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ABSTRACT

The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared spectroscopy,
across ∼ 15 000 deg2 of the sky. Euclid is expected to detect ∼ 12 billion astronomical sources, facilitating new insights into cosmology, galaxy
evolution, and various other topics. In order to optimally exploit the expected very large data set, there is the need to develop appropriate methods
and software tools. Here we present a novel machine-learning based methodology for the selection of quiescent galaxies using broad-band Euclid
IE, YE, JE, HE photometry, in combination with multiwavelength photometry from other large surveys (e.g. the Rubin LSST). The ARIADNE pipeline
uses meta-learning to fuse decision-tree ensembles, nearest-neighbours, and deep-learning methods into a single classifier that yields significantly
higher accuracy than any of the individual learning methods separately. The pipeline has been designed to have ‘sparsity-awareness’, such that
missing photometry values are informative for the classification. In addition, our pipeline is able to derive photometric redshifts for galaxies
selected as quiescent, aided by the ‘pseudo-labelling’ semi-supervised method, and using an outlier detection algorithm to identify and reject
likely catastrophic outliers. After application of the outlier filter, our pipeline achieves a normalized mean absolute deviation of <∼ 0.03 and a
fraction of catastrophic outliers of <∼ 0.02 when measured against the COSMOS2015 photometric redshifts. We apply our classification pipeline to
mock galaxy photometry catalogues corresponding to three main scenarios: (i) Euclid Deep Survey photometry with ancillary ugriz, WISE, and
radio data; (ii) Euclid Wide Survey photometry with ancillary ugriz, WISE, and radio data; (iii) Euclid Wide Survey photometry only, with no
foreknowledge of galaxy redshifts. In a like-for-like comparison, our classification pipeline outperforms UV J selection, in addition to the Euclid
IE − YE, JE − HE and u − IE, IE − JE colour-colour methods, with improvements in completeness and the F1-score (the harmonic mean of precision
and recall) of up to a factor of 2.

Key words. Galaxies: photometry – Galaxies: high-redshift – Galaxies: evolution – Galaxies: general

? e-mail: Andrew.Humphrey@astro.up.pt

1. Introduction

The study of galaxies plays a pivotal role in the effort to un-
derstand how the baryonic component of the Universe evolved
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across cosmic time; it is on the size-scale of galaxies that key
processes such as star-formation, chemical evolution, black hole
growth, and feedback predominantly take place. Large, system-
atic imaging and spectroscopic surveys are among the most valu-
able resources for investigating galaxy evolution, allowing a
wide range of studies ranging from identification and study of
rare or elusive objects (e.g. Alexandroff et al. 2013), to statisti-
cal studies of large samples of galaxies (e.g. Kauffmann et al.
2003). A variety of ground- or space-based surveys has already
provided rich databases for investigating questions surrounding
the evolution of galaxies (e.g. the Sloan Digital Sky Survey: York
et al. 2000; Gunn et al. 1998), with even more data to be gener-
ated by ongoing and future campaigns and facilities which will
map the extragalactic sky to even fainter flux levels, and out to
even higher redshifts [e.g. the Vera C. Rubin Observatory Legacy
Survey of Space and Time (LSST): Ivezić et al. 2019; the Nancy
Grace Roman Space Telescope (NGRST): Akeson et al. 2019;
the Dark Energy Spectroscopic Instrument survey (DESI): Dey
et al. 2019; the 4-metre Multi-Object Spectroscopic Telescope
(4MOST); Guiglion et al. 2019; the Multi Object Optical and
Near-infrared Spectrograph for the VLT (MOONS); Taylor et al.
2018; Cirasuolo et al. 2020; the Square Kilometer Array (SKA):
Dewdney et al. 2009; the extended ROentgen Survey with an
Imaging Telescope Array (eROSITA): Predehl et al. 2021].

In the next years, the Euclid Space Telescope will make a
substantial contribution to our understanding of galaxy evolu-
tion. Euclid will observe ∼ 15 000 deg2 of the extragalactic sky
at visible to near-infrared (NIR) wavelengths, to a 5σ point-
source depth of 26.2 mag1 in the Euclid VISible Instrument
(VIS: Cropper et al. 2016) IE (R+I+Z) filter and 24.5 mag in
the Near Infrared Spectrometer and Photometer (NISP: Maci-
aszek et al. 2016) YE, JE and HE filters (Euclid Collaboration:
Scaramella et al. 2021; Euclid Collaboration: Schirmer et al.
2022). In addition, three fields with an area totalling 53 deg2 will
be the subject of a deeper survey, to a 5σ depth of 28.2 mag in IE

and 26.5 mag in YE, JE, and HE. Euclid is expected to detect ∼ 12
billion astronomical sources (3σ), providing multicolour imag-
ing at 0′′.1–0′′.4 resolution, and is also expected to obtain spec-
troscopic redshifts for ∼ 35 million galaxies (e.g. Laureijs et al.
2011). While the primary science drivers of the Euclid mission
are baryonic acoustic oscillations, weak lensing cosmology and
redshift-space distortions, the survey is also expected to enable a
multitude of high-impact extragalactic science projects, either in
stand-alone form or in combination with multiwavelength data
from other surveys (e.g. LSST).

Automated classification and derivation of physical proper-
ties are crucial steps towards scientific exploitation of data from
any large astronomical survey, and traditionally this would be
done using colour-colour methods (e.g. Haro 1956; Daddi et al.
2004; Leja, Tacchella, & Conroy 2019) or by fitting spectral
models or templates (e.g. Bolzonella, Miralles, & Pelló 2000;
Fotopoulou et al. 2012; Gomes & Papaderos 2017). Machine
learning techniques have proven to be particularly powerful in
this context, since they have the ability to detect structure, cor-
relations, and outliers in large, multidimensional data sets, pro-
ducing models that are typically stronger and more efficient than
the traditional methods (e.g. Baqui et al. 2021; Ulmer-Moll et
al. 2019; Logan & Fotopoulou 2020; Clarke et al. 2020; Cunha
& Humphrey 2022). While machine learning techniques have
been applied to extragalactic problems for several decades al-
ready (e.g. Odewahn et al. 1993), in recent years there has been
a rapid growth in their application to this area. Notable exam-

1 AB magnitudes are used herein.
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Fig. 1. The redshift distribution of galaxies in the Int Wide and Int Deep
catalogues (top panel), and the quiescent galaxy fraction as a function
of redshift up to z = 3 (lower panel).

ples include detailed morphological classification via applica-
tion of deep learning to galaxy images (e.g. Dieleman, Wil-
lett, & Dambre 2015; Huertas-Company et al. 2015; Domínguez
Sánchez et al. 2018; Tuccillo et al. 2018; Nolte et al. 2019;
Bowles et al. 2021; Bretonnière et al. 2021), high-accuracy esti-
mation of the redshift (z) of galaxies from imaging/photometric
data (e.g. Collister & Lahav 2004; Brescia et al. 2013; Cavuoti et
al. 2017; Pasquet et al. 2019; Razim et al. 2021; Guarneri et al.
2021), selection and classification of galaxies into various phe-
nomenological types (e.g. Cavuoti et al. 2014; Steinhardt et al.
2020), and derivation of their physical properties (e.g. Bonjean
et al. 2019; Delli Veneri et al. 2019; Mucesh et al. 2021; Simet
et al. 2021). A few studies have taken a hybrid or ‘cooperative’
approach, combining results from traditional methods (e.g. tem-
plate fitting) with machine learning methods, resulting in im-
proved accuracy (e.g. Fotopoulou & Paltani 2018; Cavuoti et al.
2017).

The identification of quiescent galaxies2 is among the most
challenging classification problems in extragalactic astronomy,
and represents a crucial task in our quest to understand the evo-
lution of galaxies across cosmic time. A particular problem is
the fact that there exist substantial degeneracies between stel-
lar age, metallicity, and reddening by dust (e.g. Worthey 1994),
causing the scattering of galaxies across classification bound-
aries when using broad-band spectral energy distributions (SEDs
hereinafter). These degeneracies can be significantly exacer-
bated by the absence of redshift information.

A frequently applied technique for the selection of quiescent
galaxy candidates is UV J colour-colour selection (Strateva et
al. 2001; Baldry et al. 2004; Wuyts et al. 2007; Williams et al.
2009; Muzzin et al. 2013; van der Wel et al. 2014; Leja, Tac-
chella, & Conroy 2019; Shahidi et al. 2020). This method se-
lects objects in rest-frame U − V , V − JE colour-colour space

2 We adopt the specific star-formation rate (sSFR) of 10−10.5yr−1 as the
boundary between quiescent and star-forming.
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that are red because their UV to near-infrared SED is dominated
by an old stellar population, as opposed to star-forming galax-
ies that are reddened by dust. While the UV J selection method
clearly works (e.g. Fumagalli et al. 2014), there is a substantial
contamination by star-forming galaxies in the region of ∼ 10–30
per cent (e.g. Moresco et al. 2013; Schreiber et al. 2018; Fang
et al. 2018). Various observer-frame colour combinations have
also been proposed for the selection of quiescent galaxies, such
as the BzK method (Daddi et al. 2004), or the GALEX FUV−V ,
V − JE, and FUV − V , V −W3 methods proposed by Leja, Tac-
chella, & Conroy (2019). Once selected via colour-colour tech-
niques, spectral energy distribution (SED) fitting (e.g. Wiklind et
al. 2008; Girelli, Bolzonella, & Cimatti 2019) and spectroscopic
observations (e.g. Belli, Newman, & Ellis 2015; Glazebrook et
al. 2017; Schreiber et al. 2018) may then be employed to confirm
their passive nature. Alternative approaches have also been suc-
cessful at selecting quiescent galaxies, such as template fitting
followed by colour selection (e.g. Laigle et al. 2016; Deshmukh
et al. 2018).

In the context of preparations for the Euclid survey, Bisigello
et al. (2020, B20 hereinafter) recently developed IE − YE, JE −HE

and u − IE, IE − JE colour-colour criteria to separate quiescent
galaxies and star-forming galaxies up to z = 2.5, for use in the
case where spectroscopic or photometric redshifts are available.
The proposed colour-colour criteria significantly outperform the
traditional UV J technique which, when derived using only the
four Euclid filters, provides a completeness of only ∼ 0.2 at z <
3. For example, using their u − IE, IE − JE criteria, B20 were
able to select a sample of quiescent galaxies at 0.75 < z < 1
with a completeness of ∼ 0.7 and a precision of > 0.85. Their
IE−YE, JE−HE criteria also allowed the authors to select quiescent
galaxies at 1 < z < 2 with a completeness of > 0.65 and a
precision of > 0.8.

An important limitation of colour-colour selection tech-
niques is that they are, in effect, lossy dimensionality-reduction
methods. As such, they are likely to discard a significant quantity
of otherwise useful information that is present in a broad-band
SED. In this context, machine learning methods offer a promis-
ing alternative, since they are able to perform selection from
within highly multidimensional data sets, and can be tuned to
make a trade-off between purity and completeness that is appro-
priate for a desired science application. Indeed, Steinhardt et al.
(2020) recently explored the selection of quiescent galaxies us-
ing the unsupervised t-distributed stochastic neighbour embed-
ding method (van der Maaten & Hinton 2008; van der Maaten
2014), reporting a significant improvement over the UV J and
template fitting methods.

In this paper, we present a new supervised machine-learning
method for the separation of quiescent and star-forming galax-
ies using Euclid and ancillary photometry, which is designed to
handle sparse data and which can provide photometric redshift
estimates where necessary. The paper is organized as follows. In
Sect. 2 we describe the mock photometry catalogues used in this
study. The metrics of model quality we use are defined in Sect. 3.
Full details of the ARIADNE pipeline are given in Sect. 4. We de-
scribe in Sect. 5 the results of applying our separation methods
to the mock photometric data. Next, in Sect. 6 we compare our
method with colour-colour methods previously proposed by B20
and others. In Sect. 7 we summarize results from a number of
further analyses and tests, with full details given in Appendix B.
Finally, in Sect. 8 we summarize our results and conclusions.

2. Mock galaxy catalogues

In this work we make use of an updated version of the mock
catalogues presented in B20. All catalogues were derived from
magnitudes in the COSMOS2015 multi-wavelength catalogues
(Laigle et al. 2016). Objects labelled as stars or X-ray sources,
and objects with inadequate3 optical photometry, being re-
moved. After this selection, the COSMOS2015 catalogue con-
tains 518404 objects up to z = 6. We now briefly introduce the
two methods used to derive Euclid-like mock catalogues.

In the first method, we interpolated over the observed COS-
MOS2015 photometry to produce a broken-line template run-
ning from ultraviolet to infrared wavelengths, which is then con-
volved with the filters of interest to derive mock photometry.
As this method is affected directly by the COSMOS2015 photo-
metric errors, which are similar or larger than those expected in
the Euclid Wide Survey, we did not include any additional pho-
tometric scatter. The 20 cm VLA radio continuum flux, where
measured, is also included without modification. Using this ap-
proach, we derived two separate catalogues, resembling the Eu-
clid Wide Survey (Euclid Collaboration: Scaramella et al. 2021)
and Euclid Deep Survey. We refer to these mock catalogues as
‘Int Wide’ and ‘Int Deep’, respectively.

