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Summary
Seismic inversion is the inverse problem of determining properties of the Earth’s
subsurface from measurements of waves propagating through it. A standard algorithm
for solving this inverse problem is called full waveform inversion (FWI). FWI computes a
model describing the subsurface by minimising the misfit between actual measurements
and numerically-predicted data plus one or more regularisation terms, which are added
to deal with the ill-posedness of the inverse problem. The implementation of FWI
requires the a priori choice of a number of parameters, including the positions of sensors
for the wave measurement and the regularisation parameters. A problem of great
practical interest, which is not considered in the standard approach to FWI, is the
optimal positioning of the sensors in order to obtain the best outcome from the seismic
imaging process. In this thesis, it is shown that, given a set of training models of
realistic wave velocities, one can learn the optimal sensor positions and regularisation
parameters, thus optimising the performance of the standard FWI reconstruction
algorithm. We establish a novel fundamental theory underpinning the solution to this
sensor optimisation problem by placing it in the framework of bilevel learning. In our
formulation, the upper-level objective function measures the misfit in the reconstruction
of the training models via FWI, so that FWI itself constitutes the lower-level optimisation
problem. We propose to solve the bilevel problem with a gradient-based optimisation
method. Our chosen forward problem is the acoustic wave equation, which we solve in
the frequency domain (via the Helmholtz equation).

This thesis contains contributions both in the theory and application of this bilevel
learning problem. In particular, for the theory, this thesis contains the following novel
contributions:

• We give sufficient conditions, in terms of the regularisation parameters in the
lower-level/FWI problem, for the lower-level problem to have a unique solution.

• We derive a formula for the gradient of the upper-level objective function and show
that this requires solving systems involving the Hessian of the lower-level problem,
for which ill-conditioning is mitigated by the choice of lower-level regularisation.

• We prove smoothness properties of the upper-level objective function by exploit-
ing the theoretical properties of the partial differential equations modelling the
propagation of acoustic waves in the frequency domain.

• We show that, under assumptions on the symmetry of the domain, model and
source positions, the optimal set of sensor positions is symmetric.

Our main novel contributions to the application aspect of this bilevel problem are the
following:

• We design a bilevel learning algorithm for optimising sensor positions and the
Tikhonov regularisation parameter in FWI.
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• We give a complexity analysis for the bilevel algorithm, involving a study of the
number of forward solves needed by the algorithm.

• We propose a bilevel frequency continuation strategy to improve the performance
of the bilevel algorithm.

• We propose a preconditioning strategy for the systems involving the Hessian
which have to be solved at each step of the upper-level gradient descent.

• We implement the bilevel algorithm and provide illustrations of the algorithm on
test problems.
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Chapter 1

Introduction

1.1 Structure and Overview of Thesis
The thesis is arranged as follows. Chapter 1 gives a general introduction to seismology
and seismic imaging, which leads to the motivation for optimal parameter choice for
the seismic imaging procedure in Section 1.5.

Chapter 2 is a combination of an overview of existing and novel theory for the
seismic imaging procedure Full Waveform Inversion (FWI). Section 2.2 contains the
definition and formulation of FWI. Sections 2.3 and 2.4 present gradient and Hessian
derivations respectively, which may be used in optimisation methods as part of FWI.
Sections 2.4.3 and 2.4.4 contain discussion and novel results about the structure of the
Hessian and how regularisation can be used to make the Hessian positive definite, and
hence the FWI problem convex; these results become important in Chapter 3. We focus
considerably on the FWI Hessian in Chapter 2 as this matrix also appears in novel
formulae derived in Chapter 3. In Section 2.5, the full FWI algorithm is outlined and
the implementation technique of frequency continuation is discussed. We then present
some applications of the FWI algorithm in Section 2.6.

Chapter 3 presents the parameter optimisation problem for FWI. We begin with
a review of seismic survey design and current approaches to optimal sensor placement
in Section 3.1, before outlining our new idea for choosing optimal sensor positions, and
incorporating the choice of an optimal regularisation parameter into the process. This
chapter is concerned with the formulation of this parameter optimisation problem, the
derivation of relevant formulae, and the analysis of the problem. All work in Chapter
3 is novel. This original work includes the formulation of the sensor placement and
regularisation parameter optimisation problem in the framework of bilevel learning,
where the optimal parameters are learned from a training set. In this bilevel learning
framework, one level (the lower-level) is the FWI problem, and the other level (the
upper-level) is the parameter optimisation problem. We propose a gradient-based local
optimisation method for solving the bilevel problem, derive a novel formula for the
gradient of the upper-level objective function and apply the adjoint-state method to
yield an efficient algorithm for its computation. We include an analysis of the cost of
computing the gradient in terms of the number of PDE solves required. We provide
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analysis of the smoothness of the bilevel problem with respect to the optimisation
variables, showing that the bilevel problem can indeed be solved using a gradient based
optimisation method. The formulation and analysis described is first presented for the
optimisation of sensor placement in Sections 3.3 and 3.4, before the optimisation of the
regularisation parameter is included in Section 3.5. Some experiments are presented
in Section 3.6, demonstrating that the bilevel formulation and gradient-based local
optimisation method works well to improve the FWI reconstruction by optimising sensor
positions, and works even better when the optimisation of the regularisation parameter
is included in the process.

Chapter 4 is an original analysis of the symmetry properties of the bilevel problem.
We show that under certain assumptions, the solutions to both the lower- and upper-
levels have symmetric properties. We demonstrate the results in this chapter numerically
and show how to exploit symmetry to make solving the bilevel problem more efficient.

In Chapter 5, we present the algorithms used to solve the bilevel problem and the
implementation details of these algorithms. This includes techniques for improving the
efficiency of the implementation, many of which are original. We have developed a
novel bilevel frequency continuation approach that is shown to improve the performance
of the bilevel algorithm by avoiding local minima on the upper and lower-levels. The
development of this approach and examples of how the technique works are contained
in Section 5.1. In Section 5.2, we discuss the computation of the upper-level gradient,
specifically how to solve the linear system involving the FWI Hessian that arises in the
gradient formula. We propose two novel preconditioning strategies to reduce the number
of iterations taken to solve this system. We demonstrate that both preconditioning
strategies work effectively to speed up the upper-level gradient computation, and hence
to speed up the overall bilevel algorithm. Section 5.3 is concerned with the parallelisation
and scaling of the bilevel algorithm. We present measurements of the runtime of the
bilevel algorithm to show that the algorithm scales well in parallel. We also provide a
breakdown of the computational time spent on different parts of the algorithm. Section
5.4 presents the full bilevel algorithm that we have developed, and any further important
implementation details.

Chapter 6 contains two larger-scale parameter optimisation experiments that
employ the theory and implementation described throughout the rest of the thesis.
One experiment involves applying our bilevel algorithm to a training set of various
models with some shared characteristics. We show that we need relatively few training
models to produce huge improvements in the FWI images. We include an analysis
of how well the optimal parameters work on models outside of the training set, as
we test on cases that are further and further from the training models. Our second
experiment involves applying our algorithm to a geophysical problem based on the
Marmousi model. Although this problem is more difficult, we still find parameters that
produce an improvement in the FWI reconstructions of the training and testing sets.
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1.2 Introduction to Seismology
Seismology is the scientific study of mechanical vibrations in the Earth. Traditionally,
seismology has been concerned with the measurement, monitoring and prediction of
earthquakes, with modern seismology starting with the study of the Lisbon earthquake
in 1755. The field has been in development ever since, with theoretical and practi-
cal developments, as well as growth in its range of applications. A review of these
developments is given in this section, based on [8, Chapter 1] and [23].

Theoretical advancements in seismology involved the mathematical study of seismic
waves. The key discoveries are summarised here. In the 1800’s the theoretical founda-
tions were laid for the mathematical description of elasticity and wave propagation in
elastic solids. The full theory of 3-dimensional, stressed, elastic objects was developed
by Claude-Louis Navier and Augustin-Louis Cauchy in 1821-22. In 1828, Poisson theo-
retically showed the existence of both longitudinal and transverse waves (also termed
P and S waves) in elastic solids. In 1885, Rayleigh predicted the existence of a new
type of wave, which exists on the boundary, or surface, of elastic materials, which he
suggested might play an important part in earthquakes. These waves became known
as Rayleigh waves. In 1911, A.E.H. Love predicted the existence of another type of
boundary wave, later becoming known as Love waves.

In addition to these theoretical mathematical developments, large practical advance-
ments had been made. Robert Mallet, an Irish engineer, was considered to have laid
the foundation of instrumental seismology. He coined the term ‘seismology’, published
the first map of world earthquake occurrence, made the first systematic attempt to
apply physical principles to the movements of seismic waves, and carried out a number
of experiments to determine the speed of seismic propagation in different soils. More
details on Mallet’s work are conatined in [76] and [140].

The greatest practical advancement in quantitative seismology came with the
development of the seismograph - a device used to measure and record vibrations in the
Earth. The earliest seismograph was built in 1841 by J. Forbes, but these devices were
primitive. More sophisticated seismographs were constructed in the 1880’s by J.Ewing,
J. Milne and T. Grey for the measurement of earthquakes in Japan. More sophisticated
seismographs continued to be developed over the following years. During an earthquake,
a rupture in the Earth generates seismic waves that travel outward. Seismographs on
the Earth’s surface could now measure the amplitude and arrival times of these waves,
and through combining measurements at multiple locations, earthquake epicentres
could be located. By 1889, seismographs were sensitive enough to record earthquake
vibrations on the other side of the world, demonstrated by E. von Rebeur-Paschwitz
who measured earthquakes in Japan with a seismograph in Germany. In the 1900’s,
seismographs began being used for applications other than earthquakes. In 1921, J.C.
Karcher was the first to conduct a seismic imaging experiment. The idea was to use
a man-made explosion (dynamite) as a source of seismic waves and record the waves
with seismographs to conduct a survey of underground structures. This was seen as the
beginning of exploration seismology. To this day, this seismic method remains the most
popular method for characterising the subsurface.
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Since the 1960’s, the field of seismology has advanced quickly due to the combined
improvements in instrumentation, computing power, and the mathematical theory of
seismic waves. Quantitative seismology today involves many highly advanced techniques,
which are continually being developed, including high-quality data collection, detailed
models of wave propagation, inverse problem theory and modern high performance
computing.

Nowadays, seismology is used extensively in mineral prospecting and exploration
for oil and natural gas. It is also commonly used to help detect groundwater, in
civil engineering to aid in the design of earthquake-resistant buildings, and to asses
the integrity of foundation structures [102]. It has also had several other interesting
applications, from locating heavy artillery positions of the enemy during World War
I [18] to landmine detection [184]. The concepts used in seismology have also been
applied in other fields, for example medical imaging (see [81] and [120]).

For a more detailed introduction into the concept and history of seismology, see [8],
[23] and [112].

1.3 Underlying Principles of Seismic Imaging
The overall aim of seismic imaging is to find a structural image of the interior of a
body. Exploration seismology is an important and widespread application of seismic
imaging. The goal in exploration seismology is to image structures in the subsurface
and determine the values of material parameters of these structures, in the search for
mineral deposits (such as oil, gas, water and geothermal reservoirs) and archaeological
sites, or to acquire geological information for engineering applications [161]. Seismic
exploration, and more generally the study of the Earth, through seismic imaging is
based on the propagation of waves. Waves are influenced by the medium in which they
propagate so that the analysis of their propagation reveals information on the zone
in which they travelled. The physical phenomena that make seismic imaging possible
are the reflection and refraction of waves. When a wave front reaches an obstacle or
a discontinuity/boundary interface in the subsurface, a part of the wave is reflected,
and part of the wave is refracted, either transmitting across the interface into the next
medium or propagating along the interface. This behaviour is what makes it possible
to emit waves from a location on the surface, and receive information back, allowing
seismic experiments to be set up such that the characteristics of the subsurface can be
inferred based on measurements made at the surface.

Seismic acquisition refers to generation and recording of seismic data. For exploration
purposes, acquisition involves a configuration of sources and sensors. The source, often
positioned at the surface but sometimes positioned in a well, artificially generates waves
which are directed into the ground. The seismic waves then propagate through the
Earth, and when they reach subsurface boundaries and changes in rock mechanics, parts
of the wave are reflected and refracted (as described above). The reflected and refracted
waves are detected by sensors, usually positioned at the surface or occasionally in a well
below the surface. The sensors can record the properties of the returning wave, such as
its strength, and the time it has taken to travel from the source, through the layers of
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rock in the Earth’s crust, and back to the surface. The reflections/refractions that come
from transitions between media in the subsurface are governed by differences in their
properties, such as density, velocity and elasticity. Therefore, the measurements made
by sensors are interpreted to reveal information about these different material properties
and, after some processing, can be transformed into images of the subsurface beneath
the seismic survey. Although there are various methods to recover the investigated
parameters, the goal is the same: the discovery of the unknown underground.

In summary, although we cannot see beneath the ground, we can take advantage
of wave propagation during seismic surveys to get an image of the subsurface and
determine properties of the rock layers indirectly.

1.4 Seismic Methodology
Now that we have described the main principles of seismic imaging, we take a closer
look at seismic acquisition in practice. Seismic data is acquired during a procedure
called a seismic survey. Seismic acquisition can take place either on the surface of the
Earth (land acquisition), as shown in Figure 1.4.1, or offshore (marine acquisition), as
shown in Figure 1.4.2. In this section, we focus on marine acquisition.

Figure 1.4.1: Illustration of a land, or onshore, seismic acquisition [2]. A vibrator truck
generates acoustic waves which are directed into the Earth. These waves reflect off the
various ground layers and are recorded by the network of sensors on the surface.

Marine seismic acquisition is carried out using large ships called seismic survey
vessels [96]. These vessels are built with special features that aid in the monitoring and
processing of seismic waves, and sail along predetermined paths during surveys. The
vessel tows seismic cables, or streamers, behind it, which can be several kilometres long
and on which the sensors are mounted.

Most marine surveys use air-guns as a source. The air-gun creates a seismic wave
by discharging air under very high-pressure into the water. The total energy of the
source is specific to each survey. The stronger the source, the deeper the structures
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that can be imaged. The sources are therefore chosen so as to illuminate the subsurface
sufficiently while minimising environmental disturbance.

The sensors are towed behind the ship and are used to detect the reflected seismic
energy. The typical sensor used in marine surveys is the hydrophone. These devices
have a piezoelectric element that converts changes in water pressure into an electrical
signal. The signal is digitised and transmitted to the recording system in the vessel.
Geophones can also be used as sensors. These types of sensors are sensitive to local
particle displacements and record displacement amplitude as the wave propagates
through the medium. Geophones are more common for land surveys but are sometimes
used alongside hydrophones in marine surveys [74].

Figure 1.4.2: Schematic of marine, or offshore, seismic acquisition [1].

Seismic surveys can vary greatly in their method. However, there are two main
types of operation; 2D and 3D [96].

2D Seismic Operation: This is the simpler and less expensive method, in both
processing and acquisition, compared to the 3D operation. In this method, a single
seismic cable, or streamer, and a single source are towed behind the survey vessel, and
the data is acquired along a line of sensors. The reflections from the subsurface are
assumed to occur directly below the sail line (the line traversed by the ship), providing
an image in two dimensions, hence the name ‘2D’. The 2D method is useful in obtaining
a general understanding of the subsurface structure, however it does not always produce
an accurate subsurface image.
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3D Seismic Operation: A 3D survey covers a specific area that has been chosen with
the help of the preliminary 2D survey data. The 3D surveys are carefully planned to
ensure the survey area is accurately defined, with known geological targets determined
from previous data. This planning generates a map of survey boundaries and direction
of sail lines.

The 3D operation is equivalent to acquisition from several 2D lines running in
parallel close together. The survey vessel tows several sources and parallel streamers,
separated by up to 50 metres, as shown in Figure 1.4.3. Therefore, 3D acquisition is
achieved by a single sail line. Generally, groups of sail lines are traversed in a survey,
with a typical separation of the order of 200 - 400 metres [96]. 3D surveys generate
significantly more data than the 2D case. Powerful computers are necessary for the
processing of this large volume of data into a 3D map of the subsurface. The detailed
information about the subsurface provided by the 3D seismic operation makes it the
preferred method of seismic survey, accounting for 95% of all marine seismic survey
data worldwide [96].

Figure 1.4.3: 3D marine seismic acquisition [3].

One of the most common uses of seismic survyes is in the search for hydrocarbon
resources, and most commercial seismic surveys are carried out by the oil and gas
industry [96]. Seismic surveys serve multiple purposes in this sector. Initially, the
data is used to identify subsurface structures that are likely to contain hydrocarbons,
leading to new drilling locations. In areas of existing production, the survey can be
used to find finer-scale details about the subsurface, for example, to establish the areas
of the reservoir not drained by existing wells, to estimate reserves, and to monitor the
movement of reservoir fluids in response to production [133].
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1.5 Thesis Motivation
It is vital for oil companies to plan seismic surveys carefully, to ensure survey objectives
are achieved at the lowest possible cost. Poor planning of seismic surveys has been one
of the main factors resulting in an estimated 10% of surveys failing to achieve their
primary objective [13]. Therefore, careful planning of surveys is essential in achieving
cost-effective acquisition and processing, as well as high quality data. Survey designers
must establish the best way to image the subsurface, considering, for example, locations
and types of sources and sensors, time required for acquisition and environmental issues.

This thesis considers the problem of optimising the outcome of seismic acquisition
through optimal sensor placement and optimal parameter choice in the seismic imaging
algorithm. This is a topic of practical interest in petroleum prospecting, and is
not currently considered in the standard mathematical approach to seismic imaging.
Determining optimal sensor locations can inform several aspects of designing seismic
surveys, for example, the acquisition trajectory of the boat, cable spread behind the
boat and sensor locations on individual cables. Sensor location optimisation will have
the benefits of optimal utilisation of the acquisition system, while at the same time
improving data quality. Optimal parameter choice in the seismic imaging algorithm
will ensure that the data collected during seismic acquisition will produce an image of
the subsurface that is as accurate as possible.

The key idea in our approach to parameter optimisation is to exploit prior informa-
tion about the subsurface, in the form of training images, to create the optimal setup
for seismic acquisition. Prior information may be available due to 2D surveys, previous
drilling or exploratory wells, for example. In fact, many exploration projects take
place in areas known as mature fields [4], where a great deal of information is available
about the subsurface. Mature fields are areas where exploration has been ongoing
for years, and which have already been drilled for hydrocarbons. Areas within these
fields are often prioritised for a closer geophysical exploration, based on the knowledge
geologists already have on the area [133], and to control the risk of the exploration
project failing [4]. In our parameter optimisation strategy, we assume we have access
to prior information about the subsurface and that this information is accurate. We
label this as training data or training images. We use this training data to learn ‘good’
parameters, where ‘good’ parameters recover subsurface information that sufficiently
matches the known information (i.e., matches the training data).

8



Chapter 2

Full Waveform Inversion

Chapter Summary: This chapter provides an overview of Full Waveform Inversion
(FWI). We start with a general introduction to inverse problems (§2.1), before focusing
on some key aspects of FWI. We discuss the main features of FWI in (§2.2), including
the forward modelling step, where we include a specific forward problem example (the
Helmholtz equation) and a brief discussion of its discretisation, the formulation of the
objective function, and the optimisation step. We include a derivation of formulae for
the gradient (§2.3) and Hessian (§2.4) of the FWI objective function, and formulae for
Hessian-vector products (§2.4.2). We provide a detailed discussion of the properties
of the Hessian in §2.4.3, including both theory and numerical experiments. In §2.4.4
we provide novel results on upper and lower bounds for the eigenvalues of the Hessian,
and hence derive a condition on a regularisation parameter for ensuring its positive-
definitiveness. We write the FWI algorithm in §2.5, and include some examples of FWI
reconstructions in §2.6.

2.1 Introduction to Inverse Problems

2.1.1 Definition
A forward problem involves taking inputs and, under some known process, producing
corresponding outputs, which can be measured. An inverse problem takes the measure-
ments from this known process, and infers what inputs produced them. In other words,
a forward problem is one in which we find an effect from a known cause and an inverse
problem is one in which we try to determine the cause of an observed effect.

Mathematically, an inverse problem can be formulated as follows. Let f denote
the process that takes a set of inputs x and produces a corresponding set of outputs
y. f can be some mathematical function, or a mathematical model of some physical
phenomena. The relationship between the inputs x and outputs y can be written in the
form f(x) = y. The forward and inverse problems can then be expressed mathematically
as:

• Forward Problem: Given inputs x and the process f , find the outputs y.
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• Inverse Problem: Given the outputs y and the process f , find the inputs x.

Note that the application of f to the inputs in the forward problem can involve the
solution of a differential equation to find the output y. When no exact solution is
available, the forward problem is solved numerically to approximate y to a certain degree
of accuracy. Therefore, f may represent an approximation. The inverse problem is
generally much more difficult to solve than the forward problem, due to the ill-posedness
of the problem (see the next subsection).

A more in-depth look at inverse problems can be found in [177] and [168].

2.1.2 Ill-posedness
Hadamard introduced the concept of a well-posed problem in [86]. For the inverse
problem defined as in Section 2.1.1, i.e., as
‘Given known data y, and a process/governing law f , find the solution x that satisfies
f(x) = y’,
the problem is well-posed when the following conditions are satisfied:

• Existence: There exists a solution of the problem (for all y, there exists x such
that f(x) = y);

• Uniqueness: The solution is unique (if f(x) = f(w) = y, then x = w)

• Stability: The solution of the problem, x, depends continuously on y, and is
insensitive to small changes in y.

A problem violating any of these conditions is called ill-posed. It turns out that the
most interesting and important inverse problems are ill-posed. It is still possible to
obtain meaningful and accurate solutions from ill-posed problems, using techniques
such as regularisation and iterative methods. A more detailed explanation of inverse
problems and their ill-posedness can be found in the survey paper [99].

2.1.3 Inverse Problems in Seismic Imaging
We now focus on inverse problems in the context of seismic imaging (see [157] and
[126]). The goal of seismic inversion is to transform measured data into knowledge
about the physical world. In other words, we are trying to recover some information
about the make up of the Earth’s crust, or subsurface, that we cannot directly access.
In this case, the data d are measurements of the seismic wavefield (e.g displacement
or pressure) and we aim to transform these into a model m. The model is a set of
variables that describe the properties of the subsurface. This model can encode any
physical property that controls the behaviour of the wavefield, such as elastic properties,
density or velocity/wavespeed of the subsurface.

For such a transformation to be possible and reliable we need a physical law linking
the model parameters m and the observed data d. The forward problem can be a wave-
equation, which provides the mathematical connection between the model parameters
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Subsurface
(described by model m)

Source Sensors (record data d)

Figure 2.1.1: Illustration of seismic acquisition for a two-dimensional domain with
a single source positioned at the surface (represented by the green circle). The wave
(indicated by semi-circles) propagates from the source through the subsurface area of
interest, where structures in the Earth reflect part of the wave (indicated with arrows).
The sensors (represented by the red squares) record the resulting signal, providing the
data d. The subsurface is characterised by the model m, which controls the behaviour
of the wavefield.

and the seismic wavefield. We can express the modelled data, or predicted data, coming
from the forward model as

dmod = F(m). (2.1.1)

The operator F is the forward modelling operator, and can be thought of as performing
two steps - solving the wave equation for specific model parametersm, and extracting the
modelled wavefield at observation points (i.e., sensor locations). For wave propagation,
the forward problem is typically deterministic, which means that, given the model
parameters and assumptions we make on the physics of the wave equation (e.g., acoustic
or elastic), dmod is uniquely defined. The same cannot typically be said for the inverse
problem, i.e., the transformation from the data to the model.

Due to noise in the observed data, a limited number of measurements compared
to the size of the subsurface, or simplifications in the physics of the wave equation,
it is often not possible for F to completely explain the observed data, and so d will
not equal dmod exactly. Therefore, one aims to find the model m that best describes
the observed data d, i.e., to find the model m, such that d ≈ F(m). Optimisation
methods can be applied to solve the inverse problem by finding a model that minimises
an appropriate function (that involves the difference between d and F(m)).

The method of Full Waveform Inversion (FWI) is often employed to solve seismic
imaging inverse problems. FWI combines the forward modelling and optimisation steps
described above. The following section provides a more detailed review of the different
aspects of FWI.
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Model m Data d

Forward Problem

Inverse Problem

Figure 2.1.2: The transformation from the model to the data is found by solving the
often deterministic forward problem. Obtaining the model from the data is referred to
as the inverse problem.

2.2 Full Waveform Inversion Overview

2.2.1 FWI Definition
FWI is a non-linear, ill-posed, data-fitting procedure, where the aim is to iteratively
minimise the difference between the observed seismic data, acquired in a seismic survey,
and the modelled seismic data (also called predicted or computed data), generated from
the numerical modelling of waves. The result is a geological model, which provides
quantitative information about the make-up of the subsurface and a structural image
of the subsurface.

The FWI framework is comprised of two main parts - the forward problem and
the inverse problem. The forward problem involves the generation of the modelled
data through numerically solving a wave equation. The inverse problem involves using
an iterative optimisation method to find the model that minimises the misfit between
forward model predictions and measured data, defined in some norm.

The FWI solution is the optimal model, i.e., it is the model that reproduces the
observed data most closely. The optimal model is therefore assumed to be the model
that best describes the real world.

The following sections provide a mathematical overview of each aspect of FWI - the
forward modelling (including discretisation), the definition of the objective function
to be minimised, and the solution of the FWI problem. Some background on the
development of FWI as well as some current research is included in Appendix A.

2.2.2 Forward Modelling
Seismic imaging relies on waves propagating in the subsurface, where the movements of
the waves are determined by the properties of the medium. The modelling of seismic
waves is therefore essential in imaging the structures that the waves propagate through.
The forward modelling step involves solving the forward problem. In this section we
will review the forward problem, which mathematically describes seismic waves that
are generated by a source, and travel through the Earth.

Seismic waves may be described by a partial differential equation (PDE) called
a wave equation. The formulation of this PDE occurs naturally in the time domain,
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however, in this thesis we choose to formulate the problem in the frequency domain.
The PDE involves a wave operator, which depends on the type of medium, for example
acoustic or elastic. We can represent a frequency domain wave equation generally, at
selected frequency ω with the operator Aω, so that the wave equation may be written
as follows,

Aω(m)u = f, (2.2.1)

where m is the geological/subsurface model, f represents a source, and u is the wavefield.
The wavefield is a term which represents the aspect of the wave we are modelling, and
so may be the displacement (elastic wave equation) or pressure (acoustic wave equation)
field. Note that spatial dependency is not written explicitly in (2.2.1), but the model
m = m(x) varies in space due to the inhomogeneity of the subsurface. The type of
wave equation and definition of the model are determined by the definition of the wave
operator Aω(m). The notation in (2.2.1) is kept general to demonstrate that results and
analysis presented later in the thesis for the Helmholtz equation, can also be applied to
other frequency domain wave equations. The FWI steps are identical for all types of
medium.

Remark 2.2.1. Helmholtz Equation: In this thesis we focus specifically on the
Helmholtz equation. This is the acoustic frequency domain wave equation, with constant
density. The underlying concept for acoustic FWI is that acoustic waves propagate at
different velocities through different materials. Therefore, the model for this forward
problem is related to the wavespeed. The model is often termed the squared slowness,
and is defined as

m(x) = 1
c2(x) (2.2.2)

The wave operator for Helmholtz equation is

Aω(m) := −(∆ + ω2m). (2.2.3)

We note that the Helmholtz equation is widely studied and applied as the forward equation
in the FWI problem, for example see [70], [17] and [55].

We include some more details on seismic waves and their mathematical formulation
in the appendices. A brief description of the physics of seismic waves is included
in Appendix B, the formulation of the elastic and acoustic wave equations and the
relationship between them is contained in Appendix C and the frequency domain
formulation of the wave equations are discussed in Appendix D.

2.2.2.1 Forward Problem of Interest

Although results and formulas presented in this thesis can apply to any formulation of
the wave equation, with any appropriate source and boundary conditions, the forward
problem that this thesis focuses on is the Helmholtz problem (acoustic medium) with
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impedance boundary conditions. Impedance boundary conditions are an approximation
to the Sommerfeld radiation condition (see Appendix D, Equations (D-7) and (D-8)),
used when artificially truncating an unbounded domain.

We present the notation and setting of this specific forward problem here, along
with definitions and propositions required in future theorems.

Notation Meaning Details/Properties
Ω Domain of interest Ω ⊂ Rd, with d = 2 or 3
∂Ω Domain boundary Lipschitz boundary
S Set of source positions S ⊂ Ω, Ns = #S
s Specific source position s ∈ S
P Set of sensor positions P ⊂ Ω, Nr = #P
p Specific sensor p ∈ P

Sometimes we enumerate the
sensors as pj, j = 1, . . . , Nr.

W Finite set of angular frequencies W ⊂ R, Nω = #W
ω Specific angular frequency ω ∈ W
m Model to be reconstructed Depends on M real parameters mk as:

m(x) = ∑M
k=1mkβk(x), x ∈ Ω

m Vector of model parameters mk m ∈ RM

βk Non-negative real-valued local
basis functions defined on Ω

∑
k βk(x) = 1 for all x ∈ Ω

Table 2.2.1: Notation used for the forward problem

The PDE problem of interest is posed in continuous form without discretization,
but the model is assumed to depend on several parameters. We restate the definition
of the model from Table 2.2.1 to emphasise this,

m(x) =
M∑
k=1

mkβk(x),
∑
k

βk(x) = 1. (2.2.4)

A similar representation of the FWI model as a sum of basis functions, to provide a
translation between continuous and discrete model space, can be found in [71].

Remark 2.2.2. Consider the domain Ω discretised into a grid (with triangle or rectangle
elements) with nodes at xk. An example of a possible choice for βk is continuous piecewise
linear/bilinear hat functions with respect to this grid. In this case, mk is simply the
value of the model m at the point xk, i.e., mk = m(xk). Each βk is supported locally on
the elements that have xk among its nodes.

We denote the PDE solution operator of the forward problem Sm,ω, i.e., for a given
source term f , we write the wavefield u as

u = Sm,ωf
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such that u is the solution of the following Helmholtz problem

u = Sm,ωf ⇐⇒
{
−(∆ + ω2m)u = f on Ω
(∂/∂n− iω)u = 0 on ∂Ω (2.2.5)

where the boundary condition here is the impedance boundary condition, similar to
(D-8), but with the assumption that m ≡ 1 on ∂Ω. This assumption is made for
convenience and could be removed. When f ∈ L2 and m ∈ L∞, then Proposition 3.4.18
states that a solution u to the problem (2.2.5) exists and is unique. We note here that
in Section 2.4.4 we prove results under certain assumptions on the solution operator
Sm,ω, stated in Assumption 2.4.10.

Later in the thesis, we are also interested in the adjoint problem. We write the
adjoint solution operator as S ∗

m,ω, so that

v = S ∗
m,ωg ⇐⇒

{
−(∆ + ω2m)v = g on Ω
(∂/∂n+ iω)v = 0 on ∂Ω (2.2.6)

We can write (2.2.5) and (2.2.6) in weak form, as

am,ω(Sm,ωf, w) = (f, w), for all w ∈ H1(Ω), (2.2.7)

and

a∗m,ω(S ∗
m,ωg, w) = (g, w), for all w ∈ H1(Ω), (2.2.8)

where, using to denote complex conjugate,

am,ω(u,w) =
∫

Ω

(
∇u · ∇w − ω2muw

)
− iω

∫
∂Ω
uw (2.2.9)

and

a∗m,ω(v, w) =
∫

Ω

(
∇v · ∇w − ω2mvw

)
+ iω

∫
∂Ω
vw. (2.2.10)

Here (·, ·) denotes the L2(Ω) inner product defined by,

(v, w) =
∫

Ω
vw.

and the definitions of a L2(Ω) space and Hilbert space H1(Ω) are, respectively,

L2(Ω) =
{
v :

∫
Ω
|v|2 <∞

}
, H1(Ω) =

{
v : v ∈ L2(Ω) and ∇v ∈ L2(Ω)

}
.

Later in this thesis we use the following definition of the local weighted L2 inner product

(v, w)βk =
∫

Ω
βkvw.

The definitions (2.2.9) and (2.2.10) imply that

am,ω(z, w) = a∗m,ω(w, z) , for all w, z ∈ H1(Ω). (2.2.11)
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Proposition 2.2.3. Adjoint Property: For all f, g ∈ L2(Ω), all m ∈ RM , and
ω ∈ W,

(f,S ∗
m,ωg) = (g,Sm,ωf) = (Sm,ωf, g) (2.2.12)

Proof. Recall definitions (2.2.5) and (2.2.6) that u = Sm,ωf and v = S ∗
m,ωg. Then,

(f,S ∗
m,ωg) =

(2.2.7)
am,ω(u,S ∗

m,ωg) =
(2.2.11)

a∗m,ω(S ∗
m,ωg, u) =

(2.2.8)
(g, u) = (g,Sm,ωf)

= (Sm,ωf, g),

where the final equality is by definition of the inner product.

We are often interested specifically in the PDE problem where f = δ(x− s) = δs
(i.e., a point source at s representing a typical seismic survey source). For a given
source position s ∈ S, frequency ω ∈ W and model parameters m ∈ RM , we define the
wavefield u = u(m, ω, s) to be the solution of the equation

u(m, ω, s) = Sm,ωδs ⇐⇒
{
−(∆ + ω2m)u = δs on Ω
(∂/∂n− iω)u = 0 on ∂Ω (2.2.13)

Figure 2.2.1: Illustration of a typical numerical solution to (2.2.13), at a chosen
frequency, in a homogeneous medium, with a point source in the centre of the domain.

Remark 2.2.4. Continuity of u: We make a short note here on the continuity of
u defined by (2.2.5) where m is defined by (2.2.4), using some results detailed later in
the thesis. Proposition 3.4.18 states that for a source f ∈ L2(Ω), the Helmholtz problem
has a unique solution u ∈ H1(Ω). Rearranging the PDE (2.2.5) as

∆u = −ω2mu− f,

and assuming m ∈ L∞(Ω), then using Proposition 3.4.19 (i), we find that u ∈ H2(Ω).
By Proposition 3.4.16, u is therefore continuous. Hence, if the basis functions in (2.2.4)
are such that m ∈ L∞(Ω), then u is continuous.

The same results hold for v defined by (2.2.6). We present results on the continuity
of u generated by a point source in Section 3.4.3.
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2.2.3 Discretisation
Wave equations, along with appropriate boundary conditions, usually do not have exact
solutions, and so approximations to the solutions are commonly found using numerical
methods. Solving a wave equation numerically involves the discretization of the wave
equation and its corresponding boundary conditions. Common numerical techniques
applied to discretise the wave equations in the geophysics community include finite
differences (FD) and finite elements (FE), in either the time or frequency domain.

We focus on the frequency domain wave equation (2.2.1). Discretising (2.2.1) results
in a system of linear equations, where the right hand side is the discretised source, and
the solution is the discretised wavefield,

A(m, ω)u(m, s, ω) = f(s, ω). (2.2.14)

Defining N as the total number of discretisation points, the complex matrix A ∈ CN×N

is the discretised wave-equation operator. The form of A depends on the method used
to discretise the PDE. When using FE or FD, A is sparse. The vector f(s, ω) ∈ CN×1

is the discretised source term for the sth source at angular frequency ω (the source
term may also be independent of frequency). The wavefield due to this source is
denoted u(m, s, ω) ∈ CN×1 and is a function of the model (some physical subsurface
parameter) m ∈ RM×1, where M is the number of parameters in the model. Note
that the wavefield u and model m can describe two-dimensional or three-dimensional
quantities, but are arranged into a vector here by giving the nodes an appropriate
ordering. Scalar quantities ui or mi denotes the ith entry in the discretised wavefield
and model vector respectively.

Remark 2.2.5. As noted in [129], for certain forward problems, there may be more
than one parameter class for m, (i.e., more than one physical property that we are
considering, e.g., wave velocities, density, and Lamé parameters). In this multi-class
case we would have m ∈ R(M×Npar)×1, where Npar ∈ N is the number of parameter
classes.

Note that equation (2.2.14) is a general representation of the discretised version
(either FD or FE) of both the elastic and acoustic wave equations. This thesis generally
presents theorems and lemmas with the wave equation in its continuous formulation,
however we use its discrete form when discussing computations. In addition, the discrete
form is often the form used in the geophysics literature so including the discrete version
of formulas is useful for the geophysics applications of the work in this thesis.

We provide example discretisation schemes for the Helmholtz equation in Appendix
E. A finite difference scheme is described since we use a finite difference discretisation
in our experiments (as provided in [180]). Since the finite element method is closely
connected to the weak formulation (for example (2.2.7)), a finite element discretisation
is also presented. Furthermore, we show how finite differences and finite elements are
related in Appendix E. Alternative approaches to the discretisation of the Helmholtz
equation, and analysis of these discretisations, can be found in, for example, [69, Chapter
2], [186], [67], and [142].
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2.2.4 FWI Objective Function
The FWI objective function (or misfit function) involves a measure of the misfit between
observed/measured data d, and modelled data dmod in a chosen norm.

We recall that the modelled data dmod is the data that comes from solving the
forward problem (equation (2.1.1)) using the current estimate of the true model. More
specifically, the modelled data is computed by solving the forward problem to find the
wavefield, and sampling the values of the wavefield at the sensor positions. Therefore,
before we define the objective function, we must discuss the sampling of the wavefield
required to compute the dmod.

Restriction Operator: To mathematically formulate the process of computing mod-
elled data, we introduce a restriction operator, or sampling operator, R. The restriction
operator R(P) applied to the wavefield u evaluates the wavefield at the sensors, i.e.,

R(P)u =


u(p1)
.
.
.

u(pNr)

 . (2.2.15)

The modelled data is then,

dmod(m,P , s, ω) = R(P)u(m, ω, s). (2.2.16)

In this thesis, it will be convenient to write the restriction operator applied to the
function u on Ω in the following form

R(P)u =


(u, δp1)

.

.

.(
u, δpNr

)

 (2.2.17)

where δpj is the delta function centred at the sensor position pj. Note that in general
we use the notation (·, ·) to denote the L2 inner product, but in (2.2.17) we have to
extend this notation to allow the ‘generalised function’ δpj to be included, i.e.,

(u, δpj) =
∫

Ω
uδpj = u(pj).

Remark 2.2.4 gives conditions under which the point evaluation of u, and hence R(P),
is well-defined.

The adjoint of the restriction operator is then defined by

R(P)∗z =
Nr∑
j=1

δpjzj, for z ∈ CNr , (2.2.18)
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and it can be checked that

〈R(P)u, z〉 = (u,R(P)∗z), (2.2.19)

where 〈·, ·〉 denotes the Euclidean inner product on CNr .
The restriction of the wavefield to the sensor positions is similarly represented by

delta functions in the literature, for example in [71], [190], and [63]. We note that
alternative definitions of the restriction operator also exist in FWI. In particular, in
the FWI problem with Cauchy data, as described for example in [69, Chapter 7], the
restriction operator is defined as the evaluation of both the wavefield (specifically the
pressure wavefield in this case) and the normal derivative of the wavefield at the set of
sensor positions.

Remark 2.2.6. Discretisation of Restriction Operator: In the discretised
FWI objective function (with forward problem of the form (2.2.14)), we can think of
the coordinates of all positions in space at which the sensors are located as a matrix
P ∈ RNr×d, where Nr is the number of sensors and d is the number of spatial dimensions
we are working in, i.e., the lth row contains the coordinates of the lth sensor. The set
of sensors positions P is such that

P = {Pl : l = 1, . . . , Nr} ⊆ Ω,

where Pl is the lth row, containing the coordinates of the lth sensor. We also write the
vector p ∈ RdNr×1 to mean the concatenated columns of P. Note that P and p are just
different ways of expressing the same information and here we just write it both ways to
help understanding.

The discrete restriction operator, which we denote R(p), is an Nr × N matrix
(recall N denotes the number of discretisation nodes) where the lth row of R(p) is
the restriction operator for the lth sensor. As the sensor positions are not tied to the
discretisation nodes, each row of R(p) represents the action of an interpolation operator.
The restriction operator, R(p), can then be applied to the wavefield u to evaluate the
wavefield at the sensor locations p.

We now give an example of a particular choice of the restriction operator. Consider
a two dimensional domain Ω = [0, L]× [0, L], so that d = 2. Suppose the wavefield is
computed at points on the uniform grid

Xi,j = (xi, zj) = (ih, jh), i, j = 0, . . . , n− 1,

where h = L/(n− 1), and n2 = N . That is, ui,j = u(Xi,j) for each i, j = 0, . . . , n− 1.
We define a bilinear interpolant on Ω by

Iu =
n−1∑
i,j=0

γi,jui,j

where γi,j are the piecewise bilinear basis functions with

γi,j(Xi′,j′) =

1 if i′ = i, j′ = j

0 otherwise.

19



Then, for l = 1, . . . , Nr, the lth row of R(p) is given by the entries

{γi,j(Pl) : i, j = 0, . . . , n− 1} . (2.2.20)

Note the entries in (2.2.20) are ordered according to the chosen ordering of the dis-
cretisation nodes (e.g., lexicographic ordering). By (2.2.20), the matrix R(p) is very
sparse, since the only non-zero values on the lth row correspond to the local nodes
surrounding the sensor positions Pl. If Pl is a grid point Xi,j, then we simply have that
(R(p)u)l = ui,j. In practice, a piecewise bilinear interpolant is sufficient to perform
FWI. However, we will see in Chapter 3 that it is not sufficient for sensor placement
optimisation.

We now discuss the discrete version of the adjoint of the restriction operator. The
adjoint of the restriction operator in the discrete world is simply the transpose of the
interpolant matrix, i.e., R(p)∗ = R(p)T ∈ RN×Nr The discrete analogue of (2.2.19) is
then

〈R(p)u, z〉 = 〈u, R(p)Tz〉,

where the inner product on the left hand side is in CNr while on the right hand side it
is in CN . The term R(p)Tz is a sparse N × 1 vector, such that z is extended to the
entire computational grid. The positions of the only non-zero entries of the resulting
vector correspond to the positions of the sensors, i.e., the jth entry of z is positioned at
the jth sensor location.

Misfit: Returning to the continuous (non-discrete formulation), we now define the
misfit (or residual) between the observed and modelled data. The misfit is

ε(m,P , ω, s) = d(P , ω, s)−R(P)u(m, ω, s) ∈ CNr , (2.2.21)

where d ∈ CNr×1 is the data recorded at the sensors and is a function of sensor positions.
The misfit may also be thought of as the residual wavefield at receiver points.

The FWI objective function is constructed as a sum of misfits over all sources and
frequencies.

Definition 2.2.7. Full Waveform Inversion Objective Function: The FWI
misfit/objective function is

φ(m,P) := 1
2
∑
s∈S

∑
ω∈W
||ε(m,P , ω, s)||22, (2.2.22)

where the misfit ε is given by (2.2.21).

Computing the objective function involves the following steps. Firstly, the appropriate
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wave equation is solved to obtain the solution u. Then, this solution is restricted to the
receiver locations with the restriction operator (2.2.16). Finally, the misfit is computed
in the chosen norm.

The objective function can be defined in different ways by changing the norm used
in (2.2.22). We have chosen the traditional least-squares functional based on the L2
norm as it has been widely used and remains the most popular. However, we note
that alternative norms do exist and have shown some advantages, such as increased
robustness to noise and amplitude outliers, for example the L1 norm in [34], or norms
that provide a compromise between L1 and L2 norm, for example in [52] and [83]. The
objective function may also be defined with a weighting operator applied to the misfit,
in order to give more or less influence to certain data. Some examples of where a
weighted objective function has been considered in the literature are [141], [14], [98],
[40] and [55].

2.2.5 FWI Solution
The reconstruction of the subsurface parameters is expressed as the following minimisa-
tion problem

m̂(P) ∈ argmin
m

φ(m,P), (2.2.23)

where the FWI solution m̂ is one of possibly many solutions, due to the ill-posedness
of the FWI problem. In this section we discuss how the solution of the FWI problem
can be found in practice, as well as some theoretical aspects of the solution.

Solving the FWI Problem in Practice The solution to the FWI problem is
found by iteratively minimising the objective function φ using an optimisation method.
Successive updates of the subsurface model are found so that the modelled data
can eventually match the physical measurements (within some tolerance). Appendix
F reviews some standard optimisation methods that are commonly used in FWI.
Quasi-Newton methods are among the most popular optimisation methods in FWI.
In particular, the limited-memory BFGS (L-BFGS) method has been proven to be
very effective for large-scale applications [128], and is therefore used extensively to
solve the FWI problem, see for instance [42], [155] and [54]. Although gradient-based
optimisation methods are generally favoured in FWI for their computational efficiency,
methods that use Hessian information have been seen to be more robust. For example,
[128] suggests to use the Truncated Newton method, and [150] recommends the use of
the Gauss-Newton or Newton method.

Theoretical Considerations The FWI problem (with objective function in Defini-
tion 2.2.7) is related to the following inverse problem at the level of the PDE: given
certain ‘information’ about the forward operator (i.e., (2.2.3)), find m. One choice
of information about the forward operator is the Dirichlet-to-Neumann (DtN) map
at certain frequencies (i.e., the map that takes Dirichlet data, solves the Helmholtz
problem with that data, and then returns the normal derivative on the boundary of

21



the domain). An alternative choice of information about the forward operator is the
so-called Cauchy data, i.e., pairs of Dirichlet and Neumann data on the boundary such
that there exists a Helmholtz solution with these boundary values. For both these
choices of information, one can additionally assume that one only has information on a
subset of the boundary, i.e., one only has the local Dirichlet-to-Neumann map or local
(as opposed to global) Cauchy data. See [10, Section 1] for the definition of the local
Dirichlet-to-Neumann map, and [11, Section 2.3] for the definition of local Cauchy data.

Stability results for the inverse problem for the Helmholtz equation with a DtN
map as the data are presented in [24] for a piecewise constant representation of the
model, and extended to a piecewise linear representation of the model in [69, Section
3.4.2]. Stability results are provided in [11, Theorem 2] for the inverse problem for the
Helmholtz equation with Cauchy data.

The notion of uniqueness of the FWI solution is also an important consideration.
Uniqueness guarantees that one solution exists, i.e., it means there is only one subsurface
that can produce the observed data. In general, FWI does not have a unique solution.
It is argued in [121] that the acoustic FWI problem is intrinsically non-unique. There
are some more general discussions of uniqueness for the seismic problem in [178].
Incorporating prior information, in the form of a regularisation term, can help to resolve
the issue of non-uniqueness.

2.3 Gradient of φ with respect to m
Many of the optimisation methods for FWI detailed in Appendix F require the compu-
tation of the gradient of the FWI objective function φ with respect to the model m.
Therefore, in this section, we derive the gradient of φ, for the forward problem (2.2.5)
with the model defined by (2.2.4).

Computing the gradient requires taking partial derivatives of (2.2.22) with respect
to each model parameter mk, for k = 1, . . . ,M . By directly differentiating φ in (2.2.22)
with respect to the kth model element, we find that the kth entry of the FWI gradient
of is

∂φ

∂mk

(m,P) = −<
[∑
s∈S

∑
ω∈W

〈
R(P) ∂u

∂mk

(m, ω, s), ε(m,P , ω, s)
〉]

, k = 1, . . . ,M.

(2.3.1)

The term ∂u/∂mk is the derivative of the wavefield with respect to the kth model
parameter.1 To find a PDE that ∂u/∂mk satisfies, we differentiate Equation (2.2.5) (or

1 Strictly speaking, u is understood as the solution of the variational problem (2.2.7), and so
∂u/∂mk is understood as the solution of the variational problem (2.2.7) differentiated with respect
to mk (which is the weak form of (2.3.2)). Under the assumptions described in Remark 2.2.4, the
restriction operator applied to u (and also ∂u/∂mk) returns a vector in CNr , and thus the derivatives
of φ with respect to mk are then standard derivatives.
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equivalently (2.2.13)) with respect to mk, to obtain

−(∆ + ω2m) ∂u
∂mk

(m, ω, s) = ω2βku(m, ω, s) on Ω,(
∂

∂n
− iω

)
∂u

∂mk

(m, ω, s) = 0 on ∂Ω.
(2.3.2)

Therefore, by our definition of the solution operator (2.2.5), we can write (2.3.2) as

∂u

∂mk

(m, ω, s) = ω2Sm,ω(βku(m, ω, s)). (2.3.3)

There are M such equations to be solved to find ∂u/∂mk for each k (plus an extra one
initially to find u that forms the right hand side of (2.3.3)). This means that for each
parameter in the model, there is a corresponding PDE to be solved, for each source and
each frequency, to compute the gradient via formula (2.3.1). However, it is possible to
formulate the gradient in a way that the number of PDE solves becomes independent
of the number of parameters in the model. This method of making the number of PDE
solves to be independent of the number of model parameters is called the Adjoint-State
Method. We derive this alternative formulation of the gradient in Theorem 2.3.1. We
note that this result is also presented in [150] for the general discrete formulation of
FWI.

Theorem 2.3.1. Adjoint-State Method for the FWI Gradient
For each m,P and each k = 1, . . . ,M ,

∂φ

∂mk

(m,P) = −<
(∑
s∈S

∑
ω∈W

ω2 (u(m, ω, s), λ(m, ω, s,P))βk

)
, (2.3.4)

where, for each frequency ω and source s, λ(m, ω, s,P) is the solution to the adjoint
wave equation

λ(m, ω, s,P) = S ∗
m,ω (R(P)∗ε(m, ω, s,P)) . (2.3.5)

Proof. To simplify the notation we assume there is only one source s and one frequency
ω, and we suppress their dependence here. Thus we can write (2.3.1) more simply as

∂φ

∂mk

(m,P) = −<
〈
R(P) ∂u

∂mk

(m), ε(m,P)
〉
, k = 1, . . . ,M.

We apply the identity (2.2.19) to rewrite this as

∂φ

∂mk

(m,P) = −<
(
∂u

∂mk

(m),R(P)∗ε(m,P)
)
, k = 1, . . . ,M. (2.3.6)
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Substituting (2.3.3) into (2.3.6) gives

∂φ

∂mk

(m,P) = −<
(
ω2Sm(βku(m)),R(P)∗ε(m,P)

)
, k = 1, . . . ,M,

Using (2.2.12) gives, for k = 1, . . . ,M ,

∂φ

∂mk

(m,P) = −ω2< ( βku(m),S ∗
m(R(P)∗ε(m,P) ) ) ,

= −ω2< (u(m),S ∗
m(R(P)∗ε(m,P) ) )βk ,

= −ω2< (u(m), λ(m,P) )βk , (2.3.7)

where the adjoint variable λ satisfies (2.3.5). We have proved the one source, one
frequency case, which extends easily to many sources and many frequencies by including
a sum over sources and frequencies in (2.3.7).

Theorem 2.3.1 shows that, instead of solving M + 1 PDEs per source per frequency
to find the gradient, as in (2.3.1) and (2.3.3), we can directly compute the gradient
with only 2 PDE solves per source per frequency using (2.3.4). These PDEs are
the forward wave equation (2.2.5) and the adjoint wave equation (2.3.5). We note that
a review of the adjoint-state method, and an alternative derivation of the gradient from
Lagrangian persepctive, are provided in [143].

The computation of the gradient of φ is summarised in the following steps:

(i) Solve the forward problem (2.2.5) to find the wavefield u.

(ii) Compute the adjoint wavefield λ by solving the adjoint wave-equation (2.3.5).

(iii) Compute the weighted inner-product between the forward and adjoint field, as in
(2.3.7).

(iv) This weighted inner-product is repeated for each frequency and each source, the
sum of each result is formed and the real part of the result is taken to give (2.3.4).

Remark 2.3.2. Number of PDE Solves in FWI with a Gradient-Based Op-
timisation Method: We previously stated that the computation of the FWI gradient
requires 2 PDE solves, for each source and each frequency. When using a gradient-based
optimisation method, as outlined in Appendix F, this results in 2 PDE solves, for each
source, each frequency and each iteration of optimisation method, leading to a total of
2NsNωNit PDE solves, where Ns and Nω are defined in Table 2.2.1 and Nit denotes the
number of iterations of the chosen optimisation method until convergence. Furthermore,
we see in Appendix F that many optimisation methods also involve computing a step
size. We note here that computing each step size may require several evaluations of the
gradient, depending on the type of the line search used. Therefore, in practice, there are
much more than 2NsNωNit PDE solves required during a gradient-based optimisation
approach to FWI.
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The following two remarks discuss the discretised version of the formulae presented in
this section.

Remark 2.3.3. Discretisation of (2.3.3): In the discretised version of the problem
(with forward equation (2.2.14)), the derivative of the discretised wavefield with respect
to the kth model parameter, ∂u/∂mk, satisfies

A(m, ω)∂u(m, s, ω)
∂mk

= −
(
∂A(m, ω)
∂mk

)
u(m, s, ω) k = 1, . . . ,M. (2.3.8)

The solution ∂u/∂mk to the wave equation (2.3.8) is often known in the geophysics
literature as the ‘partial derivative wavefield from the kth node’ (see [150] for example).
The right-hand side of (2.3.8) involves partial derivatives of the wave operator matrix A
with respect to the model, ∂A/∂mk. This ∂A/∂mk term depends on the specific details
of the matrix A (i.e., the type of wave equation and the method used for discretisation).
In the simplest case, consider the Helmholtz wave equation (2.2.5), with finite difference
discretisation where the model m has one coefficient per node, for all N nodes. Then,
the model coefficients only appear in the diagonal of the discretization matrix A. The
differentiation with respect to one of those coefficients mk gives a matrix with only
one non-zero value at the diagonal position (k, k) and this non-zero value is −ω2 (if
we assume the boundary condition term doesn’t depend on the model). The resulting
right-hand-side of (2.3.8) will then be highly local,(

∂A

∂mk

u
)
j

=

0 if j 6= k,

−ω2uk if j = k.
(2.3.9)

In the case of finite element discretisation, the term ∂A/∂mk depends on the basis
functions (denoted βk in (2.2.4)). In the rest of this thesis, when referring to the
discretisation, we do not specify the details of the term ∂A/∂mk so formulae are kept
general for any choice discretisation.

