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BA2 7AY Bath, UK

Abstract

A novel Bayesian optimisation framework is proposed for the design of stronger stacking sequences

in composite laminates. The framework is the �rst to incorporate high-�delity progressive damage

�nite element modelling in a data-driven optimisation methodology. Gaussian process regression

is used as a surrogate for the �nite element model, minimising the number of computationally

expensive objective function evaluations. The case of open-hole tensile strength is investigated

and used as an example problem, considering typical aerospace design constraints, such as in-plane

sti�ness, balance of plies and laminate symmetry about the mid-plane. The framework includes a

methodology that applies the design constraints without jeopardizing surrogate model performance,

ensuring that good feasible solutions are found. Three case studies are conducted, considering

standard and non-standard angle laminates, and on-axis and misaligned loading, illustrating the

bene�ts of the optimisation framework and its application as a general tool to e�ciently establish

aerospace design guidelines.

Keywords: B. Strength, B. Stress concentrations, C. Finite element analysis (FEA), C. Damage

mechanics, Optimisation

1. Introduction

Composite materials are increasingly used in the aerospace industry due to their favourable

speci�c strength and sti�ness, and their anisotropic behaviour, which allows for e�cient tailoring

of the design variables to meet particular performance requirements. However, this increased �ex-

ibility comes at a cost, with design variables spanning not only the properties of the material, its

constituents and their volume fractions, but also the combination of ply angles and their stacking

sequence, making laminate optimisation particularly challenging. Thus, the numerical or analyt-

ical evaluation of the performance requirements must be computationally inexpensive, especially

when using global optimisation methods, such as genetic algorithms or particle swarm methods,

which require an extensive number of objective function evaluations. In the context of composite

structures, such methods are usually limited to optimisation of quantities which are relatively in-

expensive to compute, such as in-plane properties, �exural rigidity, maximum buckling load and

maximum natural frequencies [1, 2].
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For other performance characteristics, such as laminate strength under three-dimensional stress

states, inexpensive solutions are often unavailable. First-ply failure criteria based on classical

laminate theory (CLT) and simple shell/plate formulations can be used in limited cases, such as

dispersed laminates employing the 0◦, ±45◦ and 90◦ standard angles (SAs), where failure is brittle

and dominated by in-plane �bre stresses. These simple methods are, however, unable to predict the

behaviour of a wide range of unconventional laminates, where resin-dominated damage mechanisms

can evolve sub-critically leading to more progressive failure. Examples of unconventional designs

range from laminates employing non-standard angles (NSAs, i.e angles other than SAs), which

may o�er signi�cant bene�ts in production e�ciency and formability [3�5], to laminates employing

thick ply blocks (as opposed to dispersed laminates), which can delay ultimate failure near stress

raisers [6, 7]. Predicting the strength of such designs typically requires complex three-dimensional

progressive damage �nite element (FE) models that account for the out-of-plane stresses, non-

linear shear behaviour and the di�erent interacting failure modes. The computational expense

associated with these models renders global optimisation methods intractable, and thus, optimising

for laminate strength in this broad design space is still largely unexplored.

Alternatively, rather than optimising the objective function directly, a surrogate of the FE

model can be used instead to guide the search of optimisation and minimise the number of FE

evaluations. This surrogate must be inexpensive to evaluate so that it can provide estimates of

the FE solutions across the entire design space in an e�cient manner. The use of probabilistic

surrogate models provides not only predictions of objective functions, but also of uncertainty in

these predictions. The use of such a model enables the objective function to be evaluated using

the complex FE model at design points where sampling is more likely to yield an improvement.

These approaches are generically designated by data-driven or e�cient global optimisation meth-

ods. One popular method is Bayesian optimisation, which is derivative-free, facilitates global

optimisation and has been shown to require fewer evaluations than both genetic algorithms and

particle swarm methods [8]. Therefore, Bayesian optimisation is often used in black-box problems

where it is desirable to minimise the number of objective function evaluations due to their costly

computation, or in experimental settings when tests are expensive and time-consuming. Exam-

ples of application range from hyperparameter tuning in classic machine learning algorithms and

deep neural networks [9�12], reinforcement learning [13], robotics [14, 15], environmental moni-

toring [16], materials discovery [17] and pharmaceutical product development [18]. The interested

reader is referred to [19] for a comprehensive review of the method and its applications.

Bayesian optimisation has also been increasingly used in the design of composite structures. In

particular, Bayesian machine learning and optimisation were used in [20] for the design of ultra-thin

composite shell structures in the post-buckling range. Bayesian optimisation has also been applied

for improved buckling performance of variable sti�ness composite plates and cylinders [21�23] and

of curved �bre composite panels with cut-outs [24]. Other notable applications include optimisation
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of composite wind turbine blades for lightning strike and multi-axial fatigue loading [25] and

optimisation of sandwich composite armour design for blast mitigation [26]. Bayesian optimisation

has also been applied in the design of aligned discontinuous composites considering a variety of

performance characteristics [27] and in the multi-objective design of parts containing ply-drops,

where sti�ness, Tsai-Wu omni-strain failure criterion and manufacturing time requirements were

considered [8]. Other similar surrogate-based optimisation strategies have also been developed

for buckling of variable sti�ness composites under buckling [28, 29] and in the design of �lament-

wound cylindrical shells with variable angle tow [30]. However, the method has not been applied

to strength optimisation of multi-directional laminates considering the interaction and progression

of the di�erent damage mechanisms associated with their failure.

In this paper, a novel Bayesian optimisation framework of lay-up con�guration of multi-

directional composite laminates is proposed for structural strength. To the authors' knowledge, the

framework is the �rst to combine high-�delity progressive damage FE modelling with a data-driven

optimisation methodology for strength of composite laminates. The framework includes a bespoke

and novel methodology for incorporating constraints within Bayesian optimisation, which is used

to enforce common aerospace design requirements, such as speci�ed in-plane sti�ness, symmetry

about the laminate mid-plane and balance of plies. The methodology allows evaluation of infea-

sible points to improve the accuracy of the surrogate model but, as the optimisation progresses,

gradually limits sampling to feasible regions only. The primary contribution of this paper is the

development of an optimisation framework which can achieve very good laminate solutions in rela-

tively few FE model evaluations, a necessary feature when optimising such complex models, whilst

enforcing the strict constraints associated with industrial stacking sequence design.

The case of open-hole tensile (OHT) strength is chosen as a complex objective, which can display

a variety of failure modes, requiring an expensive FE model for which Bayesian optimisation is

particularly well suited. OHT is also an early indicator of structural strength and an important

design allowable in the aerospace industry. However, the proposed framework is generic and can be

applied to any composite structure under any loading condition. The framework is demonstrated

in three case studies in which OHT strength is optimised subject to the aforementioned design

requirements, and across design spaces comprising di�erent combinations of standard and non-

standard angle laminates, under both on-axis and misaligned loading. The progressive damage

FE model originally presented in [7] is modi�ed and used herein to demonstrate the proposed

framework. An overview of the optimisation problem is provided in section 2, followed by details

of the methodology in section 3 and the FE model, which is described in section 4. Results and

discussion are presented in sections 5 and 6, respectively.
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2. Optimisation problem

To showcase the framework, a common industrial design problem is considered, consisting

of a 36 × 36 mm plate with a 6 mm central open-hole, manufactured from AS4/8552 pre-preg,

and subjected to remote longitudinal tension. The plate is 3.9 mm thick, corresponding to a

laminate with Np = 20 plies. Due to the mid-plane symmetry requirement usually employed in

the aerospace industry, the number of plies which may be varied independently in the optimisation

problem reduces to 10. The problem is illustrated in Figure 1.
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Figure 1: OHT laminate schematic. Applied displacement ux. Global coordinate system (xyz) of the laminate and
material coordinate system of the plies (123) are also shown.

The objective is to �nd the best possible stacking sequence, corresponding to the 10 ply angles,

de�ned by a point in a 10-dimensional space x = {θ1, ..., θ10}, that maximises the OHT strength of

the laminate. This stacking sequence must also satisfy in-plane sti�ness and balance of positive and

negative ply angles, as aerospace components are not designed for just one performance character-

istic. To achieve this, the strength is optimised assuming that sti�ness design drivers have already

been decided. In this problem, a 50/40/10 percent breakdown of 0◦/±45◦/90◦ plies, found in a

typical wing skin, are considered, but any speci�ed in-plane sti�ness could be used. Prior to opti-

misation, di�erent balanced, symmetric stacking sequences, employing both SA and NSA angles,

are found by matching the speci�ed in-plane sti�ness using the strategy detailed in section 3.5.1.

