

Citation for published version:
Macrina, G, Di Puglia Pugliese, L, Guerriero, F & Laporte, G 2020, 'Crowd-shipping with time windows and
transshipment nodes', Computers and Operations Research, vol. 113, 104806.
https://doi.org/10.1016/j.cor.2019.104806

DOI:
10.1016/j.cor.2019.104806

Publication date:
2020

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Oct. 2022

https://doi.org/10.1016/j.cor.2019.104806
https://doi.org/10.1016/j.cor.2019.104806
https://researchportal.bath.ac.uk/en/publications/facf4017-9801-4c44-9a85-2ba91aec7362

Crowd-shipping with time windows and

transshipment nodes

Giusy Macrina∗ Luigi Di Puglia Pugliese∗ Francesca Guerriero∗

Gilbert Laporte†

Abstract

Crowd-shipping is a delivery policy in which, in addition to standard vehicle rout-
ing practices, ordinary people accept to deviate from their route to deliver items to
other people, for a small compensation. In this paper we consider a variant of the
problem by taking into account the presence of intermediate depots in the service
network. The occasional drivers can decide to serve some customers by picking up the
parcels either from the central depot or from an intermediate one. The objective is
to minimize the total cost, that is, the conventional vehicle cost, plus the occasional
drivers’ compensation. We formulate the problem and present a variable neighbor-
hood search heuristic. To analyze the benefit of the crowd-shipping transportation
system with intermediate depots and to assess the performance of our heuristic, we
consider small- and large-size instances generated from the Solomon benchmarks. A
computational analysis is carried out with the aim of gaining insights into the behavior
of both conventional vehicles and occasional drivers, and of analyzing the performance
of our methodology in terms of effectiveness and efficiency. Our computational results
show that the proposed heuristic is highly effective and can solve large-size instances
within short computational times.

Keywords: Logistics, variable neighborhood search, on-line retailing, sharing econ-
omy, occasional drivers.

1 Introduction

The fast and substantial growth of on-line retailers and the continuous search for new ways
of speeding up deliveries and of overcoming the traditional problems of last-mile and same-
day deliveries have generated some interest in crowd-shipping. This practice is related to
the concept of “sharing economy”, and allows some deliveries, that are usually performed

∗Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036, Rende
(CS), Italy E-mail: giusy.macrina@unical.it, luigi.dipugliapugliese@unical.it,francesca.guerriero@unical.it
†Canada Research Chair in Distribution Management, HEC Montréal, Montréal, Canada E-mail:

Gilbert.Laporte@cirrelt.ca

1

PC
Casella di testo
Published online in Computers and Operations Research on date 21 September 2019, 113:104806, 2020

by a company, to be outsourced to a large pool of individuals. It offers a new way of
achieving transportation efficiency by exploiting underused assets. The reader is referred
to [8] for a review of crowd-logistics, and to [19] for a complete survey of global trends in
transportation and city logistics. The idea of crowd-shipping is as follows: an individual
(whom we call occasional driver) who is travelling on his route, accepts to deviate from
it to deliver items to other individuals, for a small compensation. In this context the
exploited resources are commonly private cars which are often underused assets. The
advantages of crowd-shipping are numerous and are not only related to economic issues:

• Costs saving: generally the compensation for the occasional drivers is less than the
standard drivers’ salary.

• No infrastructure: crowd-shipping does not require any significant infrastructure.

• Flexibility: while the traditional deliveries are fixed and planned in advance, for
crowd-shipping fast delivery is the key factor.

• Reduced environmental impacts: sharing vehicles can lead to a reduction in polluting
emissions, energy consumption, noise and traffic congestion.

Crowd-shipping requires a platform in order to connect occasional drivers with cus-
tomers. When a customer buys some goods and requires a fast service delivery, he has
to submit the on-line service request via a phone or a computer application. If he ap-
plies and accepts crowd-shipping delivery, the platform then sends the information needed
to make the delivery. Once the delivery is completed, the occasional driver receives her
compensation. Figure 1 summarizes the crowd-shipping process.

Several large on-line retailers, such as Walmart, DHL and Amazon, have started to
implement and use platforms for crowd-shipping. In 2013, Walmart announced a plan to
outsource some of its deliveries by asking in-store customers to deliver for a small com-
pensation one or more orders placed by on-line customers (see Barr & Wohl [5]). In other
words, if a shopper is in a Walmart store and has some free time, he/she may accept to
deliver orders to other shoppers on the way to his/her destination. DHL experimented
with crowd-shipping in Stockholm between September and December 2013 with a pilot
last-mile service called MyWays (see Landa [13]). Using a specific smartphone application,
the service connected individuals, mostly students, who asked for flexible deliveries with
those offering to transport packages along their normal routes. The experiment was posi-
tive and many customers received or delivered packages by using MyWays. In June 2015,
Amazon launched Amazon Flex (see Besinger [7]), its new crowd-shipping service that is
still used in more than 30 cities in the world. To become an occasional driver for Amazon
it is necessary to own an Amazon account, to satisfy some prerequisites, and to install the
application. In particular, Amazon Flex offers several delivery opportunities based on the
time window within which a package has to be delivered: three or more hours, one or two
hours, less than one hour. An occasional driver may also choose from among two ways

2

Figure 1: Crowd-shipping process

3

to pick up delivery blocks: by choosing dates on a calendar, in which case the platform
sends delivery offers for these dates, or by checking for available blocks on the Amazon
Flex home screen.

Crowd-shipping is a recent topic and the relevant literature is therefore limited. Arslan
et al. [4] reviewed and analyzed the potential benefits of crowd-shipping. They considered
a peer-to-peer platform, taking into account the possibility of using traditional vehicles and
ad hoc vehicles, and presented a rolling horizon framework and an exact algorithm to solve
the route planning problem. Archetti et al. [3] introduced the vehicle routing problem
with occasional drivers (VRPOD). In this work, the authors supposed that the company
can make deliveries not only by using its own fleet of capacitated vehicles, but also by
resorting to occasional drivers (ODs). These authors proposed an integer programming
formulation for the VRPOD, and then developed a multi-start heuristic, which combines
tabu search and variable neighborhood search (VNS). Starting from the VRPOD model of
Archetti et al. [3], Macrina et al. [15] introduced three innovative aspects in the problem.
They first considered time windows constraints for customers and ODs. Second, they
allowed multiple deliveries for ODs. Third, they modelled the split and delivery policy
for ODs. They tested and compared the proposed models with that of Archetti et al. [3]
and showed the benefits of allowing multiple deliveries and of using the split and delivery
policy. In both [3] and [15], the ODs must pick up the parcels at the depot and then
deliver them to the customers.

Raviv and Tezer [18] studied a variant of the crowd-shipping problem in which the
deliveries are carried out by external couriers. The delivery policy is based on a network
of automatic service points used as a drop-off, pickup, and intermediate transfer points,
where parcels can be dropped off by a courier and picked up again by another one. They
developed a stochastic dynamic algorithm for a simplified version of the problem, where
capacity constraints are not taken into account, as well as a greedy heuristic.

In this paper, as in Raviv and Tezer [18], we consider a scenario in which transshipment
nodes are included in the service network. In particular, the parcels belonging to the
transshipment nodes will be delivered by the ODs. The introduction of these nodes allows
the transportation system to be more appealing to the ODs. Indeed, having transshipment
nodes that act as intermediate depots closer to the delivery area could allow more ODs
to be available to perform a task. In addition, the deviation of the ODs from their
conventional route to the transshipment nodes could be less than the deviation with respect
to the depot, which leads to a smaller compensation. However, the transshipment nodes
have to be served by the classical vehicles in order to make the parcels available. Assuming
the position of the transshipment nodes are known, one has to determine how many parcels
have to be transferred from the depot to each transshipment node, at what time, and which
parcel should be assigned to each transshipment node. All these decisions are related to the
behaviour of the ODs. Indeed, each OD can choose to deliver parcels to some customers
only if these parcels are available in a specific transshipment node and before a certain
time. We allow only one pickup operation for each OD. This means that the parcels of the
customer served by a OD must be available at the same transshipment node. We associate

4

a time window with each customer and each OD. We consider the case in which a subset
of customers must be served by the ODs. This restriction makes sense in the context of
urban delivery parcels where the presence of classical vehicles is forbidden to ensure traffic
reduction. However, the ODs can serve all customers, by possibly picking-up the parcels
from the depot.

The use of transshipment nodes in the delivery process has been well studied. The
transportation system is configured as a two-level system where the first level connects
the central depot with the transshipment nodes, and the second level connects the trans-
shipment nodes with the customers. Two vehicle fleets are considered: one dedicated for
the first level deliveries and the other to the second level. The scientific literature refers
to this problem as a two-echelon VRP (2E-VRP). The 2E-VRP was introduced in [14],
where a vehicle flow model was defined by considering several distribution modes for the
whole system. Perboli et al. [16] proposed a network flow formulation along with valid
inequalities. Later, in [17] a new formulation and a matheuristic procedure were presented.
In [9] a general formulation was provided in the context of city logistics. For more details
on the 2E-VRP, the reader is referred to [10] for contributions until 2015. Recently, a
neighborhood search and set covering hybrid heuristic was proposed [1]. The 2E-VRP
with multi-depots was addressed in [21]. Belgina et al. [6] considered the 2E-VRP with si-
multaneously pickup and delivery operations. They proposed a mathematical formulation
and an algorithm based on variable neighborhood descent and local search.