Remark 2.3.4. Discretisation of the FWI Gradient: With the forward problem
given by (2.2.14), the discretised version of (2.3.1) is

∂φ(m,p)
∂mk

= −<
{∑
s∈S

∑
ω∈W

[(
R(p)∂u(m, s, ω)

∂mk

)∗
ε(m,p, s, ω)

]}
(2.3.10)

and the discretised versions of (2.3.4) and (2.3.5) are

∂φ(m,p)
∂mk

= <
{∑
s∈S

∑
ω∈W

[(
∂A(m, ω)
∂mk

u(m, s, ω)
)∗
λ(m,p, s, ω)

]}
, (2.3.11)

A(m, ω)∗λ(m,p, s, ω) = R(p)∗ε(m,p, s, ω). (2.3.12)

respectively. We note that when indicating the dependence on the sensor positions in
these discretised formulae, we write the vector of sensor coordinates p rather than the
set P to make the distinction between the restriction operator in the continuous setting,
R(P), and in the discrete setting, R(p), clear.
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2.4 Hessian of φ with respect to m
In this section we derive formulae for the computation of the Hessian and Hessian-
vector products, discuss the cost of computation in terms of the number of PDE
solves, investigate the structure of the Hessian, and derive novel results about the
positive-definitiveness of the Hessian and the uniqueness of the solution to the FWI
problem.

2.4.1 Hessian Computation
We can compute the entries of the Hessian by differentiating (2.3.1), with respect to
the model parameter mj, for j = 1, . . . ,M ,

(H(m,P))j,k = ∂2φ

∂mj∂mk
(m,P) = <

(∑
s∈S

∑
ω∈W

[〈
R(P) ∂u

∂mk
(m, ω, s),R(P) ∂u

∂mj
(m, ω, s)

〉

−
〈
R(P) ∂2u

∂mk∂mj
(m, ω, s), ε(m,P, ω, s)

〉])
.

(2.4.1)

The Hessian is written as the sum of two parts - a term involving first order derivatives
of the wavefield u with respect to the model, which we denote H(1), and a term involving
second order derivatives of u with respect to the model, which we denote H(2). We
write the Hessian as a sum as

H(m,P) = H(1)(m,P) +H(2)(m,P), (2.4.2)

where(
H(1)(m,P)

)
j,k

= <
(∑
s∈S

∑
ω∈W

[〈
R(P) ∂u

∂mk

(m, ω, s),R(P) ∂u
∂mj

(m, ω, s)
〉)]

(2.4.3)

(
H(2)(m,P)

)
j,k

= <
(∑
s∈S

∑
ω∈W

[
−
〈
R(P) ∂2u

∂mk∂mj

(m, ω, s), ε(m,P , ω, s)
〉])

(2.4.4)

for k, j = 1, ..,M . The term H(1) is often referred to as the approximate, or Gauss-
Newton, Hessian. We note that the Hessian is symmetric and so the indices j and k in
the above formulae can be swapped.

To assemble H(1) (2.4.3) we require the first-order derivatives of the wavefield with
respect to each component of m, i.e., we need

∂u

∂mk

, for k = 1, . . . ,M. (2.4.5)

The computation of (2.4.5) involves M PDE solves for each source s and each frequency
ω, where the PDE is defined by (2.3.3). The term H(2) (2.4.4) involves the second
derivative of the wavefield with respect to m,

∂2u

∂mk∂mj

, for k, j = 1, . . . ,M. (2.4.6)
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We differentiate (2.3.2) with respect to mj to obtain the following PDE for (2.4.6),

−(∆ + ω2m) ∂2u

∂mk∂mj

(m, ω, s) = ω2
(
βk

∂u

∂mj

(m, ω, s) + βj
∂u

∂mk

(m, ω, s)
)

on Ω(
∂

∂n
+ iω

)
∂2u

∂mk∂mj

(m, ω, s) = 0 on ∂Ω.

(2.4.7)

Then, by our definition of the solution operator (2.2.5),

∂2u

∂mk∂mj

(m, ω, s) = ω2Sm,ω

(
βk

∂u

∂mj

(m, ω, s) + βj
∂u

∂mk

(m, ω, s)
)
, (2.4.8)

for k, j = 1, . . . ,M . Therefore, if we wanted to compute (2.4.6), this would require the
solution to M2 PDEs, on top of the M PDEs required to compute ∂u/∂mk for each
k, as part of the right-hand side of (2.4.8). Therefore, assuming the wavefield u has
already been computed for each source and frequency, then computing the H(1) term
given by (2.4.3) requires M solves for each source and frequency, and computing the
H(2) term given by (2.4.4) term would require an additional M2 solves for each source
and frequency. However, in Theorem 2.4.1, we show that by applying the adjoint-state
method, we do not require all M2 solves (per soruce per frequency) to assemble H(2),
and instead only require the same M PDE solves (per soruce per frequency) required to
assemble H(1). This result is also described in [150] for the general discrete formulation.

Theorem 2.4.1. Adjoint-State Method for H(2)

For each m,P and each k, j = 1, . . . ,M ,

(
H(2)(m,P)

)
k,j

= −<
∑
s∈S

∑
ω∈W

ω2

( ∂u

∂mj

(m, ω, s), λ(m,P , ω, s)
)
βk

+
(
∂u

∂mk

(m, ω, s), λ(m,P , ω, s)
)
βj

 (2.4.9)

where λ is defined in (2.3.5).

Proof. To simplify the notation we assume there is only one source s and one frequency
ω, and we suppress their dependence in the notation. Therefore we can write H(2) in
(2.4.4) as (

H(2)(m,P)
)
k,j

= <
[
−
〈
R(P) ∂2u

∂mk∂mj

(m), ε(m,P)
〉]

,

By (2.2.19), the above can be written as

(H(2)(m,P))k,j = −<
(

∂2u

∂mk∂mj

(m),R(P)∗ε(m,P)
)
. (2.4.10)

27



Substituting (2.4.8) into (2.4.10) gives

(H(2)(m,P))k,j = −<
(
ω2Sm

(
βk

∂u

∂mj

(m) + βj
∂u

∂mk

(m)
)
,R(P)∗ε(m,P)

)

= −ω2<
((

βk
∂u

∂mj

(m) + βj
∂u

∂mk

(m)
)
,S ∗

mR(P)∗ε(m,P)
)
.

Using the definition of the adjoint variable λ in (2.3.5), the above can be rewritten as

(H(2)(m,P))k,j = −ω2<
((

βk
∂u

∂mj

(m) + βj
∂u

∂mk

(m)
)
, λ(m,P)

)

= −ω2<

( ∂u

∂mj

(m, ω, s), λ(m,P)
)
βk

+
(
∂u

∂mk

(m), λ(m,P)
)
βj

 .
Thus the one source, one frequency case has been proved, which can be extended to the
multi-source, multi-frequency case to give (2.4.9).

Theorem (2.4.1) shows that H(2) can be written as a sum of weighted inner-products,
involving the first-order derivative of the wavefield (2.4.5) only, and does not require
the computation of second-order derivative of the wavefield (2.4.6).

Using Theorem (2.4.1), the (k, j)th element of the full Hessian H (2.4.1) can be
written as

(H(m,P))k,j = <
(∑
s∈S

∑
ω∈W

[〈
R(P) ∂u

∂mk

(m, ω, s),R(P) ∂u
∂mj

(m, ω, s)
〉

−ω2

( ∂u

∂mj

(m, ω, s), λ(m,P , ω, s)
)
βk

+
(
∂u

∂mk

(m, ω, s), λ(m,P , ω, s)
)
βj

 (2.4.11)

for k, j = 1, . . . ,M .

The computation of the Hessian of φ is summarised by the following steps:

(i) Solve the forward problem (2.2.5) to find u.

(ii) Compute the adjoint wavefield λ by solving the adjoint wave equation (2.3.5).

(iii) Compute the first-order partial derivative matrix (2.4.5) by solving M wave-
equations (2.3.3).

(iv) Repeat for all sources and frequencies, and assemble the Hessian according to
(2.4.11).

28



In total, to compute the Hessian, for each source and each frequency, requires M+2
PDE solves per source per frequency, 2 of which would have already computed in
practice to find the gradient. We note that even though the computational requirements
are reduced due to the adjoint-state method, the cost of explicitly computing the
elements of the Hessian is unreasonably high, as the value of M in real seismic imaging
applications can be huge. In addition to the extensive computational demands, the
large dimension of the Hessian and the memory restrictions related to this means that
the computation and storage of the full Hessian is often unrealistic for optimisation
in FWI, and optimisation methods that only require the computation of the gradient
of φ are usually chosen. However, Pratt et al. [150] and Métivier et al. [129] argue
that there is important physical information contained in the Hessian which should not
be ignored, and numerical results suggest that making use of the Hessian can play an
important role in the convergence when solving the FWI problem. In Section 2.4.2 we
discuss how Hessian-based optimisation methods can be used in FWI without having
to explicitly compute or store the Hessian.

Remark 2.4.2. Discretisation of the FWI Hessian: With the forward problem
(2.2.14), the discretised version of (2.4.1) is

(H(m,p))k,j = ∂2φ(m,p)
∂mj∂mk

= <
{∑
s∈S

∑
ω∈W

[(
R(p)∂u(m, s, ω)

∂mk

)∗ (
R(p)∂u(m, s, ω)

∂mj

)

−
(
R(p)∂

2u(m, s, ωα)
∂mk∂mj

)∗
ε(m,p, s, ω)

]}
, k, j = 1, . . .M,

(2.4.12)

with H(1) and H(2) defined as

(H(1)(m,p))k,j = <
{∑
s∈S

∑
ω∈W

[(
R(p)∂u(m, s, ω)

∂mk

)∗ (
R(p)∂u(m, s, ω)

∂mj

)]}
, (2.4.13)

(H(2)(m,p))k,j = <
{∑
s∈S

∑
ω∈W

[
−
(
R(p)∂

2u(m, s, ω)
∂mk∂mj

)∗
ε(m,p, s, ω)

]}
. (2.4.14)

The discretised version of (2.4.11) is

(H(m,p))k,j = ∂2φ(m,p)
∂mk∂mj

(2.4.15)

= <
{∑
s∈S

∑
ω∈W

[(
R(p)∂u(m, s, ω)

∂mj

)∗ (
R(p)∂u(m, s, ω)

∂mk

)

+
(
∂A(m, ω)
∂mk

∂u(m, ω, s)
∂mj

+ ∂A(m, ω)
∂mj

∂u(m, ω, s)
∂mk

)∗
λ(m,p, ω, s)

]}
,

(2.4.16)

for k, j = 1, . . .M . Sometimes a term involving the second derivative of A with respect
to the model is included in the defintion of the Hessian; for example, see [150]. The
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exact details of the second derivative term depend on the type of forward model and the
exact details of the discretisation, but in most cases is very sparse. We don’t include
this second derivative term here as for our specific example of A in Section 2.2.3, the
second derivative of A with respect to the model would be zero.

2.4.2 Hessian-Vector Products
Although we have reduced the full cost of computing the Hessian in Theorem 2.4.1
to M + 2 PDE solves for each source and frequency, this is still an excessive number
number of PDEs to be solved in practice. However, instead of computing the Hessian
explicitly for each step of an optimisation method (such as Newton’s method) and
solving the Hessian system directly, methods can be used to provide an iterative solution
to the Hessian system that avoid the explicit computation of the Hessian and require
only Hessian-vector products. An example of an optimisation method that requires
only Hessian-vector products is the Truncated Newton method, which used in FWI in
[129].

For each source and each frequency, the computation of Hessian-vector products
involves only 4 PDE solves, a reduction of M−2 PDE solves from computing the Hessian
itself. In Theorem 2.4.3 we derive how Hessian-vector products can be computed in
only 4 PDE solves using the second-order adjoint-state method.

Theorem 2.4.3. Second-Order Adjoint-State Method for Hessian-Vector
Products
For an arbitrary vector m̃ ∈ RM×1, where M is the number of components in the model,
the kth component of the Hessian-vector product Hm̃ is

(H(m,P)m̃)k = <
{∑
s∈S

∑
ω∈W

ω2
[
(u(m, ω, s), z(m, m̃,P , ω, s))βk

−(v(m, m̃, ω, s), λ(m,P , ω, s))βk
]}

, (2.4.17)

where u is defined by (2.2.5), λ is defined by (2.3.5), and

v(m, m̃, ω, s) := ω2 Sm,ω (m̃u(m, ω, s)) , (2.4.18)
z(m, m̃,P , ω, s) := S ∗

m,ω

(
R(P)∗R(P)v(m, m̃, ω, s)− ω2m̃λ(m,P , ω, s)

)
(2.4.19)

where m̃ = ∑
k m̃kβk.

Proof. To simplify the notation we assume there is only one source s and one frequency
ω, and we suppress their dependence in the notation.
First note that by the definition of m̃, the linearity of Sm, and definition (2.3.3), the
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PDE for v (2.4.18) can be written as

v(m, m̃) =
∑
j

m̃jSm(ω2βju(m)) =
∑
j

m̃j
∂u

∂mj

(m). (2.4.20)

By the one-source one-frequency version of (2.4.11), we can write the Hessian-vector
product as

(H(m,P)m̃)k =
∑
j

(H(m,P))k,jm̃j

=
∑
j

(
<
[〈
R(P) ∂u

∂mk

(m),R(P) ∂u
∂mj

(m)
〉

−ω2

( ∂u

∂mj

(m), λ(m,P)
)
βk

+
(
∂u

∂mk

(m), λ(m,P)
)
βj

 m̃j.

Then, using the definitions (2.4.20) and (2.3.3), we obtain

(H(m,P)m̃)k = <
[(

∂u

∂mk

(m),R(P)∗R(P)v(m, m̃)
)

−ω2 (v(m, m̃), λ(m,P))βk − ω
2
(
∂u

∂mk

(m), m̃λ(m,P)
)]

= <
[(

∂u

∂mk

(m),R(P)∗R(P)v(m, m̃)− ω2m̃λ(m,P)
)
− ω2 (v(m, m̃), λ(m,P))βk

]
= <

[(
ω2Sm(βku(m)),R(P)∗R(P)v(m, m̃)− ω2m̃λ(m,P)

)
− ω2 (v(m, m̃), λ(m,P))βk

]
.

By the definition of z in (2.4.19), the above can be written as

(H(m,P)m̃)k = ω2<
[
(u(m), z(m, m̃,P))βk − (v(m, m̃), λ(m,P))βk

]
,

as required. The result extends to the case with many sources and many frequencies by
including a sum over sources and frequencies.

The two additional PDE solves (2.4.18) and (2.4.19) are written in discrete form in
[127, Equation 12] and [127, Equation 15] respectively.

Remark 2.4.4. Discrete Version of Hessian-Vector Product Formulae: The
jth element of the Hessian-vector product, for j = 1, . . . ,M , is

(H(m,p)m̃)j = <
{∑
s∈S

∑
ω∈W

[
−
(
∂A(m, ω)
∂mj

u(m, s, ω), z(m,p, ω)
)

+
(
∂A(m, ω)
∂mj

v(m, s, ω),λ(m,p, s, ω)
)]}

(2.4.21)
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where the wavefield u and adjoint wavefield λ are given discretely as the solutions to the
equations (2.2.14) and (2.3.12) respectively, and v and z are defined as the solutions to
the following PDEs,

A(m, ω)v(m, s, ω) = −
∑
k

m̃k

(
∂A(m, ω)
∂mk

u(m, s, ω)
)

(2.4.22)

A(m, ω)∗z(m,p, s, ω) = R(p)∗R(p)v(m, ω) +
∑
k

m̃k

(
∂A(m, ω)
∂mk

∗

λ(m,p, s, ω)
)
.

(2.4.23)

A term involving the second derivative of A with respect to the model can be included in
(2.4.21) (as in [127]) but we do not include it here since the second derivative of A with
respect to the model would be zero in our specific example of A in Section 2.2.3.

By Theorem 2.4.3, the Hessian-vector product can be written as the sum of 2
weighted inner products, and requires 4 PDE solves per source per frequency. The
derivation in Theorem 2.4.3 describes the full Hessian. In the case where we consider the
H(1) part of the Hessian only (which is an approximation made for the Gauss-Newton
method) the kth component of the Hessian-vector product can be written as

(H(1)(m,P)m̃)k = ω2<
{∑
s∈S

∑
ω∈W

[
(u(m, ω, s), z1(m, m̃,P , ω, s))βk

]}
, (2.4.24)

where

z1(m, m̃,P , ω, s) := S ∗
m,ω(R(P)∗R(P)v(m, m̃, ω, s)). (2.4.25)

This simplification only requires one weighted inner-product and 3 PDE solves (λ is
not required).

Throughout the rest of this thesis, we often write (2.4.17) as the sum

(H(m,P)m̃)k = (H(1)(m,P)m̃)k + (H(2)(m,P)m̃)k, (2.4.26)

where we have split the Hessian into its first-order (H(1)) and second-order (H(2)) parts.
To split the expression (2.4.17) in the same way requires the splitting of (2.4.19) into
two separate PDE solves. Note that these new PDE solves are only required for later
analysis (in Section 2.4.4), and they are not necessary in practice. We define

(H(1)(m,P)m̃)k = <
(∑
s∈S

∑
ω∈W

ω2
[
(u(m, ω, s), z1(m, m̃,P , ω, s))βk

])
(2.4.27)

(H(2)(m,P)m̃)k = −<
(∑
s∈S

∑
ω∈W

ω2
[
(u(m, ω, s), z2(m, m̃,P))βk

+ (v(m, m̃, ω, s), λ(m,P , ω, s))βk
])

(2.4.28)

and

z2(m, m̃,P , ω, s) := ω2S ∗
m,ω(m̃λ(m,P , ω, s)) (2.4.29)

where v is defined by (2.4.18) and z1 is defined by (2.4.25).

32



2.4.3 Properties of the Hessian
This section discusses the properties and structure of the Hessian, demonstrates these
properties with numerical experiments, and proves some theorems about these properties.

2.4.3.1 Structure of the Hessian

The Hessian, defined in (2.4.1), is a real symmetric matrix. As noted in the previous
section, the Hessian can be split into two parts, as in (2.4.2) - the matrix H(1), which is
positive semi-definite, and the matrix H(2), which is generally indefinite.

When the FWI objective function is defined by (2.2.22), and the modelled data is
able to reproduce the observations, then ε→ 0 as Nit →∞, where Nit is the number
of iterations of the chosen optimisation method. We can see from equation (2.4.4) that
H(2) depends directly on ε and so, as we show later in Corollary 2.4.13, ε→ 0 implies
||H(2)||2 → 0 (under certain assumptions). We also show in Theorem 2.4.7 that H(1)

does not go to zero with ε, and therefore the positive semi-definite H(1) term becomes
dominant over the H(2) term as we approach the solution of the non-regularised FWI
problem.

In this case where H → H(1) as we get closer to the minimum ε = 0, the Hessian
becomes singular as the minimum is approached due to the rank-deficiency of H(1).
The rank-deficiency of H(1) arises due to the small number of observations at receivers
during acquisition, compared to the large number of model parameters that we are
solving for in FWI. In fact, we show in Theorem 2.4.6 that the rank of H(1) ∈ RM×M is
bounded above by 2NsNrNω, where Ns is the number of sources, Nr is the number of
receivers, Nω is the number of frequencies, and M is the number of model parameters,
which is often very large.

A simple way to overcome the issue of rank-deficiency is to include regularisation in
the FWI objective function. This is discussed in detail in Section 2.4.4.

As a summary, the main points in this section are:

1. ||H(2)||2 → 0 as ε→ 0 (Corollary 2.4.13).

2. ||H(1)||2 6→ 0 as ε→ 0 (Theorem 2.4.7).

3. Therefore, H → H(1) as ε→ 0.

4. H(1) is low-rank, with a rank depending on the number of sources, sensors and
frequencies (Theorem 2.4.6).

2.4.3.2 Numerical Experiments

The following experiments are included to demonstrate the properties of the Hessian
outlined in Points 1 to 4 above.

Experiment 1

Aim: To investigate the properties of H(1) and H(2) and to demonstrate Points 1, 2
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and 3 in Section 2.4.3.1 by examining the singular value and eigenvalue distributions of
H(1) and H(2), both when ε is non-zero and zero.

Setup: The forward modelling in these experiments is done using the Helmholtz
equation finite difference code from [180]. The code for the computation of the Hessian
is original. We consider a 2500 m × 2500 m domain, discretised into a 101× 101 grid,
meaning that the model has 10201 parameters. The ground truth velocity model has a
background of 2000 ms−1 and an inclusion of 2100 ms−1 (Figure 2.4.1 (a)).

The ‘observed’ data in this experiment is synthetic. Acquisition will be simulated
from the ground truth model using a crosswell set-up, meaning that the seismic sources
are located in a well/borehole, and the receivers are located in a parallel well. Acquisition
is simulated using 3 equally spaced sources and 3 equally spaced sensors, and we consider
1 frequency. To avoid an inverse crime in this example, the synthetic data is computed
on a different grid than that used to compute the wavefield. Specifically in this example,
we compute the data on a refined grid, with grid size half that than the grid used for
computing the wavefield.

Definition 2.4.5. Inverse Crime: An inverse crime occurs when the same, or
close to the same, theoretical ingredients are used to create synthetic data as well as
to invert data in an inverse problem, yielding unrealistically optimistic results (this
definiton comes from [185] and [100, Section 1.2]).
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(a) Exact Velocity Model
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(b) Smooth Background Model

Figure 2.4.1: Models used in Section 2.4.3.2 Experiment 1. The symbol represents a
source and represents a sensor.

Part I: ε 6= 0. The Hessian is evaluated at a smooth background model of value 2000
ms−1, shown in Figure 2.4.1 (b), that is missing the inclusion of higher wavespeed in
the ground truth used to compute the data (Figure 2.4.1 (a)). Therefore, the residual
is not small and the second order term H(2) is not negligible. The eigenvalues and
singular values of H(1) and H(2) are shown in Figures 2.4.2 and 2.4.3 respectively. The
eigenvalue distribution of H(1) in Figure 2.4.2 (a) shows the rapid decay in singular
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values, where only 18 of the 10201 singular values are non-zero (absolute value less
than numerical zero 10−16). The positive and zero eigenvalues demonstrate that H(1) is
positive semi-definite, and the fact that there are exactly 18 non-zero eigenvalues show
that H(1) has rank equal to 2NrNsNω (2× 3 sensors × 3 sources × 1 frequency). The
large gap in magnitude between the first 18 singular values and the following singular
values is evident in Figure 2.4.2 (a). The condition number (ratio of largest to smallest
singular value) of the Gauss-Newton Hessian H(1) is on the order of 1022, meaning that
it is severely ill-conditioned. This suggests that the inversion of H(1) would be unstable,
and that the inclusion of H(2) is important. The matrix H(2) has no zero eigenvalues,
and has both positive and negative eigenvalues (see Figure 2.4.2 (b)), which results in
the indefiniteness of the Hessian. The full Hessian H = H(1) + H(2) is full rank, and
has a condition number of the order 107, and so is much more well-conditioned than
the Gauss-Newton Hessian H(1).
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Figure 2.4.2: Part I: Eigenvalue distribution of H(1) and H(2) in Experiment 1 when
ε is non-zero.
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Figure 2.4.3: Part I: Singular value distribution of H(1) and H(2) in Experiment 1
when ε is non-zero, plotted on a logarithmic scale.
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Part II: ε ≈ 0. Figures 2.4.4 and 2.4.5 show the eigenvalues and singular values
of H(1) and H(2) when evaluated at a model that produces a small residual ε. (This
model was found using the L-BFGS method, as this method does not require the
computation/inversion of the Hessian.) The properties of the H(1) matrix have remained
the same, having only 18 positive non-zeros eigenvalues/singular values. The scale of
the eigenvalues and singular values of H(2) have completely changed however, and are
all numerically zero. This has demonstrated numerically that ||H(2)||2 → 0 when ε ≈ 0.
The full Hessian now only has a rank of 18 and has a condition number of order 1021.
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Figure 2.4.4: Part II: Eigenvalue distribution of H(1) and H(2) in Experiment 1 when
ε ≈ 0.
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Figure 2.4.5: Part II: Singular value distribution of H(1) and H(2) in Experiment 1
when ε ≈ 0, plotted on a logarithmic scale.

Comparison of Part I and Part II: The full Hessian when the residual are both
non-zero and zero are overlayed in Figure 2.4.6. In this example, when the residual is
large, the Hessian is indefinite. When the residual becomes very small, the Hessian
is positive semi-definite and extremely rank deficient, with the majority of singular
values numerically zero, and the non-zero singular values coming from the H(1) term
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only. This behaviour implies that when the term H(2) becomes small near the minimum
ε = 0, regularisation becomes important in ensuring the Hessian is well-conditioned.
Regularisation is introduced in Section 2.4.4.
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Figure 2.4.6: Compare Part I and Part II: Singular values of H = H(1) + H(2)

for 2 cases: when the residual ε is non-zero, and when the residual ε is numerically
zero.

Experiment 2

Aim: The aim of this experiment is to demonstrate property 4 in Section 2.4.3.1
by examining the singular value distribution of H(1) for different acquisition setups.

Setup: The model we use is that shown in Figure 2.4.7. One acquisition set-up
is the same as Experiment 1, with 3 sources and 3 sensors (subplot (a)). The second
involves 6 sources and 11 sensors, both equally spaced (subplot (b)). We consider 1
frequency in both cases.

Results: The behaviour of the first 150 singular values is shown in Figure 2.4.8,
where rapid decrease of the singular values for the 3 sources 3 sensor case can be
seen. The numerous small singular values are associated with poorly illuminated model
parameters [128]. More observations (i.e., more sources, sensors and frequencies) result
in more non-zero singular values. The comparison between eigenvalues for the two
different setups demonstrates how sufficient observations can improve the conditioning
and rank of the Gauss-Newton matrix.
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(a) 3 sources, 3 sensors setup
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(b) 6 sources, 11 sensors setup

Figure 2.4.7: Acquisition setups used in Section 2.4.3.2 Experiment 2. The symbol
represents a source and represents a sensor.
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Figure 2.4.8: 150 largest singular values of H(1) plotted on a logarithmic scale for
different acquisition set-ups. The decrease of the singular values is faster for the case
with less sources and sensors which indicates a poorer conditioning of the Hessian.
Specifically, there are 18 non-zero singular values for the 3 source, 3 sensor case, and
132 non-zero singular values for the 6 source, 11 sensor case.

2.4.3.3 Results about the Structure of the Hessian

This section will present some of the main results from the discussion in Section 2.4.3.1.
All theorems in this section are written in the discrete form of the problem, as this is
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the natural setting when discussing the implementation of FWI. Before we present the
theorems, we rewrite the Gauss-Newton Hessian H(1) in a form that is useful in proving
our results. We begin by restating the definition of the discrete Gauss-Newton Hessian
H(1) (2.4.13),

(H(1)(m,p))k,j = <
{∑
s∈S

∑
ω∈W

[(
R(p)∂u(m, s, ω)

∂mj

)∗ (
R(p)∂u(m, s, ω)

∂mk

)]}
,

where there are Ns sources in the set S and Nω frequencies in the set W . We define a
new matrix J ∈ CNr×M (the Jacobian of the residual), where the (l, k)th element is,

Jl,k(m,p, s, ω) =
(
R(p)∂u(m, s, ω)

∂mk

)
l

, (2.4.30)

where l = 1, ..., Nr. Therefore, H(1) can be written as,

H(1)(m,p) = <
{∑
s∈S

∑
ω∈W

[J(m,p, s, ω)∗J(m,p, s, ω)]
}
. (2.4.31)

We write H(1) in the form (2.4.31) in the following theorems.

Theorem 2.4.6 derives an upper bound for the rank of H(1), and hence provides theoret-
ical justification for the behaviour seen in Figure 2.4.8. In this proof we assume that
the number of sensors is less than the number of model parameters, as this is generally
true in practice.

Theorem 2.4.6. Assuming Nr < M , then

rank(H(1)) ≤ 2NsNrNω,

where Ns is the number of sources, Nr is the number of sensors, Nω is the number of
frequencies, and M is the number of model parameters.

Proof. The matrix J = J(m,p, s, ω), defined by (2.4.30), has dimensions Nr ×M ,
where Nr < M . Therefore rank(J) ≤ Nr.
We note the following properties for complex matrices B and C,

rank(B) = rank(B∗B),
rank(B + C) ≤ rank(B) + rank(C). (2.4.32)

Therefore, rank(J∗J) ≤ Nr, and

rank

(∑
s∈S

∑
ω∈W

J∗J

)
≤
∑
s∈S

∑
ω∈W

Nr = NrNsNω. (2.4.33)
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To find H(1), as given by (2.4.31), we need to take the real part of (2.4.33). To find the
rank of the real part, we write the complex matrix J as a sum of its real and imaginary
part

J = Jr + i Ji, (2.4.34)

with Jr, Ji ∈ RNr×M . Therefore

<(J∗J) = < ((Jr + i Ji)∗(Jr + i Ji)) = <
(
(JTr − i JTi )(Jr + i Ji)

)
= <

(
JTr Jr − iJTi Jr + iJTr Ji + JTi Ji

)
= <

(
JTr Jr + JTi Ji

)
(2.4.35)

Equation (2.4.35) is the sum of two matrices with rank Nr. By the identity (2.4.32), this
is less than or equal to the sum of their rank, 2Nr. Then for all sources and receivers,
by (2.4.33), rank(H(1)) ≤ 2NsNrNω.

We note here an identity used by the following theorem. With J as in (2.4.34), and any
real vector x, we have that,

x∗J∗Jx = xTJTr Jrx + xTJTi Jix + i
(
xTJTr Jix− xTJTi Jrx

)
= xTJTr Jrx + xTJTi Jix

= x∗<(J∗J)x (2.4.36)

We have seen in Experiment 1 in Section 2.4.3.2 that as ε→ 0, (i.e., as we approach
the solution of FWI without regularisation), H(2) → 0 and H → H(1). Now, we want to
investigate the theoretical behaviour of H(1). In particular, we want to examine whether
H(1) decays like H(2) in any case. In Theorem (2.4.7), we provide a lower bound for
H(1) that does not depend on ε, to show that H(1) does not go to zero as the FWI
solution is approached.

Theorem 2.4.7. For l = 1, ..Nr, define ρl ∈ CM as the lth row of the Jacobian J
(2.4.30), written as a column vector,

ρTl (m,p, s, ω) =
{(

R(p)∂u(m, s, ω)
∂mj

)
l

: for j = 1, ...,M
}
.

Then, we have the following lower bound for H(1) (2.4.31),

||H(1)(m,p)||2 ≥
∑
s∈S

∑
ω∈W

max
l
||ρl(m,p, s, ω)||22.
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Proof. We will drop the dependencies on m,p, s and ω in this proof for simplicity. We
can write

||J ||22 = max
x 6=0

x∈RM

x∗J∗Jx
x∗x

= max
x 6=0
x∈RM

x∗<(J∗J)x
x∗x

,

by (2.4.36). Summing over sources and frequencies gives,

∑
s∈S

∑
ω∈W
||J ||22 = max

x 6=0
x∈RM

x∗H(1)x
x∗x

= ||H(1)||2

Therefore, we have that

||H(1)||2 =
∑
s∈S

∑
ω∈W

max
x6=0

x∈RM

||Jx||22
||x||22

.

Note that

||Jx||22 =
Nr∑
i=1
| (Jx)i |

2 ≥ | (Jx)l |
2,

for any l ∈ {1, . . . , Nr}. Now we choose x = ρl, for any l ∈ {1, . . . , Nr} so

||Jρl||22 ≥ | (Jρl)l |
2 = | ||ρl||22 |2 = ||ρl||42.

Therefore

||H(1)||2 ≥
∑
s∈S

∑
ω∈W

max
l

||Jρl||22
||ρl||22

≥
∑
s∈S

∑
ω∈W

max
l
||ρl||22.

The lower bound ρl does not depend on ε, and so as long as at least one ρl is not zero
(which is expected), then we can guarantee that ||H(1)||2 will remain bounded away
from 0 as ε→ 0.

Remark 2.4.8. Newton’s method as ε→ 0: We note that as ε→ 0 and H → H(1),
Newtons method approaches the Gauss Newton method. We include a theorem in
Appendix G that shows that Newton’s method is still consistent when ε→ 0. In fact,
there are infinitely many solutions to the Gauss-Newton system.

Regularisation can be used to solve the issues with the rank-deficiency of the Hessian,
and hence ensure a unique FWI solution. This is discussed in the following section.
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2.4.4 Positive-Definiteness of the Regularised Hessian
One way of overcoming the rank-deficiency problems discussed in the previous section
is to add a positive multiple of the identity to the Hessian, i.e., H + µI with µ > 0,
hence ensuring the Hessian is full-rank.

This type of term can be incorporated by including a regularisation term of the
form 1

2µ||m||
2
2 to the FWI objective function (2.2.22). If prior information about the

subsurface is available, a term of the form 1
2µ||m−mp||22 can be added, where mp is a

‘prior model’, for example see [14] (which also involves a weighting matrix).
In the case where we have added a regularisation term to the objective function, we

would be minimising a combination of a misfit term and regularisation term, and so
ε would generally not reach zero (although it should still reduce significantly), hence
preventing H(2) from becoming negligible during the minimisation process.

In this section, we will consider the regularised FWI problem, and derive the
conditions that ensure the positive definiteness of the Hessian of the regularized problem,
and discuss the connection between a positive definite Hessian and a unique solution to
the FWI problem. The regularised objective function considered in this section is

φ(m,P) = 1
2
∑
s∈S

∑
ω∈W
‖ε(m, ω, s,P)‖2

2 + 1
2α‖Dm‖

2
2 + 1

2µ‖m‖
2
2. (2.4.37)

where µ > 0 and α > 0 are the regularisation parameters, and D is a discrete
approximation to the first derivative. The regularisation term, ||m||22, is referred
to as the convex term, and the regularisation term ||Dm||22, is referred to as the
Tikhonov term. Note that the Tikhonov term promotes smoothness in the model. The
Hessian of φ defined in (2.4.37) is

H(m,P) = H(1)(m,P) +H(2)(m,P) + αD>D + µI. (2.4.38)

where H(1) and H(2) are given by (2.4.3) and (2.4.9) respectively.

Remark 2.4.9. Details of Tikhonov Matrix D: We choose the matrix D to be
a finite difference approximation of the first derivative. In one-dimension, this is

D1 = 1
h



1 −1 0
1 −1

. . . . . .
1 −1

0 1 −1

 ∈ R(n−1)×n,

where h is the grid size and n is the number of discretisation nodes. In two-dimensions,
a finite difference approximation of the first derivative is required in both the horizontal
and vertical directions, which we denote Dx and Dz respectively. These are defined
according to the lexicographic ordering of the model and the grid size in either direction.
Assuming square elements and n discretisation nodes in each direction, we could define
Dx = D1 ⊗ In and Dz = In ⊗D1, where ⊗ represents a Kronecker product. (Note this

42



definition can be extended for the case where there are a different number of discretisation
nodes and different grid size in each direction). Then D in (2.4.37) can be defined as

D =
(
Dx

Dz

)

so that ‖Dm‖2
2 = ‖Dxm‖2

2 + ‖Dzm‖2
2.

We remark here that we are considering the continuous formulation of the FWI
problem in this section, so that every model vector in RM has a continuous representation,
given by (2.2.4). For simplicity in this section, we assume only one source and one
frequency. This assumption removes the sums in (2.4.37) and we avoid writing the
dependencies on s and ω. The results in this section can be extended for many sources
and many frequencies straightforwardly by including a sum over sources and frequencies.
We also make the following assumptions.

Assumption 2.4.10.

1. The FWI forward problem is defined by (2.2.13).

2. All models m lie in some set M.

3. Stability for L2 data: There exists a constant C0(ω) = C0(ω,M,Ω) so that, for
all m ∈M,

max{‖Sm,ωf‖L2(Ω), ‖S ∗
m,ωf‖L2(Ω)} ≤ C0(ω)‖f‖L2(Ω).

where S and S ∗ are defined by (2.2.5) and (2.2.6).

4. Stability for point source data: There exists a constant C1(ω) = C1(ω,M,Ω) so
that, for all m ∈M, and s ∈ Ω,

max{‖Sm,ωδs‖L2(Ω), ‖S ∗
m,ωδs‖L2(Ω)} ≤ C1(ω)

5. The wavefield is finite at the sensors positions, i.e., for all m ∈M, there exists
a constant C2(ω) = C2(ω,M,Ω,ΩR) such that,

||(Sm,ωδs)(p)||∞,ΩR ≤ C2(ω),

where ΩR is some part of the domain Ω that includes the sensors but not the
sources.

6. There exists a constant C3(ω) = C3(ω,M,Ω), such that, for any sensor position
p and any f ∈ L2(Ω)

max{|(Sm,ωf)(p)|, |(S ∗
m,ωf)(p)|} ≤ C3(ω)‖f‖L2(Ω).
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The reason for considering a class of models M in Point 2 is that the behaviour
of the Helmholtz solution operator depends strongly on the model and, in particular,
whether or not the model traps rays. Indeed, if the model is trapping, then C0 in Point 1
grows exponentially in ω; see [154], [146], [22]. Sufficient (but not necessary) conditions
ensuring the models are non-trapping are given in [78, Theorems 2.5, 2.7], and thus
one could consider Assumption 2.4.10 with M as this particular class of models. An
alternative would be to restrict attention to a subset of frequencies, excluding the ‘bad’
frequencies through which the trapping behaviour occurs. The paper [110] proves that
if a set of frequencies of arbitrarily-small measure is excluded, then C0 grows at most
polynomially in ω, i.e., the exponential growth of the solution operator associated with
trapping is rare.

Proposition 2.4.11. If a matrix A is real and symmetric, then

||A||2 = max {|λ|, λ eigenvalue of A} .

The Rayleigh quotient of A is bounded by

λmin ≤
〈Ax,x〉
〈x,x〉

≤ λmax, ∀x

and λmin and λmax are achieved for certain x.

Theorem 2.4.12. Upper Bound on H(2) in terms of ε: If Assumptions 2.4.10
hold, then for all m ∈M and all m̃ ∈ RM ,∣∣∣∣∣∣

〈
H(2)(m,P)m̃, m̃

〉
〈m̃, m̃〉

∣∣∣∣∣∣ ≤ C(ω)‖ε‖1. (2.4.39)

where H(2) is defined by (2.4.9).

Proof. By Assumption 2.4.10 Point 4, u(m) given by (2.2.13) satisfies

‖u(m)‖L2(Ω) ≤ C1(ω). (2.4.40)

By the linearity of S ∗
m, the definition of λ(m,P) (2.3.5), and the definition of R∗

(2.2.18), we have
λ(m,P) =

∑
j

εj(m,P)S ∗
m(δpj),
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and so

‖λ(m,P)‖L2(Ω) ≤
∑
j

|εj(m,P)|‖S ∗
m(δpj)‖L2(Ω) ≤ C1(ω)‖ε(m,P)‖1. (2.4.41)

By the definition of v in (2.4.18), the inequality (2.4.40) and Assumption 2.4.10 Point
3,

‖v(m, m̃)‖L2(Ω) ≤ ω2C0(ω)‖m̃ u(m)‖L2(Ω) ≤ C1(ω)C0(ω)ω2‖m̃‖L∞(Ω). (2.4.42)

Similarly, by the definition of z2 in (2.4.29) and the inequality (2.4.41),

‖z2(m, m̃,P)‖L2(Ω) ≤ ω2C0(ω)‖m̃ λ(m,P)‖L2(Ω) ≤ ω2C0(ω)‖m̃‖L∞(Ω)C1(ω)‖ε(m,P)‖1,
(2.4.43)

By (2.4.28), and using that m̃ = ∑
k m̃kβk, we have〈

H(2)(m,P)m̃, m̃
〉

= −ω2<
∫

Ω
m̃
[
v(m, m̃)λ(m,P) + u(m)z2(m, m̃,P)

]
.

Hence,∣∣∣〈H(2)(m,P)m̃, m̃
〉∣∣∣

≤ ω2‖m̃‖L∞(Ω)
[
‖v(m, m̃)‖L2(Ω) ‖λ(m,P)‖L2(Ω) + ‖u(m)‖L2(Ω)‖z2(m, m̃,P)‖L2(Ω)

]
≤ 2ω2‖m̃‖L∞(Ω)

[
ω2C1(ω)2C0(ω)‖m̃‖L∞(Ω)‖ε(m,P)‖1

]
.

Since ‖m̃‖L∞(Ω) ≤ ‖m̃‖∞ ≤ ‖m̃‖2, we have that∣∣∣∣∣∣
〈
H(2)(m,P)m̃, m̃

〉
〈m̃, m̃〉

∣∣∣∣∣∣ ≤ 2ω4C1(ω)2C0(ω)‖ε‖1.

and the result follows with the definition C(ω) = 2ω4C1(ω)2C0(ω).

Corollary 2.4.13.

||H(2)(m,P)||2 → 0 as ε→ 0.

Proof. By Proposition 2.4.11 and Theorem 2.4.12, ||H(2)(m,P)||2 ≤ C(ω)‖ε‖1. There-
fore the result holds.

The result of Corollary 2.4.13 relates back to the discussion in Section 2.4.3.1 and is a
theoretical justification of the numerical results in Section 2.4.3.2 Experiment 1.

Theorem 2.4.12 gives an upper bound on H(2) in terms of the residual ε, which depends
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on the model. We want to extend this to find a bound on H(2) that is independent of
the model, so that later theorems can make conclusions for all models m ∈ M. To
extend the result in (2.4.39), we first find an upper bound for the ε term in Lemma
2.4.14.

Lemma 2.4.14. Upper Bound on ε: If Assumption 2.4.10 holds, then

||ε(m,P)||1 ≤ ||d||1 +NrC2(ω).

Proof. By the triangle inequality, and definition (2.2.22),

||ε(m,P)||1 ≤ ||d||1 + ||R(P)u(m)||1 = ||d||1 +
Nr∑
j=1
|u(m; pj)|,

where the notation u(m; p) means the wavefield u(m) evaluated at the sensor position
p. By Assumptions 2.4.10, Point 5, if the sensors are not located at the source positions,
we can write

||ε(m,P)||1 ≤ ||d||1 +NrC2(ω). (2.4.44)

Combining Theorem 2.4.12 and Lemma 2.4.14, we obtain the following.

Corollary 2.4.15. Upper Bound on H(2): If Assumption 2.4.10 holds, then∣∣∣∣∣∣
〈
H(2)(m,P)m̃, m̃

〉
〈m̃, m̃〉

∣∣∣∣∣∣ ≤ C(ω) (||d||1 +NrC2(ω)) . (2.4.45)

We introduce the following notation for the constant in the bound in Corollary 2.4.15 as
H2 := C(ω) (||d||1 +NrC2(ω)) . (2.4.46)

We now turn our attention to bounds on H(1).

Theorem 2.4.16. Upper and Lower Bounds on H(1): If Assumption 2.4.10
holds, then for all m ∈M and all m̃ ∈ RM ,

0 ≤

〈
H(1)(m,P)m̃, m̃

〉
〈m̃, m̃〉

≤ ω4NrC3(ω)C3
1(ω).
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Proof. By definitions (2.2.18) and (2.2.17)

R(P)∗(R(P)v(m, m̃)) =
Nr∑
j=1

δpjv(m, m̃; pj). (2.4.47)

Using (2.4.47) in the definition (2.4.25) of z1, we get

‖z1(m, m̃,P)‖L2(Ω) = ‖S ∗
m(R(P)∗R(P)v(m, m̃))‖L2(Ω),

=

∣∣∣∣∣∣
∣∣∣∣∣∣S ∗

m

Nr∑
j=1

δpjv(m, m̃; pj)
∣∣∣∣∣∣
∣∣∣∣∣∣
L2(Ω)

. (2.4.48)

By the linearity of S ∗
m, and Assumption 2.4.10 Point 4,

‖z1(m, m̃,P)‖L2(Ω) ≤
Nr∑
j=1
|v(m, m̃; pj)|‖S ∗

m(δpj)‖L2(Ω)

≤ C1(ω)||v(m, m̃;P)||1.

By Assumptions 2.4.10 Point 6, and the definition (2.4.18) of v,

|v(m, m̃; pj)| ≤ C3(ω)ω2||m̃u(m)||L2(Ω)

≤ C3(ω)ω2||m̃||L∞(Ω)||u(m)||L2(Ω)

≤ C3(ω)C1(ω)ω2||m̃||L∞(Ω)

and so

||v(m, m̃;P)||1 =
Nr∑
j=1
|v(m, m̃; pj)| ≤ NrC3(ω)C1(ω)ω2||m̃||L∞(Ω). (2.4.49)

By (2.4.27), (2.4.48) and (2.4.49),〈
H(1)(m,P)m̃, m̃

〉
≤ ω2‖m̃‖L∞(Ω)‖u(m)‖L2(Ω)‖z1(m, m̃,P)‖L2(Ω)

≤ ω2‖m̃‖L∞(Ω)C
2
1(ω)||v(m, m̃;P)||1.

≤ ω2C2
1(ω)||m̃||L∞

(
ω2NrC3(ω)C1(ω)‖m̃‖L∞(Ω)

)
= ω4NrC3(ω)C3

1(ω)‖m̃‖2
L∞(Ω)

Using that ||m̃||L∞ ≤ ||m̃||∞ ≤ ||m̃||2, we have the upper bound〈
H(1)(m,P)m̃, m̃

〉
〈m̃, m̃〉

≤ ω4NrC3(ω)C3
1(ω). (2.4.50)

The lower bound is found by combining the definitions (2.4.3) and (2.4.9), so that
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〈
H(1)(m,P)m̃, m̃

〉
= < 〈R(P)v(m, m̃),R(P)v(m, m̃)〉

= <
(
||R(P)v(m, m̃)||22

)
= ||R(P)v(m, m̃)||22 ≥ 0. (2.4.51)

Combining (2.4.50) and (2.4.51) gives the result.

We introduce the following notation for the constant in the upper bound in Theo-
rem 2.4.16

H1 := ω4NrC3(ω)C3
1(ω). (2.4.52)

Upper and lower bounds for the Tikhonov regularisation term in (2.4.38) are now
discussed. Denoting the maximum eigenvalue of DTD as CD, and noting that DTD is
positive semi-definite, we can write the following bounds,

0 ≤

〈
DTDm̃, m̃

〉
〈m̃, m̃〉

≤ CD (2.4.53)

We now combine the bounds we have found so far to find upper and lower bounds on
the regularised Hessian.

Corollary 2.4.17. Upper and Lower Bounds on H: The range of eigenvalues
of the regularised Hessian (2.4.38) is

µ− H2 ≤ 〈H(m,P)m̃, m̃〉
〈m̃, m̃〉

≤ µ+ H2 + H1 + αCD (2.4.54)

where H1 and H2 are defined by (2.4.52) and (2.4.46) respectively.

Proof. By Proposition 2.4.11, Theorems 2.4.12, 2.4.16, and (2.4.53), the result (2.4.54)
holds.

Theorem 2.4.18. Conditions for a Positive Definite H: If Assumptions 2.4.10
hold, then if the regularisation parameter µ is chosen to be

µ = H2 + τ

for some constant τ > 0, then the Hessian H(m,P) given in (2.4.38) is positive definite
for all m ∈M.
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Proof. By Corollary 2.4.17, by setting µ equal to H2 +B, the eigenvalue range of H is

τ ≤ 〈H(m,P)m̃, m̃〉
〈m̃, m̃〉

≤ 2H2 + H1 + αCD + τ.

Therefore the smallest eigenvalue of H is bounded below by a positive constant τ ,
making the Hessian positive definite. This choice of µ is independent of m so, by
Corollary 2.4.15, H is positive definite for all m ∈M.

Remark 2.4.19. Size of µ in Practice: Note that the choice of µ in Theorem
2.4.18 is a lower bound for µ that will definitely ensure the positive definiteness of the
Hessian, and it is possible that a smaller µ will still result in a positive definite Hessian.
In practice, it is expected that the Tikhonov regularisation term and H(1) term will help
the positive-definiteness of the Hessian, since the lower-bound on the smallest eigenvalue
of a sum of matrices is only reached in the case where the matrices in the sum share
eigenvectors (by Weyl’s theorem [94, Theorem 4.3.1]). It is observed throughout the
later computations in this thesis that a positive-definite Hessian is obtained even for
small values of µ.

Corollary 2.4.20. When the regularisation parameter µ is chosen to be

µ = H2 + τ

for some constant τ > 0, then a minimiser of the FWI problem exists and is unique.

Proof. By Theorem 2.4.18, this choice of µ makes the FWI Hessian positive definite,
where the smallest eigenvalue of the Hessian is bounded below by a positive constant
τ , for all models m ∈ M. By the second-order characterisation of strong convexity
(Appendix H, Lemma H-5), the objective function φ(m,P) (2.4.37) is strongly convex.
By Theorem H-6 in Appendix H, a minimum of φ exists and is unique.

We note that all theorems and corollaries in this Section 2.4.4 have been proved assuming
one source and one frequency. To extend Corollary 2.4.20 to the multiple sources and
frequencies case, then H2 in (2.4.46) should be summed over all sources and frequencies.

Remark 2.4.21. Disadvantage of Convex Regularisation Term: This approach
of adding a convex regularisation term to the FWI objective function can be a useful trick
to modify the FWI problem so that it has a unique solution. However, it is important to
note that if the FWI problem is very non-convex, forcing it to be strongly convex with a
regularisation term can mean that interesting information coming from the data misfit
term is lost in the solution to the problem.

49



2.5 FWI Algorithm
This section provides details on the FWI algorithm in the frequency domain. To describe
the algorithm, we first motivate the frequency continuation approach, which is used to
improve FWI performance.

2.5.1 Frequency Continuation
One of the main difficulties that arises from the non-linearity of FWI is the presence of
numerous local minima. The presence of local minima means that, unless the starting
guess of the subsurface model is close to the global minimum, the optimisation method
may not converge to it. This issue led to the development of some hierarchical ‘multiscale
strategies’ to mitigate this local minima problem. Here, the term ‘multiscale strategies’
refer to methods that successively process data subsets of increasing resolution. This
multiscale idea was originally proposed for FWI in the time domain by Bunks et al.
[38], and later formulated and implemented in the frequency domain, for example in
[150] and [149].

Physically, during acquisition, lower frequency components of the recorded data
will generally be due to the wavefield scattering from larger structures in the subsur-
face, whereas higher frequency components will contain the detail of smaller features.
Therefore, the data in the FWI objective function contains information at various
scales of the subsurface. The FWI objective function has fewer local minima for lower
frequency data [38]. Higher frequency components are likely to have been scattered
many times, and so there are more local minima when FWI is performed for higher
frequency data. Mathematically, lower frequencies increase the radius of convergence
for the FWI problem (see [69, Chapter 5]), whereas higher frequencies are necessary to
improve the resolution of the FWI reconstruction (this fact is motivated by the stability
result referenced in Section 2.2.5 - see [69, Chapter 3] for more details).

These properties led to the suggestion in [38] to decompose the problem by scale,
successively performing the inversion from long scales (low frequency) to short scales
(high frequency), and hence reconstructing large scale features before resolving the finer
details. This approach occurs more naturally in the frequency domain, by performing
successive inversions of increasing frequencies. This approach is termed frequency
continuation, or frequency progression. This frequency continuation strategy involves
initially performing FWI for low frequency data only, in order to obtain a low resolution
model. This model is then used as the starting model for the next inversion, using higher
frequency data. Following that, FWI is performed for higher and higher frequency data
to obtain more resolution in the model. Multiple frequencies (i.e., a ‘frequency group’)
are typically inverted at each stage of the method.

The algorithm for Frequency Continuation is given as Algorithm 2.5.1 below. It
involves splitting frequencies into groups ordered from lowest to highest. FWI is
performed for a chosen starting guess m0 for the first group g1, and the result mFWI

is then used as a starting guess for the next round of FWI with frequency group g2.
This process continues until all frequency groups have been looped through. In the
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algorithm, FWI(gk,m0) means performing FWI for a group of frequencies gk, with the
initial guess as m0.

Algorithm 2.5.1 Frequency Continuation
1: Inputs: Initial model m0, Frequencies from set W given in increasing order ω1 <

ω2 < ... < ωNω
2: Group frequencies into Nf groups {g1, g2,... ,gNf}
3: for k = 1 to Nf do
4: mFWI ← FWI(gk, m0)
5: m0 ←mFWI

6: end for
7: Output: Optimal model mFWI

The computational cost of FWI depends on the number of frequencies used (as
demonstrated in the gradient and Hessian derivations in Sections 2.3 and 2.4). Sirgue
and Pratt [166] show that a good quality FWI image can be obtained using a very limited
number of frequencies, which is a significant advantage for computational efficiency.
In [166], a strategy for selecting these frequencies, for a reflection setup, is outlined,
where the idea is that the larger the maximum offset (horizontal distance from source
to receiver) is, the fewer frequencies are needed. They show that frequency domain
FWI with reflection data, using only a few properly selected frequencies, can produce a
result that is comparable to full-time domain FWI.

2.5.2 Full Algorithm
Here we detail a possible FWI algorithm, where we assume we are given data d that
comes from a known acquisition setup. The algorithm is written with discretised
variables, to make it relevant for implementation. We present the case where we do the
inversion for a frequency group of size Ng, with frequencies {ω1, ..., ωNg}, which are a
subset of the set of frequencies W. The FWI algorithm would be then called within
the frequency continuation algorithm (Algorithm 2.5.1). We break the FWI algorithm
into two parts, the optimisation algorithm (Algorithm 2.5.2), and the evaluation of the
objective function and its gradient (Algorithm 2.5.3).

We write the FWI optimisation algorithm (Algorithm 2.5.2) without specifying the
details of the descent direction or line search computation. We write the algorithm
generally to indicate that any gradient-based optimisation method can be chosen to
find the descent direction and any line search method can be used to find the step size.
For example, in the implementation in Section 2.6, L-BFGS (Algorithms F-1 and F-2)
and Wolfe Line Search (Algorithm F-3) are used to find the descent direction and step
size respectively. In this case, computing the descent direction requires the current and
past values of the FWI gradient ∇φ, and computing the line search direction involves
calling the function for the computation of ∇φ (i.e., Algorithm 2.5.3) within it.

A schematic is included to demonstrate the general workflow of FWI in Figure
2.5.1. Note in the algorithms and schematic, regularisation is not included for brevity.
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Regularisation may be included by adding the appropriate terms to φ (as in 2.4.37).
We note that in these algorithms, and all other algorithms written in this thesis, when
another algorithm is called within the original algorithm, we indicate the inputs of this
inner algorithm by writing them in brackets.

