong et al., 

2006). It should be noted  that Wolfe’s vitamin 

solution contains thiamin, biotin, folate and 

vitamin B12, amongst other nutrients, and that 

TMM contains trace  amounts of iron (III). To 

uncover the minimal sets of components needed to 

rescue anaerobic growth, eight different conditions 

were tested, all composed of base TMM with 10 

g/L glucose: 1) no added nutrients, 2) 0.2% yeast 

extract, 3) biotin,  4)  thiamin,  5)  biotin  and  

thiamin,  6) Wolfe’s vitamins, 7) Supplementation 

mix and 8) Wolfe’s vitamins plus the unique 

components of the supplementation mix 

(spermine, spermidine and heme) (Fig. 5, 

Supplementary Fig. 5). 

Experimental observations suggested that a 

combination of thiamin, biotin and iron(III) were the minimal 

required supplementation set needed to sustain anaerobic 

growth, as no difference was observed when additional defined 

supplementation was added (Fig. 5). Yeast extract also 

contains significant amounts of amino acids and other 

components and so provides an additional growth advantage, as 

expected. However, this highlights a discrepancy with the 

model predictions, as a larger minimal supplementation set 

was originally predicted (Table 1). Finally, as expected, base 

TMM can support aerobic growth, at a maximum rate of 0.267   

0.021 h—1 (Supplementary Fig. 5A), confirming the synthesis 

of the critical components in the presence of oxygen. 

 

There are several reasons that can explain the differences 

between the in silico and experimentally determined minimal 

supplementation set. The incomplete understanding of 

thermophilic life introduces additional levels of complexity that 

are typically not captured by auto- matic annotation pipelines 

dependent on predominantly mesophilic datasets (Aziz et al., 

2008; Seemann, 2014) leading to errors in the annotation of 

thermophilic traits (Mendoza et al., 2019). For example, 

genomes of thermophilic organisms show a correlation with 

higher G/C content, less intergenic regions and a higher 

Fig. 5. Experimental growth rates calculated and maximum observed absorbance values when P. thermoglucosidasius NCIMB 

11955 was grown anaerobi- cally in a microtiter plate reader in TMM base medium, supplemented with various nutrients, as 

indicated. Dashed line indicates inoculation absorbance when an inoculation optical density of 0.05 was used. 

. 
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functional stability (re- flected by the lower ratio of 

non-synonymous to synonymous sub- stitutions 

over time) (Sabath et al., 2013; Wang et al., 2015; 

Lusk, 2019). Additionally, thermostable proteins 

can have significantly altered structure compared 

to their mesophilic counterparts performing the 

same reaction, confounding homology-based 

annotation (Huang et al., 2020). Through the 

observed discrepancies, we can unveil additional 

insights of anaerobic metabolism of P. 

thermoglucosidasius. 

In the first place, the in-silico 

dependence on vitamin B12 highlights the 

inaccuracy of annotation pipelines. Vitamin B12 

synthesis is classi- cally divided into two routes: 

canonical (aerobic) and non-canonical 

(anaerobic) (Fang et al., 2017).  Although the 

genome annotation of P. thermoglucosidasius 

NCIMB 11955 reveals parts of either pathway, 

neither is complete. It has been proposed that 

possibly a novel, blended pathway may be 

present; however, this may arise from incorrect 

an- notations based on lacking knowledge of 

thermophilic vitamin B12 biosynthesis genes 

(Lisowska, 2016; Raux et al., 2000; Gajcy, 1973). 

The possibility to grow without vitamin B12 

supplementation does highlight both an aerobic and anaerobic 

functional pathway in P. thermoglucosidasius NCIMB 11955. To 

further understand the de novo biosynthesis of vitamin B12, 

experimental validation would be required. In p-thermo, the in 

silico oxygen requirement for spermine and sper midine 

biosynthesis comes from the downstream recycling of a 

biosynthetic by-product: 5′-methylthioadenosine (5-MTA). 5-

MTA recycling is also important in a novel, oxygen 

independent MTA- isoprenoid shunt, involved in the 

methionine salvage pathway (North et al., 2016). This pathway 

has been characterized in Rhodospirillum rubrum and 

orthology analysis highlights the possible presence of parts of 

this pathway in various facultative anaerobic Bacillus spp 

(North et al., 2017). This presents the possibility of an alternate 

5-MTA recy- cling pathway, explaining the independence of 

anaerobic growth to spermine or spermidine addition. 

Similarly, to spermine and spermidine, the oxygen requirement 

in the in-silico folate biosynthesis pathway stems from the 

formation of gly- colaldehyde as a side product, which is 

further oxidized to glyoxylate. The in silico oxidase responsible 

for glyoxylate formation requires oxy- gen (EC 1.1.3.15). 

However, reports show that Moorella thermoacetica, a 

thermophilic obligate anaerobe, can grow on glycolate through 

the formation of glyoxylate, highlighting the possibility for a (to 

date) un- known alternate electron acceptor (Seifritz et al., 

1999; Sakai et al., 2008). 
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Finally, heme is suggested to be 

synthesized in P. thermoglucosidasius from glycine 

using a 5-aminolevulinic acid synthase (Lisowska, 

2016) and notably using an oxygen-dependent 

protoporphyrinogen oxidase. Both E. coli and B. 

subtilis have an oxygen independent 

coproporphyrinogen-III oxidase (hemN), known to 

be responsible for anaerobic heme biosynthesis, 

using other electron acceptors such as fumarate, 

or nitrate over oxygen (Jacobs and Jacobs, 1976; 

Hippler et al., 1997; Layer et al., 2002; Möbius et 

al., 2010). While the current genome annotation of 

P. thermoglucosidasius NCIMB 11955 (Sheng et al., 

2016) suggests that only the oxygen dependent 

path is present, the data presented herein suggest 

that supplementation with hemin is not required for 

growth (Fig. 5). One possible explanation for this 

discrep- ancy can be found when performing a 

tBLASTn with the B. subtilis hemN (NCBI accession 

CAB61616) against the P. thermoglucosidasius 

NCIMB 11955 genome. This highlighted a 

significant hit (CP016622 region 3448674, 

3449762, 52% identity, E-value: 10—115). This 

suggests the possibility that some form of this 

oxygen independent heme biosynthesis route 

could also be present highlighting the need to 

better understand the metabolism of non-model 

organism chassis. 

This identification of the minimal, defined 

anaerobic medium high- lights how GEMs can be 

used to facilitate experimental hypotheses, 

where previous hypotheses have failed. The 

result, a defined minimalanaerobic medium is 

valuable for further investigation into anaerobic 

metabolism through 13C-characterization 

studies, where defined media are critical. 

Additionally, this identification of a series of 

components which support anaerobic growth of 

P. thermoglucosidasius at a minimal medium 

level can further help inform the development of 

industrial growth media for other microbial 

chassis used in anaerobic bioprocesses 

improving growth and chemical product yields. 

 

Discussion 
 

Parageobacillus spp. represent valuable 

microbial chassis for meta- bolic engineering and 

fermentative bioproduction. Many advantages 

derive from their thermophilic character, with 

additional advantages coming from species 

specific traits. However, to further develop Para- 

geobacillus spp. into fully optimized microbial cell 

factories, additional in-depth and systems level 

understanding of metabolism is required, for which 

omic analyses and genome scale metabolic 

models are critical. Currently, various automatic 

pipelines exist for generating metabolic models on 

the sole basis of a genome sequence. Yet, for 

thermophilic organisms, significant faults resulting 

from automatic annotation pipe- lines are evident, as these are 

based on predominantly mesophilic datasets. Thermophilic 

genomes show different characteristics, the ef- fect of which on 

metabolism is still poorly understood, making trans- lation into 

a predicted function difficult. Thus, significant manual curation 

is needed in the generation of GEMs for thermophilic 

organisms, which is limited by the availability of knowledge on 

thermophilic metabolism. This is reflected by the relatively high 

need for manual gap-filling, and a high resulting percentage of 

blocked reactions in p-thermo. To increase the understanding 

of genotype-phenotype relationships in thermophilic hosts, the 

availability of a GEM acts as a considerable step facilitating 

systems level studies. As a result, with more knowledge arising, 

iterative rounds of model improvement are possible. 

Therefore, in this work, we developed p-thermo, to date 

the most complete, curated and validated genome-scale 

metabolic model for a facultative anaerobic Parageobacillus sp. 

In it, genomic and biochemical knowledge were combined into a 

single powerful knowledge base, providing a critical tool for 

data-driven metabolic engineering, -omic data integration, 

process design and optimization. The model accurately 

captured substrate usage in silico, showing the metabolic 

flexibility of the strain for production with alternative carbon 

sources (Lisowska, 2016). Furthermore, 13C-isotopic data 

verified the quality of p-thermo for predicting central internal 

fluxes of the model, when solely production and consumption 

rates are measured, a common practice when evalu- ating 

metabolic engineering designs. 

Going beyond validation, p-thermo was used to provide 

more in- depth analysis of previously reported metabolic 

engineering ap- proaches (Cripps et al., 2009). Initial p-thermo 

simulations did not completely match experimental data, as 

stoichiometric models are incapable of capturing complex levels 

of regulation that play a dominant role in in vivo metabolism. 

Nonetheless, p-thermo was used to investigate the pyruvate 

branch point in central metabolism and allowed additional 

insights into metabolic flux distributions in various genetic back- 

grounds. With p-thermo further insights into metabolism can be 

gained, allowing improved targeted metabolic engineering in 

subsequent designs. 

Finally, we used p-thermo to generate hypothesis driven 

experiments to alleviate a bottleneck in anaerobic metabolism, 

where previous experimental design was unsuccessful 

(Hussein et al., 2015). Doing so revealed      fundamental      

insights      into      the      metabolism    of P. thermoglucosidasius, 

and also demonstrated that significant knowledge gaps still exist. 

This analysis, in combination with the 13C-based verifi- cation, 

highlights an additional obstacle in working with thermophilic 

GEMs, where annotation pipelines are less precise: information 

on central carbon metabolism can be inferred with relative 

accuracy, whereas peripheral metabolic pathways are not 

significantly understood and require further systems-level 

investigation.  Overall, p-thermo, together with other systems 

level and omics-based approaches, act as a tool to improve our 

understanding of genotype- phenotype relationships. Genome-

scale metabolic models are in this way a critical part of an 

iterative cycle and are essential to the use and efficacy of 

thermophilic hosts for metabolic engineering and industrial 

bioproduction. 
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Materials & Methods 
 
1.2. Model construction & curation 

Genome sequencing of Parageobacillus 

thermoglucosidasius NCIMB 11955 was initially 

performed by ERGOTM Integrated Genomics 

(Overbeek et al., 2003) (funded by TMO 

Renewables Ltd) and subse- quently updated 

using the published P. thermoglucosidasius 

NCIMB 11955 genome sequence (Sheng et al., 

2016)  (NCBI accession CP016622 

[chromosome],  CP016623[pNCI001], and 

CP016624[pNCI002]). 

Genome annotation was performed through the 

ERGOTM Integrated Genomics suite (Overbeek 

et al., 2003) and the RAST server (Brettin et al., 

2015). Pathway Booster was used for gap filling, 

resolving gaps through comparisons with 

evolutionarily-related  genomes  (Liberal  et al., 

2015). Upon base construction of the model, 

further manual curation was done following 

standard procedures (Thiele and Palsson, 2010). 

To do so, missing information was primarily 

obtained from literature and using various 

databases: BRENDA, EC2PDB, KEGG, Met- 

aNetX   or   MetaCyc (Lisowska, 2016). 

Whenever information on  P. 

thermoglucosidasius was lacking, available 

references from other (Para)geobacillus spp or 

Bacillus spp were added. All further manual 

curation and refinement can be found in the 

GitHub repository. Model improvement was 

ensured by running Memote (Lieven et al., 2020) 

after each modification. 

1.3. Biomass composition and growth 
energetics 

To model growth, a biomass pseudo-reaction 

was added to the model. The reaction pools 

metabolites needed for growth into a biomass 

metabolite. Base biomass composition was 

previously determined experimentally according 

to reported practices (Durot et al., 2009; 

Lisowska, 2016). Lipid composition was obtained 

from previous reports (Tang et al., 2009), and 

was incorporated into the model according to a 

restrictive approach (Sánchez et al., 2019), in 

which a determined acyl chain length is assumed 

for all lipid species. Further fine-tuning of 

biomass composition was performed based on 

available enzymatic and metabolic requirements 

of the strain, with case-by-case justification given 

in the GitHub repository. Critical metabolites 

known to be required for catabolic functions of 

essential enzymes, such as heme, were added 

at trace stoichiometries based on knowledge 

from related organisms and scaled to ensure that 

all biomass components added up to 1 g/gDW 

(Chan et al., 2017). Growth energetics (ATP cost 

of growth-associated maintenance and ATP requirement for 

non-growth associated maintenance) were estimated by 

minimizing the prediction error of the specific substrate 

consumption rate and the specific growth rate of glucose fed, 

aerobic chemostats (Lisowska, 2016; Thiele and Palsson, 

2010). The P/O ratios were obtained from the given data for 

B. subtilis (Oh et al., 2007). The contribution of 

polymerization of each metabolite type to the total growth 

associated maintenance was esti- mated based on 

previously reported polymerization energies (Verduyn et al., 

1991). 

1.4. Transport reactions 

The model has two compartments: extracellular and 

intracellular. Transport reactions were inferred from genome 

annotations and omology to known transporters. Additionally, 

knowledge about growth on various substrates was used to 

validate the presence of the corre sponding transporters.  

1.5. Stoichiometric modeling & applied constraints 

In traditional flux balance analysis (Orth et al., 2010), reaction 

stoichiometries are converted into a stoichiometric matrix (S), 

with m x n dimensions, where m represents the various 

metabolites and n repre- sents the number of reactions. 

Coefficients in the matrix are either positive or negative, 

reflecting production and consumption, respec- tively. 

Stoichiometric modeling works under the assumption of a 

pseudo-steady-state, represented as: 

S ⋅ v = 0 

Where the vector v contains the fluxes of all reactions, given in 

units of mmol/gDWh. As there are more metabolites than 

reactions, to solve this underdetermined system, linear 

programming is used by formulating an objective function (z), 

per default set as biomass accumulation. Reversibility of 

reactions is set based on thermodynamic prediction and a 

default medium is defined; in the case of p-thermo, minimal 

medium, with D-glucose as default carbon source is used. 

Quantification of metabolic fluxes was performed using flux 

vari- ability analysis (FVA) (Mahadevan and Schilling, 2003). 

When running FVA, a threshold below the optimum is used to 

represent the metabolic freedom that is given to a model. In this 

study, a sensitivity analysis was run with FVA thresholds from 

90 to 99%, to evaluate at what sensitivity level the model 

better matches the experimental data. Additionally, 

parsimonious flux balance analysis (pFBA) was run, by 

conducting a bilevel linear programming optimization that 

computes the optimum (growth) solution of the network, 

whilst minimizing the sum of all fluxes (Lewis et al., 2010). In 

doing so, this optimization predicts the most 

stoichiometrically efficient pathway set, and captures the 

maximum biomass per unit flux objective that has previously 

been described to be well supported by proteomic and 

transcriptomic data (Lewis  et  al., 2010; Schuetz et al., 2007). 

 
1.6. Genome comparison 

For an unbiased genome comparison, the P. 

thermoglucosidasius NCIMB 11955 genome was obtained 
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from NCBI (Accession: CP016622), and the P. 

thermoglucosidasius M10EXG genome was 

obtained from the Integrated Microbial Genome 

database (ID 2501416905). Genome annotation 

was performed using RASTk (Brettin et al., 

2015), after which the two proteomes were 

compared through blast bi-directional best hits 

to create a homology matrix between the strains, 

based on a published pipeline (Norsigian et al., 

2020). To filter for metabolic genes, any ORF 

associated to a predicted EC code was 

considered metabolic. The exact workflow can 

be followed in the GitHub repository. 

 
1.7. Experimental procedures 

The P. thermoglucosidasius NCIMB 11955 

(DSM2542) strain was ob- tained from DSMZ 

(Leibniz Institute.-G, 2021). The strain was grown 

in either 2SPY medium or base thermophile 

minimal medium (TMM), modified from Fong et al. 

(2006). 2SPY was used for a first preculture, and 

contains per liter, 16 g soy peptone, 10 g yeast 

extract and 5 g NaCl, adjusted to pH 6.8. Base 

TMM contains, per liter: 930 ml Six salts so- lution 

(SSS), 40 ml 1 M MOPS (pH 8.2), 10 ml 1 mM 

FeSO4 in 0.4 M tricine, 10 ml 0.132 M K2HPO4, 10 

ml 0.953 M NH4Cl, 0.5 ml 1 M CaCl2 and trace 

element solution, adjusted to a final pH of 6.8. 

SSS contains, per 930 ml: 4.6 g NaCl, 1.35 g 

Na2SO4, 0.23 g KCl, 0.037 g KBr, 1.72 g MgCl2⋅6 

H2O and 0.83 g NaNO3. The trace element 

solution contained, per liter, 1 g FeCl3⋅6 H2O, 0.18 

g ZnSO4⋅7 H2O, 0.12 g CuCl2 ⋅2 H2O, 0.12 g 

MnSO4⋅H2O and 0.18 g CoCl2⋅6 H2O. D-glucose to 

a final concentration of 10 g/L was added to the 

base TMM. 

When indicated, the base TMM was 

supplemented with one of the following, to the 

indicated final concentrations: 0.2% (w/v) yeast 

extract, 2 μg/L biotin, 5 μg/L thiamine-HCl, 1x 

Wolfe’s vitamins, or 1x supplementation mix. 

1000x Wolfe’s vitamins consist of, per liter, 10 mg 

pyridoxine hydrochloride, 5.0 mg thiamine-HCl, 

5.0 mg riboflavin, 5.0 mg nicotinic acid, 5.0 mg 

calcium D-( )-pantothenate, 5.0 mg p-ami- 

nobenzoic acid, 5.0 mg thioctic acid, 2.0 mg biotin, 

2.0 mg folic acid and 0.1 mg vitamin B12. The 

1000x supplementation mix contained, per liter, 

2.0 mg biotin, 5.0 mg thiamine-HCl, 2.0 mg folic 

acid, 0.1 mg vitamin B12, 127 μg/L spermidine, 

174 μg/L spermine tetrahydro- chloride and 0.7 

mg hemin. 

The aerobic cultures were inoculated to a 

starting OD600 of around 0.05, after an overnight 

culture on the base TMM medium. Growth was 

monitored through OD600 measurements, 

during growth at 60◦, 200 RPM in baffled shake 

flasks. Anaerobic medium was prepared similarly 

to aerobic medium, but 1 μg/L resazurin was 

added to ensure complete anaerobic conditions. 

The medium was flushed with nitrogen gas prior 

to use. All anaerobic work was performed in an anaerobic 

chamber. Overnight cultures were run in anaerobic serum flasks 

at 60 ◦C, 200 rpm and used to inoculate a microtiter plate to a 

final OD of 0.05 in 200 μL volume. After sealing, the OD600 was 

measured every 15 min for 10 h in a Biotek Epoch2 microplate 

spectrophotometer, placed in an anaerobic chamber (run at 60 
◦C, with linear shaking). 
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Krüger, A., Schäfers, C., Schröder, C., Antranikian, G., 2018. Towards a 
sustainable biobased industry – highlighting the impact of 
extremophiles. N. Biotech. 40, 144–153. 

Kulyashov, M., Peltek, S.E., Akberdin, I.R., 2020. A genome-scale metabolic 
model of 2,3-butanediol production by thermophilic bacteria Geobacillus 
icigianus. Microorganisms 8. Layer, G., Verfürth, K., Mahlitz, E., Jahn, D., 
2002. Oxygen-independent coproporphyrinogen-III oxidase HemN from 
Escherichia coli. J. Biol. Chem. 277, 34136–34142. 

http://refhub.elsevier.com/S1096-7176(21)00038-0/sref1
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref1
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref1
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref1
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref1
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref2
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref2
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref2
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref2
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref2
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref2
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref3
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref3
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref3
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref4
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref4
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref4
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref4
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref4
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref4
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref5
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref5
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref5
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref5
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref5
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref5
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref6
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref6
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref6
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref6
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref6
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref6
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref7
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref7
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref7
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref7
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref7
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref7
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref8
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref8
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref8
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref8
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref8
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref9
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref9
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref9
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref9
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref9
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref9
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref10
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref10
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref10
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref10
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref11
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref11
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref11
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref11
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref11
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref12
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref12
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref12
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref12
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref12
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref12
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref13
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref13
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref13
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref13
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref13
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref14
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref14
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref14
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref14
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref14
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref14
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref15
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref15
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref15
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref15
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref15
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref15
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref15
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref15
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref15
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref16
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref16
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref16
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref16
https://doi.org/10.1007/10
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref18
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref18
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref18
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref18
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref19
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref19
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref19
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref19
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref20
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref20
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref20
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref20
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref21
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref21
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref21
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref21
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref21
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref22
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref22
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref22
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref23
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref23
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref23
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref23
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref23
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref24
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref24
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref24
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref24
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref25
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref25
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref25
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref25
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref25
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref26
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref26
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref26
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref40
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref40
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref40
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref27
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref27
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref27
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref28
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref28
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref28
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref28
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref29
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref29
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref29
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref29
https://doi.org/10.1021/acsomega.9b04105
https://doi.org/10.1021/acsomega.9b04105
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref31
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref31
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref31
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref31
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref32
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref32
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref32
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref32
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref33
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref33
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref33
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref33
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref34
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref34
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref34
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref34
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref34
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref34
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref35
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref35
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref35
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref35
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref36
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref36
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref36
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref36
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref36
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref36
https://doi.org/10.1371/journal.pcbi.1004321
https://doi.org/10.1371/journal.pcbi.1004321
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref38
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref38
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref38
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref38
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref38
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref39
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref39
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref39
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref39
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref39
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref41
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref41
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref41
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref41
http://refhub.elsevier.com/S1096-7176(21)00038-0/sref41


 

98 
 

Lee, S.Y., Kim, H.U., 2015. Systems strategies for 

developing industrial microbial strains. Nat. Biotechnol. 33, 

1061–1072. 

Leibniz Institute, 2021. DSMZ-German Collection of 

Microorganisms and Cell Cultures GmbH. 

https://www.dsmz.de/. 

Lewis, N.E., et al., 2010. Omic data from evolved E . 

coli are consistent with computed optimal growth 

from genome-scale models. Mol. Syst. Biol. 

https://doi.org/ 10.1038/msb.2010.47. 

Liberal, R., Lisowska, B.K., Leak, D.J., Pinney, J. W. 
PathwayBooster, 2015. A tool to support the curation of 
metabolic pathways. BMC Bioinf. 16, 4–9. 

Lieven, C., et al., 2020. MEMOTE for standardized genome-
scale metabolic model testing. Nat. Biotechnol. 38, 272–
276. 

Lin, P.P., et al., 2014. Isobutanol production at elevated 
temperatures in thermophilic Geobacillus 
thermoglucosidasius. Metab. Eng. 24, 1–8. 

Lisowska, B.K., 2016. Genomic Analysis and Metabolic 

Modelling of Geobacillus Thermoglucosidasius NCIMB 

11955. University of Bath. 

Liu, B., et al., 2012. Characterization of a recombinant 

thermostable xylanase from hot spring thermophilic 

Geobacillus sp. TC-W7. J. Microbiol. Biotechnol. 22, 

1388–1394. 

Liu, Y., Li, J., Du, G., Chen, J., Liu, L., 2017. Metabolic 

engineering of Bacillus subtilis fueled by systems 

biology: recent advances and future directions. 

Biotechnol. Adv.35, 20–30. 

Loftie-Eaton, W., et al., 2013. Balancing redox cofactor 

generation and ATP synthesis: key microaerobic 

responses in thermophilic fermentations. 

Biotechnol. Bioeng. 110, 1057–1065. 

Lusk, B.G., 2019. Thermophiles; or, the Modern 

Prometheus: the importance of extreme microorganisms 

for understanding and applying extracellular electron 

transfer. Front. Microbiol. 10, 1–10. 

Ma, Y., et al., 2016. Enhancement of polymerase activity of 

the large fragment in DNA Polymerase I from 

Geobacillus stearothermophilus by site-directed 

mutagenesis at the active site. BioMed Res. Int. 1–8. 

Ma, W., et al., 2018. Metabolic engineering of carbon 

over flow metabolism of Bacillus subtilis for improved 

N-acetyl-glucosamine production. Bioresour. 250, 

642–649. 

Maayer, P. De, Brumm, P.J., Mead, D.A., Cowan, D.A., 
2014. Comparative analysis of the Geobacillus 
hemicellulose utilization locus reveals a highly 
variable target for improved hemicellulolysis. BMC 
Genom. 15, 1–17. 

Mahadevan, R., Schilling, C.H., 2003. The effects of 

alternate optimal solutions in constraint-based 

genome-scale metabolic models. Metab. Eng. 5, 264–

276. 

Mendoza, S.N., Olivier, B.G., Molenaar, D., Teusink, B., 
2019. A systematic assessment of current genome-scale 
metabolic reconstruction tools. Genome Biol. 20, 1–20. 

Miclet, E., Michels, P.A.M., Opperdoes, F.R., Lallemand, J., 

Duffieux, F., 2001. NMR spectroscopic analysis of the 

first two steps of the pentose-phosphate pathway 

elucidates the role of 6-phosphogluconolactonase. J. 

Biol. Chem. 276, 34840–34846. 
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3.3 Further GSMM discussion 

3.3.1 Overall improvements compared to original model 
Assessment of the original model with the Memote tool developed by Lieven et al. 
(2020)120 identified a range of inter-connected reaction, metabolite and flux 
consistency issues, summarised and scored into the five areas of: Stoichiometric 
Consistency (70.8%), Mass Balance (43.3%), Charge Balance (52.3%), Metabolite 
Connectivity (37.8%) and Unbounded Flux in Default Medium (46.9%) (Figure. 
17A). 

The stoichiometric consistency, mass balance and charge balance together 
constitute the conditions of the reactions in the network. Issues with these three 
factors in a steady-state model point to reactions that do not adhere to the law of 
conservation of mass, i.e., the net masses and/or changes of both sides of a 
particular reaction are unequal. This can have a substantial impact on the accuracy 
of any flux predictions, as unbalanced cycles can result in the system’s ability to 
create mass or change from nothing or, alternatively, destroy mass in the system. 
‘Metabolite connectivity’ evaluates the extent to which the metabolites in the model 
are involved in reactions. In this case, Memote suggested that there were 1418 
metabolites with no connections to reactions in the model (62.22%). These could 
have been artefacts of the initial reconstruction, but we were mindful that they could 
also signify legitimate missing reactions in the metabolic network. Lastly, Memote’s 
FVA-mediated evaluation of the “Unbounded Flux in the Default Medium” identified 
that 288 reactions in the model were able to carry unlimited flux (53.14%), reactions 
which in many cases could result in thermodynamically unrealistic flux rates through 
certain pathways. 

Memote was then used to perform cycles of analysis and manual curation of the 
issues of the original model until evaluation the Memote tool output suggested the 
current P. thermoglucosidasius NCIMB 11955 model (hereafter referred to as p-
thermo) demonstrated a 100% stoichiometric consistency, metabolite connectivity, 
charge balance and unbounded flux using the default medium, as well as a 99.9% 
mass balance (Fig. 17B). 

 

3.3.2 The oxPPP and 6PGL: How a missing enzyme points to areas for 
improvement  

Despite the improvements made to the p-thermo model, one notable and persistent 
limitation of the CCM of the base model still to be resolved was flux through the 
oxPPP. There is disagreement between the optimal flux distribution solution of the 

Figure 17: Memote analysis of original P. thermoglucosidasius model versus 

published p-thermo model. A) Original model (GTModelBeata2015). B) Current model 

(p-thermo). Analysis with Memote performed on 2021-08-24. 

A B 
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p-thermo model, which suggests no flux through the oxPPP even under aerobic 
conditions and 13C-MFA studies into the CCM of P. thermoglucosidasius and closely 
related Geobacillus species (Discussed in detail in Chapter 4) which suggest that 
the oxPPP still carries flux121,127,128. This disagreement in a key CCM reaction could 
help explain why pFBA of p-thermo alongside Geobacillus M10EXG measurements, 
suggested that it accurately represented growth of P. thermoglucosidasius under 
aerobic conditions (R2 = 0.98) but was a less accurate representation under oxygen-
limited (R2 = 0.8) and anaerobic conditions (R2 = 0.79) (Appendix Paper 
Supplementary Figure S3) as this pathway has a lower observed flux under those 
conditions. 

3.3.2.1 Is 6PGL supposed to be missing? 

While the genome of P. thermoglucosidaisus does encode both a glucose-6-
phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PD) 
from the oxidative branch of the pentose phosphate pathway (oxPPP), it does not 
contain a gene which encodes a 6-Phosphogluconolactonase (6PGL) [E.C. 
3.1.1.31]55. The lack of a gene for 6PGL can be explained through a combination of 
two factors. The first is a thermodynamic explanation that indicates this reaction can 
proceed spontaneously at higher temperatures.  

As a result, while some thermophilic species such as Thermobacillus composti and 
Rhodothermus marinus do have a 6PGL enzyme, high growth temperatures are 
cited as the assumed reason for the common absence of this gene in annotated 
genome sequences of thermophiles such as P. thermoglucosidasius, genetically 
similar Geobacillus species G. stearothermophilus and G. kaustophilus and a wider 
range of thermophilic organisms such as Anoxybacillus flavithermus and Thermus 
thermophilus 170. This is suggested by Wang, Cen and Zhao (2015) to have led to 
the hypothesis that selective gene loss which reduces genome complexity is an 
energetic cost minimizing mechanism that supports growth at high temperatures 171. 

3.3.2.2 What did this mean for p-thermo? 

Ultimately, this research assumed that the spontaneous hydrolysis of the ᴰ-glucono-
1,5-lactone-6P sufficiently fast enough in P. thermoglucosidasisus to support the 
PPP flux required for growth. To account for this spontaneous hydrolysis in the 
GSMM, a pseudo-reaction (reaction ID "R_PGL" in p-thermo) was introduced into 
the p-thermo model to represent 6PGL:  

ᴰ-Glucono-1,5-lactone 6-phosphate + H2O => 6-Phospho-ᴰ-gluconate 

However, a current issue of the p-thermo model is that when FVA is performed on 
the optimal biomass distribution solution, it suggests that the R_PGL pseudo-
reaction is unable to carry flux under optimal growth (Figure. 18A). Through the 
application of a positive lower bound for the reaction, the pathway could still carry 
flux instead of the encoded transketolase [2.2.1.1] if forced to do so (Figure. 18B). 
However, this was accompanied by a decrease in biomass yield from 0.699809 to 
0.692448 mmol g-1 DCW h-1. This slight decrease implies that the non oxidative 
branch of the pentose phosphate pathway (non-oxPPP) is a more energy efficient 
path in p-thermo to take for growth. 
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The particular situation of Figure 18A, where the non-oxPPP is thermodynamically 
preferable, is termed riboneogenesis and reflects a feasible situation where the 
demand for ribose 5-phosphate is greater than the demand for NADPH172. 

Figure. 18. FVA of p-thermo focused on the pentose phosphate pathway. A) p-

thermo demonstrating no flux through the oxPPP. B) p-thermo demonstrating flux through 

the oxPPP when forced by constraints. Arrows indicate the net direction of flux. Red 

arrows indicate that the associated reaction is not present in the p-thermo model. Yellow 

arrows indicate that the associated reaction is present in the p-thermo model but does not 

carry any flux under the best fit FBA solution. Green arrows indicate that the associated 

reaction is present in the p-thermo model and carries flux under the best fit FBA solution. 

 

A 

B 
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Issues with the oxPPP are not uncommon in GSMMs and can point towards an 
overall imbalance in the NADPH/NADH cofactor ratios. Indeed, A meta-analysis 
evaluating GSMMs for eukaryote Saccharomyces cerevisiae by Pereira, Nielsen 
and Rocha (2016) 173 identified that several of the published models investigated by 
the authors predicted erroneous flux in the oxPPP when compared to experimental 
flux data. One of the key findings of this work was that flux and NADPH generation 
could be restored to the oxPPP with the deactivation of a cytosolic 
isocitratedehydrogenase (ICDHc), which in several cases was found to be supplying 
the entire requirement of NADPH for growth. However, there is only the single 
NADP linked isocitrate dehydrogenase noted in P thermoglucosidasius genome 
(reaction ID "R_ICDHyr" in p-thermo) which is critical for operation of the citric acid 
cycle and growth. What this points to however is that flux through another NADPH 
generating reaction may be responsible and that future work should investigate and 
compare the NADPH and NADH generating reactions of the model to potentially 
find a culprit for this imbalance 173. 

Alternatively, these observations combined with the existing data surrounding the 
spontaneity of the hydrolysis of the ᴰ-glucono-1,5-lactone-6P substrate, suggest that 
the oxPPP may not be favoured by the p-thermo model as the stoichiometric 
reaction does not consider a potentially lower energy catalytic route of reaction 
provided by high temperature. Given the importance of the oxPPP in the production 
of histidine and nucleic acids required for cell growth, future 13C-MFA research 
surrounding P. thermoglucosidasius could investigate whether flux through the 
oxPPP changes under different temperature conditions. As suggested by Crown, 
Long and Antoniewicz (2016), 1-13C glucose operating as the only tracer would be 
the best option to resolve the oxPPP 174. Using this tracer and comparing oxPPP 
fluxes of P. thermoglucosidasius cells grown at different temperatures could help to 
quantify the specific impact of flux through this pathway on cell growth and indicate 
whether this hydrolysis could operate as a rate-limiting step at lower growth 
temperatures.  

Overall, this unresolved issue highlights how valuable the integration of fluxomics 
data to a GSSM can be to validate the predictions of a model and gain a more 
accurate systems level understanding of an organism, and therefore support the 
higher goal of designing a realistic ME strategy which achieves both over-production 
of a target metabolite and balanced growth.  

3.3.3 Roles of thio-cofactors 
 

Perhaps the most interesting results demonstrating the value of p-thermo were the 
observations that minimal media supplementation with a combination of biotin, 
thiamine and iron (III) was able to support P. thermoglucosidasius cell growth under 
anaerobic conditions. This is important as it is this condition which is most valuable 
from the perspective of using P. thermoglucosidasius as a microbial chassis for 
industrial fermentation due to its use in producing fermentation products lactic acid 
and ethanol. Notably, these supplements and (other suggested supplements) fall 
under the umbrella of term thio-cofactors which includes metabolites such as: 
thiamine, biotin, molybdopterins and iron-sulphur clusters 175. This suggests that 
part of the reason P. thermoglucosidasius may struggle under anaerobic conditions 
to generate/regenerate the production and/or oxidation state of these sulphur 
containing co-factors.  

Arguments for this hypothesis can be seen when examining the roles of thiamine 
and iron (III). 
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3.3.3.1 Thiamine 

Thiamine, and it’s phosphprylated form Thiamin pyrophosphate (TPP), is an 
essential cofactor in carbohydrate metabolism, often directly integrated into 
enzymes. Notably for the CCM of P. thermoglucosidasius, enzymes dependent on 
TPP as a co-factor are involved in catalyzing both the aerobic and anaerobic 
conversions of pyruvate to Acetyl-CoA as well as the oxidation of citric acid cycle 
intermediate α-ketoglutarate to succinyl CoA. 

Under aerobic conditions the TPP-dependent pyruvate dehydrogenase complex 
(PDH) catalyses the production of acetyl-CoA and CO2 from pyruvate 176. However, 
under conditions where oxygen (or another electron acceptor) is absent, P. 
thermoglucosidasius will predominantly utilise TPP-dependent pyruvate formate 
lyase (PFL)56 instead, which uses pyruvate as an electron acceptor and produces 
one molecule of acetyl CoA and one molecule of formate to help maintain overall 
redox balance in the cell. 

Given the importance of PFL-dependent production of Acetyl-CoA to oxygen-limited 
growth of P. thermoglucosidasius, it is therefore logical that experimental 
supplementation of thiamine would support continued growth under low oxygen 
conditions. However, while there does not seem to be transport machinery for direct 
import of complete thiamine in P. thermoglucosidasius, it is also recognised that 
thiamine forms hydrolysis products in water. If these smaller products can be 
imported, it is likely they can be integrated into the thiamine biosynthesis pathway 
an energetically favourable manner by the thiamine salvage pathway to form TPP 
176. 

Additionally, acetolactate synthases, which catalyse the decarboxylation of pyruvate 
to acetolactate, are also TPP-dependent enzymes 178. As acetolactate represents a 
precursor for proteinogenic amino acids L-valine and L-leucine, increased metabolic 
pools of thiamine likely also support this synthesis.  
In addition to the potential direct import of thiamine or its component hydrolysis 
products in these experiments, the pool of available thiamine would conventionally 
depend on its ability to be synthesized intracellularly. Notably, the set of critical 
reactions to enable anaerobic growth in p-thermo which required oxygen included a 
glycine oxidase (Paper Table 1) (defined by reaction ID "R_ GLYHOR" in p-thermo) 
catalysing the reaction: 

L-Tyrosine + S-Adenosyl-L-methionine + Reduced acceptor <=> Iminoglycine + 4-
Cresol + 5'-Deoxyadenosine + L-Methionine + Acceptor 

This enzyme has been long recognized in Bacillus subtilis to be critical in the 
oxygen-dependent formation of the thiazole moiety precursor iminoglycine required 
to synthesise thiamine pyrophosphate 179.If activity of this enzyme is limited under 
low oxygen conditions, this could therefore impact the ability of P. 
thermoglucosidasius to synthesise the cofactor thiamine pyrophosphate for PDH 
and reliant growth. 

Notably however, while not encoded in the P. thermoglucosidasius genome, an 
oxygen independent 2-iminoacetate synthase [EC:4.1.99.19] exists that can also 
catalyse iminoglycine formation from tyrosine through the reaction: 

L-Tyrosine + S-Adenosyl-L-methionine + Reduced acceptor <=> Iminoglycine + 4-
Cresol + 5'-Deoxyadenosine + L-Methionine + Acceptor 
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Future work could therefore investigate whether the heterologous expression of a 
thermophilic 2-iminoacetate synthase in P. thermoglucosidasius supports growth 
under low oxygen conditions. 

This result could also help explain the finding of Dr. Charlotte Ward in her PhD 
thesis that supplementation of serine to a minimal growth media for P. 
thermoglucosidisus helped support growth of P. thermoglucosidasius under micro-
aerobic condtions121. Rather than simply providing an addition carbon source, the 
fact that serine is a direct precursor to glycine may have meant that adding serine 
increased the pool of available glycine substrate for an oxygen-limited glycine 
oxidase and helped support overall thiamine/thiamine pyrophosphate production for 
growth. 

3.3.3.2 Iron 

Two findings of the p-thermo associated growth experiments were that: 1) 
supplementation with iron (III) to the medium supported anaerobic growth of P. 
thermoglucosidasius cells in vivo and that 2) hemin, a porphyrin containing Fe (iron) 
and Cl (chloride), could not be produced under anaerobic conditions in p-thermo. 

Heme biosynthesis 

The importance of glycine was also implicated in the oxygen-dependent 
biosynthesis of heme and vitamin B12. This was due to a native P. 
thermoglucosidiasius plasmid-conferred 5-aminolevulinic acid synthase, (defined by 
reaction ID "R_ ALASm" in p-thermo, which synthesised the 5-aminolevulinic acid 
from a glycine precursor rather than a more common L-glutamate precursor. While 
a tBLASTn search performed as part of the published research suggested a 
possible unannotated homolog to oxygen-idependent B. subtilis HemN in the P. 
thermoglucosidasius NCIMB 11955, further examination of the complete heme 
biosynthesis pathway in the genome of P. thermoglucosidasius suggested that 
additional enzymes in the pathway could also explain why heme biosynthesis could 
be oxygen-dependent (Figure 19). 

 

Figure 19: KEGG biosynthesis pathway from glycine to heme featuring P. 

thermoglucosidasius genes. Green filled boxes represent pathway enzymes with 

corresponding genes in the P. thermoglucosidaisus genome, white boxes represent 

pathway enzymes with no associated genes.  



 

106 
 

While genes HemB,C,D,E, and H are encoded for enzymes which are not oxygen 
dependent, a protoporphyrinogen/coproporphyrinogen III oxidase encoded by a 
single gene can perform the roles of EC numbers [1.3.3.4] (HemY) and [1.3.3.15] 
and is dependent on oxygen. This therefore suggests that the current route to heme 
from 5-aminolevulinic acid is oxygen dependent due to using this oxygen dependent 
protoporphyrinogen. An oxygen independent route could therefore involve both the 
aforementioned HemN and a menaquinone-dependent protoporphyrinogen oxidase 
[EC:1.3.5.3] termed HemG. Future work could therefore investigate whether the 
heterologous expression of genes for oxygen-independent HemN (oxygen-
independent coproporphyrinogen III oxidase [EC:1.3.98.3] and HemG 
(menaquinone-dependent protoporphyrinogen oxidase [EC:1.3.5.3]  in P. 
thermoglucosidasius could further support growth under low oxygen conditions. 
 
Ferredoxin-linked enzymes 

A final key thio-cofactor that could have been supported through addition of iron (III) 
are iron-sulphur clusters, which can feature in anaerobic metabolism as oxygen-
sensitve ferredoxins. 

Ferredoxins are [4Fe-4S] and [2Fe-2S] clusters that are involved with electron 
transfer in many metabolic reactions. While reactions containing ferredoxins are 
unsual for many lactic acid producing Bacilli, enzymes involving ferredoxins are 
present within the P. thermoglucosidasius genome 180. While initially appearing 
unusual, it is important to remember that P. thermoglucosidasius were first extracted 
from the notably iron-rich sulphourous hot-springs in Yellowstone National Park 181. 
This suggests that an evolutionary advantage of ferredoxin-containing proteins in P. 
thermoglucosisisus history and could explain why supplementation with a 
supplement mixture containing iron was determined to be advantageous to 
anaerobic growth of P. thermoglucosidaisus when compared to the control (Paper 
Fig. 5). Indeed, supplementation of iron could be advantageous both for supporting 
several ferredoxins reactions present in the P. thermoglucosidasius genome and p-
thermo that could be operating under anaerobic conditions including a reduced 
ferredoxin:H+ oxidoreductase (reaction ID "R_HYDA" in p-thermo), catalysing the 
model reaction of: 2FdRd + 2H+ <-> 2FdOx+ H2 , an Ammonia:ferredoxin 
oxidoreductase (reaction ID "R_NO2R" in p-thermo) catalysing the model reaction 
of: NH4 + 6FdOx <-> 6FdRd + 8H+ + NO2 and a 4-hydroxy-3-methylbut-2-en-1-yl-
diphosphate:oxidized ferredoxin oxidoreductase (reaction ID "R_MECDPOR" in p-
thermo), an enzyme involved with isoprenoid biosynthesis. 