These design solutions constitute the feasible design space, where the optimal solution lies. Hence,

for the sake of clarity, feasible points correspond to any solutions that satisfy the in-plane sti�ness,

balance and symmetry constraints, whereas infeasible points denote solutions that do not satisfy

one or more constraints. Due to the heavily constrained design space, the Bayesian optimisation

approach needs to be modi�ed using a bespoke methodology, outlined in section 3.5, such that the

application of these constraints does not compromise the e�ectiveness of the optimisation process.

Note that the design constraints considered in this problem are only some of the requirements for

aircraft structures, but they illustrate the proposed optimisation framework.

The design space is discretised with ply angles ranging between −85◦ and 90◦ at a 5◦ increment.

This discretisation is re�ned enough to capture the trends in OHT strength but large enough to

be manufacturable, where manufacturing tolerances can be as high as ±3◦ for automated lay-up.
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It also simpli�es the optimisation process and allows for easier generation of the FE meshes.

Note that optimising for OHT strength considering the aforementioned design constraints does

not necessarily lead to designs applicable to large real-world aerospace structures under a multitude

of stress states and subject to several design constraints. The OHT example problem, however,

serves as a practical demonstrator of the proposed optimisation framework. The framework is

generic and can be easily adapted for other optimisation problems, allowing the introduction of

other design constraints and easy modi�cation of the objective function in order to optimise for

other performance drivers.

3. Optimisation Methodology

3.1. Overview

The aim of Bayesian optimisation is to reach the best possible solution in the minimum number

of evaluations of the objective function, which in this case correspond to expensive OHT strength

predictions with the FE model. To achieve this, a probabilistic surrogate model of the objective

function is created using Gaussian process (GP) regression [31]. A GP not only provides estimates

of the trends in the observed data (GP mean), but it also provides estimates of uncertainty. These

estimates are updated with new observed data, allowing the surrogate model to improve with more

observations.

The Bayesian optimisation approach is illustrated in Figure 2 for a simple function, demon-

strating convergence of the optimisation and increasing surrogate model accuracy across multiple

iterations. The illustrated procedure is summarised as follows. First, a GP is �tted to some ob-

served data points, corresponding to previous evaluations of the objective function, at iteration

i in the optimisation process. The observed data used in this process is commonly referred to

as training set (�lled black circles on Figure 2). The GP is then used to make computationally

inexpensive predictions of the objective function across the design space, at points where the value

of the objective function is unknown. These predictions are de�ned by mean and uncertainty esti-

mates (red curve and shaded red region on Figure 2), representing the predictions of the objective

function value and the uncertainty (characterised by the standard deviation) in these predictions.

The input points where the GP is evaluated constitute the test set.

The GP predictions are subsequently used to build an acquisition function (blue curve on

Figure 2), which is responsible for the determination of the next best point to evaluate the objective

function. The acquisition function computes a trade-o� between exploitation and exploration. The

former seeks to sample where the GP predicts high objective function values (high GP mean),

thereby guiding the optimisation towards predicted optima, and the latter seeks to sample where

GP uncertainty is high (high GP standard deviation), thereby improving surrogate model accuracy

and potentially revealing hidden optima in previously unexplored regions of the design space. The

objective function is subsequently evaluated at the input point that maximises the acquisition
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function (denoted with a red triangle on Figure 2), which is more likely to yield an improvement

of the objective whilst ensuring that the design space is adequately explored.

The new observation is appended to the training set and the process is repeated at iteration

i+ 1, where the GP is re-�tted with the updated data. Note that the GP uncertainty now reduces

to zero at the new observation. The process is repeated once again at i + 2. It can be observed

that as the optimisation algorithm progresses, the uncertainty in the surrogate model generally

decreases and the predictions of the objective function become more accurate, directing the search

towards the global maximum.

iteration i

iteration i+ 1

iteration i+ 2

observation

objective function

GP mean

GP uncertainty

acquisition function

new observation

Figure 2: Bayesian optimisation schematic for three iterations. Training set corresponds to the set of observa-
tions, denoted by �lled black circles. GP mean and uncertainty correspond to red curve and shaded red regions,
respectively. Acquisition function corresponds to the blue curve and its maximum is marked with a red triangle.

With the Bayesian optimisation approach conceptually established, the actual implementation

used in this work is now presented and follows the �owchart in Figure 3. The algorithm was fully

automated and implemented in a bespoke Matlab script.

Prior to the optimisation process, an initial training set T 0
r = {X, f} is constructed by sampling

M points X = {x1, ...,xM}T and evaluating the corresponding OHT strengths f = f (X) using the

FE model. X is a M × (Np/2) matrix, with each row corresponding to a stacking sequence and

each column corresponding to a ply angle, and f is a M × 1 column vector. The generation of the

initial training set is described in detail in section 3.2. The optimisation routine is then initialised

and repeated for i = 1, ..., N iterations, where N is a user-de�ned limit. The training set from the

previous iteration T i−1
r is used to �t the GP, which is then used to make predictions on the test

set T ie at each iteration i. Details on the GP and speci�c settings used in this work are given in

section 3.3. The acquisition function is generated using the predictions on T ie and the stacking
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Start i=1

Generate initial training set T 0
r

While
i ≤ N

Export optimisation results
and GP metrics

1. Using T i−1
r fit GP

to create/update surrogate model

2. Generate test set T i
e

3. Explore design space using
GP predictions on test set T i

e

4. Determine next point to sample xi ∈ T i
e

using acquisition function

5. Evaluate objective function at new point f
(
xi
)

6. Update best observed feasible point

7. Update training set T i
r =

{
T i−1
r ,

(
xi, f

(
xi
))}

with new observation
(
xi, f

(
xi
))

8. i = i + 1

yesno yes

Figure 3: Flowchart of Bayesian optimisation algorithm.

sequence xi that maximises its value is determined. Details on the choice of acquisition function

are provided in section 3.4. The OHT strength of stacking sequence xi is subsequently evaluated

using the FE model. The best observed feasible point is then updated in case the newly evaluated

stacking sequence ful�ls all the constraints and displays higher strength. Lastly, the training set is

updated with the newly evaluated point.

Because all possible stacking sequence candidates for OHT strength evaluation with the FE

model are contained in the test set T ie at each iteration, it is important that this set meets two

conditions: (i) it must be large enough and space-�lling so that it allows the algorithm to adequately

explore the design space and improve the surrogate model, in order to provide a better global

approximation of the trends in OHT strength; (ii) it must contain potential new feasible optima that

ful�l all the design requirements, corresponding, in practice, to the enforcement of the constraints

on the design space, as described in section 2. To achieve this, the bespoke methodology in

section 3.5 is proposed for the generation of T ie at every iteration i. This methodology is one

of the major novel aspects of this work, and is ultimately a method for applying constraints

within Bayesian optimisation without compromising GP accuracy, which would jeopardize the

optimisation process.
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3.2. Initial training set

Achieving a space-�lling initial training set improves surrogate model performance, increasing

the likelihood of �nding optimal solutions in the optimisation process. Therefore, the initial training

set T 0
r is generated using a Maximin Latin-Hypercube Sampling (MMLHS) algorithm [32], which

optimises the space-�lling properties of the set by maximising the minimum Euclidean distance

between theM sampled points. The OHT strength of each randomly sampled point is subsequently

evaluated using the FE model.

3.3. Gaussian process surrogate

Given a set of observations f at inputs X from the training set, the GP can be used to make

predictions of the real objective function f at inputs X∗ contained in the test set. The joint

distribution of f with the predictions f∗ follow a multivariate Gaussian distribution which, as

shown in [31], can be partitioned into:


 f

f∗


 ∼ N




 m (X)

m (X∗)


 ,


 K + σ2

nI K∗

KT
∗ K∗∗




 (1)

where K = k (X,X), K∗ = k (X,X∗) and K∗∗ = k (X∗,X∗). Functions m (x) and k (xi,xj)

represent the mean of the Gaussian process at point x and the covariance of any two points xi,

xj , respectively. The covariance function between two points is computed in the 10-dimensional

space using the Euclidean distance. Note that although observations f relate to deterministic FE

strength solutions, a very small noise parameter σn = 1× 10−6 is added to the covariance matrix

to facilitate its factorisation.

