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Abstract 10 

 11 

This exploratory retrospective cohort analysis aimed to explore how algorithmic models may be able to 12 

identify important risk factors that may otherwise not have been apparent. Their association with injury 13 

was then assessed with more conventional data models. Participants were players registered on the 14 

England and Wales Cricket Board women’s international development pathway (n = 17) from April 15 

2018 to August 2019 aged between 14-23 years (mean 18.2 ± 1.9) at the start of the study period. Two 16 

supervised learning techniques (a decision tree and random forest with traditional and conditional 17 

algorithms) and generalised linear mixed effect models explored associations between risk factors and 18 

injury. The supervised learning models did not predict injury (decision tree and random forest area 19 

under the curve [AUC] of 0.66 and 0.72 for conditional algorithms) but did identify important risk 20 

factors. The best-fitting generalised linear mixed effect model for predicting injury (Akaike Information 21 

Criteria [AIC] = 843.94, conditional r-squared = 0.58) contained smoothed differential 7-day load (P < 22 

0.001), average broad jump scores (P < 0.001) and 20 m speed (P < 0.001). Algorithmic models 23 

identified novel injury risk factors in this population, which can guide practice and future confirmatory 24 

studies can now investigate. 25 

Practical implications 26 

 Empirical evidence for the use of a load measure involving session rating of perceived 27 

exertion, which had a stronger association with injury than overs bowled. 28 

 Guidance for sport practitioners on what physical tests may be most worthwhile for injury risk 29 

screening in this context. 30 

 Demonstration of alternative application in using algorithmic models to identify injury risk 31 

factors as opposed to conventional use of such models to predict injuries.  32 

  33 



Introduction 34 

Injuries occur because of complex and non-linear interactions amongst multiple variables. However, 35 

even with the use of more sophisticated statistical approaches, it can be difficult to fully capture their 36 

dynamic and multiplex nature [1]. It has been proposed algorithmic modelling may provide a more 37 

accurate and informative alternative to conventional data model approaches [2]. Data model approaches 38 

include traditional regression models, whereby the values of the parameters in question are estimated 39 

from the data, and the model is then used for information and/or prediction [2]. Conversely, algorithmic 40 

models treat the data mechanism as unknown. This includes supervised learning techniques, which are 41 

a type of machine learning methodology that can account for the kind multifaceted interactions found 42 

between injury risk factors [3]. Commonly used supervised learning techniques are decision tree and 43 

random forest classifiers.  44 

Initial studies attempting to predict sporting injuries with supervised learning techniques have had 45 

mixed success. A study in Australian football demonstrated similar predictive power to a random coin 46 

toss, with a poor area under the receiver operating characteristic curve median range of 0.52 to 0.58 [4]. 47 

A model developed in Spanish soccer demonstrated better predictive power (area under the receiver 48 

operating characteristic curve [AUC] = 0.84), although this study had a smaller sample and the authors 49 

acknowledged the complexity of the final model involving 10 different classifiers and 66 predictors [5]. 50 

Another model with reasonable predictive power (AUC score of 0.88) was developed in professional 51 

soccer, with only three variables contributing to the best performing classifier, out of 42 predictor 52 

variables included in the models [6]. Given their previous limited success in predicting injury, the value 53 

of such approaches might not necessarily be in the more conventional application of predicting injuries, 54 

but as a useful way to explore and extract the most important risk factors associated with injury [7]. It 55 

has been suggested conventional statistical approaches can be used to inform algorithmic models [1], 56 

but the reverse could also be true, with the best solution (for a given research question) sometimes being 57 

a combination of approaches [2].  58 

The aim of the present study was to conduct an exploratory analysis to investigate how algorithmic 59 

models may be able to identify important risk factors for injury in an international women’s cricket 60 



development pathway in England and Wales, which may not otherwise have been apparent. More 61 

conventional data models were then used to assess the association between these risk factors and injury.  62 