Jie et al. [12] modeled and solved the 2E-VRP by considering electric vehicles for both
first and second level, whereas in [2], the deliveries for the second level are performed by
using bikes which, starting from a depot, pick up the parcel from the intermediate depots
and deliver them to the customers. Gragier et al. [11] considered the 2E-VRP with multi-
trips and solved it by means of an adaptive large neighborhood search metaheuristic. In
[12, 2, 11], synchronization issues between the first and the second levels are taken into
account since no storage is allowed at the intermediate depots.

Our problem differs from the classical 2E-VRP since classical vehicles supply not only
the transshipment nodes, but can also serve customers. In our problem, the customers can
be served either by classical vehicles or by ODs and this is a decision. Hence, we cannot
know a priori which customer is served by classical vehicles. While both customers and
transshipment nodes are delivery nodes for classical vehicles, for the ODs the customers
are delivery nodes whereas transshipment nodes are used for pickups. In addition, we
consider capacitated transshipment nodes, hence storage is allowed.

The contribution of this paper is twofold. We present a new variant of the crowd-
shipping routing process where transshipment nodes are considered. We propose a mixed
integer program (MIP) for our problem. We also develop a metaheuristic in order to
efficiently solve the problem. We highlight that the proposed model is used as benchmark
with the aim of evaluating the defined metaheuristic in terms of both effectiveness and
efficiency.

The remainder of the paper is organized as follows. In Section 2 we model the VR-
POD with time windows and transshipment nodes (VRPODTN). In Section 3 we describe

5

the proposed metaheuristic for the VRPODTN. In Section 4 we perform computational
experiments and we present the results. Section 5 summarizes our conclusions.

2 The vehicle routing problem with occasional drivers, time
windows and transshipment nodes

We use the following notation in our model (see Table 1 for a summary). Let C be the set
of customers that can be served by either the classical vehicles or by the ODs, let s be the
origin node and let t be the destination node for the classical vehicles, i.e. those belonging
to the company. Let R be the set of customers that must be served by the ODs. Let K
be the set of available ODs, U and V be the sets storing the origin and the destination
nodes uk, vk,∀k ∈ K, respectively. We assume that R and K are disjoint sets. Let T be
the set of transshipment nodes. We define the node set as N = C ∪R∪T ∪U ∪V ∪{s, t}.

A cost cij and a travel time tij are associated with each node pair i, j ∈ N . Note that
both cij and tij satisfy the triangle inequality. Each node i ∈ C ∪ R has a time window
[ei, li], a demand di, and a service time ti. Let tuk and lvk be the time at which OD k is
available to perform a delivery, and the time at which she must reach her own destination
vk, respectively. P is the number of available classical vehicles, Q is the capacity of the
classical vehicles, QTp is the capacity of the transshipment node p, and QKk is the capacity
of OD k. The classical vehicles start their route from node s, serve possibly a subset
of nodes in C ∪ T and reach the destination node t. The demand associated with each
transshipment node p is a variable, defined as δp, whose value depends on the behaviour
of the ODs.

Let xij be a binary variable equal to 1 if and only if a classical vehicle traverses arc
(i, j). Let yij be the parcel flow passing through arc (i, j). Let si be the arrival of a classical
vehicle at customer i. Let zi be a binary variables taking value 1 if node i ∈ C ∪ T is
served by the classical vehicles, and 0 otherwise.

To simplify the model, we define D as the number of parcels delivered by the classical
vehicles. We have to distinguish between service to the customers and service to the
transshipment nodes. Indeed, in the latter case, we have a non-linear component. The
definition of D is

D =
∑
i∈C

zidi +
∑
p∈T

zpδp. (1)

To linearize the term zpδp, we introduce a new variable δ̄p,∀p ∈ T . In particular,
δ̄p = zpδp and the following constraints are included in the model:

δ̄p ≤ δp ∀p ∈ T (2)

δ̄p ≤Mzp ∀p ∈ T (3)

δ̄p ≥ δp +M(zp − 1) ∀p ∈ T, (4)

6

where M can be set to
∑

i∈C∪R di. The constraints that model the behaviour of the
classical vehicles are

∑
j∈C∪T

xsj ≤ P (5)

∑
j∈C∪T

xsj −
∑

j∈C∪T
xjt = 0 (6)

∑
j∈C∪T

xij −
∑

j∈C∪T
xji = 0, ∀i ∈ C ∪ T (7)

∑
j∈C∪T∪{s}

yji −
∑

j∈C∪T∪{t}

yij =


−D if i = s

0 if i = t

zidi if i ∈ C
δ̄i if i ∈ T

∀i ∈ C ∪ T ∪ {s, t} (8)

yij ≤ Qxij , ∀i, j ∈ C ∪ T ∪ {s, t}, i 6= j (9)

sj ≥ si + ti + tij −M(1− xij), ∀i, j ∈ C ∪ T ∪ {s, t}, i 6= j (10)

zi ≥
∑

j∈C∪T∪{t}

xij , ∀i ∈ C ∪ T (11)

ei −M (1− zi) ≤ si ≤ li +M (1− zi) , ∀i ∈ C. (12)

Constraint (5) guarantees that at most P vehicles leave the depot. Constraints (6)
ensure that each vehicle leaving the depot ends its route at node t. Constraints (7)
balance the vehicles entering and leaving node i. Constraints (8) impose that the flow
balance at each node is equal to the associated demand, except for the depot, where
the exit flow is equal to the number of parcels that have to be delivered. Constraints
(9) guarantee that the number of delivery parcels does not exceed the capacity of the
vehicles. Constraints (10) define the arrival time at each node i. Constraints (11) define
the variables zi. Constraints (12) guarantee that each customer i ∈ C is served within its
time window. We note that the customers i ∈ C can be served by either a classical vehicle
or by an OD.

Each OD k, starting from her initial position uk, deviates from her route to pickup,
either at a transshipment node or at the depot, the parcels of the customers she serves.
Let tk be the time at which OD k becomes available.

Let rkpi, ∀p ∈ T ∪ {s}, i ∈ C ∪ R, k ∈ K be binary variables stating whether OD
k serves customer i and picks up the parcels to deliver at transshipment node p. Let
fkp , ∀p ∈ T ∪ {s}, k ∈ K be continuous variables indicating the arrival time of OD k at
transshipment node p. Moreover, let τi, ∀i ∈ C ∪ R be the arrival time of some OD at
customer i.

The operations of the ODs are modelled by the following set of constraints:

7

∑
p∈T∪{s}

∑
i∈C∪R

rkpi ≤ 1, ∀k ∈ K (13)

∑
p∈T∪{s}

∑
k∈K

rkpi = 1, ∀i ∈ R (14)

fkp ≥ tuk + tukp −M

(
1−

∑
i∈C∪R

rkpi

)
, ∀p ∈ T ∪ {s}, k ∈ K (15)

τi ≥ fkp + tp + tpi −M(1− rkpi), ∀i ∈ C ∪R, p ∈ T ∪ {s}, k ∈ K (16)

ei ≤ τi ≤ li, ∀i ∈ R (17)

ei −M

1−
∑

p∈T∪{s}

∑
k∈K

rkpi

 ≤ τi ≤ li +M

1−
∑

p∈T∪{s}

∑
k∈K

rkpi

 , ∀i ∈ C (18)

τi + ti + tivk ≤ lvk +M(1− rkpi), ∀i ∈ C ∪R, p ∈ T ∪ {s}, k ∈ K (19)

rkpi ≤
QKk
di
, ∀i ∈ C ∪R, p ∈ T ∪ {s}, k ∈ K (20)

δp =
∑

i∈C∪R

∑
k∈K

dir
k
pi, ∀p ∈ T (21)

zp ≥
δp∑

i∈C∪R di
, ∀p ∈ T. (22)

Constraints (13) impose that each OD k can serve at most one customer and pick up
the parcels at one transshipment node. Constraints (14) state that each customer i ∈ R
is served by an OD. Constraints (15) define the time at which OD k visits transshipment
node p. Constraints (16) define the arrival time of OD k at node i when passing through
transshipment node p. Constraints (17) and (18) define the time window constraints
associated with each customer i ∈ R and i ∈ C, respectively. We note that customer
i ∈ C can be served either by a classical vehicle or by an OD. Constraints (19) limit the
route duration of OD k. Constraints (20) prevent the assignment of occasional driver k
to customer i if the capacity QKk of the occasional driver is not sufficient to deliver the
request di of customer i. Constraints (21) define the number of parcels that must be
available at transshipment node p in order to guarantee the delivery process performed by
the ODs. In other words, these constraints define the number of parcels that the classical
vehicles have to deliver to the transshipment nodes p ∈ T . Constraints (22) impose that
transshipment node p ∈ T must be served if it is used by the ODs to deliver parcels.