The question of the potential impact of emission lines on the
Int catalogues was discussed previously by B20. In short, the
broad-band magnitudes in the Int and SED catalogues include
contributions from emission lines. Because the Int catalogues
were constructed using real observed photometry, this means
that for some bands and some galaxies, a contribution from neb-
ular emission is present. In the case of the SED catalogues, the
LePhare code was used with emission lines included (see Ilbert
et al. 2006), allowing nebular emission to contribute to the mock
magnitudes.

Nevertheless, we do not expect the inclusion (or exclusion)
of emission lines to have a significant effect on our results. Given
the widths of the filters considered herein (Euclid Collaboration:
Schirmer et al. 2022), the effect of emission lines is marginal:
observed equivalent widths larger than 350 Å, 260 Å, 390 Å, and
480 Å would be required to produce a boost of ∼ 0.1 mag in the
VIS, Y, J, and H bands, respectively; such high equivalent widths
are rare in the sample of galaxies used for our mock catalogues
(e.g., Amorín et al. 2015)

In the second approach, we used the public code LePhare
(Arnouts et al. 2007; Ilbert et al. 2006) to fit the COSMOS2015
photometry with a large set of Bruzual & Charlot (2003) tem-
plates, with the redshift fixed at its COSMOS2015 value from
Laigle et al. (2016). In particular, we considered templates with
two different metallicities (Z� and 0.4 Z�), exponentially declin-
ing star-formation histories with an e-folding timescale τ vary-
ing from 0.1 to 10 Gyr, and ages between 0.1 and 12 Gyr. For
the dust extinction, we considered the reddening law of Calzetti
et al. (2000) with 12 values of colour excess from 0 to 1. For
each galaxy, we obtained the best SED template applying a χ2

minimisation procedure and we convolved the resulting template
with the filters of interest to calculate the desired mock photom-
etry. In effect, the resulting photometric SED is a synthetic rep-
resentation of the observed one. For each galaxy, we derived 10
mock galaxies by randomising the mock photometry within the
expected photometric errors. As with the first approach, here we
derived two different catalogues, one for the Euclid Wide Survey
(SED Wide) and one for the Euclid Deep Survey (SED Deep).

3 Sources that are "masked in optical broad-bands" in the COS-
MOS2015 catalogue.
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Fig. 2. Distribution of galaxy magnitudes in the Int catalogues (left) and the SED catalogues (right) for the various optical and near-IR bands used
herein. Vertical dashed lines indicate the expected 10σ sensitivity of the Euclid Wide and Deep Surveys in the IE, YE, JE, and HE bands. In all
bands, only photometry with a signal-to-noise ratio of ≥ 3 is included.

Table 1. 10σ depth in AB magnitudes of the Wide Survey for the filters included in the mock catalogues. The Deep Survey is expected to be two
magnitudes deeper than the Wide survey in the Euclid , CFIS and SDSS bands.

IE YE JE HE CFIS/u SDSS/g SDSS/r SDSS/i SDSS/z W1 W2
24.5 23.25 23.25 23.25 24.20 24.50 23.90 23.60 23.40 18.39 18.04

Because the templates do not extend into the radio regime, the
SED Wide and SED Deep mock catalogues do not include the
20 cm radio band.

We have included the VIS IE filter, the NISP YE, JE, and
HE filters (Euclid Collaboration: Schirmer et al. 2022), and the
CFIS/u filter, as previously presented in B20. In addition, we de-
rived mock fluxes for the Sloan Digital Sky Survey (SDSS; Gunn
et al. 1998) griz filters and the Wide-field Infrared Survey Ex-
plorer (WISE; Wright et al. 2010) filters at 3.4 and 4.6 µm (W1
and W2). For the WISE filters, we considered the observational
depth of the WISE All-Sky survey, i.e. 5σ 0.08 and 0.11 mJy
(Wright et al. 2010). For the other filters we instead assumed the
observational depths reported in the Euclid Red Book (Laureijs
et al. 2011), which are expected to be reached with a variety of
ground-based telescopes, for which we use the SDSS filters as
proxies. The complete list of observational depths are listed in
Table 1. Our choice of depths for the Euclid and ground-based
photometry is motivated primarily by the need to make a direct
comparison with the colour-colour results of B20. Thus, we have
adopted the depths used in B204.

4 The Euclid photometric depths adopted herein differ slightly from the
most recent forecasts: the IE photometry is now forecast to be 0.5 mag
deeper, and the NISP photometry 0.25 mag deeper (Euclid Collabora-
tion: Scaramella et al. 2021), compared to the values adopted herein. In
the case of ground-based optical photometry overlapping the Euclid sur-
vey areas there is no single forecast, since the photometry is expected to
come from several different surveys. For instance, at the time the Euclid
DR3 release, the UNIONS survey (Chambers et al. 2020) is forecast
to be 0.6 mag shallower in u and 0.2 mag deeper in r compared to the
Wide Survey depths adopted herein, with simular depths in the g, i and z
bands. In the Southern Hemisphere, LSST is expected to provide deeper
optical data.

For all bands, only photometry measurements with a signal-
to-noise ratio of ≥ 3 are considered. This threshold has been
chosen to ensure that only reliable measurements are used. The
use of low signal-to-noise data deserves a detailed and in-depth
study, and is under investigation for a future paper. For all bands
except IE, non-detections are flagged as missing; objects for
which IE has a signal-to-noise below 3 are excluded from the
catalogues. We refer to B20 for further details on the creation of
the mock catalogues.

Specific star-formation rates (sSFR) were derived for each
galaxy at z ≤ 3 by fitting the 30-band photometric SED of Laigle
et al. (2016) using LePhare. Further details of this process are
given in B20. The dividing line between ‘quiescent’ and ‘star-
forming’ in terms of sSFR is somewhat arbitrary, and various
different thresholds are in use in the literature, although these are
usually in the range < 10−10 yr−1 (e.g. Wu et al. 2018) to < 10−11

yr−1 (e.g. Ilbert et al. 2013). For consistency with B20, we define
‘quiescent’ to mean that a galaxy has sSFR < 10−10.5 yr−1, and
‘star-forming’ to mean that a galaxy has sSFR ≥ 10−10.5 yr−1.
In any case, the classification metrics we obtain herein are not
significantly dependent on which value of sSFR we adopt for
the threshold between quiescent and star-forming galaxies, for
values of the threshold between 10−10 yr−1 and 10−11 yr−1.

For the redshift labels we adopt the 30-band COSMOS pho-
tometric redshifts estimated by Laigle et al. (2016). For the SED
catalogues, the redshift labels represent the true redshifts (i.e.,
with no uncertainty), because the mock photometry is derived di-
rectly from templates with known redshifts. On the other hand,
in the case of the Int catalogues, the redshift labels are merely
photometric redshift estimates, and thus have an uncertainty with
systematic and random components.
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We characterize the properties of the mock catalogues in
Figs. 1–4. In Fig. 1 we show the redshift distribution of galaxies.
Also shown is the distribution and fraction of quiescent galax-
ies as a function of redshift, up to z = 3. It can be seen that the
quiescent fraction falls rapidly with increasing redshift, starting
at ∼ 0.16 at z ∼ 0 and declining to ≤ 0.05 by z ∼ 2.5, illustrat-
ing the highly challenging nature of the search for quiescent (or
passive) galaxies at high redshift.

The distribution of magnitudes is shown in Fig. 2, with the
expected 10σ detection limits in the Euclid filters marked. This
Figure shows that the Wide mock catalogues are complete down
to the 3σ detection limit in all optical and near-IR bands. How-
ever, the Deep catalogues are not complete, due to the limits of
the COSMOS2015 photometry catalogue.

Fig. 3 shows the distribution of IE − HE, u − IE, and YE − HE

colours in the four mock catalogues. There are slight colour
differences between the Int and SED catalogues that arise due
to their different construction methodologies. For instance, the
SED catalogues are slightly bluer in terms of their average
observer-frame u − IE colours, compared to the Int catalogues.

In Fig. 4 we show the fraction of missing photometry mea-
surements as a function of redshift for the optical and infrared
bands. In the case of our mock catalogues, photometry is flagged
as missing when (i) a galaxy or area is unobserved in that band,
(ii) a galaxy or area was masked, (iii) a photometry measure-
ment falls below the detection threshold of the catalogue, or (iv)
a photometry measurement has a signal-to-noise ratio lower than
3. In general terms, the missing fraction is higher for higher
redshifts, although in some cases (notably the near-IR bands)
there is a turnover and decrease in the missing fraction at very
high redshifts (z >∼ 4). The WISE W1 and W2 bands and the
20 cm radio band data are highly sparse, with missing fractions
of 0.947, 0.976, and 0.992, respectively. Conversely, the IE band
has a missing fraction of exactly 0, since detection in this band
is a requirement for inclusion in our mock catalogues.

Finally, Fig. 5 shows the impact on the number and redshift
distribution of galaxies from application of the main photometric
pre-selection criteria used herein: (i) 3σ detections in IE, YE, JE,
HE; (ii) 3σ detections in u, IE, YE, JE, HE; (iii) 3σ detections in
ugriz, IE, YE, JE, HE. As expected, the impact of requiring detec-
tion in the u-band is to induce a step in the distribution at z ∼ 3,
as the Lyman break is redshifted out of the u-band filter; this
step is much stronger in the Wide catalogues than in the SED
catalogues. In the Int Deep catalogue, the reduction in the num-
ber of sources at z >∼ 3 when detection in u or ugriz is required
is surprisingly small; this is likely to be at least partly caused
by the presence of sources with incorrect photometric redshifts
in the COSMOS2015 catalogue. Table C.1 lists the number of
galaxies that are detected in each band for each of the mock cat-
alogues.

3. Metrics of model quality

To evaluate our classification models, we use several metrics that
are useful to quantify model quality. Precision P is the fraction
of assignments to a particular class that are correct, calculated as

P =
TP

TP + FP
, (1)

where TP is the number of true positives and FP is the number
of false positives. Precision is also sometimes known as ‘purity’
in astronomy, or the ‘positive predictive value’.

Recall R is the fraction of galaxies of a particular class within
the data set that are correctly classified as such. It is calculated
as

R =
TP

TP + FN
, (2)

where FN is the number of false negatives. Recall is also some-
times known as ‘completeness’ or ‘sensitivity’.

The F1-score is the harmonic mean of the precision and the
recall, and as such provides a more general metric for model
quality (Dice 1945; Sørensen 1948). The F1-score is calculated
as

F1-score = 2
P R

P + R
, (3)

where we have opted to give equal weights to P and R. The met-
rics P, R, and F1-score have values between 0 and 1. Since there
is a large imbalance between classes in the data sets used here,
we compute the metrics separately for each class. Unless other-
wise stated, the values of P, R, and the F1-score we quote are
computed for the ‘quiescent’ galaxy class only.

To assess the quality of photometric redshift estimates pro-
duced by our pipeline, we use the following measures. As a mea-
sure of accuracy, we use the normalized median absolute devia-
tion (NMAD), which we calculate as

NMAD = 1.48 median
(
|zphot − zref |

1 + zref

)
, (4)

where zphot is our photometric redshift and zref is the reference
redshift used as the ‘ground truth’. In this study, we adopt the
30-band photometric redshifts from COSMOS2015 (Laigle et
al. 2016) for zref . The NMAD can be loosely interpreted as the
standard deviation.

As a further measure of quality, we also calculate the fraction
of catastrophic outliers ( fout). A photometric redshift estimate is
considered to be a catastrophic outlier when

|zphot − zref |

1 + zref
> 0.15. (5)

To test whether (and to which extent) our pipeline systemati-
cally over- or underestimates galaxy redshifts, we define the bias
of the photometric redshifts as

bias = median
(

zphot − zref

1 + zref

)
. (6)

It is also useful to have a metric that quantifies the degree
to which a false positive classification is in error. We define the
incorrectness of an individual false positive classification as

IFP = log10(sSFR yr) + 10.5. (7)
We consider a false positive to be ‘marginal’ when IFP ≤ 0.5,

and ‘catastrophic’ when IFP ≥ 1.0. We also define an average
incorrectness parameter as

ĪFP =

n∑
i=0

log10(sSFR yr) + 10.5
FP

. (8)

We have not used the commonly used ‘accuracy’ metric, which
gives the fraction of predictions that are correct, because it can
be misleading when the test data are significantly imbalanced, as
is the case here.
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Fig. 3. Comparison between the distribution of the IE −HE, u− IE, and YE −HE colours in the Int and SED mock catalogues. Top row: Euclid Wide
catalogues. Bottom row: Euclid Deep catalogues. Significant differences between the Int and SED methods are apparent, most notably with the
SED method giving rise to significantly bluer u − IE colours compared to the Int method. These differences arise when the galaxy templates are
unable to closely match the observed broad-band spectral energy distribution; this may be due to the photometric redshift being incorrect, and/or
due to the absence of a template that sufficiently represents the properties of the galaxy.

4. The ARIADNE pipeline

ARIADNE is a flexible, modular machine learning pipeline de-
signed for the purpose of classification and derivation of physical
properties of astronomical sources on the basis of their photo-
metric SEDs. In a nutshell, ARIADNE takes a table of photometry
as input, and uses algorithms to learn how the input data maps to
labels corresponding to galaxy properties. Here we describe the
functionality of ARIADNE in its classification mode (a flowchart
is also shown in Fig. 6); its application to estimation of physical
properties, such as stellar mass, star-formation rate, extinction,
etc., will be presented in a future publication (Humphrey et al.,
in prep.).