Initial model

Forward Modelling

Find u(m) by solving the wave equation

Modelled Data

dmod(m) = Ru(m)

Calculate Misfit and Gradient
φ(m) =

∑
s,ω

1
2 ||d − Ru(m)||22

Using the adjoint-state method:
∇φ(m) =

∑
s,ω

(
∂A(m)
∂m u(m)

)∗
λ(m)

Observed Data d

Update Model
Find model update that reduces misfit

mk+1 = mk + ∆m

Convergence
Final model mFWI

minimises misfit

Figure 2.5.1: Schematic of main FWI steps
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Algorithm 2.5.2 FWI Optimisation Algorithm
1: Inputs: Initial guess model m0, data d, source positions S, frequency group g,

sensor positions p, convergence tolerance tol, maximum iterations kmax

2: Compute ∇φ(m0) with Algorithm 2.5.3(m0,d,S, g,p)
3: k = 0
4: while ||∇φ(mk)|| > tol and k > kmax do
5: dk ← Descent Direction
6: αk ← Line Search
7: mk+1 ←mk + αkdk
8: Compute ∇φ(mk+1) with Algorithm 2.5.3(mk+1,d,S, g,p)
9: k = k + 1

10: end while
11: Output: Optimal model mFWI

Algorithm 2.5.3 FWI Objective Function and Gradient
1: Inputs: Frequency group g of size Ng, Source positions S, sensor positions p,

Observed data d, discretised model m
2: Initialise φ = 0, ∇φ = 0
3: Compute restriction operator R(p)
4: for s ∈ S do
5: for k ∈ {1, .., Ng} do
6: Assemble source vector f(s, ωk)
7: Assemble system matrix A(m, ωk)
8: Compute u(m, s, ωk) from (2.2.14)
9: Compute modelled data dmod(m,p, s, ωk) = R(p)u(m, s, ωk)

10: Evaluate misfit ε(m,p, s, ωk) = d− dmod(m,p, s, ωk)
11: Compute adjoint wavefield λ form (2.3.12)
12: Update φ = φ+ 1

2 ||ε||
2
2

13: for j ∈ {1, ...,M} do
14: Update ∇φj = ∇φj +

(
∂A
∂mj

u
)∗
λ

15: end for
16: end for
17: end for
18: Outputs: φ, ∇φ
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2.6 FWI Reconstructions
In this section the FWI algorithm is used to create images of artificial subsurfaces. Our
FWI experiments are for acoustic media with constant density. Therefore, the wave
propagation is described by the Helmholtz equation, and the inverse problem aims to
recover/reconstruct the wavespeed/velocity. The objective function being minimised is
of the form (2.4.37), with regularisation parameters chosen through experimentation,
and the iterative minimisation algorithm used to reconstruct the model is L-BFGS
(Algorithms F-1 and F-2) and Weak Wolfe Line Search (Algorithm F-3). We note that
the finite difference discretisation of the Helmholtz equation used here comes from [180],
and that the rest of the FWI code is original.

Remark 2.6.1. Synthetic ‘Observed’ Data In the case where data does not come
from acquisition, an extra step must be included to compute synthetic data to use for d.
The synthetic data is computed from a forward modelling code using a given model, and
restricting the solution to the sensor positions. The forward modelling for the purpose
of creating synthetic data should be done using a different grid as that used to compute
the modelled data to avoid an inverse crime (see Definition 2.4.5).

All ‘observed’ data in these experiments are synthetic.

Experiment 1
The first experiment involves a simple velocity model with a region of higher wavespeed
in the centre that smoothly decreases outwards. We consider a 2500 m × 2500 m
domain, with maximum velocity 2100 ms−1 in the centre. The model is discretised into
a 101 × 101 grid, with a spacing of 25 m. This discretisation results in 10201 model
parameters to be recovered.

Acquisition is simulated using a crosswell setup, making this a transmission experi-
ment. Five sources are located in a well on the left of the domain, and five sensors are
located in a parallel well on the opposite side. The acquisition setup is illustrated on
the ground truth model in Figure 2.6.1.

We make an initial guess at the velocity model, shown in Figure 2.6.2 (a), with
the aim of recovering the true model in Figure 2.6.1. We choose to do FWI for one
frequency only due to the simplicity of the model. Both a Tikhonov and convex
regularisation term are included in the objective function, with parameters α = 0.5
and µ = 10−7 respectively. The optimisation algorithm is iterated until we reach the
stopping condition ||∇φ||2 ≤ 10−6, i.e., the norm of the gradient must be small enough.
Figure 2.6.2 (b) shows the model that we recover. The colour scale is the same as for
Figure 2.6.1.

Figure 2.6.3 (a) shows the evolution of the objective function with iterations. There
is initially a large reduction in the objective function, after which the decrease of the
cost function slows down. This happens here after about 10 iterations. A stopping
condition can be included in FWI to stop iterations after the value of the objective
function stagnates, however we have continued to iterate to demonstrate the behaviour
of the gradient (Figure 2.6.3 (b)). While the reduction in the objective function has
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Figure 2.6.1: Ground truth velocity model to be reconstructed with FWI. Sources
and sensors are placed in parallel wells on opposite side of the domain, meaning that
transmitted data is recorded at the sensors, i.e., the sensors measure the wavefield which
has been transmitted through the domain.
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(a) Initial Wavespeed Guess
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(b) FWI Solution

Figure 2.6.2: Initial and Final velocity models in the FWI reconstruction of Figure
2.6.1.

stalled, the gradient continues to decrease. (This point will become important in the
parameter optimisation problem and is discussed more in Section 5.3.3). Note that the
small increases in the graident norm every few iterations is comented on in [135].
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Figure 2.6.3: Evolution of the FWI objective function and its gradient on a log scale.

Experiment 2
This experiment considers a more complicated two-dimensional velocity model, the
acoustic Marmousi model. The Marmousi model is a semi-real geophysical model,
synthetically designed by the Institut Français du Pétrole (IFP) in 1988. It has since
been thoroughly studied and is one of the most popular models used in geophysical
applications to test inversion procedures. The model consists of layered structures, with
strong horizontal and vertical velocity changes.

We consider the Marmousi model, which has been smoothed horizontally and
vertically to obtain a smooth Marmousi model. This smoothing is performed by
applying a Gaussian filter to the original Marmousi model. When smoothed, less layers
can be identified in the model. This smooth Marmousi model is shown in Figure 2.6.4.
We note that various ‘smoothed’ versions of the Marmousi model have been used in
testing geophysical algorithms, for example in [160], [174], [191], and [187].
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Figure 2.6.4: Smooth Marmousi model. We aim to reconstruct this ground truth model
with FWI.

The domain of the model is 10.95 km × 3 km, and the wavespeed varies from 1.5
kms−1 to 4.59 kms−1. The domain is discretised into a 220 × 61 grid, with a spacing
of 50 m in each direction. The model therefore has 13420 parameters.
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The seismic acquisition is designed with sources and sensors in the near surface area.
This is a reflection acquisition setup. We use 55 sources, equally spaced by 200 m along
a line at a depth of 250 m, and 110 sensors, equally spaced by 100 m along a line at a
depth of 100 m. Synthetic data is generated using a different grid to that used in the
FWI algorithm to recover the model parameters (specifically a 121× 439 grid).

From this synthetic data, we aim at reconstructing Figure 2.6.4 without knowing
any information about the subsurface structures. The initial guess at the velocity is
shown in Figure 2.6.5. The initial guess is simply a one-dimensional linear variation of
the velocity, with increasing value with depth.
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Figure 2.6.5: Initial wavespeed for the iterative optimisation algorithm. The model con-
sists of a one-dimensional linear variation of velocity with depth and has no information
on any of the true structures.

The FWI objective function being minimised contains a Tikhonov and convex
regularisation parameter, with parameters α = 1 and µ = 10−6. We perform frequency
continuation (Algorithm 2.5.1) with 3 groups, where the frequencies are chosen sparsely
according to the selection strategy outlined in [166]. The optimisation algorithm is
iterated until the norm of the gradient of the objective function reaches the specified
tolerance (10−6) for each frequency group. The resulting reconstructed wavespeed is
shown in Figure 2.6.6. The ‘macro’ structure of the layers appears to be relatively
accurate, and to the eye looks similar to the ground truth. However, some of the deeper
layers are not as well-recovered and have a blob-like appearance.
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Figure 2.6.6: Final reconstruction of the smooth Marmousi model using FWI with
frequency continuation.
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We now analyse the quality of the FWI image of the subsurface more carefully. To
highlight the differences between the ground truth and the corresponding reconstruction,
we look at the differences in their wavespeed values at each grid point location. These
differences in wavespeed are called the deviation from the true subsurface, or the
absolute error, which we will define as

Absolute Error = Reconstructed V alue − True V alue. (2.6.1)
To show the improvement in the FWI image from the starting image, we also look at
the absolute error in the starting guess. The absolute error is shown in Figure 2.6.7.
Figure (a) shows this error for the initial guess (i.e., wavespeeds in Figure 2.6.5 minus
wavespeeds in Figure 2.6.4). Figure (b) shows the error for the FWI reconstructed
image (i.e., wavespeeds in Figure 2.6.6 minus wavespeeds in Figure 2.6.4).
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(a) Deviation in initial wavespeed from the ground truth
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(b) Deviation in the FWI reconstruction from the ground truth

Figure 2.6.7: The deviation of the starting and final wavespeed from the ground truth.

Clearly, the initial guess contains none of the structures present in the ground truth.
FWI recovers the layered structure well, particularly in shallow regions, where the
deviation is close to zero (seen in Figure 2.6.7 (b) as white). At a depth of 2km and
lower however, the errors are intensified. The deepest parts of the model have the
sparsest data coverage due to the reflection setup, and so poor recovery is expected
(noted in [132]).

The relative percentage error is the absolute error as a percentage of the true values.
We plot the absolute value of this in Figure 2.6.8. Specifically, we are plotting

Relative Error =
∣∣∣∣∣Reconstructed V alue − True V alue

True V alue

∣∣∣∣∣× 100. (2.6.2)
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We also plot the relative error for the starting guess for comparison.
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(a) Absolute value of the relative percentage error in the initial guess
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(b) Absolute value of the relative percentage error in the FWI reconstruction

Figure 2.6.8: The relative error in the starting and final wavespeeds.

Initially, in Figure 2.6.8 (a), the relative errors were as high as 44%. The median
relative error is 8.27%. After FWI, the percentage errors were significantly reduced at
all depths, as shown in Figure 2.6.8 (b). The median error has been reduced to 1.69%.
There are still some regions with larger errors, particularly at deeper depths, with the
maximum relative error (25.49%) occurring at a depth of 2.15 km on the left of the
domain, which corresponds to the edge of a layer of high wavespeed. Other areas with
large errors (indicated by deep red) in the reconstruction are regions in the bottom
right. In general, the largest errors are located at the edges of the model and at depth.
This fact is also noted in [124]. We also observe errors near the source and sensor
locations that are larger than errors in the surrounding areas. Artefacts resulting from
the acquisition geometry are termed an ‘acquisition footprint’ [50]. These artefacts
can be reduced or removed by a denser acquisition layout, increased regularisation or
postprocessing techniques [82].

Other measures of error can be used to summarise the overall error. One example is
squared model error. Initial squared model error is defined by ||mtrue −m0||22, which
is 30.93 here, and final squared model error, defined by ||mtrue −mFWI ||22, which is
1.74 here (where we have rounded values to two decimel places). Other measures of the
image quality exist in geophysics, for example the structural similarity (SSIM), which
is a measure of the similarity between images (for example see [57]).

The evolution of the objective function for each frequency group is shown in Figure
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2.6.9, and the evolution of the norm of the gradient of the objective function is shown
in Figure 2.6.10. We have scaled these values by their initial value so that the results
for each frequency group can be compared. We see similar behaviour to Experiment 1,
where the decrease in the objective function stalls early, but the decrease in the gradient
continues.
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Figure 2.6.9: Evolution of the FWI objective function on a log scale, shown for each
frequency group (low to high). The objective function φ is scaled by its initial value φ0.
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Figure 2.6.10: Evolution of the norm of the gradient of the FWI objective function on
a log scale, shown for each frequency group (low to high). The norm of the gradient
||∇φ||2 is scaled by its initial value ||∇φ0||2.

Figures 2.6.11 and 2.6.12 show the absolute value of the wavefield |u|, produced
by all 55 sources, computed by solving the Helmholtz equation. Figure 2.6.11 is the
Helmholtz solution at the lowest frequency used in the FWI frequency continuation
algorithm, and Figure 2.6.12, shows the Helmholtz solution at the highest frequency
used. In each plot, subplot (a) shows the wavefield due to the starting guess model, and
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subplot (b) shows the wavefield for the true model. These plots demonstrate how the
wave interacts with the different layers of the Marmousi model, compared to a smooth
model. The point sources are faintly visible along 0.25 km depth. We note that these
figures involve a superposition of wavefields from all sources for visualisation purposes,
but during FWI the wavefield from each source is processed individually.
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(a) Wavefield for starting model (Figure 2.6.5)
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(b) Wavefield for ground truth (Figure 2.6.4)

Figure 2.6.11: Wavefield for lowest frequency used in the FWI frequency continuation.
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(a) Wavefield for starting model (Figure 2.6.5)
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(b) Wavefield for ground truth (Figure 2.6.4)

Figure 2.6.12: Wavefield for highest frequency used in the FWI frequency continuation.
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Chapter 3

Parameter Optimisation

Chapter Summary: This chapter focuses on parameter optimisation in seismic
imaging, starting with the sensor placement optimisation problem and then incorporating
the optimisation of a FWI regularisation parameter. We review the motivation (§3.1.1)
and current approaches (§3.1.2) to the sensor placement problem, before introducing
the novel approach of this PhD thesis to sensor optimisation (§3.2). We formulate
the sensor placement optimisation problem in the framework of bilevel learning (§3.3),
derive a gradient-based optimisation method for the solution of the bilevel problem
(§3.4.2), derive the cost of this solution method in terms of the number of PDE solves
(Theorem 3.4.10) and investigate the smoothness of the FWI solution with respect to
sensor position (§3.4.3). The same analysis is completed for the optimisation of the
FWI Tikhonov regularisation parameter (§3.5). We also provide some simple examples
of sensor placement and regularisation parameter optimisation (§3.6). In this chapter,
§3.3 onwards is novel work.

3.1 Introduction to Experimental Design

3.1.1 Motivation for Seismic Survey Design
Seismic surveys, as discussed in Sections 1.3 and 1.4, are a method of gathering
information about the geological properties of the Earth’s subsurface. The information
acquired is used to produce maps of the underground, allowing the identification of
areas of interest, for example areas where gas or oil deposits may be found. Seismic
survey design involves prior planning of the acquisition process such that the objectives
of the survey will be met. Survey design is a crucial step, as it dictates the quality of the
information collected during acquisition, and ultimately the quality of the subsurface
images produced. If the design is poor and the data collected is inadequate, or data
that would have been vital in reconstructing geological structures is missing, no amount
of subsequent data processing can make up for this [123]. It is therefore essential that
acquisition procedures have been designed to maximise the desired information.

A simple, and occasionally used, approach to the problem of insufficient and in-
adequate data is to collect as much data as possible [123]. This approach potentially
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results in a large amount of redundant data. Cost is a major consideration in seismic
surveys and so it is critical to ensure that industry achieves the best return on their
investment into the acquisition. This suggests that the overall goal in seismic survey
design is to plan cost-effective procedures for acquiring optimal data (i.e., data that
contains the most useful information in terms of resolving the specific subsurface fea-
tures or parameters of interest). Good quality survey design is therefore important in
justifying the cost of the seismic experiment in terms of its benefit (i.e., the accuracy
and usefulness of the recovered geological information).

According to [73], a significant portion of the costs involved in seismic surveys
is associated with the time and manpower required to deploy and retrieve ‘seismic
hardware’, which includes seismic sensor devices (placed on the surface or in wells),
as well as the associated cabling. Therefore, the issue of sensor placement is an
important aspect of seismic survey design. Proper sensor placement design should offer
an opportunity to reduce the cost of surveys without compromising on the quality
of the data acquired. Ideally, during the design of a survey, reliable placement of
sensors should be determined using optimal sensor placement techniques. Optimisation
of sensor locations is therefore an important and worthwhile problem of interest to
the geophysical community, not just in prospecting but also in fault detection and
characterisation. Furthermore, as sensor arrays are used in numerous applications,
sensor placement is a worthwhile issue in many experimental design problems.

3.1.2 Approaches to Optimisation of Sensor Placement
In designing seismic surveys, the placement of sensors can be chosen by relying on
the experience of the operator [113]. However, in the case of complex subsurfaces,
more sophisticated strategies have been developed to choose optimal sensor locations.
Optimisation procedures for sensor placement have played a significant role in enhancing
the quality of data collected during acquisition, while at the same time conserving
resources. The details of the methods vary, however, in general, these optimisation
algorithms are all driven by the goal of maximising the data information used to char-
acterise the subsurface. This section provides a review of some common mathematical
approaches to sensor placement, which include methods using the Fisher Information
matrix as a tool for sensor optimisation, sequential algorithms to maximise observability,
global optimisation methods, and Bayesian experimental design. Since optimal sensor
placement is a broad area with many applications, this overview of optimal sensor
placement techniques is general and not specific to seismic imaging.

We begin by noting that the mathematical and statistical foundations of optimal
experimental design was pioneered by R.A. Fisher in the early 1900’s, and this theory has
been routinely applied in physical, biological, and social experimental design. The Fisher
Information Matrix (FIM) quantifies the amount of information that an observation
carries about an unknown parameter [28]. Various metrics based on the FIM may be
maximised or minimised to achieve the objectives of a survey, for example the condition
number, trace and determinant of the FIM. A popular approach to optimal sensor
placement involves the maximisation of the determinant of the FIM. This technique
has been widely studied and implemented for optimising sensor locations, for example
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in [152] and [131]. This maximisation method is adapted by Kammer [101] in the
context of Structural Health Monitoring (SHM), with their iterative approach being
termed Effective Independence (EI). The EI method requires the prior selection of
a set of target features to be identified, and a large set of possible sensor locations.
The method ranks the candidate sensor locations in this larger set, according to their
spatial independence. At each iteration of the algorithm, the lowest ranking sensor is
removed, and this process is continued until the required number of sensors are left.
Other methods of ranking the importance of candidate sensor locations exist, including
the Modal Kinetic Energy (MKE) method which is common in the area of SHM [115].

This idea of sequentially maximising some measure of the observability has been
used in seismic imaging. Curtis et al. [53] defines a measure of receiver quality, which
depends on the importance of the data that a specified receiver is expected to record.
This method assumes that the number of possible sensor placements is finite, and that
the model-data relationship is approximately linear, i.e., d = Gm for a sensitivity
matrix G. The receiver quality factor is related to the linear independence of the matrix
G. At each iteration of the method, the number of sensors is reduced, removing the
most redundant sensor at each step. Therefore, the method will only keep sensors
that provide information that is as independent as possible from all other sensors.
Stummer et al. [172] and Coles et al. [45] use sequential algorithms that work in the
opposite direction, beginning from a minimal design and iteratively adding sensors
that provide the most informative data at each step. A drawback of these type of
methods is that non-linearity is difficult to incorporate [92], (an issue since FWI is
strongly non-linear) but have the advantage that they are computationally non-intensive
compared to exhaustive search techniques.

Another possible approach to the optimal sensor placement problem includes global
optimisation methods. Global optimisation methods used in sensor placement problems
include, for example, simulated annealing (e.g., for eathquake problems [88], and ocean
tomography problems [16]) and genetic algorithms (e.g., for industrial system diagnosis
[169] and for structural health monitoring [95]). More details on global optimisation
methods can be found in [119]. Global search methods for finding optimal placements
can be too slow to be practical for larger scale problems [45]. This suggests the possible
use of local optimisation methods, which trade global optimality for speed.

Some methods of survey design and optimal sensor placement assume prior knowl-
edge, for example in Bayesian experimental design. An application of Bayesian ex-
perimental design to seismic travel-time tomography is found in [103]. The concept
of exploiting available information during survey design is important in seismic appli-
cations. New seismic data acquisition is still required in areas with previous seismic
coverage, due to the need for higher accuracy in oil exploration. Therefore, a lot of
prior knowledge about the subsurface may already be available. In order to make new
seismic data as valuable as possible and to achieve the best possible return from the
seismic exploration process, the prior information about the subsurface should be taken
into account in designing the survey and choosing sensor locations. In an area where no
exploration has taken place before, this will not be possible. However, in more mature
areas, all available subsurface information can be exploited to improve the seismic
survey design. It is also possible to use a non-Bayesian approach to designing acquisition
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based on prior knowledge of the subsurface, for example the method proposed in [117].

3.2 Thesis Idea for Sensor Placement Optimisation
In this thesis, we investigate the incorporation of prior subsurface information to inform
the sensor placement optimisation. The prior information is in the form of training sets
of ground truth images/models with corresponding data. We define a sensor placement
optimisation objective function that measures the error/misfit between the training
subsurface images and the reconstructions of the subsurface produced by FWI, for
a specific layout of sensors. We propose a gradient-based optimisation method to
iteratively reduce this error, i.e., at each iteration of the optimisation, we require the
gradient of the objective function with respect to sensor position, and use this gradient
information to move the sensors in such a way that the objective function is reduced. We
then compute the reconstruction produced by FWI at this new set of sensor positions.
This continues until the error has decreased sufficiently, with the final goal being the
enhancement of the FWI reconstruction/imaging results due to the optimal placement
of sensors. Since the optimisation method aims to find the sensor positions that will
result in the FWI output models reproducing given models as well as possible, this
is a learning problem, where the best sensor positions are learned from the training
models. Later in this chapter we also incorporate the optimisation of a regularisation
parameter into this learning problem. We note that since we use a local optimisation
method, there is no guarantee that we will find the global minimum, but we can at
least find a local minimum and hence an improved set of sensor positions and improved
regularisation parameter.

The idea behind our seismic sensor optimisation algorithm is novel since it is
combines the approach of learning optimal sensor positions with the standard approach
to FWI. Incorporating FWI into the sensor placement optimisation approach means
that we will be dealing with the full non-linear ill-posed seismic imaging problem, which
is solved with a local-optimisation method. The FWI reconstruction is used in the
measure of error at each step of the local sensor optimisation algorithm. We have seen
in the previous section (§3.1.2) that approaches to optimal design often involve defining
some measure of how good or bad a design setup is, but none of these approaches use
the FWI reconstruction itself in this measure. In addition, many of the other approaches
discussed in the previous subsection involve assumptions, such as the linearity of the
forward problem, and restrictions, such as a finite set of possible sensor positions. Our
method does not require these assumptions or restrictions, as FWI is non-linear and we
are searching for optimal sensor locations from an infinite number of possible sensor
positions.

3.3 Problem Formulation
Our sensor placement optimisation problem assumes a fixed number of sensors, Nr,
and aims to find the optimal locations for these sensors. We formulate the sensor
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optimisation problem under the assumption that we have access to a prior model
m′, or several prior models, each with corresponding data d(m′). This set of prior
models will be treated as a set of clean training images/training models, meaning
we take them to be ground truth. We define the quantity to be minimised during
optimisation as the difference between each training model m′ and the FWI recon-
struction of that model, mFWI , defined in the squared two norm, summed over all
training models and scaled by the number of training models. The objective function
is therefore a measure of the average error in the FWI solution across all training models.

Notation 3.3.1. Labelling of Sensors: Before we state the sensor placement ob-
jective function, we introduce some new notation. In Chapter 2 we usually referred to
sensors in an abstract way with the symbol P, which denotes the set of sensors. In this
chapter, we require the optimisation of sensor coordinates/positions, and therefore we
need to explicitly identify these coordinates. We define a vector p = [p1 p2 . . . pdNr ]T
which is a concatenated position vector containing all the coordinates of the sensors,
where Nr is the number of sensors, d is the spatial dimension of the problem, so that
the product dNr is the number of sensor coordinates. For example, if we are working
with a problem in two dimensions, then dNr = 2Nr. Clearly the set of sensor positions
P depends directly on the sensor coordinates p (i.e., these are just different ways of
expressing the same information). For clarity in this chapter, we will be writing p
instead of P. Therefore, the notation used is slightly different to that in Chapter 2 but
the meaning is the same.

Definition 3.3.2. Sensor Placement Objective Function: Let M′ be a set of
Nm′ training models, and mFWI(p,m′) be the solution to the FWI problem with sensor
positions p for each training model m′ ∈M′. The sensor placement objective function
is

ψ(p) := 1
2Nm′

∑
m′∈M′

||m′ −mFWI(p,m′)||22, (3.3.1)

where for each training model m′ ∈M′, the corresponding FWI solution mFWI(p,m′)
is defined by

mFWI(p,m′) = argmin
m

φ(m,p,m′). (3.3.2)

We define the FWI objective function φ in (3.3.2) as,

φ(m,p,m′) = 1
2
∑
s∈S

∑
ω∈W
‖ε(m,m′,p, ω, s)‖2

2 + 1
2µ‖m‖

2
2 (3.3.3)

for each m′ ∈ M′, where ε is defined in (3.3.5) below. In practice, φ can include
any other regularisation terms, but we do not consider this scenario until later in this
chapter (Section 3.5).
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We note some points about the notation used in Definition 3.3.2 for clarity. In
(3.3.1), for simplicity, we do not explicitly indicate the dependence of the objective
function ψ on the set of training models M′, although the sum in (3.3.1) is over all
training models m′ ∈ M′. In addition, the argument of ψ is written simply as the
sensor positions p, but in reality it depends on p through the FWI solutions (3.3.2).
The FWI objective function φ technically depends on the training model through the
data d (defined below in (3.3.4)), but we write the dependence on m′ directly for clarity.
Thus we are using slightly different notation in Chapter 3 than in Chapter 2 in terms
of the dependencies of φ and mFWI .

We now make an important point about the observed FWI data d. In the standalone
FWI problem (i.e., that described in Chapter 2), we are given observed data that comes
from real subsurface wavefield measurements. In the sensor placement optimisation
problem, there is a set of data corresponding to each training model m′, and this data
is fully sampled (sampled at every possible sensor position). We simulate this data from
the training models ourselves, i.e., all ‘observed’ data is actually synthetic in the sensor
optimisation problem. Written in continuous variables, the synthetic data is given by
the following expression, for each training model m′, sensor positions p, source s ∈ S
and frequency ω ∈ W ,

d(m′,p, s, ω) = R(p)u(m′, s, ω) + η, (3.3.4)

where η is a noise term that is added to simulate real FWI where data collected at
sensors can be noisy. When the data is defined by (3.3.4), the residual will be a function
of the training model, so we write,

ε(m,m′,p, ω, s) = d(m′,p, ω, s)−R(p)u(m, ω, s). (3.3.5)

In Remark 3.3.3, we describe how to compute the data in practice.

Remark 3.3.3. Observed Data for the Discrete Problem: Here we write the
synthetic data in discrete variables, since this describes how it is computed in practice,

d(m′,p, s, ω) = R(p)u(m′, s, ω) + η, (3.3.6)

i.e., the forward problem (2.2.14) is solved for the training model m′, the restriction
matrix is applied to extract the values of the wavefield u(m′) at the sensor positions, and
noise can be added to the data to simulate real noisy FWI data. The residual written in
discrete variables is

ε(m,m′,p, ω, s) = d(m′,p, ω, s)−R(p)u(m, ω, s). (3.3.7)

In implementation, as we wish to avoid an inverse crime, the wavefields for the
‘observed’ data (i.e., u(m′)) and the modelled data (i.e., u(m)) are computed on
different grids and so the discrete restriction operators are different for the ‘observed’
and modelled data (i.e., the R(p) in (3.3.6) and the R(p) in (3.3.7) are on different
grids).
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Note that since (3.3.6) is synthetic data that we compute ourselves, we can also
choose to consider the simpler case where η = 0. In this case, the data is just the
exact output from a forward solve at the sensor positions. We remark here that all later
experiments in this thesis involve setting η to 0.

We now make the full problem statement for our sensor placement optimisation problem.

Definition 3.3.4. Sensor Placement Optimisation Problem:

Find pmin = argmin
p

ψ(p) (3.3.8)

subject to mFWI(p,m′) = argmin
m

φ(m,p,m′) for each m′ ∈M′ (3.3.9)

where ψ is defined by (3.3.1) and φ is defined by (3.3.3).

We can see from Definition 3.3.4 and Equation (3.3.1), that ψ depends on the FWI
solution mFWI , meaning that there is an optimisation problem embedded in another
optimisation problem. This embedding gives the problem the structure of a bilevel
optimisation problem. A bilevel optimisation problem differs from a conventional opti-
misation problems in that one of its constraints also involves an optimisation problem.
The main optimisation task of the bilevel problem is called the upper-level optimisation
problem and the optimisation problem in the set of constraints is called the lower-level
optimisation. In our bilevel problem, the upper-level is the sensor placement optimi-
sation problem (learning optimal sensor placements from the training set) and the
lower-level is FWI (producing a reconstruction of the subsurface).

Appendix I provides a general review on bilevel optimisation.

3.4 Analysis of Bilevel Optimisation Problem
We choose to solve the sensor optimisation bilevel problem using single-level reduction
and a gradient-based optimisation method. This solution approach is detailed for general
bilevel optimisation problems in Appendix I. We make various assumptions that will
allow us to solve our bilevel problem in this way. These assumptions are required for
the analysis in Sections 3.4.1 and 3.4.2, and justified in Section 3.4.3. We note that
these assumptions are required for the theory, but are not checked in practice in our
later computations.

Assumption 3.4.1.

(i) The lower-level objective function φ is twice continuously differentiable with respect
to the model m.
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(ii) The lower-level gradient ∇mφ with respect to the model is continuously differen-
tiable with respect to sensor position p.

(iii) The conditions on the regularisation parameter in Theorem 2.4.18 are satisfied;
this has the following two consequences:

(a) The lower-level Hessian is positive definite and hence invertible because,
as discussed at the beginning of Section 2.4.4, the choice of regularisation
prevents a singular Hessian.

(b) By Corollary 2.4.20, a unique solution exists to the lower-level problem. This
uniqueness makes the problem formulation in Definition 3.3.4 well-defined.

This section provides details on the single-level reformulation (§3.4.1), a derivation
of the gradient of the upper-level with respect to sensor positions (§3.4.2), and analysis
and proofs of some of the above assumptions (§3.4.3).

3.4.1 Single-Level Reduction
Single-level reduction is an approach that transforms a bilevel optimisation problem
into a single-level optimisation problem. The reduction of the bilevel problem to a
single level makes the problem easier for conventional optimisation methods. Details of
this approach can be found in [61, Section 4.3] and [163, Section III A].

We transform the bilevel problem (Definition 3.3.4) into a single-level problem by
replacing the lower-level problem with its necessary optimality condition. The reduced
single-level problem can then be solved with a gradient-based optimisation method.
The single-level problem can be written as

Find pmin = argmin
p

ψ(p)

subject to ∇mφ(mFWI(p,m′),p,m′) = 0 for each m′ ∈M′,
(3.4.1)

where ψ is given in (3.3.1) and φ is given in (3.3.3). In other words, for each training
model m′, the FWI solution mFWI(p,m′) is characterised by by requiring it to be a
critical point of φ with respect to m. This is necessary but not sufficient for (3.3.9).

With the problem in the form (3.4.1), we derive formulae for the upper-level gradient
of the sensor optimisation problem in the following section.

3.4.2 Gradient of Sensor Placement (Upper-Level) Objective
Function

To apply a gradient-based optimisation method to the sensor placement problem, we
require the computation of the gradient of the upper-level objective function with
respect to sensor position p. In this section we derive a formula for this upper-level
gradient, present an algorithm for its computation, and discuss the cost of computation
in terms of the number of PDE solves required.
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Theorem 3.4.2 presents the formula and derivation of the upper-level gradient. It
is worth noting that the parametrisation can be generalised to constrain the learned
positions (for example, we could optimise one coordinate of the sensors while keeping
the other coordinates fixed) but we don’t consider the constrained case in the derivation
of Theorem 3.4.2.

Theorem 3.4.2. Upper-Level Gradient with respect to p: Under Assumption
3.4.1, the gradient of the upper-level objective function ψ can be written as

∇pψ(p) = 1
Nm′

∑
m′∈M′

[(
B(mFWI ,p)

)T
H(mFWI ,p)−1

(
m′ −mFWI

)]
(3.4.2)

where mFWI = mFWI(p,m′) and H ∈ RM×M is the Hessian (defined by (2.4.11) with
the addition of the term µI coming from regularisation), and B ∈ RM×dNr is defined by

Bkn(m,p) = ∂2φ(m,p)
∂pn∂mk

(3.4.3)

= −
∑
s∈S

∑
ω∈W
<
{(

∂u(m, s, ω)
∂mk

,
d

dpn

(
R(p)∗ε(m,m′,p, s, ω)

))}
(3.4.4)

for k = 1, ...,M and n = 1, ..., dNr.

Proof. In this proof, we assume only one training model m′, i.e., Nm′ = 1, so that we
can drop the summation over m′ in (3.3.1) and the dependencies of all variables on m′
for clarity. We also assume only one source s and one frequency ω and will drop the
dependencies on these also.
The first step is to differentiate ψ in (3.3.1) with respect to pn, for n = 1, ..., dNr, to
obtain,

∂ψ(p)
∂pn

=
〈
−∂m

FWI(p)
∂pn

, (m′ −mFWI(p))
〉
. (3.4.5)

The first term in the inner product (3.4.5) is the derivative of the reconstructed
image, mFWI , with respect to the nth sensor coordinate. (Note that we justify the
differentiability of mFWI with respect to sensor position in Section 3.4.3.) To find
an expression for the term ∂mFWI/∂pn, recall the constraint (3.4.1) which, in our
simplified notation, reads,

∇mφ(mFWI(p),p) = 0. (3.4.6)

Taking the total derivative of (3.4.6) with respect to pn, i.e.,

d

dpn

(
∇mφ(mFWI(p),p)

)
= 0,
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we obtain, via the chain rule, the following linear system,

H(mFWI(p),p) ∂m
FWI(p)
∂pn

= −∂
2φ(mFWI(p),p)

∂pn∂m
, (3.4.7)

where H is the Hessian of φ with respect to m, and the right-hand side of (3.4.7) is
the nth column of B (defined in (3.4.3)), which we will denote here as bn ∈ RM×1. By
Assumption 3.4.1 (iii), the solution of (3.4.7) is as follows,

∂mFWI(p)
∂pn

= −
(
H(mFWI(p),p)

)−1
bn (3.4.8)

(Note that we rigorously justify the formula (3.4.8) in Corollary 3.4.30.) Substituting
(3.4.8) into (3.4.5) gives the nth element of the gradient

∂ψ(p)
∂pn

=
〈(
H(mFWI(p),p)

)−1
bn, (m′ −mFWI(p))

〉
Therefore, using the symmetry of the Hessian, we have the following gradient formula,
for all sensor positions n = 1, ..., dNr,

∇pψ(p) =
(
H(mFWI(p),p)−1B(mFWI(p),p)

)T
(m′ −mFWI(p)),

= B(mFWI(p),p)TH(mFWI(p),p)−1(m′ −mFWI(p)). (3.4.9)

The extension of the result (3.4.9) for many training models is (3.4.2).
To obtain the formula (3.4.4), we differentiate the kth entry of the gradient (2.3.1)

with respect to pn. Using identity (2.2.19),

∂

∂pn

(
∂φ(m,p)
∂mk

)
= −<

{
∂

∂pn

[〈
R(p)∂u(m)

∂mk

, ε(m,p)
〉]}

+ ∂(µmk)
∂pn

= −<
{
∂

∂pn

[(
∂u(m)
∂mk

,R(p)∗ε(m,p)
)]}

= −<
{(

∂u(m)
∂mk

,
d

dpn

(
R(p)∗ε(m,p)

))}
. (3.4.10)

Note that the derivative of the convex regularisation term vanishes here because it has
no dependence on sensor position. When summed over sources and frequencies, (3.4.10)
is equal to (3.4.4).

Remark 3.4.3. Linear System appearing in the Gradient (3.4.2): Computing
(3.4.2) involves solving the following linear system, for each training model m′,

H(mFWI(p,m′),p)δ(mFWI(p,m′),m′) = m′ −mFWI(p,m′), (3.4.11)

and then inserting the solution δ into (3.4.2) to give

∇pψ(p) = 1
Nm′

∑
m′∈M′

[(
B(mFWI(p,m′),p)

)T
δ(mFWI(p,m′),m′)

]
. (3.4.12)
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In practice, the gradient is computed with Equation (3.4.12) by: (i) solving (3.4.11) for δ
for each m′, (ii) computing the matrix B for each m′, (iii) performing the multiplication
in (3.4.12) explicitly and summing over the training models.

Remark 3.4.4. Cost of Solving the Linear System (3.4.11): As discussed
in Section 2.4, computing the Hessian explicitly requires M+2 PDE solves, however
computing a general Hessian-vector product requires only 4 PDE solves, 2 of which involve
the vector and 2 which are independent of the vector (see Theorem 2.4.3). Therefore,
(3.4.11) should be solved with a method that requires only Hessian-vector products, such
as the conjugate gradient method (assuming the Hessian is positive definite). Solving
(3.4.11) using such a matrix-free algorithm involves solving (2+2Ni) PDEs, where Ni is
the number of iterations of the chosen solution method (see [129, Section 3.3] for more
detail). However, for the specific system (3.4.11), 2 of these PDEs will already have
been solved to compute mFWI , and so the computation of δ involves only 2Ni PDE
solves for each source, frequency and training model.

Remark 3.4.5. An Interpretation of the Linear System (3.4.11): Equation
(3.4.11) gives a formula for δ which involves the inverse of the Hessian evaluated at
the FWI solution. In the Bayesian approach to the FWI problem, it can be shown that,
under the Laplace approximation (see [26, Section 4.4]), the inverse of the Hessian
evaluated at the FWI solution can be interpreted as the posterior covariance matrix for
the FWI/lower-level problem. The other term in the formula for δ is the discrepancy,
or misfit, between the training model m′ and the FWI solution mFWI . This misfit can
be interpreted as the error in the FWI solution.

We now discuss the computation of the matrix B defined in (3.4.4). An initial
inspection of (3.4.4) suggests that computing B will involve M PDE solves, to com-
pute each partial derivative wavefield ∂u/∂mk (given by (2.3.3)). However, similar to
Theorem 2.3.1, we do not require the explicit computation of ∂u/∂mk in (3.4.4), only
inner-products involving ∂u/∂mk. Applying the adjoint-state method reduces the cost
of computing B to a total of dNr + 1 PDE solves for each source and each frequency - of
which dNr PDE solves are to compute the adjoint variable γn, defined in (3.4.14), and
one additional PDE solve is needed to compute the forward wavefield u. This result is
written as Theorem 3.4.6 below. Note that the matrix B in the gradient expression
(3.4.2) is evaluated at the FWI solution mFWI so the forward wavefield will already
have been computed and stored.
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Theorem 3.4.6. Adjoint-State Method for evaluating B (3.4.4): The matrix
B ∈ RM×dNr (3.4.4), appearing in the expression for the upper-level gradient (3.4.2)
may be written as

Bkn(m,p) = −<
{∑

s∈S

∑
ω∈W

ω2 (u(m, s, ω), γn(m,m′,p, s, ω))βk

}
(3.4.13)

for k = 1, ...M , where γn is defined as the solution to

γn(m,m′,p, s, ω) = S ∗
m,ω

(
d

dpn

(
R(p)∗ε(m,m′,p, s, ω)

))
(3.4.14)

for n = 1, .., dNr.

Proof. For simplicity in this proof, we assume one source and one frequency, and so the
dependencies that are written in (3.4.13) and (3.4.14) will be dropped for simplicity.

Substituting the expression (2.3.3) for ∂u/∂mk into (3.4.4), we find that

Bkn = −<
{(

ω2Sm(βku(m)), d

dpn

(
R(p)∗ε(m,m′,p)

))}

= −ω2<
{(

βku(m),S ∗
m

(
d

dpn

(
R(p)∗ε(m,m′,p)

)))}

Defining γn as in (3.4.14), the (k, n)th element of B can be written as

Bkn = −ω2<
{

(u(m), γn(m,m′,p))βk
}
.

In the case of multiple sources and frequencies involves summations as written in
(3.4.13).

Remark 3.4.7. Comparison of Lower- and Upper-Level Gradients: We can
directly compare the expressions for the FWI (lower-level) gradient (2.3.4) and its adjoint
variable (2.3.5) with the expressions just derived for B (3.4.13) and the upper-level
adjoint variable (3.4.14). Both (2.3.4) and (3.4.13) have the same form in that they
are both weighted inner-products of the forward wavefield u and an adjoint wavefield.
We can also directly compare the adjoint wavefield λ, which is the solution to the wave
equation (2.3.5), and the adjoint wavefields γn for n = 1, . . . , dNr, which are the solution
to the wave equations (3.4.14). We can see that the only difference between these wave
equations are the right-hand sides. Indeed, the right-hand side of (3.4.14) is simply the
derivative of the right-hand side of (2.3.5) with respect to the sensor coordinates.

Remark 3.4.8. Right-Hand Side of (3.4.14): The right-hand side of (3.4.14) is
interesting because it involves the derivative of the delta function. Here we discuss the
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meaning of the right-hand side of (3.4.14) in the one-dimensional case for simplicity. In
the one-dimensional case pn means the only coordinate of the nth sensor, i.e., Nr = dNr.
The same discussion also applies for higher dimensions. Recall the definition (2.2.18)
of the adjoint of the restriction operator, R(p)∗. Using (2.2.18), the right-hand side of
(3.4.14) can be written as

d

dpn

(
R(p)∗ε(m,m′,p)

)
= d

dpn

Nr∑
j=1

δpjεj(m,m′,p)
 . (3.4.15)

where we have suppressed the dependence on s and ω for simplicity. We note that, by
definition of the residual (3.3.5) and data (3.3.4), in one-dimension the jth entry of the
residual is given by

εj(m,m′,p) = u(m′; pj) + η − u(m; pj), (3.4.16)

where we are writing (R(p)u(m))j as u(m; pj). We see that the jth entry of the residual
depends on the sensor with coordinate pj only, and hence the derivative (3.4.15) vanishes
unless n = j. Using this fact and applying the product rule to (3.4.15) gives,

d

dpn

(
R(p)∗ε(m,m′,p)

)
= dδpn

dpn
εn(m,m′,p) + δpn

∂εn(m,m′,p)
∂pn

. (3.4.17)

If the noise term in (3.4.16) is assumed not to depend on sensor position, then the
derivative of the nth component of the residual term is

∂εn(m,m′,p)
∂pn

= ∂u(m′; pn)
∂pn

− ∂u(m; pn)
∂pn

.

We note that by definition of the derivative of the delta function and the fact that
δpn = δ(x− pn), for any function v,

dδpn
dpn

v = −(−δpn) dv
dpn

= dv(pn)
dpn

.

This remark explains the meaning of the right-hand side of (3.4.14) in the continuous
case; in Remark 3.4.12 we give details of its discrete analogue.
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Algorithm 3.4.9. Algorithm for Computing the Upper-Level Gradient: The
computation of the upper-level gradient ∇pψ involves the following steps. For a given
set of set of sensor positions with sensor coordinates p, a set of training models M′,
and corresponding set of FWI solutions mFWI = mFWI(p,M′):

• For each m′ ∈M′:

– For each ω ∈ W, s ∈ S:
∗ Compute the FWI data d(m′,p, s, ω) by (3.3.4)
∗ Compute u(mFWI , ω, s) via the forward problem (2.2.5)
∗ Compute residual ε(mFWI ,m′,p, ω, s) via (3.3.5)
∗ For each optimisation variable n = 1, .., dNr:
· Compute each γn(mFWI ,m′,p, s, ω) via (3.4.14)
· Compute the nth column of B(mFWI ,p) for each source and fre-

quency via (3.4.13) for all k = 1, ...,M
– Assemble B by summing over s ∈ S and ω ∈ W
– Solve (3.4.11) for δ(mFWI ,m′)

• Compute the gradient ∇pψ ∈ RdNr by (3.4.12)

Theorem 3.4.10. Cost of Bilevel Gradient Descent: The total cost of solving
the bilevel sensor optimisation problem with gradient descent in terms of the number of
PDE solves is

Number of PDE Solves = Nm′NuNsNω (2Nl + 2Ni + dNr), (3.4.18)

where we use the following notation

- Nu = number of upper-level iterations

- Nl = number of lower-level iterations (FWI will take a different number of
iterations on each upper-level iteration, but for an estimate, we assume the number
of FWI iterations is always the same).

- Ni = number of iterations of the matrix-free algorithm used to solve (3.4.11)
(again we make an approximation that this number of iterations remains constant
throughout).

As usual, Ns is the number of sources, Nω is the number of frequencies, Nm′ is the
number of training models and dNr is the number of optimisation variables (sensor
coordinates). Note that when using line search with gradient descent, there is an
additional factor of the number of line search iterations.
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Proof. The cost of solving the bilevel problem with gradient descent may be broken
down into the following parts:

• Computing mFWI involves performing FWI, which takes 2NlNsNω PDE solves
(since each iteration of FWI using a gradient-based optimisation method requires
a forward and adjoint solve for each source and each frequency, as discussed in
Section 2.3).

• We have previously stated in Remark 3.4.4, that we require 2 + 2Ni PDE solves
to solve (3.4.11), for each source and each frequency, i.e., (2 + 2Ni)NsNω in total.
Note that 2NsNω of these PDE solves are already performed on the last iteration
of FWI. Therefore, solving the system (3.4.11) takes 2NiNsNω PDE solves.

• It takes dNr PDE solves to compute the adjoint variables in (3.4.14). Due to
the sum over sources and frequencies in (3.4.13), there is a total of dNrNsNω

required to compute B. Note that the forward variable u evaluated at mFWI in
(3.4.13) will already have been computed for each each source and each frequency
on the last iteration of FWI.

Each of the computations in these points need to be repeated for all Nm′ training
models, and on each of the Nu upper iterations. Therefore the total cost of solving the
bilevel sensor optimisation problem with gradient descent is given by (3.4.18).

We note that the complexity analysis in Theorem 3.4.10 has been refined and a new
result will be given in the paper [64].

Remark 3.4.11. Discretisation of the Upper-Level Gradient: With the forward
problem (2.2.14), the discretised version of the upper-level gradient (3.4.12) is

∇pψ(p) = 1
Nm′

∑
m′∈M′

B(mFWI(p,m′),p)Tδ(mFWI(p,m′),m′). (3.4.19)

where δ is the solution to

H(mFWI(p,m′),p)δ(mFWI(p,m′),m′) = m′ −mFWI(p,m′), (3.4.20)

where discretised Hessian H is given by (2.4.16) plus the µI term coming from the
regularisation. The discretised version of (3.4.13) and (3.4.14) are

Bkn(m,p) = <
{∑
s∈S

∑
ω∈W

[(
∂A(m, ω)
∂mk

u(m, s, ω)
)∗
γn(m,m′,p, s, ω)

]}
(3.4.21)

for k = 1, ...M , where γn ∈ RM×1 is defined as the solution to

A(m, ω)∗γn(m,m′,p, s, ω) = d

dpn

(
R(p)∗ε(m,m′,p, s, ω)

)
. (3.4.22)

for n = 1, .., dNr.
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Remark 3.4.12. Discretisation of the Right-Hand Side of the Adjoint Equa-
tion (3.4.14): We discuss the discretised version of the right-hand side of the adjoint
equation (3.4.14), i.e., the right-hand side of (3.4.22). This remark is the discrete
version of Remark 3.4.7. By the product rule, the right-hand side of (3.4.22) is

d

dpn

(
R(p)∗ε(m,m′,p)

)
=
(
dR(p)
dpn

)∗
ε(m,m′,p) +R(p)∗∂ε(m,m′,p)

∂pn
, (3.4.23)

where we have suppressed the dependence on s and ω as they are not relevant to this
discussion. We see that (3.4.23) corresponds to the continuous version (3.4.17). As
described in Remark 2.2.6, the discretised restriction operator, is an Nr ×N interpolant
matrix, where the jth row depends on the jth sensor. Therefore, dR(p)/dpn is just a
Nr × N matrix with non-zero entries in only one row (the row corresponding to the
sensor with coordinate pn). By the definition of the residual (3.3.7), the derivative of
the residual with respect to pn is given by

∂ε(m,m′p)
∂pn

= ∂d(m′,p)
∂pn

− dR(p)
dpn

u(m). (3.4.24)

If we assume the noise term in (3.3.6) is independent of the sensor position, then the
derivative of the synthetic data with respect to sensor position is simply

∂d(m′,p)
∂pn

= dR(p)
dpn

u(m′). (3.4.25)

As described in Remark 3.3.3, since we avoid inverse crime in practice, u(m) and
u(m′) are computed on different grids, and so the restriction operator in the data term
(3.4.25) is a different size than the other restriction operators in (3.4.23) and (3.4.24).

3.4.3 Smoothness of mFWI with respect to Sensor Position
In this section, we show that the upper-level objective function ψ is smooth with respect
to sensor positions p. This is an important result as it shows that a gradient-based
local optimisation method can be applied successfully to find a solution to the sensor
placement problem. By (3.3.1), we see that in order to show that ψ is smooth with
respect to p, we can just show that mFWI is smooth with respect to p. Therefore,
showing that mFWI is smooth with respect to p is the central focus of this section.

The main result in this section is that mFWI is a C1 function of p. This is proved in
Corollary 3.4.30 and uses the Implicit Function Theorem (IFT) applied to the system

∇mφ(m,p) = 0, (3.4.26)

provided certain assumptions are met. We suppress the dependence of φ (and all other
variables) on m′ in the notation for this section since we consider only one training
model here. The general form of the IFT, along with its assumptions, are written in
Appendix J. Relating Theorem J-1 to our sensor optimisation problem, we see that
in our case f = ∇mφ , x = p, y = m, J = H (where H is the Hessian of φ) and
the function g(x) = mFWI(p) is the solution to (3.4.26) for a given p. Therefore the
assumptions we require to apply the IFT to our problem are:
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• The lower-level gradient ∇mφ(m,p) must be continuously differentiable with
respect to sensor coordinates p and model m (which is given by Assumptions
3.4.1 (i) and (ii)).

• The Hessian with respect tom evaluated at the FWI solution, i.e., H(mFWI(p),p),
must be invertible (which is Assumption 3.4.1 (iii)).

By Theorem 2.4.18, we can choose the regularisation parameter µ in (3.3.3) large enough
to ensure the Hessian is positive definite for all models and sensor positions. The second
assumption is therefore satisfied. So it only remains to show the first assumption,
namely that ∇mφ is a smooth enough function of p and m.

Before we begin these proofs, we state some useful information on the analytic
setting. Most of this information can be found in [33], and when the material isn’t
there, we give specific references.

Definition 3.4.13. Sobolev Spaces:

Hn(Ω) =
{
u : Dju ∈ L2(Ω) for j = 0, . . . , n

}
.

The definition of Hn(Ω) can also be extended to allow n ∈ R+ (i.e., n not necessarily
an integer).

Proposition 3.4.14. If u ∈ L∞, and v ∈ L2 then uv ∈ L2.

In this section, we consider two choices of finite element basis functions - piecewise con-
stant and continuous piecewise linear functions. We give details of these in Proposition
3.4.15.

Proposition 3.4.15. Sobolev Spaces of Finite Element Functions:

• The space of piecewise constant finite element functions is a subspace of Hr(Ω)
for r < 1

2 [56, Theorem 4.2].

• The space for continuous piecewise linear functions is a subspace Hr(Ω) for r < 3
2

[56, Theorem 4.1].

Propositions 3.4.16 and 3.4.17 provide some details on Sobolev functions that we use in
the proofs of later results.
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Proposition 3.4.16. Sobolev Embedding Theorem (Relationship of Sobolev
Spaces to Continuous Functions): If u ∈ H d

2 +ε for any ε > 0, where d is the
spatial dimension, then u is continuous [125, Theorem 3.26].

Proposition 3.4.17. Multiplication of Sobolev Functions: If n1 ≥ n2 and
n1 >

d
2 , with v1 ∈ Hn1(Ω) and v2 ∈ Hn2(Ω), then v1v2 ∈ Hn2(Ω) [21].

We present the following results about the Helmholtz equation (with an L2 source) and
Laplace’s equation, as these results are combined later to prove properties about the
solution to the Helmholtz equation with a point source. In particular, we are working
towards showing that the solution of the Helmholtz equation with a point source is
square integrable everywhere in Ω, but is much smoother in a subdomain of Ω that
does not include the point source.

Proposition 3.4.18. Well-posedness of the Helmholtz Equation with
Impedance Boundary Conditions: For a bounded Lipschitz domain Ω, if
−(∆ + ω2m)u = f ∈ L2(Ω) with (∂n − iω)u = g ∈ L2(∂Ω) and m ∈ L∞, then
the Helmholtz problem has a unique solution u ∈ H1(Ω) [79, Corollary 2.5].

Proposition 3.4.19. Smoothness of Solutions of Laplace’s Equation: Sup-
pose Ω is either a convex polygon or smooth.

(i) If ∆v = f ∈ L2(Ω) with (∂n − iω)v = g ∈ C1(∂Ω), then v ∈ H2(Ω).

(ii) Interior Regularity: Assume that Ω′ ⊂ Ω with dist(∂Ω′, ∂Ω) > 0 and that Ω′ is
smooth. If ∆v = f in Ω, and f ∈ Hr(Ω), then v ∈ Hr+2(Ω′).
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Lemma 3.4.20. Properties of the Fundamental Solution of Laplace’s Equa-
tion: Let Ω be a bounded domain. For a source s ∈ Ω, we define

Φs(x) =


− 1

2π log |x− s|, d = 2,
1

4π
1

|x− s|
, d = 3.

(3.4.27)

Then

∆xΦs = −δs (3.4.28)
Φs ∈ C∞(Ω′) if s /∈ Ω′ ⊂ Ω (3.4.29)
Φs ∈ L2(Ω) (3.4.30)

We restate the definition of the specific forward problem that we are interested in here
(first introduced in (2.2.13)),

u(m, ω, s) = Sm,ωδs ⇐⇒
{
−(∆ + ω2m)u = δs on Ω
(∂/∂n− iω)u = 0 on ∂Ω , (3.4.31)

where m = ∑
kmkβk. This is the Helmholtz problem with impedance boundary con-

ditions and a point source at s. We present the following results about u defined by
(3.4.31).

Lemma 3.4.21. If u is the solution to (3.4.31), then there exists v ∈ H2(Ω) such that

u = Φs + v,

where Φs is defined by (3.4.27).