Perhaps the most interesting of the reactions encoded in the P. thermoglucosisisus 
genome and in p-thermo is the existence of an oxoglutarate:ferredoxin 
oxidoreductase (reaction ID "R_OOR3r" in p-thermo). This catalyses the 
unidrectional model reaction of: CoA + 2FdOx + AKG -> CO2 + 2FdRd + SucCoA + 
H+ in the citric acid cycle suggesting that this may support continued citric acid 
cycle turning under low oxygen conditions. Indeed, this could help explain the 
transcriptomic observations of Loftie-Eaton et al. (2012) that P. thermoglucosidasius 
NCIMB 11955 cells growing under anaerobic conditions continued to operate in an 
oxygen-scavening state 114. Additionally, the recently discovered hydrogen 
producing capabilities of P. thermoglucosidasisus (captured in p-thermo through 
reaction ID "R_COOR") when grown on carbon monoxide was identified by Mohr et 
al. (2018)7 to require Ni-Fe to form part of a metallocenter for the discovered protein 
complex of CO dehydrogenase (CODH) and energy-converting hydrogenase (ECH) 
which performs the hydrogenogenesis. From this perspective, supplementation with 
iron is also therefore likely to support future research into the optimal growth 
conditions of P. thermoglucosidasius under CO atmosphere condtions for the 
production of hydrogen. 

https://www.kegg.jp/entry/1.3.3.4
https://www.kegg.jp/entry/1.3.3.15
https://www.genome.jp/dbget-bin/www_bget?ec:1.3.5.3
https://www.genome.jp/dbget-bin/www_bget?ec:1.3.98.3
https://www.genome.jp/dbget-bin/www_bget?ec:1.3.5.3
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4. Chapter 4: INST-13C-MFA 

4.1 Introduction 

4.1.1 Isotope labelling experiments, isotopically stationary 13C 
Metabolic flux Analysis and isotopically instationary 13C 
Metabolic flux Analysis 

In the context of metabolism, flux is the absolute rate of metabolite conversion in 
reaction, or a pathway made up of multiple reactions 182. The physiological 
phenotype expressed by an organism is determined by the distributions of flux 
through its complete metabolic reaction network 183. The aim of fluxomics therefore 
is to describe the distributions of fluxes in a given metabolic network, subject to sets 
of environmental constraints, in order to better understand the systems-level 
functional behaviours of an organism. Indeed, such in vivo metabolic flux 
distributions inherently incorporate the interplay of the all the regulatory constraints 
of metabolism which constitute the observed phenotype 47 184. 

4.1.1.1 13C Isotope labelling experiments (ILEs): The bow-tie 
conceptual framework 

As it is not possible to directly measure fluxes in vivo, conventional fluxomics 
indirectly measures the metabolic fluxes of in vivo reactions through stable 13C 
isotope-tracer labelling experiments 183. 

A 13C ILE revolves around culturing cells at a fixed growth rate on a 13C-enriched 
carbon tracer in a minimal defined media. Under the ‘bow-tie’ conceptual framework 
of metabolism, the 13C carbon tracer will be catabolized and its constitutive carbons 
will be rearranged through CCM into metabolite pools of universal carbon 
intermediates 185. These 13C-labelled carbon intermediates will then funnel back out 
of CCM and incorporate into a measurable downstream product of CCM (typically 
the amino acids of cell proteins, which can be analysed after hydrolysis, in 
predictable manners (Figure. 20).  
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4.1.1.2 Isotopomer networks, distributions, and forward estimates 

Isotopomers 

As a catabolized 13C atom travels through CCM, it can get incorporated into a 
downstream metabolite in a range of ways depending on the atom’s original position 
in the 13C tracer substrate, the percentage of catabolized substrate with a 13C 
isotope and the different metabolic pathways the 13C atom travelled through. As a 
result, isotope labelling experiments can generate metabolites with specific isotope 
isomers known as ‘isotopomers’118. These metabolite isotopomers can be further 
classified as either positional isotopomers (essentially mass regioisomers) which 
incorporate 13C atoms in different locations in the same chemical metabolite and 
define which atoms are labelled in a molecule, and mass isotopomers (or 
isotopologues) which represent groups of one or more positional isotopomers which 
have the same cumulative atomic mass and define how many atoms are 13C 
labelled in a molecule (Figure. 21). 

Figure. 20. Simplified schematic of the ‘bow-tie’ conceptual framework of metabolism. Diverse 

substrate inputs get broken down into metabolites of central carbon metabolism. These metabolites 

intermediates then get integrated into metabolic products required for cell growth. When required, 

these products can also be catabolized back to substrates (represented by the single straight arrow). 
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For analysis, this information is typically expressed in vector form. The complete 
collection of all positional isotopomers in vector form is commonly termed the 
isotopomer distribution vector (IDV), while the complete collection of mass 
isotopomers of a metabolite (i.e., M+1, M+2, M+3, … M+n) relative to its original 
molecular mass (defined as M+0) (Figure. 21) is termed the mass isotopomer 
distribution (MID) vector. When combined with measured 13C isotope incorporation 
data, these MIDs can ultimately be expressed as Mass Distribution Vectors (MDVs) 
containing varying fractional abundances of each mass isotopomer118. 
 
Isotopomer Transition Networks and Isotopomer Distribution Vectors 

The biochemical reactions which comprise the CCM of an organism can be 
expressed as carbon transition networks. The essential reaction stoichiometry and 
atom mapping information of these networks are typically validated using 
experimentally derived genomic and biochemical data from the organism in question 
182. 
 

Figure. 21. Pictoral explanation of positional and mass isotopomers for a 3-carbon compound. 

The position in a carbon metabolite in which 13C-labelled or naturally labelled carbons are eliminated or 

integrated gives rise to their possible positional isotopomers (1-3) or mass isotopomers (defined here in 

terms of their mass shift from M+0 to M+3). Adapted from Toya et al. (2011)186 .  
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Carbon transition networks codify carbon-containing metabolites as IDVs. Metabolic 
reactions in the network therefore become non-linear isotopomer balance equations 
describing the carbon transitions and rearrangements between IDVs as part of an 
isotopomer transition network187. These isotopomer transition networks therefore 
provide a structural framework detailing how every possible labelling state of every 
metabolite pool in the network is connected to one another. 
As a result, an isotopomer transition network allows forward in-silico predictions of 
potential in-vivo IDVs using only a given input of a 13C labelled tracer molecule 186. 
In contrast to GSMMs, the metabolic network topology of an isotopomer transition 
network is intentionally simplified to be the minimum number of key metabolic 
reactions required to predict IDVs. In 13C-MFA, it is these IDVs to which 
experimental 13C labelling data is compared.  
 
Simplifying the isotopomer balance equation - EMUs 

Due to the vast number of possible combinations of metabolic positional and mass 
isotopomers, quantitative estimation of metabolic fluxes based on 13C isotopomer 
transition networks composed of non-linear isotopomer balance equations becomes 
computationally expensive. To tackle this challenge, several modelling approaches 
have been developed which decompose the supplied isotopomer transition network 
of non-linear equations into simpler, linear equations allowing for more efficient 
computation188. These modelling approaches introduced the: ‘Cumomer’189 , 
‘Bondomer’190 and Elementary Metabolite Units (EMUs)191,192, with the EMU 
framework employed in this research. These approaches are reviewed in detail by 
Weitzel, Wiechert and Nöh (2007) 187, 189.  

The EMU framework condenses the complete collection of possible isotopomers 
into groups of only the essential positional and mass isotopomers required to both 
satisfy the connectivity constraints imposed by the choice of atom transition network 
and describe the measured MIDs of labelled fragment ions 193. In many cases, if no 
carbon transitions of importance to the overall MIDs take place in a particular 
metabolic pathway, the EMU framework can effectively reduce a pathway of 
consecutive enzymatic reactions into a single carbon transition reaction. As a result, 
the EMU framework significantly decreases the number of balance equations that 
need to be solved and converts the non-linear system of isotopomer equations into 
a system of linear equations featuring EMUs187. Indeed, Antoniewicz et al. (2007) 
demonstrated that, the application of the EMU framework, a 26 amino acid fragment 
labelling experiment of a simple E. coli metabolic model could condense a non-
linear 4612 isotopomer-based problem to a linear 223 EMU-based problem 191.  

Physiological Steady-states and Chemostat continuous culture systems 

Like FBA, a typical 13C-MFA assumes that harvested cells had reached a metabolic 
steady-state (i.e., a stable growth rate in which the sum of intracellular influxes and 
effluxes are zero). Additionally, isotopically steady-state 13C-MFA also assumes that 
a similar isotopic equilibrium had been reached where the distributions of 13C atoms 
also did not change with respect to time. Theoretically, these conditions can be 
achieved experimentally by harvesting cells at an isotopic and metabolic quasi-
steady-state during mid-exponential batch growth on a 13C carbon media, however 
in reality the transitory changes in substrate and metabolite products, even during a 
short sample window, will affect the accuracy of any flux determination 194. 

In order to more accurately achieve the metabolic steady-state conditions required 
for INST-13C-MFA experiments, this research grew P. thermoglucosidasius cells in 3 
different CSTR configurations operated as chemostats. Under the chemostat 
configuration, sterile feed media continually enters the controlled environment of the 
CSTR vessel and is balanced by a concurrent removal of the equivalent volume of 
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cell culture 195. As a result, when a population of cells reaches a steady-state, the 
maximum specific growth rate of those cells is equal to the dilution rate 194. 
Therefore, by varying the media addition rate, different phenotypic behaviours of 
cells at different fixed growth rates can be examined by sampling at any time from 
this continuous culture. Ultimately, the chemostat growth method enables the direct 
control of cellular growth rates for 13C-MFA experiments at a range of 
programmable growth rates and on different concentrations of media components. 

Experimental determination of 13C labelling patterns 

Experimental determination of the labelling of metabolite isotopomers from cell 
culture samples is typically performed using a GC-MS or liquid chromatography-
mass spectrometry (LC-MS), which can provide predominantly mass isotopomer 196, 
and/or NMR data 197.  
While NMR can be used to distinguish positional isotopomers from low analyte 
concentrations, as well as mass isotopomers, this research focuses on the use of 
more sensitive GC-MS to elucidate MDVs for TBDMS-derivitized amino acids which 
were originally isolated from hydrolyzed samples of P. thermoglucosidasius 
biomass.  
 
Natural abundance correction 

Once initial MDVs have been determined for metabolites of interest in an ILE, the 
measured abundances of each mass isotopomer must have the contribution of any 
naturally present stable isotopes of: hydrogen, carbon, nitrogen, oxygen, silicon and 
sulphur removed. This natural isotope abundance correction must be performed to 
ensure only the mass isotopomers generated as a result of the fed 13C tracer are 
considered in further analysis. The importance, history and best strategies for 
natural isotope correction are reviewed in detail by Midani et al. (2017) 116. 

Qualitative and Quantitative mass isotopomer distribution analysis 

Once the amino acid MDVs have been corrected, analysis of the degrees and 
patterns of incorporation of 13C can be performed to both qualitatively and 
quantitatively to infer the influence of metabolic pathways on the resulting 
isotopomer patterns and to describe carbon flux distributions between different 
pathways of CCM199. 

4.1.2.1 Qualitative 13C fingerprinting 

In qualitative mass isotopomer distribution analysis, known as 13C-fingerprinting, 
fully corrected MIDs enable qualitative observations to be made of the metabolic 
network structure and connectivity of a particular organism using knowledge of the 
overall biochemical network of an organism’s metabolism, rather than attempting to 
fit the data to an assumed isotopomer distribution network 200. 

Such qualitative observations and interpretations can be performed by considering 
the total 13C abundance and the 13C-labelling of MDVs. This is because the resulting 
labelling patterns of specific amino acid products will be derived from specific 
branching nodes in CCM which will reflect the available carbon sources and 
environmental influences174 (Figure. 22). 
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As a result, this analysis can help to describe metabolic pathway activity and help to 
infer the relative contributions of different metabolic pathways to the observed 
phenotype of an organism 202.  

Figure 22. Simplified schematic of P. thermoglucosidasius aerobic and anaerobic central 

carbon metabolism fed with glucose and xylose. Boxed nodes highlight precursors involved with 

amino acid metabolism. Boxed amino acids highlighted in orange represent amino acids derived 

from a central carbon metabolite. The remaining amino acids derived from other amino acids are 

highlighted in brown. Central carbon metabolites are highlighted in green (glycolysis), yellow 

(pentose phosphate pathway), purple (Entner-Doudoroff pathway) and red (Citric Acid cycle). The 

fermentation metabolites measured in this research are highlighted blue. Available metabolic paths 

informed from genome sequence of P. thermoglucosidasius DSM 2542, complete with enzyme 

commission (EC) numbers (purple text). AcCoA (acetyl-coenzyme A), AKG (α-ketoglutarate), Cit 

(citrate), Chor (Chorismate), DHAP (Dihydroxyacetone phosphate), E4P (erythrose-4-phosphate), 

FBP (fructose-bis-phosphate), Fum (fumarate), GAP (Glyceraldehyde-3-phosphate), G6P (glucose-

6-phosphate), 6PG (6-phosphogluconate), ICit (isocitrate), Mal (malate), OAA (oxaloacetate), F6P 

(fructose-6-phosphate), PEP  (phosphoenolpyruvate), 3PGA (3-phosphoglyceric acid), R5P (ribose-

5-phosphate), Ru5P (ribulose-5-phosphate), S7P (sedo-heptulose-7-phosphate), Suc (Succinate), 

TK-C2 (Transketolase C-2) and Xu5P (xylulose-5-phosphate). Adapted from Shree et al. (2018)201, 

Tang et al. (2009)128 and Cordova and Antoniewicz (2016)127.  
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For example, this qualitative approach was use by Jyoti et al. (2020) to suggest an 
unusual mode of aerobic metabolism in the phytopathogenic bacterium Ralstonia 
solanaceaum 203. Through feeding R. solanaceaum with a range of glucose tracers, 
including 1-13C glucose, the authors were able to suggest that the Entner-Doudoroff 
(ED) and the non-oxidative branch of the PPP (non-oxPP) were used under aerobic 
conditions instead of glycolysis. This was inferred from observations that the 
glycolysis path 3PGA-and-PEP-node derived serine and PEP-node derived 
Phenylalanine and Tyrosine were unlabelled while 13C labelling was observed for 
pyruvate-node-derived alanine (19.5%), OAA node-derived valine (11.5%) and R5P 
node-derived histidine (4%). 

4.1.2.2 Quantitative 13C MFA Stationary 13C fluxomics 

Quantitative fluxomics analysis can be performed to infer absolute fluxes through 
metabolic pathways, complete with accompanying statistical data, in what is 
commonly defined as 13C-Metabolic Flux Analysis (13C-MFA) 200. 

Fundamentally, this involves back-tracing the experimentally measured 13C-labelled 
metabolite profiles to their in silico simulated equivalents. The quantification of the 
unknown fluxes through metabolic pathways are determined through solving the 
non-linear least squares problem, which ultimately seeks to minimize the SSR 
between the assumed IDV and metabolite profiles (simulated from the isotopomer 
transition network, specific 13C labelled tracers and any growth, substrate import or 
product export rates and the experimentally observed MDVs fit to them187.  

4.1.2.3 13C-isotopic tracer MFA for non-steady states  

While ILEs involving rapid reaction quenching techniques for more metabolomics 
focused 13C-MFA experiments have been developed to allow for direct quantification 
of some transient metabolites, the current research focuses on determining flux 
distributions of P. thermoglucosidasius from dynamic 13C labelling experiments, in 
what is termed isotopically instationary (occasionally termed non-stationary) 13C-
MFA (INST-13C-MFA) 199 204 205. 

Under this dynamic system framework, it is still assumed that a metabolic steady 
state (with consistent fluxes and metabolite pool-sizes) has been achieved by a 
population of cells 202. However, as 13C-labelled substrate is introduced to the 
continuous cell culture it slowly replaces the unlabelled substrates. As a result, in an 
INST-13C-MFA framework the 13C enrichment and resulting isotopomer distributions 
of cellular metabolites, in this case proteinogenic amino acids, is assumed to be 
able to change over time (Figure. 23) 199 206  
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To measure the rates of 13C isotope incorporation over time, this research 
measured isotopomer distributions of 13C-fed P. thermoglucosidasius cell culture 
samplesat various time points from the introduction of the labelled tracer to an 
isotopic steady-state, thereby enabling both isotopically instationary and stationary 
13C-MFA. 
 
Compared to isotopically steady-state 13C-MFA, INST-13C-MFA comes with both 
advantages and disadvantages. The main disadvantages of INST-13C-MFA are 
experimental and financial practicalities. Experimentally, to capture the dynamic 
rates of 13C incorporation, more samples representing numerous time points are 
required. This increases the size of the overall sample and data processing task. 
Additionally, INST-13C-MFA experiments are longer as they first require cells to 
have reached a metabolic steady state before the introduction of a 13C tracer.  
Financially, a major limitation of all INST-13C-MFA experiments performed in this 
research was the cost of the tracers themselves 184. While Crown, Long and 
Antoniewicz (2016) 174 and Cordova and Antoniewicz (2016) 127 have demonstrated 
that different 13C labelling positions in glucose tracers in E. coli and xylose tracers in 
Geobacillus LC 300 respectively can improve flux resolutions for different metabolic 
pathways, the costs for many of these single tracers, and tracer combinations, can 
be high (Table 12). 
 
 
 
 
 
 
 

Figure 23. Graphical comparison of isotopically steady-state versus instationary 13C-MFA. 

Both 13C-MFA methodologies assume an unchanging metabolic flux (green line) over time. 

Sampling in isotopically steady-state 13C-MFA (black bars) is performed once 13C-labelling (orange 

dashed line) has incorporated over time to a steady state, whereas INST-13C-MFA sampling (red 

bars) is performed throughout the 13C-label incorporation process.  
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13C Tracer List price (£/g*) 

[U-13C] Glucose £168 (CIL), £220 (Merck),  

[1-13C] Glucose £189 (CIL), £247 (Merck),  

[2-13C] Glucose £460 (CIL), £632 (Merck),  

[3-13C] Glucose £1,132 (CIL), £1,750 (Merck) 

[4-13C] Glucose £1,486 (CIL) 

[5-13C] Glucose £1,592 (CIL) 

[6-13C] Glucose £689 (CIL) 

[1,2-13C] Glucose £664 (CIL), £871 (Merck) 

[1,6-13C] Glucose £1,422 (CIL), £552 (Merck) 

[1,2,3-13C] Glucose £3,143 (CIL) 

[U-13C] Xylose £808 (CIL), -- (Merck) 

[1-13C] Xylose £598 (CIL), -- (Merck) 

[2-13C] Xylose -- (CIL) 

[3-13C] Xylose -- (CIL) 

[4-13C] Xylose -- (CIL) 

[5-13C] Xylose £1,540 (CIL) 

[6-13C] Xylose -- (CIL) 

[1,2-13C] Xylose £952 (CIL) 

 
However, the key advantages of INST-13C-MFA were demonstrated through a 
comparative 13C-MFA vs. INST-13C-MFA study of 1-13C and U-13C-glucose fed 
cultures of Corynebacterium glutamicum performed by Noack et al. (2011) 207. The 
determined absolute fluxes differed between the two approaches and, when the 
resulting data was fit to a corresponding GSMM of C. glutamicum, it was found that 
only the estimated flux distribution from the INST-13C-MFA approach resulted in 
viable biomass production (i.e., cell growth). This was believed to have resulted 
from the greater number of measurements of the INST-13C-MFA approach, with the 
concurrent increase in the accuracy and precision of the overall measurements of 
the 13C labelled isotopomers translating to the resulting estimated flux distributions 

208. This heightened level of precision could also help to test hypotheses about 
unusual metabolic network topologies of under-studied organisms with potentially 
missing or inaccurate reaction annotations, as was identified for P. 
thermoglucosidasius during development of the GSMM. The complete INST-13C-
MFA workflow featured in this research is depicted in Figure. 24. 
 
 

Table 12. Commercially available 13C positionally labelled glucose and xylose tracers. 

Tracers shown only those readily in stock from suppliers Cambridge Isotope Labs, USA 

(CIL) and Merck, UK (Merck) without further requested quotes. No price without inquiry is 

designated by --. *Shown is the lowest listed price per gram on 12/11/2021 
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Figure. 24. Schematic of the complete INST-13C-MFA flux determination workflow featured in 

this research. Minimal, defined media with 13C labelled tracers as sole carbon substrates are 

continuously fed to a chemostat culture of growing P. thermoglucosidasius cells at a fixed dilution 

rate. The 13C atoms incorporate into metabolic products generating specific mass and positional 

isotopomers. Regular sampling is then performed to capture the rate of 13C labelling over time. 

Biomass samples are hydrolysed, and the resulting amino acids are derivitized to TBDMS-

derivatives. The TBDMS-derivatised amino acids are then separated and abundances analysed using 

GC-MS. MIDs are determined for key fragments and natural isotope correction is performed to yield 

corrected MIDs. For flux analysis a reaction network for the organism must be defined. Minimization 

of the SSR between the forward simulated and experimentally determined MIDs is then performed to 

quantify the central metabolic pathways yield a metabolic flux map. These fluxes can then be 

depicted as metabolic flux maps which can then be used to describe cellular physiology and inform 

future experiments (represented by the dashed arrow).  
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4.1.3 Other examples of Geobacillus 13C-MFA derived models 
The resulting flux maps from 13C-MFA seek to describe the original fluxes and 
metabolite balances of cellular metabolism under different phenotypic states. To the 
author’s knowledge there are four separate examples of 13C-MFA isotope labelling 
experiments describing Parageobacillus or Geobacillus species, none of which 
utilised an isotopically instationary form of analysis. 

ORGANISM 
13C CARBON 
SOURCE/S 

13C-MFA 
OR INST- 
13C-MFA? 

OXYGEN 
CONDITIONS 

REFERENCE 

P. 
THERMOGL
UCOSIDASIU
S M10EXG 

0.3% D-Glucose [1-
13C] or [2-13C] 

13C-MFA Aerobic, Micro-
Aerobic and 
Anaerobic 

Tang et 
al., 
(2009)128 

P. 
THERMOGL
UCOSIDASIU
S NCIMB 
11955 

0.5% D-Glucose [U-

13C] 20:80  [U-12C] and  
0.5% D-Glucose [U-

13C] 60:40  [U-12C] 

13C-MFA Aerobic, Micro-
Aerobic and 
Anaerobic 

Dr. 
Charlotte 
Ward 
Thesis121 

G. LC300 Six parallel labelling 
experiments of 0.2% 
singly labelled D-
Xylose (i.e. [1-13C], [2-
13C], [3-13C], [4-13C] 
and [5-13C]) 

13C-MFA 
and 
‘COMPLET
E-MFA’ 
(Leighty and 
Antoniewicz, 
2013) 

Aerobic Cordova 
et al., 
(2016)127  

Six parallel labelling 
experiments of 0.32% 
singly labelled D-
Glucose (i.e. [1-13C], 
[2-13C], [3-13C], [4-13C], 
[5-13C] and [6-13C]) 

Aerobic Cordova 
et al., 
(2017)170 
 

 

This includes models representing the: glucose metabolism of P. 
thermoglucosidasius M10EXG128 under aerobic, micro-aerobic and anaerobic 
growth conditions, glucose metabolism of P. thermoglucosidasius NCIMB 11955 
grown under aerobic and anaerobic conditions121 and the glucose and xylose 
metabolism of Geobacillus LC300 grown under aerobic conditions127 170. 

4.1.3.1 P. thermoglucosidasius M10EXG 

The first example of a form of 13C-MFA applied to a Parageobacillus species was 
Tang et al. (2009)’s characterisation of P. thermoglucosidasius M10EXG128. As 
discussed in Chapter 3, M10EXG was previously determined to have only 29 unique 
ORFs which could encode metabolic enzymes M10EXG, making this species a 
relevant comparison. 
Tang et al. (2009) grew M10EXG cells in minimal growth media at 60°C with 
shaking at 200 RPM containing either [1-13C] or [2-13C] labelled glucose as a sole 
substrate. Metabolic fluxes were determined using a combination of 13C ILEs 
analysed by GC-MS and enzyme assays of activities of specific CCM enzymes. The 
13C ILEs assumed a pseudo-metabolic steady state and harvested cells during mid-

Table 13. Existing 13C-MFA studies of P. thermoglucosidaisus and Geobacillus 

species.  
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exponential growth under aerobic, micro-aerobic and anaerobic conditions. 13C-MFA 
fitting was performed using the [M-57]+ and [M-159]+ mass fragments from only 7 
amino acids (Alanine, Glycine, Leucine, Serine, Phenylalanine, Aspartate and 
Glutamate) each assumed to represent a particular carbon intermediate node in 
CCM. Estimations of the confidence intervals of the calculated fluxes was performed 
using a Monte Carlo method. 

From the resulting glucose uptake normalized flux distributions, Tang et al. (2009) 
suggested that aerobic glucose metabolism in M10EXG cells involved a mixture of 
flux through glycolysis (69) and the oxidative PPP (30 ± 2) in upper metabolism, 
with high TCA cycle activity (64 ± 3) and high flux through the anapleurotic pyruvate 
shunt (58 ± 38) and through PEP carboxylase (44 ± 31), with high error values 
indicating it was difficult to resolve the two pathways. 
Micro-aerobic glucose metabolism demonstrated a slight shift towards glycolysis 
(81) from the oxPPP (19 ± 2) in upper metabolism, but the most pronounced 
changes were seen in lower metabolism with reduced TCA cycle activity (25 ± 2), 
comparably higher use of the glyoxylate shunt (20 ± 4), continuing high flux through 
the pyruvate shunt (37 ± 12) and PEP carboxylase (24 ± 8) and the increased 
production of fermentation products: lactate (67), formate (13) and ethanol (28). 
Lastly, these trends continued to anaerobic glucose metabolism with increased flux 
through glycolysis (84 ± 2) away from the oxidative PPP (15 ± 2), a purely 
biosynthetic TCA cycle and the increase in flux to fermentation products: acetate 
(61 ± 10), lactate (89 ± 2), formate (103 ± 14) and ethanol (38 ± 7). Additonally, the 
authors also did not detect activity for the Entner-Doudoroff pathway, nor any 
transhydrogenase activity detected by assay from cells under any of the growth 
conditions.  

Additionally, the authors suggested that the, potentially renewable, ethanol 
production of the cells could be improved through deletion of their acetate and 
lactate producing capabilities; a strategy demonstrated to be successful by Cripps et 
al. (2009)89. 

A specific limitation of this study is that the isotopomer transition network is both 
derived from G. kaustophilus and the biochemical reactions of that network were set 
to unidirectional determined from thermodynamic reaction data taken from the 
reactions of mesophilic B. subtilis. While helping to prevent underdetermination of 
the system and to reduce degrees of freedom for the resulting isotopomer balance 
equations, this introduces the possibility of ignoring reversible reactions which could 
be a more accurate description of M10EXG metabolism. 
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4.1.3.2 P. thermoglucosidasius DL33, DL44 and DL66 

The most recent example of isotopically steady-state 13C-MFA applied to a 
Parageobacillus species was performed as the focus of a thesis by Dr. Charlotte 
Ward in 2014 on P. thermoglucosidasius NCIMB 11955 termed DL33, to analyse 
the metabolic differences in CCM flux between this wild-type and two mutants 
termed DL44 and DL66 when grown on glucose as a sole substrate121. The DL33 
mutant possessed a lactate dehydrogenase deletion (Δldh) while the DL66 mutant 
possessed deletions of lactate dehydrogenase and pyruvate formate-lyase, 
alongside upregulated expression of pyruvate dehydrogenase (Δldh Δpfl↑pdh). 
Ward grew cells of all strains of P. thermoglucosidasius under three different 
aeration conditions at 66°C in continuous culture mode set to a dilution rate of 0.1 h-
1 for 3 CCVCs. These aeration conditions were defined as: 0.5 VVM (22.5 mL/min) 
for fermentative growth, 1.5 VVM (67.5 mL/min) for microaerobic growth and 12 
VVM (540 mL/min) for aerobic growth. 
 
While initial attempts to resolve flux distributions using a 20:80 [U-13C] glucose to 
naturally labelled [U-12C] glucose feed ratio could only be resolved to a statistically 
acceptable 95% confidence interval with the PPP removed, repeat experiments 
using a 60:40 [1-13C] glucose to [U-13C] glucose feed ratio combined with a Monte 
Carlo simulation approach to minimize SSR, enabled Ward to achieve statistically 
acceptable metabolic flux distribution solutions for the full CCM of the three studied 
strains. In these successful instances, fitting was achieved for all strains using the 
same set of 15 different amino acid fragments and the [M-57]+ fragment of malate. 

The key focus of the 60:40 [1-13C] glucose to [U-13C] glucose feed ratio results was 
the contrasting growth under fermentative conditions. The resulting flux distributions 
for the three strains showed similar activity in upper metabolism with the majority of 
flux travelling through the glycolytic path for DL33 (196 ± 1), DL44 (196 ± 1) and 
DL66 (195 ± 80) with correspondingly low flux through the oxidative PPP for DL33 
(15 ± 2), DL44 (15 ± 3) and DL66 (16 ± 2). However, the low flux through the PPP 
for all three strains could have been a result of the reactions of the typically 
reversible non-oxidative branch of the PPP being constrained to unidirectional flow 
in the forward direction and represents one possible limitation of this network. 

Much greater variation was observed in the calculated fluxes for fermentation 
pathways, the TCA cycle and the anaplerotic reactions between the strains. 
Under fermentative conditions, the wild-type DL33 strain produced fermentation 
products acetate (29 ± 0), lactate (98 ± 0) and ethanol (32 ± 3) and a TCA cycle flux 
of 34 ± 3. Because of the deletion of the ldh gene, DL44 produced more acetate (44 
± 0) and ethanol (89 ± 2), but no lactate and with a lower TCA cycle flux of (18 ± 
1.2). With the additional deletion of the pfl gene and upregulation of expression of 
the pdh gene, DL66 produced no lactate and slightly less acetate (39 ± 0), but even 
more ethanol (123 ± 4) with a TCA cycle flux slightly higher than DL33 (21 ± 2). 

 
Notably in terms of fermentation products, Ward also detected concentrations of 
external alanine for all three P. thermoglucosidasius strain cultures grown under 
micro-aerobic and fermentative conditions. This alanine export was hypothesised to 
regenerate pools of NAD+ using an NADH dependent dehydrogenase in the 
synthesis of alanine. Under fermentative conditions this was observed as 6 ± 1 for 
DL33, 34 ± 0 for DL44 and 15 ± 4 for DL66. A further notable difference was 
observed between the strains for the single reaction representing the anaplerotic 
reactions between the two combined pools of phosphenolpyruvate-pyruvate and 
malate-oxaloacetate. In the wild-type DL33 strain flux went towards the 
phosphenolpyruvate-pyruvate pool from the TCA cycle (8 ± 2) whereas in the DL44 
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and DL66 strains this directionality reversed towards the malate-oxaloacetate pool 
(3 ± 1, 21 ± 2). However, given the simplifying of these metabolic pools and 
reactions, it is difficult to tell to what extent the change is a result of changes in flux 
of both enzymes or the changes in fluxes of single enzyme which determines the 
net direction of the singular reaction. 

Additionally, based on the genome sequencing and flux analysis results observed 
by Ward, the reaction for a reversible NADP+ dependent glyceraldehyde-3-
phosphate dehydrogenase (GAP (abc) <-> 3PG (abc) + ATP + NADPH) was 
included in this atom transition network for all conditions and excretion of alanine as 
a fermentation product was considered for the microaerobic and anaerobic maps of 
this research. 

Despite the unparalleled detail of steady-state CCM fluxes of P. 
thermoglucosidasius NCIMB 11955 and two mutants under a broad range of 
conditions, this research did have 2 specific limitations. The first of these was 
inclusion of supplementary: L-glutamate (953 μM), L-serine (428 μM) and L-
threonine (336 μM) in the growth media. 
Although Ward determined that only removal of serine impacted upon the 
production of biomass and ethanol under fermentative conditions, the inclusion of 
these amino acids may have affected the overall homeostasis of the network. 
Indeed, the network itself lacks a reaction for glutamate synthesis as it was 
assumed glutamate would be provided solely from uptake.  
Secondly, while a potential typographic error not reflected in the results, the 
communicated version of the atom transition network includes a reaction (BM_oaa7) 
which creates an additional carbon from the catabolism of isoleucine to succinate: 
“lLE (#ABCDEF) + CX (#a) -> SUC (#ABCDa) + CO2 (#A) + AcCoA (#EF)”. If 
accurate, this would affect the validity of the estimated flux values. 
 

4.1.3.3 Geobacillus spp. LC300 

The metabolic behaviours of Geobacillus spp. LC300 on xylose127 and glucose 170 
as sole substrates were identified in successive publications through a simultaneous 
parallel tracer 13C-MFA strategy termed ‘13C-MFA COMPLETE-MFA’. 

In the determination of the metabolic fluxes of Geobacillus spp. LC300 on xylose, 
Cordova and Antoniewicz (2016) grew LC300 cells in batch mode at 72°C with 11.3 
mL/min air in 5 parallel growth experiments with each experiment using 2 g/L (0.2%) 
of one singly positionally labelled xylose tracer of [1-13C], [2-13C], [3-13C], [4-13C], 
and [5-13C] as the sole substrate127. Later, as part of a broader investigation into the 
metabolic similarities and differences of thermophilic metabolisms, the 
determination of the metabolic fluxes of Geobacillus spp. LC300 was performed by 
Cordova et al., (2017)170 under the same growth conditions. However, cells were 
instead grown on 3.2 g/L (0.32%) of one singly positionally labelled glucose tracer of 
[1-13C], [2-13C], [3-13C], [4-13C], [5-13C], and [6-13C] as the sole substrate. 

In both cases, the 13C xylose and glucose ILEs assumed a pseudo-metabolic steady 
state the cells were harvested during what was determined to be mid-exponential 
growth. The metabolic flux distributions were estimated for each of the individual 
13C-labelled xylose and glucose experiments, and the combined xylose and glucose 
data sets, through a minimization of the SSR between the forward simulated and 
experimentally GC-MS measured MIDs of 24 (xylose) and 25 (glucose) different 
amino acid fragments and CO2 using an in-line gas analyser. For the combined data 
set ‘COMPLETE-MFA’ approach, all experimentally determined xylose and glucose 
tracer data sets were simultaneously fit to single separately forward simulated MID 



 

121 
 

models. Statistically acceptable SSR values (95% confidence interval) were 
obtained for all xylose and glucose data sets, under the assumption of universal 0.4 
mol. % measurement errors. 

For both the xylose and glucose flux maps of Geobacillus sp. LC300, flux values 
were normalised to the measured xylose or glucose uptake rate set to a value of 
100.  
The flux distribution of LC300 grown on xylose demonstrated high non-oxidative 
PPP flux (71 ± 0.5) from xylose entering the network as xylulose-5-phosphate, 
limited oxidative PPP flux (16 ± 0.5), high flux through glycolysis (136 ± 0.4), and 
the TCA cycle (69 ± 1), with moderate contributions from the anaplerotic reaction of 
pyruvate to oxaloacetate (40 ± 2) and very low flux through the glyoxylate (3 ± 1) 
and ED pathways. 
Alternatively, the flux distribution of LC300 grown on glucose demonstrated 
moderate oxidative PPP flux (37 ± 0) and limited non-oxidative PPP flux (17 ± 0) 
due to glucose entering the network as glucose-6-phosphate. While a similarly high 
glycolytic flux (154 ± 1) and anaplerotic flux from pyruvate to oxaloacetate (32 ± 2) 
was observed, the observed TCA cycle flux was lower (31 ± 1) due to production of 
acetate (38 ± 2). Similarly, low flux was also determined for the glyoxylate (1 ± 1) 
and ED (0 ± 0) pathways. 

Both papers make informed suggestions about LC300 metabolism which may 
translate to P. thermoglucosidasius. In the paper concerning LC300 growth on 
xylose, the authors conclude based on their 13C labelled CO2 data that carbon loss 
in upper metabolism is due to low flux (16 ± 0.5) through the oxidative PPP (which 
loses the C1 carbon of G6P as CO2) rather than the ribulose monophosphate 
RUMP pathway (which loses the same C1 carbon of F6P as formaldehyde) which 
had a negligible flux of (1 ± 1). In the paper concerning LC300 growth on glucose, 
the authors suggest that the lack of observed flux from Threonine to Glycine and 
from pyruvate and Acetyl-CoA to Isoleucine is further evidence to support the lack of 
a respective Threonine Aldolase or Citramalate Synthase, genes for which are also 
not found in the LC300 genome. Furthermore, oxidative PPP activity in both models 
suggested that the lack of a gene for 6-phosphogluconolactonase did not prevent 
flux from travelling down the oxidative PPP, with the authors citing the frequently 
held hypothesis that the reaction is spontaneous at the high growth temperatures of 
LC300. Additionally, the authors noted that there was no single superior xylose 
tracer that could resolve the entire LC300 metabolic network, but that certain tracers 
were optimal for particular metabolic pathways. For example, they found that [2-13C] 
xylose was the best tracer for resolving the fluxes of the glycolytic and pentose 
phosphate pathways whereas [5-13C] xylose was the best tracer for resolving the 
TCA cycle and lower metabolism. 

Despite the level of precision, both LC300 studies share a specific and notable 
limitation. In both cases, the 13C labelled media included 0.05 g/L of yeast extract, 
supposedly to overcome an initial sub-culturing lag phase which could presumably 
affect the pseudo-metabolic steady state assumption. Yeast extract represents a 
variable source of amino acids, nitrogen, vitamins and additional carbon substrates 
which would introduce an unknown amount of naturally labelled carbon to the 
culture. This could introduce disagreement between the forward simulated 
isotopomer network and the experimentally measured MIDs and potentially affect 
the overall validity of the otherwise accurately and reliably obtained flux 
distributions. 

4.1.4 General limitations 
While addressed to some extent in the research by Ward through a focus on 
fermentation products, a key limitation of these studies is that of the somewhat 
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arbitrarily defined growth conditions of the experiments themselves. ‘Aerobic’ was 
defined by Tang et al. (2009) simply as growth at 60°C in a shake flask at 220 RPM, 
‘micro-aerobic’ was defined as a stoppered flask with a 1:1 ait-to-liquid ratio and 
‘anaerobic’ a stoppered shake flask with a head-space of argon. Alternatively, 
aerobic was defined by Cordova et al. (2016 and 2017) for LC300 as growth at 72°C 
with 11.3 mL/min air flow. 

Under these ill-defined conditions it is difficult to distinguish to what extent the 
observed flux values are a result of actual metabolic behaviour or the growth 
conditions. Furthermore, by not accurately defining the growth conditions, it is 
unclear how similar they actually are in terms of oxygen concentration and therefore 
obfuscates the validity of comparisons between them. For example, a notable yield 
of acetate was detected in the aerobic exponential growth experiments of P. 
thermoglucosidasius M10EXG (0.64 ± 0.12) and G. sp. LC300 on glucose (0.38 ± 
0.03 mol of acetate produced per mol of glucose consumed) but not on xylose. 
While this could be explained as a by-product response to rapid growth on an 
excess of substrate, acetate is also an initial fermentation product seen for micro-
aerobic and anaerobic M10EXG (40 ± 0.5 and 61 ± 10 respectively) and micro-
aerobic and fermentative NCIMB 11955 too (59 ± 0 and 29 ± 0 respectively). 
Ultimately, the lack of aerobic distinction affects the accuracy of the overall 
observations.  
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4.2 INST-13C-MFA specific aims and objectives: 
 
With the publishing of the p-thermo GSMM, we now have a more accurate 
computational model of P. thermoglucosidasius NCIMB 11955 able to generate 
qualitative, but not quantitative, flux distribution predictions about its aerobic and 
fermentative metabolic behaviours through FBA. However, a key limitation of such 
in silico GSMMs is that their reaction-level stoichiometric matrix foundations do not 
typically account for the gene and flux regulation that control the abundances, rates 
and stabilities of catalytic enzymes for particular reactions 184. While this information 
could be encoded using various assumptions from more model organisms, to 
understand how the global changes in gene expression can control metabolic flux 
redistributions in the non-model P. thermoglucosidasius in response to changing 
conditions, there is a need to quantitatively determine these metabolic fluxes to 
experimentally validate the p-thermo GSMM 198. Notably, a commonly cited 
prerequisite to using strain engineering approaches, such as MOMA, to suggest ME 
designs is the experimental validation of any GSMM generated flux maps 44. 

Influenced by the experimental designs of the existing 13C-MFA research into 
Parageobacillus and Geobacillus species, the aim of the fluxomics research was to 
be the first to use an INST-13C-MFA strategy to describe the metabolic fluxes 
through the central carbon metabolism of P. thermoglucosidasius NCIMB 11955 at 
the level of the phenotype for target specific growth rates, degrees of aerobic and 
anaerobic behaviour and on glucose- or xylose-limited chemostat cultures. This was 
done to contribute to the greater overall goal of further validating and improving the 
p-thermo model as a tool for SysME strain design and provide metabolic insights 
that could also be used to inform future metabolic engineering strategies.  

The specific objectives of the fluxomics research can be found as follows: 
 

• Chapter 4.3 details the validation of chemostat systems to establish the 
INST-13C-MFA workflow at the University of Bath and the method 
development involved in obtaining metabolic steady-state conditions which 
accurately reflected P. thermoglucosidasius phenotypes under defined redox 
potential conditions. 
 

• Chapter 4.4.1 details how the INST-13C-MFA workflow was used to observe 
the resulting 13C labelling patterns of amino acid fragments and make 
qualitative observations about central carbon metabolism fluxes of P. 
thermoglucosidasius NCIMB 11955. 
 

• Chapter 4.4.3 details how the INST-13C-MFA workflow was used to improve 
quantitation of in vivo, central carbon metabolism fluxes of P. 
thermoglucosidasius NCIMB 11955. 
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4.3 Method development: Establishing the microbioreactor systems 
and validating the conditions for continuous growth under the 
target aerobic and anaerobic conditions 

Before the INST-13C-MFA experiments could be achieved, the workflow to perform 
accurate INST-13C-MFA experiments in the University of Bath research group 
needed to be established.  

As discussed in 4.1.1.2.4, stable continuous cultures of P. thermoglucosidasius 
operating as chemostats are one method to achieve the metabolic steady-state for 
13C-MFA experiments that avoids the need to assume a pseudo-metabolic steady 
state from a batch culture. The first stage in this research therefore was to construct 
and evaluate these bioreactor systems for their ability to support continuous cultures 
of P. thermoglucosidasius. The second of these stages was to define sets of 
parameters that would enable the continuous culture of P. thermoglucosidasius 
under different metabolic steady states. Both stages relied on the use of HPLC-RI-
UV to quantify the concentrations of sugars in sampled cell culture filtrates, 
indicating whether cellular growth is substrate limited and thus growing at a rate 
equivalent to the set dilution rate, and any fermentation or overflow metabolites 
which are indicative of aerobic or anaerobic metabolic behaviours. 

Chapter 4.3 details the overall method development process, and initial 13C labelled 
sugar continuous culture runs, which led to the final and complete INST-13C-MFA 
experiments. 

4.3.1 Defining aerobic, anaerobic, and micro-aerobic growth 
conditions through redox potential and HPLC analysis 

While the cellular growth rates and the choice of carbon substrate and concentration 
were easily quantifiable, to directly address some of the limitations around 
potentially inaccurate definitions of oxygen environments in previous research the 
definitions of the ‘aerobic’ and ‘anaerobic’ growth conditions needed to be qualified 
against the metabolic behaviours of P. thermoglucosidasius that were of most 
interest.  

Fundamentally, an aerobic culture will contain dissolved oxygen, while an anaerobic 
culture will not contain any dissolved oxygen. How aerobic or anaerobic a culture 
can be dictated by the concentration of the dissolved oxygen in the media and what 
concentration of that dissolved oxygen is available to an individual cell in the culture. 
When growing cultures using a bioreactor system, the concentration of dissolved 
oxygen is dictated by four main factors. The first is the flow rate of oxygen or air 
itself, which controls the total possible concentration of oxygen. The second of these 
is the sparger. Different models of sparger allow a tuning of the bubble size of the 
pumped oxygen which control the surface area ratio of gas to water on which 
oxygen can dissolve. The third of these is the programmable agitator. Agitators can 
have varying blade sizes, shapes, heights and spacing within a culture and total 
numbers of blades. These agitiators can also be set to different rotation speeds and 
agitation modes. Combined, this enables control over the rate of gas bubble mixing 
and hence rate of oxygen dissolving. The fourth and final factor are particular 
chemical components in the media itself which can affect the ability of oxygen to 
dissolve. 

The concentration of dissolved oxygen in a culture is typically measured by a DO2 
tension probe 209. However, due to the detection limits of the probe, the percentage 
oxygenation (pO2) measurements may only indicate a relative concentration of 
dissolved oxygen and thus can fail to translate to a description of the metabolic 
behaviour of a single cell in a culture of cells. This is particularly relevant for the low 
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oxygen concentration environments that are of importance to potentially 
understanding P. thermoglucosidasius metabolism under truly anoxic conditions.  