We consider capacitated transshipment nodes. Hence, each transshipment node p ∈ T
is allowed to store at most QTp parcels. The following constraints are added to the model:

δp ≤ QTp , ∀p ∈ T. (23)

8

Of course, it is necessary to synchronize the classical vehicles and the ODs with respect
to the delivery and pickup operations at the transshipment nodes p. To this end, the
following constraints are introduced:

sp ≤ fkp +M

(
1−

∑
i∈C∪R

rkpi

)
, ∀p ∈ T, k ∈ K. (24)

Constraints (24) impose that OD k can pickup parcels from node p only after node p
has been served by a classical vehicle. In addition, the customer belonging to the set C
must be served either by a classical vehicle or by an OD. The following constraints are
defined:

zi +
∑

p∈T∪{s}

∑
k∈K

rkpi = 1, ∀i ∈ C. (25)

The objective function is the minimization of the overall cost. In particular, we aim
at minimizing the routing cost of the classical vehicle given by

Zcv =
∑

i∈C∪T∪{s}

∑
j∈C∪T∪{t}

cijxij

and the compensation to the ODs. In particular, we compute the cost incurred by the
ODs who must deviate from their normal route, whose cost is cukvk , to performs deliveries.
The compensation cost for OD k ∈ K is given by

Zk = ρ

 ∑
p∈T∪{s}

∑
i∈C∪R

(cukp + cpi + civk − cukvk) rkpi

 .

The objective function of our model is defined as

minimize Zcv +
∑
k∈K

Zk. (26)

3 Variable neighborhood search

This section details our VNS for the VRPODTN. Algorithm 1 presents the VNS scheme.
First, we generate an initial solution φ, then we apply a Shaking phase to perturb φ in
order to explore the neighborhoods and the Variable Neighborhood Descent (VND) to
improve the solution. In what follows, VND (φ′) refers to VND applied to solution φ′.

9

Table 1: Sets, parameters and decision variables of the VRPODTS model

s origin node for classical vehicles
t destination node for classical vehicles
C set of customers served by either classical vehicles or ODs
R set of customers that must be served by the occasional drivers
T set of transshipment nodes
K set of available occasional drivers
U set of uk origins for the occasional drivers
V set of vk destinations for the occasional drivers
Parameters
tuk

instant time in which the OD K is available to perform a delivery starting from the own origin uk
lvk instant time in which the OD K must reach the own destination vk
cij travel cost from node i to node j
tij travel time from node i to node j
[ei, li] time windows of node i
di demand of customer i
ti service time of node i
P number of classical vehicles
Q capacity of classical vehicles
Qk

k capacity of occasional driver k
QT

p capacity of transshipment node p
Variables
xij binary decision variable indicating if arc (i, j) is traversed by a classical vehicle
yij decision variable specifying the parcel flow on arc (i, j) associated with a classical vehicle
si decision variable specifying the arrival time of the classical vehicle to customer i ∈ C
rkpi binary decision variable indicating whether OD k serves customer i ∈ C ∪R, picking up parcels

at transshipment node p
fkp decision variable specifying the arrival time of the occasional driver k at transshipment node p
τi decision variable specifying the arrival time of the occasional driver k at customer i ∈ C ∪R
δp decision variable specifying the quantity of parcel available at transshipment node p ∈ T
zi binary decision variable specifying whether node i ∈ C ∪ T is served by the classical vehicles

10

Algorithm 1 Variable neighborhood search

Input set of neighbourhood Nh, for h = 0, ..., hmax
Initialization Initial solution φ
while h ≤ hmax and k ≤ kmax do
φ′ ← Shaking (φ)
φ′′ ← VND (φ′)
if f(φ′′) < f(φ) then
φ← φ′′;
h← 0

else
h← h+ 1

end if
k ← k + 1

end while
return φ

Initial solution The initialization procedure is a two-phase matheuristic. We first find
the best assignment of customers and transshipment nodes to the ODs. Thus, we formulate
and then solve with CPLEX the following assignment model:

minimize
∑
k∈K

Zk +
∑
i∈C

2csizi +
∑
p∈T

2cspzp (27)

subject to

(13)–(25)∑
p∈T

δp ≤ PQ (28)

δp ≤ Q, ∀p ∈ T. (29)

where the objective function (27) takes into account the cost of the ODs, i.e., Zk, and the
routing cost of the classical vehicles. We highlight that the term Zk is not a constant since
it depends on variables rkpi included in constraints (13)–(25).The model (27)–(29) does not
contain x variables, thus we approximate the routing cost. In particular, we consider the
cost of a simple route that starts at node s, serves either node i ∈ C not served by the
ODs, i.e., csi or the transshipment nodes used by the ODs, i.e., csp and ends at t.

Constraints (28) and (29) take into account the capacity constraint for the classical
vehicles. It is important to point out that both constraints (28) and (29) are needed. On
the one hand, if we consider only constraint (28), it is possible to assign to transshipment
node p a demand δp that cannot be deliver by the classical vehicle due to capacity limi-
tation. We do not allow split policy on transshipment nodes. On the other hand, if we

11

consider only constraints (29), it is possible that the total demand of the transshipment
nodes cannot be delivered by the fleet of vehicles considered. This can happen since we
do not assume any limitation on the number of transshipment nodes and classical vehicles
and we do not consider multi-trip.

Once the assignment problem has been solved, we can have a set of unserved customers
C ′ ⊆ C and a set of activated transshipment nodes T ′ ⊆ T . We then apply an insertion
heuristic adapted for the VRPODTN, which takes into account the heterogeneity of the
fleet. Since the nodes in T ′ have to be served by classical vehicles, we first try to serve both
C ′ and T ′ with these vehicles. The initial tour is composed of the origin and destination
nodes. The heuristic inserts a new node in the tour in the best feasible position, i.e., where
it causes the least increase in the tour cost. We first consider the customers in T ′, and
then we serve the customers in C ′. Since the initial solution may be infeasible, we apply
a repair phase. In particular, if some customers in C ′ are still not served by a classical
driver, we try to assign them to the available ODs, in the best feasible position, imposing
that the OD must take the parcel to the depot. If no ODs are available or it is not possible
to serve some customers in C ′, or if some transshipment nodes are not served, we apply
the local search moves defined for the VND, and we then insert the unserved customers
and transshipment nodes until a feasible solution has been generated.

Local search operators In order to generate the neighborhoods we use four different
local search (LS) moves:

1. Move Node: This operator removes one node i from a route r and inserts it in another
route r′ in the best feasible position. We implemented four variants: classical to
classical, classical to OD, OD to OD, OD to classical.

2. Swap Inter-Route: This operator removes one node i from a route r and one node
j from another route r′, r 6= r′, and inserts i into r′ and j into r in the first feasible
positions. We implemented four variants: classical to classical, classical to OD, OD
to OD, OD to classical.

3. Swap Intra-Route: Given a classical route r, this operator changes the position of
two nodes i and j while satisfying the constraints.

4. New Route: This operator initializes a new route r′. It removes one node i from a
route r and inserts i in r′. We implemented two variants: classical and OD.

Considering all the aforementioned possible moves, we develop 11 LS operators.

Shaking The main goal of the shaking phase is to perturb the current solution. Thus,
we randomly select and apply two different LS operators are ordered in non-decreasing
score values, then we randomly choose two of them among the 11 available and we allow
the current solution to worsen. To improve the shaking phase, we introduce a semi-random

12

choice, namely after the first iteration we assign a score to each LS move. At the end of
each VNS iteration, if there is an improvement in the solution cost, we increment the scores
of the shaking moves; otherwise the scores are reduced. The LS operators are ordered in
non-decreasing score values, then we randomly choose two of them among the first five.

Variable neighborhood descent Generally, in the VNS scheme the shaking process
is followed by an LS phase, in which the hmax different LS operators are applied with
the purpose of improving the current solution. We propose a VND heuristic described in
Algorithm 2.

Algorithm 2 Variable neighborhood descent

Input the set of neighborhood Nh, for h = 0, ..., hmax
Initialization initial solution φ
improved← 0, k ← 0
while improved = false and k ≤ kmax do
h← 0
while h ≤ hmax do
φ′ ← Nh(φ)
if f(φ′) < f(φ) then
φ← φ′

improved← 1
else
h← h+ 1

end if
end while
k ← k + 1

end while
return φ

4 Computational results

We now analyze the behaviour of the proposed model and that of the metaheuristic. The
model and the metaheuristic are implemented in Java. The model is solved by CPLEX
12.7 and we impose a time limit of 900 seconds for the solution of an instance.