Proof. Let v = u− Φs. By the definition of u and (3.4.28), then(
∆ + ω2m

)
v = δs −

(
δs + ω2mΦs

)
= −ω2mΦs, (3.4.32)

(∂n − iω) v = − (∂n − iω) Φs. (3.4.33)

Since m ∈ L∞ and Φs ∈ L2 by (3.4.30), we have that mΦs ∈ L2 by Proposition 3.4.14.
By (3.4.29), (∂n − iω) Φs ∈ C∞(∂Ω) ⊂ L2(∂Ω). Therefore, v ∈ H1(Ω) by Proposition
3.4.18. Rearranging (3.4.32) gives

∆v = −ω2mv − ω2mΦs,
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where the first term on the right-hand side is in L2(Ω) by Proposition 3.4.14 and the
second term is in L2(Ω) as shown above. Therefore v ∈ H2(Ω) by Proposition 3.4.19(i).

Lemma (3.4.21) shows that the wavefield generated by a point source, defined by
(3.4.31), can be split into two parts - the fundamental solution of the Laplace equation,
defined in Lemma 3.4.20, and a smooth function in H2. By Lemma 3.4.21, result
(3.4.30) and the fact that H2(Ω) ⊂ L2(Ω), we have the following corollary.

Corollary 3.4.22.
u ∈ L2(Ω)

In the following lemma we examine the smoothness of u in a domain that does not
contain the source s. We show that u enjoys higher regularity than shown in Corollary
3.4.22, provided we restrict to a subdomain which does not include the source s.

Lemma 3.4.23. Suppose the finite element function βk ∈ Hr(Ω). For any smooth
Ω′ ⊂ Ω with dist(∂Ω′, ∂Ω) > 0 such that if the source s ∈ Ω\Ω′, we have u ∈ Hr+2(Ω′).

Proof. If s /∈ Ω′, then there exists a smooth Ω′′ such that Ω′ ⊂ Ω′′ with dist(∂Ω′, ∂Ω′′) > 0
and s /∈ Ω′′. Since s /∈ Ω′′, then ∆u = −ω2mu in Ω′′. Since u ∈ H2(Ω′′) (by Lemma
3.4.21 and result (3.4.29)), and m ∈ Hr(Ω′′) (since βk ∈ Hr(Ω′′)), then mu ∈ Hr(Ω′′)
by Proposition 3.4.17. Then u ∈ Hr+2(Ω′) by Proposition 3.4.19(ii).

To verify that ∇mφ is a smooth enough function of p and m, as required by the IFT, we
first need to look at the smoothness properties of the wavefield u. We recall that we are
considering the two possible choices for the finite elements functions βk in Proposition
3.4.24. In Corollary 3.4.24, we prove that, in a domain not including the source, when
in two dimensions, the wavefield is C1 with respect to sensor position for both choices
of βk, and when in three-dimensions, the wavefield is C1 with respect to sensor position
for continuous piecewise linear βk only.
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Corollary 3.4.24.

• If d = 2 and βk are either piecewise constant or continuous piecewise linear, and
if s /∈ Ω′, then ∂u

∂pj
∈ C(Ω′) for j = 1, . . . , dNr.

• If d = 3 and βk are continuous piecewise linear, and if s /∈ Ω′, then ∂u

∂pj
∈ C(Ω′).

Proof. We assume that βk ∈ Hr(Ω). Then by Lemma 3.4.23, ∂u/∂pj ∈ Hr+1(Ω′) for
j = 1, . . . , dNr if s /∈ Ω′. By Proposition 3.4.16, ∂u/∂pj ∈ C(Ω′) if r+ 1 > d

2 . Therefore:

• If d = 2, then r + 1 > d
2 holds for all r > 0. Hence, by Proposition 3.4.15 we

get smoothness for both piecewise constant and continuous piecewise linear basis
functions.

• If d = 3, we require that r > 1
2 , so by Proposition 3.4.15 we need continuous

piecewise linear basis functions.

We now analyse the differentiability of the wavefield with respect to m. In the fol-

lowing lemma we use the multi-index notation ∂nm to mean ∂|n|

∂n1
m1∂

n2
m2 . . . ∂

nM
mM

, such that

|n| = n1 + n2 + . . . nM .

Lemma 3.4.25. If βk ∈ Hr(Ω) for r > 0 and s /∈ Ω′, for any n = 1, 2, . . .,

∂nmu ∈ Hr+2(Ω′).

Proof. By differentiating (3.4.31) with respect to mk, we find that ∂u/∂mk, for all
k = 1, . . . ,M , satisfies the PDE,

−
(
∆ + ω2m

) ∂u

∂mk

= ω2βku in Ω

(∂n − iω) ∂u

∂mk

= 0 on ∂Ω.
(3.4.34)

Since u ∈ L2(Ω) (by Corollary 3.4.22), and βk ∈ L∞, we have βku ∈ L2(Ω) by
Proposition 3.4.14. Applying Proposition 3.4.18 gives that ∂u/∂mk ∈ H1(Ω). As in the
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proof of Lemma 3.4.21, we rearrange the PDE (3.4.34), and use Propsition 3.4.19(i) to
get that

∂u

∂mk

∈ H2(Ω). (3.4.35)

We obtain higher regularity in a smooth subdomain of Ω excluding the source, as follows.
Rearranging the PDE in (3.4.34), we have

−∆
(
∂u

∂mk

)
= ω2

(
βku+m

∂u

∂mk

)
. (3.4.36)

Now we want to apply Proposition 3.4.19 (ii). There exists a smooth subdomain Ω′′ ⊃ Ω′
with dist(∂Ω′, ∂Ω′′) > 0 with s /∈ Ω′′. The right hand side of (3.4.36) is in Hr(Ω′′),
by the combination of the following facts: (1) Proposition 3.4.17, (2) u ∈ H2(Ω′′)
(by Lemma 3.4.21 and result (3.4.29)), (3) ∂u/∂mk ∈ H2(Ω) by (3.4.35), (4) βk and
m ∈ Hr(Ω). Therefore,

∂u

∂mk

∈ Hr+2(Ω′).

We have proved the required result for n = 1. The PDE and boundary condition (3.4.34)
for n = 2 is

−
(
∆ + ω2m

) ∂2u

∂mk∂mj

= ω2
(
βk

∂u

∂mj

+ βj
∂u

∂mk

)
in Ω

(∂n − iω) ∂2u

∂mk∂mj

= 0 on ∂Ω,
(3.4.37)

for k, j = 1, . . . ,M . Repeating the argument above gives ∂2u/∂mk∂mj ∈ Hr+2(Ω′). By
an analogous argument, the result can be extended for arbitrary n.

Corollary 3.4.26. For d = 2 or d = 3, and βk are either piecewise constant and
continuous piecewise linear basis functions, and if s /∈ Ω′, then for any multi-index n,
∂nmu ∈ C(Ω′).

Proof. We assume βk ∈ Hr(Ω) for r > 0. Then by Lemma 3.4.25, for any n,
∂nmu ∈ Hr+2(Ω′) if s /∈ Ω′. By Proposition 3.4.16, ∂nmu ∈ C(Ω′) if r + 2 > d

2 . Therefore:

• If d = 2, then r + 2 > d
2 holds for all r > 0.

• If d = 2, then r + 2 > d
2 also holds for all r > 0.

Hence, by Proposition 3.4.15 the result holds for both piecewise constant and continuous
piecewise linear basis functions.
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To analyse the smoothness of ∇mφ with respect to p, we also require the following
result.

Corollary 3.4.27.

• If d = 2 and βk are either piecewise constant or continuous piecewise linear, and
if s /∈ Ω′, then ∂2u

∂pj∂mk

∈ C(Ω′), for k = 1, . . .M and j = 1, . . . dNr.

• If d = 3 and βk are continuous piecewise linear functions, and if s /∈ Ω′, then
∂2u

∂pj∂mk

∈ C(Ω′), for k = 1, . . .M and j = 1, . . . dNr.

Proof. We assume that βk ∈ Hr(Ω). Then by Lemma 3.4.23 and Lemma 3.4.25, if s /∈ Ω′,
then ∂2u/∂pj∂mk ∈ Hr+1(Ω′) for j = 1, . . . , dNr and k = 1, . . . ,M . By Proposition
3.4.16, ∂2u/∂pj∂mk ∈ C(Ω′) if r + 1 > d

2 holds. Therefore:

• If d = 2, then r + 1 > d
2 holds for all r > 0. By Proposition 3.4.15 we can take

piecewise constant or continuous piecewise linear basis functions.

• If d = 3, then we require that r > 1
2 . By Proposition 3.4.15 we need continuous

piecewise linear basis functions.

We now combine the results about the smoothness of the wavefield to prove the smooth-
ness of the lower-level gradient, with respect to sensor position (Theorem 3.4.28) and
the model (Theorem 3.4.29). Theorems 3.4.28 and 3.4.29 justify the assumptions made
when deriving the upper-level gradient (Assumptions 3.4.1 (ii) and (i) respectively).
We note that the proofs for both of these theorems require the assumption that there is
no noise added to the synthetic observed data (3.3.4).

Theorem 3.4.28. In two dimensions, ∇mφ(m,p) is a C1 function of p for either
choice of basis functions. In three dimensions, ∇mφ(m,p) is a C1 function of p when
the basis functions are continuous piecewise linear.

Proof.
In this proof, we assume only one source and one frequency for simplicity. However all
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results will hold for the many sources and frequencies. We start by writing (2.3.1) for
one source and one frequency, for k = 1, . . . ,M as

∂φ

∂mk

(m,p) = −<
[〈
R(p) ∂u

∂mk

(m), ε(m,p)
〉]

.

We use the definition of data for the sensor optimisation problem (3.3.4), where we
assume no added noise, and the definition of the residual (3.3.5) to write

∂φ

∂mk

(m,p) = −<
[〈
R(p) ∂u

∂mk

(m),R(p)u(m′)−R(p)u(m)
〉]

= −<
[〈

∂u

∂mk

(m;p), u(m′;p)− u(m;p)
〉]

, (3.4.38)

where we write u(m;p) to mean the wavefield evaluated at the sensors p (i.e.,R(p)u(m) =
u(m;p)). Therefore, to show that ∇mφ is continuously differentiable, we must show
that ∂u

∂mk
(m;p), u(m;p) and u(m′;p) are continuously differentiable with respect to p.

By Corollary 3.4.24, as long as the sensors p are restricted to a domain that does
not include the source positions, when d = 2, u(m;p) and u(m′;p) are continuously
differentiable with respect to p. When d = 3, this is true with the additional assumption
that βk are continuous piecewise linear. By Corollary 3.4.27, again when the sensors
p are restricted to a domain that does not include the source positions, when d = 2,
∂u
∂mk

(m;p) is continuously differentiable with respect to p and when d = 3 this is true
with the additional assumption that βk are continuous piecewise linear.
Therefore ∇mφ(m,p) is continuously differentiable with respect to p in 2D, and is
continuously differentiable with respect to p in 3D when the basis functions are contin-
uously piecewise linear.

Theorem 3.4.29. ∇mφ(m,p) is a C1 function of m.

Proof. As before, we assume only one source and one frequency for simplicity in this
proof. The proof proceeds as in Theorem 3.4.28 up until (3.4.38), but now we must
show that ∂u

∂mk
(m;p), u(m;p) and u(m′;p) are continuously differentiable with respect

to m.
By Corollary 3.4.26, ∂u

∂mk
(m;p), u(m;p) and u(m′;p) are continuously differentiable

with respect to m, as long as the sensors are restricted to a domain not including
the source positions. Therefore ∇mφ is at least a C1 function of m in both 2 and 3
dimensions.

By the Implicit Function Theorem, we have the following corollary.
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Corollary 3.4.30. Smoothness of mFWI as a function of p:

• mFWI is a C1 function of p

• The partial derivatives of mFWI with respect to sensor positions are given by the
matrix products

∂mFWI(p)
∂pj

= −
[
H(mFWI(p),p)

]−1
[
∂(∇mφ)
∂pj

(mFWI(p),p)
]
,

(which rigorously justifies (3.4.8) used to prove Theorem 3.4.2).

Proof. By Theorems 3.4.28 and 3.4.29, and if the regularisation parameter is chosen large
enough, by Theorem 2.4.18, then the assumptions of the Implicit Function Theorem
(IFT) (Theorem J-1) hold for

∇mφ(m,p) = 0,

where the forward problems are given by (2.2.13). Therefore, the results of the IFT
hold, giving the results in Corollary 3.4.30.

We have shown that, as long as the regularisation parameter µ is large enough, mFWI

is a smooth function of p, and hence the upper-level objective function ψ is a smooth
function of p. This holds if using either piecewise constant or continuous piecewise
linear basis functions when in two dimensions, or continuous piecewise linear basis
functions when in three dimensions.

Remark 3.4.31. Discrete Version of Smoothness Requirements: In the
discrete version of the problem, u(m;p), i.e., the wavefield evaluated at the sensor
positions, is R(p)u(m), i.e., the discretised extraction operator, introduced in Remark
2.2.6, applied to the discretised wavefield. We made a comment in Remark 2.2.6 that
piecewise linear interpolation of the wavefield is sufficient for FWI, but not for sensor
optimisation. This is because dR(p)/dpj in general would not be continuous in this
case, and hence by the IFT, the FWI solution would not be a smooth function of
sensor positions. Higher-order interpolants are required in implementation of the sensor
optimisation problem. This is explained in more detail in Section 5.4.

3.4.4 Condition for Existence and Uniqueness of Upper-Level
Solution

In this section we investigate under what conditions the upper-level problem has a
unique solution. Similar to the lower-level problem, we consider how including a convex
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regularisation term can ensure a unique solution. Consider the regularised form of the
upper-level objective function (3.3.1),

ψ(p) = 1
2Nm′

∑
m′∈M′

||m′ −mFWI(p,m′)||22 + θ

2 ||p− p
∗||22 (3.4.39)

where θ > 0 is a regularisation parameter, and p∗ is some desirable set of sensor
coordinates that we encourage pmin to be close to. For instance, p∗ could be a set
of coordinates that are easier for the seismic survey operators to physically place the
sensors at, because they are near the surface for example.

In this analysis we assume that mFWI , and hence ψ, is twice continuously differen-
tiable with respect to p. The Hessian of (3.4.39) is, for i, j = 1, . . . , dNr,

(
∇2
pψ(p)

)
ij

= ∂2ψ(p)
∂pj∂pi

=
∑

m′∈M′

(
∂mFWI(p,m′)

∂pj

)T (
∂mFWI(p,m′)

∂pi

)

−
(
∂2mFWI(p,m′)

∂pj∂pi

)T
(m′ −mFWI(p,m′)) + θIi,j,

=
∑

m′∈M′

〈
∂mFWI(p,m′)

∂pj
,
∂mFWI(p,m′)

∂pi

〉

+
〈
−∂

2mFWI(p,m′)
∂pj∂pi

, (m′ −mFWI(p,m′))
〉

+ θIi,j.

(3.4.40)

The first term on the right-hand side is clearly positive semi-definite. We don’t know
the properties of the second term from looking at it, so it may be indefinite. The last
term is simply a positive constant times the identity matrix. Therefore, we can ensure
the Hessian is positive definite overall by making the constant θ large enough.

In the following theorem we derive a lower bound for θ that ensures positive definite-
ness in the simple case where there is one training model Nm′ = 1 (so we will drop the
dependencies on m′). We assume that there is only one sensor, and this sensor is being
optimised in one coordinate only, so that the sensor-coordinate vector is determined by
a single parameter, i.e., p = p. We also assume that p lies in a bounded interval (this is
true in practice).

Theorem 3.4.32. Consider the problem of optimising the position of one sensor in
one dimension with objective function (3.4.39). Assuming the sensor position lies in a
bounded interval, then the upper-level has a unique solution provided θ is sufficiently
large.

Proof. In the one sensor, one training model case, the Hessian of the upper-level (3.4.40)
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is just a scalar and can be written as

d2ψ(p)
dp2 =

〈
dmFWI(p)

dp
,
dmFWI(p)

dp

〉
+
〈
−d

2mFWI(p)
dp2 , (m′ −mFWI(p))

〉
+ θ.

(3.4.41)

The second term of (3.4.41) is the only part of the Hessian that may not be at least
positive semi-definite; let’s denote this second term as T2,

T2(p) =
〈
−d

2mFWI(p)
dp2 , (m′ −mFWI(p))

〉
.

The absolute value of T2 is bounded by

|T2(p)| =
∣∣∣∣∣
〈
−d

2mFWI(p)
dp2 , (m′ −mFWI(p))

〉∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣d2mFWI(p)

dp2

∣∣∣∣∣
∣∣∣∣∣ ∣∣∣∣∣∣m′ −mFWI(p)

∣∣∣∣∣∣ .
(3.4.42)

Since p is assumed to lie in a bounded interval, and mFWI is assumed to be twice
continuously differentiable with respect to p, it follows that |T2(p)| is bounded with
respect to p. Therefore, it is possible to choose a regularisation term θ that is larger
than this bound, hence ensuring the Hessian is bounded below by a constant for all
p. Then by Lemma (H-5) and Theorem (H-6), the minimiser of the sensor placement
problem exists and is unique.

3.5 Regularisation Parameter Optimisation
In this section, we consider the optimisation of a lower-level regularisation parameter in
addition to the optimisation of sensor positions described earlier. We consider smooth
models such that Tikhonov regularisation is appropriate. The lower-level solution will
now be written as a function of the Tikhonov regularisation parameter α also, i.e., we
write,

mFWI(p, α,m′) = argmin
m

φ(m,p, α,m′),

where the objective function is

φ(m,p, α,m′) =
∑
s∈S

∑
ω∈W

1
2 ||ε(m,m′,p, s, ω)||22 + 1

2α||Dm||
2
2 + 1

2µ||m||
2
2. (3.5.1)

The gradient of φ with respect to the model is, for k = 1, ..,M ,

∂φ(m,p, α,m′)
∂mk

= −<
{∑
s∈S

∑
ω∈W

[(
∂u(m, s, ω)

∂mk

)∗
R(p)∗ε(m,m′,p, s, ω)

]}

+ α
(
DTDm

)
k

+ µmk. (3.5.2)
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The solution of the lower-level problem is characterised by the necessary condition

∇mφ
(
mFWI(p, α,m′),p, α,m′

)
= 0 for each m′ ∈M′. (3.5.3)

The upper-level objective function is now also written as a function of α as follows,

ψ(p, α) = 1
2Nm′

∑
m′∈M′

||m′ −mFWI(p, α,m′)||22, (3.5.4)

for each m′ ∈M′.

3.5.1 Smoothness of of mFWI with respect to the Tikhonov
Regularisation Parameter

In this section, we show that the upper-level objective function ψ is a smooth function
of the Tikhonov regularisation parameter α by showing that mFWI is a smooth function
of α. The result proved here is used in Section 3.5.2, where we derive a formula for the
derivative of ψ with respect to α.

We prove that the FWI solution mFWI is a smooth function of α by using the
Implicit Function Theorem (IFT). The IFT is written in Appendix J, and similar to
Section 3.4.3, we verify the IFT assumptions for the lower-level necessary condition
(3.5.3) to show that the IFT conclusions hold for our problem.

The assumptions of the IFT, adapted to our problem are:

• The lower-level gradient ∇mφ(m,p, α) must be continuously differentiable with
respect to m (which corresponds to Assumption 3.4.1 (i))

• The lower-level gradient ∇mφ(m,p, α) must be continuously differentiable with
respect to α.

• The Hessian at the FWI solution, H(mFWI(p, α),p, α), must be invertible (which
corresponds to Assumption 3.4.1 (iii)).

In Lemma 3.5.1, we show these assumptions hold for the problem (3.5.3) and hence we
can apply the IFT to show that the FWI solution mFWI is continuously differentiable
with respect to α. (We note that we suppress the dependence of the notation on m′ for
this section since only one training model needs to be considered in this discussion.)
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Lemma 3.5.1. Smoothness of mFWI as a function of α:

• mFWI is continuously differentiable with respect to α

• The partial derivative of mFWI with respect to α is given by

∂mFWI(p, α)
∂α

= −
[
H(mFWI(p, α),p, α)

]−1
[
∂(∇mφ)
∂α

(mFWI(p, α),p, α)
]
,

where H ∈ RM×M is the Hessian of (3.5.1).

Proof. If the regularisation parameter µ in (3.5.1) is chosen large enough, then by
Theorem 2.4.18 the Hessian is positive definite, and hence invertible, for all models,
sensor positions and Tikhonov regularisation parameters.

By Theorem 3.4.29, ∇mφ is a smooth function of m. So it only remains to show
that ∇mφ is a smooth function of α.

For k = 1, . . . ,M , ∇mφ is given by (3.5.2), and its derivative with respect to α is

∂(∇mφ(m,p, α))
∂α

= DTDm.

This derivative exists and is independent of α, and therefore continuous in α. Therefore
∇mφ(m,p, α) is continuously differentiable with respect to α.

Then the assumptions of the Implicit Function Theorem (IFT) (Theorem J-1) hold,
giving the result in Corollary 3.5.1.

In conclusion, we have shown that, as long as the regularisation parameter µ is large
enough, mFWI is a smooth function of α, and hence the upper-level objective function
ψ is a smooth function of α. We note that this holds in both two and three dimension
if using either piecewise constant or continuous piecewise linear basis functions.

3.5.2 Gradient of Upper-level Objective Function with respect
to the Tikhonov Regularisation Parameter

By the analysis of Section 3.5.1, we have conditions under which ψ is a smooth func-
tion of α (namely that the parameter µ is chosen large enough by Theorem 2.4.18).
Therefore, under the assumption that this condition is met, we can derive a formula for
the derivative of ψ with respect to α.
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Theorem 3.5.2. Upper-Level Gradient with respect to α: By Lemma 3.5.1, the
gradient of the upper-level objective function ψ (3.5.4) with respect to the regularisation
parameter α can be written as

∂ψ(p, α)
∂α

= 1
Nm′

∑
m′∈M′

[(
DTDmFWI

)T
H(mFWI ,p, α)−1

(
m′ −mFWI

)]
(3.5.5)

where mFWI = mFWI(p, α,m′) and H ∈ RM×M is the Hessian of (3.5.1), defined by
(2.4.11) with the addition of the term µI coming from the convex regularisation and the
term αDTD coming from the Tikhonov regularisation.

Proof. In this proof, we assume only one training model m′, i.e., Nm′ = 1, so that we
can drop the summation in ψ and all the dependencies on m′. We also assume only
one source s and one frequency ω and drop the dependencies on these.
The first step is to differentiate ψ (3.5.4) with respect to α to get

∂ψ(p, α)
∂α

=
〈
−dm

FWI(p, α)
∂α

, (m′ −mFWI(p, α))
〉
. (3.5.6)

To find an expression for the first term in (3.5.6), ∂mFWI/∂α, we apply the Implicit
Function Theorem to the necessary condition (3.5.3). By Lemma 3.5.1, we get

∂mFWI(p, α)
∂α

= −
(
H(mFWI(p, α),p, α)

)−1 ∂2φ(mFWI(p, α),p, α)
∂α∂m

, (3.5.7)

where H is the Hessian of φ with respect to m (which is invertible by Assumption 3.4.1
(iii)). The right-hand side of (3.5.7) is a real M × 1 vector, which, using (3.5.2), is given
by,

∂2φ(mFWI(p, α),p, α)
∂α∂m

= DTDmFWI(p, α).

Therefore 3.5.7 can be written as
∂mFWI(p, α)

∂α
= −

(
H(mFWI(p, α),p, α)

)−1
DTDmFWI(p, α). (3.5.8)

Substituting (3.5.8) into (3.5.6) gives the following,

∂ψ(p, α)
∂α

=
〈(
H(mFWI(p, α),p, α)

)−1
DTDmFWI(p, α), (m′ −mFWI(p, α))

〉
.

Hence, using the symmetry of the Hessian, we get
∂ψ(p, α)
∂α

=
(
DTDmFWI(p, α)

)T
H(mFWI(p, α),p, α)−1

(
m′ −mFWI(p, α)

)
.

(3.5.9)

The extension of the result (3.5.9) for many training models is (3.5.5).

92



Remark 3.5.3. Additional Cost of Computing the Gradient: The gradient
(3.5.5) can be written in a similar way to that in Equation (3.4.12), i.e.,

∇αψ(p, α) = 1
Nm′

∑
m′∈M

[
mFWI(p, α,m′)TDTDδ(mFWI(p, α,m′),m′)

]
. (3.5.10)

where δ is the solution to (3.4.11). Therefore, when computing the gradient of ψ with
respect to α in addition to the gradient of ψ with respect to sensor positions (3.4.12),
there are no additional PDE solves. Hence, the Tikhonov regularisation parameter can
be optimised along with the sensor coordinates with no extra cost in terms of PDE
solves.

3.6 Parameter Optimisation Example
In this section we provide a simple example of sensor placement optimisation, and
combined sensor placement and regularisation parameter optimisation as a proof of
concept. More details of the implementation are provided in Chapter 5 and more
examples are provided in Chapter 6.

Our experiment involves only one training model and three sensors in a transmission
setup. We show that our algorithm can optimise the three sensor positions (and
regularisation parameter) to improve the quality of the FWI reconstruction of this
specific training model. The training model, shown in Figure 3.6.1, is a velocity model
with a region of higher wavespeed in the centre, with a maximum of 2100 ms−1, that
smoothly decreases in the outward direction. The domain is of size 2500 m × 2500 m,
and is discretised into a 101 × 101 grid, with a spacing of 25 m. This discretisation
results in 10201 model parameters.
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Figure 3.6.1: Training Model m′
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Three sources are placed in a line on the left of the domain. We make an initial
guess at the set of sensor positions, p0, and Tikhonov regularisation parameter, which
we choose to be α = 1.25. The initial setup is overlayed on the training model in
Figure 3.6.2 (a), and the resulting FWI reconstruction, corresponding to mFWI(p0),
is shown in Figure 3.6.2 (b). Figure 3.6.2 (b) shows that the initial setup results in a
poor reconstruction of the training model. We note that the value of the upper-level
objective function (i.e., the FWI error) for this setup is ψ(p0)= 3.1590×10−4. (We
make a note about reported values of ψ in Remark 3.6.1).
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(b) Reconstruction mFWI(p0)

Figure 3.6.2: Initial guess for sensors positions and the resulting reconstruction.

Figures 3.6.3 (a) and (b) display the errors in the Figure 3.6.2 (b) reconstruction.
Figure 3.6.3 (a) shows the absolute error, or wavespeed deviation from the ground truth,
given by (2.6.1). This figure demonstrates that the wavespeed being reconstructed
on the left side of the domain is lower than the ground truth, and the reconstructed
wavespeed on the right side of the domain is larger than the ground truth. Figure 3.6.3
(b) displays the absolute value of the relative percentage error (2.6.2), and shows that
the largest errors are on the right-hand side of the sensors and in the corners on the
left of the sources. This makes sense since the sensors are recording the waves being
produced by the sources on the left and transmitted to the sensors, and so are not
getting enough information to correctly reconstruct these parts of the domain during
FWI. The maximum relative error is 4.9135% and the average error across the domain
is 1.5389%.
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Figure 3.6.3: Errors in the reconstruction at the initial guess.

Optimisation of Sensor Positions: With the starting guess shown in Figure 3.6.2
(a), we use our bilevel algorithm to optimise the sensor positions. We see in Figure 3.6.4
(a) that the sensors have spread out and moved away from the circle of higher wavespeed.
These sensor positions make sense as the optimal setup for a transmission experiment
since the sensors being spread out from each other and at the opposite side of the
domain from the sources allows the sensors to record waves being transmitted through
the whole domain. The FWI reconstruction at these optimised sensor positions is shown
in Figure 3.6.4 (b), and is a clear improvement on the starting guess reconstruction in
Figure 3.6.2 (b). The value of the upper-level objective function at the optimised sensor
positions is ψ(pmin) = 1.3736× 10−5. We define an improvement factor to describe the
improvement in the quality of our FWI reconstruction image through the use of our
bilevel learning algorithm,

Improvement Factor = ψ(p0)
ψ(pmin) , (3.6.1)

i.e., the improvement factor is the ratio between the average FWI error at the starting
guess and the average FWI error at at the optimised parameters. For this example,
the improvement factor is 22.9983. This means that the FWI error in this example is
reduced by a factor of 22.9983 through the use of our algorithm. The reduction in error
is evident in Figure 3.6.5, where the error throughout the domain is much less than in
Figure 3.6.3. (Note that the Figures 3.6.5 and 3.6.3 are presented on the same scales
so that direct comparison can be made). The average relative error throughout the
domain is now 0.2935%, and the maximum is 3.0151%. The largest errors occur at the
corners.
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Figure 3.6.4: Optimised sensor positions and the resulting reconstruction.
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(b) Relative Percentage Error

Figure 3.6.5: Errors in the reconstruction at the optimised sensor positions.

Optimisation of Sensor Positions and Tikhonov Regularisation Parameter:
Now we optimise both sensor positions and the Tikhonov regularisation parameter
at the same time. The starting guess for sensor positions is again shown in Figure
3.6.2, and the starting guess for the Tikhonov regularisation parameter is α0 = 1.25.
The optimised regularisation parameter, αmin, is 3.6441, and the optimised sensor
positions are shown in Figure 3.6.6 (a) below. Compared to the optimal positions in
Figure 3.6.4 (a), the positions here are spread out further from each other and are no
longer aligned along the right edge of the domain. Therefore we see that allowing the
regularisation parameter to vary during the bilevel algorithm changes the optimal sensor
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positions. The value of the upper-level objective function at the optimal parameter is
ψ(pmin, αmin) = 6.6173× 10−6. The improvement factor is now 47.7385, greater than
a two-fold improvement over optimising sensor positions only. In Figure 3.6.7, we see
that a large improvement in error occurs in the corners, in particular the corners on
the right side of the domain where the deviation from the ground truth is now close to
zero. The average relative error in the whole domain is 0.2338% and the maximum is
1.9585%, which occurs in the corners on the left.
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Figure 3.6.6: Optimised sensor positions and Tikhonov regularisation parameter and
the resulting reconstruction.
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Figure 3.6.7: Errors in the reconstruction at the optimised sensor positions and Tikhonov
regularisation parameter.
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Remark 3.6.1. Reported Values of ψ: In the experiments in this chapter, and for
the rest of this thesis, the reported values of ψ involve a scaling of the grid size squared.
For a grid size h, and M model elements, the objective function ψ is the difference
between model values on each element, summed up over all elements. For example, in
the case where Nm′ = 1, as in the above examples, ψ can be written as

ψ = 1
2h

2
M∑
j

|m′j −mFWI
j |2.

This scaling of h2 accounts for the area of each discretised element. We include this
scaling as it allows the comparison of reported ψ values for problems with different grid
sizes.
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Chapter 4

Symmetry

Chapter Summary: The analysis in this chapter shows that under suitable assump-
tions, the forward problem (§4.2), the FWI problem (§4.3) and the sensor optimisation
problem (§4.4) all have symmetry properties. Under all the required assumptions,
we conclude that the optimal set of sensor positions is symmetric. Therefore, for
certain problem setups, we can expect symmetry properties in the solution of the sensor
placement optimisation problem. In §4.6 we demonstrate some of these properties
numerically and show that symmetry can be enforced in the solution of such sensor
placement optimisation problems to find an optimal sensor setup with fewer PDE solves.
Enforcing a symmetry assumption on the sensor positions can be viewed as a type of
regularisation. All analysis in this chapter is novel.

4.1 Introduction
In this section we define the particular problem we are interested in, clarify the notation,
define concepts and prove propositions that we need for our symmetry argument.

In this chapter we work in two dimensions only and deal with the following for-
ward problem (Definition 4.1.1). The forward problem is the Helmholtz equation with
impedance boundary conditions (first introduced in Section 2.2.2.1).
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Definition 4.1.1. Forward Problem: Consider a two-dimensional domain Ω, with
Lipschitz boundary ∂Ω and coordinates x = (x1, x2), a model m = m(x) = 1

c(x)2 (c

is the wavespeed), a frequency ω and source term f = f(x). The wavefield u = u(x)
satisfies the Helmholtz forward problem

−
(
∆ + ω2m

)
u = −

(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ω2m

)
u = f in Ω, (4.1.1)

with the impedance boundary condition

∂u

∂n
− iku = 0 on ∂Ω, (4.1.2)

where k = ω/c.

Notation 4.1.2. We clarify here some notation that may differ from notation in
previous chapters. We consider a problem with many sources and many sensors. We
denote the position of a source as s, and the set of source positions as S while sensor
positions are written as p and P denotes the set of sensor positions. The differences in
notation, and new notation, are as follows.

• We write the source term associated with source position s as fs.

• We write the wavefield that comes from source s, model m and frequency ω as
um,s(ω). We sometimes suppress the dependence on ω because it is not related to
spatial symmetry.

• The wavefield measured at a set of sensors is um,s(ω;P) = R(P)um,s(ω). The
wavefield evaluated at one sensor is written as um,s(ω; p), or when the dependence
on ω is suppressed it is just um,s(p).

• The FWI data for a source s, frequency ω and sensor p is denoted ds(ω, p). Again
we sometimes suppress the dependence on ω.

Specific Source Term: Here, we consider the source term f to be a delta function,
so for any s ∈ S, fs(x) = δ(x− s) = δs, where δs is defined by∫ +∞

−∞

∫ +∞

−∞
δ(x− s)v(x)dx1dx2 = v(s), (4.1.3)

for any function v(x) smooth enough on R2. The delta function at 0 = (0, 0) will be
denoted here by δ0 or just δ.
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The symmetry we study here is about the line x2 = 0. For this reason we define the
reflection about the line of symmetry as follows. In Section 4.5 we generalise this
definition to handle other symmetries.

Definition 4.1.3. Reflection Operation: Let

R : R2 → R2, R(x1, x2) = (x1,−x2), (4.1.4)

i.e., R is an operator producing a reflection about the x1-axis.

We denote reflected quantities with a ,̃ for example, the reflected coordinates are
written as R(x) = x̃, and the reflected model m is m̃(x) = m(x̃).

Proposition 4.1.4. δ̃ = δ, i.e the delta function is symmetric.

Proof. We need to show that identity (4.1.3) holds when δ is replaced by δ̃, i.e., we
show that ∫ +∞

−∞

∫ +∞

−∞
δ̃(x)v(x)dx1dx2 = v(0). (4.1.5)

By definition of the reflection operator, δ̃(x) = δ(x̃), and so∫ +∞

−∞

∫ +∞

−∞
δ̃(x)v(x)dx1dx2 =

∫ +∞

−∞

∫ +∞

−∞
δ(x̃)v(x)dx1dx2. (4.1.6)

We now make a change of variable in (4.1.6). Let x = ỹ, i.e., (x1, x2) = (y1,−y2).
Therefore, (4.1.6) becomes∫ +∞

−∞

∫ +∞

−∞
δ(x̃)v(x)dx1dx2 =−

∫ −∞
+∞

∫ +∞

−∞
δ(y)v(ỹ)dy1dy2

=
∫ +∞

−∞

∫ +∞

−∞
δ(y)ṽ(y)dy = ṽ(0) = v(0),

where the last two equalities are by the definition of δ and by the definition of the
reflection operator respectively. Therefore (4.1.5) holds, and so δ = δ̃.

Proposition 4.1.5. If fs(x) = δ(x− s), then f̃s(x) = fs̃(x).

Proof. First note that f̃s(x) = fs(x̃) = δ(x̃− s) and fs̃(x) = δ(x− s̃). Therefore to show
the result, we need to show that δ(x̃− s) = δ(x− s̃).
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Proposition 4.1.4 states that δ(x) = δ(x̃), i.e., δ(x1, x2) = δ(x1,−x2). Denoting the
coordinates of the source position as s = (s1, s2), Proposition 4.1.4 implies

δ(x1 − s1,−x2 − s2) = δ(x1 − s1, x2 + s2) i.e., δ(x̃− s) = δ(x− s̃).

Therefore the result follows.

Proposition 4.1.6. For all x ∈ Ω, and all C2 functions v, (∆ṽ)(x) = (∆v)(x̃).

Proof. By definition, ṽ(x) = v(x̃). By the application of the chain rule,

∆(ṽ(x)) =
(
∂2

∂x2
1

+ ∂2

∂x2
2

)
(v(x1,−x2)) =

[(
∂2

∂x̂2
1

+ (−1)2 ∂
2

∂x̂2
2

)
v(x̂1, x̂2)

]∣∣∣∣∣
x̂1=x1,x̂2=−x2

,

and therefore the result holds.

Assumption 4.1.7. We assume that the domain Ω is symmetric, i.e., if x ∈ ∂Ω then
x̃ ∈ ∂Ω.

Proposition 4.1.8. Under Assumption 4.1.7, and denoting the normal vector to ∂Ω
as n(x), we have that

ñ(x) = n(x̃),

i.e., R(n(x)) = n(R(x)), or
(
n1(x)
−n2(x)

)
=
(
n1(x̃)
n2(x̃)

)
.

Proof. Let x ∈ ∂Ω and let ∂Ωx be a small neighbourhood of ∂Ω surrounding x. We
denote the arclength here as s. Then we can write ∂Ωx = {γ(s) : s ∈ (−ε, ε)} for some
ε > 0, where γ = (γ1(s), γ2(s)) is Lipschitz. Arclength parametrisation, implies that
|γ′(s)| = 1. We assume that, for increasing s, ∂Ωx is traversed in an anti-clockwise
direction.

Then, for x̃ = R(x), we write a small neighbourhood of ∂Ω near x̃ as ∂Ωx̃ =
{(γ1(s),−γ2(s)) : s ∈ (−ε, ε)}. As s increases, ∂Ωx̃ is traversed in a clockwise direction.

Therefore, the tangent vector on ∂Ωx is (γ′1(s), γ′2(s)) and the unit normal is
n(x) = (γ′2(s),−γ′1(s)). Hence, ñ(x) = (γ′2(s), γ′1(s)). The tangent vector on ∂Ωx̃

is (γ′1(s),−γ′2(s)) and the unit normal is n(x̃) = (γ′2(s), γ′1(s)). The result ñ(x) = n(x̃)
follows.
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Proposition 4.1.9. Under Assumption 4.1.7 for all x ∈ ∂Ω, and all C1 functions v,

∂ṽ

∂n
(x) = ∂v

∂n
(x̃).

Proof. The normal derivative for a general function w(x) is defined as

∂w

∂n
(x) = ∇w(x).n(x) =


∂w(x)
∂x1
∂w(x)
∂x2

 .
(
n1(x)
n2(x)

)
. (4.1.7)

By definition ṽ(x) = v(x1,−x2) = v(x̃). The gradient of ṽ(x) is therefore

∇ṽ(x) =


∂v

∂x1

− ∂v

∂x2

 (x̃)

By Proposition 4.1.8, R(n(R(x)) = n(x), i.e., ñ(x̃) = n(x). Therefore, by (4.1.7),

∂ṽ

∂n
(x) =


∂v

∂x1
(x̃)

− ∂v

∂x2
(x̃)

 .n(x) =


∂v

∂x1
(x̃)

− ∂v

∂x2
(x̃)

 .ñ(x̃) =


∂v

∂x1
(x̃)

− ∂v

∂x2
(x̃)

 .
(
n1(x̃)
−n2(x̃)

)

= ∇v(x̃).n(x̃) = ∂v

∂n
(x̃)

4.2 Symmetry of the Forward Problem
This section presents results on the symmetry of the wavefield, i.e., the solution to the
forward problem in Definition 4.1.1.

Assumption 4.2.1.

1. The domain Ω is symmetric, i.e., Assumption 4.1.7 holds.

2. The solution to the Boundary Value Problem in Definition 4.1.1 is unique.

In the following theorem, we show that the wavefield due to a source s and model m
is the reflection of the wavefield that comes from the reflected source position s̃ and
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reflected model m̃. Therefore, if we measure the wavefield from a source s and model
m at sensor position p, it will be the same as measuring a wavefield from the reflected
source position s̃ and reflected model m̃ at reflected sensor position p̃.

Theorem 4.2.2. Under Assumption 4.2.1

ũm,s = um̃,s̃, (4.2.1)

and thus

um,s(p) = um̃,s̃(p̃). (4.2.2)

Proof. The forward problems for the wavefields um,s and um̃,s are respectively,(
−∆− ω2m(x)

)
um,s(x) = fs(x) in Ω. (4.2.3)(

−∆− ω2m̃(x)
)
um̃,s(x) = fs(x) in Ω. (4.2.4)

It follows from (4.2.4) that the forward problem solved by um̃,s̃ is(
−∆− ω2m̃(x)

)
um̃,s̃(x) = fs̃(x) in Ω. (4.2.5)

Now we need to find the PDE that ũm,s solves. First we note that, by Proposition 4.1.6,

(∆ũm,s)(x) = (∆um,s)(x̃).

Then we can write,

−(∆ũm,s)(x)− ω2m̃(x)ũm,s(x) = −(∆um,s)(x̃)− ω2m(x̃)um,s(x̃)
= (−∆um,s − ω2mum,s)(x̃)
= fs(x̃) by (4.2.3)
= fs̃(x) by Proposition 4.1.5. (4.2.6)

Equations (4.2.5) and (4.2.6) show that ũm,s and um̃,s̃ solve the same PDE.
Now we need to show that they satisfy the same boundary conditions. By (4.1.2), the
boundary condition satisfied by um,s is

∂um,s(x)
∂n

− ik(x)um,s(x) = 0 on ∂Ω. (4.2.7)

This boundary condition holds for all m and s, therefore the boundary condition satisfied
by um̃,s̃ is

∂um̃,s̃(x)
∂n

− ik̃(x)um̃,s̃(x) = 0 on ∂Ω. (4.2.8)
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Now we need to find the boundary condition that ũm,s satisfies. By Proposition 4.1.9,

∂ũm,s
∂n

(x) = ∂um,s
∂n

(x̃).

Then we can write

∂ũm,s
∂n

(x)− ik̃(x)ũm,s(x) = ∂um,s
∂n

(x̃)− ik(x̃)um,s(x̃) =
(
∂um,s
∂n

− ikum,s
)

(x̃) = 0

(4.2.9)

where the final equality uses (4.2.7). By (4.2.8) and (4.2.9), ũm,s and um̃,s̃ satisfy the
same boundary conditions.
The wavefields are therefore the solution to the same boundary value problem. By
uniqueness (Point 2 of Assumption 4.2.1),

ũm,s = um̃,s̃. (4.2.10)

This result may also be written as um,s = ũm̃,s̃. Evaluating the wavefields at sensor
position p gives

um,s(p) = um̃,s̃(p̃). (4.2.11)

We now make additional assumptions that allow us to make further conclusions.

Assumption 4.2.3. s ∈ S ⇐⇒ s̃ ∈ S, i.e., the sources are placed symmetrically.

The following corollary follows directly from Theorem 4.2.2. The corollary states that
the set of wavefields that come from the set of source positions s ∈ S and model m, is
the same as the reflected set of wavefields that come from the reflected set of source
positions s̃ ∈ S and reflected model m̃.

Corollary 4.2.4. Under Assumptions 4.2.1 and 4.2.3,

{um,s : s ∈ S} = {ũm̃,s̃ : s ∈ S} . (4.2.12)

Assumption 4.2.5. m = m̃, i.e., the model is symmetric.

With the additional assumption above in Theorem 4.2.2, we have the following corollary.
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Corollary 4.2.6. Under Assumptions 4.2.1 and 4.2.5,

ũm,s = um,s̃

and when Assumption 4.2.3 also holds,

{um,s : s ∈ S} = {um,s̃ : s ∈ S} (4.2.13)

4.3 Symmetry of the FWI Problem
In this section, we present results on the symmetry of the FWI minimisation problem,
using the results of the previous section. We originally defined the FWI Objective
function in Definition 2.2.7, however the notation in this chapter is different than in
previous chapters so we define the FWI objective function again here.

Definition 4.3.1. FWI Objective Function:
The FWI objective function is

φ(m,S,P) =1
2
∑
ω∈W

∑
s∈S

∑
p∈P
||εm,s(ω, p)||22 + µ

2 ||m||
2
2, (4.3.1)

where εm,s(ω, p) = ds(ω, p)− um,s(ω; p).

Remark 4.3.2. We note that we have decided to leave the Tikhonov regularisation
term out of the FWI objective function in the analysis of this section. However, we
note that the derivative matrix in the Tikhonov regularisation term (defined in Remark
2.4.9) is symmetric in the x1 and x2 directions. Hence, our results concerning symmetry
about the horizontal centre line will still hold with Tikhonov regularisation included.
The extension to more general reflections (i.e., those described in Section 4.5) has not
been considered.

Assumption 4.3.3.

1. s ∈ S ⇐⇒ s̃ ∈ S, i.e., there is a symmetric layout of sources.

2. The FWI data is such that {ds(p) : s ∈ S, p ∈ P} = {ds̃(p̃) : s ∈ S, p ∈ P}
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The following theorem tells us that the FWI objective function is symmetric in the
model and the set of sensor positions.

Theorem 4.3.4. When Assumptions 4.2.1 and 4.3.3 hold,

φ(m,S,P) = φ(m̃,S, P̃) (4.3.2)

where P̃ = {p̃ : p ∈ P}.

Proof. We start with the objective function φ in Definition 4.3.1, and then use Theorem
4.2.2 result (4.2.2) and Assumptions 4.3.3 (Point 2) to write

φ(m,S,P) =1
2
∑
ω∈W

∑
s∈S

∑
p∈P
||ds(ω, p)− um,s(ω; p)||22 + µ

2 ||m||
2
2

=1
2
∑
ω∈W

∑
s∈S

∑
p∈P
||ds̃(ω, p̃)− um̃,s̃(ω; p̃)||22 + µ

2 ||m̃||
2
2

=1
2
∑
ω∈W

∑
s∈S

∑
p∈P
||εm̃,s̃(ω, p̃)||22 + µ

2 ||m̃||
2
2

=1
2
∑
ω∈W

∑
s∈S

∑
p∈P
||εm̃,s(ω, p̃)||22 + µ

2 ||m̃||
2
2

=φ(m̃,S, P̃)

where the second last line follows from Assumption 4.3.3 Point 1.

Assumption 4.3.5. We make the assumption that the solution to the FWI problem is
unique.

Assumption 4.3.5 is in fact guaranteed by Corollary 2.4.20 when µ is chosen by the
condition in Theorem 2.4.18.

Theorem 4.3.6. Under Assumptions 4.2.1, 4.3.3 and 4.3.5,

mFWI(S,P) = m̃FWI(S, P̃).
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Proof. By Theorem 4.3.4,

φ(m,S,P) = φ(m̃,S, P̃).

By Assumption 4.3.5, there is a unique global minimum of φ, therefore the model
mFWI that minimises φ(m,S,P) will be equal to the model m̃FWI that minimises
φ(m̃,S, P̃), i.e.,

mFWI(S,P) = m̃FWI(S, P̃). (4.3.3)

Theorem 4.3.6 shows that the FWI solution for a given set of sensor positions is equal
to the reflected FWI solution model when the sensors are reflected.

Assumption 4.3.7. We assume that p ∈ P ⇐⇒ p̃ ∈ P, i.e., the layout of sensors
is symmetric.

The following corollaries then follow from Theorem 4.3.4. Corollary 4.3.9 shows that,
under the stated assumptions, the solution to the FWI problem is symmetric.

Corollary 4.3.8. Under Assumptions 4.2.1, 4.3.3 and the additional assumption 4.3.7,

φ(m,S,P) = φ(m̃,S,P).

Corollary 4.3.9. Under Assumptions 4.2.1, 4.3.3, 4.3.5 and 4.3.7, the result (4.3.3)
of Theorem 4.3.6 becomes

mFWI(S,P) = m̃FWI(S,P).

4.4 Symmetry of Sensor Placement Optimisation
Problem

We begin by restating the sensor placement upper-level objective function that was
introduced in Definition 3.3.2.
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Definition 4.4.1. Sensor Placement Objective Function: Let M′ be a set of
Nm′ training models, and mFWI(S,P ,m′) be the solution to the FWI problem for each
m′ ∈ M′, with a set of sensors P and sources S. The sensor placement objective
function is

ψ(P) = 1
2Nm′

∑
m′∈M′

||m′ −mFWI(S,P ,m′)||22. (4.4.1)

Assumption 4.4.2.

1. s ∈ S ⇐⇒ s̃ ∈ S, i.e., there is a symmetric layout of sources.

2. m′ = m̃′, i.e., the training models are symmetric.

3. The solution to the FWI problem is unique.

Assumption 4.4.2 means that the FWI data produced from the training model (i.e.,
ds(p) = um′,s(p)) satisfies Assumption 4.3.3 Point 2 (by Theorem 4.2.2). Assumption
4.4.2 Point 2 implies that m′ ∈M′ =⇒ m̃′ ∈M′.

Theorem 4.4.3 shows that the sensor placement objective function is symmetric in its
set of sensor positions.

Theorem 4.4.3. Under Assumptions 4.2.1 and 4.4.2,

ψ(P) = ψ(P̃).

Proof. By Definition 4.4.1 and Theorem 4.3.6,

ψ(P) = 1
2Nm′

∑
m′∈M′

||m′ −mFWI(S,P ,m′)||22

= 1
2Nm′

∑
m′∈M′

||m′ − m̃FWI(S, P̃ ,m′)||22

= 1
2Nm′

∑
m̃

′∈M′

||m̃′ − m̃FWI(S, P̃ , m̃′)||22

= 1
2Nm′

∑
m′∈M′

||m′ −mFWI(S, P̃ ,m′)||22 = ψ(P̃), (4.4.2)
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where the third line uses that the training model is symmetric.

Assumption 4.4.4. There is a unique global minimum of the Sensor Optimisation
(i.e., upper-level) problem.

Assumption 4.4.4 is discussed in Section 3.4.4.

Corollary 4.4.5. Let Pmin be the solution to the sensor optimisation problem. Under
Assumptions 4.2.1, 4.4.2 and 4.4.4,

ψ(Pmin) = ψ(P̃min)

and hence

Pmin = P̃min.

Corollary 4.4.5 shows that the optimal set of sensor positions is symmetric (under the
required assumptions).

4.5 Generalisation of Results
All results in this chapter so far hold for the definition of the reflection operator in
Definition 4.1.3, which involves a reflection about the x1 axis. In this section, we show
that these results also hold for more general reflections.

Definition 4.5.1. General Reflection Operator: Let

R(x) = Rx,

where R is a symmetric real matrix such that R2 = I and det(R) = −1, i.e., R is the
reflection about any line that goes through the origin.

We continue to denote reflected quantities with a .̃

We now prove that the propositions in Section 4.1 (specifically Propositions 4.1.4, 4.1.5,
4.1.6, and 4.1.9) still hold with this more general definition of the reflection operator.
When all propositions in Section 4.1 hold, it follows that all results in Sections 4.2, 4.3
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and 4.4 also hold.

Proposition 4.5.2. General Version of Proposition 4.1.4:
δ̃ = δ, i.e., the delta function is symmetric.

Proof. We need to show that identity (4.1.3) holds when δ is replaced by δ̃, i.e.,∫
R2
δ̃(x)v(x)dx = v(0). (4.5.1)

By definition, δ̃(x) = δ(x̃), and so∫
R2
δ̃(x)v(x)dx =

∫
R2
δ(x̃)v(x)dx. (4.5.2)

We now make a change of variable x = ỹ, i.e., x = Ry. Therefore, (4.5.2) becomes∫
R2
δ(y)v(ỹ)|det(R)|dy =

∫
R2
δ(y)ṽ(y)dy = ṽ(0) = v(0),

where we have used that |det(R)| = 1. Therefore (4.5.1) holds and so δ(x) = δ̃(x).

Proposition 4.5.3. General version of Proposition 4.1.5:
If fs(x) = δ(x− s), then,

f̃s(x) = fs̃(x) (4.5.3)

Proof. By definition of the reflection operator, we have

f̃s(x) = fs(x̃) = δ(x̃− s) = δ(Rx− s)

and
fs̃(x) = δ(x− s̃) = δ(x−Rs).

Therefore, to show (4.5.3), we need to show that δ(Rx − s) = δ(x −Rs). This can
be shown with the result of Proposition 4.5.2, which states that δ(x) = δ(x̃), i.e.,
δ(x) = δ(Rx). Using this, and the fact that R2 = I, gives that

δ(Rx− s) = δ(R(x−Rs)) = δ(x−Rs),

i.e., δ(x̃− s) = δ(x− s̃), and so f̃s(x) = fs̃(x).
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Proposition 4.5.4. General version of Proposition 4.1.6: For all x ∈ Ω, and
all C2 functions v,

(∆ṽ)(x) = (∆v)(x̃), (4.5.4)

Proof. We first write the chain rule for a general function f : Rd → R and g : Rd → Rd,

∂

∂xi
(f(g(x)) =

∑
k

((
∂f

∂xk

)
(g(x))

)(
∂gk
∂xi

(x)
)
.

Applying the chain rule to our problem, where ṽ(x) = v(x̃) = v(Rx),

∂

∂xi
(v(Rx)) =

∑
k

((
∂v

∂xk

)
(Rx)

)(
∂(Rx)k
∂xi

)
(4.5.5)

Denoting the (k,m)th entry of R as rkm, we can write,

(Rx)k =
∑
m

rkmxm

and

∂(Rx)k
∂xi

=
∑
m

rkmδmi = rki.

Using these identities in (4.5.5), we get

∂

∂xi
(v(Rx)) =

∑
k

((
∂v

∂xk

)
(Rx)

)
rki =

∑
k

rki

((
∂v

∂xk

)
(Rx)

)
(4.5.6)

=
(
RT∇v(Rx)

)
i

and so,

∇(v(Rx)) = RT ((∇v)(Rx)). (4.5.7)

To find ∆(v(Rx)), we take another derivative of (4.5.7), which gives

∆(v(Rx)) = ∇. (∇(v(Rx))) =
∑
i

∂

∂xi

(
∂

∂xi
(v(Rx))

)

=
∑
i

∂

∂xi

(∑
k

rki

((
∂v

∂xk

)
(Rx)

))
,

=
∑
i

∑
k

rki
∂

∂xi

((
∂v

∂xk

)
(Rx)

)
, (4.5.8)
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where the second last equality comes from (4.5.6). We apply the chain rule again to
explicitly find the derivative term appearing in (4.5.8),

∂

∂xi

((
∂v

∂xk
(Rx)

))
=
∑
l

(
∂2v

∂xl∂xk

)
(Rx)∂(Rx)l

∂xi

=
∑
l

(
∂2v

∂xl∂xk

)
(Rx)rli. (4.5.9)

Substituting (4.5.9) back into (4.5.8) gives

∆(v(Rx)) =
∑
i

∑
k

∑
l

rkirli

(
∂2v

∂xk∂xl

)
(Rx) =

∑
k

∑
l

(∑
i

rkirli

)(
∂2v

∂xk∂xl

)
(Rx)

=
∑
k

∑
l

δlk

(
∂2v

∂xk∂xl

)
(Rx) =

∑
k

(
∂2v

∂xk∂xk

)
(Rx) = (∆v)(Rx),

where ∑i rkirli = δlk because RTR = I (since R2 = I and R = RT by Definition 4.5.1).