A potentially better descriptor of an individual cell’s metabolic behaviours under 
these low oxygen conditions can be the net ORP of the extracellular culture, 
measured by an ORP electrode in millivolts (mV). While separated from the 
intracellular redox state of a cell, the extracellular redox potential does correlate to 
metabolic activity. For example, during respiration cells producing electron-donating 
NADH from both intracellular anabolic and catabolic processes can consume 
dissolved oxygen in the media to act as a terminal electron acceptor. As a result, 
the measured extracellular ORP of the media is an inter-dependent relationship 
between the concentration of dissolved oxygen and the intracellular metabolic 
activity of the overall cell population 210. This will ultimately stabilise to a fixed ORP 
value under chemostat conditions. High overall metabolic activity and/or low 
dissolved oxygen concentrations will therefore result in a low ORP value, whereas a 
high dissolved oxygen concentration and/or low overall metabolic activity will result 
in a more positive ORP value. 

In terms of defining ‘anaerobic’ growth of P. thermoglucosidasius, the metabolic 
behaviour of interest was the production and secretion of the fermentation 
metabolite ethanol, produced by alcohol dehydrogenase from Acetyl-CoA, even if 
this meant supplying small amount of oxygen to the media. This had been 
determined previously to start being detectable in P. thermoglucosidasius cultures 
at a redox potential of ~ -260 to -280 mV (Jinghui Liang, 2021 pers comm.). ‘Micro-
aerobic’ growth was defined as the metabolic behaviour of P. thermoglucosidasius 
whereby it produces and exports the industrially relevant overflow metabolite of 
lactic acid, detectable in cultures at a redox potential of ~ -200 mV. 

Under aerobic conditions, it is assumed the only growth-limiting factor in a 
chemostat is the carbon substrate concentration in the media. Therefore, if use of 
HPLC analysis of the cell culture detects that the concentration of the carbon 
substrate in the cell culture filtrate is zero, it can be assumed that the growth rate of 
the organism in the culture is equal to the set dilution rate of the media. HPLC 
detection of overflow metabolites or typical fermentation products in the CCF 
therefore suggests that the cells are also limited in the amount of oxygen they can 
take up. Thus, ‘aerobic’ growth of P. thermoglucosidasius was defined as a 
metabolic behaviour which does not produce detectable concentration of overflow 
carbon metabolites, such as pyruvate or acetate, which could be indicative of 
suboptimal throughput of the citric acid cycle in several common microbial chassis 
211. 

In order to achieve metabolic steady-states for these different aeration conditions, 
the choice of growth vessel for the INST-13C-MFA experiments was small volume 
CSTRs. These bioreactors can support comparatively higher cell densities than 
shake-flasks, due to additional pH and dissolved oxygen tension control, while 
critically also minimizing the volume of media and hence use of costly 13C-labelled 
sugar required to achieve isotopic steady state 212. 

4.3.2 Initial Vessel Pilots: MKI vs MKII Micro-Bioreactor 
construction and P. thermoglucosidasius pilot growth 
experiments Pilot screening experiments 

The earliest pilot screening experiments performed sought to broadly evaluate the 
two custom CSTRs, the 40 mL working volume ‘MKI’ and the 90 mL working volume 
‘MKII’, which were assembled to function as chemostats from available 
components. The detailed description and general operation of these bioreactor 
systems is provided in 2.1.2.1 



 

126 
 

The MKI and MKII systems were evaluated for their abilities to achieve the target 
aerobic and micro-aerobic P. thermoglucosidasius growth conditions through the 
monitoring of the redox potential of cultures and quantification CCF metabolite and 
glucose concentrations by HPLC.  
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4.3.2.1 MKI 

The 40 mL working volume MKI microbioreactor system was the first to be 
assembled (Figure. 25B) and evaluated. P. thermoglucosidasius NCIMB 11955 cells 
were grown on 1% glucose ASM, at 60°C, pH 7 and with a constant 3.33 VVM air 
flow rate. The magnetic flea was set to a maximum stable arbitrary rotation rate of 
‘8.0’ on the magnetic stirrer for two separate experiments fed at media dilution rates 
of 0.04 h-1 and 0.06 h-1. Each culture was sampled after 3 CCVCs, which was 
assumed to be approaching or equal to metabolic steady state according to Dr. 
Ward121, and the compound concentrations in the CCFs were analysed by HPLC-
RID-UVD (Figure. 25A). The near absence of glucose detected in CCFs of both 
experiments suggests that the cells were growing under carbon-limited chemostat 
conditions and thus it can be assumed that the respective media dilution rates were 
equivalent to the cell growth rates. 

In the CCF samples, HPLC-UVD at 214nm suggested the presence of 0.52 g/L 
ethanol, 0.35 g/L and 1.66 g/L lactic acid and 1.19 g/L and 1.89 g/L acetate in the 
respective 0.04 h-1 and 0.06 h-1 dilution rate growth experiments (Figure 25A). 
Furthermore, the culture redox potential values for the experiments were read to 
have achieved -237 mV at a media dilution rate of 0.04 h-1 and -226 mV at a dilution 
rate of 0.06 h-1 (Table 14). Combined, these values suggested that the MKI system 
could be effective for future micro-aerobic growth experiments.   

Dilution rate (h
-1

) 0.04 0.06 
O.D.600 2.52 2.91 

Redox Potential 

(mV) 
-237 -226 

 

Table 14: Accompanying O.D600 and redox potential 

readings for MKI P. thermoglucosidasius chemostat 

growth experiments at 0.04h-1 and 0.06h-1 media 

dilution rates. 

 

Figure 25: MKI microbioreactor P. thermoglucosidasius chemostat growth 

condition evaluation. A) HPLC-RI-UVD analysed products at 0.04 h-1 (blue) and 0.06 h-1 

(orange) media dilution rates. n = 1 biological and technical replicate. B) P. 

thermoglucosidasius cells growing as a chemostat culture in the MKI microbioreactor.  
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4.3.2.2 MKII  

As the maximum stirring speed could not achieve aerobic growth conditions in the 
MKI reactor could not be achieved, the MKII 90 mL working volume reactor was 
constructed which incorporated a digital programmable rotor (Figure. 26B).  

P. thermoglucosidasius NCIMB 11955 cells were grown at 60°C, pH 7, 1 VVM air on 
1% glucose ASM and at a dilution rate of 0.1 h-1. In this pilot screening experiment, 
the continuous cultures of P. thermoglucosidasius had the agitator speed for the 
programmed rotor varied from 250-650 RPM, allowing one cell culture volume 
change (10 hours) before OD600 measurements and cell culture samples were taken 
for HPLC analysis. At this point the agitator RPM was changed to the next in 
sequence.  

Over the 40-hour experiment, the OD600 of the culture rose from 1.86 at an agitator 
speed of 250 RPM to 3.93 at an agitator speed of 650 RPM while the redox 
potential of the culture increased from -211 mV at 250 RPM to -189 mV at 650 RPM 
(Table 15).  

 

 

 

 

 

 

Concurrently, despite an initial increase in lactate from 4.39 g/L to 5.57 g/L between 
agitator speeds of 250 and 350 RPM, the concentration of lactate in the CCFs then 
dropped from 5.57 g/L at 350 rotor RPM to below the limit of detection at an agitator 
speed of 650 RPM (Figure 26A).   

Agitator RPM 250 350 450 550 650 

O.D.600 1.86 1.89 2.19 3.34 3.93 

Redox Potential (mV) -211 -208 -194 -200 -186 

Figure 26. MKII microbioreactor P. thermoglucosidasius chemostat growth condition 

evaluation. (A) HPLC-RI-UVD analysed CCF products at 250-650 rotor RPM featuring Lactate 

(yellow), Glucose (green), Acetate (blue) and Pyruvate (purple). n = 1 biological and technical 

replicate. (B) P. thermoglucosidasius cells growing as a chemostat culture in the MKII 

microbioreactor.   
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Table 15. Accompanying O.D600 and redox potential readings for MKII 

P. thermoglucosidasius chemostat growth experiments grown at 

agitator RPM values of 250-650. 
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Discussion 

The MKI pilot experiments demonstrated that the CSTR system had promise as a 
basis for micro-aerobic and anaerobic experiments through achieving measured 
redox potential values of -237 mV and ethanol concentrations of 0.52 g/L. However, 
the observation of apparently ethanologenic conditions were at a high air flow rate 
of 3.33 VVM, suggested that continuous aerobic growth conditions would not be 
feasible in the MKI system, which then prompted evaluation of the MKII system. 
Indeed, attempts to increase magnetic stirrer bar RPM to enhance mass transfer of 
oxygen to the media hit a limit. Beyond a value of 8.2 on the analogue dial of the 
magnetic stirrer plate, the stir bar would become erratic, inconsistent, and prone to 
failure. This was further exacerbated by the ring-type sparger used, which restricted 
available stirring space on the base of the vessel. 

The MKI was considered for anaerobic growth experiments, but the stirring 
controlled by magnetic flea was considered too unreliable. To develop the MKI for 
more reliable anaerobic experiments, a ‘MKIII’ top-plate design combining the fully 
seal-able, bevel/concave with an additional port for a programmable agitator as in 
the MKII was designed. Designs were discussed with the manufacturer of the MKI 
and MKII. However, due to costs, lead time and then the collapse of the company, 
this was disregarded as an anaerobic growth strategy. Future fluxomics 
experiments in general should consider the design of a CSTR vessel able to run in 
continuous mode and use the ≤45 mL working volume of the MKI, to minimize the 
costs associated with the heavy isotope tracers, but with a form of programmable 
agitation alongside temperature, pH and aeration control. Further reliability of the 
results obtained could also be improved if such as a system was able to operate 
multiple growth vessels simultaneously.  
As a result, and due to time constraints, the anaerobic growth experiments were 
instead eventually performed in the 350 mL minimum working volume Biostat B 
bioreactor system, which had a proven internal record of achieving anaerobic 
ethanologenic cultures of P. thermoglucosidasius. 

For the MKII, the combination of the P. thermoglucosidasius culture redox potential 
value of -186 mV and an O.D.600 value of 3.93, under a HPLC-RID suggested 
glucose limitation on 1% glucose ASM, suggested that the parameters of 1 VVM air 
flow rate, an agitator speed of 650 RPM, 60°C and pH 7 could support 0.1 h-1 
carbon-limited micro-aerobic growth 13C-MFA experiments and could be iterated 
upon to generate aerobic growth conditions. In retrospect it is likely that the 
formative vessel pilot experiments focused on defining growth conditions did not 
accurately represent P. thermoglucosidasius cells at a metabolic steady state, or 
potentially under their target aeration conditions, at any agitator RPM as only a 
single culture volume change occurred between each RPM condition. However, 
based on being able to achieve lactic acid free microaerobic conditions with reliable 
mixing due to the programmable rotor, the MKII was selected for the development of 
aerobic 13C MFA experiments at the University of Bath. Future work could 
investigate whether different agitator stirring speeds could be used as an alternate 
form of redox control besides air flow rate. 

4.3.3 The development of aerobic and anaerobic growth 
conditions and initial glucose 13C-MFA isotope labelling 
experiments (ILEs)   

With CSTRs for stable continuous cultures of P. thermoglucosidasius established at 
the University of Bath, attention then turned to the 13C-MFA workflow itself. As there 
were no remaining researchers with experience of MFA experiments, attention 
turned to the international partner of the project, Dr. Shyam Masakapalli. A former 
research group member with 13C-MFA experience, he suggested some initial 
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research on this project be performed in his research group at IIT Mandi, which had 
a fully established 13C-MFA workflow. This workflow formed the basis of the INST-
13C-MFA methodology detailed in 2.2.1.  

Notably, in order to better achieve aerobic conditions and reduce experimental 
costs, the concentration of 13C ᴰ-glucose in the ASM was reduced from 1% w/v to 
0.5% and the VVM was increased to 3. Combined these factors increase the 
concentration of dissolved oxygen available to an individual cell, both by increasing 
the concentration of flowing oxygen itself through agitation-driven gas-liquid mixing, 
but also by limiting the potential size of the cell population. At IIT Mandi, rather than 
use redox potential, the concentration of oxygen was measured by a DO2 probe. 

4.3.3.1 Initial aerobic P. thermoglucosidasisus NCIMB 11955 INST-13C-
MFA ILE  

The first glucose-based aerobic INST-13C-MFA ILE was performed at IIT Mandi to 
experience the full 13C-MFA workflow. At IIT Mandi, a Applikon® Biotechnology 
MiniBio2 250 bioreactor system modified to run in continuous culture (detailed in 
2.1.2.3), was used to grow P. thermoglucosidasius NCIMB 11955 cells on 0.5% ᴰ-
glucose (60% 1-13C, 40% U-13C) ASM, at 60°C, pH 7, a constant 3 VVM air flow 
rate, an agitator speed of 1000 RPM, and a media dilution rate of 0.075 h-1.  

Over the measured 65 hours of the time-course experiment, the OD600 and 
dissolved oxygen values remained consistent with respective mean values of 2.78 
(± 0.16) and 1.35 % (± 0.21%). 

12C/13C 
Glucose 

12C 13C 

Time 
(Hours) 

-
16.1 

0 0.
5 

1.5 2.5 4.5 6.5 10.5 22.5 26.5 30.5 34.5 45.5 46.5 48.6 

OD600 2.84 2.
91 

2.
98 

2.9
5 

2.3
8 

2.36 2.73 2.78 2.68 2.84 2.53 2.64 3.22 2.66 2.67 

DO2 (%) 1.3 1.
4 

1.
4 

1.6 1.2 1.2 1.1 1.8 1.1 1.2 1.2 1.4 1.6 1.4 1.2 

Table 16: OD600 values and DO2 percentages for the initial 65-hour GA0.075 glucose P. 

thermoglucosidasius INST-13C-MFA experiment identifying the time point the switch was made to 13C 

labelled ASM. 
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Notably however, HPLC-RID analysis of the CCFs identified a decreasing presence 
of residual glucose, starting at 3.27 g/L (±0.09, n = 3) at the introductory point of the 
13C-labelled media and ending at 1.57 g/L (± 0.28, n = 3) by the final time point 
(Figure. 27). Concurrently, HPLC-DAD analysis of the CCFs identified a low but 
consistent, average concentration of acetate across the 13C time points of the 
experiment of 0.30 g/L (± 0.15, n = 13), as well as a gradual increase in the 
concentration of pyruvate between hours 34.5 to 48.6 of 0.09 g/L (± 0.05, n = 3) to 
0.14 g/L (± 0.02, n = 3).  

Discussion 
Although the OD600 values suggest a relatively stable cell population, the presence 
of excess residual glucose, low dissolved oxygen concentration readings and 
detectable fermentation productions of P. thermoglucosidasius suggests that the 
cells were not carbon-limited and may have been under oxygen limited conditions. 
This therefore suggested that the metabolic behaviours pf the cells may not 
accurately reflect a fully aerobic metabolism and would need future repetition. 
However, in addition to experience of a downstream 13C-MFA workflow, this 
experiment suggested future attempts to develop aerobic P. thermoglucosidasius 
culturing conditions should reduce the working sugar concentration of the ASM to 
0.5% w/v and increase the air flow to the cultures. 
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Figure 27: HPLC-RID-DAD analysed CCF products for the initial P. thermoglucosidasius 

GA0.075 INST-13C-MFA experiment. Glucose (light blue), Lactate (orange), Ethanol (grey), 

Pyruvate (yellow), Formate (dark blue) and Acetate (green). Error is SD for technical triplicate.  
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4.3.3.2 Initial P. thermoglucosidasisus NCIMB 11955 INST-13C-MFA 
GA0.15 GA0.225 ILEs 

Upon returning to the MKII system at the University of Bath, the practice of 0.5% w/v 
glucose ASM was implemented, and focus was placed on increasing air flow rate to 
the culture. A new external air flow meter was installed to the Braun unit enabling 
measurable air flow rates up to 150 mL/min. Employing a 120 mL/min or 1.3̇ ̇VVM 
air flow rate, P. thermoglucosidasius cells were cultured in two separate 
experiments at 60°C and a pH 7 on 0.5% w/v ᴰ-glucose (60% 1-13C, 40% U-13C) 
ASM with an agitator RPM of 650. In one experiment, the dilution rate was 0.15 h-1 
and in the second it was 0.225 h-1. 

GA0.15 – Glucose ASM Aerobic 0.15 h-1 dilution rate ILE 
For the first aerobic 13C glucose ASM, 0.15 h-1 dilution rate ILE (GA0.15), the redox 
potential values of the culture varied between -44 mV and -62 mV, with an average 
value of -51 mV (± 3.90 mV). The OD600 values of the culture declined from 4.64 
across the duration of the 13C portion of the continuous culture experiment to 3.01, 
representing a 35.13% decrease. (Table 17).  

 

HPLC-RI analysis of all CCF samples determined near zero average residual 
glucose levels of 0.08 g/L (± 0.03, n = 21) while HPLC-RI-UV suggested no 
detectable concentrations of fermentation products in any chromatogram (Figure 
28). 
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Table 17: OD600, DCW and redox values (mV) for the initial GA0.15 aerobic glucose P. 

thermoglucosidasius INST-13C-MFA experiment identifying the time point the switch was made 

to 13C labelled ASM. 

Figure 28: HPLC-RID-UVD analysed CCF products for the initial P. thermoglucosidasius 

GA0.15 INST-13C-MFA experiment. Glucose (light blue), Lactate (orange), Ethanol (grey), Pyruvate 

(yellow), Formate (dark blue) and Acetate (green). Error is SD for technical triplicate.  
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GA0.225 – Glucose ASM Aerobic 0.225 h-1 dilution rate ILE 
For the first 13C ASM, 0.225 h-1 dilution rate experiment, this decline in OD600 values 
of the culture was even more prominent. The OD600 values declined from a stable 
average of 5.12 (± 0.01) for the first 5 samples of the 13C portion of the continuous 
culture experiment to 1.58, representing a 69.14% decrease (Table 18). The redox 
potential values of the culture generally increased to reflect this falling cell 
population, increasing from -58 mV to -34 mV before declining again to -59 mV by 
the end of the experiment.  

 

HPLC-UV analysis of the CCF samples of the 0.225 h-1 dilution rate experiment 
detected the presence of a sharp spike in acetate in 13C samples 8 (0.37 g/L (± 
0.45)) and 9 (1.72 g/L (± 0.30)) but was not able to detect the presence of any other 
potential fermentation products in in any other chromatogram (Figure. 29). HPLC-RI 
analysis of the CCFs demonstrated that, at the same time as the detected spike in 
acetate, concentrations of glucose began a continual increase from 0.03 g/L (± 
0.06) to 3.24 g/L (± 0.22). 

 

Discussion 
Combined, these experiments suggested that the process variables of a 0.5% w/v 
glucose concentration and an air flow rate of 120 mL/min could result in continuous 
cultures of P. thermoglucosidasius displaying aerobic metabolic behaviours at near 
carbon-limitation. However, the respective 35.13% and 69.14% declines in 
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Figure 29: HPLC-RID-UVD analysed CCF products for the initial P. thermoglucosidasius 

GA0.225 INST-13C-MFA experiment. Glucose (light blue), Lactate (orange), Ethanol (grey), 

Pyruvate (yellow), Formate (dark blue) and Acetate (green). Error is SD for technical triplicate.  

Table 18: OD600, DCW and redox values (mV) for the initial GA0.225 aerobic glucose P. 

thermoglucosidasius INST-13C-MFA experiment identifying the time point the switch was 

made to 13C-labelled ASM. 
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observed cell concentration across the 0.15 h-1 and 0.225 h-1 experiments 
suggested that these populations were far from the metabolically steady states as is 
assumed by 13C-MFA. As a result, these experiments did not proceed further in the 
13C MFA workflow. 

There were three potential factors which could provide explanations for this 
repeated decline in observed concentration after introduction of the 13C glucose 
ASM. The first of these explanations was that the sugar itself was the issue. Due to 
cost constraints, the initially available 13C tracers had been in storage for several 
years prior to the start of this research. If the drop in cell density was as a result of 
the concentration and purity of 13C tracer deviating, this could seriously affect any 
attempt at mapping resulting 13C labelling data to forward simulated MIDs based on 
defined tracer enrichments and purities. However, a simultaneous 24 well plate 
batch growth experiment comparing P. thermoglucosidasius cells grown in 6x 1 mL 
0.5% 12C glucose ASM versus 6x 1 mL 0.5% 13C glucose ASM suggested a 
negligible difference in growth rate or final OD600 readings, indicating this was not an 
issue. 

The second factor could have been the response of the P. 
thermoglucosidasius cells themselves to the 13C labelled substrate. Although a key 
assumption of 13C-MFA is a lack of any kinetic isotope effects (KIE)s on the overall 
network as a result of the tracer, distribution of carbon-13 through biochemical 
reactions known to display KIEs in vitro could theoretically depress overall cell 
growth rate and hence the cumulative observed OD600 values in vivo. As a result, if 
this were the case it would affect the validity of any biological insights derived from 
the INST-13C-MFA ILEs. However, despite a theoretical basis, particular 
investigations into KIEs in metabolic models by Millard, Portais and Mendes (2015) 
213 and Sandberg et al. (2016) 213 of E. coli cells did not support this hypothesis.  

Millard, Portais and Mendes (2015) developed a framework for integrating possible 
KIEs into isotopomer models of E. coli and evaluated the KIE impact that different 
positionally 13C labelled glucose tracers would have on CCM reaction fluxes, 13C-
labelling patterns and metabolite pool concentrations. Notably, under U-13C-glucose 
feeding the difference between simulations with and without KIEs in the individual 
CCM reactions: of G6PD, 6PD, ribulose-5-phosphate epimerase (Ru5PE), 
Transaldolase (TA), and transketolases TK1 and TK2 would be limited to a 
maximum relative flux change of approximately -2%. Despite these individual flux 
differences, for a system-wide analysis the addition of KIEs only contributed an 
additional error of approximately <0.001% for most metabolites. The highest error 
reported was for downstream isotopologue labelling patterns derived from the 
metabolite node of pyruvate. However, this was still a percentage of only 0.0047%, 
which was lower than the precision and accuracy which could be obtained by MS, 
which was stated to be 1%. Overall, Millard, Portais and Mendes (2015) 
demonstrated that the impact of KIEs was significantly lower at the systems level of 
a metabolic model than anticipated from measurements of individual enzymes and 
hypothesised that this global robustness was down to the bidirectionality of many 
reactions in the global network.  

Alternatively, Sandberg et al. (2016) performed an Adaptive Laboratory Evolution 
(ALE) experiment comparing of E. coli cells serially cultured for 40 days on 6x M9 
minimal media cultures featuring U-13C-glucose and naturally labelled (12C) glucose. 
Phenotypic characterisation of the cells across this duration suggested that, 
although there appeared to be a minor benefit to growth rate growing on 12C vs 13C 
glucose (3 ± 2%), this was not statistically significant and also did not impact the 
genetic modifications observed in both cell populations across the 40-day ALE. 
Additionally, the authors also observed that neither the wild-type nor 13C evolved 
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cells demonstrated any preference for either naturally labelled or 13C-labelled 
glucose, suggesting a lack of any selection pressure for or against a heavy isotope 
substrate. Overall, Sandberg et al. (2016) also concluded that there were no 
significant impacts of growing E. coli on U-13C-glucose compared to naturally 
labelled glucose. Ultimately, this literature suggested that any KIEs were not likely to 
have a notable impact in whole cell systems and was thus unlikely to be the cause 
of such a substantial observed drop in O.D.600 in for P. thermoglucosidasius in these 
ILE results.  

The third factor was a more general issue of culture foaming observed in these two 
experiments, and previous aerobic experiments, which was considered the key 
issue. Foaming during fermentations is the production of gaseous bubbles which 
occur as because of mechanical agitation combined with the introduction of gas. 
The liquid lamellas of these bubbles bond with others creating the foam, which is 
further stabilised as a result of cell proteins, typically from cell lysis214. Typically, 
culture foaming in bioreactor systems is managed either through integrated 
mechanical foam breakers or through incorporated sensors which instruct the 
bioreactor control unit to dispense a form of antifoam agent from a reservoir when 
an electrical circuit is created by rising foam touching the sensor. The MKI and MKII 
top plates both lacked an available port for an additional sensor and the Braun 
control unit lacked the foam sensor itself. Additionally, in comparison to the design 
of many CSTR setups which draw effluent from the base of the vessel, the design of 
the MKI and MKII had an efflux port on the wall of the vessel, essentially dictating 
the maximum working volume Figure. 30. Excessive foaming in these systems can 
therefore resulting in only foam being removed from the reactor instead of culture, 
leading to a more fed-batch type of growth model. This subsequently impacts the 
accuracy of any 13C-MFA experiment assuming steady-state as well as the 
calculation of the specific substrate uptake rate under the set conditions. Ultimately, 
if this behaviour occurred during the 12C portion of the ILE, but dissipated for the 
13C portion of the experiment, the change in growth modes from quasi fed-batch 
back to continuous would explain the substantial observed drop in OD600.  

As a result, two changes were made to the composition of the ASM for further 
experiments. The first of these was the inclusion of 0.0125% Antifoam 204 in the 
ASM itself. While this prevented the formation of foam, it was important to keep the 

Figure 30: ‘MKII’ bioreactor system featuring 

excessive foaming. Due to the wall mounted efflux 

port, excessive foaming could result in only foam being 

removed from the culture, leading to a more fed-batch 

style of growth. 
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added concentration to a minimum as high concentrations of antifoam can influence 
the oxygen transfer rate of the culture system 214. 

Secondly, to further reduce foaming as the result of high cell concentrations and to 
reduce the overall cost of experiments, the concentration of 13C substrate used for 
all experiments was reduced from 0.5% w/v to 0.3% w/v. Now that culture foaming 
was controlled, to help counteract any potential impact of the 0.0125% antifoam in 
the ASM on the concentrations of dissolved oxygen, the air flow rate for subsequent 
experiments was also increased to 140 mL/min or 1.5̇ VVM.  

Overall, through these initial pilot experiments, a set of operating conditions was 
established for meeting the key assessment criteria of carbon-limited continuous 
cultures of P. thermoglucosidasius NCIMB 11955. Through the reduction of sugar 
concentrations from 1 to 0.5 to 0.3 % w/v, increase of air flow rate to 1.5̇ VVM and 
the inclusion of 0.0125% Antifoam 204 to the media, reliable aerobic metabolic 
behaviours of P. thermoglucosidasius for 13C-MFA could be achieved. These final 
ASM and operating conditions were maintained throughout all the future aerobic 
glucose and xylose INST-13C-MFA experiments. 
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4.3.3.3 Anaerobic growth development by HPLC analysis of cell culture 
filtrates 

Anaerobic growth experiments of P. thermoglucosidasius were instead performed in 
the 350 mL working volume Biostat B bioreactor system, which had an internal 
record of achieving anaerobic ethanologenic cultures of P. thermoglucosidasius 
when grown on glucose and xylose ASM. A detailed description of this modified 
system, including the outlet line fixed to the top of the condenser, and its operation 
are present in materials and methods 2.1.2.3. The greatest constraints that 
impacted the glucose anaerobic method development were the minimum working 
limits of the Biostat B bioreactor system itself. In addition to a minimum working 
volume of 350 mL, it had a minimum active air flow rate of 0.05 L/min or no air flow 
rate. Unlike the MKI and MKII system, the Biostat B bioreactor system also had an 
independent nitrogen gas line, with flow rates of 0.05 L/min, to aid in driving air from 
the culture and headspace. With these minimum limits and a goal of the most 
anoxic culture able to sustain P. thermoglucosidasius growth, focus was given to 
rotor RPM to control the concentration of dissolved oxygen in the culture. 

The variation of agitator speed and the impact on cell populations and culture 
redox potential. 
A series of growth pilots were performed in the Biostat B bioreactor system which 
aimed to establish the impact of reducing speed of the programmable agitator on 
the growth and growth conditions of P. thermoglucosidasius cells under oxygen-
limited continuous culture. Agitator speeds of 200, 100 and 50 RPM were evaluated 
for their ability to induce production of fermentation products and/or ethanologenic 
growth conditions.  

Results 

The O.D.600 and redox potential values decreased across the three continuous 
culture experiments (Table 19). Looking at the last 4 samples of each experiment 
(most likely to represent metabolic steady state), the average OD600 values of 200, 
100 and 50 RPM experiments were: 0.81 (± 0.04, n = 4), 0.58 (± 0.03, n = 4) and 
0.58 (± 0.02, n = 4) respectively. Similarly, as rotor RPM decreased, the average 
redox potential values of the last 4 samples of each experiment also decreased, 
from -188 mV (± 12.51, n = 4) for the 200 RPM experiment, to -210 mV (± 3.30, n = 
4) for the 100 RPM experiment to -252 mV (± 3.50, n = 4) for the 50 RPM 
experiment. 
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Sample 

200 
RPM 
12C 1 

200 
RPM 
12C 2 

200 
RPM 
12C 3 

200 
RPM 
12C 4 

200 
RPM 
12C 5 

200 
RPM 
12C 6 

200 RPM 
12C 7 

200 
RPM 
12C 8 

200 
RPM 
12C 9 

200 
RPM 

12C 10 

Time 
(hours of 

run) 
0 3.333 6.667 10 13.667 24 25.667 29 30.667 49.167 

Cell 
Culture 
volume 

Changes 

0 0.25 0.5 0.75 1.025 1.8 1.925 2.175 2.3 3.688 

OD.600 0.54 0.65 0.71 0.69 0.75 0.88 0.80 0.80 0.88 0.77 

DCW (g/L) 0.231 0.276 0.301 0.292 0.320 0.373 0.338 0.338 0.373 0.325 

Table 19: OD600, DCW and redox values (mV) for for the P. thermoglucosidasius variation of 

agitator RPM experiments at 200, 100, 50 RPM. 
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Redox 
(mV) 

-210 -218 -207 -217 -224 -194 -190 -197 -198 -167 

1
0

0
 R

P
M

 
Sample 

100 
RPM 
12C 1 

100 
RPM 
12C 2 

100RPM 
12C 3 

100 
RPM 
12C 4 

100 
RPM 
12C 5 

100 
RPM 
12C 6 

100 RPM 
12C 7 

   
Time 

(hours) 
0 4.333 7.667 24.667 30.833 32.5 49.5 

   
Cell 

Culture 
volume 

Changes 

0 0.325 0.575 1.85 2.313 2.438 3.713 

   
OD.600 0.71 0.67 0.702 0.544 0.615 0.597 0.564    

DCW g/L 0.301 0.284 0.298 0.231 0.261 0.253 0.239    
Redox 

(miliVolts) 
-194 -263 -240 -212 -212 -210 -204 
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Sample 

50 
RPM 
12C 1 

50 
RPM 
12C 2 

50 RPM 
12C 3 

50 
RPM 
12C 4 

50 
RPM 
12C 5 

50 
RPM 
12C 6 

50 RPM 
12C 7 

   
Time 

(hours) 
0 3.167 6.167 24.333 27.333 30.333 48 

   
Cell 

Culture 
volume 

Changes 

0 0.238 0.463 1.825 2.05 2.275 3.6 

   
OD.600 0.81 0.961 0.787 0.614 0.568 0.562 0.585    

DCW g/L 0.343 0.407 0.334 0.260 0.241 0.238 0.248    
Redox 

(miliVolts) 
32 -268 -265 -255 -253 -254 -246 

   

 

HPLC-RI-UV analysis was again used to evaluate the chemical concentrations 
present in the CCFs of samples over the course of the three continuous culture 
experiments. HPLC-RI analysis of all sample CCFs demonstrated differing changes 
in concentration of glucose across the experiment (Figure 31), depending on what 
point in the growth cycle continuous culture was initiated. Once again looking at the 
last 4 time points of each experiment, the CCFs of the last 4 samples of the 200 PM 
experiment demonstrated an average glucose concentration of 0.06 g/L (± 0.03, n = 
4), while the last 4 samples of the 100 PM experimented demonstrated a near zero 
average concentration of glucose of 0.01 g/L (± 0.03, n = 4). However, for the 50 
RPM continuous culture experiment the final 4 sample CCFs demonstrated an 
average glucose concentration of 0.13 g/L (± 0.02, n = 4) and did not reach a steady 
state. HPLC-RI analysis of all sample CCFs did not detect the presence of ethanol 
in either the 200 or 100 RPM experiments. Notably however, the presence of 0.07 
g/L (± 1.27) ethanol was observed in the final CCF of the 50 RPM experiment. 

HPLC-UV analysis of the CCFs of each experiment demonstrated the presence of 
the P. thermoglucosidasius fermentation metabolites of: lactate, formate and 
acetate which varied with respect to the agitator RPM (Figure 31). No pyruvate was 
detected in any sample’s CCFs implying that fermentation pathways were handling 
any potential accumulation of pyruvate. Looking at the final 4 time points of each 
experiment, the average concentrations of lactate decrease as the rotor RPM 
decreases, averaging at 1.30 g/L (± 0.21, n = 4) for the 200 RPM experiment, 0.70 
g/L (± 0.11, n = 4) for the 100 RPM experiment and below the limit of detection for 
the 50 RPM experiment. The average concentrations of formate and acetate in the 
final 4 time points of each experiment show an inverse correlation to that of lactate, 
both increasing in concentration as the rotor RPM decreases. For formate, these 
average concentrations were 0.13 g/L (± 0.04, n = 4) for the 200 RPM experiment 
0.50 g/L (± 0.03, n = 4) for the 100 RPM experiment and an average concentration 
of at 0.72 g/L (± 0.16, n = 4) for the 50 RPM experiment. For acetate, no 
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concentration could be detected in the CCFs of the 200 PM experiment, an average 
of 0.54 g/L (± 0.16, n = 4) was detected for the 100 RPM experiment and an 
average concentration of 1.04 g/L (± 0.12, n = 4) was detected for the 50 RPM 
experiment. 
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Figure 31: HPLC-RID-UVD analysed CCF products for the P. thermoglucosidasius variation of 

agitator RPM experiment. A) 200 RPM B) 100 RPM C) 50 RPM. Glucose (light blue), Lactate 

(orange), Ethanol (grey), Pyruvate (yellow), Formate (dark blue) and Acetate (green). Error is SD for 

technical triplicate.  
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Discussion 

Despite the observations of 0.13 g/L (± 0.02, n = 4) glucose in the 50 RPM agitator 
speed experiment which did not reach a steady state, these pilot experiment results 
do suggest that the chosen operating conditions could sustain near carbon limited 
growth of P. thermoglucosidasius cells in continuous culture under low oxygen 
concentration conditions. As a result of being able to observe a small amount of 
ethanol, an agitator speed of 50 RPM was chosen for future ILE runs. While the 
agitator could be programmed to stop, to ensure culture mixing was continued to 
provide adequate suspension and dispersion of cells as well as the prevention of 
biofilm formation.  

A reduction in agitator speed RPM reducing the rate of gas-liquid mixing of the 
culture and hence the maximum potential dissolved oxygen concentration. In turn, 
this reduces the redox potential of the culture and hence the metabolic behaviours 
of P. thermoglucosidasius cells. Thus, as these fermentation products are a result of 
the oxygen limitation of the culture, it is unsurprising that there is a relationship 
between the average concentrations of these fermentation products and the rotor 
RPM which ultimately affects the concentration of oxygen available to an individual 
cell. However, these trends do help to exemplify the metabolic transitions of P. 
thermoglucosidasius from predominant production of lactate by lactate 
dehydrogenase, to acetate and formate by PFL and even down to early ethanol 
production by alcohol dehydrogenase. Indeed, these results suggest that agitator 
RPM could be an important variable for precisely tuning the redox potential of a 
continuous culture for the study of the metabolic behaviours of P. 
thermoglucosidasius at precise redox potential values, such as the production of 
ethanol and could be used in future work to investigate the suggested observed 
metabolic switch from lactate to formate and acetate production. 

Supplementation with FeCl3 

While the agitator RPM pilots represented progress towards establishing operating 
conditions ethanologenic anaerobic conditions, the HPLC-RI detected concentration 
of 0.07 g/L (± 1.27) ethanol was ethanol in the final sample of the 50 RPM 
experiment was low and had a high value of standard error. This was not deemed 
enough to enable a conclusion that the targeted ethanologenic ‘anaerobic’ growth 
conditions had been achieved. As the continuous culture runs were constrained by 
the cost of the 13C sugar and the already minimum operating conditions of Biostat B 
bioreactor system, focus turned to the p-thermo GSMM experimental results 
obtained suggesting that addition of thiamine, biotin and Fe(III) could support 
anaerobic growth of P. thermoglucosidasius. Notably, as thiamine and biotin were 
already components of ASM, this suggested that Fe(III) was missing in the media in 
order to allow porphyrin biosynthesis. The previous ASM composition already 
included a source of iron in the form of dissolved FeSO4.7H2O, which represents 
iron in its +2-oxidation state. If there was a particular growth advantage of the 
presence of iron in its +3-oxidation state (as discussed in 3.3.3), it is reasonable to 
assume that under oxygenic conditions oxidation from Fe(II) to Fe(III) either in water 
or by a potentially genomically encoded Fe2+:oxygen oxidoreductase (p-thermo 
reaction ID ‘R_FERO’) could occur and meet this demand. However, under oxygen-
limited conditions it is also reasonable to believe that this oxidation would be less 
likely. Therefore a stable yet soluble form of Fe(III) was sought to add to the ASM. 
The p-thermo GSMM experimental results suggested that P. thermoglucosidasius 
was unable to synthesize hemin under anaerobic conditions, which contains an Fe3+ 
- Cl bound to a porphyrin group. 

Early research by Amartey, Leak and Hartley (1991)215 identified that an optimized 
1% sucrose defined medium containing 0.07 g/L FeCl3.6H2O was able to support 
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aerobic growth of a G. stearothermophilus mutant. It was however noted that the 
optimized defined media could not support anaerobic growth on its own. Given this 
precedent however, an equivalent concentration of 0.042 g/L anhydrous FeCl3 was 
added to the ASM for the final anaerobic glucose experiment. 

While only representing a single biological replicate, this FeCl3 supplemented 
growth experiment resulted in the lowest observed steady state value for redox 
potential yet, maintaining a fixed redox potential of -259 mV for the final 3 hours 46 
minutes of the 12C ASM growth experiment. However, given the remaining time 
constraints of the project, this continuous culture experiment proceeded to be the 
final anaerobic glucose, 0.075h-1 dilution rate INST-13C-MFA experiment.  
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4.4 The isotopically instationary 13C-ILEs and metabolic flux analysis 
 

With the experimental conditions defined, the final INST-13C-MFA ILEs for P. 
thermoglucosidasius NCIMB 11955 were performed as described in the Materials 
and Methods chapter 2. This research collates and discusses different INST-13C-
MFA experiments for P. thermoglucosidasius NCIMB 11955 with an overall goal to 
provide data sets to further develop the utility of the GSMM. A complete summary of 
the target aeration conditions, 13C carbon sources and dilution/growth rates of the 
experiments performed and analyzed as part of this thesis provided in Table 20. 

Organism 
Aeration 

conditions 

13
C Carbon 
Source 

Dilution 

rate (h
-1

) 

13
C-MFA 

experiment 
performed 

13
C-MFA 

experiment 
data 

analysed 

P
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b
a
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lu

s
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rm

o
g
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o

s
id

a
s
iu

s
 N

C
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B
 1

1
9

5
5

 

Aerobic  

0.3% D-
Glucose (60% 

1-
13

C, 40% U-
13

C) ASM 

0.075 

This Study 
(Martyn 
Bennett) 

This Study 
(Martyn 
Bennett) 

 0.15 
This Study 

(Martyn 
Bennett) 

 0.225 
This Study 

(Martyn 
Bennett)  0.32 

0.3% D-
Xylose (75% 

1-
13

C, 25% 
12

C) ASM 

 0.075 
This Study 

(Martyn 
Bennett) 

This Study 
(Martyn 
Bennett) 

0.15 
This Study 

(Martyn 
Bennett) 

This Study 
(Martyn 
Bennett) 

‘Micro-
aerobic’ 

0.3% D-
Glucose (60% 

1-
13

C, 40% U-
13

C) ASM 

0.075 
This Study 

(Martyn 
Bennett) 

This Study 
(Martyn 
Bennett) 

Anaerobic  

0.3% D-
Glucose (60% 

1-
13

C, 40% U-
13

C) ASM + 
Fe(III) 

 0.075 
  

This Study 
(Martyn 
Bennett) 

This Study 
(Martyn 
Bennett) 

0.5% D-
Xylose (75% 

1-
13

C, 25% 
12

C) ASM 

 0.075 

2014 (Dr. 
Masakapalli, 

UoB/IIT 
Mandi) 

This Study 
(Martyn 
Bennett) 

Table 20: Table detailing the different INST-13C-MFA ILEs performed for P. thermoglucosidasius 

NCIMB 11955, including the composition of the 13C source used, who performed the experiment and 

who analysed the resulting data. 
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4.4.1 The final INST-13C-MFA ILEs 
To enable more direct comparisons of 13C incorporation across the growth 
experiments, sampling time points for all INST-13C-MFA experiments were chosen 
with respect to the dilution rate dependent CCVCs. The target CCVCs and 
respective time points in hours for each ILE are presented in Table 21. 

13C 
Sample CCVC 

Dilution rate (h-1) 

0.075 0.15 0.225 0.3 

Sampling Time Point (hours) 

1 0 0 0 0 0 

2 0.0375 0.5 0.25 0.167 0.125 

3 0.075 1 0.5 0.333 0.25 

4 0.15 2 1 0.667 0.5 

5 0.25 3.333 1.667 1.111 0.833 

6 0.5 6.667 3.333 2.222 1.667 

7 0.6 8 4 2.667 2 

8 0.75 10 5 3.333 2.5 

9 0.9 12 6 4 3 

10 1.05 14 7 4.667 3.5 

11 1.5 20 10 6.667 5 

12 1.8 24 12 8 6 

13 1.95 26 13 8.667 6.5 

14 2.25 30 15 10 7.5 

15 2.5 33.333 16.667 11.111 8.333 

16 2.75 36.667 18.333 12.222 9.167 

17 3 40 20 13.333 10 

18 3.25 43.333 21.667 14.444 10.833 

19 3.5 46.667 23.333 15.556 11.667 

20 3.75 50 25 16.667 12.5 

 

 

 

 

 

 

Table 21: Table of the sampling strategy employed for all INST-13C-MFA experiments 

emphasising how the sampling time point in hours was determined with respect the 

fraction of a single cell culture volume change (CCVC). 
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4.4.1.1 The glucose ASM aerobic INST-13C-MFA GA0.075 GA0.15 
GA0.225 and GA0.32 ILEs 

Using the 0.3% glucose, 0.0125% antifoam 204 ASM and the growth operation 
conditions detailed in Table 20, the final aerobic P. thermoglucosidasius NCIMB 
11955 INST-13C-MFA ILEs were carried out as described in (Materials and methods 
2.2.1) at final media dilution rates of 0.075 h-1, 0.15 h-1, 0.225 h-1 and 0.32 h-1 (Table 
22) (Figures 32, 33, 34). While a dilution rate of 0.3 h-1 was initially planned, the 
0.32 h-1 dilution rate was the closest possible dilution rate that could be achieved by 
the precision of the 101U peristaltic pump employed. 

No foaming was observed for any experiment. For dilution rates 0.075 h-1, 0.15 h-1, 
0.225 h-1 and 0.32 h-1 the average respective O.D.600 and redox potential values 
were 2.25 ± 0.12 and -46.78 mV (± 4.81, n = 18), 4.40 ± 0.44 and -39.62 mV (± 
3.55, n = 21), 3.2 ± 0.40) and -82 (± 8.17, n = 19) and 2.45 ± 0.11 and -78.15 mV (± 
1.65, n = 20) (Tables 22 and 23). This error as a proportion of average O.D.600 for 
each experiment ranged from 4.66% (0.32 h-1) to 12.46% (0.225 h-1) and for redox 
potential ranged from 2.11% (0.32 h-1) to 9.96% (0.225 h-1). nMeasured redox 
potential decreased from the start of the 13C portion of the experiment from -78 mV, 
reached a trough at -100 mV and increased steadily into the -70mV range before 
increasing rapidly from -71mV to -41mV in the last hour of the experiment.  

 

 

 

 

 

 

 

Table 22: OD600, DCW and redox values (mV) for the final GA0.075 and GA0.15 aerobic glucose 

P. thermoglucosidasius INST-13C-MFA ILEs. 
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GA0.075  
HPLC-RI analysis of the CCF samples of the 0.075 h-1 dilution rate experiment 
demonstrate an initial concentration of glucose which rises from 0.13 g/L (± 0.06) in 
12C 8, peaks at an average between 13C samples 1-3 of 16.5 g/L (± 0.02, n = 3), 
then steadily declines to below detectable levels by 13C 8, remaining at near zero 
levels up to the end of the experiment. HPLC-UV analysis of the CCFs suggests 
that, as glucose reaches zero, there is a single peak of 0.21 g/L (± 0.19) pyruvate 
detected. However, no other fermentation products were detected. 
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Table 23: OD600, DCW and redox values (mV) for the final GA0.225 and GA0.32 aerobic 

glucose P. thermoglucosidasius INST-13C-MFA ILEs. 