 63 

Methods 64 

Setting 65 

This prospective cohort study encompassed 17 months (1st April 2018 – 31st August 2019 inclusive) of 66 

the ECB women’s international development pathway. This pathway is to develop players who have 67 

the potential to compete at an international level but are not yet part of the senior professional 68 

international team. It is made up of the England Women’s Academy and Senior Academy squads. At 69 

the time of data collection there was no fixed playing schedule, but competitive matches were 70 

irregularly scheduled each year.  71 

Participants  72 

Players registered on the England and Wales Cricket Board (ECB) women’s international development 73 

pathway were included in the study (n = 17). Registered players were contracted to the pathway on a 74 

part-time basis and were aged between 14-23 years (mean 18.2 ± 1.9) at the start of the study period. 75 

Of the group, 29% (n = 5) were classified as pace bowlers (an approach to bowling where the ball is 76 

delivered at high speeds), 59% (n = 10) spin bowlers (a technique where the ball is delivered slower 77 

than a pace bowler, with the potential to change direction when it hits the ground) and 12% (n = 2) all-78 

rounders (who are proficient at both bowling and batting), with all participants batting when required.  79 

Procedures 80 

This study meets the ethical standards of this journal [8], with approval initially obtained from the 81 

University of Bath Research Ethics Approval Committee for Health (REACH) [reference: EP 18/19 82 

095]. All players provided informed written consent (assent and parental consent was also obtained for 83 

players under 18 years) for their data to be routinely collected and analysed by ECB and a University 84 

research partner. 85 



Study outcomes 86 

For this study, ECB medical staff working with the international pathway defined and recorded any 87 

injury that resulted in a player being either available with or without necessary modified activity (non-88 

time loss) or completely unavailable (time-loss) for match selection during the year, regardless of 89 

whether a match was scheduled. Medical illnesses were also recorded but not included, as such 90 

complaints were deemed independent to injury risk factors. The availability status of each player was 91 

collected every contact day (e.g. match, camp, tour or training day) using an Excel spreadsheet. 92 

Categorisation included new and recurrent complaints, with each complaint requiring the squad 93 

physiotherapist to record body region and diagnosis based on the Orchard Sports Injury Classification 94 

System Version 10 [9]. 95 

A range of physical profiling measures (descriptions provided in supplementary Table 1) were collected 96 

by ECB Science & Medicine staff each year in January, June and October. Daily load data was collected 97 

throughout the year using a standardised data collection form completed by the player, strength & 98 

conditioning coach, and/or physiotherapist. Load data included a measure of the number of balls bowled 99 

(with six balls equating to one ‘over’) for both matches and training, and a total load calculated by the 100 

duration (in minutes) of each training session with a session rating of perceived exertion (sRPE) from 101 

0 to 10 (0 being ‘rest’ and 10 being ‘my hardest ever effort’) [10]. Training sessions for this total load 102 

included strength & conditioning (speed, strength, robustness, endurance, mobility) and skill (batting, 103 

bowling and throwing/fielding) sessions.  104 

Several load monitoring measures were assessed for this study. A differential load measure (both linear 105 

and polynomial) originally proposed by Lazarus et al [11] and shown to be a potential viable alternative 106 

to the often used ‘acute:chronic workload ratio’ (ACWR) in male fast bowlers [12], was calculated. The 107 

ACWR has previously been used in cricket injury research to explore the association between injury 108 

risk and load [13], but there is poor evidence to support ACWR as a risk factor for injury [14-15], and 109 

a number of methodological concerns with this metric have been raised [16]. Differential load represents 110 

the smoothed rate of change in load from one week to the next, with a 7 day time constant used, as this 111 

was the best performing differential load time window when a variety (time constants of 7, 14, 21 and 112 



28 days) were tested previously [12]. A 7-day exponentially-weighted moving average (EWMA) of just 113 

bowling overs was also calculated (for comparison against the total load measure), along with a measure 114 

of the number of consecutive days bowled.  115 

 116 

Statistical analyses 117 

Descriptive statistics 118 

Injury data was summarised in Microsoft Excel with descriptive statistics based on means and standard 119 

deviations.  120 

Supervised learning techniques 121 

All estimations were made using R (version 3.6.0, R Foundation for Statistical Computing, Vienna, 122 