4.1. The learning algorithm

After completion of the feature engineering and preprocessing
steps described in Sect. 4.2, the data are split into a training set
and test set with a 2:1 ratio between the two. This ratio was cho-
sen to give a good balance between having a large number of
examples on which to train the learners, while still having a test
set that is representative of the whole data set5. The split is done
randomly, without attempting to balance target labels, redshift,
or any other observational properties, and each execution of the
pipeline produces a different train-test split.

The pipeline then trains binary classification models on the
training data set, using five different ‘base-learners’ (see Fig. 6).
Three of the base-learners are tree-ensemble methods with

5 When applied to the actual Euclid survey data it is expected that the
ratio used for the train test split may be of order ∼ 1 : 10 000

somewhat different implementations (CatBoostClassifier6

version 0.23.2; LGBMClassifier7 version 0.90;
RandomForestClassifier), one is nearest-neighbours-based
(KNeighborsClassifier), and one is deep-learning-based
(MLPClassifier). All are open source and are briefly summa-
rized below.

The Python Scikit-Learn8 version 0.22.2 package
(Pedregosa et al. 2011) offers various machine learning meth-
ods with excellent functionality and interoperability with a mul-
titude of in-package preprocessing tools. From Scikit-Learn
we make use of the nearest-neighbours-based, non-parametric
KNeighborsCLassifier method, the Multi-layer Perceptron-
based MLPClassifier, and the randomized decision-tree clas-
sifier RandomForestClassifier (Breiman 2001).

Several other, advanced machine learning methods are used
in our pipeline. CatBoost (Prokhorenkova et al. 2018) is a
gradient-boosting, tree-ensemble method that offers high perfor-
mance classification or regression, using ‘ordered-boosting’ in
place of the classic boosting algorithm to significantly reduce
the ‘prediction shift’ commonly associated with the latter.

Arguably the most advanced tree-based learning algorithm
publicly available at the time of writing is LightGBM, a gradient-
boosting, decision-tree method that deploys a number of key in-
novations that are especially relevant for the classification prob-
lems we approach in this work (Ke et al. 2017). For instance,
LightGBM uses leaf-wise (best-first), rather than level-wise tree-
growth, for improved classification accuracy. Also of relevance

6 https://catboost.ai
7 https://lightgbm.readthedocs.io
8 https://scikit-learn.org
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Fig. 4. Fraction of missing photometry measurements vs. redshift for each of the filters used for model training. By construction, the IE band has
no missing values. Very few of the galaxies are detected in the W1, W2, or VLA 20 cm bands.

is the use of histogram-based algorithms which place continuous
feature values into discrete bins, significantly reducing training
time and memory usage.

In addition to the five default base-learners described above,
our pipeline also includes the option to use the tree-based
method XGBoost9 version 0.25.3 (Chen & Guestrin 2016),
for use in situations where this learning algorithm is able to train
stronger models than those described above. The XGBoost al-
gorithm uses gradient boosting and has several key innovations,
including sparsity-aware split-finding, which is of particular rel-
evance for data sets containing a significant fraction of missing
values (e.g. photometric non-detections, masked or unobserved
areas).

Our application of these learning algorithms to the data at
hand reveals that no single algorithm consistently outperforms
the others over the full range of classification problems posed

9 https://xgboost.readthedocs.io

herein. Thus, our pipeline employs model ensembling and inter-
active algorithm selection.

The base-learners are trained within a stratified k-fold proce-
dure: the training data are shuffled and split, with replacement,
into 5 similarly sized folds, ensuring that each fold contains the
same proportion of each target class. Each base-learner is trained
5 times, each time leaving out a different fold, for which a set of
out-of-fold (hereafter OOF) class predictions is produced. This
results in an array of OOF predictions for each base-learner. For
each iteration of the k-fold procedure, class predictions are also
produced for the test set, averaging the 5 sets of class predictions
for each base-learner. Unless otherwise stated, we adopt a class
probability threshold of 0.5: predictions of < 0.5 correspond to
class 0 (star-forming galaxies), and predictions of ≥ 0.5 corre-
spond to class 1 (quiescent galaxies).

The pipeline then performs several iterations of non-linear
combination of class predictions from the individual learners.

Article number, page 7 of 37

https://xgboost.readthedocs.io


A&A proofs: manuscript no. Euclid_preparation_XXII_Humphrey_etal

0 1 2 3 4 5 6
Redshift z

100

101

102

103

104

105

106

G
al

ax
ie

s

Int Wide

ugriz, IE, YE, JE, HE

u, IE, YE, JE, HE

IE, YE, JE, HE

IE

0 1 2 3 4 5 6
Redshift z

100

101

102

103

104

105

106

G
al

ax
ie

s

Int Deep

0 1 2 3 4 5 6
Redshift z

100

101

102

103

104

105

106

107

G
al

ax
ie

s

SED Wide

0 1 2 3 4 5 6
Redshift z

100

101

102

103

104

105

106

107

G
al

ax
ie

s

SED Deep

Fig. 5. The effect of various photometric pre-selection criteria on the
number and redshift distribution of galaxies in the four mock cata-
logues. We show four cases: (i) only a detection in IE is required; (ii)
detection is required in all four Euclid bands (IE, YE, JE, HE); (iii) detec-
tion is required in u and all four of the Euclid bands; (iv) detection is
required in ugriz and all of the Euclid bands. As described in the main
text, for all bands we adopt a signal-to-noise detection threshold of ≥ 3.

First, a hard-voting ensemble is produced for the OOF and test
predictions. Each base learner contributes one vote towards the
class of a galaxy, and the class with the highest number of votes

is chosen. For the data and classification problem considered in
this work, the hard-voting ensemble almost always results in a
significantly higher F1-score than any of the individual base-
learners, or a simple average of the class probabilities.

To further improve model quality, the pipeline contains
our implementation of the ‘generalized stacking’ method pro-
posed by Wolpert (1992). A linear discriminant analysis or
MLPClassifier meta-learner is trained to classify galaxies us-
ing the OOF predictions from the 5 base-learners as features.
This is performed within a stratified k-fold procedure as de-
scribed above, and produces a new set of OOF predictions for
the training data set, in addition to a new set of predictions for
the test data set. A second iteration of meta-learning is then per-
formed, this time training on just two features: (i) the results of
the hard-voting ensemble, and (ii) the OOF predictions produced
in the previous iteration of meta-learning. Finally, the resulting
model is used to predict classes for the test data. For an alterna-
tive implementation of generalized stacking, applied to redshift
estimation, see Zitlau et al. (2016).

One of the benefits of generalized stacking is that the opti-
mization of base-learner hyperparameters, while still necessary
to some extent, is not as crucial for the final performance of the
pipeline as it would be when a single learning algorithm is used.
This is partly because when the meta-learner distills the base-
classifiers into a single classifier, it performs a process broadly
analogous to optimization and model-selection. Arguably, this
process can be more efficient than traditional optimization and
model selection methods, since it is performed in a single step
and is not restricted to selecting a single model or a single set of
hyperparameters, and instead can combine the strengths of sev-
eral different classifiers that are best able to model different sub-
sets of the data. In the case where a single base-learner is used
within our pipeline, the generalized stacking procedure instead
serves as an ‘error-correction’ algorithm.

We have not attempted to perform an exhaustive optimiza-
tion of the base-learners prior to applying our generalized stack-
ing method. Instead, for each learner we have manually identi-
fied a set of default hyperparameters that gives what we judged
to be near to the global maximum of the F1-score for select-
ing quiescent galaxies from the mock catalogues. This is done
to avoid biasing the individual base-learners towards producing
classifiers that all succeed (or fail) in modelling the same subset
of the data, and to expand the diversity of classification models
available to the meta-learner.

In the default configuration of our pipeline, all five default
base-learners are used. However, the user can instead use a sub-
set of the base learners, or a single base-learner, when appropri-
ate. For example, we opt to use XGBoostClassifier for the se-
lection of quiescent galaxies at 2.5 < z < 3.0, where its sparsity
awareness confers a significant advantage over the other clas-
sifiers. In addition, the pipeline has a ‘fast mode’ which uses
LightGBM for all classification or regression tasks, at the cost of
a small but significant reduction in P, R, and F1-score (∼ 0.01–
0.03). Timed on a mid-range laptop with a quad-core Intel i5-
8350U CPU and 16 Gigabytes of RAM, the pipeline used in fast
mode takes at total of ∼ 2 minutes to train its classifier on a
data set with ∼ 120 000 examples and 70 features, compared to
∼ 74 minutes when using the default (5 base-learners) pipeline
configuration.

Our pipeline makes use of redshift information in one of sev-
eral ways, depending on the classification problem that is posed.
When redshifts are available, these can be included as an addi-
tional feature in the training and test data. In addition, when the
objective is to select quiescent galaxies in a specific redshift in-
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terval, pre-binning can be used to discard objects that lie outside
the desired redshift interval.

In the absence of redshifts for the test sample, the pipeline
first performs a global selection of quiescent galaxies (without
regard to redshift), then trains a KNeighborsRegressor model
to predict photometric redshifts for the selected quiescent galax-
ies. The photometric redshift point estimates are refined using
our implementation of the semi-supervised ‘pseudo-labelling’
technique (Lee 2013), which aims to use both labelled and unla-
belled data to learn the underlying structure of the data, thereby
improving generalisation. Finally, analogous to Fotopoulou &
Paltani (2018); Singal et al. (2022), a KNeighborsRegressor
model is trained to predict whether a galaxy’s redshift estimate
is a catastrophic outlier, with a tunable probability threshold to
control the strength of the outlier removal.

4.2. Feature engineering

4.2.1. Broad-band colours

Before applying our algorithm to the data, we first performed a
pre-processing step known as ‘feature engineering’, whereby the
data are enriched with information to help the algorithm learn
more efficiently. We start with the broad-band magnitudes and
their 1σ errors as base features. Because colours offer a po-
tentially clearer description of the relative shape of the broad-
band SED than magnitudes, we have also calculated all possible
(unique) broad-band colour permutations, and included them as
features. In cases where fluxes are given instead of magnitudes
(e.g. VLA radio flux measurements), we converted the values to
magnitudes before deriving the related colours.

4.2.2. Missing data imputation strategy

One of the advantages of our machine learning approach to
galaxy classification is the possibility to efficiently deal with
missing data. A subset of galaxies in the mock catalogues is un-
detected, or unobserved, in one or more filter; we consider it
highly desirable to include them in our analysis, where possible,
for several reasons: (i) such objects enlarge our training data set;
(ii) non-detection in some bands is likely to carry useful infor-
mation for our learning algorithm (e.g. u-band drop-outs); (iii)
the upcoming large surveys (e.g. Euclid, LSST, etc.) that moti-
vate this work will produce large data sets where many galaxies
have missing data in one or more bands, and such objects need
to be utilized to make the most effective use of the survey data.

Here, we impute values for missing data with a method
that is independent of the reason for it to be missing. When
using tree-based learning algorithms (CatBoostClassifier,
LightGBMClassifier, RandomForestClassifier, or
XGBoostClassifier), we impute the missing values with
the arbitrarily chosen constant value −99.9. All broad-band
colours that would have used the missing value are also set to
−99.9. Because none of the measured magnitudes or colours
have this value (nor do they have similar values), information
about the presence of missing values is thus preserved such
that the tree-based learners can use non-detections to aid their
classification of sources; this information is essentially lost
if the average, median, or minimum value would be used
instead for the imputation. Conversely, the MLPClassifier
and KNeighborsCLassifier learning algorithms are generally
more sensitive to the normalisation of the input features, and
imputing data with the value −99.9 is likely to create inappro-
priate and unhelpful artefacts in feature-space; therefore, in the

cases of MLPClassifier and KNeighborsCLassifier we
instead impute missing values with the mean of the respective
feature, computed across the sample of galaxies using all the
non-missing values.

We emphasize that the primary motivation behind our impu-
tation strategy is to flag non-detections such that the learning al-
gorithms can deduce how to use them most effectively; an added
benefit of this strategy is that it allows the use of objects with
photometric SEDs that are missing one or more bands, without
necessarily having to discard them.

Table 2 illustrates the impact on the F1-score from using
one of several different imputation strategies, using a fixed ran-
dom seed for the train/test split and base learners. Results for
the following strategies are shown: imputation with the mean,
the median, the minimum, a constant value of −99.9, or dy-
namically switching between −99.9 for tree based learners and
the mean for MLPClassifier and KNeighborsCLassifier.
In each case, the F1-scores are shown for the base learners
and for the final stacked ensemble classifier. While the results
vary significantly depending on the choice of random seed, the
general outcome is that, as expected, the tree-based learning
algorithms (CatBoostClassifier, LightGBMClassifier,
RandomForestClassifier, or XGBoostClassifier) gen-
erally give higher F1-scores when using missing values
that are imputed with −99.9, whereas MLPClassifier and
KNeighborsCLassifier generally produce higher F1-scores
when using the mean, median, or minimum of a feature for im-
putation.

To provide the learning algorithms with additional help to
treat missing data, we created a feature (n_missing) which
counts the number of missing magnitude values for each galaxy.
Although not needed in the present study, the ARIADNE pipeline
has the capability to make use of categorical flags that specify
the reason for each missing data point in the input data (i.e., non-
detection vs. not observed or masked).

Standardization was performed using the Standard
Scaler from Scikit-Learn, which removes the mean and
scales to unit variance. Missing values flagged with the value
−99.9 are ignored during the standardization procedure.