Figure 32: HPLC-RID-UVD analysed CCF products for the final INST-13C-MFA GA0.075 P. 

thermoglucosidasius ILE. Glucose (orange), Lactate (grey), Ethanol (yellow, Pyruvate (light blue), 

Formate (green) and Acetate (dark blue). Error is SD for technical triplicate.  
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GA0.15 and GA0.32 
HPLC-RI-UV analysis of the CCFs of the second aerobic 0.15 h-1 and first 0.32 h-1 
13C glucose ILEs show similarity in the respective 13C portions of the experiments. 
From the 2nd 13C sample analysed from each experiment, the chromatograms of 
both experiments demonstrate low average residual concentrations of glucose of 
0.06 g/L (± 0.03, n = 15) for 0.15 h-1 and of 0.06 g/L (± 0.01, n = 16) for 0.32 h-1. 
From the 2nd 13C sample, neither sets of 13C chromatograms demonstrated a 
presence of any overflow or fermentation metabolites (Figures. 33 & 34). However, 
HPLC-UV of the 8th, 9th and 10th time point samples of the 12C media and 1st sample 
from the 13C media show unexpectedly high average concentrations of acetate on 
the chromatographs of 3.18 g/L ± 1.08 g/L (n = 4).  
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Figure 33: HPLC-RID-UVD analysed CCF products for the final INST-13C-MFA GA0.15 P. 

thermoglucosidasius ILE. Glucose (light blue), Lactate (orange), Ethanol (grey), Pyruvate (yellow), 

Formate (dark blue) and Acetate (green). Error is SD for technical triplicate. 
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GA0.225 
HPLC-RI analysis of the CCF samples of the second aerobic, 0.225 h-1 13C glucose 
ILE (GA0.225) demonstrate a similarly low average concentration of glucose across 
the experiment of 0.09 g/L (± 0.07, n = 19). HPLC-UV analysis of the CCFs 
suggests that lactate was possible detected at a concentration of 0.392 g/L (± 0.64), 
in the 3rd 13C sample CCF (Figure 35). Otherwise, no lactate or pyruvate were 
detected for the duration of the experiment. However, the CCFs do demonstrate a 
low presence of fermentation products formate and acetate. Presence of formate is 
initially observed once at a concentration of 0.16 g/L (± 0.06) in the CCF of the 3rd 
13C sample. Formate is then observed near continuously in the CCFs of 13C 
samples 7-16, at an average concentration of 0.10 g/L (± 0.05, n = 10). Acetate is 
only observed in the CCFs of 13C samples 11-16, where it increases from 0.06 g/L 
(± 0.64) to 0.44 g/L (± 0.06).  

 

 

Discussion 
Combined, the OD600 and redox potential values of the different dilution rate ILEs 
suggest that an aerobic metabolic steady state for P. thermoglucosidasius had been 
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Figure 35: HPLC-RID-UVD analysed CCF products for the final INST-13C-MFA GA0.225 P. 

thermoglucosidasius ILE. Glucose (light blue), Lactate (orange), Ethanol (grey), Pyruvate 

(yellow), Formate (dark blue) and Acetate (green). Error is SD for technical triplicate. 

Figure 34: HPLC-RID-UVD analysed CCF products for the final INST-13C-MFA GA0.32 P. 

thermoglucosidasius ILE. Glucose (light blue), Lactate (orange), Ethanol (grey), Pyruvate (yellow), 

Formate (dark blue) and Acetate (green). Error is SD for technical triplicate. 
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achieved throughout the key 13C isotope labelling portion of the GA0.075, GA0.15, 
and GA0.32 experiments and that the carbon-limited growth rates of the cells reflect 
the dilution rates of the experiments. 

However, for the GA0.075 ILE, the spike in glucose likely results from excess 13C 
media being added in the changeover point between 12C and 13C-glucose ASM, 
perturbing the metabolic steady state. These results suggest that the P. 
thermoglucosidasius cells are likely to have reached an acceptably stable metabolic 
equilibrium both before the perturbation but may not accurately represent metabolic 
steady state or constant rates of isotope incorporation at the target conditions by the 
end of the experiment. 

For the GA0.225 ILE, the relatively high variability of the OD600 and redox potential 
values of the 0.025 h-1 dilution rate experiment suggests that perturbation of the P. 
thermoglucosidasius cells population across the experiment, indicating that 
metabolic steady state may not have been achieved across the experiment. HPLC-
RI suggests the cells were near carbon-limited and therefore likely growing at a rate 
near the 0.225 h-1 dilution rate. However, the HPLC-UV detected presence of 
formate and acetate in the CCFs, while much lower concentrations than detected for 
glucose microaerobic and anaerobic experiments on a DCW basis, does suggest 
that the cells were experiencing a degree of oxygen limitation compared to the other 
aerobic experiments and PFL may have been active. 

The presence of 4.73 g/L acetate in the 12C portion of the GA0.32 ILE experiment 
(Figure 34) was unexpected. However, as the concentration of acetate seems to 
completely disappear in the 32 minutes between the 1st and 3rd 13C sample, its 
presence (in light of the stable 78.15 ± 2.11 mV (n = 3) redox potential of the 
experiment) suggests that this is unlikely to be an accurate observation of P. 
thermoglucosidasius metabolism and more likely to be an artefact of cross-
contamination of other samples in the queue of the HPLC instrument. This 
argument is supported by the observations that the 1st of the technical triplicate CCF 
samples of 13C sample 1 shows a 4.73 g/L concentration while the 2nd and 3rd 
samples do not register any acetate above the limit of detection of the instrument. 
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4.4.1.2 The glucose ASM anaerobic and micro-aerobic INST-13C-
MFA GAn0.075 and GMA0.075 ILEs  

GAn0.075 
For the anaerobic glucose 0.075h-1 dilution rate INST-13C MFA experiment 
(GAn0.075), P. thermoglucosidasius cells were cultured as described in materials 
and methods 2.21 at the 50 RPM agitator speed informed by the anaerobic pilots, 
60°C, pH 7, 0.05 L/min air (0.14 VVM) and 1L/min N2 (2.86 VVM) on 0.3% w/v ᴰ-
Glucose (60% 1-13C, 40% U-13C) ASM (supplemented with 0.042 g/L FeCl3).The 
average OD600 and redox potential values observed were 0.51 ± 0.05 and -259 mV 
± 2.25 (n = 15) (Table 24). 

G
A

n
0

.0
7
5
 

Sample 12C 
13 

12C 
14 

12C 
15 

13C 
1 

13C 
2 

13C 
3 

13C 
4 

13C 
5 

13C 
6 

13C 
7 

13C 
8 

13C 
9 

13C 
10 

13C 
11 

13C 
12 

13C 
13 

13C 
14 

13C 
15 

Time 
(hours) 

-
3.22 

-
1.97 

-
0.72 0.00 0.83 1.67 3.00 6.33 7.67 9.42 19.67 21.73 25.67 29.67 33.00 43.00 47.50 50.75 

Cell 
Culture 
volume 

Changes 
-

0.24 
-

0.15 
-

0.05 0.00 0.06 0.13 0.23 0.48 0.58 0.71 1.48 1.63 1.93 2.23 2.48 3.23 3.56 3.81 

OD
600
 0.46 0.46 0.41 0.47 0.46 0.46 0.45 0.48 0.47 0.51 0.51 0.54 0.59 0.56 0.58 0.56 0.56 0.59 

DCW g/L 0.19 0.20 0.18 0.20 0.20 0.19 0.19 0.20 0.20 0.21 0.21 0.23 0.25 0.24 0.25 0.24 0.24 0.25 
Redox 

(miliVolts) -259 -258 -259 -258 -
258 -261 -261 -256 -256 -256 -258 -258 -265 -260 -260 -261 -260 -262 

 

HPLC-UV of the sample CCFs demonstrated the presence of the typical P. 
thermoglucosidasius 11955 overflow and fermentation products when grown on 
glucose of pyruvate, lactate, acetate and formate (Figure. 36). Pyruvate was 
detected at near zero g/L concentrations for the duration of the experiment, 
averaging at 0.04 (± 0.03, n = 14). Lactic acid concentrations demonstrated a near 
exponential decrease in concertation over the time course of the 13C ILE (R2 = 
0.98), from 1.67 g/L (± 0.07) at the 13C zero mark to 0.257 g/L (± 0.01) at the end of 
the experiment.  
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Table 24: OD600, DCW and redox values (mV) for the final GAn0.075 anaerobic glucose P. 

thermoglucosidasius INST-13C-MFA ILEs. 

Figure 36: HPLC-RID-UVD analysed CCF products for the final INST-13C-MFA GAn0.075 P. 

thermoglucosidasius ILE. Glucose (light blue), Lactate (orange), Ethanol (grey), Pyruvate (yellow), 

Formate (dark blue) and Acetate (green). Error is SD for technical triplicate. 
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The HPLC-UV detected concentrations of formate and acetate gradually increase 
over the first half of the 13C experiment before plateauing. From the first 13C time 
point until the 10th, formate concentrations were observed to increase from 0.27 g/L 
(± 0.02) to 0.71 g/L (n = 10), while acetate concentrations increased from 0.726 g/L 
(± 0.174) to 1.09 g/L (± 0.02, n = 10). Both product concentrations then plateau and 
stabilize for the remainder of the experiment, formate to an average concentration of 
0.78 g/L (± 0.08, n = 6) and acetate to an average concentration of 1.05 g/L (± 0.02, 
n = 6). 

HPLC-RI analysis of the CCFs demonstrates near zero g/L concentrations of 
glucose, averaging 0.03 g/L (± 0.02), indicating that the P. thermoglucosidasius 
cells were likely carbon-limited. HPLC-RI analysis of the ethanol concentrations of 
the CCF and outlet condensate concentrations varied (Figure 37). The average 
HPLC-RI detected concentration of ethanol in the CCFs was 0.05 g/L (± 0.07, n = 
18) whereas the average concentration of ethanol detected in the outlet condensate 
filtrates was higher at 0.53 g/L (± 0.08, n = 18). For the first 10 hours of the 13C ASM 
portion of the experiment, ethanol concentrations were near the limit of detection, 
averaging 0.01 g/L (± 0.01, n = 10) in the 13C sample CCFs and 0.02 g/L (± 0.04, n 
= 10) in the outlet condensate filtrate samples. However, from the 20-hour mark 
until the end of the experiment, the detected concentrations of ethanol were higher, 
averaging 0.1 g/L (± 0.08, n = 8) in the 13C CCFs and 1.16 g/L (± 0.10, n = 8) in the 
outlet condensate filtrate. For sampled time points where ethanol was detected in 
both the CCF and outlet condensate filtrate, the concentration in the outlet 
condensate filtrate was on average 8.48 (± 3.63, n = 5).  

 

 

 

 

 

 

 

GMA0.075 
The last 13C glucose ILE to be performed was GMA0.075. After a combination of the 
agitator RPM pilots and the final anaerobic glucose 0.075 h-1 INST 13C-MFA 
experiment, a limited logarithmic relationship was observed between the observed 
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Figure 37: HPLC-RID analysed ethanol products for the final INST-13C-MFA GAn0.075 P. 

thermoglucosidasius ILE. Ethanol measured in CCFs (light blue, n = 3), Ethanol measured in outlet 

condensate filtrate samples (orange, n= 1). 
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culture redox potential and the agitator rotor RPM values of the final 4 samples of 
each experiment (R2 = 0.911) (Figure 38).  

 

 

 

 

On this basis, it was hypothesised than an agitator rotor RPM value of 75 would 
result in an average redox potential at metabolic steady state of approximately –239 
mV and a metabolic behaviour of P. thermoglucosidasius representing mixed acid 
fermentation, but not producing any ethanol.  

For the micro-aerobic glucose 0.075 h-1 dilution rate INST-13C MFA experiment, P. 
thermoglucosidasius cells were cultured as described in materials and methods 2.2 
1 at an agitator speed of 75 RPM, 60°C, pH 7, 0.05 L/min air (0.14 VVM) and 
1L/min N2 (2.86 VVM) on 0.3% w/v ᴰ-Glucose (60% 1-13C, 40% U-13C) ASM 
(supplemented with 0.042 g/L FeCl3). Over the course of the experiment the 
average O.D.600 and redox potential values were a respective 0.585 (± 0.02, n = 19) 
and -208 mV (± 4.06, n = 19) (Table 25). 
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Sample 12C 
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12C 
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13C 
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13C 
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13C 
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13C 
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13C 
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13C 
6 

13C 
7 

13C 
8 

13C 
9 

13C 
10 

13C 
11 

13C 
12 

13C 
13 

13C 
14 

13C 
15 

Time 
(hours) 

-
4.97 

-
3.50 

-
2.00 0.00 1.20 2.17 3.40 6.67 8.00 10.00 20.08 24.00 26.00 30.00 33.33 43.00 46.33 49.67 

Cell 
Culture 
volume 

Changes 
-

0.37 
-

0.26 
-

0.15 0.00 0.09 0.16 0.26 0.50 0.60 0.75 1.51 1.80 1.95 2.25 2.50 3.23 3.48 3.73 

OD
600
 0.57 0.58 0.59 0.59 0.62 0.62 0.62 0.60 0.58 0.56 0.56 0.61 0.59 0.58 0.58 0.56 0.58 0.56 

DCW 
g/L 0.24 0.25 0.25 0.25 0.26 0.26 0.26 0.26 0.25 0.24 0.24 0.26 0.25 0.24 0.24 0.24 0.25 0.24 

Redox 
(mV) -211 -

209 -210 -210 -
215 

-
215 -212 -207 -209 -208 -213 -209 -208 -204 -204 -203 -203 -202 
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Figure 38: The relationship between agitator RPM and measured culture redox potential from 

the agitator speed anaerobic pilot growth experiments. The final 4 measurements of culture 

redox potential were used from each experiment as they were assumed to represent metabolic 

steady state. 

Table 25: OD600, DCW and redox values (mV) for the final GMA0.075 micro-aerobic glucose P. 

thermoglucosidasius INST-13C-MFA ILE. 
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HPLC-RI analysis of the CCFs of the samples taken identified a low average 
residual concentration of glucose of 0.03 g/L (± 0.02, n = 19) and did not detect the 
presence of any ethanol (Figure 39).  

 

 

 

 

HPLC-UV analysis did however demonstrate the presence of the typical P. 
thermoglucosidasius fermentation products of lactate, formate and acetate (Figure 
39). 
HPLC-UV analysis of the sample CCFs did not detect the presence of pyruvate until 
the 3rd 13C time point, at a concentration of 0.04 g/L (± 0.12). The detected 
concentration of pyruvate then rapidly rose over nearly 8 hours to a concentration of 
0.63 g/L (± 0.01) before steadily declining over the next 18 hours to a concentration 
of 0.28 g/L (± 0.01) at the 10th 13C time point. The concentration of pyruvate then 
remains somewhat constant for the next 17 hours of the experiment, with and 
average concentration of 0.34 g/L (± 0.06, n = 4), before declining from the 14th to 
16th 13C time point to a stable average concentration of 0.23 g/L (± 0.01, n = 3). 

The HPLC-UV detected concentrations of acetate in the sample CCFs display two 
different patterns. Between samples 12C 6 and 13C 7, the average concentration of 
acetate detected was 1.64 g/L (± 0.20, n = 10), with a low average standard error 
for each triplicate sample of ± 0.04 g/L (n = 10). However, between 13C samples 8 
and 16, the average concentration of acetate detected was 1.95 g/L (± 0.17, n = 9), 
with a higher average standard error for each triplicate sample of ± 0.36 g/L (n = 9). 

The HPLC-UV detected concentrations of lactate and formate demonstrate a 
roughly inverse correlation to each other. Between samples 12C 6 and 13C 7, the 
detected concentration of formate declined from 1.57 g/L (± 0.01) to 1.20 g/L (± 
0.03), but lactate concentrations increased from below detectable levels to 0.51 g/L 
(± 0.01). Over the following 10 hours of the experiment, the formate concentration 
increased to 1.46 g/L (± 0.05), while the lactate concentration slightly decreased to 
0.43 g/L (± 0.01). Then concentration of formate then peaks at 1.48 g/L (± 0.05) in 
the 9th 13C sample, before declining to a steady average concentration for the final 5 
13C CCF samples of 1.18 g/L (± 0.03, n = 5). Concurrently, the concentrations of 
lactate increase from 0.51 g/L (± 0.01) at 13C 7, until a stable, average 
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Figure 39: HPLC-RID-UVD analysed CCF products for the final INST-13C-MFA GMA0.075 P. 

thermoglucosidasius ILE. Glucose (light blue), Lactate (orange), Ethanol (grey), Pyruvate (yellow), 

Formate (dark blue) and Acetate (green). Error is SD for technical triplicate. 
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concentration of is observed for the final 5 13C CCF samples of 0.6 g/L (± 0.05, n = 
5). 

Discussion 
Overall, the stable O.D.600, redox potential values and the HPLC-RI-UV analysis of 
the two experiments suggests that both experiments were carbon-limited, and thus 
growing at a rate near the dilution rate of 0.075 h-1. The observed OD600 values for 
the GAn0.075 ILE are all lower than GA0.075 and GMA0.075, indicating oxygen 
limitation was observed in growth.  

For the GAn0.075 13C ILE, despite the stable average redox potential value range of 
-259 mV ± 2.25 (n = 15), the near exponential decrease in lactic acid concentrations 
across the experiment (R2 = 0.98) alongside the possible production of ethanol and 
increases in the OD600 values and formate and acetate concentrations suggest that 
the available oxygen to the increasing P. thermoglucosidasius population was 
decreasing. What that likely translated to on a metabolic level was increasing 
activity of PFL and alcohol dehydrogenase and a potential deceasing in activity of 
lactate dehydrogenase. An interesting observation for the GAn0.075 ILE can be 
made when comparing the: average redox potential values of all samples where 
ethanol was detected -260 mV (± 2.20, n = 7), all samples where ethanol was 
detected, adjacent ethanol-lacking samples -259 mV (± 2.21, n = 12) and all 
samples where ethanol was not detected -258.7 mV (± 2.14, n = 11). This suggests 
that ethanologenesis and activation of alcohol dehydrogenase in this experiment 
initiated at a redox potential value of -260 mV and that the INST-13C-MFA 
experiment captures the metabolic behaviour of P. thermoglucosidasius at the point 
of activation of the production of potential bioethanol. However, as a result, this 
experiment may not accurately represent P. thermoglucosidasius metabolic 
behaviour under the high ethanol producing anaerobic conditions initially sought. 

For the GMA0.075 13C ILE, the stable observed redox potential value of -208.11 mV 
combined with stably observed CCF concentrations of fermentation products 
lactate, acetate and formate suggests that lactate dehydrogenase, 
phosphotransacetylase/acetate kinase and PFL were active and that the P. 
thermoglucosidasius cells represented the mixed acid fermentation metabolic 
behaviour sought for micro-aerobic conditions. 

4.4.1.3 The xylose ASM aerobic and anaerobic INST-13C-MFA 
XA0.075 XA0.15 and XAn0.075 ILEs 

XA0.075 and XA0.15  
For the aerobic xylose 0.075 h-1 and 0.015 h-1 dilution rate 13C-MFA experiments 
(XA0.075 and XA0.015, P. thermoglucosidasius cells were cultured under the same 
60°C, pH 7, 650 rotor RPM and 1.5̇ VVM air as the glucose experiments. The ASM 
also contained 0.0125% antifoam 204, but instead used 0.3% ᴰ-Xylose (75% 1-13C, 
25% 12C) as the sole carbon substrate. The OD600 and redox potential values of the 
two experiments both display low variation and are similar (Table 26). The average 
OD600 and redox potential values were 2.48 (± 0.08) and -38 mV (± 0.63, n = 15) for 
the 0.075 h-1 experiment and 2.39 (± 0.12) and -37 mV (± 3.54, n = 18) for the 0.15 
h-1.  

X
A

0
.

0
7
5
 

Sample 
12C 

5 
12C 

6 
12C 

7 
13C 

1 
13C 

2 
13C 

3 
13C 

4 
13C 

5 
13C 

6 
13C 

7 
13C 

8 
13C 

9 
13C 
10 

13C 
11 

13C 
12    

Table 26: OD600, DCW and redox values (mV) for the final XA0.075 and XA0.15 xylose aerobic P. 

thermoglucosidasius INST-13C-MFA ILEs. 
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Time 
(hours) 

-
6.00 

-
4.42 

-
2.75 0.00 1.17 2.00 3.33 6.67 14.00 20.00 24.00 27.33 30.67 37.33 40.67    

Cell 
Culture 
volume 
Changes 

-
0.49 

-
0.36 

-
0.23 0.00 0.10 0.16 0.27 0.55 1.15 1.64 1.97 2.24 2.51 3.06 3.33    

OD.600 2.37 2.45 2.39 2.39 2.33 2.42 2.48 2.47 2.61 2.58 2.57 2.57 2.52 2.54 2.48    

DCW g/L 1.00 1.04 1.01 1.01 0.99 1.03 1.05 1.05 1.11 1.09 1.09 1.09 1.07 1.08 1.05    

Redox 
(miliVolts) 

-
6.00 

-
4.42 

-
2.75 0.00 1.17 2.00 3.33 6.67 14.00 20.00 24.00 27.33 30.67 37.33 40.67    

X
A

0
.1

5
 

Sample 
12C 

7 
12C 

8 
12C 

9 
13C 

1 
13C 

2 
13C 

3 
13C 

4 
13C 

5 
13C 

6 
13C 

7 
13C 

8 
13C 

9 
13C 
10 

13C 
11 

13C 
12 

13C 
13 

13C 
14 

13C 
15 

Time 
(hours) 

-
3.18 

-
2.25 

-
1.23 0.00 0.50 1.00 1.67 3.33 4.00 5.05 6.00 7.05 10.00 16.67 18.67 20.33 21.83 23.50 

Cell 
culture 
volume 

changes  
-

0.48 
-

0.34 
-

0.19 0.00 0.08 0.15 0.25 0.50 0.60 0.76 0.90 1.06 1.50 2.50 2.80 3.05 3.28 3.53 

OD600 2.33 2.31 2.25 2.32 2.28 2.25 2.32 2.32 2.36 2.30 2.32 2.35 2.35 2.40 2.60 2.48 2.60 2.61 
DCW g/L 0.99 0.98 0.95 0.98 0.97 0.95 0.98 0.98 1.00 0.98 0.98 1.00 1.00 1.02 1.10 1.05 1.10 1.11 

Redox 
(miliVolts) -39 -40 -39 -39 -39 -38 -37 -37 -33 -32 -32 -31 -31 -39 -34 -39 -40 -42 

 

HPLC-RI-UV analysis of all CCFs from the 0.075 h-1 and 0.15 h-1 experiments did 
not detect the presence of any fermentation products (Figures 40 and 41).  
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Figure 40: HPLC-RID-UVD analysed CCF products for the final INST-13C-MFA XA0.075 P. 

thermoglucosidasius ILE. Xylose (light blue), Lactate (orange), Ethanol (grey), Pyruvate (yellow), 

Formate (dark blue) and Acetate (green). Error is SD for technical triplicate. 
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While HPLC-RI analysis of the CCFs of the 0.075 h-1 experiment did not detect the 
presence of any xylose for the entire experiment, analysis of the CCFs of the 0.15 h-

1 experiment indicating the presence of fluctuating concentrations of xylose across 
the experiment. The concentration of xylose remains a roughly average 
concentration of 1.50 g/L (± 0.10, n = 9) for the first 7.05 hours of the 13C portion of 
the experiment before peaking at 1.73 g/L (± 0.09). The concentration then 
undergoes a linear decline (R2 = 0.90) over the next 16.45 hours to 1.07g/L (± 0.06) 
and does not reach a stable equilibrium by the end of the experiment. 

XAn0.075  
In 2014 at the University of Bath, international partner Dr. Shyam Masakapalli used 
an older iteration of the MKI 45 mL working volume micro bioreactor to grow P. 
thermoglucosidasius NCIMB 11955 cells at 60°C, pH 7 on 0.5% ᴰ-Xylose (75% 1-
13C, 25% 12C) ASM, at 0.031 VVM air, 50 rotor RPM and a dilution rate of 0.075 h-1. 
While this INST-13C-MFA experiment was performed in 2014, the resulting HPLC 
and GC-MS data had not been analysed until it was provided by Dr. Masakapalli to 
this research in 2018. 

Across the 47-hour duration of the experiment, the OD600 of the cell cultures 
remained in a range of 0.49-0.52, redox potential of the cultures remained between 
-251 and -258 mV (Table 27). The concentration of xylose in the cell culture filtrate, 
as measured by HPLC-RI, remained between 3.92 g/L and 3.70 g/L. HPLC-UV also 
demonstrated similarly consistent cell culture filtrate concentrations of acetate (0.75-
0.87 g/L) formate (0.56-0.66 g/L) and pyruvate (0.33-0.55 g/L) (Figure 42).  
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Figure 41: HPLC-RID-UVD analysed CCF products for the final INST-13C-MFA XA0.15 P. 

thermoglucosidasius ILE. Xylose (light blue), Lactate (orange), Ethanol (grey), Pyruvate (yellow), 

Formate (dark blue) and Acetate (green). Error is SD for technical triplicate. 
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Discussion 
For the XA0.075 and XA0.15 INST-13C-MFA experiments, all analysed CCFs 
displayed no presence of fermentation products by HPLC-RI-UV analysis, 
suggesting that the P. thermoglucosidasius cells were growing under aerobic 
conditions. However, for the XA0.075 INST-13C-MFA experiment the average 
detected concentration of 1.50 g/L (± 0.10, n = 9) suggested that the cells were not 
growing under carbon-limited conditions and that the cells may not have achieved a 
metabolic steady state. 

For the XAn0.075 ILE, the stable observed values for OD600, redox potential and 
HPLC-detected metabolites suggests that anaerobic metabolic steady state was 
constant throughout the isotope labelling experiment. However, the residual 3.92 
g/L and 3.70 g/L (representing in this case a value out of 5 g/L and a final w/v 
percentage of 0.5% xylose), suggest that it was not fully carbon-limited growth. 
Notably, the typical anaerobic P. thermoglucosidasius NCIMB 11955 fermentation 
products from glucose feeding of lactic acid and ethanol were not identified in any 
anaerobic xylose chromatogram suggesting that they may not have been produced 
by the cells grown on xylose. 

4.4.2 Qualitative INST-13C-MFA Results  
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Time (hours)

12 or 13C 
Xylose 

12 13 

Time 
(Hours) 

0 0.5 1 2 3 6 8 12 24 28 32 36 47 48 

OD600 0.52 0.52 0.52 0.52 0.5 0.52 0.51 0.52 0.5 0.49 0.52 0.52 0.52 0.52 

Redox 
Potential 

(mV) 

-
255 

-
253 

-
251 

-
248 

-
256 

-
251 

-
252 

-
253 

-
254 

-
255 

-
256 

-
257 

-
258 

-
254 

Table 27: OD600, DCW and redox values (mV) for the final XAn0.075 xylose anaerobic P. 

thermoglucosidasius INST-13C-MFA ILE. 

 

Figure 42: HPLC-RID-UVD analysed CCF products for the final INST-13C-MFA XAn0.075 P. 

thermoglucosidasius ILE. Xylose (green), Acetate (blue), Formate (orange) and Pyruvate (purple). 

n = 1 technical replicate. 
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To describe the 13C-labeling distributions and rates of 13C isotope incorporation 
across CCM in the 8 P. thermoglucosidasius NCIMB 11955 ILEs, TBDMS-
derivatized cell protein hydrolysate, consisting of up to 16 TBDMS-derivitized 
proteinogenic amino acids, was analysed by GC-MS for each technical triplicate 
sample in each experiment. Chapter 4.4.2. covers the presentation and initial 
qualitative metabolomic analysis of the resulting MIDs of TBDMS-derivatized amino 
acid mass fragments. 

4.4.2.1 GC separation of TBDMS-derivatized amino acids 

Representative chromatograms for each growth condition performed and analysed 
as part of this research are presented in (Figure 43) and demonstrate low noise 
baselines with no suggestions of baseline drift or column bleed to impact 
downstream quantitation: 
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Figure 43: Representative GC chromatograms for each of the INST-13C-MFA ILEs performed in this research. These chromatograms represent the 

final sample taken before the introduction of the 13C tracer. Identities of numbered peaks are listed in Table 28. 
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The retention times corresponding to the mass spectrum of fragmented ions 
associated with each TBDMS-derivitized amino acid, or additionally detected 
metabolite, are presented in Table 28. 

Metabolite 
Experiment-Specific GC Retention Times (mins) 

GC 
peak 

NIST 
Identity 

GA0.0
75 

GA0.1
5 

GA0.2
25 

GA0.3
2 

GAM0.0
75 

GAn0.
075 

XA0.0
75 

XA0.15 

1 

Lactic 
Acid 
2TBDM
S 

9.23:9.
31 

-- 
9.23:9.3

1 
9.26:9.

31 
9.26:9.

31 
9.25:9.3

1 

2 
Alanine 
2TBDM
S 

9.79:9.
87 

9.87:9.
95 

9.79:9.8
7 

9.79:9.
87 

9.79:9.
88 

9.81:9.8
9 

3 
Glycine 
2TBDM
S 

10.02:
10.10 

10.10:
10.18 

10.02:1
0.10 

10.04:1
0.11 

10.04:
10.11 

10.04:1
0.13 

4 
Valine 
2TBDM
S 

11.14:
11.22 

11.23:
11.34 

11.14:1
1.22 

11.15:1
1.24 

11.15:
11.24 

11.16:1
1.24 

5 
Leucine 
2TBDM
S 

11.59:
11.67 

11.67:
11.76 

11.59:1
1.67 

11.59:1
1.67 

11.59:
11.69 

11.60:1
1.69 

6 

Isoleucin
e 
2TBDM
S 

11.90:
12.03 

12.03:
12.13 

11.95:1
2.03 

11.95:1
2.03 

11.95:
12.04 

11.96:1
2.05 

7 

Threonin
e 
2TBDM
S 

12.18:
12.25 

12.28:
12.37 

12.18:1
2.27 

12.20:1
2.27 

12.20:
12.29 

12.20:1
2.34 

8 
Proline 
2TBDM
S 

12.36:
12.49 

12.50:
12.58 

12.39:1
2.49 

12.40:1
2.50 

12.40:
12.50 

12.42:1
2.50 

9 

Pyroglut
amic 
Acid 
2TBDM
S 

14.76:
14.86 

14.89:
15.03 

14.76:1
4.86 

14.76:1
4.86 

14.76:
14.86 

14.79:1
4.90 

Table 28: Metabolites identified from characteristic mass spectra for each ILE with 

experiment specific GC retention times. 
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10 

Methioni
ne 
2TBDM
S 

15.04:
15.15 

15.17:
15.30 

-- -- 
15.03:
15.17 

15.06:1
5.18 

11 
Serine 
3TBDM
S 

15.36:
15.50 

15.49:
15.65 

15.36:1
5.50 

15.37:1
5.53 

15.37:
15.53 

15.39:1
5.53 

12 

Threonin
e 
3TBDM
S 

15.91:
16.03 

16.07:
16.17 

15.91:1
6.02 

15.91:1
6.04 

15.93:
16.04 

15.93:1
6.05 

13 

Phenylal
anine 
2TBDM
S 

17.07:
17.18 

17.20:
17.34 

17.06:1
7.20 

17.07:1
7.21 

17.07:
17.21 

17.07:1
7.21 

14 

Aspartat
e 
3TBDM
S 

18.09:
18.24 

18.25:
18.38 

18.09:1
8.24 

18.10:1
8.28 

18.10:
18.28 

18.12:1
8.26 

15 

Glutama
te 
3TBDM
S 

20.09:
20.24 

20.24:
20.38 

20.09:2
0.24 

20.08:2
0.26 

20.08:
20.26 

20.11:2
0.26 

16 

Asparagi
ne 
3TBDM
S 

20.65:
20.78 

20.80:
20.94 

20.65:2
0.78 

20.64:2
0.81 

20.64:
20.81 

20.67:2
0.81 

17 
Lysine 
3TBDM
S 

21.91:
22.05 

22.04:
22.20 

21.91:2
2.08 

21.91:2
2.05 

21.91:
22.08 

21.93:2
2.08 

18 

Glutami
ne 
3TBDM
S 

22.63:
22.79 

22.78:
22.94 

22.82:2
2.92 

22.64:2
2.82 

22.64:
22.84 

22.67:2
2.82 

19 
Biotin 
3TBDM
S 

24.50:
24.59 

25.48:
25.67 

24.50:2
4.59 

-- -- -- 

20 
Histidine 
3TBDM
S 

25.33:
25.48 

25.33:
25.56 

25.33:2
5.56 

25.33:2
5.49 

25.33:
25.53 

25.36:2
5.53 

21 

Citric 
Acid 
4TBDM
S 

25.79:
25.96 

25.96:
26.09 

25.80:2
5.98 

25.79:2
5.96 

25.82:
25.97 

25.82:2
5.96 
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22 
Tyrosine 
3TBDM
S 

26.08:
26.23 

26.23:
26.39 

26.08:2
6.23 

26.08:2
6.23 

26.09:
26.26 

26.08:2
6.23 

23 

Tryptoph
an 
2TBDM
S 

26.69:
26.88 

26.91:
27.04 

-- -- 
26.74:
26.90 

26.69:2
6.88 

24 
Cysteine 
4TBDM
S 

28.24:
28.64 

28.64:
28.98 

-- -- 
28.23:
28.64 

28.23:2
8.64 

 

The inability to detect arginine for all experiments is as expected from the choice of 
method as this oxidizes during the drying of the hydrolysate under air. 
Unexpectedly, mass spectra consistent with TBDMS-derivitized cysteine and 
tryptophan, commonly reported as lost during the cell hydrolysis process when 
under oxygen, were detected for several experiments (Table 28). In the case of 
cysteine, mass spectra indicative 4-TBDMS derivitized cysteine was observed for 
experiments GA0.075-GA0.32 and XA0.075-XA0.15 at combined retention times of 
28.23-28.98 minutes. 

In the case of tryptophan, mass spectra indicative of 2-TBDMS derivitized 
tryptophan was observed for experiments GA0.075-GA0.32, GAM0.075 and 
XA0.075-XA0.15 at a combined retention time of 26.91-27.05 minutes. 

Individual TIC chromatograms were then extracted for each retention time range. 
Each TIC was then baseline corrected and corrected for natural abundances of 
heavy isotopes as described in methods 2.2.2. This yielded corrected MIDs for each 
mass ion fragment. 

4.4.2.2 The validity of TBDMS-derivitized molecular mass fragments 
for further flux analysis  

To determine which MIDs were valid for further analysis, all-natural isotope 
abundance corrected MIDs of all TBDMS-derivitized amino acid mass ion fragments 
were subjected to a validity check. Each amino acid fragment was qualified as either 
‘Valid’ (possessing an average unlabelled carbon-13 enrichment of 0-1.11%), 
‘Conditionally Valid’ (possessing an average unlabelled carbon-13 enrichment of ≤ 
2.11%) or ‘Invalid’ (possessing an average unlabelled carbon-13 enrichment of ˃2%) 
for further analysis as described in methods 2.2.1.5. In cases where no amino acid 
fragment was qualified as valid, a single conditionally valid fragment was used. The 
average 13C abundances and resulting validity of 31 amino acid fragments (and 3 
mass fragments of TBDMS-derivitized lactic acid) used for further analysis for each 
experiment are presented in Tables 29, 30, 31, 32. The complete validity tables for 
all observed mass ion fragments are presented in Appendix 2. None of the 
observed mass isotopomer fragments representing Asn, Gln, or Trp were found to 
be valid or conditionally valid in any of the experiments. Mass isotopomer fragments 
representing Met were only found valid for the XA0.075 and XA0.15 experiments 
and fragments representing Thr were only found valid for XA0.075.  

Table 29: TBDMS-derivtized amino acid mass fragments for the aerobic glucose ILEs and 

their calculated percentage 13C incorporation after naturally abundant 13C isotope correction. 

Mass fragments are determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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GA0.32 GA0.225 GA0.15 GA0.075 

Amino acid 
fragment 

S.D. n 
= 9 

Amino acid 
fragment 

S.D. n 
= 9 

Amino acid 
fragment 

S.D. n 
=9 

Amino acid 
fragment 

S.D. 
n=3 

Ala302 0.20% 0.06% Ala302 0.19% 0.06% Ala302 0.25% 0.05% Ala302 0.15% 0.08% 

Gly288 0.22% 0.18% Gly288 0.46% 0.16% Gly288 0.35% 0.16% Gly288 0.32% 0.07% 

Val330 0.59% 0.14% Val330 0.67% 0.33% Val330 0.46% 0.11% Val330 0.20% 22.20% 

Pro328 3.43% 0.83% Pro328 4.23% 2.70% Pro328 3.04% 0.98% Pro328 3.43% 0.66% 

Pro258 0.88% 0.78% Pro258 1.92% 1.37% Pro258 4.58% 1.29% Pro258 3.06% 1.99% 

Met377 12.80% 8.78% Met377 30.67% 6.65% Met377 27.13% 5.80% Met377 49.92% 0.14% 

Phe378 15.68% 12.81% Phe378 2.39% 0.44% Phe378 3.81% 0.50% Phe378 3.05% 0.32% 

Phe336 10.68% 14.02% Phe336 0.91% 0.38% Phe336 1.52% 0.46% Phe336 0.89% 0.44% 

Phe308 10.30% 12.54% Phe308 1.18% 0.46% Phe308 1.67% 0.59% Phe308 0.89% 0.39% 

Phe234 9.59% 12.65% Phe234 1.13% 0.52% Phe234 1.93% 0.47% Phe234 1.16% 0.59% 

Ser432 0.05% 0.06% Ser432 0.19% 0.13% Ser432 0.14% 0.07% Ser432 0.12% 0.06% 

Thr446 1.39% 3.92% Thr446 1.39% 3.92% Thr446 1.39% 3.92% Thr446 16.91% 14.04% 

Thr404 2.54% 7.18% Thr404 2.54% 7.18% Thr404 2.54% 7.18% Thr404 21.91% 2.07% 

Lys488 0.13% 0.03% Lys488 0.19% 0.07% Lys488 0.20% 0.06% Lys488 0.20% 0.06% 

Lys473 1.24% 0.40% Lys473 0.94% 0.31% Lys473 0.81% 0.15% Lys473 0.63% 0.60% 

Lys431 0.24% 0.05% Lys431 0.30% 0.10% Lys431 0.40% 0.12% Lys431 0.29% 0.19% 

Lys329 0.94% 0.89% Lys329 0.75% 0.17% Lys329 0.70% 0.20% Lys329 0.46% 0.16% 

Cys304 17.58% 9.50% Cys304 0.31% 0.40% Cys304 0.00% 0.00% Cys304 0.00% 10.05% 

Tyr508 9.34% 3.43% Tyr508 1.65% 0.13% Tyr508 2.30% 0.47% Tyr508 1.84% 0.10% 

Tyr466 1.26% 0.32% Tyr466 0.79% 0.13% Tyr466 1.04% 0.27% Tyr466 0.43% 0.18% 

Tyr438 2.23% 0.38% Tyr438 1.82% 0.29% Tyr438 2.33% 0.54% Tyr438 1.61% 0.21% 

Tyr364 2.02% 0.44% Tyr364 0.87% 0.06% Tyr364 1.24% 0.22% Tyr364 0.78% 0.04% 

His482 6.37% 2.07% His482 2.88% 0.59% His482 1.60% 0.12% His482 1.75% 0.22% 

His440 0.71% 0.09% His440 0.95% 0.57% His440 1.25% 0.75% His440 0.83% 1.63% 

Glu489 0.32% 0.09% Glu489 0.27% 0.11% Glu489 0.23% 0.06% Glu489 0.24% 0.11% 

Glu474 0.22% 0.05% Glu474 0.23% 0.07% Glu474 0.27% 0.04% Glu474 0.16% 0.07% 

Glu404 0.08% 0.02% Glu404 0.32% 0.18% Glu404 0.35% 0.16% Glu404 0.12% 0.02% 

Asp460 0.22% 0.07% Asp460 0.19% 0.07% Asp460 0.17% 0.07% Asp460 0.16% 0.09% 

Asp390 1.95% 0.95% Asp390 3.76% 1.97% Asp390 6.40% 1.59% Asp390 4.00% 0.28% 

Leu344 0.28% 0.05% Leu344 0.49% 0.20% Leu344 0.44% 0.18% Leu344 0.17% 0.11% 

ILe344 0.54% 0.17% ILe344 0.94% 0.51% ILe344 0.41% 0.13% ILe344 0.19% 0.11% 

Lac303 20.39% 9.92% Lac303 30.65% 15.14% Lac303 34.92% 14.36% Lac303 1.38% 3.81% 

Lac261 9.09% 4.07% Lac261 12.44% 5.54% Lac261 19.87% 9.62% Lac261 0.58% 1.38% 

Lac233 7.70% 2.62% Lac233 8.56% 2.94% Lac233 11.58% 4.98% Lac233 0.24% 1.18% 

 

GA0.0752 GMA0.075 GAn0.075 

Amino acid 
fragment 

S.D. 
n=3 

Amino acid 
fragment 

S.D. 
n=9 

Amino acid 
fragment 

S.D. n= 
9  

Ala302 0.15% 0.08% Ala302 0.15% 0.08% Ala302 1.10% 0.15% 

Gly288 0.32% 0.07% Gly288 0.41% 0.21% Gly288 1.34% 3.13% 

Val330 0.20% 22.20% Val330 0.65% 0.19% Val330 1.50% 7.67% 

Table 30: TBDMS-derivtized amino acid mass fragments for the GA0.075, GMA0.075 and 

GAn0.075 ILEs and their calculated percentage 13C incorporation after naturally abundant 
13C isotope correction. Mass fragments are determined as either ‘Valid’, ‘Conditionally Valid’ or 

‘Invalid’. 
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Pro328 3.43% 0.66% Pro328 8.11% 1.28% Pro328 7.98% 2.62% 

Pro258 3.06% 1.99% Pro258 0.77% 0.81% Pro258 3.20% 4.25% 

Met377 49.92% 0.14% Met377 16.81% 7.54% Met377 37.45% 3.21% 

Phe378 3.05% 0.32% Phe378 5.10% 1.12% Phe378 7.22% 14.03% 

Phe336 0.89% 0.44% Phe336 0.79% 0.10% Phe336 1.79% 0.40% 

Phe308 0.89% 0.39% Phe308 0.71% 0.11% Phe308 2.28% 1.45% 

Phe234 1.16% 0.59% Phe234 0.44% 0.30% Phe234 1.66% 0.14% 

Ser432 0.12% 0.06% Ser432 0.12% 0.08% Ser432 1.10% 0.36% 

Thr446 16.91% 14.04% Thr446 1.87% 3.78% Thr446 0.00% 1.39% 

Thr404 21.91% 2.07% Thr404 2.74% 7.11% Thr404 0.00% 2.54% 

Lys488 0.20% 0.06% Lys488 0.16% 0.05% Lys488 1.11% 0.73% 

Lys473 0.63% 0.60% Lys473 2.53% 1.13% Lys473 1.91% 0.62% 

Lys431 0.29% 0.19% Lys431 0.23% 0.06% Lys431 1.20% 0.66% 

Lys329 0.46% 0.16% Lys329 0.78% 0.37% Lys329 1.67% 2.18% 

Cys304 0.00% 10.05% Cys304 0.00% 0.00% Cys304 0.63% 22.09% 

Tyr508 1.84% 0.10% Tyr508 0.87% 0.32% Tyr508 3.56% 6.26% 

Tyr466 0.43% 0.18% Tyr466 0.40% 0.05% Tyr466 1.84% 0.85% 

Tyr438 1.61% 0.21% Tyr438 0.88% 0.19% Tyr438 3.04% 0.59% 

Tyr364 0.78% 0.04% Tyr364 1.04% 0.10% Tyr364 2.30% 0.70% 

His482 1.75% 0.22% His482 4.25% 1.40% His482 3.58% 1.33% 

His440 0.83% 1.63% His440 0.54% 0.19% His440 1.49% 2.98% 

Glu489 0.24% 0.11% Glu489 0.49% 0.18% Glu489 1.64% 0.59% 

Glu474 0.16% 0.07% Glu474 0.42% 0.13% Glu474 1.31% 0.40% 

Glu404 0.12% 0.02% Glu404 0.11% 0.01% Glu404 1.36% 1.49% 

Asp460 0.16% 0.09% Asp460 0.20% 0.09% Asp460 1.24% 0.03% 

Asp390 4.00% 0.28% Asp390 0.70% 1.35% Asp390 2.06% 2.35% 

Leu344 0.17% 0.11% Leu344 0.37% 0.09% Leu344 1.35% 1.70% 

ILe344 0.19% 0.11% ILe344 0.46% 0.09% Ile344 1.47% 0.52% 

Lac303 1.38% 3.81% Lac303 1.46% 0.45% Lac303 1.68% 0.17% 

Lac261 0.58% 1.38% Lac261 0.19% 0.17% Lac261 12.18% 0.69% 

Lac233 0.24% 1.18% Lac233 0.12% 0.08% Lac233 11.23% 0.87% 

 
 
For all glucose experiments, GMA0.075 had the greatest number of valid fragments 
for further analysis (23) while GAn0.075 had the fewest valid (4) and most 
conditionally valid fragments (16). This comparably poor result for the GAn0.075 13C 
ILE was likely down to smaller total biomass concentrations in each 500 µL sample 
taken forward for further analysis. As a result, these values are potentially a 
reflection of a worse signal to noise ratio resulting lower masses of derivitized amino 
acid fragments detected compared to the noise baseline. While quantity of biomass 
is perhaps less important for determining the MID 13C-labelling ratios needed for 
further flux analysis, this result suggests that future work in this area should use the 
measured OD600 readings to standardize the amount of cellular material per sample 
taken forward for further analysis to improve the obtained mass ion signal. 