Austria). Outliers over 3 standard deviations (SD) higher on load measures and any physical profiling 123 

factors that had over 30% missing data (deemed as a substantial cut-off due to the model omitting all 124 

accompanying data for any missing values, which would greatly reduce the overall number of data 125 

points in the model) were removed. Two different supervised learning techniques were conducted using 126 

the Rattle package [17]: a decision tree and random forest. The package includes ten-fold cross 127 

validation, which was used for model parameter optimisation on randomly selected training data 128 

(comprising 70% of the total). The model was validated using the remaining testing (30%) data. Model 129 

performance was measured by the probability a positive case will be ranked higher than a negative case, 130 

visualised as a receiver operator characteristic (ROC) curve, with the degree of separability represented 131 

by a value known as area under the curve (AUC). The higher the AUC (between 0 and 1) the better 132 

predictive power of the model, with 0.5 indicating prediction is no better than random chance [4] and 1 133 

representing perfect prediction [18].  134 

All continuous data was standardised before building the predictive models by converting to within-135 

individual z scores for the load measures and within-team z-scores for the physical profiling factors. 136 

Standardisation is common practice when using machine learning techniques as models can be sensitive 137 



to different ranges and magnitudes of predictor variables [19]. Players were assigned a numerical code 138 

for identification purposes, which was labelled as such in the models, so it was not included as an input 139 

variable.  140 

As traditional algorithms used in decision trees and random forest can also favour correlated predictor 141 

variables, both techniques were also run with conditional algorithms that have been suggested to 142 

provide a fairer means of comparison to help identify truly relevant predictor variables [20]. The AUC 143 

of both traditional and conditional algorithms was reported to evaluate model performance. The aim of 144 

the study, however, was not to evaluate the predictive power of each model, but instead identify which 145 

risk factors consistently made meaningful contributions across the different models.  146 

 147 

Generalised liner mixed effect models 148 

The important injury risk factors identified by the supervised learning techniques, were included in 149 

multivariate analyses to identify the overall best-fitting model, as determined by the GLMERSelect 150 

stepwise selection procedure [21]. Polynomial and interaction terms were evaluated in this process. 151 

Separate generalised linear mixed-effect models (GLMM) were used to model the association between 152 

the risk factors and injury risk, undertaken using the lmer package [22]. Fixed effects in the model were 153 

the intercept and load/profiling measure, with the square of the measure included to estimate the mean 154 

quadratic, where appropriate. A random effect was included for the interaction of player identity and 155 

the respective load measure. The different models were evaluated and compared using conditional r-156 

squared and the Akaike Information Criterion (AIC) provided by the performance package [23]. 157 

 158 

Results 159 

Descriptive statistics 160 



A total of 6,027 player days were included in the study (mean 355 ± 153 days/player). There were 50 161 

injuries recorded for 16 (94%) players, with 1 (6%) remaining injury free. The 50 injuries consisted of 162 

26 (52%) injuries to the upper extremity and 24 (48%) to the lower extremity.  163 

 164 

Supervised learning techniques 165 

Decision tree 166 

A traditional algorithm decision tree with a minimum of 20 splits and 7 variables allowed in any leaf, 167 

with a maximum depth of 30, including 1,064 observations from 47 input variables, found 2 rules for 168 

predicting injury:  169 

1. A player with a broad jump average z-score < -0.71, with a smoothed differential 7-day load z 170 

score < -0.71. 171 

2. A player with a with a broad jump average z-score < -0.71, with a smoothed differential 7-day 172 

load z score >= -0.71 and a smoothed differential 7-day load z score >= 2.20 173 

A conditional algorithm decision tree also found 2 (but different) rules for predicting injury:  174 

1. A broad jump average z-score <= -0.81 175 

2. A broad jump average z-score > -0.81 and left arm rotator cuff external rotation strength z score 176 

> -0.95. 177 

The decision tree had poor overall probability of predicting injury with the training data (56% for each 178 

rule). When evaluating the model performance on the testing data set (30% of the data randomly split) 179 

the conditional algorithm (AUC of 0.66) performed slightly better (but still poorly) than the traditional 180 

algorithm (AUC of 0.57). 181 

Random Forest 182 

The best performing random forest model had 100 trees with 8 variables tried at each split and included 183 