Using standard Gaussian conditioning rules, the GP predictions, given the training data and

the inputs from the test set, follow a distribution with mean µ∗ and covariance Σ∗:

µ∗ = m (X∗) + KT
∗
(
K + σ2

nI
)−1

(f −m (X)) (2a)

Σ∗ = K∗∗ −KT
∗
(
K + σ2

nI
)−1

K∗ (2b)

The GP standard deviation can be computed trivially from Σ∗. For the choice of the covariance

function, the automatic relevance determination (ARD) Matérn 5/2 kernel was selected, after con-

ducting a performance comparison against squared exponential, Matérn 5/2 and ARD squared

exponential kernels. The mean m (x) is parameterised solely in terms of the weight coe�cients

using constant explicit basis functions, which are set to one. The weights and kernel hyperparame-

ters (signal standard deviation and characteristic length scales) are determined from maximisation

of the marginal log likelihood using a quasi-Newton optimiser [33]. Note that maximisation of the

marginal log likelihood can result in hyperparameters that correspond to local optima. Despite

not being used here, a multi-start strategy could be included to prevent local optima and poten-

tially boost GP performance. In addition, optimising the marginal log likelihood could lead to
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over�tting in some instances. If this arises, the problem can be overcome using a fully Bayesian

implementation, in which methods such as Markov Chain Monte Carlo (MCMC) [34] are used to

sample from the posterior distribution of the hyperparameters [35]. The reader is referred to [31]

for more details on Gaussian process regression and selection of covariance functions.

3.4. Acquisition function

For the acquisition function, the expected improvement function is used according to [36]. For

any single input x∗ in the test set, the expected improvement function at iteration i can be written

in terms of the GP mean µ (x∗) and standard deviation σ (x∗):

EIi (x∗) =





[Φ (Z)Z + φ (Z)]σ (x∗) , if σ (x∗) > 0

0, if σ (x∗) = 0
(3)

and

Z =





(
µ (x∗)− f

(
xi−1
+

)
− ξexp

)
/σ (x∗) , if σ (x∗) > 0

0, if σ (x∗) = 0
(4)

where f
(
xi−1
+

)
and xi−1

+ are the maximum observed feasible OHT strength and its corresponding

stacking sequence, respectively, at iteration i−1. The terms Φ and φ correspond to the cumulative

distribution function (CDF) and the probability density function (PDF) of the standard normal

distribution, respectively. The exploration parameter ξexp is a user-de�ned positive real, propor-

tional to the amount of exploration during the optimisation process. In this work, ξexp is set to a

default value of 0.01 in every optimisation run.

3.5. Application of constraints

3.5.1. In-plane sti�ness matching

The optimisation is subject to an equality constraint, which ensures that the in-plane laminate

sti�nesses match prescribed target values, corresponding to speci�ed percentages of standard ply

angles, namely 0◦, ±45◦, and 90◦. This constraint is implemented by �nding combinations of

non-standard ply angles which match this in-plane sti�ness prior to the optimisation. In a given

iteration of the optimisation, the test set, from which candidate designs are chosen, is subsequently

populated with random permutations of these non-standard angles, as described in section 3.5.2.

Rather than directly matching sti�ness terms, it is more straightforward to match in-plane

lamination parameters, ξ1 and ξ2, de�ned as [37, 38]:

ξ1 =
1

T

∫ T

0

cos (2θ(z)) dz =
1

T

Np∑

l=1

cos (2θl) tl (5)

ξ2 =
1

T

∫ T

0

cos (4θ(z)) dz =
1

T

Np∑

l=1

cos (4θl) tl (6)
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where T is the laminate thickness, θl and tl denote the orientation and thickness of the lth ply

respectively, and Np is the total number of plies. In-plane laminate sti�nesses A11, A12, A22 and

A66 all have linear dependency upon ξ1 and ξ2 [38], and extension-shear coupling terms A16 and

A26 are automatically zero for balanced laminates.

Suppose the stacking sequence is parameterised as a function of Np/4 ply orientations, [±θ1/±
θ2/ . . . /±θNp/4]S, where Np must be a multiple of 4 to ensure balance and symmetry are satis�ed.

Monte Carlo simulation may be used to identify combinations of the ply angles which result in

lamination parameters within a user-de�ned tolerance from the target lamination parameters, that

de�ne the speci�ed in-plane sti�ness. The ply orientations, θl, are each allowed to take values

from the discretised design space covering the interval [−85◦, 90◦] at 5◦ increments. Realisations

of candidate stacking sequences may be generated by sampling this discretised design space with

uniform probability. For each sample realisation, the condition that the lamination parameters are

su�ciently close to the target stacking sequence is stated as:

√
(ξ1(θ1, . . . , θNp/4)− ξ̂1)2 + (ξ2(θ1, . . . , θNp/4)− ξ̂2)2 ≤ εtol (7)

where ξ1,2(θ1, . . . , θNp/4) denote the lamination parameters for a given set of ply orientations, ξ̂1,2

the target lamination parameters, and εtol is the acceptable tolerance upon the mismatch between

the achieved lamination parameters and their target values. Using these components, the Monte

Carlo method for in-plane sti�ness matching may be summarised as:

1. Generate a large number of samples ofNp/4-dimensional discrete random variables, θ1, . . . , θNp/4.

2. Calculate in-plane lamination parameters for each sample stacking sequence, [±θ1/±θ2/ . . . /±
θNp/4]S, using Eqs. (5-6).

3. Retain samples with lamination parameters within the acceptable tolerance of target lami-

nation parameters in accordance with Eq. (7).

4. Isolate unique combinations of ply orientations from the remaining samples. Each combina-

tion corresponds to a vector vj , where j = 1, ..., S and S is the number of feasible solutions

found from the method.

It is emphasised that it is only unique combinations, and not permutations, which are retained

in step 4, as the in-plane sti�ness is una�ected by di�erent permutations of the same combination

of ply orientations. Although this stochastic methodology is not guaranteed to �nd all possible

combinations of ply orientations which match the target lamination parameters, it becomes in-

creasingly probable that all combinations will be found with an increasing number of samples. In

practice, this method converges to a �xed number of solutions if a su�ciently large number of

samples are used relative to the number of random variables, Np/4. Due to the relatively low

computation time required to compute lamination parameters using Eqs. (5-6), it is trivial to

consider sample sizes in the order of 107 and return a set of sti�ness-matched ply orientations
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within seconds on a standard desktop PC.

3.5.2. Generation of feasible samples

In order to populate the test set at each iteration with feasible stacking sequences that match

the target in-plane sti�ness (within the prescribed tolerance), it is necessary to generate a set

of F random permutations of the feasible combinations of ply orientations arising from the in-

plane sti�ness matching procedure described in section 3.5.1. This set of feasible points is de�ned

as the feasible test set T if and is used to generate the �nal test set T ie , as described in the next

section 3.5.3. A bespoke sampling approach is used to generate T if at each iteration i, ensuring that

the feasible design space is represented fairly and that the optimisation process is not excessively

biased towards larger solution sets. The procedure follows:

1. For each unique angle combination vj , where j = 1, ..., S and S is the number of solutions

found from in-plane sti�ness matching, generate a set Vj of size Pj containing all of its

unique permutations.

2. Randomly sample F integers between [1, S] with uniform probability.

3. Out of the F random integers, count the cj number of repeats of each index j. cj corresponds

to the number of samples to draw from Vj .

4. For each j, if cj > Pj then cj,aux = cj and cj = Pj . Repeat algorithm from item 3 with

F = cj,aux−Pj and sampling between [1, S] \ {j} until either∑S
j=1 cj = F (number of desired

samples is achieved) or
∑S
j=1 cj =

∑S
j=1 Pj (use all existing feasible solutions).

5. For each j, randomly sample cj stacking sequences from the corresponding set Vj , with

uniform probability. The union of all sampled stacking sequences forms T if .

Note that this approach may need to be adapted in the case of laminates with a large number of

plies, where generating all unique permutations can become computationally expensive. In such

cases, a large user-de�ned set of randomly generated permutations can be used for each Vj instead.