In Section 4.1 we illustrate the procedure we have developed to generate the instances.
In Section 4.2, we summarize the main results highlighting the findings by analyzing the
behavior of both the proposed model and metaheuristic. The details and an exhaustive
explanation of the behavior are reported in Sections 4.3 and 4.4. In Section 4.3 we evaluate
the performance of the model on small-size instances. In particular, we compare the
solution with that obtained by a modified version of the model in which no transshipment

13

nodes are considered. We then perform a sensitivity analysis by varying several parameters
with the aim of studying the impact of both the ODs and the classical vehicles. In Section
4.4 we analyze the performance of the proposed metaheuristic on a large set of instances.
The tests are carried out by considering an Intel Core i7-4720HQ CPU, 2.60 GHz, 8GB
RAM, machine under Windows 10 operating system.

4.1 Generation of the instances

We generated instances of the VRPODTN based on the Solomon VRPTW instances com-
posed of 400 nodes [20]. In particular, we consider the VRPTW instances of classes C1,
R1, and RC1.

Starting from the VRPTW benchmark instances we generate instances of the VR-
PODTN by considering several values for the number of customers that must be served
by the ODs, i.e. |R|, those that can be served either by the classical vehicles or by the
ODs, i.e. |C|, the number of transshipment nodes |T |, and the number of the ODs |K|.
The VRPODTN instances are generated by applying the following steps.

• We divided the set of customers C̄ of the VRPTW benchmark instances into three
subsets, i.e., CM , RM , and TM . Recalling that the VRPTW benchmark instances
are composed of customers located at coordinate (xi, yi), ∀i ∈ C̄ of a rectangular
field characterized by a maximum and minimum values for the X and Y axes, i.e.,
Xm, XM , Ym, and YM , let p1 and p2, p1 > p2, be two numbers belonging to the
range [0, 1], (see Figure 2). Then

– CM = {i ∈ C̄ : yi > (ys − Ym)p1},
– RM = {i ∈ C̄ : yi ≤ (ys − Ym)p2},
– TM = {i ∈ C̄ : (ys − Ym)p2 < yi ≤ (ys − Ym)p1}.

The rectangular field is divided into three subregions, SR1, SR2, and SR3, based
on the position of the depot s. The customers served by the ODs, i.e., those be-
longing set R, are located in SR3, that is, they are far away from the depot s. The
transshipment nodes are located between the depot and the customers i ∈ R, i.e.,
in SR2. The customers i ∈ C are located in the remaining area, i.e., SR1. Figure 2
shows the partition of the field into the three subregions. We consider p1 = 0.9 and
p2 = 0.6 for the generation of the instances.

• We compute the set C and R, considering the first |C| customers contained in CM
and the first |R| customers contained in RM , respectively.

• For the choice of the transshipment nodes, we include into subset T the nodes be-
longing to TM , guaranteeing that they are spatially dispersed. In particular, given a
distance threshold d̄, a node i ∈ TM , not yet included in T , is added to T only if the
distance between i and the last inserted node into T is greater than d̄. In the case

14

s

Xm

Ym
XM

YM

(ys − Ym)p1

(ys − Ym)p2

SR3

SR2

SR1

Figure 2: Partition of the field into the three sub-regions SR1, SR2, and SR3 with input
the position of the depot s and the parameters p1 and p2.

|T | is less than the chosen value, the insertion procedure is repeated by considering
a lower value of d̄.

• The set K is composed of the nodes i ∈ RM ∪CM : i /∈ R, i /∈ C. It follows that OD
k coincides with customer i.

• The node uk of the OD k coincides with the location of customer i, whereas, node vk
is chosen randomly in a circle of radius 10 with center a location of some customer
i ∈ R ∪ C.

• We set the number of available classical vehicles P equal to 3. We assume that the
vehicles are identical and all have the same capacity Q.

• We slightly modified the time windows [ēi, l̄i] of the VRPTW benchmark instances.
In particular, we set li = l̄i + γ,∀i ∈ C ∪R, with γ randomly chosen in the interval
[50, 400].

• The time at which the OD becomes available for a delivery is computed as tk =
min{ēî, µ}, with µ randomly chosen in the interval [0, em], where em = mini∈R{ei}.
The due date of each OD k is computed as lk = max{l̄̂i, ε}, with ε randomly chosen
in the interval [lM , lM + 200], where lM = maxi∈R{li}. The capacity QKk is set equal
to maxi∈R{di}+ 10. This choice guarantees that all customers i ∈ R can be served
by each OD.

• We generate several instances by considering different values for |C|, |R|, |T | and
|K|, where |C| ∈ {5, 10, 15, 30, 40, 50}, |R| ∈ {10, 20, 30, 40, 50}, |T | ∈ {2, 4, 6}, and
|K| = |C|+ |R|.

• We consider four different values for the vehicle capacity, i.e., Q = α
∑

i∈C∪R di
P , with

α ∈ {0.70, 1, 1.30, 2}.

15

• We consider three values for the capacity QTp of each transshipment node p ∈ T , i.e.,

QTp = β
∑

i∈C∪R dI
|T | + 1 with β ∈ {1, 1.3, 2}.

• We consider three values for the compensation of the ODs, i.e., ρ ∈ {0.75, 1.5, 2.25}.

Since, we modified the time windows of the VRPTW benchmark instances, we restrict
ourselves to the first VRPTW benchmark instance of each class.

4.2 Main findings

We analyze the effectiveness of using transshipment nodes in the transportation system
with ODs. For this purpose, we solve the proposed model by letting |T | = 0, i.e., we
solve a VRPOD. We also conduct a sensitivity analysis on the parameters of the model,
i.e., the number of transshipment nodes (|T |), the vehicle capacity (α), the transshipment
node capacity (β), and the compensation of the ODs (ρ). We can summarize the results
obtained as follows:

• VRPODTN allows a cost saving of about 31% compared with VRPOD;

• the total cost decreases when the number of available transshipment nodes, the
vehicle capacity, and the transshipment node capacity increase;

• for high values of the compensation ρ, the number of ODs deliveries decreases and
the total cost increases.

For more details on model evaluation, the reader is referred to Section 4.3. In Section
4.3.1 we describe the results of the comparison between VRPODTN and VRPOD. Section
4.3.2 reports the sensitivity analysis.

We tested the proposed metaheuristic with the aim of evaluating its performance both
in terms of solution quality and of efficiency. We can draw the following considerations
from the computational results:

• the VNS solves the considered instances with an optimality gap of about 3%, on
average;

• the computational overhead is very limited compared with the time required by
CPLEX, and the VNS is about 33 times faster than CPLEX, on average;

• for the instances not solved to optimality by CPLEX, the VNS obtains, within the
same computational time, solutions with a cost 80% lower than that obtained by
CPLEX, on average.

A detailed description of the computational results with an in-depth analysis is carried
out in Section 4.4.

16

4.3 Model evaluation

In this section we evaluate our model on the instances described in Section 4.1. We restrict
our attention to the instances with |C| ∈ {5, 10, 15}. For each instance class and value
of |C|, we consider 5 × 3 × 4 × 3 × 3 VRPODTN instances, where the factors represent
the different values for |R|, |T |, α, β, and ρ, respectively. We refer to these instances as
small-size instances.

4.3.1 Comparison between VRPODTN and VRPOD

We analyzed the two problems, i.e., the VRPODTN and VRPOD, in terms of cost. Table
2 shows the average results obtained by varying the number of transshipment nodes (|T |)
for the three classes of instances. In particular, we report the total cost (26) under column
Obj, the percentage decreasing of the Obj related to VRPODTN with respect to VRPOD
under column %d, the routing cost of the classical vehicles under column Zcv, and the
cost associated with the deliveries performed by the ODs under column Zk. The column
#vs reports the average number of classical vehicles used. The superscripts in the column
Obj represent the number of instances for which the execution time of CPLEX exceeds
the time limit. We only have a feasible solution for these instances. The aim of this
section is to show the benefit of including transshipment nodes in terms of cost. Overall,
we observe a cost reduction when the transshipment nodes are considered. In addition,
since all VRPOD instances are solved to optimality but VRPODTN instances are not, the
observed cost reduction is underestimated.