 

XA0.075 XA0.15 

Table 31: TBDMS-derivtized amino acid mass fragments for the XA0.075 and XA0.15 ILEs 

and their calculated percentage 13C incorporation after naturally abundant 13C isotope 

correction. Mass fragments are determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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Amino acid 
fragments S.D 

Amino acid 
fragments S.D 

Ala302 0.78% 1.80% Ala302 0.21% 0.12% 

Gly288 0.33% 0.13% Gly288 0.36% 0.25% 

Val330 0.08% 0.20% Val330 0.36% 0.21% 

Pro328 0.33% 0.33% Pro328 0.67% 0.80% 

Pro258 1.50% 1.50% Pro258 1.23% 2.01% 

Met377 0.13% 0.13% Met377 0.15% 0.18% 

Phe378 0.74% 0.31% Phe378 0.35% 0.46% 

Phe336 0.77% 0.46% Phe336 0.98% 0.51% 

Phe308 0.61% 0.43% Phe308 1.28% 0.44% 

Phe234 1.00% 0.58% Phe234 1.03% 0.67% 

Ser432 0.10% 0.12% Ser432 0.04% 0.06% 

Thr446 0.23% 0.20% Thr446 5.05% 9.41% 

Thr404 0.09% 0.07% Thr404 3.42% 6.38% 

Lys488 0.07% 0.02% Lys488 0.26% 0.22% 

Lys473 0.95% 0.24% Lys473 0.85% 0.03% 

Lys431 0.13% 0.04% Lys431 0.31% 0.25% 

Lys329 0.52% 0.14% Lys329 0.94% 0.45% 

Cys304 7.47% 10.72% Cys304 3.23% 9.12% 

Tyr508 0.26% 0.13% Tyr508 0.06% 0.08% 

Tyr466 0.43% 0.14% Tyr466 0.14% 0.17% 

Tyr438 1.05% 0.77% Tyr438 0.16% 0.19% 

Tyr364 0.42% 0.06% Tyr364 0.21% 0.26% 

His482 0.52% 0.31% His482 0.31% 0.41% 

His440 0.87% 0.30% His440 1.04% 0.16% 

Glu489 0.25% 0.07% Glu489 0.33% 0.26% 

Glu474 0.16% 0.05% Glu474 0.25% 0.16% 

Glu404 0.01% 0.01% Glu404 0.33% 0.32% 

Asp460 0.14% 0.09% Asp460 0.22% 0.19% 

Asp390 1.17% 1.07% Asp390 1.17% 2.32% 

Leu344 0.18% 0.09% Leu344 0.24% 0.17% 

ILe344 0.17% 0.05% ILe344 0.51% 0.44% 

Lac303 0.00% 0.00% Lac303 0.00% 2.06% 

Lac261 0.47% 0.47% Lac261 0.31% 0.31% 

Lac233 0.16% 0.16% Lac233 0.17% 0.17% 

 
 
 
For the XA0.075 and XA0.15 13C ILEs performed as part of this research in the MKII 
bioreactor system, XA0.075 had 28 amino acid fragments deemed valid with only 2 
fragments deemed conditionally valid, whereas XA0.15 had 26 amino acid 
fragments deemed valid and only 2 fragments deemed conditionally valid. Notably 
however, for the data set provided by Shyam Maskapalli from his anaerobic xylose 
ILE in 2014, a different range of amino acid fragments were qualified as part of this 
research as valid, conditionally valid, and invalid Table 32.  

Table 32: TBDMS-derivtized amino acid mass fragments for the XAn0.075 ILE and their 

calculated percentage 13C incorporation after naturally abundant 13C isotope correction. 

Mass fragments are determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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XAn0.075 

Amino acid 
fragments 

Ala302 23.65% 

Ala232 0.71% 

Gly288 3.66% 

Val330 1.95% 

Val288 1.14% 

Pro328 1.25% 

Pro258 2.02% 

Met377 No data. 

Phe378 0.59% 

Phe336 0.99% 

Phe308 1.16% 

Phe234 1.55% 

Ser432 8.65% 

Ser362 1.07% 

Thr446 0.00% 

Thr404 3.19% 

Lys488 3.56% 

Lys473 0.00% 

Lys431 2.06% 

Lys329 5.21% 

Cys304 No data. 

Tyr508 No data. 

Tyr466 3.69% 

Tyr438 3.36% 

Tyr364 4.53% 

Tyr302 1.47% 

His482 No data. 

His440 No data. 

Glu489 4.29% 

Glu474 3.23% 

Glu404 1.48% 

Glu330 0.97% 

Asp460 6.37% 

Asp418 1.32% 

Asp390 2.90% 

Leu344 5.64% 

Leu200 3.91% 

Ile344 3.95% 

Ile200 3.62% 

Lac303 No data. 

Lac261 No data. 

Lac233 No data. 
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Additionally, 2-TBDMS derivitized lactic acid fragments Lac261 and Lac233 were 
found to be valid for experiments GA0.075, GMA0.075, XA0.075 and XA0.15. While 
this suggests that trace cell culture carried over with the cell pellet, these 
observations suggest that 13C labelling patterns of TBDMS derivitized lactic acid can 
be inferred alongside amino acids. 
 

4.4.3 Isotopically instationary 13C-labelling and MIDs across ILEs 
 
To compare the MIDs and overall extents of 13C incorporation for the proteinogenic 
amino acid mass fragments across the different dilution rate experiments, each data 
set was normalized to the CCVCs of the different dilution rates (as displayed in 
Table 21). Furthermore, to broadly compare different labelling patterns in different 
pathways of CCM, the isotopically instationary 13C labelling data for all experiments 
is presented in terms of assumed CCM node (Figure 44). Across the different 
dilution rate, aeration and sugar substrate experiments, all potentially proteinogenic 
TBDMS-derivitized amino acid mass fragments demonstrate an observable 
increase in 13C isotopic labelling over increasing CCVCs. Furthermore, these CCVC 
normalised rates do differ between experiments as do the mass isotopomers (M+0, 
M+1…M+n) which predominate for each observed amino acid. 
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 Figure 44: Simplified schematic of assumed P. thermoglucosidasius central carbon 

metabolism framing the presented amino acids and nodes. Boxed intermediate metabolites 

highlight precursors involved with amino acid metabolism discussed below. Boxed amino acids 

highlighted in orange represent discussed amino acids which function as intermediates for other 

amino acids. Threonine phased out in white represents its involvement in the biosynthetic route from 

aspartate to isoleucine, but that it is not discussed here. The remaining amino acids discussed are 

highlighted in brown. Central carbon metabolites are highlighted in green (glycolysis), yellow 

(pentose phosphate pathway), purple (Entner-Doudoroff pathway) and red (TCA cycle). The 

fermentation metabolites discussed in the following analysis are highlighted blue. Available metabolic 

paths informed from genome sequence of P. thermoglucosidasius DSM 2542, complete with enzyme 

commission (EC) numbers (purple text). AcCoA (acetyl-coenzyme A), AKG (α-ketoglutarate), Cit 

(citrate), Chor (chorismate), DHAP (dihydroxyacetone phosphate), E4P (erythrose-4-phosphate), 

FBP (fructose-bis-phosphate), Fum (fumarate), GAP (glyceraldehyde-3-phosphate), G6P (glucose-6-

phosphate), 6PG (6-phosphogluconate), ICit (isocitrate), Mal (malate), OAA (oxaloacetate), F6P 

(fructose-6-phosphate), PEP  (phosphoenolpyruvate), 3PGA (3-phosphoglycerate), R5P (ribose-5-

phosphate), Ru5P (ribulose-5-phosphate), S7P (sedo-heptulose-7-phosphate), Suc (succinate), TK-

C2 (transketolase C-2) and Xu5P (xylulose-5-phosphate). Adapted from Shree et al. (2018) 201, 

Tang et al. (2009)128 and Cordova and Antoniewicz (2016)127.  
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4.4.3.1 Nodes: R5P – His440 E4P/PEP Tyr466, Phe 336 

Beginning at the pentose phosphate pathway, three observed TBDMS-derivitized 
amino acids can receive direct contributions from flux through this pathway. The first 
is six-carbon histidine (derived from R5P and represented here by mass fragment 
His440), the second is nine-carbon tyrosine (represented by mass fragment Tyr466) 
and the third is nine-carbon phenylalanine (represented by mass fragment Phe336). 
Both tyrosine and phenylalanine are derived from a combination of PPP metabolite 
E4P and glycolysis intermediate PEP. 

Comparing GA0.075 GA0.15 GA0.225 and GA0.32  
The first set of experiments which can be directly compared are the aerobic, 0.075, 
0.15, 0.225 and 0.32 h-1 dilution rate ILEs where 0.3% w/v (60% 1-13C and 40% U-
13C) ᴰ-glucose was the sole substrate (GA0.075, GA0.15, GA0.225 and GA0.32). 

For the GA0.15, GA0.225 and GA0.32 ILEs, an isotopic steady state is observable 
for the MIDs of the His440, Tyr466 and Phe366 mass fragment populations by the 
3rd CCVC but is not obviously achieved for GA0.075 (Figure. 45). The respective 
final totals of 13C labelling for all three amino acids observed for GA0.32 were: 
90.7% for His440, 93.4% for Tyr466 and 93.4% for Phe 336 (Fig. 45, graph column 
1), observed for GA0.225 were: 94.6% for His440, 93.9% for Tyr466 and 93.9% for 
Phe 336 (Fig.45, graph column 2) and observed for GA0.15 were: 92.3% for 
His440, 93.2% for Tyr466 and 93.5% for Phe 336 (Fig. 45, graph column 3). 
GA0.075 demonstrated lower observed final total 13C labelling values of: 68.7% for 
His440, 69.7% for Tyr466 and 69.6% for Phe 336 (Fig.45, graph column 4). 
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Across the His440, Tyr466 and Phe336 mass fragments of the GA0.15, GA0.225 and GA0.32 ILEs, the mass isotopomer with the highest 
abundance for 6 carbon histidine was either the M+2 or M+5 mass isotopomer and for 9 carbon tyrosine and phenylalanine was the M+5 mass 
isotopomer. This resulted in steady state fractional abundances of: 0.173 (± 0.001) for His440 M+2, 0.158 (± 0.002) for Tyr466 M+5  and 0.158 
(± 0.001) for Phe336 M+5 in GA0.32, steady state fractional abundances of 0.199 (± 0.00) for His440 M+2, 0.159 (± 0.002) for Tyr466 M+5 and 
0.158 (± 0.001) for Phe336 M+5 in GA0.225, steady state fractional abundances of 0.313 (± 0.001) for His440 M+5, 0.157 (± 0.001) for Tyr466 
M+5 and 0.158 (± 0.001) for Phe336 M+5 observed in GA0.15. For the GA0.075 ILE there were observed final fractional abundances of 0.313 
(± 0.001) for the His440 M+0 mass fragment, 0.303 (± 0.002) for the Tyr466 M+0 mass fragment and 0.304 (± 0.003) for the Phe336 M+5 mass 
fragment observed in GA0.075. 

Figure 45: PPP derived TBDMS-derivitized amino acid MIDs for mass fragments His440, Tyr466 and Phe336 for the GA0.32, GA0,225, GA0.15 and GA0.075 of 

the INST-13C-MFA ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green), M+6 (Dark Blue), M+7 

(Dark Brown), M+8 (Dark Grey), M+9 (Light Brown). Reported values are means of technical triplicate samples with error bars representing SD. 
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Comparing GA0.075 GMA0.075 GAn0.075  
The second set of experiments which can be directly compared are the aerobic 
0.075 h-1, micro-aerobic 0.075 h-1 and anaerobic 0.075 h-1 dilution rate ILEs where 
0.3% w/v (60% 1-13C and 40% U-13C) ᴰ-glucose was the sole substrate (GA0.075, 
GAM0.075 and GAn0.075). In addition to the aforementioned GA0.075 ILE, for the 
GAM0.075 ILE it appears that an isotopic steady state may have been reached for 
the MIDs of the His440, Tyr466 and Phe366 mass fragment populations by the final 
4 CVCC time point, however this is inconclusive. Alternatively, for the GAn0.075 
ILEs, an isotopic steady state is observable from the 3.56 CCVC time point (Figure. 
46). The respective final totals of 13C labelling for all three amino acids observed for 
GAM0.075 were: 84.4% for His440, 90.5% for Tyr466 and 90.4% for Phe 336 
(Figure. 46, graph column 2) and for GAn0.075 were: 87.4% for His440, 92.9% for 
Tyr466 and 92.6% for Phe 336 (Figure. 46, graph column 3). 
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Across the His440, Tyr466 and Phe336 mass fragments of the GAM0.075 and GAn0.075 ILEs, the mass isotopomer with the highest 
abundance for 6 carbon histidine varied, but for 9 carbon tyrosine and phenylalanine was again the M+5 mass isotopomer. In addition to the 
aforementioned GA0.075 results, this resulted steady state fractional abundances of 0.176 (± 0.002) for His440 M+2, 0.155 (± 0.003) for 
Tyr466 M+5 and 0.157 (± 0.001) for Phe336 M+5 observed in GAM0.075. For GAn0.075, the highest fractional abundances for histidine were 
close between the His440 M+1 and M+5 for mass fragments with 0.173 (± 0.002) for His440 M+1 vs 0.165 (± 0.002) for His440 M+5. For 
tyrosine and phenylalanine, the M+5 mass fragment predominated with observed abundances of 0.176 (± 0.004) for Tyr466 M+5 and 0.157 (± 
0.002) for Phe336 M+5.

Figure 46: PPP derived TBDMS-derivitized amino acid MIDs for mass fragments His440, Tyr466 and Phe336 for the GA0.075, GMA0,075, GAn0.075 of the INST-
13C-MFA ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green), M+6 (Dark Blue), M+7 (Dark 

Brown), M+8 (Dark Grey), M+9 (Light Brown). Reported values are means of technical triplicate samples with error bars representing SD. 
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Comparing XA0.075 XA0.15 XAn0.075  
The third set of experiments which can be directly compared are the xylose aerobic 
0.075 h-1 and xylose aerobic 0.15 h-1 dilution rate ILEs performed in this research 
(XA0.075, XA0.15) and the xylose anaerobic 0.075 h-1 dilution rate ILE (XAn0.075). 
In the case of XA0.075 and XA0.15, 0.3% w/v (75% 1-13C and 25% natural labelled) 
ᴰ-xylose was the sole substrate and in the case of XAn0.075, 0.5% w/v (75% 1-13C 
and 25% natural labelled) ᴰ-xylose was the sole substrate. For the XA0.075 an 
XA0.15 ILEs, an isotopic steady state is observable for the MIDs of the His440, 
Tyr466 and Phe336 mass fragment populations again by the 3rd CCVC (Figure. 47). 
However, for the XAn0.075 ILE, while an isotpic steady state is achieved for Tyr466 
and Phe336, no mass fragments of TBDMS-derivatized histidine were observed.  

As a result of the 75% 1-13C substrate labelling pattern, the respective final totals of 
13C labelling for all three amino acids were far lower than the glucose experiments, 
reaching final percentages observed for XA0.075 of: 79.6% for His440, 58.2% for 
Tyr466 and 58.5% for Phe 336 (Figure. 47, graph column 1), for XA0.15 of: 81.3% 
for His440, 60.0% for Tyr466 and 59.7% for Phe 336 (Figure. 47, graph column 2) 
and for XAn0.075 of: 58.2% for Tyr466 and 54.6% for Phe336 (Figure. 47, graph 
column 3). 
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As a further result of the 75% 1-13C substrate labelling pattern, across the observed His440, Tyr466 and Phe336 mass fragments, the mass 
isotopomer with the highest abundance for 6 carbon histidine, when observed, was the M+1 mass isotopomer. For 9 carbon tyrosine and 
phenylalanine it was predominantly the M+0 unlabelled mass isotopomer. For each experiment, this resulted in steady state fractional 
abundances of 0.472 (± 0.039) for His440 M+1, 0.418 (± 0.002) for Tyr466 M+0 and 0.415 (± 0.003) for Phe336 M+0 in XA0.075, steady state 
fractional abundances of 0.506 (± 0.004) for His440 M+1, 0.400 (± 0.001) for Tyr466 M+0 and 0.403 (± 0.001) for Phe336 M+1 in XA0.15 and 
steady state fractional abundances of 0.418 for Tyr466 M+0 and 0.454 for Phe336 M+0 in XAn0.075. 

Figure 47: PPP derived TBDMS-derivitized amino acid MIDs for mass fragments His440, Tyr466 and Phe336 for the XA0.15, XA0,075, XAn0.075 of the INST-13C-

MFA ILEs performed in this research. His440 was not detected for the XAn0.075. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 

(Green), M+6 (Dark Blue), M+7 (Dark Brown), M+8 (Dark Grey), M+9 (Light Brown). Reported values are means of technical triplicate samples with error bars representing 

SD. 
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4.4.3.2 Node: 3PG - Ser432, Gly288 

‘Descending’ from upper CCM, the next metabolic intermediate node of interest is 3-
phosphoglycerate (3PG), of which 3 carbon serine and two carbon serine-derivative 
glycine are direct products. The representative valid TBDMS- derivitized amino acid 
mass fragments of these amino acids were Ser432 and Gly288.  
 

Comparing GA0.075, GA0.15, GA0.225 and GA0.32  
 

For the GA0.15, GA0.225 and GA0.32 ILEs, an isotopic steady state is observable 
for the MIDs of the Ser432, and Gly288 mass fragment populations by the 3rd 
CCVC, but again is not obviously achieved for GA0.075 (Figure. 48).  

The respective final totals of 13C labelling for all three amino acids for GA0.32 were: 
69.8% for Ser432 and 42.8% for Gly288 (Figure.48, graph column 1), for GA0.225 
were: 72.0% for Ser432 and 43.2% for Gly288 (Figure. 48, graph column 2) and 
GA0.15 were: 69.3% for Ser432 and 44.8% for Gly288 (Figure. 48, graph column 
3). GA0.075 demonstrated lower final enrichment values of: 54.5% for Ser432 and 
35.9% for Gly288 (Figure. 48 graph column 4). 
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Across the Ser432 and Gly288 fragments, the mass isotopomer with the highest abundance for 3 carbon serine was predominantly the M+3 
mass isotopomer and for 2 carbon glycine was the M+0 mass isotopomer. For each experiment, this resulted in final fractional abundances of 
0.333 (± 0.002) for Ser432 M+3 and 0.572 (± 0.002) for Gly288 M+0 in GA0.32, steady state fractional abundances of 0.314 (± 0.003) for 
Ser432 M+3 and 0.568 (± 0.001) for Gly288 M+0 in GA0.225, steady state fractional abundances of 0.307 (± 0.002) for Ser432 M+0 and 0.552 
(± 0.003) for Gly288 M+0 in GA0.15 and steady state fractional abundances of 0.455 (± 0.003) for Ser432 M+0 and 0.641 (± 0.002) for Gly288 
M+0 in in GA0.075. 

 

Figure 48: 3PG derived TBDMS-derivitized amino acid MIDs for mass fragments Ser432 anf Gly288 for the GA0.32, Ga0.225, GA0.15 and GA0.075 of the INST-

13C-MFA ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), Reported values are means of technical triplicate samples 

with error bars representing SD. 
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Comparing GA0.075, GMA0.075 and GAn0.075  
 

For the GMA0.075 ILE, in terms of isotopic steady state for the MIDs of the Ser432 
and Gly288 mass fragment populations, it appears that an isotopic steady state may 
have been reached by the final 4 CVCC time point, however it is inconclusive. 
Alternatively, for the GAn0.075 ILE, an isotopic steady state is observable from the 
3.56 CCVC time point (Figure. 49). The respective final totals of 13C labelling for all 
three amino acids observed for GAM0.075 were: 68.1% for Ser432 and 43.4% for 
Gly288 (Figure. 49, graph column 2) and for GAn0.075 were: 68.7% for Ser432 and 
43.5% for Gly288 (Figure. 49, graph column 3).  
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For the Ser432 and Gly288 mass fragments of the GMA0.075 and GAn0.075 ILEs, the mass isotopomer with the highest abundance for 3 
carbon serine was the M+3 mass isotopomer but for 2 carbon glycine was the M+0 unlabelled mass isotopomer. This resulted in steady state 
fractional abundances of 0.373 (± 0.004) for Ser432 M+3 and 0.566 (± 0.003) for Gly288 M+0 in GAM0.075 and steady state fractional 
abundances of 0.357 (± 0.010) for Ser432 M+3 and 0.565 (± 0.005) for Gly288 M+0 observed in GAn0.075 

 

 

 

Figure 49: 3PG derived TBDMS-derivitized amino acid MIDs for mass fragments Ser432 anf Gly288 for the GA0.075, GMA0075, GAn0.075 of the INST-13C-MFA 

ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), Reported values are means of technical triplicate samples with error 

bars representing SD. 
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Comparing XA0.075, XA0.15 and XAn0.075  
For the XA0.075 an XA0.15 ILEs, an isotopic steady state is observable for the 
MIDs of the Ser432 and Gly288 mass fragment populations again by the 3rd CCVC 
(Figure. 50), but this is complicated for the XAn0.075 ILE by the high variation in 
measured MID values for Ser432 and the final time point of Gly288.  

For the three 13C Xylose ILEs, the respective final totals of 13C labelling for all three 
amino acids were again lower than the glucose experiments, reaching final 
percentages observed for XA0.075 of: 33.9% for Ser432 and 13.8% for Gly288 
(Figure. 50, graph column 1), for XA0.15 of: 32.7% for Ser432 and 16.0% for 
Gly288 (Figure. 50, graph column 2) and observed for XAn0.075 of: 31.6% for 
Ser432, and 12.8% for Gly288 (Figure. 50, graph column 3). 
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Across the Ser432 and Gly288 mass fragments for all the xylose ILEs, the mass isotopomer with the highest abundance for both 3 carbon 
serine and 2 carbon glycine the M+0 mass isotopomer. For each experiment, this resulted in final fractional abundances of 0.661 (± 0.002) for 
Ser432 M+0 and 0.862 (± 0.042) for Gly288 M+0 in XA0.075, steady state fractional abundances of 0.673 (± 0.001) for Ser432 M+0 and 0.840 
(± 0.001) for Gly288 M+0 in in XA0.15 and steady state fractional abundances of 0.684 for Ser432 M+0 and 0.872 for Gly288 M+0 in in 
XAn0.075. 

 

 

Figure 50: 3PG derived TBDMS-derivitized amino acid MIDs for mass fragments Ser432 anf Gly288 for the XA0.15, XA0.075, XAn0.075 of the INST-13C-MFA ILEs 

performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), Reported values for XA0.15 and XA0.075 are means of technical triplicate 

samples with error bars representing SD 
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4.4.3.3 Nodes: Pyr/AcCoA – Ala302, Val330 and Leu344  

The next CCM nodes of interest are those of pyruvate (PYR) and acetyl-CoA 
(AcCoA), represented separately below by TBDMS-derivitized amino acid mass 
fragments for alanine (Ala302) and valine (Val330), and collectively by the leucine 
mass fragment Leu344. Biosynthesis of five-carbon valine begins with two 
molecules of PYR which eliminates a single carbon as CO2 from the second PYR to 
bind to the acetolactate synthase enzyme https://chemistry-
europe.onlinelibrary.wiley.com/doi/10.1002/slct.201702128  
Biosynthesis of six-carbon Leucine represents a combination of the PYR and 
AcCoA nodes, effectively replacing the 5th carbon from the valine biosynthesis 
intermediate 3-methyl-2-oxobutanoate with AcCoA. 
 

Comparing GA0.075, GA0.15, GA0.225 and GA0.32  
For the GA0.15, GA0.225 and GA0.32 ILEs, an isotopic steady state is again 
observable for the MIDs of the Ala302, Leu344 and Val330 mass fragment 
populations by the 3rd CCVC. For GA0.075, isotopic steady state could have been 
achieved for Ala302 and Val330 by the end of the experiment but was unlikely to 
have been achieved by Leu344 (Figure.51).  

The respective final totals of 13C-labelling for all three amino acids for GA0.32 were: 
73.1% for Ala302, 93.1% for Leu344 and 87.5% for Val330 (Figure. 51 graph 
column 1), for GA0.225 were: 73.8% for Ala302, 95.3% for Leu344 and 88.6% for 
Val330 (Figure. 51, graph column 2) and GA0.15 were: 74.2% for Ala302, 95.1% for 
Leu344 and 88.2% for Val330 (Figure. 51, graph column 3). GA0.075 demonstrated 
lower final enrichment values of 54.1% for Ala302, 71.8% for Leu344 and 67.0% for 
Val330 (Figure 51, graph column 4). 
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182 
 

 

Across the Ala302, Leu344 and Val330 fragments, the mass isotopomer with the highest fractional abundance for 3 carbon alanine was a close 
competition between the M+0 and M+3 mass isotopomers for GA0.32 (0.331 (± 0.002) M+0 vs. 0.320 (± 0.003) M+3), GA0.225 (0.331 (± 
0.001) M+0 vs. 0.320 (± 0.001) M+3) and GA0.15 (0.330 (± 0.002) M+0 vs. 0.313 (± 0.002) M+3), but was clearly the M+0 mass isotopomer for 
GA0.075 0.541 (± 0.004). For 6 carbon leucine the predominant mass isotopomer for GMA0.075 was the M+3 isotopomer, with a steady state 
fractional abundance of 0.232 (± 0.004) for Leu344 M+3 for GA0.32, 0.242 (± 0.004) for Leu344 M+3 for GA0.225 and 0.239 (± 0.002) Leu344 
M+3 for GA0.15. For GA0.075 the predominant fragment was the M+0 isotopomer with a final fractional abundance of 0.282 (± 0.002) Leu344 
M+0. For 5 carbon valine however the M+3 mass isotopomer predominated for GA0.32 0.221 (± 0.004) Val330 M+3, GA0.225 0.224 (± 0.002) 
Val330 M+3 and GA0.15 0.224 (± 0.003) Val330 M+2. Once again, the M0 mass isotopomer predominated for GA0.075 0.330 (± 0.002).

Figure 51: Pyruvate and acetate derived TBDMS-derivitized amino acid MIDs for mass fragments Ala302, Leu344 and Val330 for the GA0.32, GA0,225, GA0.15 and 

GA0.075 of the INST-13C-MFA ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green), M+6 (Dark 

Blue). Reported values are means of technical triplicate samples with error bars representing SD. 
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Comparing GA0.075, GMA0.075 and GAn0.075  
For the GMA0.075 and GAn0.075 ILEs, an isotopic steady state is observable from 
the 3.225 CCVC time point for the MIDs of the Ala302, Val330 and Leu344 mass 
fragment populations (Figure. 52).  

The respective final totals of 13C labelling for all three amino acids observed for 
GAM0.075 were: 73.1% for Ala302, 90.5% for Leu344 and 85.3% for Val330 
(Figure.52, graph column 2) and for GAn0.075 were: 64.6% for Ala302, 90.7% for 
Leu344 and 90.7% for Val330 (Figure.52, graph column 3).  
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For the Ala302, Leu344 and Val330 mass fragments of the GMA0.075 and GAn0.075 ILEs, the mass isotopomer with the highest abundance 
for 3 carbon alanine was the M+0 mass isotopomer for GMA0.075 and GAn0.075 with respective fractional abundances of 0.304 (± 0.002) 
Ala302 M+0 and 0.354 (± 0.017) Ala302 M+0. For 6 carbon leucine the predominant mass isotopomer for GMA0.075 was the M+4 isotopomer, 
with a steady state fractional abundance of 0.228 (± 0.003) for Leu344 M+4, but for GAn0.075 was a close contest between the M+2 and M+3 
isotopomers with steady state fractional abundance of 0.218 (± 0.002) Leu344 M+2 and 0.222 (± 0.008) Leu344 M+3. Lastly, for 5 carbon 
valine, for both the GMA0.075 and GAn0.075 ILEs, the mass isotopomers with the highest abundances varied due to close final values and 
measurement error. This resulted in steady state fractional abundances of 0.266 (± 0.136) for Val330 M+1 and 0.196 (± 0.048) for Val330 M+3 
in GAM0.075 and steady state fractional abundances of 0.212 (± 0.005) for Val330 M+2 and 0.215 (± 0.006) for Val330 M+3 in GAn0.075.

Figure 52: Pyruvate and acetate derived TBDMS-derivitized amino acid MIDs for mass fragments Ala302, Leu344 and Val330 for the GMA0.075, GM0.075 and 

GAn0.075 of the INST-13C-MFA ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green), M+6 (Dark 

Blue). Reported values are means of technical triplicate samples with error bars representing SD. 
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Comparing XA0.075, XA0.15 and XAn0.075  
For the XA0.075 and XA0.15 ILEs, an isotopic steady state is observable for the 
MIDs of the Ala302, Val330 and Leu344 mass fragment populations again by 2.5 
CCVCs for XA0.075 and XA0.15 (Figure. 53). Once again, this is unclear for the 
XAn0.075 due to the high variation in measured MIDs.  

For the three 13C xylose ILEs, the respective final totals of 13C labelling for all three 
amino acids were again lower than the glucose experiments, reaching final 
percentages observed for XA0.075 of: 32.8% for Ala302, 50.9% for Val330 and 
62.2% for Leu344 (Figure 53, graph column 1), for XA0.15 of: 32.1% for Ala302, 
50.5% for Val330 and 62.8% for Leu344 (Figure 53 graph column 2) and observed 
for XAn0.075 of: 39.4% for Ala302, 41.4% for Val330 and 50.1% for Leu344 (Figure 
53, graph column 3).  
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Across the Ala302, Val330 and Leu344 mass fragments of the XA0.075, XA0.15 and XAn0.075 ILEs, the mass isotopomer with the highest 
abundance for 3 carbon alanine was the M+0 mass isotopomer. This final fractional abundances for each ILE were 0.672 (± 0.002) for Ala302 
M+0 in XA0.075, 0.679 (± 0.002) for Ala302 M+0 in XA0.15 and 0.606 for Ala302 M+0 in XAn0.075. For each xylose ILE, the M+0 fragment 
predominated for 5 carbon valine, with final fractional abundances for XA0.075 of 0.491 (± 0.002) for Val330 M+0, for XA0.15 of 0.495 (± 0.001) 
for Val330 M+0 and for XAn0.075 of 0.586 for Val330 M+0.  Lastly, for 6 carbon leucine, the predominant mass isotopomer was the M+1 
isotopomer for both the XA0.075 and XA0.15 ILEs, with steady state fractional abundances of 0.408 (± 0.002) for Leu344 M+1 in XA0.075 and 
steady state fractional abundances of 0.421 (± 0.003) for Leu344 M+1 in XA0.15. For the XAn0.075 ILE the M+0 mass fragment predominated 
with a final abundance of 0.499 for Leu344 M+0.

Figure 53: Pyruvate and acetate derived TBDMS-derivitized amino acid MIDs for mass fragments Ala302, Leu344 and Val330 for the XA015, XA0.075 and 

XAn0.075 of the INST-13C-MFA ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green), M+6 (Dark 

Blue). Reported values for XA0.15 and XA0.075 are means of technical triplicate samples with error bars representing SD. 
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4.4.3.4 Node: AKG – Glu474, Pro258 

The results of the final α-ketoglutarate (AKG) and oxaloacetate (OAA) nodes 
represent the citric acid cycle.  
Following the conventional clockwise directionality of the citric acid cycle, the 
penultimate node of interest is AKG, represented here by TBDMS-derivitized mass 
fragments for 5 carbon glutamate (Glu474) and 5 carbon proline. In this instance 
proline is represented by 4 carbon mass fragment Pro258. 

Comparing GA0.075, GA0.15, GA0.225 and GA0.32  
 
For the GA0.15, GA0.225 and GA0.32 ILEs, an isotopic steady state is observable 
for the MIDs of the Glu474, and Pro258 mass fragment populations by 2.6 CCVCs. 
It not obviously achieved for GA0.075 by the end of the ILE (Figure. 54).  

The respective final totals of 13C labelling for all three amino acids for GA0.32 were: 
87.2% for Glu474 and 90.7% for Pro258 (Figure 54, graph column 1), for GA0.225 
were: 93.0% for Glu474 and 92.2% for Pro258 (Figure 54, graph column 2) and 
GA0.15 were: 89.0% for Glu474 and 91.5% for Pro258 (Figure 54, graph column 3). 
GA0.075 demonstrated lower final enrichment values of: 76.5% for Glu474 and 
68.3% for Pro258 (Figure 54 graph column 4). 
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Across the Glu474 and Pro258 fragments, the mass isotopomer with the highest abundance for 5 carbon glutamate was the M+3 mass 
isotopomer and for 5 carbon proline the M+2 mass isotopomer. For each experiment, this resulted in final fractional abundances of 0.176 (± 
0.002) for Glu474 M+3 and 0.261 (± 0.001) for Pro258 M+2 in GA0.32, steady state fractional abundances of 0.282 (± 0.002) for Glu474 M+3 
and 0.313  (± 0.001) for Pro258 M+3 in GA0.225, steady state fractional abundances of 0.267 (± 0.003) for Glu474 M+3 and 0.312 (± 0.001) for 
Pro258 M+2 in GA0.15 and final fractional abundances of 0.235 (± 0.003) for Glu474 M+0 and 0.317 (± 0.001) for Pro258 M+0 in in GA0.075. 

 

 

 

Figure 54: AKG derived TBDMS-derivitized amino acid MIDs for mass fragments Glu474 and Pro258 for the GA0.32, GA0,225, GA0.15 and GA0.075 of the INST-
13C-MFA ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green). Reported values are means of 

technical triplicate samples with error bars representing SD. 
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Comparing GA0.075, GMA0.075 and GAn0.075  
For the GMA0.075 ILE, in terms of isotopic steady state for the MIDs of the Glu474 
and Pro258 mass fragment populations, it appears that an isotopic steady state may 
have been reached by the final 4 CVCC time point, however it is inconclusive. 
Alternatively, for the GAn0.075 ILE, an isotopic steady state is observable from the 
3.56 CCVC time point (Figure. 55). The respective final totals of 13C labelling for all 
three amino acids observed for GAM0.075 were: 88.5% for Glu474 and 85.4% for 
Pro258 (Figure. 55, graph column 2) and for GAn0.075 were: 87.6% for Glu474 and 
86.2% for Pro258 (Figure. 55, graph column 3).  
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For the Glu474 and Pro258 mass fragments of the GMA0.075 and GAn0.075 ILEs, the mass isotopomer with the highest abundance for 5 
carbon glutamate was the M+3 mass isotopomer and for 5 carbon proline the M+2 mass isotopomer. This resulted steady state fractional 
abundances of 0.257 (± 0.001) for Glu474 M+3 and 0.300 (± 0.001) for Pro258 M+2 in GAM0.075 and steady state fractional abundances of 
0.249 (± 0.005) for Glu474 M+3 and 0.306 (± 0.005) for Pro258 M+2 observed in GAn0.075. 

 

Figure 55: AKG derived TBDMS-derivitized amino acid MIDs for mass fragments Glu474 and Pro258 for the GA0.075, GMA0.075 and GAn0.075 INST-13C-MFA ILEs 

performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green), M+6 (Dark Blue). Reported values for XA0.15 and 

XA0.075 are means of technical triplicate samples with error bars representing SD. 
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Comparing XA0.075, XA0.15 and XAn0.075  
For the XA0.075, XA0.15 and XAn0.075 ILEs, an isotopic steady state is observable 
for the MIDs of the Glu474 and Pro258 mass fragment populations again by the 3rd 
CCVC (Figure. 56). 

For the three 13C xylose ILEs, the respective final totals of 13C labelling for all three 
amino acids were again lower than the glucose experiments, reaching final 
percentages observed for XA0.075 of: 59.0% for Glu474 and 56.4% for Pro258 
(Figure. 56, graph column 1), for XA0.15 of: 54.9% for Glu474 and 54.4% for 
Pro258 (Figure. 56, graph column 2) and observed for XAn0.075 of: 45.7% for 
Glu474 and 41.5% for Pro258 (Figure. 56, graph column 3). 
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Once again, across the Glu474 and Pro258 mass fragments, the mass isotopomer with the highest abundance for both 5 carbon glutamate and 
5 carbon proline was the M+0 mass isotopomer. For each experiment, this resulted in final fractional abundances of 0.410 (± 0.004) for Glu474 
M+0 and 0.436 (± 0.016) for Pro258 M+0 in XA0.075, steady state fractional abundances of 0.451 (± 0.002) for Glu474 M+0 and 0.456 (± 
0.002) for Pro258 M+0 in in XA0.15 and steady state fractional abundances of 0.543 for Glu474 M+0 and 0.585 for Pro258 M+0 in in 
XAn0.075. 

 

 

Figure 56: AKG derived TBDMS-derivitized amino acid MIDs for mass fragments Glu474 and Pro258 for the XA0.15, XA0.075 and XAn0.075 of the INST-13C-MFA 

ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green), M+6 (dark blue). Reported values for XA0.15 

and XA0.075 are means of technical triplicate samples with error bars representing SD. 
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4.4.3.5 Node: OAA – Asp460, Lys473, Ile344 

The final node of interest was OAA, represented by the direct transamination 
product of aspartate (Asp460) and the derivative products lysine (Lys473) and 
isoleucine (Ile344). While routes to the production of lysine and isoleucine exist, 
which receive contributions from alternative nodes, the genome of P. 
thermoglucosidasius suggest that these should be absent. In particular, the P. 
thermoglucosidaisius genome appears to be missing a gene for a citramalate 
synthase enzyme which would enable direct contributions from PYR to pools of 
leucine and an LL-diaminopimelate aminotransferase which could create two routes 
in the biosynthetic pathway of isoleucine which would affect labelling. Absences for 
both genes are also reflected in p-thermo. 
 

Comparing GA0.075, GA0.15, GA0.225 and GA0.32  
For the GA0.15, GA0.225 and GA0.32 ILEs, an isotopic steady state is again 
observable for the MIDs of the Asp460, Lys473 and Ile344 mass fragment 
populations by 2.5 CCVCs. For GA0.075, isotopic steady state could have been 
achieved for Asp460, Lys473 and Ile344 by the end of the experiment (Figure 57), 
but this is inconclusive.  

The respective final totals of 13C labelling for all three amino acids for GA0.32 were: 
87.5% for Asp460, 93.6% for Lys473 and 93.8% for Ile344 (Figure. 57, graph 
column 1), for GA0.225 were: 90.0% for Asp460, 94.8% for Lys473 and 95.3% for 
Ile344 (Figure. 57, graph column 2) and GA0.15 were: 89.8% for Asp460, 94.4% for 
Lys473 and 94.7% for Ile344 (Figure 57, graph column 3). GA0.075 demonstrated 
lower final enrichment values of: 69.9% for Asp460, 69.9% for Lys473 and 70.7% 
for Ile344 (Figure 57, graph column 4). 
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Across the Asp460, Lys473 and Ile344 fragments of the GA0.15, GA0.225 and GA0.32 ILEs, the mass isotopomer with the highest fractional 
abundance for 4 carbon aspartic acid the M+2 mass isotopomer predominated for GA0.32 (0.253 (± 0.001) Asp460 M+2, GA0.225 (0.277 (± 
0.00) Asp460 M+2 and GA0.15 0.278 (± 0.001) Asp460 M+2. For 6 carbon lysine however the M+3 mass isotopomer predominated for GA0.32 
0.228 (± 0.003) Lys473 M+3, GA0.225 0.231 (± 0.003) and GA0.15 0.230 (± 0.002).  For 6 carbon isoleucine the M+3 mass isotopomer 
predominated for GA0.32 0.232 (± 0.005) Ile344 M+3, GA0.225 0.245 (± 0.004) Ile344 M+3 and GA0.15 0.241 (± 0.003). Once again, for the 
GA0.075 ILE the M0 mass isotopomer with final abundances of 0.301 (± 0.003) Asp460 M+0, 0.301 (± 0.003) Lys473 M+0, 0.293 (± 0.003) 
Ile344 M+0.  

 

Figure 57: OAA derived TBDMS-derivitized amino acid MIDs for mass fragments Asp460, Lys473 and Ile344 for the GA0.32, GA0,225, GA0.15 and GA0.075 INST-
13C-MFA ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green), M+6 (Dark Blue). Reported values 

are means of technical triplicate samples with error bars representing SD. 
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Comparing GA0.075, GMA0.075 and GAn0.075  
For the GMA0.075 and GAn0.075 ILEs, an isotopic steady state is observable from 
the 3.225 CCVC time point for the MIDs of the Asp460, Lys473 and Ile344 mass 
fragment populations (Figure. 58). The respective final totals of 13C labelling for all 
three amino acids observed for GAM0.075 were: 82.5% for Asp460, 76.8% for 
Lys473 and 89.9% for Ile344 (Figure. 58, graph column 2) and for GAn0.075 were: 
82.6% for Asp460, 89.2% for Lys473 and 90.5% for Ile344 (Figure 58, graph column 
3).  
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For the Asp460, Lys473 and Ile344 mass fragments of the GMA0.075 and GAn0.075 ILEs, the mass isotopomer with the highest abundance 
for 4 carbon aspartate was the M+2 mass isotopomer for GMA0.075 with a fractional abundance of 0.245 (± 0.01) Asp460 M+2 and was the 
M+1 mass isotopomer for GAn0.075 with a fractional abundance of 0.245 (± 0.002). For 6 carbon leucine the predominant mass isotopomer for 
both GMA0.075 and GAn0.075 was the M+3 isotopomer, with respective steady state fractional abundances of 0.208 (± 0.005) for Lys473 M+3 
and 0.223 (± 0.001) Lys473 M+3. Lastly, for 6 carbon isoleucine, for both the GMA0.075 and GAn0.075 ILEs, the mass isotopomer with the 
highest abundance for isoleucine was the M+3 mass isotopomer. This resulted in observed steady state fractional abundances of 0.220 (± 
0.001) for Ile344 M+3 in GAM0.075 and steady state fractional abundances of 0.224 (± 0.005) for Ile344 M+3 in GAn0.075

Figure 58: OAA derived TBDMS-derivitized amino acid MIDs for mass fragments Asp460, Lys473 and Ile344 for the GA0.075, GMA075, and GAn0.075 INST-13C-

MFA ILEs performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green), M+6 (Dark Blue). Reported values are 

means of technical triplicate samples with error bars representing SD. 
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Comparing XA0.075, XA0.15 and XAn0.075  
For the XA0.075 and XA0.15 ILEs, an isotopic steady state is observable for the 
MIDs of the Asp460, Lys473 and Ile344 mass fragment populations again by 2.5 
CCVCs for XA0.075 and XA0.15 (Figure 59). However, for the XAn0.075 ILE but 
this is unclear. It may have been achieved for the Asp460 and Ile344 mass 
fragments by the end of the experiment but was not likely achieved by lysine 473. 