Proposition 4.5.5. General version of Proposition 4.1.8:
Under Assumption 4.1.7, and denoting the normal vector to ∂Ω as n(x), we have that

ñ(x) = n(x̃),

i.e., R(n(x)) = n(R(x)), or Rn(x) = n(R(x)).

Proof. Following the same steps as in the proof of Proposition 4.1.8, let x ∈ ∂Ω
and let ∂Ωx be a small neighbourhood of ∂Ω surrounding x. Then we can write
∂Ωx = {γ(s) : s ∈ (−ε, ε)} for some ε > 0, where γ = (γ1(s), γ2(s)) is Lipschitz.
Using arclength parametrisation, |γ′(s)| = 1. We assume that, for increasing s, ∂Ωx

is traversed in an anti-clockwise direction. The tangent vector on ∂Ωx is (γ′1(s), γ′2(s))
and the unit normal is therefore n(x) = (γ′2(s),−γ′1(s)), or equivalently,

n(x) =
(

0 1
−1 0

)
γ′(s).

Then, for x̃ = Rx, we write a small neighbourhood of ∂Ω near x̃ as ∂Ωx̃ = {γ̃ : s ∈
(−ε, ε)}={Rγ : s ∈ (−ε, ε)}. As s increases, ∂Ωx̃ is traversed in a clockwise direction.
The tangent vector on ∂Ωx̃ is Rγ′ and the unit normal is

n(x̃) =
(

0 −1
1 0

)
Rγ′(s).

We must show that n(x̃) = ñ(x), i.e.,(
0 −1
1 0

)
Rγ′(s) = R

(
0 1
−1 0

)
γ′(s),
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or equivalently (
0 −1
1 0

)
R = R

(
0 1
−1 0

)
.

We begin by multiplying by the inverse of the first matrix on the left, giving the
following as what we need to show,

R =
(

0 1
−1 0

)
R
(

0 1
−1 0

)
or equivalently, writing out the components of R,(

r11 r12
r21 r22

)
=
(

0 1
−1 0

)(
r11 r12
r21 r22

)(
0 1
−1 0

)
i.e., (

r11 r12
r21 r22

)
=
(
−r22 r21
r12 −r11

)
(4.5.10)

We can show that (4.5.10) is true by noting the properties of the reflection matrix
R (stated in Definition 4.5.1). The right hand side of (4.5.10) is R−1 by Cramer’s
rule and the fact that det(R) = −1. Therefore, (4.5.10) simply states that R = R−1,
or equivalently R2 = I, which is true by definition. Therefore we have shown that
n(x̃) = ñ(x).

Proposition 4.5.6. General version of 4.1.9:
Under Assumption 4.1.7, for all x ∈ ∂Ω and all C1 functions v,

∂ṽ

∂n
(x) = ∂v

∂n
(x̃).

Proof. The gradient of ṽ(x) satisfies (by (4.5.7))
∇v(x̃) = RT (∇v)(x̃)

By Proposition 4.5.5, R(n(R(x)) = n(x), i.e., ñ(x̃) = n(x). Therefore,
∂ṽ

∂n
(x) =

(
RT (∇v) (x̃)

)
.n(x) =

(
RT (∇v) (x̃)

)
.ñ(x̃) =

(
RT (∇v) (x̃)

)
.(Rn(x̃))

=
(
(∇v)(x̃)).(R2n(x̃)

)
= ((∇v)(x̃)).n(x̃) = ∂v

∂n
(x̃)

where the second last equality uses the fact that R2 = I.

We have shown in this section that Propositions 4.1.4, 4.1.5, 4.1.6, and 4.1.9 hold for
the general definition of reflection (Definition 4.5.1). Therefore, under the required
assumptions, all the results in Sections 4.2, 4.3 and 4.4 hold for any reflection about the
origin, and, most importantly, the optimal set of sensor positions is symmetric about
any axis through the origin.
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4.6 Experiments
This section numerically demonstrates some of the main results from this chapter -
Theorem 4.2.2, Theorem 4.3.6 and Corollary 4.4.5 - and how the result of Corollary
4.4.5 can be exploited in our bilevel sensor optimisation algorithm.

Each of these results involve assumptions. We enforce assumptions involving sym-
metry, however, we cannot numerically guarantee assumptions about uniqueness, i.e.,
that the forward problem has a unique solution (Assumption 4.2.1), or that the sensor
optimisation problem has a unique global minimum (Assumption 4.4.4). We include a
convex regularisation term on the lower-level with the purpose of making sure that FWI
has a unique solution (Assumptions 4.3.5 and 4.4.2 Point 3), but we cannot numerically
ensure that the lower-level solution is in fact unique, because we do not know explicitly
what choice of regularisation parameter µ guarantees this. The experiments in this
section show that these uniqueness assumptions are sufficient but not necessary for the
theoretical results of this chapter to hold in practice.

Experiment 1: Demonstrating Theorem 4.2.2
Theorem 4.2.2 states that, assuming the domain is symmetric and that the solution to
the forward problem (Definition 4.1.1) is unique, then the wavefield due to a source
position s and model m is equal to the reflection of the wavefield due to the reflected
source position s̃ and reflected model m̃. We illustrate this result by visualising numerical
solutions of the discretised forward problem for a specific example, i.e., we show that
ũm,s = um̃,s̃ in practice. The discretised model m and source position s that is used in
this experiment are shown in Figure 4.6.1. The corresponding solution to the Helmholtz
equation with model m and point source at position s is shown in Figure 4.6.2. Since
the solution to the Helmholtz equation is complex, we visualise the real and imaginary
parts of the wavefield separately.
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Figure 4.6.1: The model m and source position s used to produce the wavefield um,s.
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Figure 4.6.2: Wavefield um,s

We choose a line of reflection at z = 1.25 km, shown in Figure 4.6.3 for clarity,
and reflect the computed wavefield in Figure 4.6.2 about this line to give the reflected
wavefield ũm,s shown in Figure 4.6.4.
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Figure 4.6.3: The line of relection.
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Figure 4.6.4: Reflected wavefield ũm,s

We then reflect the model and source position about the line of reflection shown in
Figure 4.6.3. The resulting reflected model m̃ and reflected source position s̃ are shown
in Figure 4.6.5. The corresponding solution to the Helmholtz equation with model m̃
and point source at position s̃, i.e., um̃,s̃, is shown in Figure 4.6.6.
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Figure 4.6.5: The reflected model m̃ and reflected source position s̃.
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Figure 4.6.6: Wavefield from reflected model and reflected source um̃,s̃

Visually, the wavefields in Figures 4.6.4 and 4.6.6 are identical. Computationally,
the infinity norm of the absolute value of difference between ũm,s and um̃,s̃ is 2.0490
×10−16, which is smaller than machine precision, meaning that the difference between
the wavefields is numerically zero at every point. Therefore, this experiment numerically
demonstrates the result of Theorem 4.2.2 for the discretised problem, i.e.,

ũm,s = um̃,s̃.
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Experiment 2: Demonstrating Theorem 4.3.6
We demonstrate numerically the result of Theorem 4.3.6, which states that the FWI
solution for a given set of sensors is equal to the reflected FWI solution when the sensors
are reflected. We ensure the following assumptions are true:

• The domain is symmetric (Assumption 4.2.1 Point 1).

• The set of source positions S is symmetric (Assumption 4.3.3 Point 2).

• The data has symmetric properties (from Assumption 4.3.3 Point 2) by generating
synthetic data from a symmetric model.

The velocity model and source positions are shown in Figure 4.6.7, which are symmetric
about the line of reflection at z = 1.25 km.
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Figure 4.6.7: Symmetric ground truth model and source positions used for FWI.

We choose the set of sensor positions, P , shown in Figure 4.6.8 (a), which produces
the FWI reconstruction (mFWI(S,P)) in Figure 4.6.8 (b). We note that the set of
sensor positions here is not chosen to produce a good quality reconstruction but rather
to illustrate the result of the theorem more clearly.
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Figure 4.6.8: Set of sensor positions P and correspsonding reconstruction mFWI(S,P)

We reflect the sensor positions about the line of reflection shown in Figure 4.6.7 to
get the reflected set of sensor positions, P̃ , shown in Figure 4.6.9 (a). The corresponding
reconstruction, (mFWI(S, P̃)) , is shown in Figure 4.6.9 (b).
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Figure 4.6.9: Set of sensor positions P̃ and correspsonding reconstruction mFWI(S, P̃)

To demonstrate the result of the theorem, we reflect the reconstruction in Figure
4.6.9 (b) about the line of reflection to get m̃FWI(S, P̃). We include a side by side
comparison of m̃FWI(S, P̃) with mFWI(S,P) in Figure 4.6.10 which demonstrates that
the reconstructions appear identical. We find that the infinity norm of the difference
between the models is 1.9688× 10−12, showing that Theorem 4.3.6 holds in practice,
up to some numerical error.
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Figure 4.6.10: Comparison of reconstructions showing that mFWI(S,P) = m̃FWI(S, P̃).

Experiment 3: Demonstrating Corollary 4.4.5
We demonstrate this corollary with a simple sensor optimisation example involving
one training model, three sources and three sensors. We ensure that the following
assumptions for Corollary 4.4.5 are true in this experiment:

• The domain is symmetric (Assumption 4.2.1 Point 1).

• There is a symmetric layout of sources (Assumption 4.4.2 Point 1).

• The training model is symmetric (Assumption 4.4.2 Point 2).

The positions of the sources are overlayed on the training model in Figure 4.6.11.
The line of symmetry is at z =1.25 km. The training model has a symmetric region of
higher wavespeed in the centre, with a maximum of 2100 ms−1, that smoothly decreases
outward. The domain is of size 2.5 km × 2.5 km, and is discretised into a 101 × 101
grid, resulting in 10201 model parameters. We note that this is the same training model
and source layout used in Section 3.6, in which we optimised the sensor positions and
Tikhonov regularisation parameter. Therefore, we choose the Tikhonov regularisation
parameter a priori to be constant at its optimal value (α = 3.6441) throughout the
sensor optimisation here. In Remark 4.3.2 we made a note about not including the
Tikhonov regularisation term in the analysis of this chapter. However, we include the
Tikhonov term in this experiment, since the line of symmetry is the horizontal centreline
and we are using a uniform discretisation grid, so all the symmetry results still hold.

Figure 4.6.12 displays the starting sensor positions, which are chosen to be symmetric,
and the optimal sensor positions found by our bilevel algorithm, which are also symmetric.
Although the upper-level solution found may not be unique, this numerical result tells
us that at least one of the solutions of the sensor optimisation problem is symmetric.
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Figure 4.6.11: Symmetric training model m′ and symmetric layout of sources

The FWI reconstruction at the starting guess and FWI reconstruction at the optimised
sensor positions are shown in Figure 4.6.13.

Figure 4.6.14 shows the coordinates of the sensors at each iteration as they are being
optimised. Subfigure (a) displays the z-coordinates of the sensors. This subfigure shows
that the middle sensor (sensor 2), whose starting guess is along the line of symmetry,
remains along the line of symmetry at every iteration. The z-coordinates of the other
two sensors (sensors 1 and 3) are reflections of each other at every iteration. Subfigure
(b) displays the x-coordinates of the sensors. At every iteration, sensors 1 and 3 are at
the same x-coordinate, while the x-coordinate of sensor 2 is independent of the other
two sensors.

The numerical results obtained by applying the bilevel learning algorithm show
that when we have a symmetric domain, symmetric source positions and symmetric
training model, then the optimal sensor positions are symmetric. Therefore, the result
of Corollary 4.4.5 holds in practice.
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Figure 4.6.12: Initial and optimised sensor positions.
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Figure 4.6.13: FWI reconstructions at the initial guess, mFWI(P0), and optimised
sensor positions mFWI(Pmin).
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Figure 4.6.14: Sensor positions versus iteration.

Experiment 4: Exploiting Symmetry of the Sensors in the Sensor Optimi-
sation Algorithm
We demonstrate how the result of Corollary 4.4.5 can be used to make the sensor
optimisation algorithm less computationally expensive. We have seen in the previous
experiment that if we have a symmetric domain, training model and layout of sources,
then a solution to the sensor optimisation problem is symmetric. There may be other
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solutions as we have no guarantee that the sensor optimisation problem is convex
here, however, if the initial guess at sensor positions is symmetric, we expect that the
solution converged to will also be symmetric (as there is no asymmetry introduced to
the problem). We can use this fact to reduce the number of parameters being optimised.

We illustrate the potential reduction in the number of optimisation parameters for
the case of the previous problem in Experiment 3. Figure 4.6.15 shows an example of a
symmetric set of sensors. The x-coordinates of sensors 1 and 3 are equal, and so instead
of optimising the x-coordinates of both of these sensors, we only need to optimise the
x-coordinates of one. The distance in the z direction between sensor 1 and the line of
symmetry and between sensor 2 and the line of symmetry is equal. Therefore, instead of
optimising the z-coordinates of these two sensors, we can instead optimise the distance
∆. The z-coordinate of sensor 2 is lying on the line of symmetry, and therefore will
not move from here in order to preserve symmetry. Hence, for this example, instead
of optimising 6 parameters (the x- and z-coordinates of 3 sensors), only 3 parameters
need to be optimised. This reduced parameter approach generalises to any number Nr

of sensors, where the number of optimisation parameters in two-dimensions is reduced
from 2Nr to Nr. The reduction in optimisation parameters reduces the overall number
of PDEs that need to be solved during the sensor optimisation algorithm. As we can see
in (3.4.18), the overall number of PDE solves depends on the number of optimisation
parameters, so that decreasing the number of optimisation parameters decreases the
number of PDEs to be solved. However, the overall number of PDE solves is not
directly proportional to the number of optimisation parameters, so halving the number
of optimisation parameters does not halve the number of of PDE solves, as we see in
the examples.
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Figure 4.6.15: Diagram of symmetric example showing how the number of optimisation
parameters may be reduced.
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In the following two examples, we illustrate how this reduced parameter approach
can be used to arrive at the same solution as the original approach, but faster.

Example 1: We repeat Experiment 3 using the new reduced parameter approach,
where only 3 parameters are optimised instead of 6. The optimised sensor positions
are overlayed on the training model in Figure 4.6.16. We see that the optimal set of
sensor positions matches that found with the original approach in Figure 4.6.12. The
optimised reconstruction is therefore the same as that shown in Figure 4.6.13 (b). The
new approach was a factor of approximately 1.65 times faster than the original approach.
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Figure 4.6.16: Example 1: Initial and optimised sensor positions for the new approach
that exploits symmetry.
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Example 2: In this example we solve a sensor optimisation problem with more sensors,
using both the original approach of optimising all coordinates and the new approach of
optimising half the number of parameters.
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Figure 4.6.17: Example 2: Symmetric training model m′ and symmetric layout of
sources.

The symmetric training model and symmetric layout of sources is shown in Figure
4.6.17. The line of symmetry is at z = 1.25 km. The training model involves a smooth
square area of higher wavespeed (2200 ms−1), surrounded by an area of lower wavespeed
(2000 ms−1). Like in Example 1, the domain is of size 2.5 km × 2.5 km and is discretised
into a 101 × 101 grid. The Tikhonov regularisation parameter is chosen constant at
α = 1.25. We aim to optimise the positions of 7 sensors. In the original approach, this
involves optimising 14 coordinates. The initial guess at sensor positions and optimised
sensor positions are shown in Figure 4.6.18, and the corresponding initial and optimised
reconstructions are shown in Figure 4.6.19. In the new reduced parameter approach,
we only need to optimise 7 coordinates. We see in Figures 4.6.20 and 4.6.21 that we
achieve the same optimal sensor setup and the same reconstructions as the original
approach. However this result is achieved a factor of approximately 1.38 times faster.

These experiments show that the symmetry properties of a problem can be exploited
to find an optimal set of sensor positions in a computationally cheaper manner.

127



0 0.5 1 1.5 2 2.5

x [km]

0

0.5

1

1.5

2

2.5

z
 [
k
m

] Source

Initial Sensor Position

Optimised Sensor Position

Figure 4.6.18: Example 2: Initial and optimised sensor positions for the original sensor
optimisation approach.
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Figure 4.6.19: Example 2: FWI reconstruction at the initial guess, mFWI(P0), and
optimised sensor positions mFWI(Pmin) for the original sensor optimisation approach.
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Figure 4.6.20: Example 2: Initial and optimised sensor positions for the reduced
parameter sensor optimisation approach.
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Figure 4.6.21: Example 2: FWI reconstruction at the initial guess, mFWI(P0), and
optimised sensor positions mFWI(Pmin) for the reduced parameter sensor optimisation
approach.
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4.7 Application of Symmetry Results
All experiments in this section were performed on synthetic models that were designed
to be symmetric. In real world geophysical problems, subsurfaces will generally not be
naturally symmetric. However, there are other FWI applications where the symmetry
results presented here can be used for the optimal sensor placement problem. One
application would be FWI imaging in a medical setting where symmetry is expected in
the image, exploiting the high level of symmetry present in the human body. As an
example, the brain is largely symmetrical (not perfectly symmetrical however) [118],
and FWI has been applied to image the brain in [81]. Our symmetry results could
therefore be useful in optimising sensor placement for the FWI imaging of the brain.
Another potential application of our symmetry results would be in the field of structural
health monitoring. FWI has been used in ultrasonic non-destructive testing, for example
see [159], and so our theory could be used in the optimisation of sensor placement
for the ultrasonic non-destructive testing of symmetric structures, for example in the
monitoring of pipe corrosion or in the inspection of railway tracks.
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Chapter 5

Algorithms and Implementation

Chapter Summary: This chapter presents the algorithms that we have designed to
solve the bilevel problem, as well as implementation details of these algorithms. The
implementation details include novel techniques developed to improve the efficiency
of the algorithms. In §5.1, we discuss avoiding local minima on both the upper- and
lower-levels through the use of a new bilevel frequency continuation algorithm.

In §5.2, we discuss an aspect of the upper-level gradient computation - in particular
how to solve the linear system involving the FWI Hessian arising in the gradient
formula. We investigate how the number of iterations taken to solve this system varies
with different parameters and show that the number of iterations is, in general, large,
and increases as the discretisation grid size is refined. We have established two novel
preconditioning strategies (§5.2.2) to reduce the number of iterations taken to solve this
system. We show that both preconditioning strategies work effectively to speed up the
solution of the linear system, producing a reduction in the number of iterations by up to
96%, and when used within the bilevel algorithm, reducing the computational time by
several hours in some cases. We also investigate of how each preconditioning strategy is
affected by various parameters, hence demonstrating that the number of iterations taken
to solve the preconditioned system is unaffected by grid size. We include a breakdown
of the cost of each preconditioning strategy and make recommendations about which
strategy to use.

In §5.3 we discuss parallelising the bilevel algorithm and show through measurements
of computation time that the algorithm scales well in parallel. In (§5.3.3) we provide
an overview of the computational time spent on different parts of the algorithm and a
detailed description explaining what we have observed.

The full bilevel sensor placement optimisation algorithm is included in §5.4. The
implementation of the restriction operator and its importance in ensuring the smoothness
of the upper-level objective function is also discussed here. The bilevel frequency
continuation strategy, preconditioning strategy, the implementation details of the
restriction operator and the algorithms presented in this chapter (excluding the FWI
and preconditioned conjugate gradient algorithms) are all novel. We note here that,
since this section is mainly relevant to implementation, the variables will be written in
their discrete format.
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5.1 Bilevel Frequency Continuation
Context and goal: In Section 2.5.1, we described the process of frequency continua-
tion in FWI (the lower-level problem in the bilevel problem Definition 3.3.4), which
is standard practice for avoiding local minima in frequency domain FWI. We recall
from this discussion that the FWI objective function is smoother for lower frequencies,
but that a range of frequencies are required to reconstruct a range of different sized
features in the image. Hence higher frequencies are used to help improve the quality
of the FWI image. Here we present a novel bilevel frequency continuation approach
that involves continuation on both the upper and lower-level. The goal of our bilevel
frequency continuation algorithm is to, as far as possible, avoid local minima on both
levels of the bilevel problem, hence making it easier for a local optimisation method to
find the global optimal solution.

Motivating Example: We motivate our approach with the following example. Fig-
ure 5.1.1 is an example of a training model, with three sources and three sensors used
for acquisition. We consider the sensors to be constrained along a line, i.e., they can
move in one-dimension only. Due to the symmetry of the setup, and the theory present
in Chapter 4, it is reasonable to place the sensors symmetrically about the centre
horizontal line and to consider only one optimisation variable – the distance ∆ between
the top and bottom sensor from the line of symmetry. The parameter ∆, i.e., sensor
distance from the centre, ranges from 0, meaning all sensors overlapping at the centre,
to L, meaning the top and bottom sensors are at the edges of the domain. We vary ∆
from 0 to L (in 1250 steps), perform FWI using synthetic data for that setup at each
step, and compute the upper-level objective function ψ (3.3.1) for that point. This
process is completed for a lower frequency (0.5 Hz) and a higher frequency (7 Hz),
giving us two plots of the upper-level objective function for this problem, shown in
Figure 5.1.2. The upper-level objective function for the lower frequency problem is
smooth and has one minimum. An objective function of this form is easily handled by a
local optimisation method. The upper-level objective function for the higher frequency
problem has multiple local minima, but has a global minimum that is not far from
the global minimum of the lower frequency problem. For the high frequency objective
function, unless the starting guess of the local optimisation method is close to the global
minimum, the global minimum would not be found by a local optimisation method.
This example demonstrates that ψ is smoother for lower frequencies, and illustrates the
need for a good starting guess for higher frequency sensor optimisation problems. This
motivates our bilevel frequency continuation approach.
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L

Figure 5.1.1: Setup used in plots of upper-level objective function. The symbol
represents a source, and the symbol represents a sensor. The outer sensors are moved
along a line to produce the plots in Figure 5.1.2.
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Figure 5.1.2: Upper-level objective function ψ for a low and higher frequency problem.
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We illustrate the steps of our proposed bilevel frequency continuation algorithm in
Figure 5.1.3. Each row of Figure 5.1.3 shows a plot of the upper-level objective function
ψ for the problem setup in Figure 5.1.1, starting at a low frequency on row one, and
increasing to progressively higher frequencies/frequency groups on rows two and three.
In Subfigure (a) we represent a typical starting guess for the parameter to be optimised,
∆, by an open red circle. As this is a low frequency problem, ψ is smooth and has
one minimum, and therefore the sensor placement optimisation problem can be solved
straightforwardly. The solution is shown in (b) by the closed red circle. This solution
gives us a rough estimate of the overall optimal sensor position. We then progress to
a group of higher frequencies, and use the solution to the low frequency problem as
a starting guess (shown in (c)). This problem can be solved straightforwardly due to
the good starting guess. The solution (shown in (d)) improves the original estimate
of the optimal sensor position. This process is continued, progressing through higher
frequencies and iteratively improving the estimate of optimal sensor position each time.
Subfigures (e) and (f) demonstrate the power of the bilevel continuation approach to
avoid the multiple local minima and find the global minimum (which in this case is the
sensors being spread out to near the edges of the domain).
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Figure 5.1.3: Plots of the upper-level objective function in an illustration of the bilevel
frequency continuation approach. The symbol denotes a starting guess, and the symbol

denotes a minium.
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The Algorithm: We present these steps formally in Algorithm 5.1.1. The algorithm
involves grouping frequencies into groups of increasing order, looping over the frequency
groups and solving the full bilevel problem (presented later in Algorithm 5.4.2) on
each loop. The solution to the upper and lower-level problems (i.e., the optimal sensor
positions and optimal models) for the first frequency group are used as the starting
guesses for the next, higher, frequency group. In this way, we can see how the frequency
continuation works simultaneously for both the upper and lower-levels. We write
Algorithm 5.1.1 for one training model only for simplicity here. In Section 5.4 we write
this algorithm more generally for a training set of any size.

Algorithm 5.1.1 Bilevel Frequency Continuation
1: Inputs: p0, m0, {ω1 < ω2 < ... < ωNω} ∈ W , m′

2: Group frequencies into Nf groups {g1, g2,. . ., gNf}
3: for k = 1 to Nf do
4: [pmin,m

FWI ]← Bilevel Optimisation Algorithm
5: p0 ← pmin

6: m0 ←mFWI

7: end for
8: Output: pmin

Remark 5.1.1. We note that it is possible to incorporate a multilevel minimization
approach, such as that detailed in [130, Section 9.4], into the bilevel frequency continua-
tion approach. This approach would involve solving the lower frequency problems with
a coarser discretisation and progressively refining the discretisation as we progress to
increasingly higher frequency groups. This method would potentially reduce memory
requirements and computing time. We note that it is important that care is taken so that
discretisation is not too coarse due to the nature of numerical error in wave propagation
problems. We don’t implement this multilevel minimization approach in this thesis
since, to ensure our forward modelling step (performed with a low-order finite difference
scheme) is accurate, we avoid mesh coarsening.
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Experiment 1: We apply the bilevel frequency continuation algorithm to the one-
parameter sensor placement optimisation problem that we have been focusing on
(Figure 5.1.1). The symmetric training model and the line along which the sensors
are constrained are shown in Figure 5.1.4. The model is discretised into a 101×101 grid.
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Figure 5.1.4: Training model and setup for Experiment 1.

Figure 5.1.5 shows the initial guess for sensor positions and the FWI reconstruction
produced by this initial sensor setup. The corresponding value of ψ is 9.1429× 10−5.

The result of applying the bilevel frequency continuation algorithm is shown in
Figure 5.1.6. As expected, the optimal sensor positions are spread out such that the
top and bottom sensor are near the edges of the domain (to be more specific, they are
approximately 26 metres away from the edge of the domain). The optimal value of ψ
here is 1.3246 ×10−5, and therefore the improvement factor (defined in (3.6.1)) is 6.9.
(We note that the improvement factor is small relative to some other examples in this
thesis due to the fact that the x positions of the sensors are fixed here).

The result of the sensor placement optimisation algorithm without using the bilevel
frequency continuation approach is shown in Figure 5.1.7. The sensors get stuck in
a local minimum (on the centre line/line of symmetry). The resulting value of ψ is
6.4329× 10−5, giving an improvement factor of only 1.4213.

In this experiment, we have demonstrated that the continuation algorithm has
significantly improved the results of the bilevel learning algorithm by finding what
appears to be the global minimum for this problem. Applying the bilevel algorithm
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without using our continuation technique results in getting stuck in a local minimum.
In conclusion, this example shows advantage of using the bilevel frequency continuation
algorithm.
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Figure 5.1.5: Initial guess for sensor positions and the resulting reconstruction.
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Figure 5.1.6: Optimised sensor positions and the resulting reconstruction using the
bilevel frequency continuation algorithm.

138



0 0.5 1 1.5 2 2.5

x [km]

0

0.5

1

1.5

2

2.5

z
 [

k
m

]Source

Optimised 

Sensor Position

(a) Optimised Sensor Positions pmin

0 0.5 1 1.5 2 2.5

x [km]

0

0.5

1

1.5

2

2.5

z
 [
k
m

]

(b) Reconstruction mFWI(pmin)

Figure 5.1.7: Optimised Sensor Positions and the resulting reconstruction without using
the bilevel frequency continuation algorithm. The sensors are overlayed in (a) so that
three sensors appear as one.

Choice of Frequencies: The bilevel frequency continuation algorithm used in this
example involved three frequencies with an increasing interval between them (0.5, 0.9
and 2.5 Hz). We used these three frequencies to form three frequency groups for bilevel
continuation, the first with a single frequency (0.5 Hz) to esnure the smoothest possible
objective function, and the following groups with two frequencies each and an overlap
between each (i.e., a group (0.5, 0.9)Hz and the final group (0.9, 2.5)Hz). The choice of
increasing interval was motivated by the FWI continuation strategy suggested by [166]
and the overlap between groups is motivated by the approach for FWI continuation
in [77] and [35]. We repeated Experiment 1 with five equally spaced frequencies in
the range 0.5 to 2.5 Hz, split into 5 groups with an overlap of one frequency between
each group. The bilevel continuation algorithm converges to the exact same optimal
sensor setup as the three group case (i.e., the sensors are 26 metres from the edge of
the domain), but takes 3.5 times longer for the solution to be found.

This demonstrates that adding more frequency groups can slow the problem down
and that it is possible to find the same solution faster with less frequencies, which
agrees with what is seen in the standalone FWI problem, as noted by [166].

Experiment 2: This example gives more insight into how the bilevel frequency
continuation algorithm works. The training model used here is the same as that used in
Experiment 1 (see Figure 5.1.4), but the sensors are free to lie anywhere in the domain.
The Tikhonov regularisation parameter is chosen to be α = 1.25. In fact, Experiment 2
is the same optimisation problem that is solved in Section 3.6, we just focus more on
the details of the frequency continuation here. As in Experiment 1, we choose three
frequency groups with an increasing interval between the chosen frequencies. Figure
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5.1.8 shows the positions of the sensors at the end of each frequency group. Figures 3.6.2
and 3.6.4 show the initial and the final optimised reconstructions respectively. Clearly
the first group (lowest frequency) does most of the work since the sensors move the
largest distance in this group (from the ‘Initial Sensor Position’ to ‘Group 1 Solution’).
This makes sense as the lowest frequency objective function should be smooth enough
that the sensors can move far away from the starting guess. The Group 2 solution and
Group 3 solution respectively involve just small corrections of the Group 1 solution. In
the second group, the x positions of the outer sensors change noticeably (along with
small changes in z) and then in the final group the z positions move outwards. This
behaviour is also visualised in Figure 5.1.9. The first frequency group involves most of
the movement of the sensors in both the x and z directions, and takes 11 iterations
to converge. The second group involves less drastic changes in position and takes 6
iterations to converge, while the final group only takes 2 iterations to converge.
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Figure 5.1.8: Sensor positions converged to in each frequency group for Experiment 2.

In Figure 5.1.10, we show how the value of the upper-level objective function ψ
varies with iteration and across frequency groups. Most of the reduction of ψ occurs
in the first group, corresponding to the large change in sensor positions. Progressing
to the higher frequency groups results in a reduction in ψ, even without a change
in sensor position (i.e., at iterations 11 and 17) due to the lower-level continuation
occurring simultaneously with the upper-level continuation. The small corrections to
sensor position in those groups correspond to small reductions in ψ.

This example demonstrates the general behaviour that we expect from the bilevel
frequency continuation algorithm - most of the work, in terms of movement of sensors
and reduction in ψ, is done in the first group, with less and less work required as
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we progress through groups, due to the proximity of the starting guess to the optimal
solution.
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Figure 5.1.9: Sensor position versus iteration for each frequency group.
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Figure 5.1.10: Upper-level objective function ψ versus iteration for each frequency group.

Incorporating the Tikhonov Parameter into Bilevel Frequency
Continuation
We now discuss methods for including the optimisation of the FWI Tikhonov parameter
α, as discussed in Section 3.5, into our bilevel frequency continuation approach.

To understand how the upper-level objective function ψ varies with α across fre-
quencies, in Figure 5.1.11 we plot ψ for a range of α and a range of frequencies. These
plots are for the same problem shown in Figure 5.1.1, where instead of varying the
sensor positions, we vary α. We choose a constant symmetric sensor setup, and vary α
from 0 to 200, in steps of 0.25. At each step, we perform FWI and compute and plot
the value of ψ for that value of α. This is repeated for a range of frequencies. Note that
the lowest frequency (0.5 Hz) and highest frequency (7 Hz) in Figure 5.1.11 are the
same as that in Figure 5.1.2 (where sensor position is being varied). We see from Figure
5.1.11 that for all frequencies, there is one global minimum for α, which should be able
to be found by a local optimisation method from any starting guess. We can conclude
from this experiment that the frequency does not affect the smoothness of ψ versus α.
This is expected as the Tikhonov regularisation term in the FWI objective function
does not have any dependency on frequency. Therefore the optimisation of α does not
require upper-level frequency continuation in the same way that sensor position does.

However, although we don’t require frequency continuation to find the optimal α, we
still must optimise this parameter simultaneously with sensor positions to find the best
possible sensor position. The reason why is demonstrated in Figure 5.1.12. Here we plot
ψ versus sensor position, again for the setup in Figure 5.1.1, for a constant frequency,
4 Hz, and various values of α. Figure 5.1.12 shows that the parameter α affects the
shape of ψ, the number and position of local maxima/minima, where the global optimal
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sensor positions are, and the value of ψ at those positions. We recall that we saw the
effect of this in the experiments in Section 3.6, where the optimal sensor positions were
different depending on whether α was being optimised or not. Since α impacts the
optimal sensor positions, it should be optimised alongside the sensor positions in some
way, and not separately from it.
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Figure 5.1.11: Upper-level objective function ψ versus Tikhonov regularisation parameter
α for various frequencies.

We propose three approaches to the problem of incorporating the optimisation of α
into the bilevel frequency continuation algorithm. These are:

• Approach I: Include α in the full bilevel frequency continuation approach, i.e.,
optimise α simultaneously with sensor position in every frequency group.

• Approach II: Optimise sensors only in the first frequency group, while keeping α
constant, and then optimise α simultaneously with sensor position in the following
frequency groups. This approach allows the sensors to do most of their large
movement in the first group before adding α as an optimisation variable.

• Approach III: Optimise sensor positions only while keeping α constant for most
of the bilevel frequency continuation approach and include α as an optimisation
variable in final frequency group only. This means that there is no continuation
in α.

We provide an example of these approaches in the following experiment.
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Figure 5.1.12: Upper-level objective function ψ versus sensor position for various values
of α. Frequency is constant at 4 Hz. Note that the y-axis is on a log -scale so that all
three plots of ψ are visible clealy.

Experiment 3: We repeat Experiment 2 but instead of only optimising sensor
positions, we also optimise α. We use each of the three approaches proposed above and
compare the results. In Experiment 2 we use three frequency groups, meaning that
in this experiment, Approach I involves optimising α in all three groups, Approach II
involves optimising α in two groups, and Approach III involves optimising α in the final
group only. The starting guess used for α is 1.25.

The result of Approach I is shown in Figure 5.1.13. Subfigure (a) displays the
optimal positions of the sensors found by Approach I, and Subfigure (b) shows the
corresponding FWI reconstruction. Subfigure (c) shows the Tikhonov parameter
versus iteration for the whole algorithm, and Subfigure (d) displays the value of the
objective function ψ versus iteration, where each group is highlighted. In comparison
to Experiment 2 where only sensor positions are optimised, the iteration count has
increased significantly. The majority of the iterations still occur in the first group,
during which most of the reduction in ψ occurs. We can see from (c) that during the first
group the Tikhonov parameter grows very large in the first 19 iterations, reaching a peak
of 46.76, before decreasing again and converging to 3.89 at the end of the first group.
The parameter α remains relatively close to this value for the rest of the algorithm and
eventually converges to 4.88. The large increase of α is the first 19 iterations can be
explained as follows. The initial guess for sensors, shown in Figure 5.1.8, is relatively
poor, and when the sensor positions are ‘bad’, the regularisation parameter wants to
be higher to compensate for poor data that the sensors are providing. After around
20 iterations here, the sensor positions become ‘good’ enough that the regularisation
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parameter no longer needs to be so large, and so a decrease in α is seen. The several
iterations needed for the large increase in α only for α to decrease back to the correct
range in the first group seems to show that there is unnecessary work being done in
Approach I. In addition, we expect that the large change in α affects the shape of the
objective function in the first group and hence the optimal positions converged to at
the end of this first group. This in turn determines the final positions of the sensors, as
we know from Experiment 2 that after the first group the sensors only make smaller
movements. (We see that the change in α affects the final sensor position by comparing
the optimal positions found in each approach, i.e., subfigure (a) in Figures 5.1.13, 5.1.14
and 5.1.15).

Figure 5.1.14 shows the results for Approach II. Since α is not introduced in
the first frequency group, the number of iterations for this group is the same as in
Experiment 2, but there is a large increase in the number of iterations in the following
frequency groups. Subfigure (c) shows the value of α at each iteration once it is
introduced as an optimisation variable (i.e., group 1 is excluded because α is constant
there). We see that α does not have the large variation seen in Approach I. It converges
to 3.64.

Figure 5.1.15 shows the results for Approach III. We see that the optimal sensor
positions and FWI reconstruction for Approach II and III are almost exactly the same.
Since the optimisation of α occurs in the final frequency group only, there is a large
increase in the number of iterations in this final group. Subfigure (c) shows that it
takes 45 iterations to optimise α here, compared to Experiment 2 (optimising sensors
only) when only 2 iterations were required in the final group. There is also a large
decrease in the value of ψ seen in this final group (Subfigure (d)) when compared to
the small decrease in the final group seen in Experiment 2 (Figure 5.1.10). We note
that the optimal value of α found with Approach III was 3.64.
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Figure 5.1.13: Approach I results
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Figure 5.1.14: Approach II results
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Figure 5.1.15: Approach III results
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Comparison of the Approaches: Table 5.1.1 and Figures 5.1.17 and 5.1.16 provide
a direct comparison of these results. In Table 5.1.1 we see that Approach II and III
provide the same improvement factors and optimal α’s, but that Approach III takes
fewer overall iterations to reach this result. We also see that Approach I gives a different
improvement factor and optimal α as the other two approaches, and takes the same
number of overall iterations as Approach II.

The difference in results between Approach I and Approaches II and III, and the
similarity in the latter two approaches, is a consequence of the fact that the first
frequency group in the bilevel frequency continuation algorithm has the most influence
over the final positions of the sensors, and Approaches II and III have the same value
of α in the first group. This can be seen clearly in Figure 5.1.16, where the values of ψ
for Approaches II and III coincide for the first group (first 11 iterations). Although
they differ after the first group, they eventually converge to the same value. Approach I
differs completely from the other two approaches. The comparison of α versus iteration
in Figure 5.1.17 shows how large the variation of α is in Approach I, and also shows
how quickly Approach III can reach the same/a similar optimal value of α compared to
the other two approaches.

Based on these results, Approach III seems to be the best choice in terms of number
of iterations. However, as all but one frequency group depends on initial guess of
α, if the initial guess for α is poor, this could affect the positions that the sensors
converge to, and the sensors may end up in a non-optimal setup. We note that although
in this specific example the final improvement factor for Approach I is not as high
as that for Approach III, that this is not always the case. In particular, in the case
where we have a poor initial guess for α, Approach I will begin to work on correcting
this value immediately, and is expected to provide a better result than Approach III.
Therefore, if we believe we have a reasonable initial guess for α, then Approach III is
the recommended approach, and if we do not have knowledge of reasonable guess for α,
Approach I is recommended. However, it is of course acceptable to start optimising α
in any frequency group.

Approach Iteration Count Optimal α Improvement Factor
Group 1 Group 2 Group 3 Total

I 45 12 18 75 4.88 32.41
II 11 19 45 75 3.64 47.74
III 11 6 45 62 3.64 47.74

Table 5.1.1: Comparison of results from each approach (values are rounded to two
decimal places).
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Figure 5.1.16: Upper-level objective function ψ versus iteration for each approach.
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Figure 5.1.17: Tikhonov regularisation parameter α versus iteration for each approach.
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5.2 Linear System arising in the Upper-Level Gra-
dient

In Section 3.4.2, we derived a formula for the gradient of the upper-level objective
function and presented an algorithm for its computation (Algorithm 3.4.9). The
computation requires the solution to a linear system involving the FWI Hessian, given
by (3.4.20). In this section we discuss solving this linear system.

The system (3.4.20) must be solved for every training model during the computation
of the upper-level gradient, and so it is solved many times during the bilevel algorithm.
The overall cost of the bilevel algorithm in terms of the number of PDE solves, given by
(3.4.18), depends on the number of iterations (Ni) taken to solve (3.4.20). Therefore, it
is important that we understand what factors influence the size of Ni and how we can
reduce it.

In this section, we solve the system using the conjugate gradient method, and record
the number of iterations it takes to converge for various discretisation grids, frequencies
and regularisation parameters. We investigate the relationship between the number of
iterations needed for convergence, the number of model parameters, the frequency of the
problem, the regularisation parameters and the condition number of the Hessian. We
also present two novel strategies for preconditioning to reduce the number of iterations
to convergence and discuss the cost of each.

We restate the linear system (3.4.20) here,

H(mFWI(p,m′),p)δ(mFWI(p,m′),m′) = m′ −mFWI(p,m′), (5.2.1)

where the Hessian has the structure

H(m,p) = H(1)(m,p) +H(2)(m,p) + αDTD + µI, (5.2.2)

where H(1) is defined in (2.4.13), H(2) is defined in (2.4.14), the term αDTD is the
Hessian of the Tikhonov term and αI is the Hessian of the convex term. Section 2.4.3
contains a detailed discussion of the structure of the Hessian and Section 2.4.4 contains
a proof of the conditions under which the Hessian is positive definite. We can use the
conjugate gradient (CG) method to solve (5.2.1) because the Hessian is symmetric and,
by the theory in Section 2.4.4, is positive definite when µ is large enough. In practice
we find that the Hessian is positive definite even for small values of µ. We suspect
that this is because the Tikhonov parameter helps the positive definitiveness of H,
but we don’t have a proof of this as the Tikhonov term is only positive semi-definite.
Therefore, we still must be cautious and so we always include both regularisation terms,
as the H(1) +H(2) term alone is generally indefinite. We note that CG has been used to
succesfully solve systems involving the FWI Hessian (evaluated at intermediate models
during FWI) in [129].

This section is made up of two subsections - one that discusses the number of
iterations taken to solve (3.4.20) with the conjugate gradient method, and the other is
concerned with how to reduce this number with preconditioning.
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5.2.1 The Non-Preconditioned System
In this section we solve (5.2.1) using the conjugate gradient (CG) method and record
the number of iterations, Ni, taken to convergence. We solve different instances of
the system obtained by varying the regularisation parameters, α and µ, the size of
the discretisation grid, and the frequency. In this section we consider the CG method
to have converged if ||rn||2/||r0||2 ≤ 10−6, where rn denotes the residual at the nth
iteration and r0 denotes the initial residual. We denote the size of the discretisation
grid as n × n, where the grid size h is given by h = L/(n − 1), where the domain is
and L× L square. The number of model parameters M is equal to n2 as we have one
model parameter at each grid point.

As the system (5.2.1) involves the FWI solution, mFWI , each time we solve the
system in this section we must first solve the FWI problem. We solve the FWI problem
for the training/ground truth model and acquisition setup shown in Figure 5.2.1. We
perform FWI using synthetic data, taking care to avoid an inverse crime. Also, even
though we don’t require the explicit computation of the Hessian to solve (5.2.1) (because
we only require Hessian-vector products), we sometimes do compute this separately so
that we can record its condition number. We compute the condition number of the
Hessian using the cond function in Matlab.
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Figure 5.2.1: Ground truth model and acquisition setup used for experiements in this
section.

Number of Iterations for Varied Regularisation Parameters: Here we vary
the Tikhonov parameter α and convex parameter µ, and record the resulting number of
CG iterations, Ni, to solve (5.2.1). Varying the regularisation parameter has two main
consequences to the linear system (5.2.1). The first is that the FWI reconstruction,
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mFWI , changes which therefore affects the right-hand side of (5.2.1) directly and affects
the system matrix as well, since the Hessian (5.2.2) is evaluated at mFWI . The second
consequence is that the regularisation terms in the Hessian (5.2.2) vary. Therefore,
along with the number of iterations, we also record ψ (to measure the quality of the
reconstruction mFWI) and the condition number of the Hessian, κ(H). (Recall that ψ
is the half 2-norm squared of the right-hand side of (5.2.1).) We will see that, since ψ
and κ(H) are affected differently by the regularisation parameters, it can be difficult to
see any relationship between the regularisation parameters and the number of iterations.

The computations here are performed on a 50×50 grid. The frequency is constant at
2 Hz (which equates to approximately 2.5 wavelengths in the domain). Note that when α
is being varied, µ is kept constant and vice versa. We vary α and µ in appropriate ranges
such that a reasonable reconstruction is found. For every variation of regularisation
parameters here, the Hessian was found to be positive definite.

α Ni ψ κ(H)
0.5 152 6.0034×10−5 8.2230 ×103

1 130 5.0861 ×10−5 4.0430 ×103

5 126 2.2854×10−5 1.8294 ×103

10 136 1.3052 ×10−5 1.8628 ×103

20 142 1.0507×10−5 1.9068 ×103

50 156 2.3348 ×10−5 1.9705 ×103

100 161 4.2605 ×10−5 2.0126 ×103

Table 5.2.1: Effect of varying Tikhonov regularisation parameter α on solving (5.2.1).
The convex parameter is constant at µ = 10−8.

Table 5.2.1 shows the effect of varying the Tikhonov regularisation parameter α
on solving (5.2.1). The number of iterations is clearly impacted by the value of α,
but the relationship between α and Ni is not simple. As α is increased from 0.5, Ni

decreases until we reach α = 10, where Ni increases again. In Figure 5.2.2, we see that
the relationship between the Tikhonov parameter and the number of iterations Ni to
solve the system (5.2.1) is complicated, and seems to be affected by the combination of
the quality of the reconstruction mFWI and the condition number of the Hessian. We
also see that Ni does not blow up across the range of α.

In Table 5.2.2 we study the effect of varying the convex regularisation parameter µ.
The convex parameter µ appears to affect Ni less than α. The number of iterations is
constant as µ is increased from 10−10 to 10−6. The error in the reconstruction ψ and
the condition number of the Hessian κ(H), varies by only a very small amount up to
µ = 10−7, and has a slightly larger change at µ = 10−6. When µ = 10−5, the error in
the reconstruction increases and κ(H) reduces substantially. It is only at this point that
we see a decrease in the number of iterations. However, the reconstruction becomes
very poor when µ is increased too much, and so a large value of µ would not be used
in practice. Therefore, in practice, the chosen value of µ does not appear to affect the
number of iterations taken to solve (5.2.1).
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Figure 5.2.2: Plots of values in Table 5.2.1 showing the effect of varying Tikhonov
parameter α. Note that the x-axis is on a log scale so that the variation in α is noticeable.

µ Ni ψ κ(H)
10−10 126 2.2864 ×10−5 1.8331 ×103

10−9 126 2.2862 ×10−5 1.8327 ×103

10−8 126 2.2854 ×10−5 1.8294 ×103

10−7 126 2.2811 ×10−5 1.7969 ×103

10−6 126 2.7623 ×10−5 1.5259 ×103

10−5 110 4.4471 ×10−4 6.1756 ×102

Table 5.2.2: Effect of varying the convex regularisation parameter µ on solving (5.2.1).
The Tikhonov parameter is constant at α = 5.

Number of Iterations for Varied Grid Size: In this experiment, we vary the grid
size that the domain is discretised on, i.e., we vary the mesh diameter h = L/(n− 1),
and consequently the number of discretisation nodes in each direction n, and the number
of model parameters M . We choose a constant frequency, 0.5 Hz, that is low enough
to ensure numerical accuracy for the coarsest grid. On the coarsest grid there are at
least 32 grid points per wavelength, and on the finest grid there are at least 200 grid
points per wavelength. We choose the combination of regularisation parameters α = 5
and µ = 10−6 on the 50× 50 grid, chosen because this combination produces a good
quality reconstruction. To ensure we are solving the same FWI problem on all grids
(i.e., that the balance of the misfit and two regularisation terms remains the same and
that equivalent reconstructions, mFWI , are produced) the regularisation parameters
are scaled with the grid size. Each time the linear system (5.2.1) is solved, we record
the number of iterations Ni and the condition number of the Hessian κ(H).
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n× n M Ni κ(H)
21 × 21 441 52 0.2143 ×103

26 × 26 676 65 0.3266 ×103

51 × 51 2601 132 1.2599 ×103

101 × 101 10201 265 4.9319 ×103

126 ×126 15876 330 7.6746 ×103

Table 5.2.3: Effect of varying the grid size n× n on solving (5.2.1).

Table 5.2.3 shows that as the discretisation grid is made finer, i.e., as n is increased,
the number of iterations Ni and the condition number of the Hessian κ(H) both increase
as well. By performing extrapolation on the data in Table 5.2.3, we have the following
approximate relationships,

Ni ∝ n, (5.2.3)
κ(H) ∝M = n2, (5.2.4)

where ∝ denotes proportionality. We also find the following relationship,

Ni ∝
√
κ(H). (5.2.5)

This observed behaviour agrees with that noted in the literature (for example, see
[183, Section 3]).

Number of Iterations for Varied Frequency: In this experiment, we investigate
how the number of iterations is affected by frequency f . We keep the product hω
constant (which keeps the number of grid points per wavelength constant). We recall
that h = L/(n− 1) and ω = 2πf .

n× n f Ni κ(H)
26 × 26 0.5 65 0.3267 ×103

51 × 51 1 129 1.6145 ×103

101 × 101 2 258 6.0978 ×103

201 × 201 4 532 28.633 ×103

Table 5.2.4: Effect of varying the frequency (while keeping hω constant) on solving
(5.2.1).

In Table 5.2.4, we can see that as frequency is doubled, the number of iterations
is approximately doubled. We can also see that the condition number of the Hessian
increases as the frequency increases. Extrapolating the data in Table 5.2.4, we see the
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following power-law relationships,

Ni ∝ ω, (5.2.6)
κ(H) ∝ ω2. (5.2.7)

These relationships agree with the previous section that Ni ∝
√
κ(H). The results

(5.2.6) and (5.2.7) are a manifestation of the fact that N ∼ f here.

5.2.2 Preconditioners
As seen in Section 5.2.1, the number of iterations taken to solve (5.2.1) with the CG
method can be quite large, and increases when the number of model parameters is
increased. This system must be solved many times during the bilevel algorithm - it is
solved every time the gradient is computed and for each training model. Therefore,
it would be helpful to reduce the number of iterations as much as possible. To do so,
we consider the preconditioned conjugate gradient (PCG) method. We propose the
following two ideas for preconditioners:

• Preconditioner 1:
P1 = H−1(mFWI(p0,m

′),p0)
This preconditioner involves computing the full Hessian explicitly at the initial
guess p0. The inverse of this Hessian is then used as the preconditioner for (5.2.1).
During the bilevel algorithm the sensor positions p will move away from the
initial guess p0, and therefore the reconstruction mFWI(p,m′) will change from
mFWI(p0,m

′). We will see later that the effectiveness of this preconditioner
is reduced for p not near p0. Therefore, the preconditioner may have to be
recomputed as the bilevel algorithm progresses to ensure the preconditioner is
still effective. Since the Hessian involves a sum over frequency, the strategy we
propose is to recompute the preconditioner at the beginning of each frequency
group. We note that since the Hessian depends on mFWI(p0,m

′), which is the
reconstruction of the training model m′, the preconditioner will be different for
each training model. The cost of computing this preconditioner, in terms of the
number of PDE solves, is M PDE solves, for each source, frequency and training
model.

• Preconditioner 2:
P2 = H−1

reg =
(
αDTD + µI

)−1

This preconditioner involves computing the regularisation terms of the Hessian.
This is cheap to compute as no PDE solves are required. In addition, this
preconditioner is independent of sensor position p, FWI model mFWI , training
models m′ and frequency, so when optimising sensor positions alone, it only needs
to be computed once at the beginning of the bilevel algorithm. This section
mainly focuses on optimising sensors alone but we show later that even when
optimising α, this preconditioner does not need to be recomputed since it remains
effective even when α is no longer near its initial guess.
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We note that although we write the preconditioners as the inverse of matrices in the
formulae above, we do not invert the full matrices directly in practice. Instead, we
compute the Cholesky factorization of these matrices (as both preconditioners should
be positive definite) and store and invert the resulting lower triangular matrix.

We now do some experiments to demonstrate the reduction in the number of
iterations for PCG to converge, compared to the number of CG iterations in Section
5.2.1. We recall that we solve (5.2.1) for the problem shown in Figure 5.2.1. We
denote the number of iterations taken using Preconditioner 1 as NP1

i and the number of
iterations taken using Preconditioner 2 as NP2

i . As we have explained, the preconditioner
P1 depends on the sensor positions. Therefore we test two versions of P1 - one where the
sensor positions p0 are close to the current sensor positions p (i.e., close to those shown
in Figure 5.2.1) and one where the sensor positions p0 are far from p. We denote these
preconditioners as P1near and P1far and their iterations counts as NP1near

i and N
P1far
i

respectively. We display these ‘near’ and ‘far’ sensor setups in Figure 5.2.3 (a) and (b)
respectively.
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(a) Sensor positions ‘near’ p
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(b) Sensor positions ‘far’ from p

Figure 5.2.3: Sensor positions used to compute the preconditioner P1. This precondi-
tioner is used to solve (5.2.1) for the problem shown in Figure 5.2.1.

We now repeat some of the experiments in Section 5.2.1 with these preconditioners.

Number of Iterations for Varied Regularisation Parameters: Table 5.2.5 and
Figure 5.2.4 show the reduction in iterations needed to solve (5.2.1) when using the
PCG method. We see that preconditioner P1 is very effective at reducing the number of
iterations when the sensors p0 are close to p. The number of iterations are reduced by
between 85-96%. When p0 is not close to p however, P1 is not as effective. In this case,
the PCG method is even worse than the CG method when α is small, but improves
as α is increased, reaching approximately a 89% reduction in number of iterations at
best. The preconditioner P2 produces a more consistent reduction in the number of
iterations, ranging from 71-91%.
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α Ni NP1near
i N

P1far
i NP2

i

0.5 152 24 180 43
1 130 19 136 36
5 126 11 64 33
10 136 10 45 26
20 142 8 33 22
50 156 7 24 16
100 161 6 17 14

Table 5.2.5: Effect of varying Tikhonov regularisation parameter α on solving (5.2.1)
using PCG. The convex parameter is constant at µ = 10−8.
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Figure 5.2.4: Plot of values in Table 5.2.5, showing the effect of varying the Tikhonov
parameter on solving (5.2.1) using PCG compared to CG. Note that the x-axis is on a
log scale so that the variation in α is noticeable.