17

R
1

C
1

R
C
1

|C
|
|T
|

O
b
j

%
d

Z
c
v

Z
k

#
v
s

O
b
j

%
d

Z
c
v

Z
k

#
v
s

O
b
j

%
d

Z
c
v

Z
k

#
v
s

5

0
4
9
8
9
.1
9

1
8
9
.6
2

4
7
9
9
.5
7

0
.9
5

5
6
5
7
.3
4

8
9
.8
5

5
5
6
7
.4
8

0
.7
5

5
0
3
6
.2
2

5
0
.1
4

4
9
8
6
.0
7

0
.3
3

2
3
1
3
2
.6
9

3
7
%

3
9
4
.6
4

2
7
3
8
.0
5

2
.2
0

4
6
5
4
.5
2

1
8
%

3
3
2
.5
6

4
3
2
1
.9
6

1
.6
1

4
2
0
0
.6
6

1
7
%

3
1
3
.0
8

3
8
8
7
.5
9

1
.8
5

4
2
7
7
2
.7
2

4
4
%

4
2
4
.1
6

2
3
4
8
.5
6

2
.5
2

3
8
0
6
.7
8

3
3
%

3
5
4
.2
4

3
4
5
2
.5
4

2
.2
0

3
8
8
3
.4
7

2
3
%

3
3
8
.9
1

3
5
4
4
.5
6

2
.5
7

6
2
7
9
0
.6
9

4
4
%

4
2
0
.1
3

2
3
7
0
.5
7

2
.6
9

3
9
3
3
.2
6

3
0
%

3
5
6
.0
2

3
5
7
7
.2
4

2
.0
8

3
7
0
4
.8
0

2
6
%

3
5
4
.3
8

3
3
5
0
.4
2

2
.4
3

1
0

0
5
0
1
3
.1
4

2
9
0
.5
6

4
7
2
2
.5
7

1
.1
7

5
6
7
7
.8
7

2
0
3
.1
3

5
4
7
4
.7
4

1
.4
7

5
1
3
9
.8
7

2
1
0
.6
3

4
9
2
9
.2
3

0
.8
7

2
3
1
6
5
.0
3

3
7
%

4
6
9
.9
4

2
6
9
5
.0
8

2
.1
8

4
6
5
3
.5
2

1
8
%

3
9
0
.8
2

4
2
6
2
.6
9

1
.8
0

4
2
1
4
.4
4

1
8
%

3
6
8
.0
3

3
8
4
6
.4
1

1
.9
0

4
2
8
0
4
.0
1

4
4
%

4
5
1
.3
5

2
3
5
2
.6
6

2
.4
9

3
7
5
1
.5
3

3
4
%

4
1
8
.6
4

3
3
3
2
.8
9

2
.3
3

3
8
7
9
.1
6

2
5
%

4
1
8
.4
7

3
4
6
0
.6
9

2
.6
6

6
2
8
0
2
.8
0

4
4
%

4
5
4
.4
1

2
3
4
8
.3
9

2
.6
4

3
8
8
1
.6
3
1
0

3
2
%

4
1
5
.1
1

3
4
6
6
.5
2

2
.1
7

3
6
9
5
.5
7

2
8
%

4
2
9
.4
1

3
2
6
6
.1
6

2
.5
0

1
5

0
5
0
9
5
.5
3

4
4
4
.2
5

4
6
5
1
.2
8

1
.7
3

5
7
1
9
.4
3

3
1
1
.8
6

5
4
0
7
.5
7

1
.5
4

5
1
2
5
.9
5

3
5
9
.1
8

4
7
6
6
.7
8

1
.4
7

2
3
2
0
8
.6
2

3
7
%

5
7
8
.4
7

2
6
3
0
.1
5

2
.2
5

4
6
8
6
.1
7

1
8
%

4
5
5
.6
7

4
2
3
0
.5
0

1
.9
2

4
1
9
4
.7
2

1
8
%

4
2
8
.0
3

3
7
6
6
.6
9

2
.0
7

4
2
8
5
2
.4
0

4
4
%

5
2
4
.7
9

2
3
2
7
.6
2

2
.4
9

3
7
1
4
.1
3
5

3
5
%

4
6
7
.9
2

3
2
4
6
.2
1

2
.3
7

3
8
3
1
.6
7

2
5
%

4
5
8
.8
3

3
3
7
2
.8
5

2
.6
9

6
2
8
5
1
.1
2
2

4
4
%

5
2
1
.4
1

2
3
2
9
.7
0

2
.6
0

3
8
4
8
.5
8
6
7

3
3
%

4
7
8
.9
1

3
3
6
9
.6
7

2
.3
4

3
6
2
8
.9
5
4

2
9
%

4
6
8
.7
5

3
1
6
0
.2
0

2
.6
2

A
v
g

0
5
0
3
2
.6
2

3
0
8
.1
4

4
7
2
4
.4
8

1
.2
8

5
6
8
4
.8
8

2
0
1
.6
1

5
4
8
3
.2
6

1
.2
5

5
1
0
0
.6
8

2
0
6
.6
5

4
8
9
4
.0
3

0
.8
9

2
3
1
6
8
.7
8

3
7
%

4
8
1
.0
1

2
6
8
7
.7
6

2
.2
1

4
6
6
4
.7
4

1
8
%

3
9
3
.0
2

4
2
7
1
.7
2

1
.7
7

4
2
0
3
.2
7

1
8
%

3
6
9
.7
1

3
8
3
3
.5
6

1
.9
4

4
2
8
0
9
.7
1

4
4
%

4
6
6
.7
7

2
3
4
2
.9
4

2
.5
0

3
7
5
7
.4
8
5

3
4
%

4
1
3
.6
0

3
3
4
3
.8
8

2
.3
0

3
8
6
4
.7
7

2
4
%

4
0
5
.4
0

3
4
5
9
.3
7

2
.6
4

6
2
8
1
4
.8
7
2

4
4
%

4
6
5
.3
2

2
3
4
9
.5
5

2
.6
4

3
8
8
7
.8
2
7
7

3
2
%

4
1
6
.6
8

3
4
7
1
.1
4

2
.2
0

3
6
7
6
.4
4
4

2
8
%

4
1
7
.5
1

3
2
5
8
.9
3

2
.5
2

T
a
b

le
2:

A
n

al
y
si

s
of

th
e

V
R

P
O

D
T

N
ag

ai
n

s
th

e
V

R
P

O
D

.

18

Focusing our attention on the class R1, the average numerical results highlight that
the VRPODTN provides a solution with a total cost (see column %d) 37%, 44%, and
44% lower than the total cost of VRPOD, for |T | equal to 2, 4, and 6, respectively. We
observe the same trend for the class C1. However, in this case, the decrease in cost
is less impressive. Indeed, Obj for the VRPODTN is 18%, 34%, 32% lower than the
cost of VRPOD. We obtain similar results for the class RC1 where the total cost for the
VRPODTN is 18%, 24%, and 28% lower than the cost of the VRPOD for |T | equal to 2,
4, and 6, respectively.

Table 2 shows that the number of classical vehicles used in the VRPOD is lower than
the number of vehicles used in the VRPODTN. This is to be expected, since the vehicles
do not have to serve the transshipment nodes in the VRPOD. This behaviour explains
the lower routing cost Zcv in the VRPOD. However, the reduction in the routing cost Zcv
does not compensate for the higher cost Zk incurred in the VRPOD.

4.3.2 Sensitivity analysis on model parameters

The behaviour of the proposed model on the small-size instances is analyzed by considering
Obj, Zcv, Zk, #vs and the following statistics:

Time : computational time in seconds;

Ts : number of transshipment nodes used;

#ODs : number of deliveries performed by the ODs;

%ODsD : percentage of #ODs that pickup the parcels directly from the depot s;

%vsd : percentage of customers i ∈ C that are served by the classical vehicles.

Tables 3–5 report the average numerical results for each classes, i.e., R1, C1, and RC1.
The superscripts in the column Time represent the number of instances that are not solved
to optimality within the time limit imposed. Tables 3–5 exhibit a similar performance,
meaning that the model behaves quite similarly for different classes. From the average
results collected in Tables 3–5, we can make following analyses.

Analysis on the number of available transshipment nodes (|T |). When varying
the number of available transshipment nodes |T |, the total transportation cost varies as
well. In particular, the higher |T |, the lower the value of Obj. This is expected, since
a higher number of available transshipment nodes means a better organization of the
deliveries for the ODs. Indeed, the values of %ODsD decreases when |T | increases. This
behaviour is more evident for the instances of class R1 (see Table 3). We observe that,
on average, the cost Zcv increases when |T | increases. This is due to the larger number
of vehicles used (see column #vs). For classes R1 and C1, we observe a slightly increase
of the cost Obj from |T | = 4 to |T | = 6. This is because the lower cost Zk does not
compensate for the higher cost Zcv.

19

Analysis on classical vehicles’ capacity (α). As expected, the capacity of the clas-
sical vehicles influences the behaviour of both the classical vehicles and the ODs. As a
consequence, a better value of Obj is observed for higher values of α, due to the decrease
of both the values of Zcv and Zk. The lower routing cost Zcv is expected since a lower
number of vehicles are used (see column #vs). The interesting result is that we also ob-
serve a reduction of Zk. Since when α increases the number of transshipment nodes used
increases, fewer ODs pick up the parcels from the depot (see column %ODsD). As a result,
we have a better organization of the ODs.

Analysis on transshipment nodes’ capacity (β). When varying the capacity of the
transshipment nodes, the total cost varies as well. In particular, the higher β, the lower
Obj. The reduction of Zcv is justified by the reduction of Ts. Thus, fewer transshipment
nodes have to be served. A higher capacity for the transshipment nodes allows a better
assignment of the ODs’ deliveries. Since picking up the parcels from the transshipment
nodes is more convenient for the ODs than visiting the depot, we observe a reduction in
the cost Zk.