For the three 13C xylose ILEs, the respective final totals of 13C labelling for all three 
amino acids were again lower than the glucose experiments, reaching final 
percentages observed for XA0.075 of: 52.2% for Asp460, and 63.6% for Lys473 
and 64.4% for Ile344 (Figure. 59, graph column 1), for XA0.15 of: 50.4% for 
Asp460, and 62.9% for Lys473 and 63.3% for Ile344 (Figure. 59, graph column 2) 
and observed for XAn0.075 of: 51.0% for Asp460, and 63.8% for Lys473 and 50.1% 
for Ile344 (Figure 59, graph column 3).  
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Across the Asp460, Lys473 and Ile344 and mass fragments of the XA0.075 and XA0.15, the mass isotopomer with the highest abundance for 4 
carbon aspartate was the M+0 mass isotopomer for XA0.075 with a fractional abundance of 0.478 (± 0.001) M+0 Asp460, for with a fractional 
abundance of 0.496 (± 0.001) M+0 Asp460 XA0.15 and a fractional abundance of 0.490 M+0 Asp460 XAn0.075. For 6 carbon lysine the 
predominant mass isotopomer for XA0.075 was the M+1 isotopomer. For each experiment, this resulted in steady state fractional abundances 
of 0.368 (± 0.002) for Lys473 M+1 in XA0.075, 0.378 (± 0.002) for Lys473 M+1 in XA0.15 and 0.389 for Lys473 M+1 in XAn0.075. Lastly, for 6 
carbon isoleucine, for both the XA0.075 and XA0.15 ILEs, the mass isotopomer with predominant abundance for isoleucine was the M+1 mass 
isotopomer. This resulted in observed steady state fractional abundance of 0.396 (± 0.003) for Ile344 M+1 in XA0.075 and steady state 
fractional abundance of 0.396 (± 0.004) for Ile344 M+1 in XA0.15, but a final fractional abundance of 0.499 for Ile344 M+0 in XAn0.075.

Figure 59: OAA derived TBDMS-derivitized amino acid MIDs for mass fragments Asp460, Lys473 and for the XA0.15, XA0.075 and XAn0.075 INST-13C-MFA ILEs 

performed in this research. M+0 (Light blue), M+1 (Orange), M+2 (Light Grey), M+3 (Yellow), M+4 (Blue), M+5 (Green), M+6 (dark blue). Reported values for XA0.15 and 

XA0.075 are means of technical triplicate samples with error bars representing SD. 
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4.4.3.6 Discussion: Qualitative observations on glycolysis and the PPP, 
Serine vs Tyrosine and Alanine 

In terms of general observations of the MDV data, high SD values were observed 
for several time points in different experiments for all amino acids. In terms of 
corresponding CCVCs, these time points consisted of point 0 13C CCVCs for the 
GA0.15 ILE, point 3.29 13C CCVCs for the GA0.225 ILE, points 0, 0.0625 and 0.475 
CCVCs for the GAn0.075 ILE and point 1.64 CCVCs for the XA0.075 ILE. No error 
could be calculated for XAn0.075 as each data point represented a single sample 
per time point rather than technical triplicate. Additionally, observation of the 13C 
incorporation trends for GA0.075 suggest that this experiment did not reach an 
isotopic steady state by the end of the ILE. 

A peculiar observation can also be seen for all Pro258 trends across all experiments 
but XA0.075 and XAn0.075 in that single data point in each trend generates high 
error. This occurs at CCVCs of 2.43 (GA0.32), 2.66 (GA0.225), 2.67 (GA0.15), 3.5 
(GA0.075), 3.225 (GMA0.075 and GAn0.075) and 3.05 (XA0.25) which in each case 
corresponds to about the point that the 13C-labelling trends converge at an isotopic 
steady state of proline. However, given this is observation is not repeated for any 
other amino acid fragment and not observed for proline’s precursor glutamate 
Glu474, this was most likely some form of recurring processing error than an 
accurate observation of metabolic behaviour at near isotopic steady state.  

Under the assumption that these high error time-points were not accurate 
observations of P. thermoglucosidasius metabolic behaviour, the MDVs at all of 
these points were excluded from final quantitative analysis. 

Rather than presenting the INST-13C-MFA MDV data sets in isolation, as a result of 
comparable values for total 13C incorporation, it was decided that they would be 
presented in terms of their assumed carbon intermediate node in CCM such that 
qualitative observations can be made about how pathways from these nodes 
contribute to the respect metabolic phenotypes of P. thermoglucosidasius. As a 
result, the similarities and differences in total 13C incorporation and predominant 
mass isotopomer of each amino acid fragment can be compared to qualitatively 
indicate if specific biosynthetic paths were operating differently under different 
conditions. 

The 13C-labelling pattern of 3 carbon serine directly represents the labelling of the 
3PG precursor. Across all the glucose ILEs demonstrating that, at isotopic steady 
state on 60% 1-13C and 40% U-13C ᴰ-glucose as a sole substrate, an average of 
33.0% (± 5.7%) of 3PG was unlabelled (M+0), 33.2% (± 3.3%) of 3PG was 
completely 13C-labelled (M+3), and only 6.9% (± 1.8%) of 3PG had 2 of 3 carbons 
labelled (Table 33).  

 

INST-13C-
MFA ILE 

Ser432 

M+0 M+1 M+2 M+3 

GA0.32 0.302 0.288 0.077 0.333 

GA0.225 0.280 0.305 0.101 0.314 

Table 33: MID comparisons for Serine (Ser432) for all experiments. Average and SD values 

were calculated based on all Glucose ILEs and all Xylose INST-13C-MFA ILEs. 
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GA0.15 0.307 0.269 0.077 0.347 

GA0.075 0.455 0.212 0.062 0.270 

GMA0.075 0.319 0.257 0.052 0.373 

GAn0.075 0.320 0.277 0.046 0.357 

Average 0.330 0.268 0.069 0.332 

SD 0.057 0.029 0.018 0.033 

XA0.075 0.661 0.237 0.101 0.000 

XA0.15 0.673 0.222 0.104 0.001 

XAn0.075 0.684 0.226 0.038 0.052 

Average 0.673 0.228 0.081 0.018 

SD 0.009 0.006 0.030 0.024 

 

For the xylose ILEs, grown on 75% 1-13C, 25% 12C xylose as a sole substrate, an 
average of 167.0% (± 0.9%) of 3PG was therefore unlabelled (M+0) and 22.8% (± 
0.6%) of 3PG had 2 of 3 carbons labelled. 

Furthermore, as the 13C-labelling patterns of serine and glycine are indicative of 
3PG, it can be interesting to compare the total 13C incorporation and 13C-labelling 
patterns of serine (Ser432) to those of tyrosine (Tyr466) the latter of which is 
derived from the subsequent glycolytic node of PEP and of E4P in the PPP. 
Differences between them can indicate the degree of contribution from the PPP and 
E4P node. Comparing the total incorporation of the glucose and xylose MIDs 
demonstrates this phenomenon (Table 34). 

INST-13C-
MFA ILE 

Final 13C incorporation (%) 

Ser432 Tyr466 Difference 

GA0.32 69.8 93.4 23.6 

GA0.225 72 93.9 21.9 

GA0.15 69.3 93.9 24.6 

GA0.075 54.5 69.7 15.2 

GMA0.075 68.1 90.5 22.4 

GAn0.075 68.7 92.9 24.2 

XA0.075 33.9 58.2 24.3 

XA0.15 32.7 60 27.3 

XAn0.075 31.6 58.2 26.6 

 

The average final observed 13C incorporation into Ser432 for the GA0.32, GA0.225 
and GA0.15 ILEs is 70.4% (± 1.2%), whereas in Tyr466 it is an average 
incorporation of 93.7% (± 0.2%), constituting an average difference of 23.4%. A 
similar difference of 23.3% is seen between the final 13C incorporation values of 
Ser432 in GMA0.075 (68.1) and GMA0.075 (68.7) and those in Tyr466 in 
GMA0.075 (68.1) and GMA0.075 (68.7). Combined this suggests that, when grown 
on glucose, synthesis of chorismate-derived tyrosine and phenylalanine in P. 
thermoglucosidasius receives the same contribution from glycolysis and the PPP 
under both aerobic and anaerobic conditions and at different aerobic growth rates. 

Table 34: Comparison of percentage final 13C incorporation values for Serine (Ser432) and 

Tyrosine (Tyr466) for all INST-13C-MFA ILEs.  
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When grown on xylose under aerobic and anaerobic conditions on 75% 1-13C and 
25% naturally labelled xylose, this difference was also a similar 26.1%. The average 
final 13C incorporation into Ser432 for the XA0.075, XA0.15 and Xan0.075 ILEs is 
32.7% (± 0.9%), whereas in Tyr466 it is an average incorporation of 58.8% (± 
0.8%). This result in accordance with the 13C-MFA flux map generated for 
Geobacillus LC300 grown on xylose as a sole substrate which also demonstrated 
PPP activity127.  

A similar form of qualitative analysis can also be performed between serine and 
alanine (Ala302), derived from pyruvate. Comparison of the M+0 unlabeled mass 
isotopomer ID predominant pathway in the P. thermoglucosidasius metabolic 
network, or whether the metabolite pool of pyruvate has been partially derived from 
the ED pathway or anaplerotic reactions Tang et al. (2009)128. 

 

INST-13C-
MFA ILE 

Final 13C 
incorporation 

Ser432 M+0 Ala302 
M+0 

GA0.32 0.30 0.33 

GA0.225 0.28 0.33 

GA0.15 0.31 0.33 

GA0.075 0.46 0.54 

GMA0.075 0.32 0.30 

GAn0.075 0.32 0.35 

Average 0.33 0.37 

SD 0.06 0.08 

XA0.075 0.66 0.67 

XA0.15 0.67 0.68 

XAn0.075 0.67 0.61 

Average 0.67 0.46 

SD 0.01 0.22 

 

 

The Ser432 and Ala302 amino acid M+0 MID values for each ILE demonstrate 
similar levels of 13C incorporation, respective averages of 0.33 (± 0.06) versus 0.37 
(± 0.08) for the glucose ILEs and respective averages of 0.67 (± 0.01) versus 0.37 
(± 0.08) for the glucose ILEs. This suggests that for both substrates and under all 
oxygen conditions that glycolysis was still the main metabolic pathway for P. 
thermoglucosidasius and that there was minimal, if any, impact of the ED pathway 
or anaplerotic reactions on the pools of pyruvate. 

Overall, the dynamic MIDs described in 4.4.3 were determined as suitable for 
further quantitative 13C-MFA to generate flux models in chapter 4.4.4.  

Table 35: Comparison of percentage final 13C incorporation values for the Serine Ser432 M+0 

mass fragment with the Alanine Ala302 M+0 mass fragment for all INST-13C-MFA ILEs.  



 

202 
 

4.4.4 Quantitative INST-13C-MFA  

 
While several qualitative inferences can be made about P. thermoglucosidasius 
metabolism by comparing the MIDs of different nodes, quantitative 13C-MFA is 
required to represent the above MID data in terms of calculated metabolic reaction 
fluxes. In order to perform the MID data fitting, an isotopomer transition network 
featuring the necessary carbon transitions was required. 

Given its public availability (and published success in representing growth of 
Geobacillus on xylose as a sole substrate), the existing carbon transition network 
from the Geobacillus LC300 13C-MFA experiments of Cordova et al. (2016)127 were 
used as a foundation. Notably, unlike the atom transition networks of Tang et al. 
(2009)128 and C. Ward (2016)121. these reactions included the production of 
cofactors of: NADH, NADPH, ATP and the one carbon metabolism metabolites of: 
MEETHF, METHF and FTHF. 

In the following work, flux estimations were performed in the INCA v.2.0 software 
using the amino acid mass fragments deemed valid for each experiment to minimize 
the SSR between the forward predicted MID solutions and the experimentally 
measured MID data. Importantly, for each fitting procedure flux estimation was 
restarted 10 times with randomized initial guesses for unconstrained flux and 
metabolite pool sizes to offer the best possibility of finding the global optimal flux 
solution. Each reported solution represents the solution with the lowest SSR as a 
result of this method. 
 

The MID data set from the GA0.15 ILE was selected as the test case on account of 
having a broad range of valid fragments while also demonstrating low measurement 
error across the amino acids for the 13C portion of the ILE. However, initial attempts 
at flux estimation did not yield an optimal solution with a statistically acceptable 
SSR. Indeed, the SSR value was several 10s of million higher than the maximum 
statistically allowed SSR. As a result, focus turned first to the evaluation of the 
carbon transition reactions and reaction stoichiometries themselves. 

4.4.4.1 Development of the Carbon Transition Network  

All reactions present in initial carbon transition network were represented in p-
thermo and the P. thermoglucosidasius NCIMB 11955 genome, implying that the 
Geobacillus LC300 transition network127 was a valid representation of P. 
thermoglucosidasius. 

 
However, several potentially relevant reactions present in the P. 
thermoglucosidasius NCIMB 11955 genome were not included in the initial network. 
As the network was developed for aerobic growth on xylose, the first of these 
modifications was the straightforward introduction of 3 reactions to import glucose 
as a substrate: 
 

Gluc.ext (abcdef) + ATP -> Gluc (abcdef) 

Gluc (abcdef) + ATP -> G6P (abcdef) 

Gluc.ext (abcdef) + PEP (ghi) -> G6P (abcdef) + Pyr (ghi) 

These first two reactions were introduced based on the ATP-dependent glucose 
transporters in the genome and the third was introduced for anaerobic conditions to 
represent the present phosphotransferase system in P. thermoglucosidasius. 
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The second set of reactions added to the model concerned reactions associated 
with fermentative behaviours of P. thermoglucosidasius. While production and 
export of acetate and lactate were already in the network, a reaction representing 
PFL and reactions for the production and export of pyruvate, formate and ethanol 
were also added: 
 

Pyr (abc) -> Pyr_eff (abc) 

Pyr (abc) -> AcCoA (bc) + For_eff (a) 

AcCoA (ab) -> Eth_eff (ab) 

Additionally, based on the findings discussed in chapter 3.3.3.2 concerning 
ferredoxin linked enzymes, a reaction was introduced for the p-thermo and P. 
thermoglucosisisus genome encoded oxoglutarate:ferredoxin oxidoreductase and a 
pseudo-reaction allowing it’s regeneration: 

2*FeOx + AKG (abcde) -> 2*FeRed + SucCoA (abcd) + CO2 (e) 

2*FeRed <-> 2*FeOx 

Inclusion of these reactions and their respective efflux constraints in the 
carbon transition network for each fitting procedure was based on their 
detection HPLC in the CCFs of each ILE. 
 
One of the key findings in the thesis of B. Lisowska was the presence of an 
NADP-dependent GAPDH in the genome of P. thermoglucosidaisus NCIMB 11955, 
the activity of which with NADP was validated through enzyme assay113. As a result, 
an NAPH variant of the pre-existing NADH-linked GAPDH was added to the 
reaction network: 
 

GAP (abc) > 3PG (abc) + ATP + NADH 

GAP (abc) -> 3PG (abc) + ATP + NADPH 

Both reactions were also set to being unidirectional to avoid transhydrogenase-like 
cycling 
Inclusion of this resulted in a 66% decrease in SSR and was thus maintained for all 
future networks.  

Lastly, one reaction encoded in the P. thermoglucosidasius NCIMB 11955 genome 
but not in p-thermo or the carbon transition network was succinyl-CoA:acetate CoA-
transferase [E.C. 2.8.3.18] which represented the reaction: 
 

SucCoA (abcd) + Ac (ef) <-> Suc (abcd) + AcCoA (ef) 

This introduced the possibility of an ATP and NADPH-free route to both regenerate 
acetate to AcCoA and support the citiric acid cycle. Given acetate was encoded to 
be produced as a result of cysteine biosynthesis, this could potentially impact both 
aerobic and anaerobc flux estimations. However, introduction of this reaction into 
the network increased the minimized SSR value by 13.2%, so it was not included in 
further analysis. 

Once these reactions had been introduced, focus turned to reducing the size of the 
overall network by condensing connecting reactions that didn’t involve carbon 
rearrangements. 
The reactions involved in synthesis of lysine: 
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Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH → 

LL-DAP (½ abcdgfe + ½ efgdcba) + AKG (hijkl) + Suc (½ mnop + ½ ponm) 

LL-DAP (½ abcdefg + ½ gfedcba) → Lys (abcdef) + CO2 (g) 

Were condensed to single reaction of: 

Asp (abcd) + Pyr (efg) + Glu (hijkl) + ATP + 2*NADPH + SucCoA (mnop) -> Lys 
(efgdcb) + CO2 (a) + AKG (hijkl) + Suc (½ mnop + ½ ponm) 

Lastly, reactions involving Ru5P were condensed to involve a single pool of P5P to 
reduce complexity and degrees of freedom in the PPP. 

 
Constraints 

Similarly to FBA, the constraints imposed on the directions of reactions, and their 
subsequent flux in a carbon transition network, shape the overall topology of the 
solution space and the number of degrees of freedom of the system.  
 
The first of these constraints applied to the network were thermodynamic 
constraints of each reaction which determined whether individual reactions were 
considered unidirectional or reversible. The initial thermodynamic constraints of the 
underlying Geobacillus LC300 network on which this network is based were mostly 
unchanged. However, where reactions demonstrated unrealistic exchange fluxes 
and high standard error, the directionality of each reaction was deferred to the 
unidirectional form of the reaction utilised by Tang et al. (2009) for P. 
thermoglucosidasius M10EXG128. 
 

Biomass efflux constraints 

The second of these constraints were net constraints which determined the rate of 
amino acid efflux to biomass, based on the experimentally determined P. 
thermoglucosidasius OD600:DCW relationship of 1 OD to 0.424 and the amino acid 
compositions of P. thermoglucosidaisus DCW protein, measured ODs and substrate 
uptake rates (Table 36). 

ILE Number of 
measurements 
considered (n) 

Average 
Substrate 

uptake rate 
(gDCW/L/h) 

Standard 
deviation 

Average 
specifc rate 
of substrate 
uptake (qs) 

Standard 
deviation 

GA0.075 45 0.202 0.083 0.206 0.084 

GA0.15 54 0.251 0.027 0.139 0.030 

GA0.225 48 0.542 0.026 0.381 0.031 

GA0.32 51 1.065 0.041 1.016 0.073 

GMA0.075 48 0.895 0.027 3.609 0.224 

GAn0.075 45 0.945 0.087 4.385 0.809 

XA0.075 36 0.209 0.009 0.197 0.014 

XA0.15 45 0.303 0.022 0.299 0.022 

XAn0.075 42 0.404 0.027 1.853 0.416 

 

Table 36: Average glucose or xylose (substrate) uptake rates for all INST-13C-MFA P. 

thermoglucosidasius ILEs.  
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Two different cell protein compositions of dry mass, performed by Shyam 
Maskapalli in 2014 (Appendix 3), were assumed and used to calculate the amino 
acid requirements for biomass production for each ILE in units mmol/gDCW.  

Calculated concentrations of metabolic intermediates representing cellular macro 
molecules drained to biomass were taken from literature measurements of 
Geobacillus LC300 and assumed to be independent of the growth conditions of the 
ILE. These values were supplied to a biomass equation in further flux analysis 
(Table 37).  

Metabolite 
GA0.
075 

GA0.
15 

GA0.
225 

GA0.
32  

GAn
0.075 

GMA
0.075 

XA0.
075 

XA0.
15 

XAn
0.075 

Glycine 0.411 0.850 0.613 0.456 0.053 0.056 0.455 0.453 0.048 

L-Alanine 0.519 1.074 0.774 0.576 0.067 0.071 0.574 0.572 0.060 

L-Valine 0.380 0.785 0.566 0.422 0.049 0.052 0.420 0.418 0.044 

L-Leucine 0.351 0.725 0.523 0.389 0.045 0.048 0.388 0.386 0.041 

L-Isoleucine 0.275 0.569 0.410 0.305 0.036 0.038 0.304 0.303 0.032 

L-Serine 0.183 0.378 0.272 0.203 0.024 0.025 0.202 0.201 0.021 

L-Threonine 0.271 0.560 0.404 0.301 0.035 0.037 0.300 0.299 0.031 

L-Phenylalanine 0.146 0.302 0.218 0.162 0.019 0.02 0.162 0.161 0.017 

L-Tyrosine 0.105 0.216 0.156 0.116 0.013 0.014 0.116 0.115 0.012 

L-Tryptophan 0.104 0.214 0.155 0.115 0.013 0.014 0.115 0.114 0.012 

L-Cysteine 0.109 0.225 0.162 0.121 0.027 0.015 0.120 0.120 0.013 

L-Methionine 0.086 0.177 0.128 0.095 0.021 0.012 0.095 0.094 0.010 

L-Lysine 0.320 0.662 0.477 0.355 0.041 0.044 0.354 0.352 0.037 

L-Arginine 0.185 0.382 0.276 0.205 0.024 0.025 0.204 0.204 0.021 

L-Histidine 0.078 0.162 0.117 0.087 0.010 0.011 0.089 0.086 0.090 

L-Aspartate 0.224 0.463 0.334 0.249 0.058 0.030 0.248 0.247 0.026 

L-Glutamate 0.325 0.672 0.485 0.361 0.084 0.044 0.359 0.358 0.038 

L-Asparagine 0.224 0.463 0.334 0.249 0.058 0.030 0.248 0.247 0.026 

L-Glutamine 0.325 0.672 0.485 0.361 0.084 0.044 0.359 0.358 0.038 

L-Proline 0.168 0.348 0.251 0.187 0.022 0.023 0.186 0.185 0.194 

P5P (RNA/DNA) 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 0.949 

GAP (Lipid) 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 

3PG 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 

PEP 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 

PYR 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 

AcCoA (Lipids) 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 

AKG 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 

OAA (RNA/dNA) 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 

G6P 
(Carbohydrate) 

0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 

F6P (Cell Wall) 0.479 0.479 0.479 0.479 0.479 0.479 0.479 0.479 0.479 

 

Additionally, measured concentrations of efflux products lactate, ethanol, pyruvate, 
formate and acetate were also calculated in terms of mmol g-1 DCW h-1 and as 
efflux with respect to 100 molecules of substrate for each oxygen-limited ILE (Table 

Table 37: Calculated concentrations for amino acid net constraints, and assumed 

macromolecule composition net constraints, supplied to the biomass equation for all INST-
13C-MFA ILEs. All in units of mmol/gDCW. 
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38). These were added as constraints to the respective networks as UBs and LBs 
representing ±10% of the stated value.  

 

Metabolit
e 

GAn0.075 GMA0.075 XAn0.075 

 Average 
concentratio
n (mmol g-1 
DCW h-1) 

With 
respect to 

100 
glucose 

molecules 

Average 
concentratio
n (mmol g-1 
DCW h-1) 

With 
respect to 

100 
glucose 

molecules 

Average 
concentratio
n (mmol g-1 
DCW h-1) 

With 
respect to 

100 
xylose 

molecule
s 

Lactate 4.737 10.042 2.708 13.430 0 0 

Ethanol 0.192 0.417 0 0 0 0 

Pyruvate 0.172 0.370 1.590 7.886 2.913 7.798 

Formate 2.124 4.252 6.921 34.320 4.967 13.299 

Acetate 3.780 7.424 8.979 44.525 6.565 17.576 

 

Variation of the network P/O ratio 

 
Lastly, the global energy consumption of the network in terms of ATP can influence 
the outcome of the phenotypic flux predictions217. As the atom transition network 
featured reactions for the oxidative phosphorylation of NADH and FADH2, one 
constraint strategy to reduce the SRR was to tune the (AT)P:O ratio (or the number 
of molecules of phosphorylated per atoms of oxygen reduced to water).  

The base oxidative phosphorylation reactions of the transition network were: 

2*NADH + O2 →  4 ATP 

2*FADH2 + O2 → 2 ATP 

Two rounds of tuning the P/O ratio were performed for the network using the same 
GA0.15 data set at different points in the network development (Table 39). 

Variation 1 Variation 2 

NADH FADH2 Change in SSR (%) NADH FADH2 Change in SSR (%) 

3 2 -7.726 3 2 0 

2.5 1.5 -6.907 3.1 2.1 -29.563 

2.33 1.4 -3.111 3.2 2.1 -54.041 

2 1 0 3.2 2.2 -58.417 

1.85 1 3.152 3.3 2.2 -58.016 

1.5 1 2.908 3.2 2.3 -45.610 

1.33 0.45 0.834 3.4 2.3 -32.551 

0.66 0.87 15.009 3.5 2.3 -7.877 

 

Table 38: Average calculated net efflux constraints for all anerobic INST-13C-MFA ILEs in 

absolute values and normalized to 100 molecules of feed substrate. 

Table 39: The impact of tuning the stoichiometries of the P/O ratio for oxidative 

phosphorylation reactions of NADH and FADH2.  
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Ultimately, this demonstrated optimum values of 3.2 ATP per NADH and 2.2 ATP 
per FADH2 (Table 39).  As a result, these stoichiometries were input for the two 
oxidative phosphorylation reactions for all ILE fitting attempts as additional 
constraints. Future work in this area would first apply this strategy for each 
independent ILE data set to evaluate how the optimal P/O ratio changes across the 
studied growth conditions. 

Assumptions about measurement error  

The calculated measurement errors themselves represent constraints on the overall 
system and directly influence the calculation of SSR. For the initial stages of the 
13C-data fitting process, focus had been placed on developing the carbon transition 
network itself to reduce the SSR. However, in a 2018 guide for 13C-MFA for cancer 
biology Maciek Antoniewicz suggests that typical measurement errors for MS 
derived MID data could be up to ± 0.01218. On this basis, all measurement error in 
each amino acid mass fragment MID was either increased to 0.01 or left as its 
original value if greater than 0.01. 

The effect on the obtained SSR value when applied to the fitting of the GA0.15 ILE 
data set was immediate, taking the obtained SSR value from 1,023,493 to 448,831, 
a 56% decrease and improvement. As a result, this to increase to ≥ ± 0.01 
measurement error was applied to all data sets before further 13C-fitting attempts. 

4.4.4.2 Data fitting strategies: MID groupings  

For initial flux estimates, two groupings of MID data sets were considered to infer 
metabolic understanding of P. thermoglucosidasius under the different growth 
conditions explored. 

The first grouping strategy “All valid” involved simultaneous fitting of all MDVs for all 
amino acid fragments determined to be valid for each experiment (Tables 29-32 in 
chapter 4.4.2.2). This was also the approach taken for the final flux estimations. 

The second group strategy “Nodes” was based on the work done by Tang et al. 
(2009)126 who performed 13C-MFA fitting using mass fragments from only 7 amino 
acids (Alanine, Glycine, Phenylalanine, Serine, Glutamate, Aspartate and Leucine), 
each assumed to represent a particular carbon intermediate node in CCM. 
Following the strategy, of a similar group of 9 amino acids were also chosen to 
represent CCM intermediate nodes (Alanine, Valine, Phenylalanine, Serine, 
Tyrosine, Histidine, Glutamate, Aspartate and Leucine) (Table 40). 

Amino Acid CCM node/s represented 

Alanine Pyruvate 

Valine Pyruvate 

Phenylalanine E4P and PEP 

Serine 3PG 

Tyrosine E4P 

Histidine P5P 

Glutamate AKG 

Aspartate OAA 

Leucine Pyruvate and AcCoA 

 

Table 40: Amino acids featured in the “Nodes” MID data set strategy with their respective 

assumed CCM intermediate. 
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Compared to the original strategy, this included Histidine (derived from P5P), Valine 
(as a second amino acid derived from pyruvate), Tyrosine (as a second amino acid 
derived from PEP and E4P) and used Serine as a single representative of 
intermediate 3PG, rather than Serine and Glycine. While less likely to represent a 
valid or accurate solution, this second fitting was much faster computationally and 
performed to identify reactions and amino acids of issue in the overall carbon 
transition network. 

The intiial flux distributions comparing these approaches using for the aerobic 
glucose and xylose ILEs are presented in chapter 4.4.2.4. 

4.4.4.3 Initial flux analysis for the aerobic Glucose and Xylose INST-
13C-MFA ILEs: SSR values and Goodness-of-fit analysis 

Initial flux estimations were only performed for the aerobic glucose and xylose INST-
13C-MFA ILE data sets to understand what the key areas of the simpler aerobic 
transition network were that required further improvement. For each ILE, both the 
“All valid” and “Nodes” data set approaches were use for 13C-data fitting. Each 
reported solution was the solution with the lowest SSR as a result of 10 restarts with 
random initial guesses for unconstrained flux and metabolite pool sizes. In each 
case, the obtained SSR value was greater than the maximum statistically 
acceptable SSR at a confidence interval of 95%, suggesting that the fits were not 
accepted for the aerobic glucose (Table 41) or xylose (Table 42) “All valid” or 
“Nodes” data set
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Table 41: Goodness-of-fit analysis for analysis of the “all valid” and “node” aerobic glucose INST-13C-MFA amino acid fragment data sets using the developing carbon 

transition network featuring the final obtained SSR values and the individual squared residuals (SRES) for each amino acid mass fragment. 
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Although neither of these data fitting strategies yielded statistically acceptable SSR 
values, these initial fitting results indicated the amino acids contributing most the 
obtained SSR values and what needed further improvement in the fitting process. 

While the outcome of the natural isotope abundance correction for the His440 
histidine mass fragment was “conditionally valid” for the GA0.15 data set, for all 
other data sets evaluated in this analysis His440 was deemed valid. However, the 
most notable observation for the “Node” data sets across all the flux estimations is 
the impact on the goodness of fit of His440, which provided the largest contribution 
to the final SSR value (Tables 40 and 41). As the data was valid and the direct 
biosynthesis reaction of histidine itself was verified against the P. 
thermoglucosidasius genome, this suggested that proximal factors in the 
biosynthesis of histidine were incorrect in the underlying network. Indeed, Cordova 
et al. (2016) were only able to resolve the oxidative PPP through the integration of 
13C labelled CO2 data which suggested a negligible flux (1 ± 1) through the ribulose 
monophosphate pathway127, suggesting that this could be applied as a further 
constraint. 

Table 42: Goodness-of-fit analysis for analysis of the “all valid” and “node” aerobic xylose 

INST-13C-MFA amino acid fragment data sets using the developing carbon transition network. 

This featued the final obtained SSR values, the individual squared residuals (SRES) for each amino 

acid mass fragment and the overall weighted residuals (WRES) of the complete data set. 
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Parallel to this idea, these led to the consideration of new sources of potentially 
unlabelled carbon into the network as proxy reactions to support the 13C fitting 
procedure. 

The first of these ideas was more general and allowed for potential import of 12C 
glucose into the network to account for the potential of pre-exisitng pools of naturally 
labelled carbon and would aid the fitting in situations where the predicted 13C 
labelling pattern of mass fragments was higher than experimentally measured This 
was set as a free flux with an UB of 10 to represent up to 10% of the normalized 
glucose uptake rate. 

The second of these ideas was more specific to the synthesis of histidine, which 
required as a reactant the one carbon metabolism metabolite FTHF. As a result, a 
free flux for import and export of central one carbon-metabolism precursor MEETHF 
was added to the network to account for pre-exisitng or variable metabolite pools of 
MEETHF. A similar strategy was also applied by Ward, who introduced a single 
carbon ‘Cx’ pool which could freely import and export. 

The final modification added to the model was tangential to histidine biosynthesis 
and the PPP and introduced a reaction for the synthesis of OAA-derived RNA 
monomer Uridine monophosphate (UMP) from L-aspartate to the network (Asp 
(abcd) + CO2 (e) -> UMP (abcd) + CO2 (e)) and added it as a net constraint to the 
biomass equation with an assumed constant value of 0.119 mmol g-1 DCW h-1 
derived from the biomass equation of p-thermo. 

The impact of these additions for the 13C fitting procedure was evaluated individually 
against the GA0.15 “nodes” data set (Table 43). 

 

As a result, all three of these modifications were added to the underlying network for 
the glucose experiments and the UMP and MEETHF modifications for the xylose 
networks with a respective 12C-xylose import reaction. Due to time constraints, 
these were the final additions to the carbon transition network. 

Table 43: Goodness-of-fit analysis for analysis of “nodes” GA0.15 INST-13C-MFA amino acid 

fragment data set comparing the individual impact of new network modifications. This featued 

the final obtained SSR values, the individual squared residuals (SRES) for each amino acid mass 

fragment and the overall weighted residuals (WRES) of the complete data set. 
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4.4.4.4 Final flux analysis for the aerobic and anaerobic Glucose 
and Xylose INST-13C-MFA ILEs: SSR values and Goodness-
of-fit analysis 

Initial flux estimations were only performed for the aerobic glucose and xylose INST-
13C-MFA ILE data sets to understand what the key areas of the simpler aerobic 
transition network were that required further improvement. For each ILE, the “All 
valid” data set approaches were use for 13C-data fitting (Tables 44-46). Each 
reported solution was the solution with the lowest SSR as a result of 10 restarts with 
random initial guesses for unconstrained flux and metabolite pool sizes.  

 



 

213 
 

 

 

Table 44: Goodness-of-fit analysis for analysis of “All Valid” INST-13C-MFA amino acid fragment data sets for all aerobic glucose ILEs comparing the collective 

impact of new network modifications. This featued the final obtained SSR values, the individual squared residuals (SRES) for each amino acid mass fragment and the 

overall weighted residuals (WRES) of the complete data set. 

 



 

214 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 45: Goodness-of-fit analysis for analysis of “All Valid” INST-13C-MFA amino acid 

fragment data sets for all aerobic xylose ILEs comparing the collective impact of new network 

modifications. This featued the final obtained SSR values, the individual squared residuals (SRES) 

for each amino acid mass fragment and the overall weighted residuals (WRES) of the complete data 

set. 
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Once again however, the obtained SSR value was greater than the maximum 
statistically acceptable SSR at a confidence interval of 95% for all data sets, 
suggesting that the fits were not accepted for any of the “All valid” data sets with the 
updated model (Table 45). Comparison against the pre-existiing “All valid” data set 
fits suggested these modifications had different impacts of the fitting of the complete 
amino acid mass fragment data sets for the different ILEs. Reductions in obtained 
SSRs were observed for the GA0.075, GA0.15, GA0.32 and XA0.15 “all valid” data 
sets representing respective fit improvements of: 5.97%, 96.66%, 3.51% and 
29.39%, whereas increases were observed for the “all valid” data sets of GA0.225 
and XA0.075 with respective fit impacts of -6.11% and -20%. Frustratingly, this 
analysis suggested that the Gly288 MID data of the benchmark GA0.15 data set 
was a likely contributor to the overall changes in SSR observed. These results 
suggest these modfications need to be investigated on a case-by-case basis and 
further examined on whether such changes should be permanent. Additionally, 
future work should consider whether introducing additional pseudo-reactions to 
account for potentially pre-existing pools of individual amino acid or other metabolite 
pools would aid the 13C-fitting. 

Table 46: Goodness-of-fit analysis for analysis of “All Valid” INST-13C-MFA amino acid 

fragment data sets for all anaerobic ILEs. This featued the final obtained SSR values, the 

individual squared residuals (SRES) for each amino acid mass fragment and the overall weighted 

residuals (WRES) of the complete data set. 
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4.4.4.5 Initial flux maps of P. thermoglucosidasius NCIMB 11955 on 
glucose and xylose and under aerobic and anaerobic 
conditions 

While the resulting flux distributions suggest that a statiscally acceptable fit of INST-
13C-MFA data to model was ultimately not achieved in this research cannot 
represent a final statement on P. thermoglucosidasius metabolic behaviour for these 
ILEs, comparing the best fit flux distribution for GA0.075, GAn0.075, XA0.075 and 
XAn0.075 do suggest limited similarities with existing research and do aslo help 
point towards areas of future network refinement (Figures 60-63).  

 
 

GA0.075 

Figure 60: Flux map of P. thermoglucocidasius NCIMB 11955 grown on glucose as a sole 

substrate under aerobic conditions at a growth rate of 0.075h-1.  
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The initial in vivo flux distributions of P. thermoglucosidasius grown under aerobic 
and anaerobic conditions on gluose as a sole substrate do identify potential areas 
for improvement. In both cases there were a preference for the glycolytic pathway 
with little flux seen for the PPP. This absence of oxPPP flux (R9) clashes with 
statistically accepted flux distributions generated for P. thermoglucosidasius NCIMB 
11955 as generated by Ward (15 (± 2) anaerobic oxPPP flux)121, M10EXG by Tang 
et al. (2009) (aerobic oxPPP flux (30 ± 2), anaerobic oxPPP flux 15 (± 2))128, and 
Geobacillus LC300 as generated by Cordova et al. (2017) (aerobic oxPP flux 37 (± 
0)170. Combined this suggests that the glycolytic pathway has been represented 
correctly but provides further evidence that the PPP needs readdressing. 

GAn0.075 

Figure 61: Flux map of P. thermoglucocidasius NCIMB 11955 grown on glucose as a sole 

substrate under anaerobic conditions at a growth rate of 0.075h-1. 
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Additionally, both flux maps demonstrate a clear dependency on the glyoxylate 
shunt in the TCA cycle (R33 + R34) and negible flux through alpha-ketoglutarate 
dehydrogenase (R28). While potentially expected under low oxygen conditions, its 
mirrored flux under aerobic conditions suggests this reaction should also be 
evaluated against the glyoxylate cycle to ensure co-factor demands are adequately 
met. 

 

 

 
 
 
 

XA0.075 

Figure 62: Flux map of P. thermoglucocidasius NCIMB 11955 grown on xylose as a sole 

substrate under aerobic conditions at a growth rate of 0.075h-1. 
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The initial in vivo flux distributions of P. thermoglucosidasius grown under aerobic 
and on xylose as a sole substrate also identify potential areas for improvement. 
Once again, there is no flux through the oxPPP (R9) which was observed for 
Geobacillus LC300 grown on xylose at a flux value of 16 (± 0.5)127, suggesting once 
again that there are issues with the PPP. Notably, the biomass output of the best fit 
flux distribution in this case was incredibly low compared to that of glucose and is 
reflected in the neglible fluxes towards amino acid biosynthesis. Far less can be 
observed from the initial flux distribution of anaerobic growth on xylose. In 

XAn0.075 

Figure 63: Flux map of P. thermoglucocidasius NCIMB 11955 grown on glucose as a sole 

substrate under anaerobic conditions at a growth rate of 0.075h-1. 
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accordance with it’s high SSR value, the standard deviation for all fluxes in the 
network was far too high to draw meaningful conclusions from this flux distribution. 

Overall, these results demonstrate that, while the amino acid mass fragment data 
sets for each ILE themselves are likely accurate, the combination of statistically 
unacceptable SSR values suggests further network refinement is required to 
adequately fit the data to a flux map for further analysis and potential integration 
alongside p-thermo. Indeed, given the determined validity and low SD associated 
with the His440 mass fragments in the experiments where it was observed, this 
suggests that future work should focus on refining the network reactions which 
constitute the PPP to achieve more accurate flux distributions. 
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5. Chapter 5: General Discussion and future work 
 

The motivation behind this research was to contribute to the field of biotechnology in 
a way which could help meet some of the global sustainability challenges 
encompassed within the UN SDGs. Whether at the scale of the global environment 
or a single bacterial cell, taking a systems-level view of a challenge which tries to 
account for the many underlying variables which influence the observed behavior 
can help us to both understand problems and indicate potential solutions.  

Progressively, applications of systems biology (including computational systems 
modelling and functional multi-omics analysis) are being applied to metabolic 
engineering strategies.This form of a ‘Design-Build-Test’ approach is neatly 
described through the umbrella term: SysME. The overall aim of this research was 
to apply this integrated SysME approach to the thermophilic facultative anaerobe P. 
thermoglucosidasius, a microbial chassis which offers the potential of being 
developed for sustainable bioconversion of renewable lignocellulosic waste to 
numerous products through its thermophilicity and catabolic versatility. 

While the concurrent development of a cumulative suite of genetic engineering tools 
and standardized genetic parts had been developed specifically for P. 
thermoglucosidasius, the metabolic behaviours of P. thermoglucosidasius, 
particularly under micro-aerobic and anaerobic conditions, were understudied 
compared to many more industrially utilised microbial species. Thus, to aid the 
development of P. thermoglucosidasius as a microbial chassis for more 
environmentally friendly chemical production, this research focused on the 
‘computational modelling’ and ‘(flux)omics’ analysis aspects of the SysMe approach 
to develop computational tools and acquire metabolic data of P. 
thermoglucosidasius NCIMB 11955 to help accurately understand and predict its 
cellular metabolism. 

5.1 Computational genome-scale metabolic modelling and Flux 
Balance Analysis 

 
The aim of generating a computational modelling tool in this research was built upon 
previous PhD research to generate a GSMM representing P. thermoglucosidasius 
NCIMB 11955 metabolism. However, several structural inaccuracies within the 
model meant that it was limited in its ability to accurately predict P. 
thermoglucosidasius NCIMB 11955 metabolism. 
 
Ultimately, in partnership with the other authors and building upon the groundwork 
of the model which came before it, this research was able to improve the original 
GSMM of P. thermoglucosidasius. Through iterative cycles of analysis and manual 
curation with the Memote tool this research improved the original model such that p-
thermo demonstrates a 100% stoichiometric consistency, metabolite connectivity, 
charge balance and unbounded flux in our default growth medium, as well as a 
99.9% mass balance. As a result, this novel model of P. thermoglucosidasius 
NCIMB 11955 could finally be published for the first time and currently represents 
the most accurate GSMM of P. thermoglucosidasius available. 

The most valuable aspect of this research for future research into P. 
thermoglucosidasius is that p-thermo can now perform genome-wide analysis of P. 
thermoglucosidasius metabolism and predict flux distributions throughout the 
metabolic network. In particular, it can do so with an increased degree of accuracy 
which reflected experimentally measured fluxes of Geobacillus M10EXG128 and 
existing P. thermoglucosidasius mutants under the low-oxygen conditions which are 
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most relevant to the P. thermoglucosidasius fermentation products of lactic acid and 
ethanol.  

In terms of future computational modelling research towards sustainable 
bioprocesses, a key first thing that could be done while further developing the 
accuracy of the p-thermo model is to simulate the growth of P. thermoglucosidasius 
on more complex carbon substrates or mixtures of them. This could be achieved 
through two steps. First new sugar compositions and media could be composed 
which reflect experimentally defined, real-world lignocelliulosic biomass hydrolysate 
sugars after pre-treatment. Second, p-thermo could then be used to simulate how P. 
thermoglucosidasius could grow on them and how they could produce various bio-
products. Additionally, p-thermo could be further validated through the generation of 
additional P. thermoglucosidasius NCIMB 11955 mutant models as generated 
experimentally by Sheng et al. (2017)1, including a similar lactate dehydrogenase 
double mutant also lacking a uracil metabolism enzyme pyrE, LS001 (ΔpyrEΔldh). 
As the PyrE mutation was used as a selection system, it would be interesting to see 
if there was an impact on metabolism of this mutation. Alternatively, new reactions 
could be added to the p-thermo model to replicate the experimental production of 
isobutanol in P. thermoglucosidasius by Lin et al. (2014)97 or terpenoid production 
by Styles et al. (2020)102.  

A key aim for the GSMM research was to use the model to suggest what could be 
done to support anaerobic growth of P. thermoglucosidasius. Perhaps the most 
interesting results of the validation of p-thermo therefore were the in-silico predicted 
and experimentally-supported results that showed that a combination of thiamine, 
biotin and iron(III) could support anaerobic growth of P. thermoglucosidasius  
The requirement for thiamine was suggested to be a result of both the oxygen-
dependent synthesis of TPP and the TPP dependency of key anaerobic enzyme 
PFL (PFL), whereas supplementation of iron(III) was postulated to be supportive to 
several genome-annotated ferredoxin-dependent metabolic reactions of P. 
thermoglucosidasius, which originated from iron and sulphur rich hot springs. 
Genomic evidence also suggested that production of heme was restricted under 
anaerobic conditions due to the presence of an oxygen-dependent 
protoporphyrinogen/coproporphyrinogen III oxidase (HemY). 