Figure 5.2.5 shows the relationship between α and the PCG iterations more clearly
by plotting on a log-log scale. While the number of CG iterations has a complicated
relationship with α, the relationship with the number of PCG iterations is much
more straightforward, and an increase in α produces a decrease in the number of PCG
iterations. The decrease is fast for NP1far

i (subfigure (b)), and we observe an approximate
relationship like NP1far

i ∝ α−0.45. For the more effective P1 preconditioner (subfigure
(a)), we observe an approximate relationship like NP1near

i ∝ α−0.26. The slowest decrease
is observed for P2 (subfigure (c)), and we find the approximate relationship NP2

i ∝ α−0.21.
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Figure 5.2.5: Log-log plots of the number of PCG iterations versus the Tikhonov
parameter α.

Table 5.2.6 and Figure 5.2.6 demonstrate how the number of iterations vary with
the convex parameter µ. We have seen that the number of CG iterations generally
stays constant with µ, and decreases when µ becomes too large and produces a poor
reconstruction (at µ = 10−5). We do not see the this type of behaviour with P1, and
there is an increase in the number of iterations when the reconstruction is poor. The
number NP1near

i remains constant, at approximately a 90% reduction, until µ = 10−5

where the iteration count increases by one. The number NP1far
i varies slightly until

µ = 10−6, when there is a larger increase in the number of iterations. The behaviour
for P2 is completely different, and we see a steady decrease in NP2

i as µ is increased. In
conclusion, the behaviour of the two preconditioners is affected very differently by a
change in µ.

µ Ni NP1near
i N

P1far
i NP2

i

10−10 126 11 63 37
10−9 126 11 63 35
10−8 126 11 64 33
10−7 126 11 62 31
10−6 126 11 68 30
10−5 110 12 71 27

Table 5.2.6: Effect of varying the convex regularisation parameter µ on solving (5.2.1)
using PCG. The Tikhonov parameter is constant at α = 5.
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Figure 5.2.6: Plot of values in Table 5.2.6, showing the effect of varying the convex
parameter on solving (5.2.1) using PCG. Note that the x-axis is on a log scale so that
the variation in µ is noticeable.

Number of Iterations for Varied Grid Size: As in Section 5.2.1, we vary the
grid size that the domain is discretised on and record the resulting number of iterations
to solve (5.2.1). We repeat this for two frequencies, 0.5 Hz in Table 5.2.7, and 2 Hz in
Table 5.2.8. For the lower frequency, the PCG iterations using P1 grows very slowly as
the grid is refined, but for the higher frequency the number of iterations decrease as
the grid is refined. For the lower frequency, the PCG iterations using P2 stays constant
as grid size is refined, while for the higher frequency the number of iterations decreases.
This behaviour is likely related to the fact that as frequency increases, we require a
finer mesh to avoid larger numerical errors. Therefore for the 2 Hz table, we expect
that the finer mesh results in a more accurate FWI reconstruction, and hence less
iterations are required to solve (5.2.1) to the required tolerance. For the 0.5 Hz problem,
the frequency is so low that we don’t observe this effect. For both frequencies, using
PCG with either preconditioner solves the issue we had with the CG method where the
number of iterations grows with grid size. This behaviour is seen clearly in Figure 5.2.7.
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n× n M Ni NP1near
i N

P1far
i NP2

i

21 × 21 441 52 5 17 16
26 × 26 676 65 6 18 16
51 × 51 2601 132 7 18 16

101 × 101 10201 265 7 19 16
126 ×126 15876 330 7 20 16

Table 5.2.7: Effect of varying the grid size n × n on solving (5.2.1). Frequency is
constant at 0.5 Hz.

n× n M Ni NP1near
i N

P1far
i NP2

i

21 × 21 441 59 14 73 32
26 × 26 676 64 13 68 32
51 × 51 2601 126 11 68 30

101 × 101 10201 258 11 64 29
126 ×126 15876 316 10 62 28

Table 5.2.8: Effect of varying the grid size n × n on solving (5.2.1). Frequency is
constant at 2 Hz.
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Figure 5.2.7: Log-log plots of values in Tables 5.2.7 and 5.2.8 showing the effect of
varying grid size n× n on the number of iterations for the PCG method with different
preconditioners compared to the CG method.
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Number of Iterations for Varied Frequency: In Table 5.2.9, we record the
number of PCG iterations for varying frequency, while keeping the product hω constant.
For both P1 and P2, the number of iterations increase with frequency, as shown in
Figure 5.2.8. We observe the following approximate relationships: NP1near

i ∝ ω0.44,
N
P1far
i ∝ ω0.88, and NP2

i ∝ ω0.39. Therefore we see that the number of PCG iterations
with preconditioner P1 grows faster with frequency than the number of PCG iterations
with preconditioner P2.

n× n f Ni NP1near
i N

P1far
i NP2

i

26 × 26 0.5 65 6 18 16
51 × 51 1 129 8 29 21

101 × 101 2 258 11 62 28
201 × 201 4 532 15 106 36

Table 5.2.9: Effect of varying the frequency (while keeping hω constant) on solving
(5.2.1).
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Figure 5.2.8: Log-log plots of values in Table 5.2.9 showing the effect of varying frequency
on the number of iterations for the PCG method with different preconditioners compared
to the CG method.
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Optimising α: So far in this section we have only considered the case where sensor
positions alone are being optimised. We did this by testing the preconditioner P1 at
different sensor positions, and observed that P1 becomes less effective when the sensor
positions at which P1 is computed is far from the sensor positions in the system (5.2.1).
This observed behaviour led to the conclusion that P1 should be recomputed throughout
the bilevel algorithm. Here we consider the case where α is also being optimised. Both
preconditioners, P1 and P2, are computed using the initial α, and so we need to test
the effectiveness of P1 and P2 as α is varied from its initial guess. As we already have a
strategy for recomputing P1, we use the results here to decide whether/how often P2
should be recomputed as α is varied in the bilevel algorithm.

When α is being optimised, the linear system (5.2.1) is rewritten as a function of α,

H(mFWI(p, α,m′),p, α)δ(mFWI(p, α,m′),m′) = m′ −mFWI(p, α,m′). (5.2.8)

The experiment here involves considering an initial α at which the preconditioners
are computed, and then varying α in (5.2.8) (which involves performing FWI for the
new α to get mFWI). We record the number of iterations as α is varied. We choose
an initial α = 5, and compute the preconditioners at this value. The α in (5.2.8) is
varied according to the first column of Table 5.2.10. Therefore the row where α = 5
corresponds to that same row in Table 5.2.5 (i.e., the case where α has not been changed
after the preconditioner is computed). All other rows are compared to this row. We
note that for these experiments, we use a 50× 50 grid, the frequency is kept constant
at 2 Hz and the convex parameter is kept constant at 10−8.

α Ni NP1near
i N

P1far
i NP2

i

0.5 152 24 103 46
1 130 19 90 38
5 126 11 64 33
10 136 13 54 25
20 142 15 51 21
50 156 20 46 15
100 161 24 42 13

Table 5.2.10: Effect of α in (5.2.8) being varied but the preconditioner staying constant
at α = 5. The convex parameter is constant at µ = 10−8.

The iteration counts in Table 5.2.10 show that as α moves away from α = 5, NP1near
i

gets larger, however in general it remains small and is still a substantial reduction from
Ni. The iteration counts NP1far

i have a different behaviour - the iteration counts increase
quickly as α is decreased from 5, and the iteration counts decrease as α is increased
from 5. This distinct difference in the behaviour of NP1near

i and N
P1far
i demonstrates

that the manner in which the change in Tikhonov parameter impacts the effectiveness
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of P1 depends heavily on the sensor positions. In addition, we observe that the change
in sensor positions appear to have a more significant effect on the number of iterations,
and recomputing P1 at the beginning of each frequency group still appears to be the
best approach to keep the number of iterations low.

The iteration counts for P2 increase as α is decreased from 5 and they decrease as
α is increased from 5. All iteration counts for P2 are still a large improvement from
the unpreconditioned conjugate gradient method. Therefore, although the effectiveness
of P2 will vary depending on how α changes during the bilevel algorithm, this change
may be favourable (particularly if the initial guess for α is smaller than its optimal
value), and there is not necessarily any advantage gained by recomputing P2 during the
bilevel algorithm. Therefore, we conclude that P2 (or specifically the Cholesky factor of
αDTD + µI) just needs to be computed once, at the beginning of the bilevel algorithm.

5.2.2.1 Cost

We discuss here more details about the cost of the sensor optimisation problem where
(5.2.1) is solved with CG versus PCG for our two different preconditioners. The cost
is measured in terms of the number of PDE solves. We remark that the estimates
of cost are given in terms of the number of iterations Ni, NP1

i and NP2
i . In reality

these numbers are not constant and vary throughout the bilevel algorithm, so when
we include them in the following cost analysis what we really mean in practice is the
average values of Ni, NP1

i and NP2
i .

We recall that when (5.2.1) is solved with CG, the overall cost of the bilevel algorithm
in terms of the number of PDE solves is given by (3.4.18). We note that (3.4.18) is
the cost for solving the bilevel problem with gradient descent, and so the factor Nu,
which is the number of upper-level iterations, is also just the number of times that
the upper-level gradient is computed. We note here that when a line search algorithm
is used in the upper-level optimisation method, there is more gradient computations
required than the number of upper-level iterations. To account for this in this cost
analysis, from here on we will replace Nu by N ls

u , which we refer to as the total number
of gradient computations. In the case where a line search algorithm is used N ls

u is
the product of the number of upper-level iterations and the average number of line
search iterations per upper-level iteration. When no line search algorithm is used, N ls

u

is simply equal to Nu. We also note that, assuming the bilevel frequency continuation
approach is used, Nω denotes the total number of frequencies used across all frequency
groups, for example if there is a shared frequency between groups then this frequency
is counted twice. We rewrite the overall cost of the bilevel when solving (5.2.1) with
CG here,

# PDE Solves when using CG = Nm′N ls
u NsNω (2Nl + 2Ni + dNr), (5.2.9)

When solving (5.2.1) with PCG using P1, the factor Ni becomes NP1
i which, as

seen in the tables in this section, is usually a reduction but can vary dramatically
during the algorithm. However, there is an additional cost involved in computing this
preconditioner. This is the cost of computing a full Hessian, which depends on the
number of model parameters M , which is usually very large. Assuming we recompute
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the preconditioner at the beginning of each frequency group, the overall cost of the
bilevel when solving (5.2.1) with PCG with P1 is

# PDE Solves when using PCG with P1 =
Nm′NsNω

(
N ls
u

(
2Nl + 2NP1

i + dNr

)
+M

)
. (5.2.10)

Therefore, for P1 to reduce the overall cost of the bilevel algorithm, we require the
following to be true (

Ni −NP1
i

)
>

M

2N ls
u

,

i.e., we require the difference in iterations between the CG and PCG method to be
greater than some threshold involving the number of model parameters and number of
gradient evaluations. To understand how likely this is, we use the example of Table
5.2.7. Consider the problem on the 101× 101 grid. The value of NP1

i varies depending
on how far away the sensor positions are from the starting guess so here we estimate
NP1
i as an average of the ‘near’ and ‘far’ values, giving the difference Ni −NP1

i as 252.
Therefore, for P1 to be effective in the bilevel algorithm, there needs to be are least
21 gradient evaluations. Between upper-level iterations and line search evaluations, 21
gradient evaluations is often reached in practice.

When solving (5.2.1) with PCG using P2, the factor Ni becomes NP2
i , which as seen

in the earlier tables is consistently a reduction in the number of iterations. Computing
P2 does not require any additional PDE solves. Therefore, the overall cost of the bilevel
when solving (5.2.1) with PCG with P2 is,

# PDE Solves when using PCG with P2 =
Nm′N ls

u NsNω

(
2Nl + 2NP2

i + dNr

)
. (5.2.11)

Therefore, for P2 to reduce the overall cost, we simply require

NP2
i < Ni,

which we expect to always be true based on our earlier experimentation.
Comparing the two preconditioning strategies, P1 results in an overall cheaper

algorithm than P2 when the following is true,(
NP2
i −NP1

i

)
>

M

2N ls
u

.

Since the difference between NP2
i and NP1

i can be small, P1 is usually only more effective
than P2 if the size of the problem, M , is small enough, or there are many gradient
evaluations N ls

u . For problems with a large M , we would expect P2 to be more effective
than P1. As an example, we return to the 101×101 grid row in Table 5.2.7. Considering
NP1
i as an average of the ‘near’ and ‘far’ values, the difference NP2

i −NP1
i is 3. By the

above inequality, P2 would be more effective in this case. The preconditioner P1 would
only be more effective if the number of gradient evaluations became greater than 1700,
which should not generally occur in practice.
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5.2.2.2 Experiments

We now include some full sensor optimisation examples to investigate the overall
speedup achieved through the use of preconditioners P1 and P2 in practice. Each sensor
optimisation example is repeated three times - once without a preconditioner, once
using P1 and once using P2. We report the time taken for the bilevel algorithm to finish
in each case. The aim of these experiments is to highlight the effectiveness of both
our preconditioners within the bilevel algorithm and to compare the efficiency of P1
and P2 across different examples. Therefore, in the discussion of each experiment, we
focus on the computation time rather than on the optimal sensor positions and the
reconstructions produced, although we still visualise these for completeness.

Example 1: In this example, we use the ground truth in Figure 5.2.1 as a training
model. The source positions indicated in Figure 5.2.1 are also used in this experiment.
We optimise the positions of three sensors and keep the Tikhonov regularisation
parameter constant. We discretise the model into a 50× 50 grid (so that M = 2601)
and use a bilevel frequency continuation strategy with three groups from 0.5 Hz to 2.5
Hz. The results of the algorithm are shown in Figure 5.2.9. The times for the whole
algorithm to converge for each approach are shown in Table 5.2.11. Both preconditioning
strategies are faster than using no preconditioner, reducing the time by over 40% each.
In this example, the preconditioner P1 is faster than P2, but only by a few seconds. Since
this example is on a coarse grid, M is relatively small, and so the cost of computing
P1 at the beginning of each frequency group is worth the reduction in PCG iteration
produced.
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Figure 5.2.9: Optimised sensor positions and the resulting reconstruction of the training
model for Example 1.
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Preconditioning Strategy
None P1 P2

Time (seconds) 1173 664 689

Table 5.2.11: Time taken for Example 1 to converge for each preconditioning strategy.

Example 2: In this example, we repeat Example 1 but on a finer grid. We use a
101×101 grid, and hence, M = 10201. The results of the algorithm are shown in Figure
5.2.10. The finer grid produces a better reconstruction than that seen in Example 1. The
times for the whole algorithm to converge for each approach are shown in Table 5.2.12.
Again, both preconditioning strategies are faster than using no preconditioner, but now
there is a noticeable difference in time between the two preconditioning strategies. The
P2 preconditioner results in an algorithm that is approximately 53 minutes faster than
using no preconditioner, whereas the P1 preconditioner results in an algorithm that is
approximately 32 minutes faster than using no preconditioner. The large M in this
example is what makes the P1 preconditioner slower than P2.
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Figure 5.2.10: Optimised sensor positions and the resulting reconstruction of the training
model for Example 2.

Preconditioning Strategy
None P1 P2

Time (seconds) 11928 10017 8730

Table 5.2.12: Time taken for Example 2 to converge for each preconditioning strategy.
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Example 3: In this example, we use Figure 5.2.11 as the training model. This model
is discretised into a 101× 101 grid, and therefore M = 10201. We optimise five sensor
positions and keep the Tikhonov regularisation parameter constant. The results of
the algorithm are shown in Figure 5.2.12 and the times for the whole algorithm to
converge for each approach are shown in Table 5.2.13. As in Example 2, we find that
the P2 preconditioning strategy produces the fastest algorithm. Both preconditioning
strategies produce a substantial decrease in the overall time. Using P1, the algorithm
becomes approximately 3 hours 49 minutes faster than using no preconditioner, and
using P2, the algorithm becomes approximately 4 hours 45 minutes faster than using no
preconditioner. The reason that the preconditioners are even more effective here than
in Example 2 is the large number of gradient evaluations in this example. Example
3 took 60 upper-level iterations to reach the pre-set convergence tolerance, whereas
Example 2 only involved 19 iterations. Each upper-level iteration also involves at
least one line search iteration, and so the overall number of gradient evaluations grows
quickly with the number of upper-level iterations. The larger the number of gradient
evaluations there are, the more often the linear system must be solved and hence the
more important the preconditioners become.
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Figure 5.2.11: Training model used for Example 3.

Preconditioning Strategy
None P1 P2

Time (seconds) 43292 29548 26216

Table 5.2.13: Time taken for Example 3 to converge for each preconditioning strategy.
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Figure 5.2.12: Optimised sensor positions and the resulting reconstruction of the
training model for Example 3.

In conclusion, the use of a preconditioner is very effective at reducing the number
of iterations needed to solve the system (5.2.1) and in speeding up the overall bilevel
algorithm. Based on the tables of iterations, the cost analysis and the examples
presented in this section, we adapt the P2 preconditioning strategy. In the tables of
iterations taken to solve system (5.2.1), P2 produces iterations that are always less than
the non-preconditioned method. The preconditioner P1 has the potential to result in less
iterations than P2, however P2 appears to be more reliable. In the full sensor placement
optimisation examples, P2 has been shown to work well consistently. Although there
are cases when P1 works better, this tends to be for smaller problems, and P2 always
works just as well or better than P1. Outside of this section, all other experiments in
this thesis are performed using the preconditioner P2.

We remark that these preconditioning strategies may be useful outside of the sensor
optimisation problem and could help speed up the solution method for any system
involving the Hessian, such as solving the standalone FWI problem with Newton’s
method as in [129].

5.3 Parallelisation and Scaling
In this section, we discuss the implementation of the full bilevel algorithm for many
training models, and how this implementation can be parallelised. We include an
example to demonstrate the parallel scalability of the problem.

When we are learning the optimal sensor positions/regularisation parameter from a
set of training modelsM′, we must perform FWI for each training model, m′ ∈M′, to
produce each corresponding lower-level solution mFWI(p,m′). FWI for each training
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model is completely independent of FWI for the other training models. Therefore, the
lower-level can be parallelised over the training models. The upper-level cannot be
parallelised as straightforwardly, as we need all training models to compute the gradient
and hence to compute the update to the parameters being optimised. However, parts of
the gradient computation can be parallelised. We recall that the upper-level gradient is
given by (3.4.12), involving the matrix B ∈ RM×dNr and the vector δ ∈ RM×1. Without
going into too much detail here, the gradient computation is summarised by following
steps: (i) solving (5.2.1) for δ for each m′ (as discussed in discussed in Section 5.2),
(ii) computing the matrix B for each m′, (iii) performing the multiplication in (3.4.12)
explicitly and summing over the training models. Therefore, steps (i) and (ii) can be
parallelised over the training models, and the results are then combined for step (iii).
We implement this parallelisation using the parfor function in Matlab, which executes
for-loop iterations in parallel on different ‘Matlab workers’. The algorithm is then run
on the University of Bath HPC cluster Balena.

Having implemented an algorithm that works across a number of workers, we
now investigate the scalability of the algorithm. Scalability refers to an algorithm’s
performance with varying problem sizes and numbers of workers. It is important that
our algorithm is scalable for parallel computing to be efficient. We examine two types of
scaling here - strong scaling and weak scaling. Strong scaling refers to the algorithm’s
performance when the total problem size is kept fixed (i.e., the number of training
models is fixed), and the number of workers is varied. Weak scaling refers to when the
problem size increases at the same rate as the number of workers, keeping the amount
of work per worker the same.

We test both strong and weak scaling by running the full bilevel algorithm three
times, recording the time it takes to complete and reporting the average of these times
here. The times that we present here are the average time taken for Approach III in
Section 5.1 to converge, i.e., we are optimising the sensor positions in all frequency
groups and in the final frequency group we optimise sensor positions, and the Tikhonov
regularisation parameter simultaneously. We do not include the timings for the other
two bilevel frequency continuation approaches, or for optimising sensor positions alone,
as although the actual timings are different, the behaviour and conclusions are the same
for all approaches.

5.3.1 Strong Scaling
For the strong scaling experiment, we measure the time taken for a problem with 16
training models to run for various numbers of Matlab workers. These training models
are displayed in Figure 5.3.1 and involve a Gaussian bump with maximum wavespeed of
2100 m/s, centred at various positions along a horizontal line. Each of these models are
discretised into 50× 50 grids. Three sources are used for acquisition and the positions
of three sensors and the Tikhonov regularisation parameter are optimised.

The average times for the bilevel algorithm to run are given in Table 5.3.1. Times
are given to the nearest second. As we add more Matlab workers, the work done per
each worker is reduced and hence the computational runtime is decreased.
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Figure 5.3.1: Set of training models M′ used for strong scaling experiments.

Number of Matlab workers n
1 2 4 8 16

Runtime (s) 61208 33759 18973 7151 4254

Table 5.3.1: Strong scaling runtime results.

Extrapolating the results in Table 5.3.1, we observe the following relationship between
the runtime and the number of workers,

Runtime ∝ n−0.99.

If the algorithm could be completely parallelised, we would expect the runtime to
be exactly inversely proportional to number of workers, but in practice this is rarely
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achieved due to parallel overhead and serial parts of the algorithm. In our case, the
runtime scales very well with the number of workers, despite the fact that only certain
sections of the code are parallelised over the training models.

To examine the results further, we introduce the concept of speedup. Simply, speedup
measures how much faster the algorithm becomes when run on more workers. The
formula for speedup is

Speedup = τ1

τn
,

where τ1 is the computational time for running the algorithm on one worker, and τn is
the computational time for running the algorithm on n workers. Linear speedup, with
speedup equal to the number of workers exactly, is ideal as because that would mean
that every worker would be contributing 100% of its computational power. We include
the values of speedup for our implementation in Table 5.3.2, where values are rounded
to two decimal places.

Number of Matlab workers n
1 2 4 8 16

Speedup 1 1.81 3.22 8.56 14.39

Table 5.3.2: Strong scaling speedup.

Taking a least squares fit of the data in Table 5.3.2, we find that the gradient is 0.99,
suggesting that the speedup scales like n0.99. This relationship implies that the speedup
that we are observing in practice is close to the ideal. This may be overly optimistic as
the value for 8 workers in this example is better than expected. Excluding this value
from the least squares fit gives the relationship that speedup scales like n0.96. We note
that the speedup observed for 8 workers is called superlinear speedup and is related
to the fact that there is more cache memory available as the number of workers is
increased, enabling the faster access of data [156].

The final measurement of scalability that we examine is the efficiency of parallel
implementation. The strong scaling efficiency is defined as the ratio of the ideal runtime
to the measured runtime. The ideal time for the algorithm to run on several workers
is the time you expect the algorithm should take based on the measured time at the
smallest worker count. Therefore, the formula for strong scaling efficiency can be written
as

Strong Scaling Efficiency = τ1

nτn
,

and is often expressed as a percentage. We find that the efficiency at 16 workers is
89.93%. Note that anything approaching 100% efficiency is rarely achieved in practice.

5.3.2 Weak Scaling
We test weak scaling with the following example. Again, three sources are used for
acquisition and the positions of three sensors and the Tikhonov regularisation parameter
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are optimised. The training model used is shown in Figure 5.3.2. When running the
algorithm with larger numbers of training models, we use copies of the model in Figure
5.3.2 to create a set. In this way we can be certain that we are solving the same problem
as the number of training models is increased. (Although in practice the training set is
made up of different models, if we were to use various different training models here, the
objective function, optimal parameters and the difficulty of finding those parameters
would change and we would not be able to adequately measure how the algorithm
scales.)
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Figure 5.3.2: Training model m′ used for scaling experiments

As we vary the number of training models, we also vary the number of workers, so that
the problem size per worker remains constant. The average runtimes (to the nearest
second) are given in Table 5.3.3.

Number of training models Number of Matlab workers n
1 2 4 8 16

1 2565
2 5103 2601
4 9818 5057 2717
8 19709 9886 5440 2849
16 36666 19819 10775 5551 2921

Table 5.3.3: Weak scaling runtime results.

If the problem were to scale perfectly, the runtimes along the diagonal would be
constant. This is not the case here, and we see some growth in time as the number of
workers and training models is increased. However, the growth is slow (approximately
growing as n0.05).
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To measure weak scaling, we define a quantity called scaled speedup, given by

Scaled Speedup = τ1(n)
τn(n) ,

where τ1(n) is the computational time that a problem of size n takes running on one
worker, and τn(n) is the computational time that a problem of size n takes running
on n workers. This is called scaled speedup as it is calculated based on the amount of
work done for a scaled problem size (in contrast to the previous definition of speedup
which focuses on a fixed problem size). The scaled speedup is plotted in Figure 5.3.3.
The approximate relationship that we observe is

Scaled Speedup ∝ n0.91.

The scaled speedup grows as the number of workers/problem size is increased. It doesn’t
grow exactly proportional to the number of workers however, due to the increased
parallel overhead as the number of workers is increased.
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Figure 5.3.3: Log-log plot of scaled speedup.

The weak scaling efficiency is defined here as the ratio between the time to complete
a problem with one training model on one worker to the time taken to complete a
problem with n training models on n workers, i.e.,

Weak Scaling Efficiency = τ1(1)
τn(n) .

The plot of weak scaling efficiency versus n for this problem is shown in Figure 5.3.4.
We can see that there is a trend of decreasing efficiency as the problem size/number
of works is increased. The ideal efficiency would stay at 100% since the problem size
per worker remains constant, but in reality the efficiency decreases with an increasing
number of workers. This is related to the increased amount of communication and data
transfer between the workers. For our problem, even though the efficiency decreases, it
remains high at approximately 87.81% for n = 16.
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Figure 5.3.4: Weak scaling efficiency.

5.3.3 Breakdown of Computational Cost
We have shown that the parallel implementation of our whole bilevel algorithm scales
very well, for both strong and weak scaling tests. Here we investigate why the whole
bilevel algorithm scales so well, despite the fact that only certain sections of the code
are parallelised over the training models. For various experiments in this thesis, we
used the Matlab Profiler to track execution time for each part of the algorithm. We
have observed that between approximately 75 and 94% of the runtime of the full bilevel
algorithm is spent in performing FWI, which is completely parallelised over the training
models. The majority of the rest of the time, often somewhere between 6 and 25% of the
runtime, is spent computing the upper-level gradient, most of which is also parallelised.
Therefore, we observe that, in general, up to 99% of the runtime of the bilevel algorithm
has been parallelised, explaining why it scales so well.

We next discuss why the FWI and gradient computation dominate the runtime.
Recall that the number of PDE solves in the bilevel algorithm is given by (5.2.11). All
of these PDE solves occur either in the FWI or upper-level gradient computation. The
breakdown of where the PDE solves occur is as follows:

(1) FWI: Nm′N ls
u NsNω (2Nl) PDE solves

(2) Upper-level gradient: Nm′N ls
u NsNω

(
2NP2

i + dNr

)
PDE solves

(where the notation used is defined in Theorem 3.4.10). We have observed in our
experiments that the FWI computation makes up a larger proportion of the total
runtime than the upper-level gradient computation. Therefore, cancelling the common
terms in (1) and (2), we conclude that, in our computations,

Nl > NP2
i + dNr

2 , (5.3.1)
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where the left-hand side is the number of FWI iterations, Nl, and the right-hand side
involves the number of preconditioned conjugate gradient iterations, NP2

i , and the
number of parameters being optimised, dNr. We expect the inequality (5.3.1) is due
to two reasons. The first reason is that we have developed techniques to reduce the
cost of the upper-level gradient computation (i.e., the right-hand side of (5.3.1)). The
number of PDE solves and hence the runtime of the upper-level gradient computation
was reduced significantly in Section 5.2.2 through the use of a preconditioner, so the
factor NP2

i should not be too large. However, we note from Section 5.2.2 that this
factor varies with the parameters of the problem (such as the regularisation parameters
and the frequency), and so for problems not considered in this thesis, such as higher
frequency problems, this factor may contribute more to the overall % of the run time
that the upper-level gradient takes. For problems that are symmetric (in the sense
described in Chapter 4), we showed how the factor dNr could be reduced in Chapter 4,
however for non-symmetric problems this cannot be reduced and depends directly on
the number of sensors. When there are more sensors, the % of the run time that the
upper-level gradient takes increases.

The second reason that FWI dominates our computational runtime is that we need
to solve the FWI problem to a high accuracy, which is what makes Nl is large (this
idea of needing to solve the lower-level very accurately is also noted in [162]). This is
related to the single-level reduction in Section 3.4.1. In this reduction, we define the
lower-level solution mFWI with the following necessary condition,

∇φ(mFWI(p,m′),p,m′) = 0, (5.3.2)

which allows us to derive a formula for the upper-level gradient. Therefore, the formula
for our upper-level gradient is only correct when (5.3.2) holds, and, to compute the
correct upper-level gradient, we require the FWI algorithm to run to the point where the
gradient of the FWI objective function is zero. In practice, we cannot solve to exactly
zero, but we solve to a very small number, the exact value of which is problem dependant.
Solving to such a high accuracy often requires several hundred FWI iterations (i.e., Nl

can be several hundred). In Section 2.6, we showed that it is possible to get good quality
FWI reconstructions solving to a much larger tolerance (a tolerance of ||∇φ||2 ≤ 10−6

to be exact for those examples). However, in practice a tolerance this large results in
an inaccurate upper-level, and hence causes the bilevel algorithm to fail. We include an
example here to demonstrate this point.

We draw ψ versus sensor position for the example shown in Figure 5.1.1. The 0.5 Hz
ψ plot shown in Figure 5.1.2 has been drawn with an FWI tolerance of ||∇φ||2 ≤ 10−10.
We redraw this with an FWI tolerance ||∇φ||2 ≤ 10−6. We also compute and plot the
corresponding values of ∇ψ. These plots are shown in Figure 5.3.5, where we have
focused on a segment of the plot to highlight the difference in the results for the different
tolerances. We see that when FWI is solved to the 10−10 tolerance (in red), both ψ and
∇ψ are smooth. When solved to the 10−6 tolerance (in blue), ψ and ∇ψ are extremely
rough. Therefore, for the bilevel problem to work, we need FWI to be solved much
more accurately than it is generally solved in practice for the standalone FWI problem.
The convergence tolerance that is sufficient for a good FWI reconstruction, is generally
not sufficient for the bilevel problem.
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Figure 5.3.5: Plots of ψ and ∇ψ computed using different FWI tolerances. The tolerance
||∇φ||2 ≤ 10−6 is plotted in blue and ||∇φ||2 ≤ 10−10 is plotted in red.

We noted in Section 2.6 when discussing plots of ||∇φ||2 that the values of ∇φ
continue to decrease even when the decrease in φ has stalled. Therefore, to reach the
required convergence tolerance for the bilevel problem, many more iterations are needed
than the standalone problem. In the specific example in Figure 5.3.5, it takes between
approximately 90 to 150 iterations to solve FWI to the tolerance 10−6, and between
approximately 250 to 315 iterations to solve FWI to the tolerance 10−10. This example
demonstrates the large Nl and hence explains the large proportion of runtime that is
needed for FWI in the bilevel algorithm.

5.4 Algorithms
This section provides details on the bilevel sensor placement optimisation algorithms
and further implementation details.

Notation: We first present Table 5.4.1, a table of notation to be used in this section.
We include a summary of important points and new notation here. In the algorithms
presented here, we optimise both the sensor positions p and Tikhonov regularisation
parameter α. As both p and α are optimised together, we introduce the new notation
q to denote the optimisation variables, which is the concatenated vector [p;α]. We
write q when optimising these parameters together, but we continue to write p and α
separately when they are needed individually.

Another important notation point is that we introduce the set of initial models M0
and set of FWI solutions MFWI , such that each element of the training model set M′

has a corresponding member of the sets M0 and MFWI , i.e., the training model m′i
has a corresponding initial guess (m0)i and FWI solution mFWI

i , for i = 1, . . . , Nm′ .
We write MFWI(q) to mean the FWI solutions computed with the parameters q.
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For ease of notation, the regularisation terms of the Hessian (i.e., the terms that
form preconditioner P2 in Section 5.2.2) is denoted by P here. Also, we write u(m,S, g)
to denote the wavefields at all sources s ∈ S and for all frequencies in the group g (i.e.,
this notation represents several wavefields), and u(m, s, ω) to mean the wavefield at a
specific source and frequency (i.e., just one wavefield).

In some algorithms the list of all inputs in practice is very long, so we only write
them if they are necessary to the understanding of that particular algorithm.

Symbol Meaning

p, p0, pk, pmin Sensor coordinate vectors; general, initial, kth iterate, optimal
α, α0, αk, αmin Regularisation parameter for Tikhonov term; general, initial, kth

iterate, optimal
q, q0, qk, qmin Optimisation variables [p;α]; general, initial, kth iterate, optimal
tol1, tol2, tol3 Tolerances for stopping conditions; lower-level, upper-level, PCG
m, m0, mk, mFWI , m′ Models; general, initial, kth iterate, FWI solution, training
M′,M0,MFWI ,MFWI(qk) Set of models {mi}i=1,...,Nm′ ; training, initial, FWI solution, FWI

solution at parameters qk
kmax, k′max Maximum iterations for stopping conditions; lower-level, upper-level
µ Regularisation parameter for convex term
W Set of frequencies
ω Individual frequency from set W such that ω1 < ω2 < ... < ωNω is in

increasing order
g Frequency group of size Ng such that g1 < g2 < ... < gNf is in

increasing order
S Set of sources
s Individual source in set S
u Forward wavefield
λ Adjoint wavefield
ε Residual
φ(m), ∇φ(m) Lower-level objective function and gradient

(note ∇φ(m) means ∇mφ(m))
ψ(q), ∇ψ(q) Upper-level objective function and gradient

(note ∇ψ(q) means ∇qψ(q) = [∇pψ(p, α);∇αψ(p, α)])
d ‘Observed’ data
P Preconditioner for upper-level gradient computation

Table 5.4.1: Notation used in the algorithms in §5.4.
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Algorithms: The algorithms that form the full bilevel learning algorithm are as
follows. Algorithm 5.4.1 is our novel bilevel frequency continuation algorithm, motivated
and described in detail in Section 5.1. Algorithm 5.4.1 organises frequencies into groups
of increasing magnitude, looping over the frequency groups and solving the bilevel
optimisation problem (Algorithm 5.4.2) on each group. The solution to the upper
and lower-levels (i.e., the optimal sensor positions/Tikhonov parameter and optimal
models) for the first frequency group are used as the starting guesses for the next, higher,
frequency group. We included a simple version of the bilevel frequency continuation
algorithm in Algorithm 5.1.1 to demonstrate these concepts, while the version presented
here, Algorithm 5.4.1, contains more detail. For instance, Algorithm 5.4.1 is written for
a set of training models instead of just one. In addition, the first step of Algorithm
5.4.1 is now the computation of the preconditioner. As described in Section 5.2.2,
our choice of preconditioner only needs to be computed once at the beginning of the
whole algorithm using the regularisation parameters. The Cholesky factorisation of
the preconditioner is computed and only the Cholesky factor needs to be stored and
passed to the following algorithms. We note that in Algorithm 5.4.1 both p and α are
optimised together in all frequency groups, i.e., we are using Approach I from Section
5.1. See Remark 5.4.2 for an algorithm that considers all approaches from Section 5.1
for incorporating the Tikhonov parameter into the bilevel frequency continuation.

Algorithm 5.4.2 is the bilevel optimisation algorithm, which we solve using a gradient-
based optimisation method with line search. When we refer to ‘Descent Direction’, any
gradient-based optimisation method can be used for computing the descent direction.
We provide an overview of different choices of optimisation methods in Appendix F.
In our implementation, we use L-BFGSb, which is the bounded version of L-BFGS.
We require the bounded version to ensure that the sensors stay within the domain we
are considering, or within some realistic range. Our implementation is based on [39]
and uses sections of [80]. The step ‘Line Search’ in Algorithm 5.4.2 can represent any
line search algorithm that computes the step-size. In our implementation we use the
strong Wolfe conditions (also discussed in Appendix F). Since we use a gradient-based
optimisation method, at each iteration of Algorithm 5.4.2 (i.e., for each updated q) we
are required to compute the gradient of the upper-level objective function ψ, which we
do by calling Algorithm 5.4.3.

There are two main parts to Algorithm 5.4.3, the full lower-level/FWI problem
solution and the computation of the upper-level gradient. These two steps are performed
for every training model. As discussed in Section 5.3, the lower-level and most of the
upper-level gradient computation can be parallelised over the training models, and this
parallelisation is indicated by the parfor in Algorithm 5.4.3. Before the lower-level
step, the data that is input into the FWI algorithm is computed for each training
model (according to (2.2.14) and (3.3.6)). We don’t include the finer details of this
data computation in the algorithm, but we note that, since the wavefield for each
training model, u(m′), stays the same throughout the optimisation, this only needs to
be computed once (for all frequencies and sources) earlier in the process and passed
as an input into Algorithm 5.4.3. The data computation then just involves applying
the restriction operator to the relevant wavefields (which is cheap as no PDE solves
are required). The lower-level step is then completed with Algorithm 5.4.4. More
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explanation of the FWI implementation is contained in Section 2.5.2 and we just
mention here how the FWI algorithm ties into the bilevel algorithm. Algorithm 5.4.4
outputs the optimal model mFWI (which is saved in the set MFWI) along with the
residual ε, and the solution to two PDEs (for each source and frequency) - the forward
wavefield u and the adjoint wavefield λ, all evaluated at the optimal model mFWI . The
outputs of the lower-level problem are then used as inputs into Algorithm 5.4.6, which
is used to compute the upper-level objective function and gradient for each training
model. These values are then used in Algorithm 5.4.3 to compute the full upper-level
objective function and gradient for all models.

Remark 5.4.1. We note here that the lower-level (FWI problem) in the bilevel problem
must be solved very accurately due to the assumption we made for the single-level
reduction (3.4.1) that the lower-level FWI problem can be replaced by its necessary
condition. To ensure this assumption holds, we require tol1 in Algorithm 5.4.4 to be as
close to zero as possible. There is a more detailed discussion of this point in Section
5.3.3.

Within Algorithm 5.4.6, we solve the linear system (3.4.20) with the Preconditioned
Conjugate Gradient (PCG) method (Algorithm 5.4.7). This is a standard PCG al-
gorithm, where the matrix-vector products (i.e., Hessian-vector products where the
Hessian is evaluated at the FWI solution) are computed using Algorithm 5.4.8 (based
on the theory in Section 2.4.2).

The relationship between all the algorithms in this section is illustrated in Figure
5.4.2 which shows how each algorithm depends on the others. Figure 5.4.1 shows the
overall behaviour of the bilevel algorithm at a high-level. This figure demonstrates how
the upper- and lower-level problems interact in the bilevel problem. The initial set
of sensor positions and regularisation parameter is input into the lower-level problem,
and the FWI problem is solved for this specific set of parameters, for each training
model. The set of FWI solution models is then used in the upper-level algorithm to
compute the sensor placement objective function (Definition 3.3.2) and its gradient.
The gradient-based optimisation method computes a new p and α, such that the
upper-level objective function is reduced. These updated parameters are input back into
the lower-level problem. This cycle continues until some pre-set convergence criteria
is met, and the optimal set of sensor positions is output. This cycle is all contained
within Algorithm 5.4.1 and is repeated progressing through frequencies. Figure 5.4.1
highlights that on every upper-level iteration, a full FWI problem needs to be solved
for every training model. By Remark 5.4.1, each FWI problem needs to be solved very
accurately. Therefore the implementation of the lower-level problem contributes a lot
to the overall cost/time of the bilevel problems, as observed in Section 5.3.
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Algorithm 5.4.1 Bilevel Frequency Continuation
1: Inputs: p0, α0, M0, M′, {ω1 < ω2 < ... < ωNω} ∈ W , µ
2: Compute preconditioner P with α0 and µ

3: L← Cholesky(P)
4: Group frequencies into Nf groups {g1, g2,. . ., gNf}
5: q0 ← [p0;α0]
6: for k = 1 to Nf do
7: [qmin,MFWI ]← Algorithm 5.4.2(gk, q0,M0,M′, L)
8: q0 ← qmin

9: M0 ←MFWI

10: end for
11: Output: pmin, αmin

Algorithm 5.4.2 Bilevel Optimisation Algorithm
1: Inputs: g, q0, M0, M′, L, S, k′max, tol1, tol2
2: Compute ∇ψ(q0) with Algorithm 5.4.3(q0,M0, tol1,M′, g,S, L)
3: k = 0
4: while ||∇ψ(qk)|| > tol2 and k < k′max do
5: d′k ← Descent Direction
6: β′k ← Line Search
7: qk+1 ← qk + β′kd

′
k

8: [∇ψ(qk+1),MFWI(qk+1)]← Algorithm 5.4.3(qk,M0, tol1,M′, g,S, L)
9: k = k + 1

10: end while
11: Outputs: qmin, MFWI(qmin)

181



Algorithm 5.4.3 Computation of ψ, ∇ψ and MFWI

1: Inputs: q, M0, tol1, M′, g, S, L
2: p = q(1:end-1)
3: α = q(end)
4: Initialise ψ=0, ∇ψ=0
5: parfor m′ ∈M′, m0 ∈M0

6: Compute d(m′) by (3.3.6)
7: [mFWI , ε(mFWI),u(mFWI),λ(mFWI)]← Algorithm 5.4.4(m0, tol1,d(m′),S,
8: g,p, α)(Lower-Level)
9: [ψ′,∇ψ′]← Algorithm 5.4.6(p, α,mFWI ,m′, ε(mFWI),u(mFWI),λ(mFWI), L)

10: Update ψ = ψ + ψ′

11: Update ∇ψ = ∇ψ +∇ψ′

12: Save mFWI in MFWI

13: end parfor
14: Scale ψ= 1

Nm′
ψ

15: Scale ∇ψ= 1
Nm′
∇ψ

16: Outputs: ψ, ∇ψ, MFWI

Algorithm 5.4.4 Lower-Level (FWI)
1: Inputs: m0, tol1, d, S, g, p, α, µ, kmax

2: Compute ∇φ(m0) with Algorithm 5.4.5(m0, d,S, g,p, µ, α)
3: k = 0
4: while ||∇φ|| > tol1 and k < kmax do
5: dk ← Descent Direction
6: βk ← Line Search
7: mk+1 ←mk + βkdk
8: [∇φ(mk+1), ε(mk+1),u(mk+1),λ(mk+1)]← Algorithm 5.4.5(mk+1,d,S, g,p, µ, α)
9: k = k + 1

10: end while
11: Outputs: mFWI , ε(mFWI ,S, g), u(mFWI ,S, g), λ(mFWI ,S, g)
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Algorithm 5.4.5 FWI Objective function and Gradient
1: Inputs: m, d, S, g, p, µ, α
2: Initialise φ = 1

2α||Dm||
2
2 + 1

2µ||m||
2
2, ∇φ = αDTDm+ µm

3: Compute restriction operator R(p)
4: for s ∈ S do
5: for k ∈ {1, .., Ng} do
6: Assemble source vector f(s, ωk)
7: Assemble matrix A(m, ωk)
8: Compute u(m, s, ωk) from (2.2.14)
9: Compute modelled data dmod(m,p, s, ωk) = R(p)u(m, s, ωk)

10: Evaluate misfit ε(m,p, s, ωk) = d− dmod(m,p, s, ωk)
11: Compute adjoint wavefield λ form (2.3.12)
12: Update φ = φ+ 1

2 ||ε||
2
2

13: for j ∈ {1, ...,M} do
14: Update ∇φj = ∇φj +

(
∂A
∂mj

u
)∗
λ

15: end for
16: end for
17: end for
18: Outputs: φ, ∇φ, u, ε, λ
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Algorithm 5.4.6 Upper-Level Objective Function and Gradient for each Training
Model

1: Inputs: p, α, mFWI , m′, ε(mFWI ,p,S, g), u(mFWI ,p,S, g), λ(mFWI ,p,S, g), µ,
L

2: Compute restriction operator R(p)
3: Compute derivative of restriction operator dR(p)

dpn
for all n

4: δ ← Algorithm 5.4.7(mFWI ,m′,u(mFWI),λ(mFWI),S, g, µ, α, L,R(p))
5: Initialise B = 0
6: for s ∈ S
7: for k ∈ {1, . . . , Ng}
8: Assemble matrix A(mFWI , ωk)
9: for n = 1, .., dNr

10: Compute γn(mFWI , s, ωk) via (3.4.22)
11: for j ∈ 1, . . . ,M
12: Bj,n = Bj,n +

(
∂A
∂mj

u(mFWI , s, ωk)
)∗
γn

13: end for
14: end for
15: end for
16: end for
17: Compute ∇ψp ∈ RdNr by (3.4.19) with Nm′ = 1
18: Compute ∇ψα ∈ R1 by (3.5.10) with Nm′ = 1
19: ∇ψ = [∇ψp;∇ψα]
20: Compute ψ by (3.3.1) with Nm′ = 1
21: Outputs: ψ, ∇ψ
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Algorithm 5.4.7 Preconditioned Conjugate Gradient for solving linear system (3.4.20)
1: Inputs: mFWI , m′, u(mFWI), λ(mFWI), S, g, µ, α, L, R(p), x0, tol3,
2: Compute right hand side of (3.4.20) e = m′ −mFWI

3: H(mFWI)x0 ← Algorithm 5.4.8(x0,m
FWI ,u(mFWI),λ(mFWI),S, g, µ, α,R(p))

4: r0 ← e−H(mFWI)x0

5: z0 ← L−1
(
(LT )−1r0

)
6: ρ0 ← z0

7: k = 0
8: for k = 1 : length(b) do
9: H(mFWI)ρk ← Algorithm 5.4.8(ρk,mFWI ,u(mFWI),λ(mFWI),S, g, µ, α,R(p))

10: ak ←
rTzk

ρkH(mFWI)ρk
11: xk+1 ← xk + akρk
12: rk+1 ← rk − akH(mFWI)ρk
13: if

||rk+1||2
||r0||2

≤ tol3

14: exit
15: end if
16: zk+1 ← L−1

(
(LT )−1rk+1

)
17: βk ←

rTk+1zk+1

rTk zk
18: ρk+1 ← zk+1 + βkρk
19: end for
20: δ = xk+1

21: Output: Solution to linear system δ

Algorithm 5.4.8 Hessian-vector products
1: Inputs: Vector ρ, mFWI , u(mFWI), λ(mFWI), S, g, µ, α, R(p)
2: Initialise Hρ =

(
αDTD + µI

)
ρ

3: for s ∈ S
4: for k ∈ {1, . . . , Ng}
5: v← (2.4.22) evaluated at mFWI

6: z← (2.4.23) evaluated at mFWI

7: for j ∈ {1, . . . ,M}
8: (H ′ρ)j ← (2.4.21) evaluated at mFWI

9: end for
10: Hρ← Hρ+H ′ρ

11: end for
12: end for
13: Output: Hessian vector product Hρ evaluated at mFWI
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Initial guess
p0, α0

Lower-Level:
FWI

Algorithms 5.4.4, 5.4.5

Upper-Level:
Parameter Optimisation

Algorithms 5.4.2, 5.4.3,
5.4.6, 5.4.7, 5.4.8

MFWI p, α

Solution
pmin, αmin

Figure 5.4.1: Overall Schematic of the Bilevel Problem

5.4.1 5.4.2 5.4.3

5.4.4 5.4.5

5.4.6 5.4.7 5.4.8

Figure 5.4.2: Algorithm Dependency Graph: Arrows indicate dependency of one algo-
rithm on another. The algorithm which the arrow is pointing to, for example Algorithm
5.4.6, depends on the algorithm that the arrow is coming from, either because that
algorithm is called within it (e.g., Algorithm 5.4.7) or the outputs of that algorithm are
inputs to it (e.g., Algorithm 5.4.4).
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Implementation of R(p): In the algorithms presented here, we compute and use
the restriction operator, and it’s derivative with respect to sensor position. Although
any interpolant can be chosen in the standalone FWI problem, as previously mentioned
in Remark 3.4.31, the chosen interpolant for the bilevel problem should be ‘smooth
enough’ such that the upper-level objective function is smooth and can be optimised by
a local optimisation method.

We emphasise the importance of choosing the correct interpolant with the following
example. We plot ψ and ∇ψ versus sensor position for the problem setup shown in
Figure 5.1.1 (i.e., where sensors are moved along a line). We draw three different plots,
one each for three different choices of R(p) - one where R(p) performs piecewise linear
interpolation, one where R(p) performs ‘sliding’ quadratic interpolation and one where
R(p) performs ‘sliding’ cubic interpolation (we explain how this is computed in the
next paragraph). These are plotted for a group of two frequencies (4 and 5 Hz). In
Figure 5.4.3, we focus in on the values of ψ and ∇ψ for sensor positions varied along a
portion of the line in Figure 5.1.1 to demonstrate the differences in the plots computed
with different interpolants. The ψ plot computed using a piecewise linear interpolant is
not smooth in several places, and the ∇ψ plot has large sharp discontinuities. These
discontinuities are due to the fact that the derivative of a piecewise linear interpolant is
discontinuous. The plots drawn using a quadratic interpolant appear a lot smoother,
although looking at the right side of the ∇ψ plot shows some small bumps. In contrast
the plots drawn using the cubic interpolant appears smooth everywhere.
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(b) ∇ψ

Figure 5.4.3: Plots of ψ and ∇ψ usuing different implementations of R(p).

Due to the smoothness we have observed for the ‘sliding’ cubic interpolant, we use
a ‘sliding’ bicubic interpolant in our implementation. In one dimension, for each sensor
(i.e., for each row of R(p)), this involves finding the four grid points that are closest
to the sensor position, and performing cubic interpolation on those gridpoints. In two
dimensions, to compute each row of R(p), we find the four closest gridpoints in each
direction, find the cubic interpolant in both directions separately, and then compute the
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tensor product of these two cubic interpolants to get the bicubic interpolant. Therefore,
when we apply R(p) to the wavefield u, we are only using wavefield information at the
gridpoints. When the sensor position moves into a different interval, we just find the
four closest gridpoints to this new interval and repeat the interpolation.

Since dR(p)/dpn is extremely sparse, and only has non-zero values on row n, we only
need to compute and store the vector d (R(p))n /dpn. Therefore in the implementation
we compute d (R(p))n /dpn for all n at once and store the results together in one
dNr ×N matrix.

Remark 5.4.2. The algorithms in this section present the case where both sensor
positions p and the Tikhonov parameter α are optimised together in every frequency
group. As discussed in Section 5.1, other approaches to bilevel frequency continuation
involve optimising p alone in some groups before including α in the optimisation. The
real implementation used in experiments in this thesis is slightly more complicated
than the algorithms written down here, as it allows the option to optimise p alone or
simultaneously with α, depending on the frequency group. The implementation allows α
to start being optimised in any frequency group, depending on the user’s choice. We
have avoided incorporating the option to start optimising α in different frequency groups
into the written algorithms in this section to make the algorithms more readable, but we
briefly describe here how one can implement the more flexible approach here.

We introduce the notation Nα, such that gNα is the frequency group in which we
start to optimise the Tikhonov parameter α. The user inputs their choice of Nα. Up
to the Nαth frequency group, p is optimised alone, and α is treated as a constant, and
once we get to the frequency group of choice, both p and α are optimised together. In
Algorithm 5.4.9, we input the current frequency group number, kg, and the frequency
group at which we start to include α in the optimisation, Nα, into all the algorithms
that are called within Algorithm 5.4.9. The group number information tells the other
algorithms what parameters are being optimised, and hence how to compute quantities
such as the upper-level gradient. We note that there are other ways that the information
on what parameters are being optimised can be accessed by the other algorithms, for
example by including a flag when α is also being optimised, or by getting the algorithm
to check if the sizes of p and q are the same.

Remark 5.4.3. In the real implementation, there is also a choice of how many dimen-
sions the sensors should be optimised in. The user inputs the direction of optimisation,
i.e., either the sensors should be optimised in the x, z or both directions, and the
following algorithms all account for this. The algorithms written in this section just
describe the case where all sensor coordinates are optimised.
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Algorithm 5.4.9 Bilevel Frequency Continuation with Choice of Optimisation Param-
eters

1: Inputs: p0, M0, {ω1 < ω2 < ... < ωNω} ∈ W , M′, α0, µ, Nα

2: Compute preconditioner P with α0 and µ
3: L← Cholesky(P)
4: Group frequencies into Nf groups {g1, g2,. . ., gNf}
5: for kg = 1 to Nf do
6: if kg < Nα

7: [pmin,MFWI ]← Algorithm 5.4.2(gk,p0, α0,M0,M′, L, kg, Nα)
8: p0 ← pmin
9: M0 ←MFWI

10: else
11: [pmin, αmin,MFWI ]← Algorithm 5.4.2(gk, [p0;α0],M0,M′, L, kg, Nα)
12: p0 ← pmin
13: α0 ← αmin
14: M0 ←MFWI

15: end if
16: end for
17: Output: pmin, αmin
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Chapter 6

Large Scale Parameter
Optimisation Experiments

Chapter Summary: Throughout this thesis, various aspects of FWI and the param-
eter optimisation problems have been demonstrated through numerical illustrations. In
this chapter, we present some further parameter optimisation problems, and we test
and comment on the results.

In Experiment 1 (§6.1), we apply our bilevel learning algorithm to a training
set of several distinct models that share some common characteristics. We test the
resulting optimal parameters extensively on randomly generated testing sets with various
different properties to investigate how well our optimal parameter results generalise.
In Experiment 2 (§6.2), we optimise the parameters of a more difficult problem, the
Marmousi model, showing that our bilevel learning algorithm can be applied successfully
to realistic geophysical subsurfaces.

6.1 Experiment 1
The aim of Experiment 1 is to test how well the results of the parameter optimisation
generalise to models that are not in the training set. We define the term class of models
here to mean a set of models that are similar in some way, i.e., they all share certain
properties. We choose a training set of models that are all in the same class, learn
the optimal sensor positions and Tikhonov regularisation parameter, and then test the
optimised parameters on models within and outside of this class.

6.1.1 Training
Experiment Details: The training set that we choose is shown in Figure 6.1.1. This
set involves twelve models that are all in the same class - they all feature two smooth
Gaussian bumps of equal wavespeed, surrounded by a constant lower wavespeed, and
positioned along the diagonal of the domain. Half of the training models involve bumps
that are equal in size to each other, and the other half involves bumps which differ in
size to each other. The maximum wavespeed at the centre of the bump is varied across
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the training models, in the range 2.1 km/s to 2.2 km/s. The background wavespeed is
constant at 2 km/s, meaning that the ‘height’ of the bump is varied between 100 m/s
and 200 m/s. The radius of the bumps is varied between 150 and 250 m. The positions
of the bumps vary along the diagonal but the bumps do not overlap significantly and do
not significantly extend beyond the border of our domain (which we ensure by choosing
the radius and position carefully).