4.2.3. Target variable

We generate a target feature representing the binary classifica-
tion of the galaxies. This feature is dynamically filled, depending
on the specific subset of galaxies to be selected. At its simplest,
the target variable is set to 0 for star-forming galaxies and 1 for
quiescent galaxies. To select quiescent galaxies in a specific red-
shift range, the target feature is set to 1 for all quiescent galaxies
in that redshift band, and 0 for all other galaxies.

It is important to note that in the case of the Int catalogues,
the sSFR label, and consequently the binary target variable, has
an intrinsic uncertainty. Depending on the nature of the uncer-
tainties, it is entirely possible that our classification methodology
is outperforming the initial sSFR evaluation. However, a detailed
analysis of this potential effect is beyond the scope of this Paper.

4.2.4. Feature importance and selection

It is important to ensure that our models are trained using
only features that provide useful information for the predic-
tion of the target variable. First, we examined the feature im-
portance information provided by three of the tree-based learn-
ing algorithms that we use here (RandomForestClassifier,
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Table 2. The impact on the F1-score from using one of several different imputation strategies. In this example, we have trained models to select
quiescent galaxies from the Int Wide mock catalogue in the redshift bin 2 < z < 2.5, using ugriz, Euclid, W1, W2, and 20 cm photometry and
colours, and with pre-binning by redshift, as described in Sect. 5.1.2. A single random seed is used for the train/test split and base learners to allow
a relatively controlled comparison between methods. The columns are as follows: (1) The learning algorithm; also shown are the final F1-scores
after the models produced by the 5 default base-learners have been ensembled using meta-learners; (2) F1-score when missing values are imputed
with the constant value −99.9; (3) F1-score when imputing with the average value of a feature; (4) F1-score when missing values are dynamically
imputed with either the constant value −99.9 (tree-based learners) or the mean of a feature (MLPClassifier and KNeighborsCLassifier); (5)
F1-score when imputing with the median value of a feature; (6) F1-score when imputing with the minimum value of a feature. Some F1-scores
differ significantly to those presented in Sect. 5, since here we use only a single random seed instead of averaging results over multiple pipeline
runs that use different random seeds. Note that in this test, MLPClassifier was unable to correctly identify any quiescent galaxies when missing
values were imputed with −99.9; nonetheless, this failure did not appear to be detrimental to the final meta-learner ensemble.

Learning algorithm Imputed value: −99.9 mean −99.9 or mean median minimum
(1) (2) (3) (4) (5) (6)
CatBoostClassifier 0.633 0.632 0.633 0.644 0.621
LightGBMClassifier 0.678 0.621 0.678 0.596 0.655
RandomForestClassifier 0.607 0.561 0.607 0.576 0.607
MLPClassifier 0.000 0.610 0.610 0.621 0.633
KNeighborsCLassifier 0.519 0.526 0.526 0.526 0.519
Meta-learner ensemble of the above 0.667 0.600 0.656 0.623 0.610
XGBoostClassifier 0.610 0.576 0.610 0.586 0.621

Base Learners
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Predict 
Test Set 
Classes

Meta 
Learner 
(level 2)

Out of Fold 
Predictions 

(level 2)

Meta 
Learner 
(level 3)

Hard 
Vote

Predict 
Test Set 
Classes 
(level 3)

Predict 
Test Set 
Classes 
(level 2)

Train 
Data

Test  
Data

Hard 
Vote

LightGBM

Random 
Forest

MLP

KNNeighbors

Evaluate 
Metrics

CatBoost

Fig. 6. Flow chart illustrating the overall learning algorithm used for the ARIADNE classification pipeline.

CatBoostClassifier, and XGBoostClassifier). Feature
importance provides a general picture of the relative useful-
ness of each feature in the construction of the resulting clas-
sification models. Each of the aforementioned learning algo-
rithms uses a slightly different method to calculate feature
importance values. RandomForestClassifier calculates the
mean decrease in impurity when a feature is used in a split.
CatBoostClassifier provides several options, from which we
select PredictionValuesChange, which indicates the average
change in the predicted values that result from a change in the
feature value. In the case of XGBoostClassifier, we opt to
use the gain, defined as the improvement in accuracy resulting
from the use of a feature in the branches it is on.

In Fig. 7 we show examples of the feature importances re-
sulting from training each of the three aforementioned tree-based
learners to select quiescent galaxies in the range 0 < z < 3, with-

out foreknowledge10 of galaxy redshifts. Significant differences
are evident among the results in terms of the importance values
themselves and feature importance rank, reflecting differences
among the learning algorithms, the fact that many of the features
are strongly correlated, and the somewhat different methods used
to compute feature importances.

In general, the broad-band colours typically show some of
the highest feature importance values, indicating they are among
the most informative, as one would expect given the strong cor-
relation between the shape of a galaxy’s SED and its activity
type. In addition, the broad-band magnitudes are also clearly
useful to some degree. The feature that counts missing values
(n_missing) also appears to be useful, at least in some circum-
stances. However, the magnitude errors (not shown) show very
low importance values, implying they provide little or no useful
information. An important caveat is that feature importance val-

10 In other words, the input features for the classification models do
not contain redshift values, nor are they binned or sorted by redshift. In
cases where redshift information is included among the input features,
this will be stated.
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Fig. 7. Examples of feature importance derived from the RandomForest, CatBoost, and LightGBM classifiers when selecting quiescent galaxies
from within the 0 < z < 3 interval, without foreknowledge of galaxy redshifts. For each learner, the feature importance values are normalized
such that their sum is 1.0. The y-axis labels correspond to feature names used by the pipeline after the pre-processing steps outlined in Sect. 4.2
have been applied, and should be self-explanatory. For example, the feature named ‘u’ is derived from the u-band magnitudes, i.e„ after our
pre-processing steps; the feature ‘VIS-20CM’ is derived from the IE − 20 cm colours, etc.

ues do not necessarily give an accurate picture of how the inclu-
sion (or removal) of a particular feature affects the metric used
to quantify model performance. Moreover, our feature analysis
applies only to the tree-based learning algorithms we have used,

and there is no guarantee that it applies to any of the other learn-
ing algorithms present in our pipeline.

Thus, to better understand the general usefulness of each of
our features, we tested how removing a feature affects the F1-
score metric that we calculate after execution of the complete
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pipeline. We have conducted A/B tests in which our algorithm is
trained and cross-validated twice, once with a particular feature
removed, and once more with this feature reinstated. All other
parameters were kept constant between the two training runs,
including the training/test data split and all random seeds; this
A/B test process was repeated multiple times (> 10) for each
feature, each time using a new random seed to ensure the A/B
test results are not dependent on which random seed is used. The
resulting difference in the F1-scores between the two A/B test
runs then indicates whether the inclusion of a feature is useful
(higher F1-score) or not (lower or unchanged F1-score).

We find that removal of any of the broad-band colours or
magnitude values results in a noticeable decrease in the F1-score,
indicating they are all useful for training our algorithm. While
the broad-band magnitudes technically provide the learning al-
gorithms with a full description of the broad-band SED enclosed
by the respective wavelength range, it is clear that explicitly pro-
viding spectral slopes in the form of broad-band colours allows
significantly more accurate model training.

We also find that inclusion of n_missing results in a sig-
nificant improvement in the F1-score, although the size of the
improvement appears to depend somewhat on the classification
objective, such as the redshift range of galaxies under selection,
and the base learner used. Conversely, removing any (or all) of
the magnitude error features results in a small but significant im-
provement in the F1-score, indicating they are uninformative and
merely add noise to the training data.

Therefore, our machine learning pipeline trains on the fol-
lowing features: (i) the magnitudes; (ii) the broad-band colours;
(iii) the n_missing feature.

5. Results

5.1. Selection in redshift bins

We now apply our classification pipeline to the problem of se-
lecting quiescent galaxies from the mock Euclid photometry
catalogues. The objective is to examine the suitability of our
method for the separation of quiescent and star-forming galaxies,
to facilitate expected Euclid legacy science related to quiescent
galaxies. We assume that prior to application of our pipeline, the
following steps have been performed: (i) correction for Galactic
extinction; (ii) pre-classification into star, active galaxy, and non-
active galaxy classes; (iii) photometric or spectroscopic redshifts
have been determined, where applicable.

To allow a direct comparison with the colour-colour methods
of B20, we select quiescent galaxies in redshift bins delimited by
the values z = 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5. We in-
clude an additional bin covering the range 2.5 ≤ z < 3. The bin-
ning is performed using the 30-band photometric redshifts from
Laigle et al. (2016), and assumes that high quality photometric
(or spectroscopic) redshifts will be available for all the galaxies.
Hereinafter, all redshift values correspond to the 30-band pho-
tometric redshifts from Laigle et al. (2016), with the obvious
exception of those derived using our pipeline in Sect. 5.2.

A significant fraction of the Euclid survey area is expected
to have deep, overlapping ground-based imaging observations
from optical surveys (e.g. LSST), but in some areas these obser-
vations may be sparse or non-existent. Therefore, we test the per-
formance of our pipeline under the three main expected cases in
terms of photometric depth and coverage: (i) Euclid Deep Survey
photometry with supporting ugriz, W1, W2, and 20 cm photom-
etry; (ii) Euclid Wide Survey photometry with supporting ugriz,
W1, W2, and 20 cm photometry; (iii) Euclid Wide Survey pho-

tometry only. Results for these, and additional cases, are shown
in Fig. 8 and 9.

5.1.1. Deep survey: Euclid, ugriz, W1, W2, 20 cm

When selecting from the Int Deep catalogue using features de-
rived from the Euclid, ugriz, WISE, and VLA photometry (blue
points, second row of Fig. 8), the F1-score shows a general rise
from values of ∼ 0.7 at low-z, before peaking at a value of 0.86
in the 1.0 < z < 1.25 bin and declining towards higher redshifts,
reaching a value of 0.48 in the 2.5 < z < 3.0 bin.

Selecting from the SED Deep catalogue results in a broadly
similar F1-curve (blue points, fourth row of Fig. 8), albeit with a
broad plateau over the range 0.75 <∼ z <∼ 2.0, with maximum and
minimum values of 0.97 and 0.75, respectively. The F1-scores
are systematically higher by ∼ 0.1–0.3 compared to values ob-
tained in the same redshift bins using the Int Deep catalogue.

Interestingly, at z >∼ 1 there is only a marginal reduction
in F1-score when the selection is performed without the ugriz,
WISE, and 20 cm photometry. In other words, provided the red-
shifts are known beforehand, these bands are largely superflu-
ous for the selection of quiescent galaxies, presumably due to
the fortuitous positioning of the 4000-Å break within the Euclid
broad-band SED.

5.1.2. Wide survey: Euclid, ugriz, W1, W2, 20 cm

The situation is broadly similar when selecting from the Wide
catalogue using features derived from the Euclid, ugriz, WISE
and 20 cm photometry (blue points in the first and third rows of
Fig. 8). The F1-curve shows a gradual increase from z = 0 to a
broad peak or plateau at 0.75 <∼ z <∼ 2.0, after which there is a
gradual decline towards higher redshifts. In the case of the Int
Wide selection, the maximum and minimum F1-scores are 0.87
and 0.42, respectively. For the SED Wide selection, these values
are 0.89 and 0.69.

As before, the F1-scores are usually higher when selecting
from the SED Wide catalogue compared to the Int Wide cata-
logue, with values that are up to ∼ 0.3 higher. Again, at z >∼ 1
there is only a marginal reduction in F1-score when the selection
is performed without the ugriz, WISE, and VLA photometry.

As discussed in Sect. 4.1, when selecting from the 2.5 < z <
3.0 bin we have used a single base-learner, XGBoost, together
with the generalised stacking algorithm (see also Fig. B.1, right
panel). When selecting quiescent galaxies from the Wide cata-
logues in this redshift bin, this pipeline setup provides signifi-
cantly higher F1-scores compared to the default pipeline config-
uration where five base-learners are employed. Although it is not
immediately clear why this is the case, we suggest that its ability
to understand which values are missing, and its subsequent use
of missing values when performing splits, allows the XGBoost
algorithm to build stronger classifiers than other learners when
there is a high fraction of (informative) missing values in the data
set, as is the case here (see Fig. 4).

It is also interesting to note that the Int Wide catalogue con-
tains only 16 quiescent galaxies in the range 2.5 ≤ z ≤ 3 with
detections in all of the Euclid bands. As such, the training set
contains on average 10.7 quiescent galaxies, and the test set 5.3,
making this a ‘few-shot learning’ problem. Remarkably, despite
the small number of examples in this redshift band, our pipeline
is able to obtain P, R, and, F1-score of ∼ 0.43.
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Fig. 8. Precision, recall, and F1-score for various methods of identifying quiescent galaxies. We show results for the three cases discussed in
Sect. 5.1: (i) Euclid Deep Survey photometry with supporting ugriz, W1, W2, and 20 cm photometry; (ii) Euclid Wide Survey photometry with
supporting ugriz, W1, W2, and 20 cm photometry; (iii) Euclid Wide Survey photometry only. Two curves are shown for the Euclid-only case,
corresponding to results obtained either with, or without, foreknowledge of the galaxy redshifts. All other results shown in this figure were obtained
assuming foreknowledge of redshifts. In addition, we show the result of applying the IE − YE, JE − HE colour-colour selection method developed
by B20, assuming foreknowledge of (photometric) redshifts. In this and subsequent plots showing metrics vs. redshift, the x-axis represents the
‘ground truth’ photometric redshifts from COSMOS2015 (Laigle et al. 2016).