From the perspective of SB, future work could therefore investigate whether the 
heterologous expression of a thermophilic 2-iminoacetate synthase, oxygen-
independent HemN and oxygen-independent HemG in P. thermoglucosidasius 
supports growth under low oxygen conditions. Additionally, if suggested to confer a 
growth advantage under anaerobic conditions when compared to the wild-type, 
plasmids bearing these genes could theoretically form the basis of an antibiotic-free 
selection system for P. thermoglucosidasius. Additionally, on account of the 
predicted oxygen sensitivity of the native glycine oxidase involved in thiamine 
biosynthesis, future work could also investigate whether introduction of a 
thermophilic 2-iminoacetate synthase in P. thermoglucosidasius could support 
growth under low oxygen conditions. 

5.2 INST-13C-MFA of P. thermoglucosidasius NCIMB 11955  
In tandem to the development of p-thermo, the second key aim of this 
research was to generate fluxomic data of P. thermoglucosidasius to further 
validate, and potentially incorporate into, the GSMM to enhance its capability to 
reflect growth under a range of growth conditions. 
To the author’s knowledge, this represents the first INST-13C-glucose and 13C ᴰ-
xylose feeding 13C-MFA ILEs for a Parageobacillus or Geobacillus species in fixed 
dilution/growth rate chemostat systems. 
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Focus was given during the initial experimental design phase to try and improve on 
the existing fluxomic analysis of Parageobacillus and Geobacillus species. 
This was done by using a defined minimal media without inclusion of yeast extract 
or additional amino acid carbon sources, by screening for carbon-limitation of 
cultures a different growth rates through the monitoring of OD600 and substrate 
concentrations, by giving particular focus to ensuring that each experiment was an 
accurate representation of P. thermoglucosidasius metabolism under the target 
oxygen growth conditions through the measurement of redox potential and by 
performing 13C-MFA with the additional novel development of detailing isotopically 
in-stationary 13C isotope labelling of P. thermoglucosidasius NCIMB 11955 amino 
acids over time. 
 
To perform INST-13C-MFA, it was necessary to establish a workflow for the analysis 
at the University of Bath. Chapter 4.3 collates a collection of key experiments 
performed over the course of the research involved with establishing the small 
volume MKI and MKII CSTR growth systems. While only key early experiments 
have been mentioned, these experiments represented a critical part of the overall 
aim of developing a viable INST-13C-MFA workflow and was a revival of the 
research group’s ability to perform chemostat growth experiments and 13C-MFA 
experiments. The approach of using HPLC-RI-UV to monitor the concentrations of 
metabolic products and residual sugar allowed a direct quantification of whether 
each chemostat growth experiment had achieved the desired metabolic steady state 
under the target aeration conditions. 

Initial setbacks in performing growth experiments were ultimately solved through the 
inclusion of antifoam 204 in the ASM. Through a variation of the: ASM sugar 
concentrations, air flow rates, agitator speeds and additional media supplements, 
the results of Chapter 4.3 demonstrate that aerobic and microaerobic growth on 
minimal, defined media could be achieved for P. thermoglucosidaisus cells grown 
under chemostat conditions. Through the additional supplement of FeCl3 as 
suggested by the p-thermo model, these results suggest that threshold conditions of 
ethanolgenesis may have been reached for P. thermoglucosidasius in the 
GAn0.075 ILE, but that future work can improve upon these conditions and 
investigate whether stable populations of P. thermoglucosidasius can be maintained 
at even lower culture redox potentials, which would likely represent a greater degree 
of ethanologenesis.  

One of the most confounding issues with the overall experimental design resulted 
from the prohibitive cost of the 13C sugars themselves, particularly with respect to 
the anerobic growth expriments. For the anerobic growth experiments it was 
necessary to work within a series of very narrow constraints: a minimum working 
volume of 350 mL, a minimum air flow rate of 50 mL/min or 0 and a 13C sugar cost 
which, particularly given the continuous culture strategy, demanded a low % sugar 
in the feed media. Inversely however, more carbon could increase the size of the 
cell population, reducing the available concentration of O2 per cell and could 
potentially encourage sustainable anaerobic growth conditions. Indeed, P. 
thermoglucosidasius has the capacity to be grown fermentatively on 1% ASM and at 
a higher working volume (which enables a lower concentration of dissolved oxygen 
at the 50 mL/min minimum operating flow rate of the equipment). Future work with 
this set up should therefore aim to use a greater concentration of 13C tracer to 
achieve more anerobic conditions and greater degrees of ethanologenesis. An initial 
attempt was made to grow P. thermoglucosidasius cells aerobically on 12C xylose at 
a dilution rate of 0.225 h-1 to mirror the glucose experiments. However, this 
experiment proved to be the final performance for the Braun unit, which could not be 
repaired after a final heater failure. Future work could therefore aim to perform this 
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growth experiment of P. thermoglucosidasius using these conditions. Overall 
however, these conditions ultimately defined the final INST-13C-MFA ILEs 
performed and analysed in Chapter 4.4 and focus from this point therefore turned to 
data processing and analysis. 

The qualitative results of chapter 4.4.2-3 suggest that the overall INST-13C-MFA 
workflow developed over the course of this research was successful in its aim to be 
the first to perform INST-13C-MFA ILEs of P. thermoglucosidasius grown on glucose 
and xylose under aerobic and anaerobic conditions at a range of growth rates and 
successfully observe the resulting dynamic rates of 13C labelling over time for its 
proteinogenic amino acids. Indeed, the results of these experiments provide a 
series of potentially valuable isotopically in-stationary data sets for future research 
into P. thermoglucosidasius. These results also suggest that the node-by-node 
comparison approach was valid way to discuss the data and that biosynthesis of 
amino acids in P. thermoglucosidasius grown at different aerobic growth rates and 
under different oxygen conditions primarily uses glycolysis, with little qualitative 
suggestions of impact of the ED pathway or considerable flux through the PPP.   

The most critical limitation of these INST-13C-MFA ILE results themselves however 
is that they, combined with their respective CCF analyses, represent a single 
biological replicate and therefore the reliability of these results as descriptions of 
metabolic behaviours of P. thermoglucosidasius NCIMB 11955 is limited. Indeed, 
this is most notable for the results of the GA0.075 ILE. A recurring observation in 
these results was that the total 13C-labelling towards the final samples of the 
GA0.075 ILE suggest that an isotopic steady state had not been reached. This in 
turn may affect attempts to model this experimental data set in terms of CCM flux, 
even when simulations are set to account for non-steady state labelling. On the 
other hand, the GA0.075 ILE data set suggests that, even if a researcher’s intent is 
to only perform isotopically steady-state 13C-MFA using a chemostat approach, 
there is value in processing and analysing several time-points towards the assumed 
end of the ILE to ensure downstream analysis is validly assuming isotopic steady 
state. 

The quantitative results of chapter 4.4.2-3 however suggest, that, although 
improvements were made to the underlying carbon transition network, futher 
network variation, constraint and refinement is required to yield flux distribution 
models which are statistically acceptable representations of these experimental data 
sets. 

One reason for this could be that the 13C-MFA fitting was performed using only the 
mass fragments of amino acids determined to be valid after natural isotope 
abundance correction. However, Long and Antoniewicz (2019)123 suggest that 
ideally the [M-57]+ and [M-159]+ mass fragments of each amino acid should be 
used for flux fitting. Future work could therefore investigate whether the use of these 
fragment MDVs, regardless of their resulting values after natural isotope abundance 
correction, can aid in achieving SSR accepted flux maps with more accurate flux 
distributions. Future work would also aim to achieve statistically accepted SSR fits 
by looking at reactions in the network, in particular those relating to the PPP and 
key SSR contributor His440, and by exploring whether further addition of pseudo-
reactions to the network could potentially improve fitting of the 13C-data. 

Time constraints were a considerable factor and were largely a result of 
underestimation of how long the data processing steps, including TIC extraction, 
natural isotope abundance correction and data entry to INCA, would take for the 
technical triplicate samples of each experiment. 
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5.3 General future work: FBA of a 13C-constrained GSMM 
Ultimately however, future work involving this research should work towards the 
application and integration of statistically acceptable flux distributions of the INST-
13C-MFA ILEs with p-thermo. Two methods for achieving this have been developed 
by Martín et al. (2015)219 and Gopalakrishnan and Maranas (2015)220. Both methods 
rely on first performing the 13C data fitting with ILE derived amino acid mass 
fragments to a model of CCM, then using the output fluxes as constraints for the 
larger GSMM network. In this way, there is also less of a need to assume an 
evolutionary optimization principle, such as the maximization of flux through a 
biomass equation. Such-large scale metabolic analysis would both further improve 
the predictive accuracy of the model and enable specific characterization of P. 
thermoglucosidasius phenotypes under the aerobic, micro-aerobic and anaerobic 
conditions as sought in this research. 

Such an ideally fluxomics-constrained p-thermo would also create a foundational 
platform for strain design. Indeed, with a more accurate foundational GSMM to act 
as a reference, techniques for strain design including OptKnock and MOMA could 
be applied to p-thermo to inform strain engineering approaches for P. 
thermoglucosidasius to develop it as a microbial chassis for potential future 
thermophilic bioprocesses maximize production of existing metabolic products of 
interest such as: lactic acid, ethanol, and hydrogen. Alternatively, the base GSMM 
could be modified with new reactions, allowing in silico predictions to suggest 
genetic modifications maximize production of non-native bioproducts such as for the 
proof of principle isobutanol and terpenoid systems, or to meet broader demands for 
platform chemicals in a more sustainable manner. 
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7. Appendices 
7.1 Appendix 1: Supplementary Figures to ‘Genome-scale metabolic 
modeling of P. thermoglucosidasius NCIMB 11955 reveals metabolic 
bottlenecks in anaerobic metabolism’. 
 

Supplementary figure 1: Whole proteome comparison between P. 
thermoglucosidasius NCIMB 11955 and P. thermoglucosidaius M10EXG, for all 
ORFs (A) and when filtered for metabolic genes (B). Supplementary tables 4 and 5 
list the unique metabolic ORFs between the two strains.  

 

  



 

246 
 

Supplementary figure 2: Correlation between pFBA analysis of the model and 
experimentally derived data7, normalized to glucose uptake rate, in aerobic, oxygen 
limited and anaerobic conditions. Errors for measured fluxes and variability in pFBA 
fluxes are shown. A linear fit has been applied to assay correlation, with the R value 
indicated per condition.  
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Supplementary figure 3: Predicted oxygen consumption rates for the three 
conditions, when measured exchange rates of fermentation products were fit to the 
model.  
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Supplementary figure 4: A) result of computing predicted in silico biomass yield, 

when measured exchange rates, carbon uptake rates and genetic manipulations (i.e. 

knockouts) have been introduced. B) Effect of lactate production on biomass yield 

when all other measured exchange rates are fixed for the WT strain. The dotted line 

indicates the measured lactate production in these conditions. 
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Supplementary figure 5: A) Aerobic shake flask experiment of P. 

thermoglucosidasius NCIMB 11955 on TMM base medium. Shaded area shows 

standard devaition between three biological replicates. B) Anaerobic growth curves 

of P. thermoglucosidasius NCIMB 11955 grown on base TMM supplemented with 

various nutrients. Experiment was performed in a microtiter plate reader, and shaded 

area represents standard deviation of measurements over quadruplicates. (YE = 

yeast extract) 
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Supplementary Tables 

Supplementary Table 1: Stoichiometry of the biomass reaction in p-thermo. 

 Compound mmol/gDCW 

Proteins  
 

 Ala 0.5142 

 Arg 0.1831 

 Asp 0.2219 

 Asn 0.2219 

 Cys 0.1079 

 Glu 0.322 

 Gln 0.322 

 Gly 0.4077 

 His 0.0778 

 Ile 0.2728 

 Leu 0.3475 

 Lys 0.3172 

 Met 0.0832 

 Phe 0.1451 

 Pro 0.1665 

 Ser 0.1811 

 Thr 0.2688 

 Trp 0.1026 

 Tyr 0.1036 

 Val 0.3761 

Nucleic Acids Ribonucleic acid (RNA)  

 AMP 0.1193 

 CMP 0.0915 

 GMP 0.0915 

 UMP 0.1193 

 
Deoxyribonucleic acid 
(DNA)  

 dAMP 0.0077 

 dCMP 0.0059 

 dGMP 0.0059 

 dTMP 0.0077 

Lipids Phospholipids  

 PE 0.0290 

 PG 0.0277 

 CLPN 0.0296 

   

Carbohydrates   

 D-Fructose 0.1048 

 GDP-Mannose 0.0057 

 UDP-D-Galactose 0.1895 

 UDP-D-Xylose 0.1825 

 UDP-D-Glucose 0.0096 

 UDP-L-Arabinose 0.0407 
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 Compound mmol/gDCW 

   

Salts   

 Phosphorous 0.0420 

 Calcium 0.0028 

 Potassium 0.6323 

 Magnesium 0.0875 

 Iron 0.0304 

Vitamins & 
cofactors 

 
 

 Thiamin B1 0.0002 

 Riboflavin B2 0.0002 

 Vitamin B12 0.0002 

 Vitamin B6 0.0002 

 10-Formyltetrahydrofolate 0.0004 

 Biotin 1.79E-06 

 Bacillithiol 6.23E-05 

 Bacillithiol disulfide 1.56E-07 

 Chorismate 0.0002 

 FAD 0.0002 

 FMN 0.0002 

 Heme 0.0002 

 Proto-heme 0.0002 

 Siroheme 0.0002 

 Menaquinol 0.0003 

 NAD+ 0.0145 

 NADH 0.0267 

 NADP 0.0042 

 NADPH 0.0027 

 S-Adenosyl-L-methionine 0.0002 

 Spermidine 0.0011 

 Spermine 0.0025 

 Putrescine 0.0054 

 CoA 0.0002 

Intracellular 
Metabolites 

 
 

 Acetyl-CoA 0.0002 

 Succinyl-CoA 8.75E-05 

Energy 
Requirement 

 
 

 ADP - 152.28 

 Pi -152.27 

 Ppi 0.0011 

 H - 152.28 

 H2O 152.28 

 ATP 152.31 
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Supplementary table 2: Estimation of polymerization energy needed to form 

biomass from the different monomer classes present in the biomass reaction. This 

energy fraction constitutes part of the growth associated maintenance that is present 

in the biomass reaction. Polymerization energy per molecule was obtained from 

literature65.   

 Cellular content 
(w/w) 

Polymerization energy 

  
Per molecule 

(mmol ATP/g polymer) 
Total (mmol 
ATP/gcell) 

Protein 0.52 37.7 19.604 

Carbohydrates 0.1 12.8 1.28 

RNA 0.16 26 4.16 

DNA 0.1 26 2.6 

Lipids 0.09 25.6 2.304 

Sum   29.948 

 

Supplementary table 3: Overview of an analyses of filtering the unique ORFs 

detected in the genome analyses between two (Para)geobacillus strains, when 

various levels of filtering are applied to elucidate how many reactions would be unique 

in models made of each strain, and finally which would be connected to any pre-

existing metabolites in the network. Supplementary table 4 and 5 highlight the unique 

metabolic ORFs identified.  

 

 P. thermoglucosidasius 
NCIMB 11955 

P. thermoglucosiodasius 
M10EXG 

Unique ORFs 259 234 
Unique metabolic ORFs1 40 29 

Unique ORFs as reactions2 18 13 
Unique reactions3 11 12 

Connected unique reactions4 8 6 
 

1 Unique metabolic ORFs are ORFs with an E.C. code associated to them 
2 Subset of unique metabolic ORFs that would actually be captured as a reaction in the 
model 
3 Subset of unique ORFs that would cause new reactions to the model 
4 Subset of unique reactions that are connected by a main metabolite to one or more pre-
existing metabolites in the model. Note, all these reactions are still blocked (i.e. no two main 
metabolites found in model). 
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Supplementary table 4: Metabolic ORFs unique to P. thermoglucosidasius NCIMB 

11955, detected in the genome comparison.  

 

 

  

Gene 
annotation 

EC Annotated Kegg Ontology 

abfA 3.2.1.55 Alpha-L-arabinofuranosidase 

adk 2.7.4.3 adenylate kinase 

araA 5.3.1.4 L-arabinose isomerase 

cocE 3.1.1.84 Carboxylesterase  

ecfA2 3.6.3.- Hydrolase, involved in transmembrane movement 

glf 5.4.99.9 UDP-galactopyranose mutase 

gltX 6.1.1.17 Glutamyl-tRNA synthetase 

hdl IVa 3.8.1.2 2-haloacid dehalogenase 

helD_2 3.6.4.12 DNA helicase 

ispD 2.7.7.60 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase 

ispF 4.6.1.12 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 

kpsU 2.7.7.38 3-deoxy-manno-octulosonate cytidylyltransferase (CMP-KDO 
synthetase) 

lytC_3 3.5.1.28 N-acetylmuramoyl-L-alanine amidase 

mazF 3.1.27.- Esterase (component of type II toxin-antitoxin system) 

mcsB 2.7.14.1 Protein arginine kinase 

mngB 3.2.1.170 Mannosylglycerate hydrolase 

mrnC 3.1.26.- Esterase (ribonuclease) 

mtlD 1.1.1.17 Mannitol-1-phosphate 5-dehydrogenase 

ppk 2.7.4.1 Polyphosphate kinase 

ppx 3.6.1.11 Exopolyphosphatase 

pseG 3.6.1.57 UDP-2,4-diacetamido-2,4,6-trideoxy-beta-L-altropyranose 
hydrolase 

rapA_1 3.6.4.- RNA Polymerase associated hydrolase 

rbsD 5.4.99.62 D-ribose pyranase 

rhpA 3.6.4.13 ATP-dependent helicase 

rpoA 2.7.7.6 DNA-directed RNA polymerase 

rpoB 2.7.7.6 DNA-directed RNA polymerase 

rpoC 2.7.7.6 DNA-directed RNA polymerase 

srlB 2.7.1.198 Glucitol/sorbitol PTS system EIIA component 

srlE 2.7.1.198 Glucitol/sorbitol PTS system EIIA component 
tagD 2.7.7.39 Glycerol-3-phosphate cytidylyltransferase 

trmB 2.1.1.33 tRNA (guanine-N7-)-methyltransferase 

truA 5.4.99.12 tRNA pseudouridine synthase 

wecA 2.7.8.40 UDP-GalNAc:undecaprenyl-phosphate GalNAc-1-phosphate 
transferase 

xylA_1 3.2.1.37 Xylan 1,4-beta-xylosidase 

xynA 3.2.1.8 Endo-1,4-beta-xylanase 

xynB 3.2.1.37 Xylan 1,4-beta-xylosidase 

YDAf_2 2.3.1.- Acyltransferase 

yeeF 3.1.-.- Ribonuclease 

yjjG 3.1.3.5 5'-nucleotidase 

yobL 3.1.-.- Ribonuclease 
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Supplementary table 5: Metabolic ORFs unique to P. thermoglucosidasius 

M10EXG, detected in the genome comparison.  

Gene 
annotation 

EC Annotated Kegg Ontology 

cocE 3.1.1.84 Carboxylesterase  

cwlK 3.4.-.- Peptidase 

cynS 4.2.1.104 Cyanate lyase 

derK 2.7.1.210 D-erythrulose 4-kinase  

dhaL 2.7.-.- Phosphotransferase 

fdtA 5.3.2.3 TDP-4-oxo-6-deoxy-alpha-D-glucose-3,4-oxoisomerase 

hsdM_1 2.1.1.72 Site-specific DNA-methyltransferase (adenine-specific)  

hsdM_2 2.1.1.72 Site-specific DNA-methyltransferase (adenine-specific)  

hsdR_1 3.1.21.3 Type I restriction enzyme 

hsdR_2 3.1.21.3 Type I restriction enzyme 

iolB 5.3.1.30 5-deoxy-glucuronate isomerase 

iolE 4.2.1.44 Inosose dehydratase 

iolI 5.3.99.11 2-keto-myo-inositol isomerase 

iolX 1.1.1.370 Scyllo-inositol 2-dehydrogenase (NAD+) 

lhgO 1.1.3.15 Glycolate oxidase  

lipA 2.8.1.8 Lipoyl synthase 

lsrF 2.3.1.245 3-hydroxy-5-phosphonooxypentane-2,4-dione thiolase  

mutT4 3.6.1.- Esterase 

NA 2.4.1.161 Oligosaccharide 4-alpha-D-glucosyltransferase 

radD 3.6.4.12 DNA repair helicase 

recD 3.1.11.5 Exodeoxyribonuclease V  

rfbC 5.1.3.13 dTDP-4-dehydrorhamnose 3,5-epimerase 

sqhC 4.2.1.137 Sporulenol synthase 

sunS 2.4.1.- Glycosyltransferase 

tatD 3.1.21.- Endodeoxyribonucleases  

uvrD1 3.6.4.12 ATP-dependent DNA helicase 

wapA_1 3.1.-.- tRNA(Glu)-specific nuclease 

wapA_2 3.1.-.- tRNA(Glu)-specific nuclease 

wapA_3 3.1.-.- tRNA(Glu)-specific nuclease 

 

 

7.2 Appdendix 2 - Complete validity tables 
 

GA0.075 
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metaboliteAA standard Meta-AverageStandard deviation of amino acids12C Meta-Average

Ala317 4.62% 0.65% 4.09% Invalid Invalid

Ala302 0.15% 0.08% 0.18% Valid Conditonal valid

Ala260 14.49% 3.76% 14.39% Invalid Invalid

Ala232 22.89% 5.65% 22.79% Invalid Invalid

Gly303 9.59% 1.55% 7.74% Invalid Invalid

Gly288 0.32% 0.07% 0.27% Valid Conditonal valid

Gly246 17.25% 4.55% 17.09% Invalid Invalid

Gly218 25.83% 6.22% 25.40% Invalid Invalid

Val345 6.98% 16.86% 6.88% Invalid Conditonal valid

Val330 0.20% 22.20% 0.25% Valid Conditonal valid

Val288 12.39% 1.22% 13.32% Invalid Invalid

Val260 8.56% 9.41% 8.44% Invalid Conditonal valid

Val186 18.35% 19.88% 18.27% Invalid Conditonal valid

Pro343 14.90% 3.45% 17.52% Invalid Invalid

Pro328 3.43% 0.66% 3.88% Invalid Invalid

Pro301 31.83% 3.91% 33.20% Invalid Invalid

Pro286 4.38% 1.59% 4.86% Invalid Invalid

Pro258 3.06% 1.99% 2.93% Invalid Conditonal valid

Pro184 10.73% 2.38% 10.57% Invalid Invalid

Met377 49.92% 0.14% 42.70% Invalid Invalid

Met302 11.31% 0.27% 12.15% Invalid Invalid

Met292 32.88% 3.24% 23.47% Invalid Invalid

Met218 25.08% 3.11% 17.30% Invalid Invalid

Phe393 32.83% 6.75% 33.87% Invalid Invalid

Phe378 3.05% 0.32% 3.30% Invalid Invalid

Phe336 0.89% 0.44% 0.90% Valid Conditonal valid

Phe308 0.89% 0.39% 0.85% Valid Conditonal valid

Phe234 1.16% 0.59% 1.15% Valid Conditonal valid

Ser447 2.76% 1.31% 3.26% Invalid Invalid

Ser432 0.12% 0.06% 0.12% Valid Conditonal valid

Ser390 8.46% 2.96% 8.17% Invalid Invalid

Ser362 10.16% 4.07% 9.71% Invalid Invalid

Ser288 11.29% 3.88% 10.89% Invalid Invalid

Thr461 17.38% 12.06% 17.59% Invalid Invalid

Thr446 16.91% 14.04% 18.32% Invalid Invalid

Thr404 21.91% 2.07% 21.92% Invalid Invalid

Thr376 80.11% 8.03% 84.41% Invalid Invalid

Thr302 8.53% 0.66% 9.13% Invalid Invalid

Lys488 0.20% 0.06% 0.21% Valid Conditonal valid

Lys473 0.63% 0.60% 0.57% Valid Conditonal valid

Lys473 0.63% 0.60% 0.57% Valid Conditonal valid

Lys431 0.29% 0.19% 0.29% Valid Conditonal valid

Lys403 4.88% 4.20% 5.32% Invalid Conditonal valid

Lys329 0.46% 0.16% 0.48% Valid Conditonal valid

Lys300 6.07% 0.25% 6.18% Invalid Invalid

Cys406 21.39% 4.44% 21.07% Invalid Invalid

Cys378 36.03% 22.75% 33.71% Invalid Invalid

Cys304 0.00% 10.05% 0.00% Invalid Conditonal valid

Tyr523 33.98% 2.44% 34.28% Invalid Invalid

Tyr508 1.84% 0.10% 1.80% Invalid Invalid

Tyr466 0.43% 0.18% 0.45% Valid Conditonal valid

Tyr438 1.61% 0.21% 1.47% Invalid Invalid

Tyr364 0.78% 0.04% 0.79% Valid Conditonal valid

Tyr221 4.50% 0.15% 4.58% Invalid Invalid

Trp546 7.63% 3.42% 7.07% Invalid Invalid

Trp531 52.06% 2.06% 51.49% Invalid Invalid

Trp531 52.06% 2.06% 51.49% Invalid Invalid

Trp489 35.08% 1.79% 35.51% Invalid Invalid

Trp461 56.33% 2.92% 55.89% Invalid Invalid

Trp388 41.33% 1.36% 40.98% Invalid Invalid

Trp330 31.68% 8.52% 31.22% Invalid Invalid

Trp302 11.45% 2.89% 12.86% Invalid Invalid

Trp244 51.52% 1.12% 52.98% Invalid Invalid

His497 10.42% 0.66% 10.20% Invalid Invalid

His482 1.75% 0.22% 1.75% Invalid Invalid

His440 0.83% 1.63% 0.72% Valid Conditonal valid

His412 3.10% 0.88% 3.04% Invalid Invalid

His338 1.78% 0.46% 1.68% Invalid Invalid

Glu489 0.24% 0.11% 0.25% Valid Conditonal valid

Glu474 0.16% 0.07% 0.18% Valid Conditonal valid

Glu432 11.80% 2.04% 11.71% Invalid Invalid

Glu404 0.12% 0.02% 0.11% Valid Conditonal valid

Glu330 7.37% 1.25% 7.28% Invalid Invalid

Glu302 1.88% 0.20% 1.99% Invalid Invalid

Glu187 46.06% 0.22% 46.00% Invalid Invalid

Asp475 2.05% 0.88% 2.23% Invalid Conditonal valid

Asp460 0.16% 0.09% 0.15% Valid Conditonal valid

Asp418 9.95% 2.07% 9.87% Invalid Invalid

Asp390 4.00% 0.28% 3.98% Invalid Invalid

Asp316 7.51% 1.07% 7.45% Invalid Invalid

Asp302 12.97% 2.58% 12.91% Invalid Invalid

Leu359 3.39% 2.33% 3.20% Invalid Conditonal valid

Leu344 0.17% 0.11% 0.16% Valid Conditonal valid

Leu302 6.35% 1.47% 6.28% Invalid Invalid

Leu274 7.80% 1.84% 7.76% Invalid Invalid

Leu200 11.70% 1.91% 11.60% Invalid Invalid

ILe359 5.27% 1.55% 5.12% Invalid Invalid

ILe344 0.19% 0.11% 0.24% Valid Conditonal valid

ILe302 6.23% 2.12% 6.16% Invalid Invalid

ILe274 5.72% 2.32% 5.65% Invalid Invalid

ILe200 9.01% 2.30% 8.94% Invalid Invalid

Arg516 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg501 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg459 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg402 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg357 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg317 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg300 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg288 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg273 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg231 0.00% 0.00% 0.00% Invalid Conditonal valid

Gln488 38.16% 0.06% 37.42% Invalid Invalid

Gln473 41.88% 0.05% 44.98% Invalid Invalid

Gln431 16.50% 1.90% 16.26% Invalid Invalid

Gln403 28.73% 3.22% 28.54% Invalid Invalid

Gln358 31.81% 0.13% 30.37% Invalid Invalid

Gln329 38.61% 0.07% 38.57% Invalid Invalid

Gln300 52.10% 0.46% 57.39% Invalid Invalid

Gln272 31.33% 0.11% 31.22% Invalid Invalid

Suc303 0.00% 0.59% 0.00% Invalid Conditonal valid

Suc261 0.00% 12.15% 0.00% Invalid Conditonal valid

Lac318 69.99% 2.67% 66.69% Invalid Invalid

Lac303 1.38% 3.81% 1.42% Invalid Conditonal valid

Lac261 0.58% 1.38% 0.53% Valid Conditonal valid

Lac233 0.24% 1.18% 0.32% Valid Conditonal valid

Lac189 6.10% 3.45% 5.88% Invalid Invalid

Type of fragment accuracy

GA0.0752

Table S1: All TBDMS-derivtized amino acid mass fragments for the GA0.075 ILE and their calculated 

percentage 13C incorporation after naturally abundant 13C isotope correction. Mass fragments are 

determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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GA0.15 

 

 

Table S2: All TBDMS-derivtized amino acid mass fragments for the GA0.15 ILE and their calculated 

percentage 13C incorporation after naturally abundant 13C isotope correction. Mass fragments are 

determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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GA0.15

metaboliteAA standard Meta-AverageStandard deviation of amino acids12C Meta-AverageAA standard fragment accuracy

Ala317 4.00% 0.65% 4.00% Invalid

Ala302 0.23% 0.09% 0.25% Valid

Ala260 15.60% 2.19% 16.55% Invalid

Ala232 25.03% 3.38% 26.45% Invalid

Gly303 9.22% 1.72% 8.57% Invalid

Gly288 0.30% 0.18% 0.35% Valid

Gly246 21.57% 5.01% 22.31% Invalid

Gly218 30.58% 5.32% 31.78% Invalid

Val345 17.00% 3.30% 15.11% Invalid

Val330 0.59% 0.13% 0.46% Valid

Val288 6.51% 2.67% 11.95% Invalid

Val260 8.62% 2.18% 10.06% Invalid

Val186 18.62% 2.69% 20.39% Invalid

Pro343 4.21% 0.98% 11.45% Invalid

Pro328 1.04% 0.37% 3.04% Valid

Pro301 7.43% 1.90% 22.77% Invalid

Pro286 5.13% 1.94% 5.14% Invalid

Pro258 7.95% 2.57% 4.58% Invalid

Pro184 14.77% 2.18% 12.38% Invalid

Met377 0.25% 0.09% 27.13% Valid

Met302 18.72% 0.47% 9.25% Invalid

Met292 11.29% 2.96% 36.97% Invalid

Met218 11.55% 2.62% 12.84% Invalid

Phe393 28.77% 4.01% 37.04% Invalid

Phe378 0.93% 0.19% 3.81% Valid

Phe336 1.95% 0.82% 1.52% Invalid

Phe308 1.85% 0.80% 1.67% Invalid

Phe234 2.43% 0.74% 1.93% Invalid

Ser447 4.04% 1.02% 3.50% Invalid

Ser432 0.28% 0.15% 0.14% Valid

Ser390 17.49% 2.67% 10.59% Invalid

Ser362 24.37% 4.33% 13.89% Invalid

Ser288 23.76% 3.69% 14.93% Invalid

Thr461 0.00% 0.00% 3.07% Invalid

Thr446 0.00% 0.00% 1.39% Invalid

Thr404 0.00% 0.00% 2.54% Invalid

Thr376 0.00% 0.00% 10.05% Invalid

Thr302 0.00% 0.00% 1.07% Invalid

Lys488 0.12% 0.06% 0.20% Valid

Lys473 1.24% 0.36% 0.81% Invalid

Lys473 1.24% 0.36% 0.81% Invalid

Lys431 0.23% 0.10% 0.40% Valid

Lys403 10.93% 2.59% 6.70% Invalid

Lys329 1.14% 0.35% 0.70% Valid

Lys300 5.52% 1.61% 7.46% Invalid

Cys406 12.21% 5.01% 14.92% Invalid

Cys378 32.38% 24.27% 26.72% Invalid

Cys304 10.76% 10.26% 0.00% Invalid

Tyr523 12.39% 1.25% 41.23% Invalid

Tyr508 0.20% 0.06% 2.30% Valid

Tyr466 2.18% 0.83% 1.04% Invalid

Tyr438 1.16% 0.52% 2.33% Valid

Tyr364 1.14% 0.50% 1.24% Valid

Tyr221 3.63% 0.21% 6.56% Invalid

Trp546 8.83% 2.68% 7.79% Invalid

Trp531 52.94% 1.86% 50.53% Invalid

Trp531 52.94% 1.86% 50.53% Invalid

Trp489 37.61% 10.08% 30.31% Invalid

Trp461 49.04% 1.57% 57.38% Invalid

Trp388 16.15% 2.79% 40.05% Invalid

Trp330 48.60% 15.58% 25.05% Invalid

Trp302 9.99% 3.92% 15.02% Invalid

Trp244 16.25% 1.19% 57.72% Invalid

His497 5.32% 3.21% 10.61% Invalid

His482 0.59% 0.24% 1.60% Valid

His440 4.34% 2.49% 1.25% Invalid

His412 3.84% 1.06% 4.00% Invalid

His338 16.15% 1.38% 2.16% Invalid

Glu489 0.22% 0.11% 0.23% Valid

Glu474 0.18% 0.04% 0.27% Valid

Glu432 9.38% 1.74% 12.69% Invalid

Glu404 0.08% 0.07% 0.35% Valid

Glu330 5.45% 1.52% 8.56% Invalid

Glu302 1.80% 0.14% 1.98% Invalid

Glu187 46.21% 0.18% 46.09% Invalid

Asp475 2.43% 0.94% 2.68% Invalid

Asp460 0.40% 0.31% 0.17% Valid

Asp418 7.42% 3.45% 11.85% Invalid

Asp390 4.22% 1.82% 6.40% Invalid

Asp316 7.31% 1.84% 9.95% Invalid

Asp302 8.85% 5.62% 15.51% Invalid

Leu359 3.80% 1.12% 3.25% Invalid

Leu344 0.27% 0.14% 0.44% Valid

Leu302 5.70% 1.24% 7.12% Invalid

Leu274 7.26% 1.48% 8.94% Invalid

Leu200 11.25% 1.19% 12.67% Invalid

ILe359 3.54% 0.85% 4.13% Invalid

ILe344 0.35% 0.14% 0.41% Valid

ILe302 6.72% 1.15% 6.90% Invalid

ILe274 6.71% 1.36% 6.89% Invalid

ILe200 9.91% 1.08% 10.04% Invalid

Arg516 0.00% 0.00% 0.00% Invalid

Arg501 0.00% 0.00% 0.00% Invalid

Arg459 0.00% 0.00% 0.00% Invalid

Arg402 0.00% 0.00% 0.00% Invalid

Arg357 0.00% 0.00% 0.00% Invalid

Arg317 0.00% 0.00% 0.00% Invalid

Arg300 0.00% 0.00% 0.00% Invalid

Arg288 0.00% 0.00% 0.00% Invalid

Arg273 0.00% 0.00% 0.00% Invalid

Arg231 0.00% 0.00% 0.00% Invalid

Gln488 0.41% 0.32% 37.47% Valid

Gln473 0.65% 0.43% 30.57% Valid

Gln431 5.60% 3.75% 19.85% Invalid

Gln403 9.29% 4.43% 29.08% Invalid

Gln358 3.22% 1.17% 27.66% Invalid

Gln329 1.24% 0.23% 37.79% Invalid

Gln300 22.35% 0.53% 36.23% Invalid

Gln272 4.50% 0.54% 33.51% Invalid

Suc303 0.00% 0.00% 1.62% Invalid

Suc261 0.00% 0.00% 24.84% Invalid

Lac318 0.00% 0.00% 25.79% Invalid

Lac303 0.00% 0.00% 34.92% Invalid

Lac261 0.00% 0.00% 19.87% Invalid

Lac233 0.00% 0.00% 11.58% Invalid

Lac189 0.00% 0.00% 10.91% Invalid



 

259 
 

GA0.225 

 

Table S3: All TBDMS-derivtized amino acid mass fragments for the GA0.225 ILE and their calculated 

percentage 13C incorporation after naturally abundant 13C isotope correction. Mass fragments are 

determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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metaboliteAA standard Meta-AverageStandard deviation of amino acids12C Meta-AverageAA standard fragment accuracy

Ala317 4.00% 0.65% 3.68% Invalid

Ala302 0.23% 0.09% 0.19% Valid

Ala260 15.60% 2.19% 13.47% Invalid

Ala232 25.03% 3.38% 21.73% Invalid

Gly303 9.22% 1.72% 8.17% Invalid

Gly288 0.30% 0.18% 0.46% Valid

Gly246 21.57% 5.01% 16.23% Invalid

Gly218 30.58% 5.32% 24.41% Invalid

Val345 17.00% 3.30% 17.39% Invalid

Val330 0.59% 0.13% 0.67% Valid

Val288 6.51% 2.67% 11.76% Invalid

Val260 8.62% 2.18% 7.70% Invalid

Val186 18.62% 2.69% 17.57% Invalid

Pro343 4.21% 0.98% 13.61% Invalid

Pro328 1.04% 0.37% 4.23% Valid

Pro301 7.43% 1.90% 21.87% Invalid

Pro286 5.13% 1.94% 3.59% Invalid

Pro258 7.95% 2.57% 1.92% Invalid

Pro184 14.77% 2.18% 8.81% Invalid

Met377 0.25% 0.09% 30.67% Valid

Met302 18.72% 0.47% 9.83% Invalid

Met292 11.29% 2.96% 12.43% Invalid

Met218 11.55% 2.62% 8.46% Invalid

Phe393 28.77% 4.01% 34.90% Invalid

Phe378 0.93% 0.19% 2.39% Valid

Phe336 1.95% 0.82% 0.91% Invalid

Phe308 1.85% 0.80% 1.18% Invalid

Phe234 2.43% 0.74% 1.13% Invalid

Ser447 4.04% 1.02% 3.20% Invalid

Ser432 0.28% 0.15% 0.19% Valid

Ser390 17.49% 2.67% 6.49% Invalid

Ser362 24.37% 4.33% 7.83% Invalid

Ser288 23.76% 3.69% 9.92% Invalid

Thr461 0.00% 0.00% 3.07% Invalid

Thr446 0.00% 0.00% 1.39% Invalid

Thr404 0.00% 0.00% 2.54% Invalid

Thr376 0.00% 0.00% 10.05% Invalid

Thr302 0.00% 0.00% 1.07% Invalid

Lys488 0.12% 0.06% 0.19% Valid

Lys473 1.24% 0.36% 0.94% Invalid

Lys473 1.24% 0.36% 0.94% Invalid

Lys431 0.23% 0.10% 0.30% Valid

Lys403 10.93% 2.59% 8.39% Invalid

Lys329 1.14% 0.35% 0.75% Valid

Lys300 5.52% 1.61% 6.00% Invalid

Cys406 12.21% 5.01% 19.51% Invalid

Cys378 32.38% 24.27% 25.39% Invalid

Cys304 10.76% 10.26% 0.31% Invalid

Tyr523 12.39% 1.25% 35.46% Invalid

Tyr508 0.20% 0.06% 1.65% Valid

Tyr466 2.18% 0.83% 0.79% Invalid

Tyr438 1.16% 0.52% 1.82% Valid

Tyr364 1.14% 0.50% 0.87% Valid

Tyr221 3.63% 0.21% 5.34% Invalid

Trp546 8.83% 2.68% 9.32% Invalid

Trp531 52.94% 1.86% 46.98% Invalid

Trp531 52.94% 1.86% 46.98% Invalid

Trp489 37.61% 10.08% 38.20% Invalid

Trp461 49.04% 1.57% 59.43% Invalid

Trp388 16.15% 2.79% 39.42% Invalid

Trp330 48.60% 15.58% 28.32% Invalid

Trp302 9.99% 3.92% 17.02% Invalid

Trp244 16.25% 1.19% 49.94% Invalid

His497 5.32% 3.21% 13.80% Invalid

His482 0.59% 0.24% 2.88% Valid

His440 4.34% 2.49% 0.95% Invalid

His412 3.84% 1.06% 4.80% Invalid

His338 16.15% 1.38% 2.13% Invalid

Glu489 0.22% 0.11% 0.27% Valid

Glu474 0.18% 0.04% 0.23% Valid

Glu432 9.38% 1.74% 11.46% Invalid

Glu404 0.08% 0.07% 0.32% Valid

Glu330 5.45% 1.52% 7.39% Invalid

Glu302 1.80% 0.14% 2.10% Invalid

Glu187 46.21% 0.18% 46.03% Invalid

Asp475 2.43% 0.94% 2.71% Invalid

Asp460 0.40% 0.31% 0.19% Valid

Asp418 7.42% 3.45% 9.22% Invalid

Asp390 4.22% 1.82% 3.76% Invalid

Asp316 7.31% 1.84% 7.18% Invalid

Asp302 8.85% 5.62% 12.40% Invalid

Leu359 3.80% 1.12% 4.26% Invalid

Leu344 0.27% 0.14% 0.49% Valid

Leu302 5.70% 1.24% 5.78% Invalid

Leu274 7.26% 1.48% 7.41% Invalid

Leu200 11.25% 1.19% 11.31% Invalid

ILe359 3.54% 0.85% 5.25% Invalid

ILe344 0.35% 0.14% 0.94% Valid

ILe302 6.72% 1.15% 5.42% Invalid

ILe274 6.71% 1.36% 5.12% Invalid

ILe200 9.91% 1.08% 8.69% Invalid

Arg516 0.00% 0.00% 0.00% Invalid

Arg501 0.00% 0.00% 0.00% Invalid

Arg459 0.00% 0.00% 0.00% Invalid

Arg402 0.00% 0.00% 0.00% Invalid

Arg357 0.00% 0.00% 0.00% Invalid

Arg317 0.00% 0.00% 0.00% Invalid

Arg300 0.00% 0.00% 0.00% Invalid

Arg288 0.00% 0.00% 0.00% Invalid

Arg273 0.00% 0.00% 0.00% Invalid

Arg231 0.00% 0.00% 0.00% Invalid

Gln488 0.41% 0.32% 38.68% Valid

Gln473 0.65% 0.43% 27.54% Valid

Gln431 5.60% 3.75% 20.23% Invalid

Gln403 9.29% 4.43% 29.82% Invalid

Gln358 3.22% 1.17% 24.03% Invalid

Gln329 1.24% 0.23% 39.16% Invalid

Gln300 22.35% 0.53% 39.84% Invalid

Gln272 4.50% 0.54% 36.08% Invalid

Suc303 0.00% 0.00% 2.68% Invalid

Suc261 0.00% 0.00% 24.57% Invalid

Lac318 0.00% 0.00% 19.37% Invalid

Lac303 0.00% 0.00% 30.65% Invalid

Lac261 0.00% 0.00% 12.44% Invalid

Lac233 0.00% 0.00% 8.56% Invalid

Lac189 0.00% 0.00% 5.05% Invalid

GA0.225
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GA0.32 

Table S4: All TBDMS-derivtized amino acid mass fragments for the GA0.32 ILE and their calculated 

percentage 13C incorporation after naturally abundant 13C isotope correction. Mass fragments are 

determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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metaboliteAA standard Meta-AverageStandard deviation of amino acids12C Meta-AverageAA standard fragment accuracy