The bilevel algorithm (Algorithm 5.4.9) is applied to this training set to learn the
optimal positions p for ten sensors and the optimal Tikhonov regularisation parameter
α. We recall from Remark 3.3.3 that no noise is added to the training data. The initial
guess for FWI is a model with a constant wavespeed of 2 km/s. We use three frequency
groups, with frequencies in the range 0.5 Hz to 2.5 Hz, and optimise α in the last group
only. The initial guess for the regularisation parameter is α0 = 0.1 and the initial guess
for the ten sensor positions is uniform placement along a vertical line. There are ten
sources, which are placed uniformly along a vertical line on the left side of the domain.
The lower-level problem is solved to a tolerance of ||∇φ||2 ≤ 10−10. The linear system
involved in the upper-level gradient computation is solved to a tolerance of 10−15, to
ensure the error in the gradient is as low as possible. Since the upper-level optimisation
method we are using is a bounded algorithm (L-BFGSb), convergence of the upper-level
problem is achieved when the infinity norm of the projected gradient is smaller than
some tolerance (≤ 10−10), or alternatively when the updates to ψ or the optimisation
parameters stall, or the maximum number of iterations is reached (which is 50 iterations
for each frequency group). We briefly note that the projected gradient is the gradient
that has been projected onto the feasible region, and is defined explicilty in [39].
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Figure 6.1.1: Training set used for Experiment 1.
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Results: The initial and optimal setup is overlayed on one of the training models
in Figure 6.1.2. We observe that the sensors spread out to get better coverage of the
domain, and that five of the sensors seem to line up along the diagonal that the Gaussian
bumps are positioned on. We also notice that four of the sensors are positioned along
the right side of the domain, opposite from the sources, allowing the sensors to record
waves transmitted through the whole domain.
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Figure 6.1.2: Initial and optimal sensor positions for the training set in Figure 6.1.1.

Figure 6.1.3 (a) is a plot of α versus iteration in the final group. We see that α grows
slowly and converges at approximately αmin = 0.278. Figure 6.1.3 (b) demonstrates the
decrease in ψ versus iteration. The first frequency group takes the longest to converge
(44 iterations) as the sensors make the largest changes in their positions in this group.
The final group converges the quickest as the sensors begin the group very close to their
optimal positions and only the regularisation parameter needs to change. In addition,
the starting guess for the regularisation parameter is relatively close to its optimal value.
A drop in ψ is evident as we progress from one group to the next (at iteration 44 and
iteration 61).
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Figure 6.1.3: Variation in the Tikhonov regularisation parameter α (in the final frequency
group) and the objective function ψ verus iteration.

In Figure 6.1.4 we show an example of the improvement in the FWI reconstruction
of the training model shown in Figure 6.1.2 after the bilevel algorithm has been applied.
Subfigure (a) shows the reconstruction at the initial sensor positions and regularisation
parameter, and subfigure (b) shows the reconstruction at the optimal parameters.
Visually, there is a large increase in the quality of the reconstruction between (a) and
(b). In terms of the value of ψ, the improvement factor (defined in (3.6.1)) for this
training model is 878 (rounded to the nearest integer). This training model had the
largest improvement factor of all training models. A summary of the improvement
factors across the whole training set is contained in Table 6.1.1, and we plot the
improvement factors for each training model in Figure 6.1.5. The models in Figure
6.1.5 are ordered according to how they appear in Figure 6.1.1. We can see from this
plot that the largest improvement factors are reported for the training models with two
large Gaussian bumps, and that in general, the training models with smaller Gaussian
bumps and a higher maximum wavespeed have lower improvement factors.

Improvement Factor
Minimum Maximum Average

240 878 482

Table 6.1.1: Summary of improvement factors found for Testing Set 1.

As an alternative measure of the quality of reconstruction, we compute the relative
percentage error (2.6.2) at every point of the model, and find the average across all the
points. We compute this value for all training models after the bilevel algorithm has
been applied. Across all training models, the range of average relative errors is from
0.0295% to 0.0655%, with an average of 0.0470%.
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Figure 6.1.4: FWI reconstruction of the training model in Figure 6.1.2, at the initial
guess at parameters mFWI(p0, α0) and optimised parameters mFWI(pmin, αmin).
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Figure 6.1.5: Improvement factors for the training set.

6.1.2 Testing
In order to assess the performance of the optimal parameters obtained by our bilevel
algorithm, we generate random testing sets of models, perform FWI using the initial and
optimised parameters on these testing models, and compute the improvement factors.
We test on different testing sets, both within the same class and in different classes as
the training set. All testing sets involve Gaussian bumps so that there is some relation
between the training and testing set. If the improvement factors remain high for all
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testing sets, then we know that the solution of our bilevel algorithm generalises well
to models outside of the training set. We also report the average relative percentage
error across each testing set to provide a measure of quality that is independent of the
starting guess.

Testing Set 1: The first testing set involves 50 randomly generated models in the
same class as the training set, i.e., all testing models involve two Gaussian bumps along
the diagonal, and the size and height of the bumps are within the same range as those
in the training set. A subset of these testing models are shown in Figure 6.1.6. In
the random generation of models, care is taken to ensure that bumps do not overlap
significantly or that parts of the bump do not extend beyond the border of our domain.
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Figure 6.1.6: Subset of Testing Set 1.

At the optimal parameters, the average relative percentage error across all testing
models in this set is 0.0445%, showing that all testing models are reconstructed accurately
with our optimal parameters. The improvement factors for all 50 testing models are
displayed in Figure 6.1.7, and the maximum, minimum and average improvement factors
found for this testing set of 50 models are shown in Table 6.1.2, where values are rounded
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to the nearest integer. The average improvement factor is actually larger for this testing
set than the training set (which may just be related to the fact that the testing set is
larger), but the range in improvement factors remains very similar. We note that the
larger improvement factors come from the models with two larger Gaussian bumps, and
the smaller improvement factors come from the testing models with two small Gaussian
bumps.

Improvement Factor
Minimum Maximum Average

287 842 536

Table 6.1.2: Summary of improvement factors found for Testing Set 1.
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Figure 6.1.7: Improvement factors for Testing Set 1.

In Figure 6.1.8 we include an example of the improvement in FWI reconstruction
for one of the models in the testing set where the improvement factor is close to the
average value.

We conclude from Testing Set 1 that the results of the bilevel algorithm generalise
well to models that are not in the training set but are in the same class as the training
set.
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(a) Testing model ground truth
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Figure 6.1.8: Example of a testing model in Testing Set 1 and the corresponding
FWI reconstructions at the initial parameters mFWI(p0, α0), and optimised parameters
mFWI(pmin, αmin).
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Testing Set 2: The next testing set is made up of 50 randomly generated models in
a different class to the training set. Testing set 2 still involves two Gaussian bumps,
with a height and size in the same range as the testing set, however, the positions of
the bumps are now along the opposite diagonal. A subset of these models are shown in
Figure 6.1.9.
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Figure 6.1.9: Subset of Testing Set 2.

The average relative percentage error across Testing Set 2 is 0.0671%, which remains
low but is an increase from Testing Set 1. The improvement factors for all 50 testing
models are shown in Figure 6.1.10, and summary statistics of the improvement factors
(rounded to the nearest integer) are displayed in Table 6.1.3. The average has dropped
from the last testing set, and the minimum has reduced by over three times. This
reduction in improvement from Testing Set 1 is probably due to some of the optimal
sensor positions being aligned along the top left to bottom right diagonal. The sensor
positions are therefore not positioned to be optimal for Gaussian bumps positioned
along the opposite diagonal. The largest improvement factors correspond to testing
models with large Gaussian bumps and the smallest improvement factors correspond to
testing models with smaller Gaussian bumps, particularly when one of the bumps is
located near the bottom left of the domain where there are no sensors.
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Although the improvement factors have reduced, there is still a consistent and large
improvement across all testing models, showing that the optimal sensor positions found
using a training set in a certain class generalises well to a testing set that is of a different
class, but shares some properties with the training set.

Improvement Factor
Minimum Maximum Average

93 663 307

Table 6.1.3: Summary of improvement factors found for Testing Set 2.
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Figure 6.1.10: Improvement factors for Testing Set 2.

In Figure 6.1.11, we include an example of the FWI reconstructions of one of the
testing models that has an improvement factor close to the average in Table 6.1.3.
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(a) Testing model ground truth
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Figure 6.1.11: Example of a testing model in Testing Set 2 and the corresponding
FWI reconstructions at the initial parameters mFWI(p0, α0), and optimised parameters
mFWI(pmin, αmin).
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Testing Set 3: This testing set is again made up of 50 randomly generated models in
a different class to the training set. This testing set involves only one Gaussian bump,
but its height and size are all randomly generated from the same range as the training
set, and the position of the bump is along the same diagonal as those in the training
models. A subset of Testing Set 3 is shown in Figure 6.1.12.
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Figure 6.1.12: Subset of Testing Set 3.

The improvement factors for all models in Testing Set 3 are displayed in Figure
6.1.13, and the minimum, maximum and average improvement factors for this set are
shown in Table 6.1.4. The improvement factors for this set are even larger than for Set
1 (which is in the same class as the training set). This is possibly because a model with
only one Gaussian bump may be easier to reconstruct with 10 sensors than a model
with two Gaussian bumps. This feature is also seen through the relative percentage
error measure of quality, where the average is smaller than Set 1 (0.0389%).
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Improvement Factor
Minimum Maximum Average

417 964 725

Table 6.1.4: Statistics of improvement factors found for Testing Set 3.
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Figure 6.1.13: Improvement factors for Testing Set 3.

In Figure 6.1.14, we include an example of the FWI reconstructions of one of the
testing models that has an improvement factor close to the average in Table 6.1.4.

This testing set shows that it is possible that optimal parameters that are learned
on training models of a certain class can also perform well, or even better, on models
outside of this class.
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(a) Testing model ground truth
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Figure 6.1.14: Example of a testing model in Testing Set 3 and the corresponding
FWI reconstructions at the initial parameters mFWI(p0, α0), and optimised parameters
mFWI(pmin, αmin).
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Testing Set 4: So far, the testing sets have either been in the same class as the
training set or have only one property different from the training set. In Testing Set
4, we allow more properties to vary outside the ranges used in the training set. This
testing set is made up of models with one Gaussian bump, with height randomly chosen
within the range 100 m/s to 400 m/s, radius chosen within the range 100 m to 500 m,
and position randomly chosen from the whole domain, i.e., it is not constrained to be
on the diagonal and it is possible that parts of the bump extend beyond the domain. A
subset of these randomly generated models are shown in Figure 6.1.15.
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Figure 6.1.15: Subset of Testing Set 4.

Figure 6.1.16 and Table 6.1.5 report the improvement factors for this testing set.
The range of improvement factors has approximately doubled from the previous tests.
While the smallest improvement factor is only 42, the largest has increased to 1171.
While an improvement factor of 42 is a decrease from the factors seen before, there is
still a substantial improvement in the quality of the FWI reconstruction, and this shows
that even when the testing model varies a lot from the training models, we are still
seeing improvements through the use of the optimal parameters found by our bilevel
algorithm. In addition, the average improvement factor remains large, and the average
relative percentage error remains small (0.0505%).
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Improvement Factor
Minimum Maximum Average

42 1171 568

Table 6.1.5: Statistics of improvement factors found for Testing Set 4.
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Figure 6.1.16: Improvement factors for Testing Set 4.

In Figure 6.1.17, we include an example of the FWI reconstructions of one of the
testing models.

This testing set shows that the optimal parameters generalise well to models that
vary considerably from the training set class. Although the improvement factor varies
drastically between testing models here, there is a steady improvement and the potential
for an extremely large improvement.
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(a) Testing model ground truth
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Figure 6.1.17: Example of a testing model in Testing Set 4 and the corresponding
FWI reconstructions at the initial parameters mFWI(p0, α0), and optimised parameters
mFWI(pmin, αmin).

Comparison of Testing Sets: The improvement factors for all testing sets are
compared in Figure 6.1.18. The training set and Testing Set 1 have a similar range in
improvement factors, which is logical since Testing Set 1 is in the same class as the
training set. In general, the factors for Testing Set 1 is clustered about the centre of
this plot, the factors for Set 2 are on average lower, and the factors for Set 3 are on
average higher, but there is significant overlap between these three groups. The factors
for Testing Set 4 vary greatly, and feature the overall maximum and minimum values.
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Figure 6.1.18: Improvement factors for the training set (at 0) and all testing sets (1-4).

Conclusion: To summarise, the testing in this section shows that the optimal pa-
rameters learned from a specific training set generalise well to models that are not in
the training set, both within the same class and outside the class of the training set.
These experiments also establish that we do not require a large training set to find
optimal parameters that generalise well: indeed, we used only 12 training models here,
and found that for all 200 randomly generated testing models, there was a consistent
improvement in the quality of the reconstruction when using the optimal parameters
found by our bilevel algorithm. Of course, we can’t expect that the same sensor positions
and regularisation parameters will be optimal for all classes of models, but we have
shown that, as long as there are some features in common between the training and
testing models (which in this case was that all models involved Gaussian bumps of
higher wavespeed than the surrounding wavespeed), the optimal parameters have the
ability to be applied successfully to a large range of models with varying properties.
This makes the algorithm extremely useful, since, even though it is expensive, it would
generally only needed to be performed once to determine optimal parameters that can
then can be applied to a relatively wide range of situations.

6.2 Experiment 2
The aim of Experiment 2 is to apply our bilevel learning algorithm to find the optimal
parameters for a realistic geophysical subsurface. We choose to apply our algorithm
to the smooth Marmousi velocity model. The Marmousi model, introduced in Section
2.6, is a realistic geophysical subsurface section, and is a regularly used test case for
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seismic imaging problems. For our purposes, the Marmousi model has been smoothed
horizontally and vertically using a Gaussian filter. The smooth Marmousi model is
shown in Figure 6.2.1. We note that, in general, the wavespeed in this model increases
with depth.
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Figure 6.2.1: Smooth Marmousi model used for Experiment 2.

Experiment Setup: We discretise this model into a 440 × 121 grid, with a grid
spacing of 25 m in both the x and z direction. We split this model horizontally into
five slices of equal size, with the aim to use four of these slices as training models, on
which our algorithm will learn the optimal parameters, and one as a testing model,
on which the performace of the optimal parameters will be evaluated. This idea has
been motivated by experiments performed in [85] and [84]. The Marmousi slices are
presented in Figure 6.2.2. For our experiment, we choose Slice 1 as the testing model,
and Slices 2 to 5 as the training models.
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Figure 6.2.2: Smooth Marmousi model divided into individual slices.

6.2.1 Training
Experiment Details: For clarity, we display the training models only in Figure 6.2.6,
and point out here that the corresponding data does not involve added noise. We aim
to optimise the positions of ten sensors, and the value of the Tikhonov regularisation
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parameter. The starting acquisition setup is overlaid on Slice 2 in Figure 6.2.3, and this
setup is equivalent for every slice. Ten sources are positioned uniformly along a line
on the left hand side of the domain, and the ten sensors are uniformly spaced along
a line on the opposite side of the domain. Therefore, our initial guess at the sensor
positions produces a transmission acquisition setup. Our initial guess at the Tikhonov
regularisation parameter is 2.5, chosen through experimentation because it was observed
to generate reasonable reconstructions for the training models in general. We make
these initial guesses at sensor positions and Tikhonov regularisation parameter as we
want to start from a setup that could be typical of a geophysical problem. The model
starting guess for FWI is a smooth vertical variation of wavespeed, increasing with
depth, and containing no information on any of the structures in the training models.
The FWI starting guess for each training model is shown in Figure 6.2.4.
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Figure 6.2.3: Initial sensor positions for Experiment 2. The sensors are uniformly
spaced along a vertcial line such that this is a transmission acquisition setup. This setup
is shown on Slice 2 but the setup is the same for each training model.
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Figure 6.2.4: Initial wavespeed guess for FWI for each training model. This initial
model consists of a one-dimensional variation of wavespeed with depth.

We apply our bilevel frequency continuation approach using four frequency groups
in the range 0.5 Hz to 6 Hz. In the first three groups, the sensor positions are optimised
and in the final frequency group the regularisation parameter is incorporated. The
stopping conditions used are the same as Experiment 1. That is, the lower-level problem
is solved to a tolerance of ||∇φ||2 ≤ 10−10, the linear system involved in the upper-level
gradient computation is solved to a tolerance of 10−15 and each frequency group of the
upper-level is iterated until the infinity norm of the projected gradient is smaller than
10−10, the updates to ψ or the optimisation parameters stall or the maximum number
of iterations is reached (50 iterations).

Results: The final positions converged to are displayed on Slice 2 in Figure 6.2.5. We
see that many sensors have remained on the right-hand side of the domain, close to
their starting guesses, but are no longer uniformly spaced along a straight line. The
sensors on the bottom half of the domain are more widely spaced than the sensors on
the top half of the domain. These sensors on the right record the wavefield which has
been transmitted from the sensors through the domain. We also observe that some
sensors have converged to positions near the top of the domain, again in the right half
of the domain. We expect that these sensors measure both waves transmitted through
the domain, and waves which have been generated by the sources near the top of the
domain and reflected from the layers of higher wavespeed. The multiple sensors near
the top of the domain are then, in a way, a combination of transmission and reflection
setups. A plausible reason for why there are more sensors in the top half than the
bottom half of the domain is that there are more reflections occurring in this direction
(due to the general increase in wavespeed with depth). Finally, there is one sensor
further into the interior of the domain, which is seen in Figure 6.2.5 to lie just above the
layer of higher wavespeed in Slice 2. We note that for Slice 5, this sensor position also
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lies just above a higher wavespeed layer, and in Slice 4 this sensor is placed just under
the upward sloping higher wavespeed layer. The optimal regularisation parameter for
this setup is found to be 6.77× 10−3.
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Figure 6.2.5: Optimised sensor positions for Experiment 2 displayed on Slice 2.

For comparison, we display the ground truth training images in Figure 6.2.6, the
corresponding reconstructions at the initial guess (i.e., for the setup in Figure 6.2.3)
in Figure 6.2.7, and the reconstructions at the optimal parameters (i.e., for the setup
in Figure 6.2.5) in Figure 6.2.8. We observe that the starting parameters produce
reconstructions that, in general, identify the large-scale structures present in the ground
truth. However, the shapes and wavespeed values of the structures are not always
correct. For example, in Slice 2, the upper-layer of higher wavespeed at around 2.1 km
in depth, has not been reconstructed at the edges of the domain, and the values of
the wavespeed in the layer are too low. In Slice 3, the upward sloping layer of higher
wavespeed, beginning at a depth of 2 km, is also not reconstructed at a high enough
wavespeed, and is barely noticeable against the surrounding wavespeed. In comparison
to the other slices, the reconstruction of Slice 4 is relatively poor as many of the details
present in the ground truth are missing. For Slice 5, the general structure of the ground
truth is present, but the wavespeed values are incorrect and some finer details are
missing. In the reconstructions at the optimised parameters (Figure 6.2.8), many of
the issues listed have been improved on. Both the geometry and wavespeed values in
these reconstructions appear closer to the ground truth. The images have appeared
to ‘sharpen’ up, particularly in the upper part of the domain, and the finer features of
structures and boundaries between the layers have become evident.
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(d) Slice 5

Figure 6.2.6: Ground truth training models used in the bilevel algorithm to learn the
optimal sensor positions and the Tikhonov regularisation parameter.
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Figure 6.2.7: Reconstructions of training models at the initial sensor positions and
Tikhonov regularisation parameter.
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Figure 6.2.8: Reconstructions of training models at the optimised sensor positions and
Tikhonov regularisation parameter.

Further comparison between the reconstruction at the starting guess and the recon-
structions at the optimal parameters is found through the use of improvement factors,
which are reported for each slice in Table 6.2.1. The improvement factors range from
4.49 and 12.23 (rounded to two decimal places), showing a consistent improvement
across training models. Although these improvement factors are lower than those seen

213



in Experiment 1 in Section 6.1, this level of improvement is still significant for a realistic
geophysical problem.

For more insight into the quality of the FWI reconstructions of the training models,
we visualise the errors in both the starting and optimised reconstructions. Figures
6.2.9 and 6.2.10 display the deviation in the reconstructions from the ground truth in
terms of wavespeed values (i.e., we have plotted the error defined by (2.6.1)). The blue
indicates when the reconstructed wavespeed value is lower than the ground truth value,
and the red indicates when the reconstructed wavespeed value is higher than the ground
truth value. The darker the colour, the further the reconstruction is from the ground
truth, with white indicating zero error. These plots make the difference in the starting
and optimised reconstructions clear. In the starting reconstructions, the deviation from
the ground truth is noticeable throughout each slice. In the optimised reconstructions,
this error is greatly reduced, particularly in the upper part of the domain, where the
error is small or close to zero. Errors at the bottom of the domain are still noticeable,
particularly at a depth over 2km, which we expect is related to the fact that there are
less sensors in this part of the domain.
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(b) Slice 3
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(c) Slice 4
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(d) Slice 5

Figure 6.2.9: Deviation in the initial FWI reconstructions from the ground truth training
models.

0 0.5 1 1.5 2

x [km]

0

0.5

1

1.5

2

2.5

3

z
 [
k
m

]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

W
a
v
e
s
p
e
e
d
 D

e
v
ia

ti
o
n
 [
k
m

/s
]

(a) Slice 2

0 0.5 1 1.5 2

x [km]

0

0.5

1

1.5

2

2.5

3

z
 [
k
m

]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

W
a
v
e
s
p
e
e
d
 D

e
v
ia

ti
o
n
 [
k
m

/s
]

(b) Slice 3
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(c) Slice 4
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Figure 6.2.10: Deviation in the optimised FWI reconstructions from the ground truth
training models.

The relative percentage errors (computed by (2.6.2)) for the starting and optimised
reconstructions are displayed in Figures 6.2.11 and 6.2.12 respectively. We report the
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mean relative percentage error for the optimised reconstructions in Table 6.2.1. Table
6.2.1 shows that, on average, the optimal parameters result in errors that are low for
all training models, ranging from 0.746% to 1.057%. Using this metric of relative
percentage errors, Slice 3 has the best reconstruction and Slice 4 has the worst (but
Slice 4 does have the best improvement factor). We note here that Slice 2 has the best
starting guess in terms of this metric (and in term so ψ), which partly explains why its
improvement factor is the lowest.
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(a) Slice 2
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(b) Slice 3
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(c) Slice 4
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(d) Slice 5

Figure 6.2.11: Absolute value of the relative percentage error in the reconstructions at
the initial parameters.
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(c) Slice 4
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(d) Slice 5

Figure 6.2.12: Absolute value of the relative percentage error in the reconstructions at
the optimised parameters.

In Table 6.2.1, we also report the structural similarity between the ground truths
and the optimised reconstructions using a measure called the Structural Similarity
Index (SSIM). The SSIM is a quality metric commonly used in imaging [182]. A good
similarity between images is indicated by values of SSIM that are close to 1. We can see
from Table 6.2.1. that all values of the SSIM measure for the optimised reconstructions
are over 0.95, which implies the optimised reconstructions are structurally very close to
the ground truths. We note that the SSIM values here have been computed using the
ssim function in Matlab’s Image Processing Toolbox.
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Slice Improvement Factor Mean Relative Error (%) SSIM
2 4.49 0.920 0.960
3 8.26 0.746 0.969
4 12.23 1.057 0.960
5 6.65 0.903 0.959

Table 6.2.1: Measures of improvement/quality of the FWI reconstructions of training
models at optimised parameters.

6.2.2 Testing
We evaluate the optimal parameters found by our bilevel algorithm by testing them on
Slice 1 of Figure 6.2.2.

Results: We compare the FWI reconstructions of the testing slice at the starting
setup in Figure 6.2.3, i.e., with the uniform placement of sensors along a vertical line,
and the optimised setup found by our algorithm in Figure 6.2.3. The ground truth,
reconstruction at the initial parameters, and reconstruction at the optimised parameters
are shown in Figure 6.2.13.
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Figure 6.2.13: Ground truth testing model and its correspondng reconstructions at the
initial and optimised paramters.

We observe that the reconstruction at initial parameters appears to be of relatively
good quality already, but that the values of the wavespeed, in the thin layer below
2 km in particular, seem to be incorrect. The optimised parameters appear to have
improved on this. We compare the initial and optimised reconstructions in more detail
by visualising their wavespeed deviation and relative percentage error in Figures 6.2.14
and 6.2.15 respectively. It is evident from these figures that the optimal parameters
determined by our algorithm yield a substantial improvement in the FWI reconstruction.
Similarly to the training models, the error becomes lowest in the part of the domain
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above 2km, and errors are more noticeable below this, particularly on the right side of
the domain. There is relatively large error in the bottom right corner, which can possibly
be explained by the position of the sensor in this corner. This sensor is positioned
at 1.92 km in the x direction, and so is not measuring the waves being transmitted
though the region ‘behind’ it, and therefore is not reconstructing this region correctly.
In general, however, many of the errors present in the initial reconstruction have been
improved on.
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(a) Initial
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(b) Optimised

Figure 6.2.14: Deviation in the initial and optimised FWI reconstructions from the
ground truth testing model.
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(a) Initial
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(b) Optimised

Figure 6.2.15: Absolute value of the relative percentage error in the FWI reconstructions
of the testing model at the initial and optimsied parameters.

The values of improvement factor, mean relative error and SSIM are reported in
Table 6.2.2. From these values we can conclude that the reconstruction at the optimal
parameters is indeed of good quality, and that there is a significant improvement from
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the starting reconstruction. Moreover, the reconstruction of the testing model is of
similar quality to the models used for training.

Slice Improvement Factor Mean Relative Error (%) SSIM
1 4.46 0.910 0.969

Table 6.2.2: Measures of improvement/quality of the FWI reconstruction of the testing
model at optimised parameters.

Conclusion: We note that the testing model (Slice 1) and one of the training models
(Slice 2) appear to be in the same class of models, which explains why their improvement
factors are close in value. The other training models are not in the same class as the
testing model, or as each other, but share some properties, such as the range of
wavespeeds present and the fact that the wavespeed gets higher on average as depth
is increased. This is in contrast to Experiment 1 where all training models were in
the same class. The results of this Experiment 2 show that we still achieve consistent
improvement when training on a diverse set of models, and that we achieve desirable
results when testing on a model that is in the same class as only one of the training
models.

Overall, this experiment has shown that our bilevel algorithm is effective in finding
the optimal sensor positions and Tikhonov regularisation parameter for geophysical
problems, and that the optimal parameters can be applied successfully to subsurfaces
that are overall largely different from the training set, as long as there are some
similarities present.
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Chapter 7

Discussion

In this thesis, we studied the problem of optimising the quality of seismic images
produced with full waveform inversion (FWI). We formulated this problem using
a bilevel learning framework, and developed and implemented an iterative solution
approach. We showed that, using this supervised machine learning approach, both the
sensor positions and regularisation parameters can be optimised for FWI, and that our
method leads to large improvements in the quality of FWI images. We summarise some
of the main results of this thesis here and discuss the potential for future work.

7.1 Summary of Results
In Chapter 2, we provide an overview of the FWI method. This involves a discussion
of the forward modelling step, a derivation of the gradient and Hessian of the FWI
objective function (including the application of the adjoint-state method), a description
of the FWI algorithm, and some examples of FWI reconstructions. The original work
in this chapter focuses on the FWI Hessian. We provide an in-depth analysis into
the structure and properties of the Hessian, and derive lower- and upper-bounds on
the eigenvalues of the Hessian. We provide conditions for a positive-definite Hessian,
in terms of a bound on the regularisation term of the convex parameter, and hence
make conclusions about when the FWI problem has a unique solution. This result
is important for both the standalone FWI problem, and also the overall parameter
optimisation problem.

The work in Chapter 3 solely consists of all original results. The parameter op-
timisation problem, for the optimisation of both sensor positions and the Tikhonov
regularisation parameter, is formulated as a bilevel learning problem. A solution ap-
proach to the bilevel problem is proposed, involving a single-level reduction and a
gradient-based local optimisation method. Novel formulae for the gradient of the bilevel
problem are derived, incorporating the application of the adjoint-state method. The
cost of solving the bilevel problem in terms of the number of PDE solves is studied.
Finally, the smoothness of the upper-level objective function is proved, showing the
applicability of a gradient-based optimisation method.

The main result of Chapter 4 is that, under certain assumptions, the solutions to
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both the lower- and upper-level problems have symmetry properties.
In Chapter 5, the algorithms used to solve the bilevel problem are presented,

which include several original algorithms. Implementation details and novel ideas for
the improvement in the performance of these algorithms are described. Specifically,
we propose a bilevel frequency continuation algorithm, which is demonstrated to
significantly improve the performance of the bilevel algorithm. Using this continuation
scheme, the parameters being optimised have the potential to move far from their starting
guess without getting stuck in local minima. In addition, two new preconditioners are
devised and implemented to reduce the number of iterations taken to solve a linear
system involving the FWI Hessian. We observe that both preconditioning strategies
work effectively to speed up the solution of the linear system, producing a reduction
in the number of iterations of up to 96%. We present our investigation of how each
preconditioning strategy is affected by various parameters, hence demonstrating that
both preconditioners are unaffected by grid size. We show that when used in the
bilevel algorithm, both preconditioning strategies improve the performance of the bilevel
algorithm significantly, reducing the computational time by several hours in some cases.
We note that these preconditioning techniques have the potential to be useful in solving
any Hessian system, not just the one that appears in the bilevel problem. As part of
Chapter 5, we also provide an overview of the computational time spent on different
parts of the algorithm, and demonstrate that our new bilevel algorithm parallelises
effectively over the number of training models.

While each chapter demonstrates aspects of the numerical implementation of the
bilevel problem, the experiments in Chapter 6 involve applying the algorithm to larger-
scale problems. The experiments in this chapter show that the bilevel learning approach
to parameter optimisation performs well on larger-scale problems, including realistic
geophysical problems, and that the optimal parameters generalise well to models that
are outside the training set, even if there are some significant differences between
the model and the training set. This makes our bilevel learning algorithm extremely
valuable, since, even though it is computationally expensive to run, it only needs to be
trained once to determine optimal parameters that can then can be applied with some
confidence to a relatively diverse range of situations.

7.2 Future Work
There are many possibilities for extending, improving, and applying the work done in
this thesis. We consider various potential areas for development here.

Other Types of Imaging Procedures Firstly, the work done in this thesis provides
a framework for which other types of images, outside seismic images, can be improved.
In particular, our work naturally extends to other applications that use FWI as a
reconstruction technique, for example ultrasound imaging ([81], [120]), where our work
can be used to optimise both sensor positions and regularisation parameters for the
improvement in the quality of the medical images, and structural health monitoring
([159], [188]), where our method can be used to improve the accuracy of non-destructive
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testing. Our bilevel learning theory and algorithms also have the potential to be
developed and applied to other imaging techniques where the forward modelling, and
hence the lower-level, is different, but where the general bilevel approach that we have
developed would still be useful. Medical imaging applications, either modelled as linear
or nonlinear inverse problems, such as electrical impedance tomography (EIT), X-ray
tomography, and computed tomography (CT), could all benefit from our parameter
optimisation techniques.

Optimising the Number of Sensors Another suggestion for extending the work
in this thesis is to incorporate the optimisation of the number of sensors into the bilevel
learning structure. This can be formulated by including a weighting operator applied
to the restriction operator in the FWI objective function, such that each sensor has a
weight between zero and one. Then both the positions and the weight of each sensor
can be optimised on the upper-level. A sparsity penalty term for the weights, such as
the one used in [162], can be included in the upper-level objective function to encourage
the weights to take either the value zero or one, depending on how important the sensor
is to the quality of the reconstruction.

Optimising the Source Positions The bilevel problem can be enhanced even
further to include the optimisation of source positions (as well as the number of sources)
so that the whole acquisition set up is optimised. The extension for source placement
optimisation would involve the same steps as the sensor case, namely: deriving formulae
for the gradient of the upper-level objective function with respect to source positions,
proving smoothness of the upper-level objective function with respect to source position,
and incorporating the optimisation of this into the existing algorithm. There is also
potential to study source-receiver reciprocity (as described in [104]) and to determine
whether this can be incorporated into the algorithm to somehow improve efficiency.

Further Numerical Experiments Another area for future development is related
to numerical experiments. The numerical experiments in this thesis are generally set up
as transmission/crosswell type experiments. When optimising the sensor positions in
these experiments, the sensors were usually allowed to move anywhere in the domain,
to reach their optimal positions. This resulted in large improvements in the quality of
the FWI images. Further experiments can be done to examine how well the bilevel
learning approach works for reflection setups and for any other setups where there
are bounds on where the sensors can be placed. These types of experiments may be
closer to the settings encountered in real seismic acquisition, where more constraints
are present. For example, there is usually a preference for placing the sensors on the
surface (i.e., a reflection setup), due to the expense of drilling boreholes. In addition,
even if a transmission set up is chosen, it is not expected that boreholes can be drilled
in several locations, and in reality there are practical constraints on where these can be
drilled. The current implementation of the bilevel algorithm already supports this kind
of extension - only the inputs to the algorithm need to be changed, for example the
starting guess for the sensor positions and the bounds for the L-BFGSb algorithm.
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Open Questions Arising from Chapter 2 There are a number of theoretical open
questions that have resulted from this research. In Chapter 2, we found a bound on
the convex regularisation parameter that would ensure a unique FWI solution. Since
there are several unknown constants in this bound, a question that arises from this
result is how large this parameter actually needs to be to ensure uniqueness. Further
investigation can be taken to estimate these unknown constants, along with analysis into
how the other terms in the Hessian can help with establishing its positive-definiteness.
As mentioned in Remark 2.4.19, it is likely that we have over-estimated how large
the convex regularisation parameter needs to be to achieve positive-definiteness in the
Hessian. This seems to be confirmed by what we have observed in practice. The bound
we have derived could therefore be refined further.

Open Questions Arising from Chapter 3 Several open questions also arise from
the work presented in Chapter 3. In Chapter 3, we proved that the upper-level objective
function is continuously differentiable with respect to sensor position. An interesting
extension of this work would be to prove that the objective function is twice continuously
differentiable and to derive an expression for the upper-level Hessian. This work would
be useful in the context of investigating upper-level uniqueness. In Chapter 3, we briefly
examined the possibility of a unique upper-level solution. This was considered in a
simplified case with one sensor. Having shown that a unique solution is possible in the
one sensor case, this work can be continued to examine the multiple sensor problem. In
this case, it would be useful to derive a bound on a possible upper-level regularisation
parameter such that a unique solution is guaranteed (much like the approach taken on
the lower-level). Another topic from Chapter 3 that should be explored in depth is the
difference between the noisy data and clean data case. In the Problem Formulation
section (Section 3.3), we proposed adding noise to the synthetic ‘observed’ data. Later,
in proving the smoothness of the upper-level objective function we assumed that there
was no noise on the data. It would be of interest to investigate whether the upper-level
objective function remains smooth when the data is noisy. This is not a straightforward
problem, since in practice it was observed that the objective function was only smooth
when there was no noise in the synthetic data.

Open Questions Arising from Chapter 4 An immediate extension of the work
in Chapter 4 is to generalise the results on reflections to general rotations.

Alternative Approaches to Solving the Bilevel Learning Problem Finally, it
is worthwhile to consider different approaches to solving the bilevel learning problem,
other than just a local optimisation method that uses gradient information to find the
minimum. As we have noted, noisy data results in a non-smooth objective function.
Similarly, we showed that the objective function becomes non-smooth when the lower-
level is not solved accurately enough (see Figure 5.3.5). However, the overall shape of the
objective function (including its global minimum) remains about the same. Therefore,
non-smooth optimisation methods could be applied to solve these problems. This would
mean that FWI would not have to be solved as accurately to solve the full bilevel
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problem, and hence a large amount of computation time could be saved (since, as noted
in Section 5.3.3, most of the computation time is spent solving the FWI problem).
There are many derivative-free optimisation methods, as detailed in [49], which may be
be useful for our problem. In particular, surrogate modelling, which involves replacing
the true objective function with an approximation to it that is cheaper to evaluate,
could be a useful approach. Although the surrogate function is less accurate than
the true objective function, several evaluations of a surrogate model can still be less
expensive than one evaluation of the true function and its gradient [49].

In conclusion, there are many possible research directions that can build on the
research done in this thesis.
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Appendix A

Full Waveform Inversion Background
Full Waveform Inversion started to emerge in the 1980’s, with pioneering publications by
Lailly [111] and Tarantola [175,176]. Since then, application to real seismic exploration
data has become common due to advances in seismic-data acquisition and improvements
in computer capabilities.

Lailly and Tarantola laid out a detailed formulation for the recovery of subsur-
face parameters using a least squares optimisation scheme, which involved using the
adjoint-state method for the calculation of the descent direction. The first computer
implementations of this theory were published by Gauthier et al. [75] in 1986. Gauthier
et al. implemented the inversion algorithm on various acoustic 2D examples to test it’s
performance. Despite the computational limitations at the time, this work proved the
feasibility of the method, and so represented a big advancement in the field.

Although FWI was originally posed in the time domain (for example, [175]), it
was later formulated and applied in the frequency domain, for example, by Pratt and
Worthington [151], and Pratt ([148] and [149]).

One of the main issues that FWI faced in its application to real seismic data was
that, if the initial model is not sufficiently accurate, FWI often converges to incorrect
results. This problem is due to the numerous local minima of the objective function, and
is associated with using gradient-based descent methods to solve FWI. Convergence to
a local minimum produces erroneous results and an improper interpretation. Significant
progress in this challenge were made with the proposal of hierarchical strategies, both
in the time domain ([38]) and frequency domain (for example, [147], [150], [149]).
This strategy in the frequency domain (frequency continuation) is further discussed
in Section 2.5.1, and we summarise the main concept here. The key idea is to start
from low frequency data, which corresponds to long wavelengths. Waves interact with
with features on the order of their wavelength, and so, following some FWI iterations,
the inverted model will contain the large-scale structure. Higher frequencies are then
progressively introduced and the model is refined accordingly. This strategy helped to
avoid local minima and hence improved FWI results. Sirgue and Pratt [166] further
improved the process by showing that carefully choosing the frequencies can speed up
the FWI process.

Since then, the advancements in High Performance Computing have meant that
FWI could be applied successfully to large scale and realistic problems. Several case
studies have demonstrated impressive FWI results, for both marine data [145,165] and
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land data [144]. Despite being widely used for seismic surveys in industry today, FWI
still has some issues. For example, when there is a lack of low frequencies or when the
data is noisy, FWI can produce large artefacts. In addition, even with the advancements
in computing, FWI is still extremely computationally intensive. It should also be noted
that FWI is an ill-posed problem inverse problem, with many solutions that may not
make any geological sense, an issue which is related to the large number of model
parameters.

Advancements are continuously being made in the area of FWI. Recent work includes
improving the robustness of FWI by suppressing artefacts [189], as well as frequency-
dependant preconditioning that improves the reconstruction of deep geological structures
[55]. It is also currently becoming more popular to apply machine learning techniques
to improve FWI reconstructions, seen for example in [192] and [173]. New applications
of FWI have also been researched recently, such as [81], which demonstrates that FWI
can be used to image the brain accurately, and [120], which uses FWI to create 3D
ultrasound images that can replace X-ray-based mammography.
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Appendix B

Seismic Waves
Seismic waves are mechanical waves that propagate through the Earth. The source of
seismic waves may be natural or man-made. An earthquake is an example of a natural
source, where the seismic waves are generated at a ‘hypocentre’, deep in the subsurface,
along a geological fault, and these waves spread out through the Earth, possibly reaching
the surface. Man-made seismic waves are due to an artificially generated explosion, and
the measurement of these seismic waves can be used in applications such as hydrocarbon
exploration.

There are two main categories of seismic waves - body waves, which propagate
within the interior of the Earth, and surface waves, which propagate across the surface.
Each of these categories can be further divided into sub-categories. We present a brief
description of these here. For a more detailed description, see [137, Chapter 1].

Body waves are separated into the following classes: P-waves, also called primary or
compressional waves, and S-waves, or secondary or shear waves. P-waves are pressure
waves and propagate longitudinally in the direction of the path of propagation, therefore
dilating and compressing the medium. P-waves travel faster than other waves and
can travel through any type of material (solid, liquid, gas). P-waves are modelled by
the acoustic wave equation. The S-waves are shear waves that displace the ground
perpendicular, or transverse, to the direction of propagation. S-waves only travel
through solid mediums, as shear force does not occur in liquids and gases. Both P- and
S-waves can be modelled by an elastic wave equation.

Surface waves travel slower than body waves, but their particle movement is much
more pronounced, and so during earthquakes, they cause the most damage. Surface
waves can also be separated into different classes. Love waves, named after Augustus
Edward Hough Love, are the fastest of the surface waves. Love waves involve surface
motion which is perpendicular to the direction of propagation. Rayleigh waves are named
after John William Strutt Rayleigh. Rayleigh waves involve the elliptical movement
of particles, against the propagation direction, resulting in motion of a rolling nature,
similar to ocean surface waves.
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Appendix C

Formulations of the Wave Equations
From a mathematical point of view, wave propagation is governed by the so-called wave
equations. The main objective of this section is to introduce the elastic wave equation
and derive the acoustic wave equation from this.

Elastic Waves
A sophisticated description of seismic waves must take into account that the Earth is
a solid, and hence elastic phenomena are important. Elastic waves in solid materials
can be modelled using the equations of linear elastodynamics. These equations are
derived from classical (Newtonian) mechanics. We present the elastic wave equation
here without derivation, however, the derivation and more details can be found in [167].

The isotropic elastic wave equation may be written as

ρ(x)∂
2u(x, t)
∂t2

−∇ · (λ(x)∇ · u(x, t))−∇ ·
(
µ(x)

[
∇u(x, t) + (∇u(x, t))T

])
= 0,

(C-1)

where t is the time variable and x is the spatial variable (which can represent more than
one dimension). The wavefield here is the displacement, denoted by u. We use bold
notation for the displacement to emphasise that it is a vector, with size given by the
number of dimensions. The density of the medium is denoted by ρ, and the two elastic
parameters, or Lamé parameters, are denoted by λ and µ. The parameter λ is referred
to as the first Lamé parameter, and µ is referred to as the second Lamé parameter, or
shear modulus. Other physical coefficients can be expressed with respect to the Lamé
parameters, such as the bulk modulus,

κ(x) = λ(x) + 2
3µ(x). (C-2)

In a homogeneous medium, there is no spatial variations in the density and Lamé
parameters. In this case (C-1) can be written as

ρ
∂2u(x, t)
∂t2

= (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u). (C-3)
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Remark C-1. P- and S-Wave Decomposition: As previously stated in Appendix
B, elastic body waves propagating through a solid are made up of both P-waves and
S-waves. We can see this mathematically by separating the elastic wave equation (C-3)
into solutions for P- and S-waves using the Helmholtz decomposition. The Helmholtz
decomposition involves expressing the displacement vector u as a composition of two
functions,

u = u(s) + u(p),

where u(p) corresponds to P-waves (compressive waves) and u(s) corresponds to S-waves
(shear waves). The compressive waves u(p) satisfy ∇× u(p) = 0 and shear waves u(s)

satisfy ∇ · u(s) = 0. For homogeneous materials, each of these is the solution to the
following separate wave-equations(

∂2

∂t2
− c2

p∆
)

u(p) =0 (C-4)(
∂2

∂t2
− c2

s∆
)

u(s) =0 (C-5)

where cp and cp are given respectively by

cp =
√
λ+ 2µ
ρ

(C-6)

cs =
√
µ

ρ
. (C-7)

Acoustic Approximation
The elastic wave equation (C-1) models the propagation of both P and S waves in an
elastic solid. Modelling a full elastic wavefield is computationally expensive, however,
and simplifications can be introduced to help. Since P-waves travel faster than S-waves,
and so bring information first, some applications require P-waves only. In addition,
only P-waves propagate in fluids, which cannot support shear waves, as fluids have no
aspect of rigidity. Therefore, a common simplification of the elastic wave equation is
the acoustic approximation, which models P waves only. The following derivation of
the acoustic approximation are based on the steps outlined in [72, Section 1.2.6].

Under the acoustic approximation, there is no shear waves and therefore the shear
wave velocity and shear modulus are zero (cs = 0, µ = 0). This means that terms
that represent the deformations that give rise to shear stresses will vanish. Therefore,
Equation (C-1) is simplified to

ρ(x)∂
2u(x, t)
∂t2

= ∇ (λ(x)∇ · u(x, t))) , (C-8)

which is the acoustic isotropic wave equation. The equation for the P-wave velocity
(C-6), becomes

cp(x) =

√√√√λ(x)
ρ(x) . (C-9)
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By (C-2), when the shear modulus is zero, the first Lamé parameter is the bulk modulus,
and so λ(x) = κ(x) = c2

p(x)ρ(x) .
The elastic equation (C-1) requires the computation of the displacement u, which is a

vector. An important simplification of the acoustic case is that it is possible to introduce
the pressure p = p(x, t), a scalar quantity, as the unknown instead. When shear is zero,
the waves can be described by Cauchy’s momentum equation for a non-viscous fluid.
This provides us with a link between displacement and pressure, from which we obtain
a simple expression for the acoustic pressure,

p(x, t) = −λ(x) ∇ · u(x, t). (C-10)

Using (C-10) to substitute for u in (C-8), and dividing (C-8) by ρ gives the following,

∂2u(x, t)
∂t2

= −∇p(x, t)
ρ(x) .

Taking the divergence of this, and again using the definition (C-10), gives the following
equation,

∂2p(x, t)
∂t2

= λ(x)∇ ·
(
∇p(x, t)
ρ(x)

)
.

This wave equation is the acoustic approximation to elastic waves.
Further assuming that density ρ is constant, and multiplying the above by the

constant ρ, gives

1
c2
p(x)

∂2p

∂t2
= ∇2p, (C-11)

where cp(x) is defined in (C-9). This is the scalar acoustic wave equation (with constant
density), without a source term (body force term). A derivation with a source term
is found in [72, Section 1.2.6]. The acoustic approximation (C-11) is widely used in
geophysical applications. It is of importance in the context of inverse problems because
there are less parameters to identify in the model. The acoustic wave equation is also
the natural equation to model sounds waves in fluids, and so is applied to model sound
waves in the water during off-shore marine acquisition.
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Appendix D

Wave Equation Formulation in the Frequency Do-
main
The wave equations (C-1) and (C-11) have been formulated in the time domain. The
unknowns, u and p, depend on the time-variable t and the spatial variable x. In this
thesis, we will deal with the wave equations in the frequency domain, also known as the
time-harmonic formulation (e.g., see [48]). In this formulation, the unknowns depend
on the spatial variable x and the angular frequency ω.

The time-harmonic formulation is based on solutions of the form

u(x, t) = û(x)e−iωt, (D-1)

where i is the imaginary unit i2 = −1, and ω is the angular frequency defined as
ω = 2πf , with f being the frequency in Hz. Equation (D-1) impacts the derivatives as
follows

∂u(x, t)
∂t

= −iωû(x)e−iωt,

∂2u(x, t)
∂t2

= −ω2û(x)e−iωt.

The isotropic elastic wave-equation (C-1) is written in the time harmonic-formulation
by substituting in Equation (D-1),

−ρω2ûe−iωt −∇ (λ∇ · û) e−iωt −∇ ·
(
µ
[
∇û + (∇û)T

])
e−iωt = 0

where the spatial dependency of λ, µ and u on x is suppressed in the notation here.
This can be simplified by dividing through by e−iωt, to give the time-harmonic isotropic
elastic wave equation, which has no dependence on time,

−ρω2û−∇ (λ∇ · û)−∇ ·
(
µ
[
∇û + (∇û)T

])
= 0.

These steps can be reproduced for the acoustic wave equation (C-11). Again, we
assume solutions have time-harmonic form, i.e.,

p(x, t) = p̂(x)e−iωt. (D-2)
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Substituting this into (C-11) and dividing across by e−iωt, we get

−
(
ω2

c2 +∇2
)
p̂ = 0,

where we are writing the P-wave velocity cp(x) as c(x) here, and the x dependence has
been suppressed. This is the Helmholtz equation, and is usually written as

−
(
k +∇2

)
p̂ = 0, (D-3)

where the wavenumber k is the ratio of the angular frequency and the wavespeed

k(x, ω) = ω

c(x) . (D-4)

We also define the index of refraction n(x) by

n(x) = 1
c(x)

and the squared-slowness, or model, which is the parameter used in acoustic full
waveform inversion, by

m(x) = 1
c2(x) . (D-5)

We note that the derivation of the Helmholtz equation with a source term is found in
[72, Section 1.2.6]. In this thesis we mostly write the Helmholtz equation with a source
term on the right-hand side and in terms of the model (D-5), in the following form,

−
(
∆u(x) + ω2m(x)u(x)

)
= q(x), (D-6)

for some source term q. Note that we are writing p̂ as u here as this is the more standard
notation.

Notes on Existence and Uniqueness
Now that the wave equations have been derived, we consider the concept of well-
posedness. A problem is said to be well-posed if a solution exists (existence), the
solution is unique (uniqueness), and the solution depends continuously on the data [48].
To ensure well-posedness, boundary conditions must be properly defined. One such
boundary condition that ensures well-posedness is a radiation condition in the far-field.
We discuss this radiation condition here and describe how it is implemented in practice.

Radiation Condition

In wave problems, radiation conditions are required at infinity to guarantee that the
problem has a unique solution and, more generally, that the problem is well-posed. The
radiation condition for the Helmholtz equation (D-3), is called the Sommerfeld radiation
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condition, and ensures that the system can lose its energy in the form of radiation but
that no energy may be radiated from infinity into the system. This boundary condition
is applied at infinity and rejects incoming ways, which do not make physical sense. In
an infinite 3-dimensional domain, the condition has the form

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0, (D-7)

where r = |x| and k is the wave number. A detailed review of this boundary condition
is avaiable in [158] and theorems about the well-posedness of the Helmholtz equation
with radiation boundary conditions can be found in [48]. The radiation condition for
the frequency domain elastic wave equation is discussed in [32].

Artificial Boundary and Absorbing Boundary Conditions

The Sommerfeld radiation condition applies to wave propagation problems on an infinite
domain. However, to model wave phenomena numerically, the computational domain
must be truncated to a finite domain.

Truncated Domain

Infinite Free Space

Waves should pass through
boundary without reflections

Therefore, for implementations, the problem is reformulated through the introduction
of an appropriate artificial boundary, with a new boundary condition to replace the
Sommerfield radiation condition. Such boundary conditions attempt to reproduce the
property that waves from inside the computational domain are passed through the
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artificial boundary without generating spurious reflections back into the computational
domain, hence ensuring a physically meaningful solution. However, to obtain this
property perfectly is computationally expensive, so it is nearly always approximated.

Approximations of the Sommerfeld radiation condition which ensure the solution
is as close as possible to the solution that would have been computed in the original
physical domain are called Absorbing Boundary Conditions (ABCs). The aim of
absorbing boundary conditions is to simulate the infinite domain of propagation by
imposing a local boundary condition on the artificial boundary. ABCs were developed in
1977 by Engquist and Majda [66] in the time domain (and later in [20] in the frequency
domain). In [66], an exact perfectly absorbing boundary condition is derived, which
has the following form,

∂u

∂n
− P(u) = 0,

where P is a non-local operator. Unfortunately, this boundary condition is non-local and
is therefore impractical from a computational point of view. Instead, approximations of
the operator are made. The first-order approximation is equivalent to the impedance
boundary condition introduced in Chapter 2,

∂u

∂n
− iω

c
u = 0. (D-8)

Note that this may also be written in terms of the model, since 1
c

=
√
m. Higher order

approximations can also be made (see for example [66]).
We refer to [134] for a more detailed explanation and derivation of this technique

and as well as other common approaches for solving wave propagation problems in a
truncated domain, such as Perfectly Matched Layers (PMLs).
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Appendix E

Discretisation of the Helmholtz Equation
In this appendix, we provide both a finite difference and finite element scheme for the
discretisation of the Helmholtz equation, and then provide an example to show the
connection between these two discretisation methods.

Finite Difference Scheme for the Helmholtz Equation
In this section, we provide a finite difference scheme for the following Helmholtz equation
with impedance boundary conditions,

−(∆ + ω2m)u = f on Ω(
∂

∂n
− iω

c

)
u = 0 on ∂Ω

where u = u(x) and m = m(x). The impedance boundary condition that we use is the
same as that in (D-8), where we noted that 1/c =

√
m.

There are two main steps in discretisation. First, the domain of interest is divided
into a grid, and then, the equation is discretised. We go through these steps for the
finite difference (FD) method, for a simple rectangular 2D domain.

Discretisation of the Domain

Consider a simple two-dimensional domain Ω ∈ R2, with width Lx and height Lz.
FD partitions the domain into a regular grid. We let Nx and Nz be the number of
discretisation nodes in the x and z-direction respectively. We define the grid size in
these directions as hx = Lx/(Nx − 1) and hz = Lz/(Nz − 1). The total number of
discretisation points is Nx ×Nz. The nodes are labelled as (i, j) where i is the x index,
from 0 to Nx−1 and j stands for the z index, from 0 to Nz−1. We write the discretised
coordinates as Xi,j = (xi, zj) where xi = ihx and zj = jhz. Figure E-1 displays the
discretisation grid.

Once the domain of interest has been discretised, the PDE is discretised and a
discretised solution is sought at the nodal points.
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Figure E-1: Discretised Grid.

Discretisation of the PDE

In this section, we focus on discretising the Helmholtz equation in (E-1) with a first
order finite difference method. The equation we are discretising is

−∆u(x)− ω2m(x)u(x) = f(x), (E-1)

where we have explicitly written the spatial dependence. We focus on (E-1) first and
consider the boundary conditions later.