1,064 observations (null values were excluded) from 47 input variables. When evaluating model 184 



performance on the testing data set, the conditional algorithm (AUC of 0.72) performed marginally 185 

better (but still poorly) than the traditional algorithm (0.65),  mostly in correctly classifying instances 186 

of no injury, which was the majority of the dataset.  187 

The five variables that scored highest for importance from the traditional and conditional algorithm 188 

random forests are shown in Table 1 and Figure 1, respectively. Smoothed differential 7-day load and 189 

broad jump average were also found to be important variables in both random forest types, with right 190 

shoulder total range of motion and right shoulder rotator cuff internal rotation strength also featuring in 191 

the traditional and conditional random forests, respectively.  192 

Table 1: Five variables that scored highest for importance from the traditional algorithm random forest 193 

 194 

Figure 1: Five variables that scored highest for importance from the conditional algorithm random forest 195 

  196 

Factor No injury Injury MeanDecreaseGini MeanDecreaseAccuracy 

Differential 7-day (poly) 8.52 7.61 7.08 9.90 

Broad jump average 1.85 3.27 1.59 2.89 

Right shoulder total ROM  2.18 2.24 0.39 2.58 

Left leg single leg hop 1.55 2.45 0.20 2.06 

20 m speed 1.69 2.53 0.68 1.88 



Generalised linear mixed effect models 197 

A model (AIC = 843.94, conditional r-squared = 0.58) containing polynomial smoothed differential 7-198 

day  load (P < 0.001), average broad jump scores (P < 0.001) and 20 m speed (P < 0.001) provided the 199 

best overall model fit.  200 

A change in within-athlete smoothed differential 7-day load above or below 2 SDs from the mean was 201 

associated with increased injury risk, with a smaller effect for lower average broad jump scores and 202 

slower 20 m speed (fig 2).    203 

 204 

Figure 2: Associations between injury risk and predictor variables: A) smoothed differential load; B) broad jump 205 
performance and C) 20 m speed  206 



Discussion 207 

This is the first study to explore the application of algorithmic models to identify key risk factors in 208 

cricket that may otherwise not have been apparent, then assess their association (using data models) 209 

with injury risk. The application of these techniques did find novel risk factors. The best performing 210 

predictive model included 7-day differential load, average broad jump score and 20 m speed that 211 

explained 58% of variance in injury.  212 

The smoothed 7-day differential load had a polynomial relationship with injury risk, with an increased 213 

injury risk associated with a 2 to 4 standard deviation increase above or below a player’s mean. This 214 

finding lends support to previous research that highlighted the need to pay special attention to bowlers 215 

returning from a period of unloading [12]. These findings also demonstrated that the sRPE load measure 216 

had a stronger association with injury (through its greater contribution to the models) than the number 217 

of overs bowled. The sRPE load measure is likely to better capture the ‘total load’ undertaken by players 218 

(i.e., beyond bowling workloads), which may explain its greater sensitivity to injury risk [13]. Data 219 

from this measure may be enriched further by combining it with Global Positioning System (GPS) data, 220 

which has been effectively used in cricket to highlight the differing physical demands between playing 221 

position [24] and match formats [25]. 222 

The importance of broad jump performance and 20 m speed as injury risk factors emerged from the 223 

findings of this study, albeit with smaller effects on injury risk than differential load. This insight may 224 

help practitioners prioritise risk factors in this this setting. The importance placed on lower extremity 225 

factors perhaps reflects the consistently high incidence of thigh injuries in cricket injury surveillance 226 

research [26-28]. The broad jump test assesses lower limb explosive power [29] and may be a useful 227 

practical measure for practitioners in this context. In a sample of collegiate women soccer players, 10 228 

and 30 m speed were shown to be (one of multiple factors) negatively correlated with lower body 229 

strength [30]. Well-developed lower body strength, along with repeated-sprint ability and speed, have 230 

been shown to be associated with better tolerance to higher workloads and reduced risk of injury in a 231 

sample of amateur hurling athletes [31]. As these previous studies include collegiate and amateur 232 

samples, it would be worthwhile for future research to ascertain whether similar associations are found 233 



with elite players where there would be arguably less variation in lower body strength as there might 234 

be with amateur samples. The associations found in this study were arrived at through a statistical 235 

process and provides a framework on how such techniques can be applied in other samples to identify 236 

novel risk factors pertinent to a given context.  237 

The aim of the study was to explore which factors may be consistently associated with injury risk and 238 

not to use machine learning to necessarily predict injuries, but to assess the predictive performance of 239 

the models. Similar to previous research, the supervised learning models in this study were unable to 240 

predict injuries with an AUC range of 0.57 – 0.65 for the traditional algorithm, compared to a median 241 