3.5.3. Filtering strategy

The in-plane sti�ness, balance and symmetry constraints result in very small feasible regions,

which are not representative of the whole design space. Sampling points restricted to these re-

gions only can lead to inaccurate surrogate models which do not capture the global trends in OHT

strength, compromising the e�ciency of the optimisation process. Therefore, to improve the sur-

rogate model, the test set T ie , and consequently the set of candidate points which may be added to

the training set in the next iteration of the optimisation, must include space-�lling samples across

the entire design space. This idea is illustrated in an example in Figure 4 with a two-dimensional

input space (as such, note that this Figure does not correspond to the real problem). First, in

(i) a simple non-convex surface is used as an example of the objective function and the feasible

regions are highlighted in red. The case of �tting a surrogate to feasible points only and the case
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including infeasible points across the design space are illustrated in (ii) and (iii), respectively. Lin-

ear regression is used as a simple surrogate model for illustrative purposes. It can be observed in

(ii) that the surrogate model is very �at and the global trend of the objective function is not cap-

tured, making it di�cult to reach the optimum (corresponding to the maximum feasible point and

highlighted with a green triangle). Including infeasible points in (iii) results in a better and more

useful surrogate that can capture the global inclined trend, capable of guiding the optimisation

towards better feasible points.

A novel methodology to enforce the design constraints without compromising GP accuracy

is proposed. The methodology can be thought of as a �ltering strategy, that applies the design

constraints very gradually, and is illustrated in (iv) of Figure 4. In the early iterations of the

optimisation process, the strategy aims at improving the accuracy of the GP and generates test

sets T ie containing both feasible and infeasible points, spanning the entire design space. As the

optimisation progresses, the number of infeasible points sampled in T ie is decreased, such that by

iteration i = ifilter, the test set is composed of feasible points only and any stacking sequence

chosen by the acquisition function lies within the feasible regions. At this stage, the GP is su�-

ciently accurate and the focus becomes optimising the solutions within the feasible regions. Note

that other strategies for implementing constraints in a similar gradual manner could be to penalise

the objective function evaluations associated with infeasible points by a coe�cient with increas-

ing magnitude over the course of optimisation. An alternative, but more elaborate method that

generalises to a large number of complex, potentially computationally expensive constraints is to

build the constraints into the acquisition function [39]. The proposed methodology is, however, a

reasonable and practical approach when dealing with the inexpensive constraints associated with

composite stacking sequence design rules, because the feasible design space is heavily constrained,

corresponding to a relatively small number of discrete points, which are already known prior to

optimisation.

For the implementation of the �ltering strategy, the test set is de�ned as the union of a whole

space test set, T iw, containing infeasible points from the entire design space, and the feasible space

test set T if de�ned in section 3.5.2, containing points from the feasible regions only. The strategy

is repeated at every iteration i and follows the steps:

1. Generate the feasible samples for T if , as described in section 3.5.2.

2. Sample T iw containing a large number of points W = 105 from the entire design space.

Because the set has to be generated at every i, Latin-Hypercube Sampling (LHS) is used to

minimise the computational cost compared with MMLHS (hence MMLHS is only used for

the initial training set).

3. Determine the number Ri of infeasible points to remove from T iw. A linear �ltering function

L (i) is used such that Ri = Ri−1 + L (i). L (i) increases linearly from 0 at i = 1 to

L(i) = W − Ri−1 at i = ifilter. This ensures that at i = ifilter, all W points are removed
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(i) Design space (ii) Feasible samples (iii) Infeasible samples

(iv) Filtering strategy

objective
function

feasible regions
feasible point

optimum surrogate (linear)

infeasible point

surrogate (linear)

iteration i = 1 iteration i = 2 ... iteration
i = ifilter

Figure 4: E�ects of sampling from feasible regions only and from including infeasible points on surrogate model
in (ii) and (iii), respectively. Illustration of the proposed �ltering strategy in (iv). A simple non-convex surface
and linear regression are used as examples of the objective function and of the surrogate model, respectively. The
feasible regions are highlighted in red, as depicted in (i).

from T iw.
4. The acquisition function is evaluated at all W points and the Ri lowest points are removed

from T iw.
5. The test set is formed T ie = T if ∪ T iw.

4. Progressive damage �nite element model

The optimisation script calls an external FE model, implemented in ABAQUS Explicit [40], to

evaluate the objective function. A general overview of the implementation is shown in Figure 5.

The three-dimensional meso-scale FE model is based on the modelling framework proposed

in [7]. The model includes a ply constitutive model based on continuum damage mechanics, an

interlaminar model using frictionless surface-based cohesive zones and mesh alignment of the plies

in their �bre direction. The model also includes an option that implements a numerical edge

treatment which prevents premature failure in laminates prone to extensive free edge damage,

thereby allowing simulations to attain `more representative' open-hole strength, akin to a structure

without the free edges. The numerical edge treatment follows the approach in [7] and consists of

two 1 mm wide blocks, which are attached to each free edge of the specimen, using the same CFRP

material but with no damage behaviour, e�ectively suppressing free edge e�ects. The approach is

based on a resin edge treatment used in [41, 42] on experimentally tested coupons under 3-point

and 4-point bending.

Unlike the original modelling framework in [7], the present model does not include any thermal

analysis steps and the ply constitutive model has been modi�ed (detailed in section 4.1) in order to
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(i) Python script

(ii) VUMAT

(iii) VUAMP

Optimisation
Matlab script

Stacking sequence
xi

vx ∈ [0, 2.5] mm/s

Symmetry in z

Numerical edge treatment

CFRP specimen

A

B

y

xz

A B

FEA: ABAQUS Model

OHT strength
f
(
xi
)

Figure 5: Implementation of objective function evaluation in the optimisation framework. Clamped and smooth-
step velocity boundary conditions are applied. Symmetry boundary condition in z is applied at the mid-plane of
the laminate. The ABAQUS model uses a bespoke Python script for mesh alignment, a VUMAT subroutine for the
ply constitutive model and a VUAMP subroutine to halt the simulation after ultimate strength is reached.

reduce computation runtime and speed up the optimisation process. With the new modi�cations,

runtime was substantially decreased, from approximately 7-12 hours to 20-50 minutes per simula-

tion (variation dependent on lay-up con�guration) when running with parallelisation on two Intel

Ivybridge computing nodes with 2.6 GHz and 8 cores each. The reader is referred to the original

article [7] for more details on the FE model parameters and for the AS4/8552 pre-preg material

properties.

4.1. Ply constitutive model

In order to reduce computation runtime and enable a more tractable optimisation process,

the ply constitutive model assumes that intralaminar failure occurs in fracture planes orthogonal

to the ply orientation. Consequently, only in-plane stresses are a�ected by intralaminar damage.

Damage associated with out-of-plane stresses is lumped at the ply interfaces and responsible for in-

terlaminar failure only, following the approach in [43�46]. This simpli�cation adequately captures

OHT failure whilst enabling a signi�cant reduction in computation runtime when compared to

the original modelling framework in [7], where three-dimensional intralaminar damage and oblique

fracture planes are considered. It should be noted that for other conditions such as transverse

loading or compression, the fracture plane is generally oblique and the contribution of out-of-plane

stresses to intralaminar failure is non-negligible. In such cases, this simpli�cation may not be suit-

able and the consideration of oblique fracture planes and three-dimensional intralaminar damage

modes, following formulations as per [7, 47, 48], is more appropriate. According to the plane-stress

formulation in [43] and extending it to a three-dimensional stress state, the ply complementary
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free energy density of a transversely isotropic ply, neglecting thermal and hygroscopic expansion,

can be written as:

G =
σ2

11

2 (1− dF )E11
+

1

2E22

(
σ2

22

1− dM
+ σ2

33

)
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− ν23σ22σ33

E22

+
σ2

12

2 (1− dM )G12
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σ2
23

2G23

(8)

The elastic strain tensor εe can be computed from the di�erentiation of the complementary free

energy density with respect to the stress tensor σ, resulting in:

εe =
∂G
∂σ

= H : σ (9)

where the colon operator denotes the double inner product and the fourth-order lamina compliance

tensor H, expressed in its matrix form, reads:

H =
∂2G
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where ⊗ denotes the tensor product. The total strain tensor is de�ned as the sum of the elastic and

plastic terms ε = εe+εp. Prior to damage initiation, the material response is linear elastic in longi-

tudinal and transverse directions and non-linear elasto-plastic in shear, such that plastic strains εpij

only exist for i 6= j. The non-linear plastic behaviour is described in each shear component using

a uni-dimensional Ramberg-Osgood model [49, 50] and rate-independent isotropic hardening. dF

and dM correspond to the damage variables for longitudinal and matrix failure, respectively. The

variables evolve independently and irreversibly after damage onset in each respective mode such

that dF , dM ∈ [0, 1], with zero and one corresponding to undamaged and fully damaged material,

respectively. Due to the signi�cant di�erence in failure mechanisms, compressive and tensile lon-

gitudinal damage are tracked with independent auxiliary variables d−F and d+
F . Therefore, in order

to ensure closure of longitudinal cracks under load reversal, the total longitudinal damage variable

dF is de�ned as:

dF = d+
F

〈σ11〉
|σ11|

+ d−F
〈−σ11〉
|σ11|

(11)

Considering an instant and increment in time t and ∆t, the irreversibility of damage is enforced

in both longitudinal and matrix failure modes considering:

dt+∆t
k = max

{
0,min

{
1,max

{
dtk, d

t+∆t
k

}}}
∀ t,∆t ≥ 0, k = F,M (12)
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To determine the onset of damage, two sets of maximum strain criteria φ+
F ≥ 1 and φ−F ≥ 1 are

used for longitudinal failure and a general in-plane quadratic stress criterion φM ≥ 1 is used for

matrix failure:

φ+
F =

ε11E11

XT
if ε11 ≥ 0 (13a)

φ−F =
ε11E11

XC
if ε11 < 0 (13b)

φM =

( 〈σ22〉
Y isT

)2

+

(
τ12

SisL

)2

(13c)

where XT and XC correspond to the uni-directional longitudinal tensile and compressive strengths

and Y isT and SisL are the in-situ transverse tensile and longitudinal shear strengths, which can be

calculated according to [51].

After onset, the same damages evolutions laws from [7] are used, and are illustrated in Figure 6

for each uniaxial material response. These include a coupled linear-exponential softening law

for longitudinal tension, linear softening followed by constant stress kink-band broadening for

longitudinal compression, and linear softening under mixed-mode conditions for matrix damage.

Fully damaged elements are deleted according to the element deletion criteria in [52], preventing

excessive distortion.

(a) 11 - Tension (b) 11 - Compression (c) 12 - Shear (d) 22 - Tension

Figure 6: Uniaxial material response under longitudinal tension, longitudinal compression, in-plane shear (with
γ12 = 2ε12) and transverse tension considered in the FE model. γp12,0, γ12,0, γ12,f correspond to plastic shear strain

at onset of damage, total shear strain at onset of damage and �nal shear strain, respectively. G+
1 , G−

1 , G+
2 and G6

correspond to the critical fracture energies in longitudinal tension, longitudinal compression, transverse tension and
shear, respectively. lF and lM are the characteristic �nite element length and width, respectively.

4.2. FE model validation

The FE model was validated comparing the OHT strength predictions of 16 OHT laminates

with the same aforementioned geometry, against the results from the experimentally-validated FE

model proposed in [7]. The laminates are labelled according to their properties, which include:

(i) standard-angle laminates (SA) or non-standard angle laminates (NSA); (ii) blocked stacking

sequences, where plies with the same orientation are stacked together, and with a higher number

corresponding to a more blocked laminate (e.g. SA6 is more blocked than SA3); (iii) imbalance

of plies about the loading axis, introducing extension-shear coupling (e.g. laminates with a +10◦

label, which correspond to the original versions rotated by 10◦). Di�erent combinations of these
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properties result in very di�erent failure types, as discussed in [7], with more dispersed (less blocked)

balanced laminates exhibiting more brittle failure, dominated by in-plane mechanisms. Conversely,

blocked imbalanced laminates typically display extensive interlaminar and intralaminar matrix

damage, resulting in more progressive failure. Validation of the model with this comprehensive set

establishes con�dence in its accuracy for a variety of laminates across the design space.

The relative trends in OHT strength from the present FE model and from [7] are shown in

Figure 7. The results are plotted separately for SA and NSA laminates and from lowest to highest

degree of ply blocking (SA3 to SA6 and NSA2 to NSA5, for SA and NSA cases, respectively). The

cases with imbalance due to applied 10◦ rotation are also shown. The strengths are normalised by

the SA6 laminate strength for each method (corresponding to the maximum observed value using

both methods).

(a) SA laminates (b) NSA laminates

Figure 7: Comparison of relative trends in OHT strength from present FE model and from experimentally-validated
FE model in [7], for both SA and NSA laminates, considering unrotated and rotated laminates (+10◦), and from
lowest to highest degree of ply blocking. Strengths are normalised by SA6 laminate strength for each method.

The relative trends in OHT strength are very similar using the present model and solutions

from [7], as shown in Figure 7. Accurately predicting the relative trends in OHT strength with lay-

up con�guration is particularly important for the optimisation process, as these trends ultimately

drive the optimisation towards the feasible optima. For completeness, note that the absolute values

of OHT strength were also compared using the current FE model and [7], displaying a maximum

di�erence of 15% and an average di�erence of 7.1% across the entire set.

5. Optimisation results

This section demonstrates the proposed optimisation process in three case studies. From case

study I to case study II, the complexity of the optimisation process is increased due to an increased

feasible design space. From case study II to case study III, optimisation complexity remains

identical, but a more challenging loading condition is applied, which causes greater variability

in strength and failure modes with changes in stacking sequence. The �rst and simplest case

study corresponds to the optimisation of the laminate stacking sequence with feasible solutions
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comprising SA laminates only, with 50/40/10 ply percentages. In case study II, the optimisation

is run for feasible solutions including both SA and NSA stacking sequences, found from in-plane

sti�ness matching of the 50/40/10 ply percentages. Both case studies I and II are subject to on-axis

loading, corresponding to the same problem but with di�erent feasible design spaces. Lastly, case

study III corresponds to optimisation of both SA and NSA, with the same feasible design space as

case study II, but with a misaligned load. The results are discussed in section 6.

In both case studies I and II, two optimisation strategies are tested to demonstrate the ben-

e�ts of the proposed �ltering methodology: (i) A baseline optimisation with no �ltering strategy

where both training and test sets are composed of feasible points only. The initial training set is

obtained with Maximin Sampling (MMS) from the feasible design space and the test set at each

iteration corresponds to the feasible test set T ie = T if . (ii) Optimisation with linear �ltering strat-

egy, where the training set and test sets include infeasible points and are generated according to

sections 3.2, 3.5.3. The progression of the optimisation is analysed in terms of mean best feasible

point and in terms of GP performance, using the mean relative error and mean standard deviation

of the GP as performance metrics.

Due to the stochastic nature of the optimisation method, di�erent results are expected across

multiple runs. As such, in order to assess the robustness of the method, each optimisation case

was run �ve times, for 100 iterations, with initial training sets of size M = 15, corresponding to a

total of 115 FE evaluations, and with ifilter = 25 when employing the �ltering methodology. The

case studies also include a comparison of the mean best feasible solution from the optimisation

runs against the mean best solution obtained from �ve runs of direct MMS of 115 points (identical

number of FE evaluations) from the feasible design space. This comparison is used as a benchmark,

in order to ascertain whether the Bayesian optimisation provides consistently better results than

a random space-�lling set of points. Note that for 10 optimisable ply angles, using a GA or a

similar global optimisation method would generally require a large population size, of comparable

magnitude to the total number of allowed FE evaluations, rendering these methods computationally

intractable. For this reason, MMS is considered a more appropriate benchmark against which to

compare the proposed methodology.

To compute the GP performance metrics, an external dataset comprising 500 points, sampled

with MMLHS across the entire design space and evaluated with the FE model, was used. At each

iteration of the optimisation process, the GP is used to make predictions of the expected value and

standard deviations at each of these 500 points. The relative error of the GP is calculated at each

point from the expected values and the FE model predictions. The mean relative error and mean

standard deviation of all 500 points is subsequently computed. The 500-point external dataset

is generated after all optimisation runs are completed, ensuring that none of the sampled points

belong to the training data (including both initial training and new observations) used in any of

the optimisation runs. This ensures that: (i) GP metrics are computed fairly and not validated on
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training data; (ii) GP metrics of di�erent optimisation runs can be compared as the same external

dataset is used for their computation; (iii) the optimisation process is not restricted and any point

with expected improvement can be sampled and subsequently used as training data.