Analysis on the cost for ODs’ deliveries (ρ). As expected, the higher the compen-
sation for the ODs, the higher the Obj value. We observe an increase of both Zk and
Zcv. We note that the ODs must serve all customers i ∈ R, but they can also serve some
customers i ∈ C. Thus, on the one hand, when ρ increases the number of OD deliveries
decreases, because these drivers serve fewer customers i ∈ C. A lower value of #ODs does
not compensate for the higher compensation for each OD. Thus, a higher value of Zk is
observed. On the other hand, the number of the customers served by the classical vehicles
increases. As a consequence, we observe an increase in Zcv.

4.4 Heuristic evaluation

In this section, we analyze the behavior of the VNS. We first compare the solutions ob-
tained with the heuristic with those obtained by CPLEX on small-size instances. We then
test the heuristic procedure on large-size instances characterized by |C| ∈ {30, 40, 50},
|R| ∈ {10, 20, 30, 40, 50} and we use the following configurations for the other parameters:
|T | = 6, α = 2.0, β = 1.3 and ρ = 1.50.

The rationale for these choices can be explained by considering the results of the
sensitivity analyses carried out in Section 4.3.2. More specifically, the large-size instances
are characterized by a larger number of available transshipment nodes (|T | = 6). In
addition, from the results shown in Section 4.3.2, we observe that the larger the vehicle
capacity, the better the organization of the delivery process of the ODs. This observation
motivates the choice of α = 2. The same considerations are valid for the parameter β. In
this case, we choose an intermediate value for β since it guarantees a good compromise
between the routing cost and the cost related to the OD deliveries. In addition, a high
value for β implies a reduction in the number of transshipment nodes used. For the

20

compensation value ρ of the ODs we use an intermediate value since the higher ρ, the
lower the number of deliveries performed by the ODs.

Results on small-size instances We now present the results obtained on small-size
instances. We set kmax = 10 and improve = 15. Table 6 summarizes the average results
obtained for small-size instances, grouped by the number of customers in C and by class.
The first column displays the number of customers |C| and the second one the class. The
third column shows the average speedup, calculated as the ratio between the computa-
tional time required by CPLEX and the computational time taken by the heuristic. In
the third column we report the percentage optimality gap on cost, calculated as Gapc=
(ObjectiveVNS−ObjectiveCPLEX)/ObjectiveCPLEX. The VNS is much less time consuming
than CPLEX. In particular, the larger the size of C the larger is the value of speedup.

The VNS is also effective. Indeed the average gap is about 3%. In particular, Gapc is
about 2%, 3% and 4% when |C| is equal to five, 10 and 15, respectively. Looking at Table
7, we observe that the VNS is very effective on instances belonging to the classes C1 and
RC1: on average the gap is about 2%.

Results on large-size instances Since CPLEX does not find optimal solutions for
large-size instances and requires considerable time to find feasible solutions, we solve the
large-size instances with the VNS and we make comparisons, when possible, with the
CPLEX performance. The computational values are obtained by setting kmax = 50 and
improve = 50 for the VNS. We first compare the solutions obtained by solving the prob-
lems with the VNS, with the first feasible solution found by CPLEX within the imposed
time limit.

Table 8 summarizes the average results over the large-size instances solved by both the
VNS and CPLEX, grouped by class and C size. In the first column we report the class, in
the second one the size |C|. The third column shows the average time [sec] required by the
VNS and the fourth one the average speedup. The fifth column provides the average value
of the objective function of the solution found by the VNS (Obj VNS), in the sixth column
we show the percentage gap in cost (Gapc). Finally, since CPLEX does not always find
a feasible solution within the imposed time limit, we report the percentage of instances
solved by CPLEX referred to as %slv.

The results summarized in Table 8 show that the VNS clearly outperforms CPLEX in
terms of both effectiveness and efficiency. For the instances belonging to the class C1, the
VNS is more than four times faster than CPLEX for instances with |C| = 30, and up to
about five times faster when |C| is 40 and 50. In addition, CPLEX finds solutions for all
instances when |C| = 30 with a Gapc equal to −76%, and for 60% of all instances only
when |C| = 40 and |C| = 50 with a gap equal to −79% and −80%, respectively.

We observe on average a similar trend for the instances of classes R1 and RC1. The
VNS is more efficient than CPLEX for all the instances belonging to the class R1. In
particular, when |C| = 40 the VNS is more than 33 times faster than CPLEX. The VNS is

21

also more effective, the value of Gapc is about −65%, −58% and −87% for the instances
with |C| equal to 30, 40 and 50, respectively. In addition, with the only exception of the
instances with |C| = 30, CPLEX is not able to find a feasible solution for all the instances;
indeed when |C| = 50 it solves only the 20% of them.

For the instances of class RC1, CPLEX is able to find a feasible solution for all the
instances with |C| = 30 and |C| = 40, but the VNS is still more effective than CPLEX;
indeed the gap is −77% and −26%, respectively.

In order to investigate the performance of our VNS, we carry out a second phase of
tests on large-size instances. We impose a new time limit on CPLEX equal to the time
required by the VNS to find the solution. Table 9 summarizes the average results over
the instances solved by both the VNS and CPLEX. The first column shows the class, the
second one the number of customers belonging to the set C, the third column reports the
time spent by the VNS. The fourth column provides the VNS objective function, the fifth
one the gap and the last one the percentage number of instances solved by CPLEX. The
results clearly show that the VNS is more effective.

CPLEX is able to find a feasible solution for all the considered instances only when
|C| = 30 of the classes C1 and RC1, with a gap of about −76.5% . For the instances of
the class R1, CPLEX finds a feasible solution for only the 20% and 40% of the instances
when |C| = 30 and |C| = 40, with a gap of −83% and −85%, respectively, and it does
not find solutions for any instance when |C| = 50. Overall, the VNS clearly outperforms
CPLEX in terms of effectiveness.

5 Conclusions

We have introduced, modeled, and solved a new crowd-shipping variant. We have consid-
ered the presence of a single depot, at which vehicles start and end their routes, and several
transshipment nodes which act as intermediate depots. The occasional drivers can decide
to serve some customers by picking up the parcels from either the central depot or the
transshipment nodes. Starting from the central depot, the vehicles serve customers and
transshipment nodes. The parcels delivered by the occasional drivers must be available at
the transshipment nodes chosen by them.

We have developed a mathematical model as well as a variable neighbourhood search
metaheuristic which was extensively tested on modified Solomon instances. Our results
highlight several trends, in terms of the organization of the deliveries, considering different
parameters of the problem and show the benefits of introducing transshipment nodes in
the service network. We compared the solutions determined by CPLEX with those ob-
tained by the proposed metaheuristic. Our results show a good behaviour of the proposed
metaheuristic with a reasonable optimality gap within short computational times.

22

Acknowledgement

This work was supported by MIUR “PRIN 2015” funds, project: “Transportation and
Logistics in the Era of Big Open Data” - 2015JJLC3E 003 - CUP H52F15000190001.

References

[1] Y. Amarouche, R. N. Guibadj, and A. Moukrim. A neighborhood search and set cover
hybrid heuristic for the two-echelon vehicle routing problem. In Ralf Borndörfer and
Sabine Storandt, editors, 18th Workshop on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems (ATMOS 2018), volume 11 of Open Access
Series in Informatics, pages 1–15, Helsinki; Finland, 2018. Dagstuhl Publishing,.

[2] A. Anderluh, V. C. Hemmelmayr, and P. C. Nolz. Synchronizing vans and cargo bikes
in a city distribution network. Central European Journal of Operations Research,
25:345–376, 2017.

[3] C. Archetti, M. W. P. Savelsbergh, and M. G. Speranza. The vehicle routing problem
with occasional drivers. European Journal of Operational Research, 254:471–480,
2016.

[4] A. M. Arslan, N. Agatz, L. Kroon, and R. Zuidwijk. Crowdsourced delivery: A
dynamic pickup and delivery problem with ad-hoc drivers. Technical report, ERIM,
Report Series Reference, 2016.

[5] A. Barr and J. Wohl. Exclusive: Wal-Mart may get customers to deliver packages to
online buyers. REUTERS - Business, 2013.

[6] O. Belgina, I. Karaoglanb, and F. Altiparmakc. Two-echelon vehicle routing problem
with simultaneous pickup and delivery: Mathematical model and heuristic approach.
Computers & Industrial Engineering, 115:1–16, 2018.

[7] G. Bensinger. Amazon’s next delivery drone: You. Wall Street Journal, 2015.

[8] H. Buldeo Rai, S. Verlinde, J. Merckx, and C. Macharis. Crowd logistics: an oppor-
tunity for more sustainable urban freight transport? European Transport Research
Review, 9(3):39, 2017.