AUC range of 0.52 – 0.58 found in previous research that aimed to predict hamstring strain injuries in 242 

Australian football [4]. It is worth noting for both supervised learning techniques used in this study, the 243 

conditional algorithm performed marginally better (but still poorly) than the traditional algorithm (AUC 244 

range of 0.66 – 0.72) and may be more appropriate for use in this context with a larger data set. Also, 245 

in line with previous research, of all the factors included in the models, only a limited number 246 

contributed to the best performing models [6]. The exact nature of the potential association between 247 

broad jump scores, 20 m speed and injury warrants exploration in future research. Further validation on 248 

the importance of these factors is also needed, with low model sensitivity and specificity, reflected by 249 

the poor AUC range. While researchers continue to explore how these supervised learning techniques 250 

can be best utilised in sports injury, such predictive models alone, do not currently have practical value 251 

for injury management practitioners.  252 

The extent to which the findings of the current study can be generalised to other cricket playing 253 

populations is a limitation of the current study. Given the nature of data collection and the algorithmic 254 

models used, these findings may only be relevant to the sample of the study and other contexts that 255 

share similar characteristics. Being part of the international development pathway, the average player 256 

age for this sample can be younger than a sample of more senior players. This may affect the predictor 257 

variables selected by the models and injury types that could be specific to this context. Other limitations 258 

that need to be considered are the inclusion of both time loss and non-time loss injuries. Including just 259 

time loss injuries may improve the accuracy of the models to identify the factors that are most pertinent 260 



in the development of more severe injuries. However, there is a lack of knowledge about the extent to 261 

which non-time loss injuries may interact or potentially contribute to the development of a subsequent 262 

time loss injury and only including those injuries that resulted in time loss may not fully capture the 263 

true burden of injuries [32].  Consequently, all injuries were included in this analysis, with the aim of 264 

providing as much data as possible for the algorithmic models. Furthermore, even though data was 265 

collected over a reasonable time period, there is still only a small number of players and injuries 266 

included in the sample with complete data for every measure not available for every player. This context 267 

is needed when considering the results and some degree of caution is recommended when interpreting 268 

the outcomes with the potential for model overfitting. A considerable limitation when using supervised 269 

learning techniques with injury risk is the amount of data required for these methodologies to make 270 

meaningful inferences [33].  271 

Conclusion 272 

Overall, this study aimed to explore how algorithmic models might help identify important injury risk 273 

factors that may not otherwise have been apparent, with their association with injury then assessed with 274 

more conventional data models. The methodology provides a framework for these techniques to be 275 

applied to explore uncovering novel injury risk factors in other settings, with the findings having 276 

potential to inform and guide practice, by identifying the most pertinent factors and associations. In this 277 

sample of elite female cricketers, both high and low values of differential load were found to be 278 

associated with injury risk. Average broad jump scores and 20 m speed also contributed to the predictive 279 

models and so future research should aim to validate the importance of these factors and better 280 

understand their exact association with injury risk. 281 
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Supplementary table 392 

Supplementary Table 1: Physical profiling measure descriptions 393 

Physical Profiling Measure Description 

Height 

Subjects measured in centimetres (cm) with shoes removed, using the stretch 

stature method. Stature is the maximum distance from the floor to the vertex 

(highest point on the skull when head is held in Frankfort plane) of the head. 

Weight 
Subjects weighed in kilograms (kg) with any excess clothing removed. Weight 

recorded to nearest 0.1 kg. 

Body Mass 
Assessments conduced in accordance with the International Society for the 

Advancement of Kinanthropometry (ISAK) protocols.  