It should be noted that because the objective of this work is to reach the best possible solution

within a pre-de�ned maximum number of FE evaluations, no other stopping criteria are used. An

alternative stopping criterion to extend the method and potentially reach a global optimum, if time

is not a constraint, is to stop the optimisation if the change in the maximum value of the expected

improvement function across the design space is below a speci�ed minimum threshold over a given

number of iterations. Such a criterion would indicate that further signi�cant improvements in

either the objective function, or in the accuracy of the surrogate, are unlikely.

5.1. Case study I: SA laminates only

Considering the 50/40/10 ply percentages of a wing skin, the feasible design space, containing

SA stacking sequences only, comprises 7560 unique permutations. Because of the relatively small

size of the feasible design space, the feasible test set at each iteration T if is formed using all 7560

solutions.

Key performance metrics from this case study are shown in Figure 8. The comparison of

the mean best feasible solution across the �ve repeat runs of each baseline and linear �ltering

optimisation strategies and from MMS is shown in Figure 8a. The evolution of the mean best

feasible point, the mean GP relative error and the mean GP standard deviation are shown for both

optimisation strategies in Figures 8b, 8c and 8d, respectively. Note that the mean GP relative

error and mean GP standard deviation are taken across the 500-point external validation set. The

standard deviations across the �ve repeat runs are shown along with the mean values in every plot.

The best feasible stacking sequence from each optimisation run is displayed in Table 1 along

with its corresponding OHT strength. The iteration number at which the solution is found is also

shown.

Table 1: Best feasible solutions for each optimisation run in case study I. Stacking sequence, OHT strength and
corresponding iteration at which the best feasible solution is found are shown.

Optimisation
strategy

Run n◦ Stacking sequence
OHT strength

(MPa)
Iteration

baseline

1 [03/90/02/45/-45/45/-45]S 619.3 90
2 [03/452/-452/90/02]S 652.2 95
3 [03/452/-452/90/02]S 652.2 96
4 [0/90/04/45/-452/45]S 638.3 67
5 [04/45/-45/45/-45/90/0]S 626.4 29

lin. �lter

1 [02/90/03/-45/452/-45]S 640.2 95
2 [03/-45/452/-45/90/02]S 674.1 40
3 [45/05/90/-45/45/-45]S 689.2 94
4 [90/05/45/-45/45/-45]S 648.2 98
5 [45/05/90/-45/45/-45]S 689.2 99

In Figure 9, the stress-strain curves and di�erences between failure mechanisms of the �rst and
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(a) Mean best feasible point (b) Mean best feasible point

(c) Mean GP relative error (d) Mean GP standard deviation

Figure 8: Optimisation results of case study I. In (a), comparison of mean best feasible point with baseline (no
�ltering) and linear �ltering optimisation strategies, and with direct Maximin Sampling (MMS). In (b), progression
of mean best feasible point, including zoom-in view. In (c), progression of the mean GP relative error. In (d),
progression of the mean GP standard deviation. Each optimisation case is run �ve times. GP performance metrics
are evaluated with an external dataset containing 500 points. In (b), (c) and (d), the mean values taken across all
�ve repeat runs are plotted with solid lines and standard deviations with shaded areas.

�nal observed best feasible solutions obtained from optimisation lin. �lter run n◦ 4 are shown.

This particular example is used for conciseness, as the results are similar across di�erent runs.

The example is used to illustrate the di�erences in failure mechanisms of a non-optimised laminate

and a �nal solution obtained from optimisation, and is not used for benchmarking purposes. The

failure process is demonstrated at three strain states for each stacking sequence, and highlighted on

the stress-strain curves. Transparency is added to the failure plots such that intralaminar cracking

and delaminations (shaded areas) are visible through the laminate thickness.

5.2. Optimisation case study II: SA and NSA laminates

Considering the same 50/40/10 ply percentages, the feasible design space is now extended to

include NSA laminates that match the in-plane sti�ness. Using the methodology described in 3.5.1,

a tolerance of εtol = 0.015 and limiting solutions to a maximum of three angle pairs, the possible

unique angle combinations for a 20-ply symmetric, balanced laminate are shown in Table 2. The

feasible design space is now formed by the union of the solutions sets Vj , each containing all unique

permutations of the corresponding vj . Note that with a 5◦ discretisation of the design space, no
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Figure 9: Comparison of stress-strain curves of �rst (non-optimised, in black) and �nal (in red) best observed feasible
solutions obtained from case study I optimisation (lin. �lter run n◦ 4 is used as an example). The failure process of
each case is shown at three strain states, highlighted on the stress-strain curves. Loading applied in the x direction.

solutions exist within the speci�ed tolerance for laminates with two angle pairs, and therefore, a 1◦

discretisation is used exceptionally for this particular case (corresponding to the angle combination

v2 in Table 2).

The feasible design space is now much larger, representing a much more challenging optimisation

problem. The feasible test set at each iteration T if is generated following the method in section 3.5.2.

The size of T if is set to F = 50000, which is large enough to cover various feasible solutions, but

still allows for very quick GP predictions. The optimisation results are shown in Figure 10, and

are analogous to the comparative analysis shown for case study I in Figure 8. The best feasible

stacking sequence from each optimisation run is displayed in Table 3 along its corresponding OHT

strength and number of the iteration at which the solution is found.

5.3. Optimisation case study III: SA and NSA laminates with misaligned loading

Optimal stacking sequences for aerospace applications should be robust to uncertain loading and

account for possible misalignments without resulting in signi�cant knock-downs in strength. In this

last case study, the optimisation of in-plane sti�ness-matched SA and NSA laminates, considering

the extended feasible design space of case study II, is performed for an applied misaligned load of
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Table 2: Unique angle combinations for 20 ply symmetric, balanced laminate with 50/40/10 ply percentages, found
from in-plane sti�ness matching using the Monte Carlo method.

Unique angle combinations Lay-up

v1 [05/±452/90]S
v2 [±103/±572]S
v3 [±103/±55/±60]S
v4 [±10/±253/±80]S
v5 [02/±253/±75]S
v6 [±102/±302/±75]S

(a) Mean best feasible point (b) Mean best feasible point

(c) Mean GP relative error (d) Mean GP standard deviation

Figure 10: Optimisation results of case study II. In (a), comparison of mean best feasible point with baseline (no
�ltering) and linear �ltering optimisation strategies, and with direct Maximin Sampling (MMS). In (b), progression
of mean best feasible point, including zoom-in view. In (c), progression of the mean GP relative error. In (d),
progression of the mean GP standard deviation. Each optimisation case is run �ve times. GP performance metrics
are evaluated with an external dataset containing 500 points. In (b), (c) and (d), the mean values taken across all
�ve repeat runs are plotted with solid lines and standard deviations with shaded areas.

10◦ instead of typical on-axis loading. To approximate the misaligned load, the FE model rotates

the laminates by +10◦ and the load is applied in the same 0◦ axis, identical to the approach in [7].

The misalignment in load results in imbalance of plies about the loading axis and introduces

extension-shear coupling, which can result in pronounced free edge e�ects. Thus, two optimisation

cases are tested: (i) including the free edge e�ects (corresponding to the optimisation of a structure

with exposed free edges); (ii) suppressing/reducing the free edge e�ects using the numerical edge

treatment described in section 4 (approximating the case of a structure with no exposed free

edges). Note that complete suppression of free edge e�ects with the numerical edge treatment in
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Table 3: Best feasible solutions for each optimisation run in case study II. Stacking sequence, OHT strength and
corresponding iteration at which the best feasible solution is found are shown.

Optimisation
strategy

Run n◦ Stacking sequence
OHT strength

(MPa)
Iteration

baseline

1 [-45/45/-45/90/02/45/03]S 571.0 73
2 [-45/452/90/04/-45/0]S 559.4 8
3 [02/45/-452/90/03/45]S 594.6 83
4 [-10/102/55/10/-55/60/-60/-102]S 530.7 55
5 [02/-45/03/90/45/-45/45]S 588.1 82

lin. �lter

1 [452/-45/90/05/-45]S 608.8 53
2 [04/45/-45/45/-45/90/0]S 626.4 53
3 [03/90/02/45/-45/45/-45]S 619.3 72
4 [452/-45/90/05/-45]S 608.8 75
5 [02/-45/03/90/45/-45/45]S 588.1 94

not possible [7].