[9] T.G. Crainic, N. Ricciardi, and G. Storchi. Models for evaluating and planning city
logistics systems. Transportation Science, 43(4):432–454, 2009.

[10] R. Cuda, G. Guastaroba, and M. G. Speranza. A survey on two-echelon routing
problems. Computers & Operations Research, 55:185–199, 2015.

23

[11] P. Grangier, M. Gendreau, F. Lehuédé, and L.-M. Rousseau. An adaptive large
neighborhood search for the two- echelon multiple- trip vehicle routing problem with
satellite synchronization. European Journal of Operational Research, 254:80–91, 2016.

[12] W. Jie, J. Yang, M. Zhang, and Y. Huang. The two-echelon capacitated electric
vehicle routing problem with battery swapping stations: Formulation and efficient
methodology. European Journal of Operational Research, 272:879–904, 2019.

[13] R. Landa. Thinking Creatively in the Digital Age. Nimble, Blue Ash, Ohio, 1st edition,
2015.

[14] G. Laporte and Y. Nobert. A vehicle flow model for the optimal design of a two-
echelon distribution system. In H.A. Eiselt and G. Pederzoli, editors, Advances in
Optimization and Control, volume 302 of Lecture Notes in Economics and Mathemat-
ical Systems, pages 158–173, Berlin, Heidelberg, 1988. Springer.

[15] G. Macrina, L. Di Puglia Pugliese, F. Guerriero, and D. Laganà. The vehicle routing
problem with occasional drivers and time windows. In A. Sforza and C. Sterle, editors,
Optimization and Decision Science: Methodologies and Applications, volume 217 of
Springer Proceedings in Mathematics & Statistics, pages 577–587, Cham, Switzer-
land, 2017. ODS, Sorrento, Springer.

[16] G. Perboli and R. Tadei. New families of valid inequalities for the two-echelon vehicle
routing problem. Electronic Notes in Discrete Mathematics, 36:639–646, 2010.

[17] G. Perboli, R. Tadei, and D. Vigo. The two-echelon capacitated vehicle routing
problem: Models and math-based heuristics. Transportation Science, 45(3):364–380,
2011.

[18] T. Raviv and E. Z. Tenzer. Crowd-shipping of small parcels in a
physical Internet. https://www.researchgate.net/publication/326319843 Crowd-
shipping of small parcels in a physical internet, July 2018.

[19] M. W. P. Savelsbergh and T. Van Woensel. City logistics: challenges and opportuni-
ties. Transportation Science, 50(2):579–590, 2016.

[20] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research, 35:254–265, 1987.

[21] L. Zhou, R. Baldacci, D. Vigo, and X. Wang. A multi-depot two-echelon vehicle
routing problem with delivery options arising in the last mile distribution. European
Journal of Operational Research, 265:765–778, 2018.

24

Time Obj Zcv Zk Ts #vs #ODs %ODsD %vsd

|C| = 5

|T |
2 0.95 3132.69 394.64 2738.05 2.00 2.20 32.79 28% 44%
4 4.08 2772.72 424.16 2348.56 3.82 2.52 32.96 13% 41%
6 13.81 2790.69 420.13 2370.57 4.81 2.69 32.94 11% 41%

α

0.7 8.05 3152.75 433.36 2719.39 3.37 2.79 33.16 32% 37%
1.0 9.31 2898.37 435.91 2462.46 3.57 2.68 32.95 17% 41%
1.3 4.49 2798.75 399.69 2399.05 3.61 2.41 32.84 12% 43%
2.0 3.25 2744.94 382.93 2362.00 3.62 2.00 32.64 8% 47%

β

1.0 8.84 2926.24 416.28 2509.96 3.62 2.46 32.84 19% 43%
1.3 5.60 2891.54 414.49 2477.05 3.56 2.47 32.89 17% 42%
2.0 4.39 2878.32 408.15 2470.16 3.46 2.48 32.95 16% 41%

ρ

0.75 4.66 1651.67 364.45 1287.22 3.42 2.28 33.42 19% 32%
1.50 6.40 2905.07 426.19 2478.89 3.61 2.48 32.74 17% 45%
2.25 7.77 4139.36 448.28 3691.07 3.59 2.64 32.53 16% 49%

Average 6.28 2898.70 412.97 2485.73 3.54 2.47 32.90 17% 42%

|C| = 10

|T |
2 2.25 3165.03 469.94 2695.08 2.00 2.18 35.73 30% 43%
4 10.34 2804.01 451.35 2352.66 3.87 2.49 36.88 17% 31%
6 29.81 2802.80 454.41 2348.39 4.81 2.64 36.92 14% 31%

α

0.7 17.35 3148.54 484.67 2663.86 3.42 2.79 37.01 33% 30%
1.0 20.41 2909.22 478.13 2431.08 3.59 2.70 36.39 19% 36%
1.3 10.08 2837.24 440.28 2396.95 3.61 2.30 36.39 16% 36%
2.0 8.70 2800.79 431.18 2369.61 3.61 1.98 36.25 14% 37%

β

1.0 18.40 2938.93 466.74 2472.19 3.64 2.43 36.35 21% 37%
1.3 13.35 2920.08 458.97 2461.11 3.59 2.44 36.52 20% 35%
2.0 10.65 2912.82 449.99 2462.83 3.44 2.45 36.66 20% 33%

ρ

0.75 16.96 1682.29 393.34 1288.95 3.48 2.26 37.43 22% 26%
1.50 11.17 2933.46 466.13 2467.33 3.59 2.45 36.36 20% 36%
2.25 14.28 4156.08 516.23 3639.85 3.60 2.61 35.74 19% 43%

Average 14.13 2923.94 458.57 2465.38 3.56 2.44 36.51 20% 35%

|C| = 15

|T |
2 10.52 3208.62 578.47 2630.15 2.00 2.25 37.32 29% 51%
4 24.54 2852.40 524.79 2327.62 3.89 2.49 39.13 18% 39%
6 78.112 2851.12 521.41 2329.70 4.79 2.60 39.28 15% 38%

α

0.7 62.881 3213.76 584.08 2629.68 3.41 2.88 39.02 33% 40%
1.0 48.151 2954.56 553.97 2400.59 3.61 2.73 38.82 19% 41%
1.3 21.55 2871.71 515.12 2356.59 3.60 2.23 38.32 16% 45%
2.0 18.30 2842.82 513.05 2329.77 3.62 1.96 38.14 13% 46%

β

1.0 49.962 2983.56 546.61 2436.95 3.62 2.44 38.48 21% 43%
1.3 32.56 2967.32 541.81 2425.51 3.58 2.45 38.57 20% 43%
2.0 30.64 2961.26 536.25 2425.02 3.49 2.46 38.68 20% 42%

ρ

0.75 31.87 1735.75 452.33 1283.42 3.50 2.28 40.19 23% 32%
1.50 31.28 2986.77 545.63 2441.14 3.60 2.48 38.54 20% 43%
2.25 50.012 4189.61 626.71 3562.91 3.59 2.58 36.99 18% 53%

Average 37.722 2970.71 541.56 2429.16 3.56 2.45 38.58 20% 43%

Table 3: Average computational results for the instances R1.

25

Time Obj Zcv Zk Ts #vs #ODs %ODsD %vsd

|C| = 5

|T |
2 1.93 4654.52 332.56 4321.96 1.37 1.61 33.14 56% 37%
4 6.41 3806.78 354.24 3452.54 2.41 2.20 33.34 26% 33%
6 29.15 3933.26 356.02 3577.24 3.00 2.08 33.38 31% 32%

α

0.7 12.36 4246.33 349.79 3896.55 2.17 2.27 33.39 46% 32%
1.0 8.01 4110.70 347.41 3763.30 2.27 2.06 33.29 36% 34%
1.3 10.97 4094.31 349.01 3745.30 2.28 1.89 33.25 35% 35%
2.0 18.65 4074.73 344.21 3730.52 2.31 1.63 33.21 34% 36%

β

1.0 13.54 4219.06 346.84 3872.23 2.36 1.89 33.28 42% 34%
1.3 13.10 4138.46 347.39 3791.06 2.32 1.96 33.31 38% 34%
2.0 10.85 4037.04 348.58 3688.46 2.09 2.04 33.27 34% 35%

ρ

0.75 12.42 2211.97 233.84 1978.13 1.83 1.54 34.22 44% 16%
1.50 14.49 4150.73 372.13 3778.60 2.37 2.08 33.08 36% 38%
2.25 10.58 6031.86 436.84 5595.02 2.57 2.27 32.56 33% 49%

Average 12.49 4131.52 347.60 3783.92 2.26 1.96 33.29 38% 34%

|C| = 10

|T |
2 5.02 4653.52 390.82 4262.69 1.35 1.80 35.19 58% 48%
4 19.40 3751.53 418.64 3332.89 2.29 2.33 35.22 28% 48%
6 122.8410 3881.63 415.11 3466.52 2.84 2.17 35.53 33% 45%