Finite differences aim to define the solutions at every node of the grid. In this case
the discretised solution is defined as a column vector

u = [u(X0,0), u(X0,1), . . . u(X0,Nz−1), u(X1,0), . . . u(Xi,j), . . . u(XNx−1,Nz−1)]T ,
= [u0,0, u0,1, . . . u0,Nz−1, u1,0, . . . , ui,j, . . . , uNx−1,Nz−1]T ,

where Xi,j = (xi, zi) indicates the two coordinates of the position at node (i, j) and the
wavefield at that node is denoted ui,j. Similarly, the model at node (i, j) is denoted
mi,j, and is arranged in a column vector

m = [m0,0,m0,1, . . . m0,Nz−1,m1,0, . . . ,mi,j, . . . ,mNx−1,Nz−1]T . (E-2)

Since we are working on a two-dimensional grid, we use the five-point formula to ap-
proximate the Laplacian, which is shown in Figure E-2. (We remark that more accurate
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finite difference approximations can be obtained by using higher-order approximations.
This leads to wider stencils.) Our discretised Laplacian term is then

∆ui,j = ui+1,j − 2ui,j + ui−1,j

h2
x

+ ui,j−1 − 2ui,j + ui,j−1

h2
z

, (E-3)

where qi,j = q(xi, zj), ui±1,j = u(xi ± hx, zj), and ui±1,j = u(xi, zj ± hz). We note that
in the case where h = hz = hx, this would simplify to

∆ui,j = ui+1,j + ui−1,j − ui,j−1 + ui,j−1 − 4ui,j
h2 . (E-4)

The full approximation of (E-1) for interior nodes of the domain, using (E-3), is

−ui+1,j − 2ui,j + ui−1,j

h2
x

− ui,j−1 − 2ui,j + ui,j−1

h2
z

− ω2mi,jui,j = fi,j, Xi,j ∈ Ω, Xi,j 6∈ ∂Ω.

(E-5)

i, j

i, j + 1

i, j − 1

i− 1, j i+ 1, j

Figure E-2: Stencil for 5-point discretisation of 2D Helmholtz operator.

This discretization generates one equation per nodal point and each of them involves five
grid points (except for when on the boundary) - the node itself and its four neighbours,
as shown in Figure E-2.

Boundary conditions determine the approximation on the exterior nodes. There
is a discussion of boundary conditions for the seismic problem in Appendix D. We
demonstrate the finite difference procedure for the case where impedance boundary
conditions (D-8) are applied on all boundaries of the domain. We restate (D-8) in terms
of the model,

∂u

∂n
− iω
√
mu = 0 on ∂Ω, (E-6)
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where ∂/∂n is the normal derivative. The boundary ∂Ω corresponds to the node points
i = 0 and Nx − 1, and j = 0 and Nz − 1. The boundary conditions at i = 0 (for any
j) and j = 0 (for any i) are approximated with backward differences. For example, at
z0, we write the boundary condition as follows and use it to find the value of u at the
fictitious point (i,−1), which is outside the domain of the problem,(

−∂u
∂z
− iω
√
mu

)
i,0

= 0 (E-7)

−
(
ui,0 − ui,−1

hz

)
− iω
√
mi,0ui,0 = 0

ui,−1 = (iω
√
mi,0 hz + 1)ui,0 (E-8)

The fictitious point (E-8) can then be substituted into (E-5) at the boundary. The
boundary condition at x0 is similarly used to find the value of u at the fictitious point
(−1, j),

u−1,j = (iω
√
m0,j hx + 1)u0,j.

At i = Nx − 1 (for any j) and j = Nz − 1 (for any i), the boundary conditions are
approximated with forward differences and used to solve for the values of u at the
fictitious points (Nx, j) and (i, Nz) in the same manner, giving

uNx,j = (iω
√
mNx−1,j hx + 1)uNx−1,j,

ui,Nz = (iω
√
mi,Nz−1 hz + 1)ui,Nz−1.

Combining the discretised impedance boundary conditions with the discretised
Helmholtz equation allows us to write the forward modelling equations as a linear
matrix system,

A(m, ω)u = f, u, f ∈ CN×1, A ∈ CN×N

where N = NxNz, u contains all the wavefield values at nodal points ui,j, f contains
all the source values fi,j and A is the finite difference-matrix. The matrix A can be
written as the sum of other matrices, such that

A(m, ω) = L− ω2 diag(m)− iωB(m). (E-9)

where the matrix B is defined in (E-10) and the matrix L is defined in (E-11), and
diag(m) denotes the diagonal matrix of size NxNz×NxNz, with the model values (E-2)
on the diagonal. The entries of the matrix B come from the imaginary parts of the
impedance boundary condition and so are only non-zero on the boundaries. We define
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the entry Bk,l, for k = l = iNz + j + 1 as follows,

Bk,l =



√
mi,j

hx
, when i = {0, Nx − 1} ∀j 6∈ {0, Nz − 1}

√
mi,j

hz
, when j = {0, Nz − 1} ∀i 6∈ {0, Nx − 1},

√
mi,j

hx
+
√
mi,j

hz
, when i = {0, Nx − 1} and j = {0, Nz − 1},

0, else

. (E-10)

The matrix L can be written compactly using the kronecker product,

L = − (Dxx ⊗ INz + INx ⊗Dzz) , (E-11)

where INx and INz are the identity matrices of size Nx ×Nx and Nz ×Nz respectively
and Dxx and Dzz are close to the 1D finite difference Laplacians in the x and z direction
respectively, but incorporate the additional real parts of the boundary condition terms.
These matrices are defined below in (E-12) and (E-13). The derivative matrix in the x
direction is of size Nx ×Nx and the elements are

[Dxx]k,l = 1
h2
x


−2 when k = l 6∈ {1, Nx},
−1 when k = l ∈ {1, Nx},
1 when k = l + 1, l 6= Nx,

1 when k = l − 1, l 6= 1.

(E-12)

The derivative in the z direction is of size Nz ×Nz and similarly has a tridiagonal form,
with entries

[Dzz]k,l = 1
h2
z


−2 when k = l 6∈ {1, Nz},
−1 when k = l ∈ {1, Nz},
1 when k = l + 1, l 6= Nz,

1 when k = l − 1, l 6= 1.

(E-13)

Remark E-1. The finite difference discretisation presented here is low order but is
sufficient for implementations in this thesis since all experiments involve relatively
low frequencies that allow this discretisation to remain accurate. For higher frequency
problems, higher-order discretisation schemes are preferred.

Finite Element Discretisation of Helmholtz Problem
Here we present the Helmholtz equation with impedance boundary conditions (2.2.5)
in its discrete form using finite elements, and then we present an example that makes
the link between this discretisation and the finite difference discretisation.
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We start by writing the problem (2.2.5) in weak form, i.e., find u ∈ H1(Ω) such that

a(u, v) = F (v), for all v ∈ H1(Ω)

where a(u, v) is defined as in (2.2.9),

a(u, v) =
∫

Ω

(
∇u · ∇v − ω2muv

)
− iω

∫
∂Ω
uv

and F (v) is defined as

F (v) =
∫

Ω
fv.

Given a finite dimensional subspace VN ⊂ H1(Ω), the finite element method seeks
uN ∈ VN such that a(uN , vN) = F (vN) for all vN ∈ VN . Let {Φi : i ∈ {1, . . . , N}} be
a basis for VN , and let uN = ∑N

i=1 uiΦi. The linear system that arises from the FEM
discretisation is

A(m, ω)u = f (E-14)

where A ∈ CN×N , u ∈ CN×1, and f ∈ CN×1. The matrix A can be written as a sum of
three other matrices

A(m, ω) = S − ω2K(m)− iωC (E-15)

where the matrices and vectors appearing in (E-14) and (E-15) are defined as follows:

Si,j =
∫

Ω
∇Φi.∇Φj, K(m)i,j =

∫
Ω
mΦiΦj,

Ci,j =
∫
∂Ω

ΦiΦj, fi =
∫

Ω
fΦj, (u)i = ui,

where m and m are defined in Table 2.2.1. The matrix S is called the stiffness matrix,
K(m) is the domain mass matrix and C is the boundary mass matrix. The matrix A
is symmetric but not Hermitian due to the i in front of the C matrix, which appears
due to the impedance boundary condition. There is a separate large sparse system of
linear equations of the form (E-14) for each frequency ω and for each source. We have
stated (E-14) in a general form without too many specific details to emphasise that the
method of discretisation presented is very flexible.

Example Demonstrating the Link between Finite Element and Finite Dif-
ference Discretisation: We now state some more details of the finite element dis-
cretisation method in the case when the domain Ω is the unit square [0, 1]× [0, 1] and
the basis functions are piecewise linear on a uniform mesh of grid size h = 1/(n− 1).
Thus, N = n2, and the mesh has nodes Xi,j = (xi, zj) = (ih, jh), i, j = 0, . . . , n − 1,
with h = 1/(n− 1). The mesh consists of triangles and a patch of this mesh is depicted
in Figure E-3. We choose linear hat functions as the basis functions, i.e., Φij = 1 at
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i

j

Xi,j

Figure E-3: Section of Finite Element Mesh

node Xij and Φij = 0 at all other nodes. It is well-known that in this case, when Xij is
an interior node, the stiffness matrix S takes the form

S(i,j),(i′,j′) =

4 when (i′, j′) = (i, j)
−1 when (i′, j′) = (i− 1, j), (i− 1, j), (i, j − 1), (i, j + 1).

Therefore, h−2S coincides with the ‘5-point stencil’ of the finite difference approximation
(which is discussed in the finite difference section above). For the domain mass matrix
we have

K(m)(i,j)(i′,j′) =
∫

Ω
mΦijΦi′j′ .

In general, this domain mass matrix is different to the corresponding finite difference
approximation, however, we can simplify it by applying the quadrature rule on each
element τ , ∫

Ω
f ≈ area(τ)

3
∑
v∈τ

f(v)

where the sum is over the three vertices v ∈ τ . Since area(τ) = h2

2 and, when Xi,j is an
interior node, there are six triangles touching the interior node, we obtain,

K(m)(i,j)(i,j) ≈ 6h
2

6 m(Xij)Φ(Xij)2,

= h2m(Xij),

and

K(m)(i,j)(i′,j′) ≈ 0 when (i, j) 6= (i′, j′).
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At interior nodes, after scaling by h−2, the finite element method with triangular
elements coincides with the finite difference method detailed above. (We do not write
the details of the scheme at the boundary nodes here and only give the precise formula
for the finite difference case.)
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Appendix F

Optimisation
In this thesis we use local optimisation methods for finding the parameters that
minimise our objective functions. In particular, we use gradient-based local optimisation
methods. Gradient-based optimisation algorithms are widely used for solving a variety
of optimisation problems, because these techniques can be efficient and they can solve
problems with large numbers of variables. However, local optimisation methods have
some drawbacks, which include that they can only locate a local optimum, and that
they have difficulty dealing with discontinuous functions.

In this section, we review local optimisation methods that are popular in FWI.
Therefore, we describe these methods in the context finding an optimal model but
the theory is kept general so that it applies to any optimisation problem. The theory
presented here is largely based on information in [136].

Local optimisation methods involve making a starting guess, m0, and iteratively
updating the model m by searching the local model space. The iterative update for
local optimisation algorithms can be generally be written mathematically as follows,

mk+1 = mk + αkdk, (F-1)

where k is the iteration number, d is referred to as a descent direction, and α is a step
size. At iteration k, one finds dk using gradient (or sometimes Hessian) information.
Then, a step size αk is found that controls how far one moves in the descent direction.
A value for α may be found using a line search method, which we discuss later. The
following sections discuss specific methods for computing both the descent direction
and step size.

Newton’s Method
The first optimisation method that we discuss is Newton’s method. This method is
important as we see later that many other optimisation methods are based on an
approximation of Newton’s method.

Newton’s method is derived from the first order Taylor expansion. Considering a
model m ∈ RM , and an objective function φ(m) that is regular enough, and assuming
a small perturbation δm, we can expand the function as follows

φ(m+ δm) = φ(m) + δmT∇mφ(m) + 1
2δm

TH(m)δm+O(|δm|3), (F-2)
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where we have truncated the expansion at second order, leaving a residual of O(|δm|3)
The Hessian matrix H(m) is the M ×M second derivative matrix, whose elements are
given by

Hij(m) = ∂2φ(m)
∂mi∂mj

for i, j = (1, 2, ..,M).

We want to find the descent direction δm that will locate the minimum of the
quadratic approximation in (F-2). A descent direction is a direction δm such that
〈δm,∇mφ(m)〉 < 0, and thus φ(m+δm) < φ(m). When the minimum of the objective
function is reached, then its gradient is zero. Therefore, to solve for the minimiser, we
take the derivative of (F-2) with respect to δm and set it to zero. Neglecting higher
order terms, we find that the solution is given by

δm = −H−1(m)∇mφ(m); (F-3)

this is termed the Newton step. It is important to note that, since the Hessian matrix
may not always be positive definite, the Newton step may not always be a descent
direction.

The Newton method aims in building a sequence of mk converging towards the zero
of the function. At iteration k, the iterative update is given as

mk+1 = mk −H−1
k ∇mφk, (F-4)

where Hk = H(mk) and ∇mφk = ∇mφ(mk). The iterations are performed until some
convergence criteria is reached. Note that in its classic form, Newton’s method uses a
constant step size of α = 1. However, sometimes in practice the method is modified to
include a line search to ensure that the update in (F-4) is a descent direction and to
improve the efficiency of the method. For a discussion of Newton’s method specifically
in FWI see [150].

Newton’s method has a quadratic rate of convergence (under certain conditions),
which is highly desirable. However, the computational cost involved in computing the
Hessian makes this method impractical in many applications. Therefore, in practice,
methods that are based on Newton’s method are more popular than Newton’s method
itself, such as methods which use the first-order part of the Hessian only (Gauss-Newton
Method) or an approximation of the Hessian (Quasi-Newton Methods).
Remark F-1. During the derivation of Newton’s method, we used the fact that the
gradient of the objective function is zero at the global minimum. However, we note that
the gradient is also zero for any local minimum, or maximum, of the function, and
so the condition ∇φ = 0 is necessary but not sufficient for characterising the global
minimum, unless the objective function is strictly or strongly convex.

Steepest Descent
The steepest descent approach follows the negative of the gradient of the objective
function to find its minimum. The descent direction for the steepest-descent method is

dSDk = −∇φ(mk), (F-5)
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which is substituted into (F-1) to give the steepest descent method. (Note that we
write ∇ = ∇m in the rest of this appendix to simplify the notation.) The step size in
(F-1) may be chosen using a line search. The steepest descent method’s advantage is
in its simplicity, since it only requires the computation of the first derivative of the
current step. However, it has the disadvantage that it can be extremely slow on difficult
problems. More sophisticated algorithms are generally used in FWI.

Quasi-Newton Methods
A typical iteration of a Quasi-Newton method has the form of (F-1), with descent
direction,

dQNk = −B−1
k ∇φ(mk), (F-6)

where Bk is a positive definite matrix, updated from iteration to iteration, chosen so
that (F-6) is an approximation to the Newton step (F-3), i.e., Bk is an approximation
to the Hessian H(mk). Quasi-Newton methods, like steepest descent, require only the
first-order information to be supplied at each iterate. However, the improvement in
convergence over steepest descent can be dramatic. Superlinear convergence of a Quasi-
Newton method is guaranteed under the Dennis-Moré condition ([62], [136, Section
8.4]).

What makes a quasi-Newton method work so well is the choice of the matrix Bk at
each iteration. At each step of a Quasi-Newton method, the aim is to find Bk ≈ H(mk).
The main idea behind this approximation is to use model and gradient information
from current and past iterates. Two successive iterates mk and mk+1, and successive
gradients ∇φ(mk) and ∇φ(mk+1) provide information about the Hessian matrix, since

∇φ(mk+1)−∇φ(mk) ≈ H(mk)(mk+1 −mk),

where the approximation would be an equality if the function we are dealing with is
quadratic. In addition, the approximation tends towards an equality as ||mk+1−mk|| →
0. Therefore, at every iteration, Bk+1 is chosen to satisfy

Bk+1sk = yk, (F-7)

where

sk = mk+1 −mk, yk = ∇φ(mk+1)−∇φ(mk).

Equation (F-7) is called the secant equation, or Quasi-Newton condition.
One of the most popular choices for Bk is the BFGS formula, which is

Bk+1 = Bk −
BksksTkBk

sTkBksk
+ ykyTk

yTk sk
, (F-8)

where B0 is an initial approximation to the Hessian that should be symmetric and
positive definite. The matrix B0 is sometimes chosen as the identity matrix. In this
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case, the first descent direction (F-6) of the BFGS method is equivalent to the steepest
descent direction. It is important to note that to ensure the BFGS matrix Bk is positive
definite, the step size in (F-1) should be chosen via Wolfe Line Search. This is also
noted later in Remark F-2, after we give details of the Wolfe conditions.

Instead of computing Bk+1 and then solving (F-6) for the descent direction, practical
BFGS algorithms will instead update and store and approximation to the inverse Hessian,
B−1
k+1. The matrix-vector product is cheaper to compute than solving a linear system.

The inverse of Bk+1 can be obtained efficiently by applying the Sherman–Morrison
formula

B−1
k+1 =

(
I − ρkskyTk

)
B−1
k

(
I − ρkyksTk

)
+ ρksksTk , ρk = 1

yTk sk
, (F-9)

where I is the identity matrix. For ease of notation, in the rest of this section, we
denote B−1

k as H̃k, so that (F-7) may also be written as sk = H̃k+1yk.
The BFGS method involves storing the M×M approximation to the inverse Hessian

(recall that M is the length of m). This can become infeasible to store this for large M .
This issue can be addressed by using a limited memory version of the BFGS method,
which we discuss next.

Limited-memory BFGS

The Limited-memory BFGS, or L-BFGS, algorithm modifies BFGS to obtain inverse
Hessian approximations that can be stored in just a few vectors of length M . The key
idea of L-BFGS is that instead of storing a large M ×M approximation, it stores just
n vectors of length M that implicitly represent the approximation, where n is chosen
by the user such that n� M . It uses information from the n most recent iterations
only, since the information from earlier iterations is considered to be less likely to be
relevant to the Hessian behaviour at the current iteration, and so is discarded to save
memory. In other words, the information stored is the last n pairs of {sk,yk}, which
means that the algorithm needs 2× n×M storage (instead of M ×M for BFGS).

The L-BFGS implementation is now discussed in more detail. At iteration k, the
descent direction is computed by performing a sequence of operations with the stored
set of vector pairs {si,yi} for i = k − n, . . . , k − 1. The first step of the algorithm is
to choose a temporary initial guess H̃0

k (which differs to the standard BFGS iteration,
as this initial approximation will be allowed to vary from iteration to iteration). By
repeated application of (F-9),the L-BFGS inverse Hessian approximation H̃k satisfies,

H̃k =
(
V T
k−1...V

T
k−n

)
H̃0
k (Vk−n...Vk−1) + ρk−n (Vk−1...Vk−n+1) sk−nsTk−n

(
V T
k−n+1...V

T
k−1

)
+

ρk−n+1 (Vk−1...Vk−n+2) sk−n+1sTk−n+1

(
V T
k−n+2...V

T
k−1

)
+ ... + ρk−1sk−1sTk−1

(F-10)

where we have written Vi = I − ρkyisTi (see also [136, Equation (9.5)]). Therefore
the computation of H̃k∇φk may be done recursively. The procedure for this recursive
computation is shown in Algorithm F-2.
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The full L-BFGS algorithm is shown in Algorithm F-1. We see from this algorithm
that, once we update the model, the oldest element in {si,yi} is replaced by (sk,yk).
The algorithm requires an initial guess for H̃0

k , which for computational simplicity is
often chosen to be a multiple of the diagonal. The choice of matrix H̃0

k is allowed to
vary between iterations. An effective initial choice is H̃0

k = γkI, where

γk = sTk−1yk−1
yTk−1yk−1

. (F-11)

(see [136, pages 200, 201]).
The main advantage of the L-BFGS method is that it is relatively inexpensive. The

work per iteration is O(nM), while for the BFGS method this is O(M2). A drawback
of L-BFGS is that the optimal choice of n is problem dependent.

Algorithm F-1 L-BFGS
1: Inputs: Starting guess m0, Memory integer n
2: Set k = 0
3: Repeat
4: Choose H̃0

k (e.g., by (F-11))
5: Compute dk from Algorithm F-2
6: αk ← Line Search
7: mk+1 ←mk + αkdk
8: if k > n then
9: Discard pair

{
sk−n,yk−n

}
from storage

10: end if
11: Compute and store sk = mk+1 −mk, yk = ∇φ(mk+1)−∇φ(mk)
12: k = k + 1
13: until convergence
14: Output: Minimum m̂
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Algorithm F-2 L-BFGS update using two-loop recursion
1: Inputs: Initial approximation H̃0

k , gradient at current iterate ∇φ(mk), Stored
vectors s,y

2: r ← ∇φ(mk)
3: for i = k − 1 to k − n do
4: αi ← ρisTi r
5: r← r− αiyi
6: end for
7: r← H̃0

kr
8: for i = k − n to k − 1 do
9: β ← ρiyTi r

10: r← r + si(αi − β)
11: end for
12: Output: dk = −r

The Gauss-Newton Method
Gauss-Newton methods are a modification of Newton’s method (F-4). Instead of
computing the full Hessian to find the descent direction, like in (F-3), the second-order
derivative terms are excluded. To demonstrate what this means, consider the function
we want to minimise in the form

φ(m) = 1
2 ||ε(m)||22. (F-12)

The residual is arranged in a vector ε = [ε1 ε2 , ... , εNr ]T and so the objective function

may also be written as φ(m) = 1
2

Nr∑
i=1

ε2
i (m).

The derivatives of φ can be expressed in terms of the Jacobian of the residual ε,
which is the Nr ×M matrix of partial derivatives defined by

J(m) =
[
∂εi
∂mj

]
j=1,..,M , i=1,..,Nr

(F-13)

Namely, the derivatives of φ with respect to m may be expressed as

∇φ(m) =
Nr∑
i=1

εi(m)∇εi(m) = J(m)Tε(m), (F-14)

H(m) = ∇2φ(m) =
Nr∑
i=1
∇εi(m)T∇εi(m) +

Nr∑
i=1

εi(m)∇2εi(m)

= J(m)TJ(m) +
Nr∑
i=1

εi(m)∇2εi(m) (F-15)

247



The Gauss-Newton method involves approximating the Hessian by the first order term
in (F-15),

HGN(m) = J(m)TJ(m), (F-16)

so that the descent direction for this method is

dGNk = −
(
J(mk)TJ(mk)

)−1
∇φ(mk),

= −
(
J(mk)TJ(mk)

)−1
J(mk)Tε(mk). (F-17)

which is then used in (F-1) with line search. Note that (F-17) is a descent direction
under the assumption that J is full rank, meaning HGN is a positive definite matrix.

This modification gives some advantages over Newton’s method. The approximation
H ≈ HGN saves the time and effort involved in computing the second order term
(∇2εi(m), i = 1, . . . , N). In addition, if the Jacobian is explicitly computed in the
computation of the gradient (F-14), then the approximation (F-16) is almost free.
There are also some cases where the approximation (F-16) is accurate, and so the
Gauss-Newton method has a similar performance to Newton’s method. This happens
when the first term in (F-15) dominates over the second term, for example, when the
values of the residual εi are small (small residual case), or when each εi is nearly linear,
so that its second derivatives are small. In practice, many least-squares problems of
the form (F-12) have small, or zero, residuals at the minimum, and so the Gauss-
Newton approximation becomes accurate as the minimum is approached, and rapid
local convergence is observed on these problems. The speed of convergence in general
depends on how much the term JTJ dominates the second term in the Hessian.

However, if J is not full rank, the Gauss-Newton method will fail, as JTJ becomes
singular. This problem is discussed in the context of FWI in Appendix G.

The Levenberg-Marquadt Method
We now discuss a further modification of Newton’s methods/Gauss-Newton’s method.

If the Hessian is close to singular, the inverted Hessian in (F-4) can be numerically
unstable, and Newton’s method may diverge from the solution. An example of how
this may be overcome is through modifications of the Hessian (see [136, Section 6.3]).
The Hessian can be modified by adding a correction matrix Ek to make H(mk) + Ek
positive definite. The simplest way of choosing Ek would be to find a scalar τ > 0 such
that H(mk) + τI is positive definite. The descent direction in this case is written as

ddampk = − (H(mk) + τkI)−1∇φ(mk), (F-18)

where τk is the τ parameter at iteration k. The parameter τ may be held constant or
varied as the iteration proceeds.

Levenberg [114] and Marquadt [122] proposed a similar idea for the Gauss-Newton
method, to address the difficulties associated with a singular Jacobian mentioned earlier.
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Their idea is now known as the Levenberg-Marquadt method. Levenberg’s original idea
was to replace the Gauss-Newton descent direction with a ‘damped’ version, as follows,

dLMk = −
(
HGN(mk) + τkI

)−1
∇φ(mk)

= −
(
J(mk)TJ(mk) + τkI

)−1
∇φ(mk). (F-19)

The parameter τ > 0, often referred to as the damping factor, may be updated from
iteration to iteration. This parameter ensures the descent direction is well-defined, even
when the Jacobian is singular.

The Levenberg-Marquadt method can be considered as an ‘interpolation’ between
the Gauss-Newton method and the gradient descent method. For large values of τ ,
(F-19) approaches

dk = −1
τ
∇φ(mk),

which is like a small step in the steepest descent direction. The Levenberg-Marquadt
method will therefore behave like steepest descent with step size 1/τ . This results in
slower convergence but is useful when the current iterate is far from the solution. If τ is
very small, then dLM ≈ dGN , which is a good step in the final stages of the iterations
(as long as HGN is not close to singular), since when the residual ε in (F-12) gets small,
the Gauss-Newton Hessian is a good approximation of the Hessian. In the case where J
is rank-deficient, τ should not go to zero. In [68], it is suggested to chose τk = ||ε(mk)||δ2,
for some δ ∈ [1, 2], when minimising a function of the form (F-12). It is proven that
under some assumptions (e.g., ε being continuously differentiable, J being Lipschitz
continuous), the Levenberg-Marquadt method with this choice of τ and without line
search will converge quadratically. Note that the damping parameter influences both
the direction and the size of the step, and so this method is used without a specific line
search (i.e., we don’t need to compute αk in (F-1)).

A disadvantage of the Levenberg-Marquadt method is that, when τ is large, and
the method tends to steepest descent, Hessian information is not used at all. To avoid
slow convergence, a modified Levenberg-Marquadt can be used instead, where

dLMk = −
(
J(mk)TJ(mk) + τk diag(J(mk)TJ(mk))

)−1
∇φ(mk), (F-20)

where the identity matrix has been replaced by the diagonal elements of the approximate
JTJ . Therefore, even when τ is large, we still get some benefit from the Hessian
approximation.

In terms of FWI, forms of the Levenberg-Marquadt method are used often, to avoid
to computation of the full Hessian, and also because the Gauss-Newton Hessian in
FWI is generally ill-conditioned. For example, this method is used in [139], where the
damping parameter τk in (F-19) is defined as

τk = n

100 ×max(H), (F-21)

where max(H) indicates the maximum value of the approximate Hessian being used,
and n is a percentage to be chosen. In the initial steps of the algorithm n = 10 is
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suggested, and this is reduced as iterations proceed. The Levenberg-Marquadt method
also appears in, for example in [150, Equation 36] and [128, Section 4.2.2] where a
connection is made with the trust region method.

Stopping Criteria
The outlined minimisation algorithms require some stopping criteria to indicate con-
vergence. We generally want to stop at iteration k if one of the following situations
occurs:

• ||∇φk|| < tol1

• ||φk − φ̃|| < tol2

• ||mk −mk−1||
||mk||

< tol3

• ||φk−1 − φk|| < tol4

where ||.|| is some chosen norm. The reasoning behind the first stopping criterion is
that the gradient of the objective function at a minimum is zero. Therefore, when
the absolute value of the gradient becomes sufficiently small during the algorithm, the
algorithm can be terminated. The second stopping criteria can be used when there
is a known minimum value of the objective function φ̃. The algorithm will terminate
when the value of objective function becomes close enough to the known minimum
value. The third stopping criterion is satisfied when the updates to the parameters
have stagnated, and indicates that further iterations would be a waste of computational
time. Similarly, the final condition saves on computational expense by preventing
continuing iterations when the reduction in the objective function is excessively small.
The third and fourth conditions are often implemented with some minimum iteration
number check, to avoid premature stopping, i.e., the algorithm is stopped only if these
inequalities hold for a specific number of previous iterations. In addition, the above
stopping criteria are generally implemented with a further condition that stops the
iterations once a maximum iteration count has been reached.

The tolerance is chosen depending on the problem. If the tolerance is too small,
the problem may end up being ‘over-solved’ by fitting the noise in the data or by
making trivially small steps at a large computational cost. If the tolerance is too large,
convergence happens too early and the computed solution is far from the true solution.

Line Search
So far, we have discussed the different methods for computing the descent direction
dk. Once a descent direction has been found with the method of choice, a step size αk
should be computed that determines how far mk should move along that direction to
produce the updated model mk+1. We recall that the updated model is given by (F-1).
In this section, we discuss how the step size αk can be chosen.
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Newton’s method has a natural step size of 1. When the objective function being
minimised is quadratic, this is exact. However, when it comes to Quasi-Newton methods,
Gauss-Newtons methods and others, a step size of 1 may be too large or too small.
Therefore, a line search should be carried out in the direction dk to find the optimal
step length αk. Ideally, we want to find an αk such that

αk = argmin
α>0

φ(mk + αdk) = argmin
α>0

f(α), (F-22)

and then we set mk+1 = mk + αkdk. Solving (F-22) exactly is called an exact line
search. Line search algorithms often do not solve (F-22) exactly, and instead find an αk
that satisfies certain conditions which guarantee that the step size isn’t too big or too
small. These are called inexact line searches. Popular conditions to impose for the line
search are the Wolfe conditions, made up of the Armijo and the curvature conditions.
The Armijo condition is

φ(mk + αkdk) ≤ φ(mk) + c1αk∇φ(mk)Tdk (F-23)

and the curvature condition is

dTk∇φ(mk + αkdk) ≥ c2dTk∇φ(mk) (F-24)

where 0 < c1 < c2 < 1. The Armijo condition ensures the cost function has sufficiently
decreased, and the curvature condition ensures that the slope has been decreased
sufficiently.

Remark F-2. The Wolfe conditions ensure that

yTk sk > 0.

An important property of the BFGS update formula (F-9) is that Bk+1 inherits the
positive-definiteness of Bk when yTk sk > 0.

A step length may satisfy the Wolfe conditions without being particularly close to
the minimiser of f . Alternatively, the Strong Wolfe conditions may be used, which
replaces (F-24) with

|dTk∇φ(mk + αkdk)| ≤ c2|dTk∇φ(mk)| (F-25)

Using this condition, we no longer allow the derivative f ′(αk) to be too positive, and
hence ensure that αk lies close to a critical point of f . A small value of c2 implies an
accurate minimisation. However it may not be computationally efficient to perform
an accurate minimization during the line search, and in general, the weaker curvature
condition is often adequate for implementation.

The algorithm for the Weak Wolfe line search is given in Algorithm F-3.
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Algorithm F-3 Weak Wolfe Line Search
1: Inputs: mk, φ(mk), ∇φ(mk),dk, c1, c2
2: Set α = 1, µ = 0, ν = 0
3: Repeat
4: if φ(mk + αkdk) > φ(mk) + c1α∇φ(mk)Tdk then
5: ν = α
6: α = 1

2 (µ+ ν)
7: else if dTk∇φ(mk + αkdk) < c2dTk∇φ(mk) then
8: µ = α
9: if ν = 0

10: α = 2µ
11: else
12: α = 1

2(µ+ ν)
13: end if
14: else
15: stop
16: end if
17: end repeat
18: Output: α
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Appendix G

Consistency of the Gauss-Newton Method for FWI
In Section 2.4.3, we discussed the non-regularised FWI problem. We showed that as
ε → 0, ||H(2)||2 → 0 (Corollary 2.4.13) and hence, H → H(1) (by Theorem 2.4.7).
By the definition of Newton’s method and the Gauss-Newton method (detailed in
Appendix F and [136, Section 10.2]), this means that Newton’s method approaches
the Gauss-Newton method as ε → 0. The assumption made when using the Gauss-
Newton method is that the Jacobian is full rank and the Gauss-Newton Hessian positive
definite, but this assumption does not always hold for FWI. The FWI Jacobian (2.4.30)
is low rank and hence H(1) is singular (shown in Theorem 2.4.6), and therefore the
Gauss-Newton method in this case does not have a unique solution.

The Gauss-Newton step for FWI is defined as the solution to the following system,

H(1)(mk,p)dk = −∇φ(mk,p) (G-1)

where dk means the descent direction at the kth iteration, and∇φ(mk,p) is the gradient
of the objective function being minimised. Equation (G-1) is solved to find the descent
direction, which is then used to find an updated model, given by (F-1). These steps are
repeated until we find the model m such that ∇φ(m,p) = 0.

Since H(1) is singular, we expect that the Gauss-Newton step may not be well-defined.
However, in the following theorem, we show that the Gauss-Newton linear system (G-1)
is consistent and so a solution exists for the system (in fact there are infinitely many
solutions due to the rank-deficiency of H(1)).

Specifically, Theorem G-1 shows that a vector in the left nullspace of H(1) (which is
the same as the right nullspace since H(1) is symmetric matrix) is orthogonal to the
right hand side of the system to be solved (G-1) (i.e., the FWI gradient). The column
space (or range) of a matrix is always orthogonal to its left nullspace. This means the
right-hand side of (G-1) is in the range of H(1) and so the system (G-1) is consistent.

We note that the following theorem is written in discrete notation.

Theorem G-1. If m̃ ∈ ker(H(1)(m,p)) then m̃∗∇φ(m,p) = 0.
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Proof. First we restate the definition of the discrete form of the FWI gradient (2.3.10),

∇φ(m,p) = −<
{∑
s∈S

∑
ω∈W

[(
R(p)∂u(m, s, ω)

∂m

)∗
ε(m,p, s, ω)

]}
, (G-2)

where ∂u
∂m

=
[
∂u
∂m1

∂u
∂m1

∂u
∂m2

...
∂u
∂mM

]
∈ CN×M .

If m̃ ∈ ker(H(1)(m,p)), where m̃ ∈ RM×1, then

m̃∗H(1)m̃ = 0,

where we have dropped the dependencies on m,p, s and ω for simplicity. Therefore,
using (2.4.36) and (2.4.31)

0 = m̃∗H(1)m̃

=
∑
s∈S

∑
ω∈W

m̃∗<(J∗J)m̃ =
∑
s∈S

∑
ω∈W

m̃∗J∗Jm̃

=
∑
s∈S

∑
ω∈W

m̃∗
(
R
∂u
∂m

)∗ (
R
∂u
∂m

)
m̃

=
∑
s∈S

∑
ω∈W

(
R
∂u
∂m

m̃

)∗ (
R
∂u
∂m

m̃

)

=
∑
s∈S

∑
ω∈W

∣∣∣∣∣
∣∣∣∣∣R ∂u
∂m

m̃

∣∣∣∣∣
∣∣∣∣∣
2

2
.

Since the sum of squares is zero, then we must have, for every source and every frequency,∣∣∣∣∣
∣∣∣∣∣R ∂u
∂m

m̃

∣∣∣∣∣
∣∣∣∣∣
2

= 0

and so,

R
∂u
∂m

m̃ = 0.

Therefore the inner product of the above with the residual ε is, for each source and
frequency,

m̃∗
(
R
∂u
∂m

)∗
ε = 0

By the definition of the gradient (G-2) and the fact that m̃ is real, this means that

m̃∗∇φ = 0.

254



In conclusion, this theorem shows that the Gauss-Newton method (G-1) is consistent,
and hence that the Newton method is consistent as ε→ 0, H → H(1). A solution to
the Newton system will therefore always exist, even when ε→ 0. Although, we should
recall that H(1) is rank-deficient and therefore we cannot invert it, we should be able to
solve the system stably using another method, such as the conjugate gradient method,
for example see [129].
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Appendix H

Convexity and Uniqueness
The following provides a summary of important definitions on convex functions, and
results on what the degree of convexity of a function can tell us about its minima - in
particular whether they exist and are unique. We state definitions and lemmas/theorems
for a general function f ∈ Ω, and these results are then applied in Chapter 2 when
discussing the convexity of the FWI objective function and conditions under which we
have a unique FWI solution, and in Chapter 3 when investigating the uniqueness of the
solution to the sensor placement problem.

Definition H-1. Convex Set: A set Ω is convex if, for any x, y ∈ Ω, and 0 ≤ θ ≤ 1,

θx+ (1− θ)y ∈ Ω.

Definition H-2. Strictly Convex Function: A function is strictly convex if,
for all x, y ∈ Ω, x 6= y for 0 < θ < 1,

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y). (H-1)

Note that a convex function is defined by (H-1) with the strict inequality replaced by
≤, for 0 ≤ θ ≤ 1, and x can equal y.

Lemma H-3. Second-Order Condition for Strict Convexity: Suppose a func-
tion f is twice differentiable. Then f is strictly convex on Ω if, for all x ∈ Ω, the
Hessian is positive definite,

∇2
xf(x) � 0. (H-2)

This lemma is stating that if the Hessian of a function is positive definite everywhere,
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then the function is strictly convex. (This can be interpreted geometrically as the
function having positive curvature everywhere.) See [25, Proposition 1.1.10] for a proof
of Lemma H-3.

Definition H-4. Strongly Convex Function: A function is γ-strongly convex
if, for γ > 0, and for all x, y ∈ Ω, for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− γ

2θ(1− θ)||x− y||
2. (H-3)

Another way of defining strong convexity is to say that f is γ-strongly convex if
f(x)− γ

2 ||x||
2 is convex for some γ > 0. A proof of this can be found in [93, Proposition

1.1.2]. We note that strong convexity implies strict convexity.

Lemma H-5. Second-Order Condition for Strong Convexity: Suppose a
function f is twice differentiable. Then f is γ-strongly convex on Ω if and only if, for
γ > 0, and for all x ∈ Ω,

∇2
xf(x) � γI. (H-4)

This lemma means that if the smallest eigenvalue of the Hessian of a function is uni-
formly lower bounded by γ everywhere, then that function is strongly convex. A proof
of this can be found in [93, Theorem 4.3.1].

We now look at the implications of strict and strong convexity on the nature of
the minima.

Theorem H-6. Existence and Uniqueness of Optimal Solutions:
Consider the optimisation problem

min f(x) subject to x ∈ Ω

(i) If f : Rn → R is strictly convex on Ω, and Ω is a convex set, then the optimal
solution (assuming it exists) is unique.

(ii) If f : Rn → R is strongly convex on Ω, and Ω is a convex set, then the optimal
solution exists and is unique.

Proof. (i) The proof of part (i) is based on [25, Proposition 3.1.1] and [179, Proposition
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2]. To prove by contradiction, suppose there are two optimal solutions, x and y ∈ Rn,
such that f(x) = f(y) = f ∗ and x 6= y. This means that x, y ∈ Ω, and

f ∗ = f(x) = f(y) < f(z), ∀z ∈ Ω (H-5)

Now consider z = αx+ (1− α)y, where α ∈ (0, 1). By convexity of Ω, we have z ∈ Ω.
By the definition of strict convexity in (H-1),

f(z) = f (αx+ (1− α)y) < αf(x) + (1− α)f(y) = αf ∗ + (1− α)f ∗ = f ∗,

which contradicts (H-5). Therefore the solution must be unique.

(ii) We refer to [19, Corollary 11.16] for a proof of part (ii).

This theorem proves that if a minimum of a strictly convex function exists, it is unique,
but there is no guarantee that a minimum of a strictly convex function exists. To
guarantee existence, we would need the objective function to be strongly convex. To
understand the difference between a strictly convex function and a strongly convex
function, the following 1D example is useful to consider. The function f(x) = ex is
strictly convex because f ′′(x) > 0 for all x, but no minimum exists. The function
g(x) = 1

2x
2 is strongly convex with γ = 1 because g′′(x) = 1.
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Appendix I

Bilevel Optimisation Overview
The parameter optimisation problem that we have formulated in this thesis falls into
the framework of bilevel optimisation. Here we provide an overview of the theory of
bilevel optimisation, a review of possible solution approaches to the problem, and a list
of example applications. The review is based on material from [47], [181], [163], [61],
and [60].

History
Firstly, we briefly review the history of bilevel (and multilevel) optimisation problems
and their evolution over time.

From a historical point of view, the origin of bilevel optimisation can be traced to
the field of economics. Specifically, bilevel optimisation problems were first formulated
by Stackelberg [171] in the context of game theory. The strategic game described
by Stackelberg, the so-called Stackelberg game, involves a hierarchical leader-follower
structure, with is asymmetric in nature. In the game, the players compete with each
other, such that the leader makes the first move, and the follower reacts optimally
to the leaders move. The leader is aware that the follower observes its actions before
reacting optimally. The leader must anticipate the optimal response of the followers to
choose their optimal strategy accordingly. Therefore, the leader’s optimisation problem
contains a nested optimisation problem that corresponds to the followers optimisation
problem. This is the structure of a bilevel optimisation problem, where the leaders
problem is the upper-level problem, and the followers problem is the lower-level problem.

About 40 years after the Stackelberg game was originally published, problems with
this hierarchical structure were introduced into the into the mathematical community.
This began in the area of operations research and mathematical programming, where
the bilevel optimisation problems were written as an outer optimisation problem with
a nested inner optimisation problem appearing as a constraint. These problems were
initially considered by Bracken and McGill in [30], with subsequent publications that
deal with applications of these problems, both in military and defence [31] and in
marketing decision making [29]. At the time of these publications, these problems were
termed ‘mathematical programs with optimisation problems in the constraints’, with
the term ‘multilevel programming’ being introduced in [41].

In the 1980’s, the usefulness of bilevel optimisation in engineering design problems
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and hierarchical design processes became apparent to researchers [47]. The first literature
study on ‘bilevel mathematical programming’ was published in 1985 [107]. Since then,
interest in bilevel optimisation has been continually growing, due to it’s number of
applications in different fields and its interesting mathematics. A substantial body of
literature has been published, including theoretical and numerical investigations, as well
as real-life applications of the problem. A bibliography of many important references in
this field can be found in [181].

General Formulation
In this section, we provide a general formulation for bilevel optimisation. As previously
described, the bilevel problem is made up of two levels of optimisation, the upper-level
optimisation problem and the lower-level optimisation problem. Correspondingly, there
are two kinds of variables - the upper-level variables xu and lower-level variables xl.
The nested structure of the problem means that the upper-level problem usually has
full knowledge of the lower-level problem, but the lower-level problem only knows the
outcomes of the upper-level, and then optimises itself based on this . This means that
the upper-level variables are treated as parameters during the lower-level optimisation
with respect to xl. The nested structure of the problem puts a constraint that only the
optimal solutions to the lower-level optimisation task may be acceptable as possible
feasible candidates to the upper-level optimisation task, i.e., a pair (xu, x∗l ), where x∗l is
the optimal response to xu, is defined as a feasible solution to the upper-level problem
(as long as it also satisfies the constraints of the problem). We formally define a general
bilevel problem in Defintion I-1 (adapted from [163] and [164]).

Definition I-1. Bilevel Optimisation Problem: For the upper-level objective
function F : Rn × Rm → R, and lower-level objective function f : Rn × Rm → R, the
bilevel problem is given by

min
xu∈XU , xl∈XL

F (xu, xl)

subject to
xl ∈ argmin

xl∈XL
{f(xu, xl) : gj(xu, xl) ≤ 0, j = 1, ..., J}

Gk(xu, xl) ≤ 0 k = 1, .., K

where xu ∈ XU ⊆ Rn, xl ∈ XL ⊆ Rm are the upper- and lower-level variables respectively,
and Gk : XU ×XL → R, k = 1, ..., K and gj : XU ×XL → R, j = 1, ..., J are the upper-
and lower-level constraints respectively.

In the case where there is a unique lower-level optimal solution, Definition I-1 is
well-defined. An ambiguity arises in this problem definition, in the case where there is
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more than one optimal lower-level solution for any given upper-level parameter. This
ambiguity is handled by assuming one of two positions, optimistic or pessimistic. In an
optimistic position, a solution is chosen from the lower-level optimal set which is most
favourable to the upper-level, i.e., optimising according to the best case scenario. In a
pessimistic position, the opposite approach is taken, and the upper-level optimises its
problem according to the worst case scenario.

Solution Approaches
This section provides an overview of popular solution approaches to the bilevel problem.

The conventional first step in solving a bilevel problem is to transform it to a
single level. When the lower-level problem is convex and sufficiently regular [163],
the lower-level optimisation problem may be replaced by its Karush-Kuhn-Tucker
(KKT) conditions, which are a set of equations and inequalities that determine the
optimal solutions of an optimisation problem. Replacing the lower-level with its KKT
conditions reduces the bilevel problem into a single-level constrained optimisation
problem. For example, the problem in Definition I-1 would be yield the following
single-level reformulation, assuming convexity and regularity conditions are met,

min
xu∈XU , xl∈XL, λ

F (xu, xl)

subject to
Gk(xu, xl) ≤ 0 k = 1, .., K
∇xlL(xu, xl, λ) = 0,
gj(xu, xl) ≤ 0, j = 1, ..., J
λjgj(xu, xl) = 0, j = 1, ..., J
λj ≥ 0, j = 1, ..., J

where

L(xu, xl, λ) = f(xu, xl) +
J∑
j=1

λjgj(xu, xl)

is the Lagrangian function associated with the lower-level problem. Many popular
solution approaches to bilevel optimisation are based on solving this reduced problem.
For example, Branch and Bound approaches have been applied successfully to single-level
reductions of the bilevel problem in [15] and [65].

Penalty function methods are a class of algorithms used in constrained optimisation,
which belong to some of the earliest solution methods applied to bilevel optimisation
problems ([6], [7]). In general, penalty methods work by replacing a constrained optimi-
sation problem by a series of unconstrained problems. The unconstrained problems are
formed by adding a penalty function to the objective function. The first applications of
the penalty method to bilevel problems involved replacing the lower-level problem with a
penalised problem. The drawback of this approach was that the bilevel structure of the
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problem was preserved and the resulting penalised problem was not significantly easier
to solve than the original bilevel problem. A double penalty method was proposed in
[97], where both upper and lower-level objective functions are penalised. The penalised
lower-level is then replaced by its stationarity condition, and the problem is reduced to
a single level.

Descent methods are another popular approach for solving bilevel optimisation
problems. On every iteration of a descent method, a descent direction should be found
such that the upper-level is decreased, and the new point found is feasible. Keeping the
new point feasible at every iteration means that it should always be lower-level optimal.
Therefore, it can be quite challenging to find a feasible descent direction for the general
bilevel problem, and assumptions are often made in its derivation. If it is assumed that,
for any xu, there is a unique optimal solution of the lower-level problem, x∗l , and that
this is an implicit function of xu, i.e., x∗l (xu), then the bilevel problem may be viewed
in terms of upper-level variables xu [47]. Given a feasible point xu, it is aimed to find
the descent direction that results in a sufficient decrease of the upper-level F , while
maintaining feasibility of the problem. This can be achieved using gradient information,
which requires the computation of the gradient of the upper-level objective function
∇xuF (xu, x∗l (xu)) at a feasible point. Assuming ∇xux

∗
l is well-defined, applying the

chain rule gives the following expression for the gradient, evaluated at a feasible iterate
(xu, x∗l (xu)),

∇xuF (xu, x∗l (xu)) = ∇xuF (xu, x∗l (xu)) +∇xlF (xu, x∗l (xu))∇xux
∗
l (xu). (I-1)

To find an expression for ∇xux
∗
l , we can use the fact that the first-order optimality

conditions should be satisfied for the lower-level, i.e., ∇xlf(xu, x∗l (xu)) = 0. We also
make assumptions that x∗l is continuously differentiable at xu, that the lower-level is
twice-continuously differentiable and that the Hessian of the lower-level at the feasible
points is invertible ([138]). Under these assumptions, it holds that

dx∗l
dxu

(xu) = −
(
∂2f

∂x2
l

(xu, x∗l (xu))
)−1

∂f

∂xu∂xl
(xu, x∗l (xu)). (I-2)

The computation of this gradient can be expensive. It also relies on many assumptions.
For non-smooth lower-level problems that do not nexessarily have a unique solution,
[138] proposes techniques for approximating bilevel optimisation problems.

Trust-region methods have also been applied in solving bilevel problems. Trust-
region methods involve approximating a region of the objective function with a so-called
model function. If this approximation is good, the region is expanded, and if not, the
region is contracted. Trust region methods have been applied successfully to bilevel
optimisation problems in [116] and [46], for example. More details of trust-region
algorithms in bilevel optimisation can be found in [60].

Due to the difficult nature of bilevel problems, many of the solution techniques
discussed have involved simplifying assumptions of, for example, smoothness and
convexity. Sometimes these classical approaches may fail due to real-world difficulties,
and so research into solution methods for more complex bilevel problems is ongoing,
for example recent studies on evolutionary algorithms (as reviewed in [163]), and
meta-modelling (see [105]).
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Applications
Bilevel optimisation frequently arises in practical problems. The research into bilevel
problems has been strongly motivated by these real-world applications. Here we will
briefly discuss some of these applications.

Bilevel optimisation problems are often applied in the chemical industry. When
producing substances through chemical reactions, chemists and engineers have to
decide on the conditions of the reaction (for example temperature of reactor and
quantities of reactants) that will result in the correct substance being produced, and
for this output to be optimal. An optimal output in this case would be defined as
producing as large an amount as possible of the required substance, and the amount of
unwanted, or dangerous, by-products to be as small as possible. The upper-level of this
problem involves optimising the output of the reaction, and the lower-level is an energy
minimisation problem involving a chemical equilibria equation (this ensures the correct
substance is produced). Applications of bilevel optimisation in this area includes [44],
[87] and [153].

Bilevel optimisation is also applied to problems in optimal design. For example, the
design of structures can be formulated as a bilevel optimisation problem with constraints,
in order to choose the amount and types of materials for the structure, the shape of
the structure, etc. The upper-level optimisation task often requires the minimisation of
the weight or cost of the structure, with constraints involving displacements, contact
forces and stresses. The lower-level is a potential energy minimisation problem. More
information on optimal design can be found in [106], [90], and [43].

As mentioned previously, the bilevel problem with applications in military and
defence has been formulated in [31]. An example of an application in defence includes
offensive and defensive strategy design. When designing an offensive strategy, the
‘leader’ can be seen as the offensive entity and the ‘follower’ as the defensive entity
(using the terminology of the Stackelberg game). The offensive entity wants to maximise
the damage caused to its opponent, but it can only do this optimally if it takes into
account the reactions of the defensive entity. The defensive entity always wants to
react optimally to the attack. Therefore, the offensive entity’s optimisation problem is
the upper-level task, and the lower-level optimisation problem involves computing the
optimal response of the defensive entity to the offensive entity’s actions. Conversely,
when designing a defensive strategy, the defensive entity is the leader and the offensive
entity is the follower. At the lower-level, the attacker maximises the damage it causes,
while at the upper-level, the defence aims to choose optimal strategies that will minimise
this damage. Some other recent applications in this area can be found in [9], [37] and
[36].

Applications of bilvel optimisation to water-management can be found in [12],
[27] and [5]. For example, in [12], multilevel optimisation is applied to international
river management in India and Bangladesh. These countries share water from the
Ganges river, and there are a series of dams in both countries which they use for
hydroelectric power, irrigation and flood protection. This paper presents the problem of
coordinating resources in the form of a Stackelberg game, where the multilevel problem
was investigated in the different cases where India, Bangladesh or an arbitrator (the
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UN) was the leader.
This section has provided some examples of where bilevel, and multilevel, optimisa-

tion has been applied in the past. A wide-range of other applications also exist which
haven’t been covered in this section, for example, revenue management [51], facility
location [108], and minimising greenhouse gases [91].

Learning in Bilevel Optimisation
An important use of bilevel optimisation is in the approach to learning. In this section,
we will focus on applications of bilevel learning in imaging. Applications include
parameter learning in image restoration and denoising, for example [109], [58] and
[59], or learning a sampling pattern for MRI imaging [162]. Learning problems require
knowledge of the problem in terms of a training set. Based on this prior knowledge,
optimal parameters can be learned in what is known as a supervised learning method.

These type of learning problems are formulated with a bilevel optimisation approach,
where the lower-level is an imaging reconstruction problem. Using the notation in [59],
the general form of the lower-level objective function is

αR(u) + d(K(u), f)

where R is a regularisation term, α is the regularisation parameter, f is some given
data which is related to an image u through a forward operator, or function, K and d is
a suitable distance function. The aim of the lower-level image reconstruction problem
is to find the image u from data f . The lower-level has a number of aspects which
can be learned, for example the regularisation parameter α, the type of regularisation
term R, the type of fidelity term d, or, if applicable, what to measure and where to
take measurements. Different choices lead to different reconstructions. The upper-level
objective function is then a loss function, that measures the difference between the
solution of the lower-level and the training set. Through minimisation of the upper-level
objective function, the optimal parameters are learned. The training set can take the
form of pairs of clean and noisy images (see [58] and [59]), or pairs of clean images and
corresponding noisy measured data (see for example [162]), depending on the problem.
As an example, the general bilevel learning problem is written in [59] as

minF (u∗) = cost(u∗, f0)
subject to u∗ ∈ argmin

u
{αR(u) + d(K(u), f)}

where F is a cost functional, and the training set is (f, f0) (noisy and clean images
respectively). The argument of the upper-level minimisation problem depends on the
parameters that are being learned.

In the area of geophysical imaging, bilevel learning has been applied in [85]. Here
the lower-level is traveltime tomography for reconstructing the subsurface, and on the
upper-level a regularisation functional is learned.
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Appendix J

Implicit Function Theorem
Consider the system of m equations

fi(y1, ..., ym, x1, ..., xn) = 0, i = 1, ...,m,
which can be abbreviated to

f(y,x) = 0.

The implicit function theorem states that, under a condition on the partial derivatives
with respect to the yi’s, at a point, the yi variables are differentiable functions of the xj
variables in some neighbourhood of that point. The formal statement of the implicit
function theorem is below.

Theorem J-1. Implicit Function Theorem: Let f : Rm+n → Rm be a continuously
differentiable function. Let Rm+n have coordinates (y,x) with y ∈ Rm and x ∈ Rn. The
Jacobian matrix with respect to y is defined as

Ji,j(y,x) =
[
∂fi
∂yj

(y,x)
]
, for i, j = 1, ..m.

Let (b,a) be a point such that f(b,a) = 0. Assuming the Jacobian evaluated at (b,a)
is invertible, i.e., det J(b,a) 6= 0, then there exists an open set U ⊂ Rn containing a
and a unique continuously differentiable function g : U → Rm such that g(a) = b and
f(g(x),x) = 0 for all x ∈ U .
In addition, the partial derivatives of g in U are given by the matrix-vector product[

∂g
∂xj

(x)
]
m×1

= − [J(g(x),x)]−1
m×m

[
∂f
∂xj

(g(x),x)
]
m×1

.

Remark J-2. If f is continuously differentiable k times then the same holds true for g
inside U [89, Theorem 9.2.3]. Furthermore, if f ∈ C∞, then g ∈ C∞ in U [170, page
186].
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