First, the mean best feasible solution across the �ve repeat runs of the optimisation with linear

�ltering strategy is compared against two benchmarks: the mean of the best overall set of solutions

found for on-axis loading (solutions from case study I optimisation with linear �ltering strategy) but

subjected to misaligned loading; the mean best solution from direct MMS (analogous to previous

case studies). The benchmarking results are shown in Figure 11 for both cases with and without

treatment.

(a) Full free edge e�ects (b) Reduced free edge e�ects

Figure 11: Case study III benchmark, in (a) without numerical edge treatment (i.e exposed free edges) and in (b)
with numerical edge treatment (i.e suppressed/reduced free edge e�ects). The mean best feasible point from linear
�ltering optimisation strategy is compared against the mean of best overall set of solutions found for on-axis loading
(solutions from case study I with linear �ltering optimisation strategy) but subjected to misaligned loading, and
against direct Maximin Sampling (MMS).

The individual optimisation results for both cases with and without treatment are shown in

Figure 12. For each case, the optimisation run yielding the best feasible solution is highlighted in

black. The corresponding �rst and last observed best feasible solutions are highlighted with blue

circle and red square markers, respectively. For clarity of Figure 12b, note that, in the highlighted

case with numerical edge treatment, the �rst observed best feasible solution occurs at i = 1.

The stress-strain curves of the solutions are displayed in the same colour as the corresponding
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markers, and the failure patterns through the laminate thickness (including intralaminar cracking

and delaminations) are shown at three strain states, highlighted on the stress-strain curves.

y

x
z

1 2 3

1’ 2’ 3’

(a) Full free edge e�ects (structure with exposed free edges)

y

x
z

1 2 3

1’ 2’ 3’

(b) Reduced free edge e�ects (approximate structure with no free edges)

Figure 12: Comparison of case study III optimisation runs: In (a) the OHT strength is predicted without numerical
edge treatment (i.e with exposed free edges). In (b) the OHT strength is predicted with the numerical edge
treatment (i.e with suppressed/reduced free edge e�ects). For each case, 5 optimisation runs were performed and
the run resulting in the best observed feasible point is highlighted in black, with the �rst (blue circle) and last (red
square) observed best feasible solutions highlighted with markers. The stress-strain curves of both �rst (in blue)
and last (in red) best solutions are displayed and the failure patterns are shown at three strain states, highlighted
on the stress-strain curves. Loading applied in the x direction.

The best feasible stacking sequence from each optimisation run, for both cases with and without

numerical edge treatment, is displayed in Table 4.

6. Discussion

6.1. Comparison of Bayesian optimisation and direct sampling

The proposed Bayesian optimisation method returns signi�cantly better solutions than direct

MMS of feasible stacking sequences, after the same number of FE evaluations. This is �rst shown
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Table 4: Best feasible solutions for each optimisation run in case study III. Stacking sequence, OHT strength and
corresponding iteration at which the best feasible solution is found are shown.

Edge
treatment

Run n◦ Stacking sequence
OHT strength

(MPa)
Iteration

No
(Full free edge e�ects)

1 [-60/10/55/-10/102/60/-102/-55]S 489.4 67
2 [10/-102/102/-10/-55/55/60/-60]S 490.5 78
3 [0/-45/90/0/452/03/-45]S 497.3 51
4 [10/57/102/-103/-57/57/-57]S 527.8 96
5 [02/-45/90/0/45/0/45/0/-45]S 501.7 58

Yes
(Reduced free edge e�ects)

1 [-45/45/-45/90/05/45]S 625.1 64
2 [90/-452/45/05/45]S 600.5 82
3 [103/-103/55/-60/60/-55]S 574.5 47
4 [-102/57/-572/-10/10/57/102]S 544.4 60
5 [05/452/90/-452]S 638.4 47

in case study I, in Figure 8a, where the baseline and the linear �ltering optimisation strategies

result in stacking sequences with, on average, 15% and 20% higher relative OHT strengths than

the best MMS solution, respectively. The advantage of the optimisation strategies over MMS

becomes even more signi�cant in case study II, as shown in Figure 10a, where the baseline and

linear �ltering optimisation strategies return stacking sequences with, on average, 20% and 29%

higher relative OHT strengths than the best MMS solution, respectively. This advantage is more

pronounced in case study II due to the increased feasible design space, which makes it harder

to reach a good feasible solution purely with random sampling methods. Note that in absolute

values, the best observed solutions obtained in case study II display lower OHT strength than

in case study I. This is expected, as SA laminates typically display higher OHT strengths under

on-axis loading [7] and the inclusion of such a large number of NSA feasible stacking sequences in

case study II makes it much more di�cult to �nd good solutions, especially given the very limited

number of iterations. The linear �ltering optimisation strategy in case study III, in Figure 11, also

displays better solutions than MMS, corresponding to 7% and 17% higher relative OHT strengths

for the cases of exposed free edges (full free edge e�ects) and suppressed/reduced free edge e�ects,

respectively. The bene�ts from optimisation are less pronounced for the case of misaligned loading,

particularly for a structure with exposed free edges where OHT strength is very uniform across

the feasible design space. For the case of misaligned loading with reduced free edge e�ects, the

variability in OHT strength is, on the other hand, very large and thus, the optimisation would

bene�t from more iterations.

In addition, it can be observed from Figures 8b and 10b that the optimisation (considering

both baseline and linear �ltering strategies) only takes, at worst, an average of 40 iterations (55

FE evaluations) to match the mean of the best MMS solutions (115 FE evaluations) in case study

I, and, similarly, only takes an average of 20 iterations (35 FE evaluations) in case study II. In

case study III, the optimisation takes an average of 25 iterations (40 FE evaluations) for the case

of exposed free edges in Figure 12a, and an average of 21 iterations (36 FE evaluations) for the
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case of reduced free edge e�ects in Figure 12b, to match the mean of the best MMS solutions (115

FE evaluations). As such, the optimisation framework not only �nds stronger solutions, but it also

reaches the best solution from MMS within a fraction of the time in every case study. It is worth

noting that although the global optimum is not achieved within 100 iterations in any of the case

studies (resulting in di�erent �nal solutions across the �ve repeat runs), the aim is to �nd the best

possible solution in a �xed number of iterations given the complexity of the FE model, for which

the framework is demonstrably successful.

6.2. Comparison of baseline and linear �ltering optimisation strategies

The linear �ltering strategy yields consistently better results than the baseline in both case

studies I and II. Note, however, that the baseline optimisation with no �ltering strategy displays

feasible solutions at the �rst optimisation iterations, as shown in Figures 8b and 10b, as the initial

training set contains feasible points only. The process takes longer to reach any observed feasible

solution using the linear �ltering strategy, because points are sampled from the whole design

space. As the linear �lter enforces the design constraints, the probability of sampling a feasible

point increases.

Despite taking longer, sampling infeasible points in the initial training set and at the early

stages of the process bene�ts the optimisation. As shown in Figures 8b and 10b, after an average

of 40 iterations in case study I, and 47 iterations in case study II, the optimisation employing

linear �ltering reaches the mean best feasible point of the baseline and proceeds to �nd better

mean feasible solutions than the baseline at every iteration until the end of the process.

The better performance of the linear �ltering strategy is attributed to two factors: the much

better accuracy of the GP; but also the increased uncertainty in GP predictions. The �rst factor

is illustrated in Figures 8c and 10c for case studies I and II, respectively, where the linear �ltering

strategy displays a much lower mean relative error than the baseline. The high relative errors

of the baseline optimisation indicate that feasible data is very restrictive, and that training must

include infeasible points for the GP to more accurately capture the global trends in OHT strength.

Note that the initial training set used in the linear �ltering strategy provides most of the necessary

training data. The e�ects of new sampled data on GP accuracy decrease as the linear �lter enforces

the design constraints, slightly decreasing the error until the test set becomes restricted to feasible

solutions only. Then, because the feasible set is not representative of the whole design space, and

thus very dissimilar to the 500-point external set where the mean GP relative error is computed,

this error can increase slightly at later stages of the optimisation process, where the training data

becomes more populated with points from the feasible set. Additionally, the error can increase as

the GP is �tted to more data points near a local optimum (neglecting other areas of the design

space), indicative of convergence or a focus upon exploitation rather than exploration. This trend

can be observed in case study I after 70 iterations, in Figure 8c. In case study II, the mean relative

error remains constant with increasing feasible training data due to the large size of the feasible
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design space, which is more representative of the whole space. This larger feasible space also

explains why the mean relative error of the baseline strategy is lower in case study II than in case

study I.