α

0.7 45.372 4200.87 415.48 3785.39 2.10 2.44 35.41 47% 46%
1.0 38.001 4081.21 413.68 3667.53 2.24 2.21 35.34 38% 47%
1.3 48.102 4058.57 406.42 3652.16 2.19 2.01 35.26 37% 47%
2.0 64.895 4041.58 397.19 3644.39 2.12 1.74 35.24 36% 48%

β

1.0 45.843 4183.41 408.10 3775.31 2.31 2.04 35.34 43% 47%
1.3 58.545 4101.57 407.62 3693.94 2.20 2.08 35.36 40% 46%
2.0 42.892 4001.70 408.85 3592.85 1.97 2.18 35.23 36% 48%

ρ

0.75 43.353 2219.14 258.42 1960.73 1.81 1.62 37.79 47% 22%
1.50 59.615 4125.22 407.19 3718.03 2.28 2.04 35.40 38% 46%
2.25 44.312 5942.31 558.97 5383.34 2.39 2.63 32.74 32% 73%

Average 49.0010 4095.56 408.19 3687.37 2.16 2.10 35.31 40% 47%

|C| = 15

|T |
2 25.03 4686.17 455.67 4230.50 1.45 1.92 38.80 59% 41%
4 98.235 3714.13 467.92 3246.21 2.40 2.37 39.09 29% 39%
6 388.4067 3848.58 478.91 3369.67 3.11 2.34 38.96 34% 40%

α

0.7 203.9422 4195.17 461.51 3733.67 2.23 2.57 39.61 48% 36%
1.0 140.7215 4064.35 467.60 3596.75 2.39 2.25 38.89 39% 41%
1.3 169.5918 4040.60 474.57 3566.03 2.33 2.12 38.63 38% 42%
2.0 167.9817 4031.72 466.33 3565.39 2.33 1.90 38.68 37% 42%

β

1.0 169.1923 4170.66 467.72 3702.94 2.44 2.17 38.97 44% 40%
1.3 170.8924 4087.56 470.42 3617.14 2.34 2.21 38.91 41% 41%
2.0 171.5925 3990.67 464.37 3526.30 2.18 2.26 38.98 37% 40%

ρ

0.75 143.1018 2243.30 286.95 1956.36 1.92 1.73 42.09 47% 19%
1.50 166.0823 4114.94 496.36 3618.58 2.49 2.26 38.72 39% 42%
2.25 202.4931 5890.64 619.20 5271.44 2.55 2.64 36.04 34% 60%

Average 170.5572 4082.96 467.50 3615.46 2.32 2.21 38.95 40% 40%

Table 4: Average computational results for the instances C1.

26

Time Obj Zcv Zk Ts #vs #ODs %ODsD %vsd

|C| = 5

|T |
2 0.79 4200.66 313.08 3887.59 1.90 1.85 33.73 44% 25%
4 2.48 3883.47 338.91 3544.56 3.14 2.57 33.70 17% 26%
6 6.83 3704.80 354.38 3350.42 3.76 2.43 33.75 21% 25%

α

0.7 2.93 4006.96 326.79 3680.17 2.80 2.51 34.00 38% 20%
1.0 2.67 3915.61 340.08 3575.53 2.96 2.47 33.65 25% 27%
1.3 3.23 3903.25 341.29 3561.96 2.99 2.33 33.63 23% 27%
2.0 4.64 3892.77 333.67 3559.10 2.99 1.83 33.63 23% 27%

β

1.0 4.33 3972.49 342.37 3630.12 3.17 2.22 33.68 30% 26%
1.3 3.07 3930.18 333.56 3596.62 2.91 2.28 33.75 27% 25%
2.0 2.70 3886.27 330.44 3555.83 2.72 2.36 33.75 24% 25%

ρ

0.75 3.53 2121.84 260.92 1860.92 2.48 2.01 34.33 31% 13%
1.50 3.33 3940.10 345.18 3594.93 3.11 2.40 33.90 26% 22%
2.25 3.24 5727.00 400.27 5326.73 3.21 2.44 32.95 24% 41%

Average 3.37 3929.65 335.46 3594.19 2.93 2.29 33.73 27% 25%

|C| = 10

|T |
2 2.07 4214.44 368.03 3846.41 1.93 1.90 36.71 45% 33%
4 5.15 3879.16 418.47 3460.69 3.40 2.66 36.38 17% 36%
6 19.42 3695.57 429.41 3266.16 3.97 2.50 36.54 22% 35%

α

0.7 10.20 4017.52 387.77 3629.75 2.99 2.61 37.59 38% 24%
1.0 6.64 3911.30 413.22 3498.07 3.13 2.58 36.36 26% 36%
1.3 7.30 3900.41 413.23 3487.18 3.12 2.35 36.12 25% 39%
2.0 11.39 3889.66 406.98 3482.68 3.16 1.87 36.10 24% 39%

β

1.0 12.38 3969.63 411.80 3557.83 3.31 2.29 36.41 31% 36%
1.3 7.16 3926.07 404.90 3521.17 3.08 2.36 36.53 28% 35%
2.0 7.11 3893.46 399.20 3494.26 2.92 2.40 36.68 26% 33%

ρ

0.75 11.39 2157.84 309.92 1847.92 2.79 2.15 38.83 32% 12%
1.50 6.91 3943.45 425.47 3517.99 3.17 2.43 36.03 27% 40%
2.25 8.35 5687.87 480.51 5207.36 3.34 2.47 34.77 25% 52%

Average 8.88 3929.72 405.30 3524.42 3.10 2.35 36.54 28% 35%

|C| = 15

|T |
2 8.34 4194.72 428.03 3766.69 2.00 2.07 39.32 44% 38%
4 22.69 3831.67 458.83 3372.85 3.56 2.69 39.72 18% 35%
6 81.744 3628.95 468.75 3160.20 4.02 2.62 39.78 21% 35%

α

0.7 51.673 3976.26 443.35 3532.91 3.11 2.76 40.53 38% 30%
1.0 25.61 3864.73 458.92 3405.81 3.21 2.63 39.36 26% 38%
1.3 30.02 3854.88 458.23 3396.65 3.24 2.44 39.29 24% 38%
2.0 43.061 3844.59 446.97 3397.62 3.21 2.00 39.24 23% 38%

β

1.0 39.901 3920.11 457.90 3462.22 3.36 2.43 39.51 30% 37%
1.3 39.111 3880.20 450.31 3429.90 3.16 2.46 39.64 28% 36%
2.0 33.762 3855.03 447.40 3407.63 3.07 2.48 39.67 25% 36%

ρ

0.75 39.611 2156.17 353.26 1802.91 3.03 2.37 42.29 30% 18%
1.50 32.711 3898.92 462.39 3436.53 3.23 2.46 39.26 27% 38%
2.25 40.442 5600.25 539.95 5060.30 3.31 2.54 37.27 25% 52%

Average 37.594 3885.11 451.87 3433.25 3.19 2.46 39.61 28% 36%

Table 5: Average computational results for the instances RC1.

27

speedup Gapc

|C| = 5

C1 21.94 0.98%
R1 8.58 3.50%

RC1 6.97 1.07%

Average 12.50 1.85%

|C| = 10

C1 41.72 2.29%
R1 13.85 4.82%

RC1 14.66 2.12%

Average 23.41 3.08%

|C| = 15

C1 115.48 2.93%
R1 31.21 6.16%

RC1 45.38 3.91%

Average 64.02 4.33%

Table 6: Computational results for small-size instances.

speedup Gapc

C1 59.71 2.06%
R1 17.88 4.83%

RC1 22.33 2.36%

Table 7: Computational results for small-size instances, grouped by class.

Class |C| Time VNS speedup Obj VNS gapc %slv

C1

30 3.99 4.04 4174.44 −76% 100%
40 3.59 4.79 3018.93 −79% 60%
50 10.47 4.89 4396.80 −80% 60%

R1

30 3.89 7.19 3168.51 −65% 100%
40 3.44 33.05 2254.94 −58% 60%
50 3.16 13.27 1550.43 −87% 20%

RC1

30 3.86 0.00 4019.61 −77% 100%
40 7.43 38.31 4344.67 −26% 100%
50 6.22 5.92 3150.39 −80% 60%

Table 8: Computational results for large-size instances: VNS against CPLEX first feasible
solution.

28

Class |C| Time VNS Obj VNS Gapc %slv

C1

30 3.99 4174.44 −76% 100%
40 4.29 3549.84 −79% 40%
50 10.47 4396.80 −80% 60%

R1

30 0.75 1382.16 −83% 20%
40 3.33 1893.05 −85% 40%
50 - - - 0%

RC1

30 3.86 4019.61 −77% 100%
40 2.11 2039.74 −82% 20%
50 4.53 3191.39 −81% 20%

Table 9: Computational results for large-size instances: VNS against CPLEX imposing
the heuristic time as time limit.

29