5.1.3. Wide survey: Euclid only

We also examine the performance of our pipeline when only Eu-
clid observations are available and for which a reliable redshift is
not available (black points in Fig. 8). These conditions are likely
to pertain to a small, but potentially significant number of galax-
ies in the Wide survey. In this case, our classification pipeline
must learn to place galaxies simultaneously into the correct ac-
tivity class and into the correct redshift bin.

The quality of the classification varies substantially across
the redshift range, with a peak F1-score of 0.71 in the z = 0.75–
1 bin, and with minima of ∼ 0.2–0.3 at either end of the range.
The results are largely independent of whether the Int Wide or
SED Wide catalogue is used.

Without ugriz photometry or redshifts, the classification
problem becomes much more challenging, and unsurprisingly
the resulting selection is of reduced quality compared to the
cases discussed in Sect. 5.1.1 and Sect. 5.1.2. In particular, the
F1-scores are consistently lower than those obtained when also
using ugriz photometry and redshifts, with differences of a factor
of two or more occurring near endpoints of the considered red-
shift range. Thus, a key result is that redshift information allows
for a significantly more accurate selection of quiescent galaxies.

5.2. Global selection and redshift estimation

An alternative to selection in bins (Sect. 5.1) is first to perform
a global selection of quiescent galaxies, ignoring redshift infor-
mation, and subsequently derive photometric redshifts for the
selected galaxies. In this approach, we set the Target variable to
1 for all quiescent galaxies in the range 0 ≤ z ≤ 3. The Target is
set to 0 for star-forming galaxies at z ≤ 3, and also for all galax-
ies at z > 3, regardless of their sSFR. This analysis is performed
on two different subsets of the mock data. Casting a relatively
wide net, we use all galaxies from the subset of each mock cata-
logue for which there is a detection in all of the Euclid bands. In
addition, the analysis is performed for the subset of galaxies for
which there is a detection in each of the ugriz and Euclid bands.

The results are shown in Table 3. The F1-score, P, and R
metrics can vary significantly depending on which mock cata-
logue is used and whether galaxies with a non-detection in an op-
tical band are included or rejected. When detections are required
in Euclid IE, YE, JE, and HE bands only, we obtain P = 0.85,
R = 0.75, and an F1-score of 0.80 for the Int Wide catalogue, or
P = 0.88, R = 0.76, and an F1-score of 0.82 for the SED Wide
catalogue. Using the Int Deep catalogue, we obtain the metric
values P = 0.77, R = 0.60, and an F1-score of 0.67, which are
significantly lower than those obtained with Int Wide. On the
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Fig. 9. Precision, recall and F1-score for quiescent galaxy identification methods when applied to the subset of galaxies detected in u, IE, and JE,
using features derived from the ugriz, Euclid, W1, W2, and (for the Int catalogues) the 20 cm bands. For comparison, we show the F1-scores when
only features derived from the u and Euclid bands are used. We also show curves representing the u − IE, IE − JE colour-colour selection method
proposed by B20.

Table 3. Results from global selection of quiescent galaxies at 0 ≤ z ≤ 3, and photometric redshift estimation. The columns are as follows: (1)
Mock catalogue; (2) bands in which galaxies are required to be detected; (3) precision P for quiescent galaxy selection; (4) recall R for quiescent
galaxy selection; (5) the F1-score for quiescent galaxy selection; (6) normalized median absolute deviation (NMAD) for the photometric redshifts;
(7) catastrophic outlier fraction ( fout) for the photometric redshifts; (8) bias of the photometric redshifts; (9) fraction of quiescent galaxy redshifts
rejected as potential catastrophic outliers ( frej). The typical uncertainties on the P, R, and F1-score values herein are ≤ 0.01.

classification statistics︷                          ︸︸                          ︷ photometric redshift statistics︷                                                   ︸︸                                                   ︷
Catalogue Detections Required P R F1-score NMAD fout Bias frej
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Int Wide IE, YE, JE, HE 0.85 0.75 0.80 0.027 0.022 0.0031 0.14
SED Wide IE, YE, JE, HE 0.88 0.76 0.82 0.033 0.017 0.0000 0.22
Wide (averaged) IE, YE, JE, HE 0.87 0.76 0.81 0.030 0.019 0.0016 0.18
Int Deep IE, YE, JE, HE 0.77 0.60 0.67 0.030 0.022 0.0002 0.44
SED Deep IE, YE, JE, HE 0.88 0.79 0.83 0.022 0.015 −0.0008 0.29
Deep (averaged) IE, YE, JE, HE 0.83 0.70 0.75 0.026 0.018 −0.0003 0.37
Int Wide ugriz, IE, YE, JE, HE 0.88 0.85 0.86 0.023 0.020 0.0024 0.20
SED Wide ugriz, IE, YE, JE, HE 0.96 0.91 0.94 0.024 0.009 0.0008 0.01
Wide (averaged) ugriz, IE, YE, JE, HE 0.92 0.88 0.90 0.024 0.014 0.0016 0.10
Int Deep ugriz, IE, YE, JE, HE 0.80 0.63 0.70 0.030 0.020 0.0013 0.39
SED Deep ugriz, IE, YE, JE, HE 0.96 0.92 0.94 0.020 0.010 0.0000 0.01
Deep (averaged) ugriz, IE, YE, JE, HE 0.88 0.78 0.82 0.025 0.015 0.0007 0.20

other hand, when using the SED Deep catalogue, the metrics are
P = 0.88, R = 0.79, and an F1-score of 0.83.

When detection in Euclid IE, YE, JE, HE, and all of ugriz is
required, the metrics are substantially improved, with P = 0.88,
R = 0.85, and an F1-score of 0.86 for the Int Wide catalogue,
or P = 0.96, R = 0.91, and an F1-score of 0.94 for the SED

Wide catalogue. These improvements are predominantly due to
the fact that requiring a detection in each of the optical and near-
IR bands reduces the input data to a substantially smaller subset
with relatively well constrained broad-band spectral energy dis-
tributions (see Fig. 5 and Table C.1). Under these conditions,
for the Int Deep catalogue, we obtain P = 0.80, R = 0.63, and
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an F1-score of 0.70; for SED Deep, P = 0.96, R = 0.92, and an
F1-score of 0.94 are obtained.

To evaluate the quality of the photometric redshift estimates,
the 30-band photometric redshifts derived by Laigle et al. (2016)
were used as the ‘ground truth’. In Table. 3, we also give the
values of NMAD, bias, and the catastrophic outlier fraction ( fout)
for the quiescent subset of galaxies whose photometric redshifts
were not flagged as outliers by our pipeline.

Removal of likely catastrophic outliers was performed as
described in Sect. 4.1, using a relatively stringent probability
threshold of 0.15. In other words, we rejected photometric red-
shift estimates which were assigned a probability of ≥ 0.15 of
being a catastrophic outlier. As with most outlier removal meth-
ods, the removal of genuine catastrophic outliers usually comes
at the cost of also removing cases that are not catastrophic out-
liers. The fraction of quiescent galaxies whose photometric red-
shifts were rejected as catastrophic outliers ( frej), and thus were
not used to calculate NMAD, bias, or fout, is also shown.

Like the classification metrics, the metrics of photometric
redshift quality show variation depending on which mock cat-
alogue (or subset thereof) is used. We obtain values for NMAD
between 0.020 and 0.033, catastrophic outlier fractions between
0.009 and 0.022, and values of bias in the range −0.0008 to
0.0031. While these values appear to improve on the results of
the recent Euclid Photometric Redshift Challenge (Euclid Col-
laboration: Desprez et al. 2020), it is important to recognise that
the mock Euclid photometry catalogue used therein has a sig-
nificantly different construction to those we have used herein,
making the intercomparison of photometric redshift metrics po-
tentially unreliable.

6. Comparison with other methods

We test the performance of our quiescent galaxy selection
pipeline against four different colour-colour selection methods.
We make like-for-like comparisons, such that our pipeline and
the colour-colour method under consideration are applied to pho-
tometrically identical subsets of the mock catalogues. In sum-
mary, our machine learning method outperforms each of the
colour-colour methods we tested; full details are given in the fol-
lowing subsections.

6.1. IE − YE, JE − HE selection

To perform a like-for-like comparison with the IE−YE, JE−HE se-
lection method, we select from the mock catalogues those galax-
ies that have a detection in all of the Euclid bands (i.e., IE, YE, JE,
and HE). We then bin the galaxies by redshift as described in
Sect. 5.1, and for all bins (except z = 2.5–3.0 where there are too
few galaxies; see B20), we select quiescent galaxies using the
IE − YE, JE − HE criteria given by B20. The results are shown by
the green points in Fig. 8.

Our selection pipeline outperforms the IE−YE, JE−HE for al-
most every combination of redshift and mock catalogue, with the
greatest improvements in the F1-score occurring near each end-
point of the considered redshift range. When our pipeline uses
all the available photometry (blue line in Fig. 8), the improve-
ment in the F1-score ranges from negligibly small at z ∼ 1.5, to
a factor of ∼ 2 in the z = 0–0.25 and z = 2–2.5 bins.

While the inclusion of additional photometry bands is clearly
part of the reason for the improvements we have obtained, it is
not the whole story. We find that, even when our pipeline has
access to exactly the same photometry bands as the IE−YE, JE−HE

Fig. 10. Comparison between our machine learning method, LePhare
SED fitting, and UV J colour-colour method, for the selection of quies-
cent galaxies from the SED Wide mock Euclid catalogue. The following
three configurations of input data were used: (i) Euclid photometry only,
with no redshift information; (ii) Euclid photometry only, this time with
photometric redshifts from Laigle et al. (2016); (iii) Euclid, ugriz, W1
and W2 photometry, again using photometric redshifts from Laigle et
al. (2016).

method (i.e., all four Euclid bands; orange points in Fig. 8), it
still significantly outperforms the colour-colour method. This is
because the other Euclid colours (IE− JE, IE−HE, YE− JE, YE−HE)
carry information regarding the sSFR that is not present in IE−YE

or JE − HE.
When our pipeline is configured to select quiescent galaxies

in the same set of redshift bins, using Euclid photometry only,
and in the absence of redshift information (black points in Fig. 8,
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we find that, in roughly half of the redshift bins, the resulting
F1-scores are similar to those obtained using the IE − YE, JE −

HE method (which has the benefit of foreknowledge of galaxy
redshifts). This is generally the case for z <∼ 1, while in the range
1 <∼ z <∼ 1.75 our pipeline yields significantly lower F1-scores
in this configuration. Interestingly, the F1-scores obtained using
our pipeline to select quiescent galaxies in the z = 2–2.5 bin are
practically identical to, or slightly above, those obtained using
the IE − YE, JE − HE method.

6.2. u − IE, IE − JE selection

For our comparison with the u − IE, IE − JE method, we use only
galaxies that are detected in each of the u, IE, and JE bands. Due
to the increasing sparsity of the u-band data at high redshifts,
B20 were only able to derive u − IE, IE − JE selection criteria in
redshift bins delimited by the values z = 0, 0.25, 0.5, 0.75, 1.0
in the case of the Wide survey mock catalogues, or z = 0, 0.25,
0.5, 0.75, 1.0, 1.25, 1.5 for the Deep catalogues. To these bins we
have applied our quiescent galaxy selection pipeline. The results
are shown in Fig. 9, together with the result of applying the u−IE,
IE − JE method of B20.

Once again, our pipeline (blue or orange points in Fig. 9)
outperforms the colour-colour selection method (green points).
The improvement is minimal when using the Wide survey mock
catalogues, but is more substantial in the case of the Deep cat-
alogues (up to a factor of ∼ 1.4), mainly due to improved re-
call. The largest improvements occur at the upper endpoint of
the considered redshift ranges. There is little to no reduction in
the performance of our pipeline when only the u, IE, YE, JE, and
HE bands are used (orange points in Fig. 9), compared to when
the full suite of photometry is used (blue points in Fig. 9). Once
again, the improvement obtained from using our machine learn-
ing pipeline is largely due to its ability to make use of a larger
colour- and magnitude-space.

6.3. BzK selection

In addition, we compare the quality of our quiescent galaxy se-
lection method against the BzK selection method, which is de-
signed to select quiescent galaxies at 1.4 < z < 2.5 using the
z − K and B − z broad band colours (Daddi et al. 2004). For
this comparison, we have used the observed B, z and K magni-
tudes from the COSMOS2015 catalogue, for galaxies in the Int
Wide catalogue, adopting the criteria of Daddi et al. (2004) of
(z − K) − (B − z) < −0.2 and z − K > 2.5 to select quiescent
galaxies. To evaluate the success of the BzK method, we use
the sSFR values from the Int Wide catalogue, adopting the same
sSFR < 10−10.5yr−1 threshold to define quiescence.

First, we take the subset of the Int Wide catalogue that lies
in the redshift range 1.4 < z < 2.5, and apply the BzK selection
method. We obtain P, R, and F1-score values of 0.51, 0.50 and
0.50, respectively. Applying the ARIADNE pipeline to the same
subset of galaxies, using features derived from the Euclid, ugriz,
W1, W2, and 20 cm bands, we obtain P, R, and F1-score values
of 0.79, 0.80, and 0.79, respectively. Repeating the same tests
over the full redshift range of the Int Wide catalogue, the BzK
method results in P, R, and F1-score of 0.44, 0.07, and 0.13,
compared to 0.85, 0.75, 0.80 from ARIADNE. In summary, our
machine learning method strongly outperforms the BzK selec-
tion method.