Sum of 8 skinfolds 

A skinfold calliper is used to assess skinfold thickness in millimetres. 

Measurements taken for biceps, triceps, sub-scapular, iliac crest, supra-spinal, 

abdominal, front thigh and medial calf.  

Total shoulder range of 

motion 

Subject in crook lying with no pillow under their head. Shoulder is abducted to 

90 degrees with deltoid insertion at edge of the plinth. Elbow flexed to 90 

degrees and forearm in mid prone. The tester passively rotates the shoulder 

into internal and external rotation until a firm end point is reached or the 

scapula or head of humerus begins to move. Angle of internal and external 

rotation is recorded. If the subject reports any pain the test is stopped at the 

onset of pain.  

Combined elevation 

Subject is in prone with their forehead on the floor, arms outstretched overhead 

with the hands clasped together and the elbow straight and thumbs pointing 

skywards. The subject is instructed to lift their arms as high as possible off the 

floor in a smooth movement whilst keeping elbows straight and forehead on 

the floor. The tester records the point the ulna styloid reaches to the nearest 

0.5cm. Test is repeated two times and the best score recorded. 

Dorsiflexion lunge test 

Subjects are instructed to lunge forward until their knee touches the wall. The 

heel is required to remain in contact with the floor at all times. The foot is 

moved away from the wall to the point where the knee can only make slight 

contact with the wall, while the heel remains in contact with the floor. This 

puts the ankle joint in maximal dorsiflexion. The leg not being tested can rest 

on the floor and participants are allowed to hold the wall for support. The 

maximum distance from the wall to the tip of the big toe is recorded in 

centimetres (cm).  

Straight leg raise test  

The subject is supine without a pillow under their head. The subject’s leg is 

lifted by the posterior ankle while keeping the knee fully extended. The tester 

continues to lift the subject’s leg by flexing at the hip until the subject 

complains of pain or tightness in the back or back of their leg. Hip flexion (in 

degrees) is recorded. 

Total hip range of motion 

Internal and external rotation assessed. For internal rotation the subject is 

instructed to allow their hips to fall into this position keeping their knees 

together. When the subject reaches end of range the tester records the angle of 

hip internal rotation by placing an inclinometer on the lateral aspect of the tibia 

just distal to the lateral malleoli. For external rotation, the tester passively 

moves the hip into external rotation. The tester stops the motion when a firm 

end feel is reached or the pelvis begins to rotate. The range in degrees is 

recorded. If the subject reports pain the range of hip flexion at onset of pain is 

recorded.  



Grip strength 
Quantified by measuring the amount of static force that the hand can squeeze 

around a dynamometer. 

Total thoracic spine rotation 
Sitting over the edge of a box. Hold a stick with arms crossed. Rotate to right 

and then left. Measure degrees of movement in both directions. 

Rotator cuff Strength 

Subject is seated in 90 degrees of glenohumeral joint abduction, 90 degrees of 

elbow flexion, and neutral supination/pronation forearm position. Their feet are 

off the floor and they grip the bed with their opposite hand. The subject is 

instructed to keep their body position and shoulder position still and a handheld 

dynamometer is used by the tester to measure both internal and external 

rotation braking force. This is expressed as a % of the subject’s body weight.  

Single leg hop & hold 

Subject stands on one leg behind a marked line. Subject then hops forwards as 

far as possible whilst 'sticking' the landing and holding the landing position for 

3 seconds. Subject performs up to 3 hops on each leg, but is also allowed sub-

maximal warm up jumps. Distance is marked and measured from the line to the 

front of the landing foot. Quality of movement is assessed from both front-on 

and side-on.  

Broad jump 

Subject stands on two legs with heels on a marked line. The subject then jumps 

forwards as far as possible whilst 'sticking' the landing and holding the landing 

position for 3 seconds. Subject performs up to 3 hops, but is also allowed sub-

maximal warm up jumps. Distance is marked and measured from the line to the 

heel of the foot (shortest distance). The quality of the movement and distance 

is assessed from both front-on and side-on.  