The second factor is demonstrated in both Figures 8d and 10d, where the linear �ltering strategy

displays higher mean GP standard deviations than the baseline. This increased uncertainty leads

to a more explorative optimisation process, which is particularly important in problems with large

feasible design spaces such as case study II. The baseline strategy, on the other hand, is more

likely to exploit solutions near best observed feasible points and more likely to converge to local

maxima, rather than exploring areas of the feasible design space where the objective function

value is unknown. The higher mean GP standard deviations of the linear �ltering strategy can be

attributed to the fact that during the early optimisation stages, the GP is �tted to points with

larger variations in OHT strength due to the space-�lling test set. The rate of increase in mean GP

standard deviation diminishes once the test set is �ltered to feasible solutions only, where OHT

strength is less variable. The baseline strategy, on the other hand, is exposed to little variation in

OHT strength due to the very limited test set and thus, displays much lower mean GP standard

deviation across the 500-point external validation set. The higher GP standard deviation in the

linear �ltering strategy therefore re�ects a more realistic approximation of the underlying global

trends, in which signi�cant variations in strength can occur.

As a �nal remark, it should be noted that the improvement from using the linear �ltering

strategy over the baseline is greater in case study II, representing a 7.2% relative increase in

average OHT strength at the end of the optimisation process, compared to 4.8% in case study I.

This greater relative improvement demonstrates the bene�ts of the �ltering strategy when dealing

with design spaces comprised of more feasible solutions, which are inherently more di�cult to search

and to �nd points with highest performance. These bene�ts are anticipated to be even greater

for problems with even larger sets of feasible solutions. For such cases, the baseline strategy is

particularly ine�ective, as its combination of poor GP accuracy and low uncertainty is more likely

to result in convergence to solutions mistaken for optima.

6.3. Drawing laminate design guidelines using the Bayesian optimisation framework

Deriving physical intuition and establishing good and bad design practices for the strength of

a particular structure generally requires multiple observations across the design space, selected by

the designer. The proposed Bayesian optimisation framework can be used as a pragmatic tool

to e�ciently navigate the design space and understand design principles from a small number of

observations. The cases of on-axis loading (in case study I and II) and misaligned loading (in case

study III) are investigated as illustrative examples of the framework as a tool to establish design

guidelines.
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6.3.1. On-axis loading

For OHT strength of laminates under on-axis loading, the best feasible solutions from optimi-

sation correspond to SA laminates with signi�cant 0◦ ply blocking, as shown in Tables 1 and 3.

As detailed in [6, 7], blocking of 0◦ plies leads to shearing of the matrix resulting in cracks tangen-

tial to the hole that reduce �bre stresses and delay �bre failure. On the other hand, �bre failure

tends to occur earlier in dispersed SA laminates. The di�erence in failure type can be observed

in Figure 9, where the optimised stacking sequence containing a thick block of 05 plies displays

extensive sub-critical matrix shear cracks in the 0◦ direction, resulting in more progressive failure.

As a result, at ultimate failure, the optimised stacking sequence is able to accumulate more visible

damage than the non-optimised (dispersed) one. Despite the lack of physical intuition, the GP

can e�ciently establish correlations between ply block thickness and OHT strength, driving the

optimisation process towards areas of the design space with SA stacking sequences comprising thick

blocks of 0◦ plies and avoiding excessively dispersed laminates. Similarly, despite the signi�cantly

larger feasible design space and much more challenging optimisation problem in case study II, the

GP is generally able to drive the optimisation towards blocked SA laminates within the speci�ed

maximum number of iterations, avoiding both NSA and dispersed SA laminates due to their lower

OHT strength (only with the exception of baseline run n◦ 4, as can be observed in Table 3).

6.3.2. Misaligned loading

Under misaligned loading, optimal stacking sequences and the direction of optimisation greatly

depend on whether the structure has exposed free edges or whether these are suppressed/reduced

in the FE model with the numerical edge treatment, replicating the conditions in a structure with

no exposed free edges.

As shown in Table 4, the consideration of exposed free edges leads to solutions consisting of

mainly NSA laminates and more dispersed SA laminates, with the highest observed OHT strength

corresponding to the NSA stacking sequence [10/57/102/-103/-57/57/-57]S. The best observed

stacking sequences in the edge treated cases, on the other hand, correspond to SA laminates with

very blocked 0◦ plies. As such, from Figure 11, it can be observed that the best set of on-axis

solutions (corresponding to the linear �ltering optimisation strategy in case I study), also displaying

thick blocks of 0◦ plies, are much more robust to misaligned loading when free edge e�ects are

suppressed than when they are exposed.

It can be observed from both Figures 12a and 12b that, analogous to on-axis loading, the

best solutions in either cases with or without edge treatment display much more extensive sub-

critical intralaminar matrix cracking than corresponding non-optimised solutions. Note that the

improvements from optimisation are greater in the edge treated case. This is because the reduced

free edge e�ects prevent premature growth of critical intralaminar cracks that grow from the free

edges, which tends to predominantly a�ect stacking sequences (such SA laminates with 0◦ ply

blocking) which are also prone to bene�cial sub-critical matrix cracking at the hole. Without
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edge treatment, these stacking sequences fail much earlier than NSA and dispersed SA laminates.

Conversely, by applying the edge treatment, matrix cracking localises at the hole and delays �bre

failure, explaining why the best on-axis solutions are much more robust to misaligned loading when

free edge e�ects are suppressed.

Despite corresponding to essentially the same optimisation problem, with an identical feasible

design space and loading condition, the consideration of a structure with or without exposed free

edges results in signi�cantly di�erent optimal stacking sequences. The GP is able to e�ciently

drive the optimisation process accordingly, directing the search towards regions of optimal solu-

tions without explicit information on the e�ects of free edges on the failure mechanisms. More

importantly, the example illustrates how the optimisation framework can be used to aid in estab-

lishing laminate design guidelines in structures under di�erent conditions, whilst providing insight

into the physical mechanisms that justify those guidelines.

7. Conclusions

A novel Bayesian optimisation framework is proposed for the design and stacking sequence

selection of stronger composite laminates. The framework is the �rst to combine a novel data-

driven optimisation methodology with high-�delity, meso-scale progressive damage �nite element

modelling. Gaussian process regression is used as a surrogate for the computationally expensive FE

model. The latter is only evaluated at solutions that are expected to yield an improvement in the

optimisation routine. A laminate subjected to open-hole tension was used as an example problem

and the strength was optimised considering other design requirements, such as speci�ed in-plane

sti�ness, corresponding to that of a wing skin, balance of plies and symmetry about the laminate

mid-plane. In order to cope with the very restricted design space due to the imposed constraints,

the framework includes a bespoke �ltering strategy. This methodology allows sampling of infeasible

solutions at the early stages of the optimisation to improve the performance of the surrogate model,

and gradually enforces the design constraints as the optimisation progresses, directing the search

towards optimal feasible regions.

The advantages of the framework and the proposed �ltering strategy were demonstrated using

three case studies, considering both standard and non-standard ply angles, aligned and misaligned

loading, and full or reduced free edge e�ects. With the linear �ltering strategy, the optimisation

reaches consistently better solutions, corresponding, on average, up to 29% greater OHT strength

than direct sampling of feasible stacking sequences using MMS and 7.2% greater OHT strength

than the optimisation without �ltering strategy (baseline). The proposed optimisation framework

not only �nds stronger solutions, but it also reaches the best solution obtained from MMS within

a fraction of the time in every case study (on average 48% of MMS runtime at worst, and 30% at

best), representing potential savings in computation runtime.

The case studies also demonstrate the potential of the optimisation framework as a tool to
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quickly establish preliminary design principles. The framework shows that for on-axis loading, and

misaligned loading in structures with no exposed free edges, SA laminates with signi�cant 0◦ ply

blocking provide the highest OHT strengths. However, for structures with exposed free edges and

under misaligned loading, dispersed SA and NSA laminates generally provide the highest strengths.

The presented case studies therefore illustrate in a general sense how the proposed framework

may be used to �nd relatively high-performance, unconventional laminates incorporating non-

standard angles, in instances wherein global optimisation methods are intractable, due to compu-

tationally expensive governing FE models and in which the feasible regions are heavily constrained

by industrial design requirements.
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