6.4. SED fitting with LePhare and UV J selection

We also tested, though not exhaustively, our selection pipeline
against an SED fitting method wherein the galaxies are sepa-
rated into quiescent and star-forming on the basis of the sSFR
estimated from the LePhare best fit to the mock photometry.
The fitting procedure is identical to that described in Sect. 2, ex-
cept that the fitting is performed on SED Wide mock photome-
try, instead of on observational data. Three slightly different ap-
proaches are taken, as follows: (i) Only Euclid photometry is
used, with redshift being a free parameter; (ii) only Euclid pho-
tometry is used, but redshift is fixed to the value given in Laigle
et al. (2016); (iii) Euclid, ugriz, W1, and W2 photometry is used,
including upper limits, with redshift fixed. We derive rest-frame
UV J colours from the best-fitting spectral templates, and use the
UV J selection criteria of Whitaker et al. (2011). The approach
used here may overestimate how well LePhare and the UV J
method can recover the galaxy class, since the creation of the
SED Wide mock catalogue and our subsequent fitting were in
both cases performed using LePhare, with an identical set of
base templates.

The F1-scores as a function of redshift are shown in Fig. 10
for the LePhare fitting and UV J methods. Also shown is the
F1-score for our machine learning method when applied to the
same subset of data, with identical redshift information.

Our machine learning method significantly outperforms both
approaches, most noticeably at z < 1 and z >∼ 2.5. While the
LePhare SED fitting method sometimes comes close to reaching
the F1-scores obtained by our machine learning method within
the z ∼ 1–2.5 range, in most redshift bins its F1-scores are dra-
matically lower; in the case of the UV J method, the F1-scores
are always dramatically lower, typically by ∼ 0.2, than those
obtained with our machine learning method. The superior per-
formance of our method is at least partly due its ability to learn
how to optimally weight the different bands and colours in dif-
ferent regions of feature-space, unlike the LePhare fitting and
UV J methods.

7. Further analysis and tests

Here we sumarize some additional analysis and tests we have
conducted. Full details are provided in Appendix B.

7.1. Stacking vs. individual learners

Our implementation of the generalized stacking method demon-
strably improved classification performance:

– With few exceptions, the stacking method consistently out-
performs each individual base-learner, as well as outper-
forming model averaging and hard-voting (Fig. B.1);

– The method is robust against pollution by multiple low-
quality classifier models, and can be used as a form of model
selection;

– When applied to a single classifier model, the meta-learner
often makes a substantial improvement over the original
model.

7.2. The nature of the false positives

We have also examined the distribution of false positives within
sSFR space, with the following main conclusions:

– As expected, the incorrectly classified objects cluster around
the class threshold value (10−10.5yr−1), with a density that is
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highest in the bins immediately adjacent to the class bound-
ary (Figs. B.2 and B.3);

– The precise distribution of the incorrect classifications differs
between the different mock catalogues;

– Our pipeline offers a significant improvement in ĪFP over the
IE − YE, JE −HE and u− IE, IE − JE colour-colour methods, re-
ducing the degeneracy between quiescent galaxies and dusty,
star-forming galaxies as shown in Fig. B.4 (in addition to im-
proving on the P, R, and the F1-score metrics as described
above).

7.3. Reconciling the Int and SED results

Generally speaking, our classification results differ depending
on whether the mock catalogue was constructed using the Int or
SED method. Firstly, we argue that results obtained using the Int
catalogues are likely to be pessimistic with regard to the perfor-
mance of our pipeline when applied to real Euclid data; this is
because the Euclid photometry is expected to have significantly
higher signal-to-noise ratios, and because the method of inter-
polating photometry to simulate the Euclid bands is also likely
to introduce errors. Conversely, we expect that results obtained
with the SED catalogues are likely to be somewhat optimistic,
because the construction of the SED catalogues involves forcing
the photometry to conform to one of a limited range of galaxy
templates.

Thus, we argue that results obtained with the Int and SED
catalogues will bracket the real-Universe performance of our
pipeline. As a result, we show performance metrics averaged
over the Int catalogue and the corresponding SED catalogue (i.e.,
Int Wide and SED Wide; Int Deep and SED Deep) in Tables 3
and 4, where appropriate.

7.4. Tuning the probability threshold

We investigated the impact on the precision and recall of tuning
the value of the class probability threshold, instead of adopting
the default threshold value of 0.5 (see Fig. B.5). Our main find-
ings are:

– There exists a trade-off between precision and recall such
that one may be increased, but at the cost of reducing the
other; tuning the probability threshold allows a balance to be
struck between P and R that is suitable for different scientific
needs;

– Using the case shown in Fig. B.5 (bottom panel) as an ex-
ample, adopting a probability threshold of 0.85 yields a very
pure sample of quiescent galaxies (P = 0.98) but with mod-
erate incompletness (R = 0.56); conversely, a probability
threshold of 0.05 results in high completeness (R = 0.97)
but moderate purity (P = 0.61).

7.5. Impact of including redshift as a feature

We have examined the usefulness of including the Laigle et al.
(2016) COSMOS2015 photometric redshifts as a feature in the
data used for model training (e.g. Simet et al. 2021). Selected
results are included in Table 4, and are shown in Fig. B.6. Our
main findings are:

– Inclusion of redshifts as a feature in the data significantly
improves the classification metrics by reducing the degener-
acy between redshift and sSFR, particularly for galaxies at
z ≤ 0.5 or z ≥ 2.5;

– Even when only a subset of the redshifts are included, the
classification metrics are still improved compared to the case
where no redshift are included; in other words, it is benefi-
cial to include any available redshift information, even if it is
somewhat sparse, when training classification models.

7.6. The impact of noise

The impact of different types of noise has been explored. The
main results are summarized below:

– As expected, adding extra noise to the photometric data re-
sults in a reduction in the F1-score when selecting quiescent
galaxies.

– However, even when the data becomes extremely noisy
(S/N ∼ 3), our classification pipeline remains nominally
functional with an F1-score of ∼ 0.67 (see Fig. B.7).

– Our classification pipeline is robustly resistant to labelling
errors when these are random; however, systematic labelling
error tend to propagate into the final classification results.

– When photometric redshifts are included as a feature, adding
Gaussian noise to their values generally results in little or no
reduction in the classification metrics; we find that including
noisy redshift values still gives generally better classification
results compared to the case where no redshifts are included.

7.7. Transfer learning experiments

7.7.1. Training on templates and predicting on real SEDs

We have also experimented with using classification models
trained on spectral templates to select quiescent galaxies from
catalogues of observed photometry (see Fig. B.8). We find that
classifiers trained on the SED Wide catalogue are indeed able
to select quiescent galaxies from the Int Wide catalogue, albeit
with marginally lower F1-scores compared to models trained on
the Int Wide catalogue itself. Thus, machine learning models
trained on synthetic galaxy SEDs are a potential alternative to
traditional methods used selecting quiescent galaxies at redshifts
where there are few (or no) known examples (e.g. Girelli, Bol-
zonella, & Cimatti 2019; Cecchi et al. 2019).

7.8. Which observables are useful to select quiescent
galaxies?

We have investigated the impact of adding one of u,g,r,i,z, W1,
W2, and 20 cm to the Euclid bands, when selecting quiescent
galaxies. The main results are summarized as follows:

– Generally speaking, this results in a significant improvement
in the F1-score when selecting quiescent galaxies. The im-
provement varies depending on which band is added, and
the redshift interval in which the selection is performed
(Figs. B.9, B.10, B.11, B.12).

– As expected, the addition of a longer-wavelength optical
band is typically more useful for selecting quiescent galax-
ies at higher redshift; conversely, shorter wavelength optical
bands are more useful for low-redshift selection.

– Interestingly, the 20 cm radio band provides a significant im-
provement in F1-score at 1.75 <∼ z <∼ 2.5, despite this data
being very sparse.
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Table 4. Global selection of quiescent galaxies at 0 ≤ z ≤ 3 for different pipeline and data configurations. No pre-binning of the data by redshift
was performed. The columns are as follows: (1) Mock catalogue; where the metrics from using the SED and Int catalogues have been averaged,
this is indicated in parentheses; where the pipeline has been used in its fast mode, this is also indicated; in the case of transfer-learning, we specify
separately the catalogues from which the training and test data are drawn; (2) bands used for galaxy selection, which includes missing values;
(3) bands in which galaxies are required to be detected; (4) redshift information included in the input data; (none, or a percentage of redshifts
included in a feature); (5) precision P for quiescent galaxy selection; (6) recall R for quiescent galaxy selection; (7) the F1-score for quiescent
galaxy selection. The typical uncertainties on the P, R, and F1-score values herein are ≤ 0.01.

Catalogue Bands Used Detections Required Redshifts P R F1-score
(1) (2) (3) (4) (5) (6) (7)
Int Wide ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE none 0.85 0.75 0.80
Int Wide (fast mode) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE none 0.84 0.74 0.79
SED Wide ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE none 0.88 0.76 0.82
SED Wide (fast mode) ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE none 0.88 0.75 0.81
Wide (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm ugriz, IE, YE, JE, HE none 0.92 0.88 0.90
Wide (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm ugriz, IE, YE, JE, HE 100% 0.92 0.91 0.92
Wide (averaged) IE, YE, JE, HE IE, YE, JE, HE none 0.81 0.68 0.74
Wide (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE none 0.87 0.76 0.81
Wide (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 50% 0.86 0.79 0.82
Wide (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 100% 0.86 0.83 0.85
Wide (averaged, σz = 0.025) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 100% 0.86 0.83 0.84
Wide (averaged, σz = 0.05) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 100% 0.86 0.82 0.84
Wide (averaged, σz = 0.075) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 100% 0.86 0.81 0.83
Int Deep ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE none 0.77 0.60 0.67
Int Deep (fast mode) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE none 0.77 0.59 0.67
SED Deep ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE none 0.88 0.79 0.83
SED Deep (fast mode) ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE none 0.88 0.78 0.83
Deep (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm ugriz, IE, YE, JE, HE none 0.88 0.78 0.82
Deep (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm ugriz, IE, YE, JE, HE 100% 0.89 0.85 0.87
Deep (averaged) IE, YE, JE, HE IE, YE, JE, HE none 0.73 0.54 0.62
Deep (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE none 0.83 0.70 0.75
Deep (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 50% 0.83 0.74 0.78
Deep (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 100% 0.85 0.81 0.83
SED Wide (train), Int Wide (test) ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE 100% 0.76 0.86 0.81
Int Wide (train), SED Wide (test) ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE 100% 0.89 0.76 0.82
Int Deep (train), Int Wide (test) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE none 0.76 0.72 0.74
SED Deep (train), SED Wide (test) ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE none 0.71 0.83 0.76

8. Summary and concluding remarks

We have introduced the ARIADNE machine learning pipeline
for the classification of galaxies, which uses a novel archi-
tecture with meta-learning to combine the strengths of tree,
nearest-neighbours, and deep-learning methods, resulting in sig-
nificantly higher classification accuracy compared to the individ-
ual learning algorithms. The most relevant technical conclusions
from this study are as follows:

– We have applied the tree-ensemble methods
CatBoostClassifier and LightGBM to the selection
of quiescent galaxies, and find that both offer significant
performance improvements over the commonly-used
Scikit-Learn RandomForrestClassifier method, in
terms of model quality and training efficiency.

– Providing our pipeline with sparsity-awareness, by quantify-
ing the sparsity of the photometry for each galaxy, has been
found to improve classification performance. In addition, the
sparsity-aware method XGBoostClassifier was found to
be well suited for selecting quiescent galaxies at high red-
shifts (z > 2.5), which tend to have many missing photome-
try values.

– We have shown that our implementation of the ‘generalised
stacking’ method can be used to perform error-correction on
individual machine learning based galaxy classification mod-
els, sometimes turning a mediocre model into a significantly
better one.

– We have used the pseudo-labelling technique Lee (2013) to
improve the quality of our photometric redshift estimates,
with improvements in NMAD and the catastrophic outlier
fraction of ∼ 1–3 per cent. When applied to the high-volume
of data that will come from future very large surveys such
as Euclid or LSST, we expect pseudo-labelling to have a
much greater effect. Further exploration of the application
of pseudo-labelling to the estimation of galaxy physical
properties is presented in Humphrey et al. (2022).

We have applied our pipeline to the selection of quiescent
galaxies from mock Euclid photometric catalogues, using simu-
lated Euclid IE, YE, JE, HE photometry, optionally using ancillary
optical, infrared or radio measurements. The main results are as
follows:

– We have shown that our classification pipeline is able to ef-
ficiently select quiescent galaxies from within the redshift
range 0 < z < 3, using mock Euclid IE, YE, JE, and HE pho-
tometry and somewhat sparse supporting data at other wave-
lengths. The precision (purity), recall (completeness) and F1-
scores vary substantially with redshift, and between the var-
ious mock catalogues and subsets thereof.

– We find that including ancillary ugriz, mid-infrared (WISE)
and radio (20 cm) photometry yields substantial improve-
ment in the selection of quiescent galaxies at z <∼ 1. Smaller,
but nonetheless significant, improvements were found at z >∼
1.
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– In like-for-like comparisons, our machine learning pipeline
strongly outperforms the UV J method (Whitaker et al. 2011)
when derived from Euclid (and ancillary) survey mock pho-
tometry, and usually outperforms the Euclid-specific IE − YE,
JE − HE, and u − IE, IE − JE colour-colour selection methods
(B20). The improvement we obtain over the colour-colour
methods can exceed a factor of 2 in terms of completeness
and F1-score, with the greatest improvements occurring at
z <∼ 1 and z >∼ 2.