Ala317 3.65% 0.75% 3.81% Invalid

Ala302 0.20% 0.09% 0.20% Valid

Ala260 12.96% 3.40% 9.85% Invalid

Ala232 20.87% 5.22% 16.04% Invalid

Gly303 8.07% 1.37% 7.37% Invalid

Gly288 0.22% 0.17% 0.22% Valid

Gly246 16.87% 5.38% 10.22% Invalid

Gly218 24.89% 6.86% 15.57% Invalid

Val345 14.74% 5.01% 12.90% Invalid

Val330 0.50% 0.17% 0.59% Valid

Val288 7.21% 2.12% 16.27% Invalid

Val260 6.59% 3.90% 2.62% Invalid

Val186 15.73% 5.52% 10.39% Invalid

Pro343 4.58% 1.01% 12.08% Invalid

Pro328 1.18% 0.41% 3.43% Valid

Pro301 8.91% 3.05% 19.21% Invalid

Pro286 3.57% 2.13% 2.68% Invalid

Pro258 5.42% 3.32% 0.88% Invalid

Pro184 12.30% 3.42% 6.04% Invalid

Met377 0.25% 0.08% 12.80% Valid

Met302 18.82% 0.18% 15.49% Invalid

Met292 8.48% 3.48% 2.19% Invalid

Met218 9.01% 3.18% 2.31% Invalid

Phe393 32.66% 8.57% 44.64% Invalid

Phe378 1.08% 0.40% 15.68% Valid

Phe336 1.32% 0.85% 10.68% Invalid

Phe308 1.60% 0.64% 10.30% Invalid

Phe234 1.62% 1.02% 9.59% Invalid

Ser447 3.86% 1.86% 4.31% Invalid

Ser432 0.20% 0.17% 0.05% Valid

Ser390 11.99% 7.63% 2.28% Invalid

Ser362 16.39% 11.08% 2.64% Invalid

Ser288 16.48% 10.19% 3.77% Invalid

Thr461 1.97% 5.58% 3.07% Invalid

Thr446 0.17% 0.49% 1.39% Valid

Thr404 0.01% 0.02% 2.54% Valid

Thr376 10.60% 29.98% 10.05% Invalid

Thr302 0.00% 0.00% 1.07% Invalid

Lys488 0.10% 0.05% 0.13% Valid

Lys473 1.05% 0.44% 1.24% Valid

Lys473 1.05% 0.44% 1.24% Valid

Lys431 0.20% 0.09% 0.24% Valid

Lys403 9.56% 3.40% 8.53% Invalid

Lys329 0.86% 0.31% 0.89% Valid

Lys300 4.89% 1.34% 4.33% Invalid

Cys406 11.87% 5.41% 24.36% Invalid

Cys378 43.43% 17.24% 37.92% Invalid

Cys304 5.44% 9.17% 17.58% Invalid

Tyr523 15.66% 4.57% 44.41% Invalid

Tyr508 0.34% 0.18% 9.34% Valid

Tyr466 1.76% 0.99% 1.26% Invalid

Tyr438 1.97% 1.05% 2.23% Invalid

Tyr364 1.03% 0.47% 2.02% Valid

Tyr221 4.26% 0.74% 6.40% Invalid

Trp546 9.58% 3.05% 6.93% Invalid

Trp531 53.56% 2.80% 47.42% Invalid

Trp531 53.56% 2.80% 47.42% Invalid

Trp489 41.82% 7.25% 49.75% Invalid

Trp461 50.39% 3.26% 59.30% Invalid

Trp388 16.61% 2.44% 52.68% Invalid

Trp330 57.78% 8.29% 35.53% Invalid

Trp302 6.31% 3.69% 17.50% Invalid

Trp244 17.06% 2.14% 55.60% Invalid

His497 3.73% 1.35% 33.20% Invalid

His482 0.55% 0.13% 6.37% Valid

His440 4.06% 2.80% 0.71% Invalid

His412 4.43% 1.85% 11.02% Invalid

His338 16.61% 1.46% 3.04% Invalid

Glu489 0.24% 0.09% 0.32% Valid

Glu474 0.16% 0.05% 0.22% Valid

Glu432 7.25% 3.10% 7.59% Invalid

Glu404 0.05% 0.07% 0.08% Valid

Glu330 3.88% 2.30% 3.86% Invalid

Glu302 1.84% 0.13% 2.42% Invalid

Glu187 46.19% 0.18% 45.83% Invalid

Asp475 3.21% 1.81% 2.40% Invalid

Asp460 0.37% 0.28% 0.22% Valid

Asp418 4.96% 4.04% 7.12% Invalid

Asp390 2.94% 2.40% 1.95% Invalid

Asp316 5.24% 3.16% 4.89% Invalid

Asp302 6.06% 5.53% 9.75% Invalid

Leu359 3.77% 1.26% 4.30% Invalid

Leu344 0.27% 0.14% 0.28% Valid

Leu302 4.01% 2.16% 3.15% Invalid

Leu274 5.14% 2.70% 4.20% Invalid

Leu200 9.27% 2.63% 8.50% Invalid

ILe359 3.31% 0.94% 6.29% Invalid

ILe344 0.33% 0.14% 0.54% Valid

ILe302 5.39% 2.50% 1.53% Invalid

ILe274 5.28% 2.66% 1.25% Invalid

ILe200 8.49% 2.60% 4.24% Invalid

Arg516 0.00% 0.00% 0.00% Invalid

Arg501 0.00% 0.00% 0.00% Invalid

Arg459 0.00% 0.00% 0.00% Invalid

Arg402 0.00% 0.00% 0.00% Invalid

Arg357 0.00% 0.00% 0.00% Invalid

Arg317 0.00% 0.00% 0.00% Invalid

Arg300 0.00% 0.00% 0.00% Invalid

Arg288 0.00% 0.00% 0.00% Invalid

Arg273 0.00% 0.00% 0.00% Invalid

Arg231 0.00% 0.00% 0.00% Invalid

Gln488 0.39% 0.33% 37.33% Valid

Gln473 0.57% 0.50% 34.51% Valid

Gln431 4.54% 3.10% 15.31% Invalid

Gln403 8.30% 5.20% 25.53% Invalid

Gln358 3.17% 1.20% 28.53% Invalid

Gln329 1.07% 0.13% 38.67% Valid

Gln300 22.38% 0.52% 39.32% Invalid

Gln272 4.48% 0.56% 32.05% Invalid

Suc303 0.00% 0.00% 2.43% Invalid

Suc261 0.00% 0.00% 24.70% Invalid

Lac318 0.00% 0.00% 39.47% Invalid

Lac303 0.00% 0.00% 20.39% Invalid

Lac261 0.00% 0.00% 9.09% Invalid

Lac233 0.00% 0.00% 7.70% Invalid

Lac189 0.00% 0.00% 7.11% Invalid

GA0.32
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GMA0.075 

Table S5: All TBDMS-derivtized amino acid mass fragments for the GMA0.075 ILE and their calculated 

percentage 13C incorporation after naturally abundant 13C isotope correction. Mass fragments are 

determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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AA standard Meta-AverageStandard deviation of amino acids12C Meta-AverageAA standard fragment accuracyStandard-STDEV12C fragment accuracy

0.00% 0.00% 2.82% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.15% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 6.11% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 10.09% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 7.09% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.41% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 5.20% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 7.85% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 10.74% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.65% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 1.51% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 2.90% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 11.35% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 23.19% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 8.11% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 33.44% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 5.43% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.77% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 5.23% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 16.81% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 16.31% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 36.79% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 26.11% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 46.80% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 5.10% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.79% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 0.71% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 0.44% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 3.59% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.12% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 1.25% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 1.42% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 1.89% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 23.37% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 1.87% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 2.74% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 89.76% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 1.07% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 0.16% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 2.53% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 2.53% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.23% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 12.27% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.78% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 4.66% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 2.22% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 3.32% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 37.86% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.87% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 0.40% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 0.88% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 1.04% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 4.57% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.56% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 5.48% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 5.48% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 3.91% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 6.26% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 4.55% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 3.01% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 1.53% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 5.97% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 35.12% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 4.25% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.54% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 21.99% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 10.46% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.49% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 0.42% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 3.91% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.11% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 1.40% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 3.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 45.41% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 7.66% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.20% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 2.48% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.70% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 1.91% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 4.34% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 3.50% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.37% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 2.27% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 2.94% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 7.54% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 3.63% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.46% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 2.20% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 1.55% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 5.28% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.00% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 44.64% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 53.93% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 18.85% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 27.79% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 25.38% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 33.58% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 38.93% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 36.79% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 8.78% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 21.27% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 40.80% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 1.46% Invalid Conditonal valid 0.00% Invalid

0.00% 0.00% 0.19% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 0.12% Invalid Conditonal valid 0.00% Valid

0.00% 0.00% 4.69% Invalid Conditonal valid 0.00% Invalid

GMA0.075
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GAn0.075 

Table S6: All TBDMS-derivtized amino acid mass fragments for the GAn0.075 ILE and their calculated 

percentage 13C incorporation after naturally abundant 13C isotope correction. Mass fragments are 

determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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metaboliteAA standard Meta-AverageStandard deviation of amino acids12C Meta-AverageAA standard fragment accuracy

Ala317 4.56% 2.21% 4.60% Invalid Invalid

Ala302 1.33% 1.18% 1.10% Invalid Conditonal valid

Ala260 12.62% 7.42% 12.32% Invalid Invalid

Ala232 19.97% 10.63% 19.53% Invalid Invalid

Gly303 5.37% 6.23% 6.87% Invalid Conditonal valid

Gly288 1.37% 3.13% 1.34% Invalid Conditonal valid

Gly246 12.30% 14.08% 11.32% Invalid Conditonal valid

Gly218 17.64% 12.42% 16.48% Invalid Invalid

Val345 18.39% 8.48% 17.27% Invalid Invalid

Val330 1.66% 7.67% 1.50% Invalid Conditonal valid

Val288 20.34% 3.32% 20.22% Invalid Invalid

Val260 6.61% 4.77% 6.22% Invalid Invalid

Val186 15.68% 8.74% 15.27% Invalid Invalid

Pro343 23.07% 3.87% 23.93% Invalid Invalid

Pro328 7.98% 2.62% 9.78% Invalid Invalid

Pro301 35.72% 13.84% 39.67% Invalid Invalid

Pro286 6.94% 4.15% 9.26% Invalid Invalid

Pro258 3.20% 4.25% 3.73% Invalid Conditonal valid

Pro184 7.72% 6.86% 7.43% Invalid Conditonal valid

Met377 37.45% 3.21% 38.74% Invalid Invalid

Met302 22.54% 7.87% 20.40% Invalid Invalid

Met292 39.07% 5.99% 39.87% Invalid Invalid

Met218 35.56% 4.71% 35.33% Invalid Invalid

Phe393 43.99% 15.52% 44.33% Invalid Invalid

Phe378 7.22% 14.03% 6.71% Invalid Conditonal valid

Phe336 1.88% 1.48% 1.79% Invalid Conditonal valid

Phe308 2.28% 1.45% 2.36% Invalid Conditonal valid

Phe234 1.71% 1.57% 1.66% Invalid Conditonal valid

Ser447 5.30% 1.97% 4.91% Invalid Invalid

Ser432 1.20% 0.84% 1.10% Valid Conditonal valid

Ser390 3.75% 9.02% 3.41% Invalid Conditonal valid

Ser362 3.51% 11.92% 3.39% Invalid Conditonal valid

Ser288 5.49% 11.29% 5.13% Invalid Conditonal valid

Thr461 0.00% 4.00% 3.07% Invalid Conditonal valid

Thr446 0.00% 0.00% 1.39% Invalid Conditonal valid

Thr404 0.00% 0.00% 2.54% Invalid Conditonal valid

Thr376 0.00% 0.00% 10.05% Invalid Conditonal valid

Thr302 0.00% 0.00% 1.07% Valid Conditonal valid

Lys488 1.25% 0.52% 1.11% Valid Conditonal valid

Lys473 1.91% 0.62% 1.95% Invalid Invalid

Lys473 1.91% 0.62% 1.95% Invalid Invalid

Lys431 1.35% 0.69% 1.20% Valid Conditonal valid

Lys403 12.30% 3.47% 13.91% Invalid Invalid

Lys329 1.67% 2.18% 1.62% Invalid Conditonal valid

Lys300 5.36% 3.79% 5.28% Invalid Invalid

Cys406 25.43% 5.62% 23.90% Invalid Invalid

Cys378 34.65% 27.05% 32.84% Invalid Invalid

Cys304 0.63% 22.09% 1.36% Valid Conditonal valid

Tyr523 44.75% 6.48% 43.95% Invalid Invalid

Tyr508 3.56% 6.26% 3.51% Invalid Conditonal valid

Tyr466 1.97% 1.12% 1.84% Invalid Conditonal valid

Tyr438 3.04% 0.59% 2.95% Invalid Invalid

Tyr364 2.30% 0.70% 2.23% Invalid Invalid

Tyr221 7.49% 1.68% 7.35% Invalid Invalid

Trp546 9.14% 4.17% 9.00% Invalid Invalid

Trp531 52.12% 20.82% 50.88% Invalid Invalid

Trp531 52.12% 17.45% 50.88% Invalid Invalid

Trp489 39.05% 15.48% 38.94% Invalid Invalid

Trp461 56.98% 17.50% 55.53% Invalid Invalid

Trp388 50.71% 14.94% 49.93% Invalid Invalid

Trp330 31.23% 13.67% 31.16% Invalid Invalid

Trp302 21.27% 10.55% 20.96% Invalid Invalid

Trp244 55.57% 6.41% 55.80% Invalid Invalid

His497 17.38% 5.56% 18.99% Invalid Invalid

His482 3.58% 1.33% 3.79% Invalid Invalid

His440 1.49% 2.98% 1.45% Invalid Conditonal valid

His412 8.64% 1.84% 9.52% Invalid Invalid

His338 3.21% 2.07% 3.36% Invalid Conditonal valid

Glu489 1.64% 0.59% 1.46% Invalid Conditonal valid

Glu474 1.31% 0.40% 1.26% Invalid Conditonal valid

Glu432 8.38% 4.91% 8.15% Invalid Invalid

Glu404 1.36% 1.49% 1.27% Invalid Conditonal valid

Glu330 4.60% 3.41% 4.41% Invalid Conditonal valid

Glu302 3.92% 0.97% 3.78% Invalid Invalid

Glu187 46.53% 18.71% 46.34% Invalid Invalid

Asp475 4.28% 13.69% 4.41% Invalid Conditonal valid

Asp460 1.45% 1.41% 1.24% Invalid Conditonal valid

Asp418 7.30% 4.29% 6.79% Invalid Invalid

Asp390 2.06% 2.35% 2.16% Invalid Conditonal valid

Asp316 4.98% 3.51% 4.60% Invalid Invalid

Asp302 9.52% 5.50% 8.95% Invalid Invalid

Leu359 7.61% 1.81% 6.88% Invalid Invalid

Leu344 1.35% 1.70% 1.21% Invalid Conditonal valid

Leu302 5.19% 2.92% 4.95% Invalid Invalid

Leu274 6.74% 3.55% 6.34% Invalid Invalid

Leu200 10.48% 4.87% 10.21% Invalid Invalid

ILe359 11.99% 1.77% 11.51% Invalid Invalid

ILe344 1.61% 1.09% 1.47% Invalid Conditonal valid

ILe302 4.91% 4.09% 4.65% Invalid Conditonal valid

ILe274 4.34% 3.96% 4.06% Invalid Conditonal valid

ILe200 8.22% 5.06% 7.86% Invalid Invalid

Arg516 0.00% 3.01% 0.00% Invalid Conditonal valid

Arg501 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg459 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg402 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg357 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg317 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg300 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg288 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg273 0.00% 0.00% 0.00% Invalid Conditonal valid

Arg231 0.00% 0.00% 0.00% Invalid Conditonal valid

Gln488 39.69% 0.39% 40.15% Invalid Invalid

Gln473 46.44% 0.39% 47.35% Invalid Invalid

Gln431 22.52% 4.47% 21.49% Invalid Invalid

Gln403 32.33% 3.24% 31.26% Invalid Invalid

Gln358 35.98% 2.29% 34.53% Invalid Invalid

Gln329 43.57% 1.25% 41.97% Invalid Invalid

Gln300 38.74% 9.18% 42.01% Invalid Invalid

Gln272 38.64% 6.01% 36.77% Invalid Invalid

Suc303 22.00% 1.91% 21.91% Invalid Invalid

Suc261 15.57% 0.00% 14.86% Invalid Invalid

Lac318 33.63% 0.00% 36.05% Invalid Invalid

Lac303 1.37% 0.00% 1.68% Invalid Invalid

Lac261 14.06% 0.00% 12.18% Invalid Invalid

Lac233 11.57% 0.00% 11.23% Invalid Invalid

Lac189 13.56% 0.00% 13.25% Invalid Invalid

GAn0.075
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XA0.075 

Table S6: All TBDMS-derivtized amino acid mass fragments for the XA0.075 ILE and their calculated 

percentage 13C incorporation after naturally abundant 13C isotope correction. Mass fragments are 

determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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metaboliteAA standard Meta-AverageStandard deviation of amino acids12C Meta-AverageAA standard fragment accuracyStandard-STDEV

Ala317 3.40% 0.51% 2.57% Invalid Invalid

Ala302 0.14% 0.08% 0.21% Valid Conditonal valid 0.06%

Ala260 7.60% 2.43% 11.69% Invalid Invalid

Ala232 12.93% 3.77% 18.46% Invalid Invalid

Gly303 6.31% 1.90% 6.22% Invalid Invalid

Gly288 0.78% 1.80% 0.28% Valid Conditonal valid -1.02%

Gly246 14.35% 6.36% 14.34% Invalid Invalid

Gly218 26.07% 4.49% 21.11% Invalid Invalid

Val345 7.64% 2.52% 5.14% Invalid Invalid

Val330 0.22% 0.08% 0.17% Valid Conditonal valid 0.14%

Val288 5.68% 1.15% 10.86% Invalid Invalid

Val260 4.92% 1.95% 7.16% Invalid Invalid

Val186 13.47% 2.61% 14.81% Invalid Invalid

Pro343 5.61% 1.34% 7.99% Invalid Invalid

Pro328 1.25% 0.33% 2.12% Invalid Conditonal valid 0.92%

Pro301 10.44% 1.76% 19.42% Invalid Invalid

Pro286 1.66% 0.82% 3.49% Invalid Conditonal valid 0.84%

Pro258 2.74% 1.50% 3.15% Invalid Invalid

Pro184 9.62% 1.90% 8.76% Invalid Invalid

Met377 0.33% 0.13% 28.72% Valid Conditonal valid 0.20%

Met302 19.09% 0.10% 12.27% Invalid Invalid

Met292 2.90% 1.94% 9.19% Invalid Conditonal valid 0.95%

Met218 3.33% 1.85% 7.45% Invalid Invalid

Phe393 27.47% 4.20% 24.65% Invalid Invalid

Phe378 0.74% 0.31% 2.03% Valid Conditonal valid 0.43%

Phe336 0.77% 0.46% 0.96% Valid Conditonal valid 0.31%

Phe308 0.61% 0.43% 0.99% Valid Conditonal valid 0.18%

Phe234 1.00% 0.58% 1.14% Valid Conditonal valid 0.43%

Ser447 3.42% 1.03% 2.45% Invalid Invalid

Ser432 0.10% 0.08% 0.12% Valid Conditonal valid 0.02%

Ser390 9.58% 3.02% 7.49% Invalid Invalid

Ser362 12.08% 4.55% 9.37% Invalid Invalid

Ser288 12.12% 4.01% 9.88% Invalid Invalid

Thr461 6.70% 3.51% 7.86% Invalid Invalid

Thr446 0.23% 0.20% 1.50% Valid Conditonal valid 0.03%

Thr404 0.09% 0.07% 3.09% Valid Conditonal valid 0.02%

Thr376 94.20% 3.04% 65.36% Invalid Invalid

Thr302 14.38% 0.05% 11.63% Invalid Invalid

Lys488 0.07% 0.02% 0.18% Valid Conditonal valid 0.05%

Lys473 0.95% 0.24% 0.54% Valid Conditonal valid 0.71%

Lys473 0.95% 0.24% 0.54% Valid Conditonal valid 0.71%

Lys431 0.13% 0.04% 0.28% Valid Conditonal valid 0.09%

Lys403 8.56% 3.33% 4.39% Invalid Invalid

Lys329 0.52% 0.14% 0.62% Valid Conditonal valid 0.38%

Lys300 4.36% 0.43% 5.40% Invalid Invalid

Cys406 8.03% 4.12% 15.46% Invalid Invalid

Cys378 42.62% 23.50% 24.38% Invalid Invalid

Cys304 7.47% 10.72% 0.00% Invalid Conditonal valid -3.26%

Tyr523 13.24% 2.62% 23.34% Invalid Invalid

Tyr508 0.26% 0.13% 1.66% Valid Conditonal valid 0.13%

Tyr466 0.43% 0.14% 0.46% Valid Conditonal valid 0.29%

Tyr438 1.05% 0.77% 1.53% Valid Conditonal valid 0.28%

Tyr364 0.42% 0.06% 0.61% Valid Conditonal valid 0.37%

Tyr221 3.70% 0.61% 3.61% Invalid Invalid

Trp546 8.29% 3.64% 4.33% Invalid Invalid

Trp531 59.04% 2.87% 36.82% Invalid Invalid

Trp531 59.04% 2.87% 36.82% Invalid Invalid

Trp489 33.46% 13.41% 29.92% Invalid Invalid

Trp461 55.93% 1.54% 45.36% Invalid Invalid

Trp388 13.23% 0.95% 35.14% Invalid Invalid

Trp330 49.05% 16.22% 29.00% Invalid Invalid

Trp302 7.83% 2.85% 12.24% Invalid Invalid

Trp244 16.29% 0.89% 40.99% Invalid Invalid

His497 3.30% 1.56% 10.65% Invalid Invalid

His482 0.52% 0.31% 1.56% Valid Conditonal valid 0.22%

His440 1.98% 1.68% 0.87% Invalid Conditonal valid 0.30%

His412 3.72% 1.98% 3.47% Invalid Invalid

His338 13.23% 0.55% 1.66% Invalid Invalid

Glu489 0.25% 0.07% 0.16% Valid Conditonal valid 0.17%

Glu474 0.16% 0.05% 0.17% Valid Conditonal valid 0.11%

Glu432 5.55% 1.85% 9.22% Invalid Invalid

Glu404 0.01% 0.01% 0.14% Valid Conditonal valid 0.00%

Glu330 1.98% 1.24% 5.71% Invalid Conditonal valid 0.74%

Glu302 1.96% 0.13% 1.63% Invalid Invalid

Glu187 46.41% 1.16% 35.95% Invalid Invalid

Asp475 2.99% 0.90% 1.54% Invalid Invalid

Asp460 0.14% 0.09% 0.17% Valid Conditonal valid 0.05%

Asp418 5.43% 2.41% 8.46% Invalid Invalid

Asp390 1.17% 1.07% 4.07% Valid Conditonal valid 0.11%

Asp316 3.28% 1.78% 6.52% Invalid Invalid

Asp302 7.36% 2.91% 10.82% Invalid Invalid

Leu359 3.17% 1.49% 2.42% Invalid Invalid

Leu344 0.18% 0.09% 0.15% Valid Conditonal valid 0.10%

Leu302 3.24% 1.54% 5.34% Invalid Invalid

Leu274 4.20% 1.87% 6.63% Invalid Invalid

Leu200 8.38% 1.74% 9.47% Invalid Invalid

ILe359 2.14% 0.40% 2.42% Invalid Invalid

ILe344 0.17% 0.05% 0.16% Valid Conditonal valid 0.12%

ILe302 4.66% 1.47% 5.20% Invalid Invalid

ILe274 4.18% 1.63% 5.05% Invalid Invalid

ILe200 7.59% 1.47% 7.46% Invalid Invalid

Arg516 0.00% 0.00% 0.00% Invalid Conditonal valid 0.00%

Arg501 0.00% 0.00% 0.00% Invalid Conditonal valid 0.00%

Arg459 0.00% 0.00% 0.00% Invalid Conditonal valid 0.00%

Arg402 0.00% 0.00% 0.00% Invalid Conditonal valid 0.00%

Arg357 0.00% 0.00% 0.00% Invalid Conditonal valid 0.00%

Arg317 0.00% 0.00% 0.00% Invalid Conditonal valid 0.00%

Arg300 0.00% 0.00% 0.00% Invalid Conditonal valid 0.00%

Arg288 0.00% 0.00% 0.00% Invalid Conditonal valid 0.00%

Arg273 0.00% 0.00% 0.00% Invalid Conditonal valid 0.00%

Arg231 0.00% 0.00% 0.00% Invalid Conditonal valid 0.00%

Gln488 0.24% 0.08% 27.55% Valid Conditonal valid 0.16%

Gln473 0.21% 0.06% 26.31% Valid Conditonal valid 0.15%

Gln431 6.55% 1.77% 15.27% Invalid Invalid

Gln403 5.28% 1.02% 21.02% Invalid Invalid

Gln358 2.46% 0.07% 23.07% Invalid Invalid

Gln329 0.97% 0.11% 34.82% Valid Conditonal valid 0.86%

Gln300 19.49% 4.56% 33.66% Invalid Invalid

Gln272 3.85% 0.85% 26.75% Invalid Invalid

Suc303 0.00% 0.00% 6.83% Invalid Conditonal valid 0.00%

Suc261 0.00% 0.00% 14.66% Invalid Conditonal valid 0.00%

Lac318 0.00% 0.00% 51.30% Invalid Conditonal valid 0.00%

Lac303 0.00% 0.00% 1.22% Invalid Conditonal valid 0.00%

Lac261 0.00% 0.00% 0.47% Invalid Conditonal valid 0.00%

Lac233 0.00% 0.00% 0.16% Invalid Conditonal valid 0.00%

Lac189 0.00% 0.00% 3.89% Invalid Conditonal valid 0.00%

XA0.075
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XA0.15 
 

Table S7: All TBDMS-derivtized amino acid mass fragments for the XA0.15 ILE and their calculated 

percentage 13C incorporation after naturally abundant 13C isotope correction. Mass fragments are 

determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 
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metaboliteAA standard Meta-AverageStandard deviation of amino acids12C Meta-AverageAA standard fragment accuracy

Ala317 1.37% 1.62% 4.18% Invalid

Ala302 0.07% 0.09% 0.21% Valid

Ala260 5.68% 6.74% 15.55% Invalid

Ala232 9.12% 10.73% 24.60% Invalid

Gly303 2.91% 3.44% 7.27% Invalid

Gly288 0.09% 0.12% 0.36% Valid

Gly246 7.92% 9.59% 20.23% Invalid

Gly218 11.38% 13.49% 29.28% Invalid

Val345 2.45% 2.92% 10.34% Invalid

Val330 0.12% 0.16% 0.36% Valid

Val288 2.54% 2.93% 18.92% Invalid

Val260 2.25% 3.08% 5.53% Invalid

Val186 6.20% 7.30% 14.86% Invalid

Pro343 3.03% 3.59% 9.07% Invalid

Pro328 0.67% 0.80% 2.66% Valid

Pro301 5.02% 5.87% 19.44% Invalid

Pro286 0.86% 1.24% 3.46% Valid

Pro258 1.23% 2.01% 3.59% Invalid

Pro184 4.26% 5.10% 11.04% Invalid

Met377 0.15% 0.18% 10.51% Valid

Met302 8.46% 9.46% 18.22% Invalid

Met292 2.24% 3.37% 1.86% Invalid

Met218 2.54% 3.52% 1.73% Invalid

Phe393 13.48% 15.80% 37.98% Invalid

Phe378 0.35% 0.46% 5.53% Valid

Phe336 0.33% 0.51% 0.98% Valid

Phe308 0.25% 0.44% 1.28% Valid

Phe234 0.41% 0.67% 1.03% Valid

Ser447 1.52% 1.85% 4.44% Invalid

Ser432 0.04% 0.06% 0.09% Valid

Ser390 4.45% 5.74% 8.65% Invalid

Ser362 5.70% 7.66% 10.77% Invalid

Ser288 5.94% 7.64% 12.02% Invalid

Thr461 13.10% 20.95% 21.11% Invalid

Thr446 5.05% 9.41% 3.96% Invalid

Thr404 3.42% 6.38% 5.91% Invalid

Thr376 39.41% 44.36% 65.66% Invalid

Thr302 0.00% 0.00% 1.07% Invalid

Lys488 0.03% 0.04% 0.26% Valid

Lys473 0.60% 0.82% 0.85% Valid

Lys473 0.60% 0.82% 0.85% Valid

Lys431 0.05% 0.06% 0.31% Valid

Lys403 5.09% 6.17% 6.32% Invalid

Lys329 0.42% 0.49% 0.94% Valid

Lys300 1.93% 2.16% 6.30% Invalid

Cys406 2.34% 2.69% 27.21% Invalid

Cys378 16.48% 23.65% 40.61% Invalid

Cys304 3.23% 9.12% 23.76% Invalid

Tyr523 6.28% 7.23% 42.88% Invalid

Tyr508 0.06% 0.08% 9.52% Valid

Tyr466 0.14% 0.17% 1.28% Valid

Tyr438 0.16% 0.19% 2.44% Valid

Tyr364 0.21% 0.26% 2.46% Valid

Tyr221 1.60% 1.79% 6.75% Invalid

Trp546 2.97% 3.50% 6.32% Invalid

Trp531 25.80% 29.32% 47.02% Invalid

Trp531 25.80% 29.32% 47.02% Invalid

Trp489 13.55% 15.48% 53.49% Invalid

Trp461 23.65% 26.48% 60.97% Invalid

Trp388 5.87% 6.61% 55.34% Invalid

Trp330 13.66% 15.34% 42.96% Invalid

Trp302 3.43% 4.81% 17.42% Invalid

Trp244 9.09% 10.44% 57.71% Invalid

His497 3.99% 5.50% 24.24% Invalid

His482 0.31% 0.41% 6.26% Valid

His440 0.40% 0.88% 1.04% Valid

His412 2.77% 3.39% 8.45% Invalid

His338 5.87% 1.08% 2.91% Invalid

Glu489 0.06% 0.07% 0.33% Valid

Glu474 0.07% 0.09% 0.25% Valid

Glu432 3.15% 3.95% 12.90% Invalid

Glu404 0.00% 0.00% 0.33% Valid

Glu330 1.51% 2.19% 8.75% Invalid

Glu302 0.80% 0.90% 2.10% Valid

Glu187 20.82% 23.27% 46.23% Invalid

Asp475 1.31% 1.65% 2.26% Invalid

Asp460 0.03% 0.03% 0.22% Valid

Asp418 3.53% 4.57% 12.68% Invalid

Asp390 1.40% 2.32% 7.28% Invalid

Asp316 2.60% 3.66% 10.62% Invalid

Asp302 4.74% 5.97% 16.16% Invalid

Leu359 0.81% 0.93% 5.55% Valid

Leu344 0.07% 0.08% 0.24% Valid

Leu302 1.81% 2.46% 5.84% Invalid

Leu274 2.31% 3.09% 7.29% Invalid

Leu200 4.19% 4.93% 11.13% Invalid

ILe359 0.82% 0.92% 8.08% Valid

ILe344 0.06% 0.07% 0.51% Valid

ILe302 2.47% 3.06% 3.75% Invalid

ILe274 2.36% 3.03% 3.14% Invalid

ILe200 3.86% 4.50% 6.91% Invalid

Arg516 0.00% 0.00% 0.00% Invalid

Arg501 0.00% 0.00% 0.00% Invalid

Arg459 0.00% 0.00% 0.00% Invalid

Arg402 0.00% 0.00% 0.00% Invalid

Arg357 0.00% 0.00% 0.00% Invalid

Arg317 0.00% 0.00% 0.00% Invalid

Arg300 0.00% 0.00% 0.00% Invalid

Arg288 0.00% 0.00% 0.00% Invalid

Arg273 0.00% 0.00% 0.00% Invalid

Arg231 0.00% 0.00% 0.00% Invalid

Gln488 0.15% 0.22% 30.39% Valid

Gln473 0.37% 0.58% 27.59% Valid

Gln431 3.15% 5.60% 7.48% Invalid

Gln403 3.73% 6.14% 29.10% Invalid

Gln358 1.20% 1.37% 33.21% Valid

Gln329 1.29% 1.95% 35.49% Invalid

Gln300 9.82% 10.99% 40.33% Invalid

Gln272 2.42% 3.04% 31.91% Invalid

Suc303 0.00% 0.00% 0.00% Invalid

Suc261 0.00% 0.00% 0.00% Invalid

Lac318 0.00% 0.00% 27.43% Invalid

Lac303 0.00% 0.00% 2.06% Invalid

Lac261 0.00% 0.00% 0.31% Invalid

Lac233 0.00% 0.00% 0.17% Invalid

Lac189 0.00% 0.00% 4.21% Invalid

XA0.15
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Xan0.075 
 

Table S8: All TBDMS-derivtized amino acid mass fragments for the XAn0.075 ILE and their calculated 

percentage 13C incorporation after naturally abundant 13C isotope correction. Mass fragments are 

determined as either ‘Valid’, ‘Conditionally Valid’ or ‘Invalid’. 



 

273 
 

 

MetaboliteMean enrichmentType of fragment accuracy

Ala317 No data. Invalid

Ala302 23.65% Invalid

Ala260 2.00% Invalid

Ala232 0.71% Valid

Ala158 5.66% Invalid

Gly303 No data. Invalid

Gly288 3.66% Valid

Gly246 6.51% Invalid

Gly218 8.12% Invalid

Gly144 34.68% Invalid

Val345 No data. Invalid

Val330 1.95% Invalid

Val288 1.14% Valid

Val260 2.20% Invalid

Val186 1.73% Invalid

Val302 5.85% Invalid

Pro343 No data. Invalid

Pro328 1.25% Valid

Pro286 1.35% Invalid

Pro258 2.02% Invalid

Pro184 1.37% Invalid

Pro301 No data. Invalid

Met377 No data. Invalid

Met362 No data. Invalid

Met320 No data. Invalid

Met292 No data. Invalid

Met218 No data. Invalid

Met302 No data. Invalid

Phe393 No data. Invalid

Phe378 0.59% Valid

Phe336 0.99% Valid

Phe308 1.16% Invalid

Phe234 1.55% Invalid

Phe302 1.63% Invalid

Ser447 No data. Invalid

Ser432 8.65% Invalid

Ser390 9.71% Invalid

Ser362 1.07% Valid

Ser288 1.86% Invalid

Ser302 10.21% Invalid

Thr461 No data. Invalid

Thr446 0.00% Valid

Thr404 3.19% Valid

Thr376 No data. Invalid

Thr302 38.62% Invalid

Thr302 29.93% Invalid

Lys488 3.56% Invalid

Lys473 0.00% Valid

Lys431 2.06% Invalid

Lys403 No data. Invalid

Lys329 5.21% Invalid

Lys302 6.73% Invalid

Tyr523 No data. Invalid

Tyr508 No data. Invalid

Tyr466 3.69% Invalid

Tyr438 3.36% Invalid

Tyr364 4.53% Invalid

Tyr302 1.47% Valid

Tyr221 3.18% Invalid

His497 No data. Invalid

His482 No data. Invalid

His440 No data. Invalid

His412 No data. Invalid

His338 No data. Invalid

His302 No data. Invalid

His195 No data. Invalid

Glu489 4.29% Invalid

Glu474 3.23% Invalid

Glu432 No data. Invalid

Glu404 1.48% Invalid

Glu330 0.97% Valid

Glu302 13.88% Invalid

Glu187 67.07% Invalid

Asp475 0.00% Unchanging

Asp460 6.37% Invalid

Asp418 1.32% Valid

Asp390 2.90% Invalid

Asp316 1.41% Invalid

Asp302 1.47% Invalid

Asp173 39.94% Invalid

Leu359 No data. Invalid

Leu344 5.64% Invalid

Leu302 13.84% Invalid

Leu274 5.90% Invalid

Leu200 3.91% Invalid

Leu302 15.60% Invalid

ILe359 No data. Invalid

ILe344 3.95% Invalid

ILe302 13.92% Invalid

ILe274 5.54% Invalid

ILe200 3.62% Valid

ArgR74 No data. Invalid

Arg175 No data. Invalid

Cit217 No data. Invalid

Cit291 No data. Invalid

Anaerobic Xylose
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7.3 Appendix 3 – Biomass compositions of P. thermoglucosidasius 

 

7.4 Appendix 4 – Complete Carbon Transition Network and notes 

ID Reaction Equation Notes 

R1 Gluc.ext (abcdef) + ATP -> Gluc (abcdef) Glucose only 

R2 Gluc (abcdef) + ATP -> G6P (abcdef) 
 

R3 Gluc.ext (abcdef) + PEP (ghi) -> G6P (abcdef) 
+ Pyr (ghi) 

Anaerobic Glucose Only 

R4 Xyl.ext (abcde) + ATP -> X5P (abcde) Xylose only 

R5 P5P (abcde) -> X5P (abcde) 
 

R6 X5P (abcde) + E4P (fghi) -> GAP (cde) + F6P 
(abfghi) 

 

R7 X5P (abcde) + P5P (fghij) -> S7P (abfghij) + 
GAP (cde) 

 

R8 GAP (abc) + S7P (defghij) -> E4P (ghij) + F6P 
(defabc) 

 

R9 G6P (abcdef) -> P5P (bcdef) + CO2 (a) + 
2*NADPH 

 

Table S9: The protein compositions of P. thermoglucosidasius NCIMB 11955 used in this research were 

measured under chemostat growth conditions by Dr. Shyam Masakapalli in 2014 according to the 

method of Durot et al. (2009)123. Biomass compositions were determined for P. thermoglucosidasius NCIMB 

11955 cells grown at 60°C, pH 7 on 1% Glucose ASM under aerobic and anaerobic conditions (indicated by 

redox potential) and was repeated in biological duplicate. R1A1-2 represents aerobic growth in rich media, 

R1A1-2 represents anaerobic growth in rich media 

Table S10: The complete carbon atom transition network used in the flux estimation procedure. Notes 

indicate whether particular reaction equations were considered active or inactive for specific INST-13C-MFA 

MID data sets. 
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R10 P5P (abcde) -> 3PG (cde) + EC2 (ab) 
 

R11 F6P (abcdef) <-> E4P (cdef) + EC2 (ab) 
 

R12 S7P (abcdefg) <-> P5P (cdefg) + EC2 (ab) 
 

R13 F6P (abcdef) -> GAP (def) + EC3 (abc) 
 

R14 S7P (abcdefg) -> E4P (defg) + EC3 (abc) 
 

R15 G6P (abcdef) -> F6P (abcdef) 
 

R16 F6P (abcdef) + ATP -> FBP (abcdef) 
 

R17 FBP (abcdef) -> DHAP (cba) + GAP (def) 
 

R18 F6P (abcdef) -> P5P (bcdef) + Formald (a) 
 

R19 DHAP (abc) -> GAP (abc) 
 

R20 GAP (abc) -> 3PG (abc) + ATP + NADH 
 

R21 GAP (abc) -> 3PG (abc) + ATP + NADPH NAPH-dependent GAPDH 

R22 3PG (abc) <-> PEP (abc) 
 

R23 PEP (abc) -> Pyr (abc) + ATP 
 

R24 Pyr (abc) -> AcCoA (bc) + CO2 (a) + NADH 
 

R25 OAA (abcd) + AcCoA (ef) -> Cit (dcbefa) 
 

R26 Cit (abcdef) -> ICit (abcdef) 
 

R27 ICit (abcdef) -> AKG (abcde) + CO2 (f) + 
NADPH 

 

R28 AKG (abcde) -> SucCoA (bcde) + CO2 (a) + 
NADH 

 

R29 SucCoA (abcd) <-> Suc (abcd) + ATP 
 

R30 Suc (abcd) <-> Fum (abcd) + FADH2 
 

R31 Fum (abcd) <-> Mal (abcd) 
 

R32 Mal (abcd) -> OAA (abcd) + NADH 
 

R33 ICit (abcdef) -> Glyox (ab) + Suc (dcef) 
 

R34 Glyox (ab) + AcCoA (cd) -> Mal (abcd) 
 

R35 OAA (abcd) + ATP -> PEP (abc) + CO2 (d) 
 

R36 Mal (abcd) -> Pyr (abc) + CO2 (d) + NADPH 
 

R37 OAA (abcd) -> Pyr (abc) + CO2 (d) + ATP 
 

R38 Pyr (abc) + NADH <-> Lact (abc) Inactive unless indicated 
by HPLC 

R39 Lact (abc) -> Lact_eff (abc) Inactive unless indicated 
by HPLC 

R40 Pyr (abc) + Glu (defgh) -> Ala (abc) + AKG 
(defgh) 

 

R41 AcCoA (ab) <-> Ac (ab) + ATP 
 

R42 Ac (ab) -> Ac_eff (ab) Inactive unless indicated 
by HPLC 

R43 Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH -> Val (abefc) + CO2 (d) + 
AKG (ghijk) 

R44 AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + NADPH -> Leu (abdghe) 
+ CO2 (c) + CO2 (f) + AKG (ijklm) + NADH 

R45 Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH -> Ile (abfcdg) + CO2 (e) + 
AKG (hijkl) + NH3 

R46 Ile (abcdef) + METHF (g) + O2 -> Suc (bcdg) 
+ CO2 (a) + AcCoA (ef) 

 

R47 AKG (abcde) + NADPH + NH3 -> Glu (abcde) 
 



 

276 
 

R48 Glu (abcde) + ATP + NH3 -> Gln (abcde) 
 

R49 Glu (abcde) + CO2 (f) + Gln (ghijk) + Asp (lmno) + AcCoA (pq) + 5*ATP + 
NADPH -> Arg (abcdef) + AKG (ghijk) + Fum (lmno) + Ac (pq) 

R50 3PG (abc) + Glu (defgh) -> Ser (abc) + AKG 
(defgh) + NADH 

 

R51 Ser (abc) <-> Gly (ab) + MEETHF (c) 
 

R52 Gly (ab) <-> CO2 (a) + MEETHF (b) + NADH 
+ NH3 

 

R53 P5P (abcde) + FTHF (f) + Gln (ghijk) + Asp (lmno) + 5*ATP -> His (edcbaf) 
+ AKG (ghijk) + Fum (lmno) + 2*NADH 

R54 OAA (abcd) + Glu (efghi) <-> Asp (abcd) + 
AKG (efghi) 

 

R55 Asp (abcd) + Pyr (efg) + Glu (hijkl) + ATP + 2*NADPH + SucCoA (mnop) -> 
Lys (efgdcb) + CO2 (a) + AKG (hijkl) + Suc (mnop) 

R56 Asp (abcd) + 2*ATP + 2*NADPH -> Thr (abcd) 
 

R57 Asp (abcd) + 2*ATP + NH3 -> Asn (abcd) 
 

R58 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH -> Phe 
(abcefghij) + CO2 (d) + AKG (klmno) + NADH 

R59 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH -> Tyr 
(abcefghij) + CO2 (d) + AKG (klmno) + NADH 

R60 O2.ext -> O2 
 

R61 CO2 (a) -> CO2_eff (a) 
 

R62 CO2.ext (a) -> CO2 (a) 
 

R63 Glu (abcde) + ATP + 2*NADPH -> Pro (abcde) 
 

R64 Ser (abc) + AcCoA (de) + 3*ATP + 4*NADPH 
+ SO4 -> Cys (abc) + Ac (de) 

 

R65 Glu (abcde) + CO2 (f) -> Arg (abcdef) 
 

R66 Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) + ATP + 2*NADPH -> 
Met (abcde) + Pyr (fgh) + Suc (ijkl) + NH3 

R67 PEP (abc) + PEP (def) + E4P (ghij) + P5P (klmno) + Ser (pqr) + Gln (stuvw) 
+ 3*ATP + NADPH -> 3PG (mno) + Pyr (abc) + CO2 (d) + Trp (pqrlkghijef) 
+ Glu (stuvw) 

R68 Pyr (abc) -> Pyr_eff (abc) Inactive unless indicated 
by HPLC 

R69 Pyr (abc) -> AcCoA (bc) + For_eff (a) Anaerobic only, inactive 
unless indicated by HPLC 

R70 AcCoA (ab) -> Eth_eff (ab) Anaerobic only, inactive 
unless indicated by HPLC 

R71 2*NADH + O2 -> 6.4*ATP 
 

R72 2*FADH2 + O2 -> 4.2*ATP 
 

R73 ATP -> ATP.ext 
 

R74 NH3.ext -> NH3 
 

R75 SO4.ext -> SO4 
 

R76 MEETHF (a) + NADH -> METHF (a) 
 

R77 MEETHF (a) -> FTHF (a) + NADPH 
 

R78 Mal (abcd) -> OAA (abcd) + FADH2 
 

R79  -> 39.67*Biomass Stoichiometrric 
composition as indicated in 
Table 36 
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R80 Asp (abcd) + CO2 (e) -> UMP (abcd) + CO2 
(e) 

 

R81 MEETHF.ext (a) -> MEETHF (a) 
 

R82 MEETHF (a) -> MEETHF_eff (a) 
 

R83 12Gluc.ext (abcdef) + ATP -> Gluc (abcdef) Glucose only, UB = 10 

R84 2*FeOX + AKG (abcde) -> 2*FeRed + 
SucCoA (bcde) + CO2 (a) 

Anaerobic only 

R85 2*FeOX <-> 2*FeRed Anaerobic only 

R86 12xyl.ext (abcde) + ATP -> X5P (abcde) Xylose only, UB = 10 

 