Sumo Deadlift - 5 rep 

maximum 

Subject stands with feet wider than shoulder-width apart, and their toes point 

out at a 45 degree angle. The subject then bends at the hips to lower and grab 

the bar with either an overhand or mixed grip. Ensuring back is flat in this 

bottom position the subject then drives through their heels and extends their 

knees and hips to lift the bar to mid-thigh height. The subject pulls their 

shoulders back at the top of the move then carefully lowers the bar back to the 

ground. The weight that can be lifted for a maximum of 5 repetitions is 

recorded in kilograms.  

Hip thrust - 5 rep maximum 

Subject sits with their shoulders and shoulder blades against a bench. A barbell 

is rolled over the legs until it's directly over their hips. The subject puts their 

elbows on the bench and hands on the bar to steady it. Ensure the subject's 

body is aligned and spine is neutral. The subject then braces their core, drives 

through their heels and squeeze their glutes to lift their hips (and barbell). The 

subject comes down smoothly with core still braced. The maximum weight that 

can be lifted for 5 repetitions is recorded in kgs.  

Triple hop test 

The subject jumps as far as possible on a single leg three consecutive times, 

without losing balance and landing firmly. The distance is measured from the 

start line to the heel of the landing leg.  

10m, 20m, 30, 40m speed 

Subjects complete a standardised warm up. Measure a 20m or 40m lane 

placing timing gates at 0m, 10m, 20m, 30m and/or 40m. The first gate is set at 

a height of 0.5m, the rest are set at a height of 1m. Mark the start line at 0.5m 

before first timing gate with tape. Subjects begin each trial from stationary start 

with the toe of their front foot on the start line. Subject must be visibly static 

with no countermovement or sway. Subjects are allowed 3 trials with a 

minimum of 3 minutes between trials. Time recorded to nearest 0.01 second.  



Run Two 

Subjects complete a standardised warm up. The test is set up at a standard 

wicket with a timing gate at one end. If a wicket is not available, a distance of 

17.68m is marked out. An additional timing gate 5m from the turn will allow 

greater analysis of this test as this will specifically measure speed in and out of 

the turn. A static camera is set back 6-8m to capture this footage. This can act 

as a cricket specific 5-0-5 test within the main test. A start line is marked with 

tape 0.5m before the first timing gate. Subjects begin each trail from stationary 

start with the toe of their front foot onto the start line and the bat held in front 

of them with 2 hands. Subjects must be visibly static, with no 

countermovement or sway. Subjects spring to the far batting crease, ground 

their bat behind the crease, turn and sprint back through the timing gates. 

Subjects must ground their bat through the finish line. Subjects must avoid 

breaking the beam of the gates with their bat. Subjects are allowed 2 trials 

either side of their turn with a minimum of 3 minutes between trials. Times are 

recorded to the nearest 0.01 second.  

505 agility test 

Subject accelerates maximally to a 15m line, turn on their right leg and sprint 

back 5m through the finish line as quickly as possible. During the turn, the 

participant must not touch their hand down on the floor. The subject repeats 

this again, but this time performs a left leg turn and continues to alternate. The 

subject must touch the 'turn-around line' on each effort, failing to place their 

foot on, or across the line, results in a failed attempt. Each subject completes a 

minimum of three efforts, each separated by a 2-3 minute rest. The sprint is 

timed with a stopwatch in seconds. The average of the three efforts is recorded. 

Times are recorded to the nearest 0.01 second.  

Yo-Yo 

Cones are used to mark out 3 lines, with 2 lines 5m apart and 1 20m from the 

other. Subjects starts behind the middle line and begins running when signalled 

by the beep. They turn at the top cone and run back to the starting point when 

signalled by the beep. There is an active recovery period of 10 seconds 

between every 40m shuttle, during which the subject must walk or jog around 

the bottom cone and return to the starting point. A warning is given when the 

subject does not complete a successful shuttle in the allocated time and the 

subject is removed from the test after 2 consecutive warnings. A warning is 

also given if the subject fails to intersect the 20m line with their foot when 

turning i.e. do not allow subjects to turn short of the line. False starts are 

prohibited as they give subjects extra time to complete the shuttle. False starts 

should be punished with a warning. The last completed shuttle is used as the 

performance score.  
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