– In addition to being fewer in number, the false-positives re-
sulting from our classification pipeline are less extreme than
those resulting from the IE − YE, JE − HE, and u − IE, IE − JE

methods, in that their actual sSFR values are typically closer
to the boundary between quiescent and star-forming galax-
ies.

– The significantly improved classification compared to the
colour-colour, UV J, and template-fitting methods is likely
the result of the more efficient use of the available data by
our machine learning methodology. Compared to the colour-
colour methods, the ability to perform the classification in
a higher-dimensional colour-magnitude space clearly helps.
More generally, machine learning methodologies have the
ability to automatically weight the different colours and fil-
ters according to their usefulness for the classification task
at hand, whereas traditional methods often take a somewhat
‘blind’ approach to data weighting.

– Our pipeline is able to derive photometric redshifts for galax-
ies selected as quiescent, aided by the ‘pseudo-labelling’
semi-supervised method, also using an outlier detection al-
gorithm to identify and reject likely catastrophic outliers.
Our pipeline achieves a normalized mean absolute deviation
of <∼ 0.03 and a fraction of catastrophic outliers of <∼ 0.02
when measured against the COSMOS2015 photometric red-
shifts of Laigle et al. (2016). These values appear to improve
on the results of the Euclid Photometric Redshift Challenge
(Euclid Collaboration: Desprez et al. 2020), but we empha-
size that the mock photometry catalogue used therein is of
a significantly different construction to those we have used
herein, making any intercomparison of photometric redshift
metrics potentially unreliable.

– The inclusion of galaxy redshifts among the train and test
datasets offers significant improvement in the quality of our
classification models, even when the redshifts are relatively
noisy or incomplete.

– We have investigated the potential impact of various system-
atics. Most notably, we find that our pipeline results are ro-
bust against the presence of random errors in the class labels
of the training data, for label error rates of up to ∼ 33 per
cent.

This work has added to the growing body of evidence sup-
porting the importance of machine learning techniques (or ar-
tificial intelligence) in astronomy and astrophysics. In particu-
lar, we have demonstrated that machine learning usually out-
performs colour-colour methods for the selection of quiescent
galaxies; while part of this improvement is due to the ability to
make use of a larger number of bands and colours, we have also
shown that machine learning methods still perform a superior
selection even when the training data contains only the bands
used by the respective colour-colour method. In future publica-
tions the methods presented herein will be further developed and
applied to other related problems in extragalactic astrophysics.
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for Education, Research and Innovation (SERI) at the Swiss
Space Office (SSO), and the United Kingdom Space Agency.
A complete and detailed list is available on the Euclid web site
(http://www.euclid-ec.org). In the development of our
pipeline, we have made use of the Pandas (McKinney 2010),
Numpy (Harris et al. 2020), Scipy (Virtanen et al. 2020) and
Dask (Rocklin 2015) packages for Python.
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Strateva, I., Ivezić, Ž., Knapp, G. R., et al. 2001, AJ, 122, 1861
Taylor, W., Cirasuolo, M., Afonso, J., et al. 2018, Proc. SPIE, 10702, 107021G
Tuccillo, D., Huertas-Company, M., Decencière, E., et al. 2018, MNRAS, 475,

894
Ulmer-Moll, S., Santos, N. C., Figueira, P., Brinchmann, J., & Faria, J. P. 2019,

A&A, 630, A135
van der Maaten L., Hinton G., 2008, Journal of Machine Learning Research,

9(86), 2579
van der Maaten L. 2014, Journal of Machine Learning Research, 15(93), 3221
van der Wel, A., Franx, M., van Dokkum, P. G., et al. 2014, ApJ, 788, 28
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261
Whitaker, K. E., Labbé, I., van Dokkum, P. G., et al. 2011, ApJ, 735, 86
Wiklind, T., Dickinson, M., Ferguson, H. C., et al. 2008, ApJ, 676, 781
Williams, R. J., Quadri, R. F., Franx, M., van Dokkum, P., & Labbé, I. 2009,

ApJ, 691, 1879
Wolpert, D.H, 1992, Neural Networks, 5(2), 241-259
Worthey, G. 1994, ApJS, 95, 107
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
Wu, P.-F., van der Wel, A., Gallazzi, A., et al. 2018, ApJ, 855, 85
Wuyts, S., Labbé, I., Franx, M., et al. 2007, ApJ, 655, 51
York, D. G., Adelman, J., Anderson, J. E., et al. 2000, AJ, 120, 1579
Zitlau, R., Hoyle, B., Paech, K., et al. 2016, MNRAS, 460, 3152

1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto,
CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal
2 DTx – Digital Transformation CoLAB, Building 1, Azurém Campus,
University of Minho, 4800-058 Guimarães, Portugal
3 INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna,
Via Piero Gobetti 93/3, I-40129 Bologna, Italy
4 Faculdade de Ciências da Universidade do Porto, Rua do Campo de
Alegre, 4150-007 Porto, Portugal
5 School of Physics, HH Wills Physics Laboratory, University of Bris-
tol, Tyndall Avenue, Bristol, BS8 1TL, UK
6 Kapteyn Astronomical Institute, University of Groningen, PO Box
800, 9700 AV Groningen, The Netherlands
7 INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello 16,
I-80131 Napoli, Italy
8 Departamento de Física, Faculdade de Ciências, Universidade de Lis-
boa, Edifício C8, Campo Grande, PT1749-016 Lisboa, Portugal
9 Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências,
Universidade de Lisboa, Tapada da Ajuda, PT-1349-018 Lisboa, Portu-
gal
10 Dipartimento di Fisica e Astronomia "Augusto Righi" - Alma Mater
Studiorum Università di Bologna, via Piero Gobetti 93/2, I-40129
Bologna, Italy
11 Institute of Cosmology and Gravitation, University of Portsmouth,
Portsmouth PO1 3FX, UK
12 INFN-Bologna, Via Irnerio 46, I-40126 Bologna, Italy
13 Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1,
D-85748 Garching, Germany
14 Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-
Maximilians-Universität München, Scheinerstrasse 1, 81679 München,
Germany
15 INAF-Osservatorio Astrofisico di Torino, Via Osservatorio 20, I-
10025 Pino Torinese (TO), Italy
16 Department of Mathematics and Physics, Roma Tre University, Via
della Vasca Navale 84, I-00146 Rome, Italy
17 INFN-Sezione di Roma Tre, Via della Vasca Navale 84, I-00146,
Roma, Italy
18 Dipartimento di Fisica, Universitá degli Studi di Torino, Via P. Giuria
1, I-10125 Torino, Italy
19 INFN-Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
20 INAF-IASF Milano, Via Alfonso Corti 12, I-20133 Milano, Italy
21 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of
Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona),
Spain
22 Port d’Informació Científica, Campus UAB, C. Albareda s/n, 08193
Bellaterra (Barcelona), Spain
23 Institut d’Estudis Espacials de Catalunya (IEEC), Carrer Gran Capitá
2-4, 08034 Barcelona, Spain
24 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de
Can Magrans, s/n, 08193 Barcelona, Spain

Article number, page 20 of 37

https://www.researchgate.net/profile/Dong-Hyun-Lee/publication/280581078_Pseudo-Label_The_Simple_and_Efficient_Semi-Supervised_Learning_Method_for_Deep_Neural_Networks/links/55bc4ada08ae092e9660b776/Pseudo-Label-The-Simple-and-Efficient-Semi-Supervised-Learning-Method-for-Deep-Neural-Networks.pdf


A. Humphrey et al.: Selection of quiescent galaxies

25 INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00078
Monteporzio Catone, Italy
26 Department of Physics "E. Pancini", University Federico II, Via
Cinthia 6, I-80126, Napoli, Italy
27 INFN section of Naples, Via Cinthia 6, I-80126, Napoli, Italy
28 Dipartimento di Fisica e Astronomia "Augusto Righi" - Alma Mater
Studiorum Universitá di Bologna, Viale Berti Pichat 6/2, I-40127
Bologna, Italy
29 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125,
Firenze, Italy
30 Centre National d’Etudes Spatiales, Toulouse, France
31 Institut national de physique nucléaire et de physique des particules,
3 rue Michel-Ange, 75794 Paris Cédex 16, France
32 Institute for Astronomy, University of Edinburgh, Royal Observatory,
Blackford Hill, Edinburgh EH9 3HJ, UK
33 Jodrell Bank Centre for Astrophysics, Department of Physics and
Astronomy, University of Manchester, Oxford Road, Manchester M13
9PL, UK
34 European Space Agency/ESRIN, Largo Galileo Galilei 1, 00044
Frascati, Roma, Italy
35 ESAC/ESA, Camino Bajo del Castillo, s/n., Urb. Villafranca del
Castillo, 28692 Villanueva de la Cañada, Madrid, Spain
36 Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon,
UMR 5822, F-69622, Villeurbanne, France
37 Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix,
Switzerland
38 Mullard Space Science Laboratory, University College London,
Holmbury St Mary, Dorking, Surrey RH5 6NT, UK
39 Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências,
Universidade de Lisboa, Campo Grande, PT-1749-016 Lisboa, Portugal
40 Department of Astronomy, University of Geneva, ch. dÉcogia 16,
CH-1290 Versoix, Switzerland
41 Université Paris-Saclay, CNRS, Institut d’astrophysique spatiale,
91405, Orsay, France
42 Department of Physics, Oxford University, Keble Road, Oxford OX1
3RH, UK
43 INFN-Padova, Via Marzolo 8, I-35131 Padova, Italy
44 AIM, CEA, CNRS, Université Paris-Saclay, Université de Paris, F-
91191 Gif-sur-Yvette, France
45 INAF-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-
34143 Trieste, Italy
46 FRACTAL S.L.N.E., calle Tulipán 2, Portal 13 1A, 28231, Las Rozas
de Madrid, Spain
47 Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
48 Istituto Nazionale di Astrofisica (INAF) - Osservatorio di Astrofisica
e Scienza dello Spazio (OAS), Via Gobetti 93/3, I-40127 Bologna, Italy
49 Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Via Irnerio
46, I-40126 Bologna, Italy
50 INAF-Osservatorio Astronomico di Padova, Via dell’Osservatorio 5,
I-35122 Padova, Italy
51 Dipartimento di Fisica "Aldo Pontremoli", Universitá degli Studi di
Milano, Via Celoria 16, I-20133 Milano, Italy
52 INAF-Osservatorio Astronomico di Brera, Via Brera 28, I-20122 Mi-
lano, Italy
53 INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
54 Institute of Theoretical Astrophysics, University of Oslo, P.O. Box
1029 Blindern, N-0315 Oslo, Norway
55 Jet Propulsion Laboratory, California Institute of Technology, 4800
Oak Grove Drive, Pasadena, CA, 91109, USA
56 von Hoerner & Sulger GmbH, SchloßPlatz 8, D-68723 Schwetzin-
gen, Germany
57 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Hei-
delberg, Germany
58 Université de Genève, Département de Physique Théorique and
Centre for Astroparticle Physics, 24 quai Ernest-Ansermet, CH-1211
Genève 4, Switzerland
59 Department of Physics and Helsinki Institute of Physics, Gustaf Häll-
strömin katu 2, 00014 University of Helsinki, Finland
60 NOVA optical infrared instrumentation group at ASTRON, Oude

Hoogeveensedijk 4, 7991PD, Dwingeloo, The Netherlands
61 Argelander-Institut für Astronomie, Universität Bonn, Auf dem
Hügel 71, 53121 Bonn, Germany
62 INFN-Sezione di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna,
Italy
63 Department of Physics, Institute for Computational Cosmology,
Durham University, South Road, DH1 3LE, UK
64 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Lab-
oratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice cedex
4, France
65 Institut d’Astrophysique de Paris, 98bis Boulevard Arago, F-75014,
Paris, France
66 Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, In-
stitut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France
67 University of Applied Sciences and Arts of Northwestern Switzer-
land, School of Engineering, 5210 Windisch, Switzerland
68 European Space Agency/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk,
The Netherlands
69 Department of Physics and Astronomy, University of Aarhus, Ny
Munkegade 120, DK-8000 Aarhus C, Denmark
70 Université Paris-Saclay, Université Paris Cité, CEA, CNRS, Astro-
physique, Instrumentation et Modélisation Paris-Saclay, 91191 Gif-sur-
Yvette, France
71 Institute of Space Science, Bucharest, Ro-077125, Romania
72 Dipartimento di Fisica e Astronomia "G.Galilei", Universitá di
Padova, Via Marzolo 8, I-35131 Padova, Italy
73 Departamento de Física, FCFM, Universidad de Chile, Blanco En-
calada 2008, Santiago, Chile
74 IFPU, Institute for Fundamental Physics of the Universe, via Beirut
2, 34151 Trieste, Italy
75 INFN-Sezione di Roma, Piazzale Aldo Moro, 2 - c/o Dipartimento di
Fisica, Edificio G. Marconi, I-00185 Roma, Italy
76 Centro de Investigaciones Energéticas, Medioambientales y Tec-
nológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain
77 Universidad Politécnica de Cartagena, Departamento de Electrónica
y Tecnología de Computadoras, 30202 Cartagena, Spain
78 Infrared Processing and Analysis Center, California Institute of Tech-
nology, Pasadena, CA 91125, USA
79 Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013
Paris, France
80 INAF-IASF Bologna, Via Piero Gobetti 101, I-40129 Bologna, Italy
81 INFN, Sezione di Trieste, Via Valerio 2, I-34127 Trieste TS, Italy
82 SISSA, International School for Advanced Studies, Via Bonomea
265, I-34136 Trieste TS, Italy
83 Departamento de Astrofísica, Universidad de La Laguna, E-38206,
La Laguna, Tenerife, Spain
84 Instituto de Astrofísica de Canarias (IAC); Departamento de As-
trofísica, Universidad de La Laguna (ULL), E-38200, La Laguna,
Tenerife, Spain
85 Institut de Recherche en Astrophysique et Planétologie (IRAP), Uni-
versité de Toulouse, CNRS, UPS, CNES, 14 Av. Edouard Belin, F-
31400 Toulouse, France
86 Dipartimento di Fisica - Sezione di Astronomia, Universitá di Trieste,
Via Tiepolo 11, I-34131 Trieste, Italy
87 INAF, Istituto di Radioastronomia, Via Piero Gobetti 101, I-40129
Bologna, Italy
88 Dipartimento di Fisica e Scienze della Terra, Universitá degli Studi
di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara, Italy
89 Institute for Theoretical Particle Physics and Cosmology (TTK),
RWTH Aachen University, D-52056 Aachen, Germany
90 Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38204,
San Cristóbal de La Laguna, Tenerife, Spain
91 Department of Physics & Astronomy, University of California Irvine,
Irvine CA 92697, USA
92 University of Lyon, UCB Lyon 1, CNRS/IN2P3, IUF, IP2I Lyon,
France
93 INFN-Sezione di Genova, Via Dodecaneso 33, I-16146, Genova, Italy
94 INAF-Istituto di Astrofisica e Planetologia Spaziali, via del Fosso del
Cavaliere, 100, I-00100 Roma, Italy
95 Instituto de Física Teórica UAM-CSIC, Campus de Cantoblanco, E-

Article number, page 21 of 37



A&A proofs: manuscript no. Euclid_preparation_XXII_Humphrey_etal

28049 Madrid, Spain
96 Department of Physics, P.O. Box 64, 00014 University of Helsinki,
Finland
97 Department of Physics, Lancaster University, Lancaster, LA1 4YB,
UK
98 Observatoire de Paris, PSL Research University 61, avenue de
l’Observatoire, F-75014 Paris, France
99 Université de Paris, F-75013, Paris, France, LERMA, Observatoire de
Paris, PSL Research University, CNRS, Sorbonne Université, F-75014
Paris, France
100 Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, UK
101 Code 665, NASA Goddard Space Flight Center, Greenbelt, MD
20771 and SSAI, Lanham, MD 20770, USA
102 Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University
of Helsinki, Helsinki, Finland
103 Centre de Calcul de l’IN2P3, 21 avenue Pierre de Coubertin F-69627
Villeurbanne Cedex, France
104 Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo
Moro 2, I-00185 Roma, Italy
105 Aix-Marseille Univ, CNRS, CNES, LAM, Marseille, France
106 Institut für Theoretische Physik, University of Heidelberg,
Philosophenweg 16, 69120 Heidelberg, Germany
107 Zentrum für Astronomie, Universität Heidelberg, Philosophenweg
12, D- 69120 Heidelberg, Germany
108 Department of Mathematics and Physics E. De Giorgi, University of
Salento, Via per Arnesano, CP-I93, I-73100, Lecce, Italy
109 INFN, Sezione di Lecce, Via per Arnesano, CP-193, I-73100, Lecce,
Italy
110 Institute for Computational Science, University of Zurich, Win-
terthurerstrasse 190, 8057 Zurich, Switzerland
111 Junia, EPA department, F 59000 Lille, France
112 Department of Astrophysical Sciences, Peyton Hall, Princeton Uni-
versity, Princeton, NJ 08544, USA
113 Department of Physics, P.O.Box 35 (YFL), 40014 University of
Jyväskylä, Finland
114 Ruhr University Bochum, Faculty of Physics and Astronomy, Astro-
nomical Institute (AIRUB), German Centre for Cosmological Lensing
(GCCL), 44780 Bochum, Germany

Article number, page 22 of 37



A. Humphrey et al.: Selection of quiescent galaxies

Appendix A: Impact of redundant features on
feature importance

Machine learning methods that build models using decision-
tree ensembles have the potential to provide insights into
the structure of the training data via analyses of the feature-
importances. When all features in the dataset are fully indepen-
dent of each other, the feature-importance can provide a rel-
atively straightforward indication of how useful each feature
is for the model to predict the target labels. However, when
there is significant colinearity between features, the importance
may be shared between colinear features, resulting in poten-
tially misleading feature-importance information. Indeed, it is
likely that significant colinearity exists among the various broad-
band magnitudes and colours used in this work. Therefore, here
we examine how the feature importance calculations used by
the RandomForestClassifier, CatBoostClassifier, and
XGBoostClassifier tree-based algorithms are affected by the
presence of multiple colinear features.

We first take the Int Wide catalogue, select features de-
rived from u, IE, YE, JE, or HE photometry, and add five iden-
tical copies of the u − IE feature to the dataset. We then
train RandomForestClassifier, CatBoostClassifier, and
XGBoostClassifier models to select quiescent galaxies in the
0 < z < 0.25 range. We selected the u− IE colour for duplication
because RandomForestClassifier, CatBoostClassifier,
and XGBoostClassifier all find this feature to be the most im-
portant for this particular classification problem. For these model
runs, no information was provided regarding the redshifts of the
galaxies. The results are shown in Figs. A.1– A.3.

The impact on the feature importances of duplicating the
most important single feature (IE − u in this example) is some-
what different for each of the learning algorithms, presumably
due to: (i) differences in the way the algorithms select features
for constructing individual decision trees; (ii) how they deal with
colinearity among the input features; (iii) the different methods
used to calculate feature importance values.

In the case of RandomForestClassifier, the impact of
including duplicates of IE − u is for this feature and its du-
plicates to be demoted to a significantly lower rank of im-
portance (Fig. A.1), with all six features occupying a sim-
ilar position within the feature importance ranking. Clearly,
it is risky to rely on the feature importances produced by
RandomForestClassifier, since they are a function of how
informative a features is and the uniqueness of the information it
provides. When using CatBoostClassifier, the inclusion of
duplicates of IE − u also results in the demotion of IE − u and its
duplicates to significantly lower ranks of importance (Fig. A.2),
with several being placed at the very end of the importance rank-
ing.

In contrast, the feature importance values provided by
XGBoostClassifier are much more robust against the pres-
ence of colinearity among features. As illustrated in Fig. A.3,
IE − u, and/or several copies thereof are consistently assigned
the highest values of feature importance, or else are simply ig-
nored (feature importance = 0). As such, the feature importances
provided by XGBoostClassifier are likely to offer a relatively
robust method to determine the most relevant observables for the
selection of particular galaxy types, even when there is signifi-
cant colinearity between the observables.

Appendix B: Further analysis and tests

In this appendix we provide full details of the analyses and tests
that were summarized in Sect. 7.

B.1. Stacking vs. individual learners

We discuss the benefits of our implementation of the gener-
alized stacking method, in which meta-learners are trained to
fuse the output from several base-learners into a single classi-
fier. We find that, with very few exceptions, our stacking method
consistently outperforms each of the individual base-learners,
in addition to outperforming the traditional ensembling meth-
ods of model averaging and hard-voting. This is illustrated in
Fig. B.1 (left panel), where we show results from a single run
of our pipeline, in this case applied to the selection of quiescent
galaxies at z = 2–2.5 from the Int Wide catalogue using Euclid
photometry, and without foreknowledge of galaxy redshifts. In
this example, averaging the predictions across the base-learners
results in an ‘averaging-down’, while the hard-vote ensemble
method results in an F1-score that matches that of the best in-
dividual base-learner (in this case LightGBMClassifier). In
contrast, the meta-learner yields an F1-score that is substantially
higher (∼ 46 per cent in this case) than any of the individual
base-learners or other ensemble methods.

In Fig. B.1 (centre panel) we illustrate the robustness of the
generalized stacking method against pollution by multiple low-
quality classifier models. We ensembled a LightGBM model
with hyperparameters that are well tuned for this problem (Light-
GBM 1), with four other LightGBM models that have purpose-
fully poorly tuned hyperparameters (LightGBM 2–5). Whereas
the average and hard-voting ensembles give poor results, the
meta-learner is able to discard low-quality class predictions and
also make a significant improvement over the single high-quality
model (LightGBM 1).

In addition, we illustrate the usefulness of generalized stack-
ing when applied to a single classifier model. In Fig. B.1 (right
panel), we show the result of selecting quiescent galaxies in the
z = 2.5–3 redshift range, using ugriz, Euclid, W1, and W2 pho-
tometry from the Int Wide catalogue, with foreknowledge of red-
shifts. The meta-learner is able to substantially improve on the
F1-score of the XGBoostClassifier, increasing the score by
61 per cent, effectively turning a rather poor classifier into a po-
tentially much more useful one.

B.2. The nature of the false positives

Although the P, R, and F1-score classification metrics are infor-
mative about whether galaxies are correctly or incorrectly classi-
fied, they do not provide information about the incorrectness of
the incorrect classifications. For instance, the F1-score is insensi-
tive to whether false positives are marginally non-quiescent (e.g.
sSFR ∼ 10−10.4 yr−1), or are in fact powerful starburst galaxies
(e.g. 10−8yr−1); when selecting samples of quiescent galaxies,
the former case is clearly less baneful than the latter. Therefore,
we now examine the nature of the non-quiescent contaminants
in samples selected as quiescent by our classification pipeline,
utilizing our metrics of incorrectness IFP and ĪFP (see Eqs. 7 and
8).

In Figs. B.2 and B.3 we show the distribution of incorrect
classifications with respect to IE−HE, sSFR, and stellar mass, for
the Int and SED catalogues. As is often the case when perform-
ing a binary classification on a continuously distributed sample,
the incorrectly classified objects cluster around the class thresh-
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Fig. A.1. Feature importance values when using RandomForestClassifier to select quiescent galaxies in the redshift range 0 < z < 0.25. The
results in the upper panel are for the case where none of the features have been duplicated. The lower panel shows the feature importance values
for the case where five copies of IE − u have been injected into the dataset prior to model training. The x-axis labels correspond to feature names
used by the pipeline after the pre-processing steps outlined in Sect. 4.2 have been applied, and should be self-explanatory (see the caption of Fig. 7.
For example, the feature named ‘VIS-u_copy1’ is a copy of the feature named ’VIS-u’, etc.

VI
S-

u

VI
S-

H J-H Y-
H

VI
S-

Y u Y-
J

VI
S

VI
S-

J

J-u H Y

H-
u

Y-
u J0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ca
tB

oo
st

Cl
as

sif
ie

r
 R

el
at

iv
e 

Im
po

rta
nc

e 0.
23

0.
11

0.
1

0.
07

6

0.
06

8

0.
05

6

0.
05

4

0.
04

8

0.
04

4

0.
04

2

0.
03

9

0.
03

8

0.
03

6

0.
03

3

0.
02

6

Y-
H

VI
S-

H J-H VI
S

VI
S-

Y

VI
S-

u_
co

py
3 Y

VI
S-

u

VI
S-

J

Y-
J u J

H-
u H Y-
u

VI
S-

u_
co

py
2 J-u

VI
S-

u_
co

py
1

VI
S-

u_
co

py
4

VI
S-

u_
co

py
5

0.00

0.05

0.10

0.15

Ca
tB

oo
st

Cl
as

sif
ie

r
 R

el
at

iv
e 

Im
po

rta
nc

e

0.
13

0.
09

1

0.
08

4

0.
06

5

0.
06

4

0.
05

7

0.
05

6

0.
05

1

0.
04

9

0.
04

6

0.
04

5

0.
04

2

0.
03

6

0.
03

5

0.
03

1

0.
03

0.
02

3

0.
02

2

0.
02

0.
01

9

Fig. A.2. Similar to Fig. A.1, but for models trained using CatBoostClassifier.
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Fig. A.3. Similar to Fig. A.1, but for models trained using XGBoostClassifier.
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Fig. B.1. Examples of the F1-scores from individual base-learners and the model ensembling methods. Left: Selection of quiescent galaxies at
z = 2–2.5 from the Int Wide catalogue using Euclid photometry, without foreknowledge of galaxy redshifts. As described in the text, the meta-
learner performs a non-linear fusion of the individual classifiers, resulting in a significantly higher F1-score than obtained by any of the individual
base learners or the two other ensemble methods (averaging and hard-voting). Centre: The impact of ensembling a LightGBMClassifier
model, the hyperparameters of which are well-tuned for this problem (LightGBM 1), with four other LightGBM models that have poorly tuned
hyperparameters (LightGBM 2,3,4,5). In this case, averaging the model predictions and hard-voting both produce poor results, but the meta-
learner is able to identify and weight accordingly the low quality class predictions. Right: Application of a meta-learner to a classification model
produced by a single base-learner, in this case XGBoostClassifier. In this circumstance, the meta-learner performs ‘error-correction’, resulting
in a significant improvement in the quality of the classifier.

old value (10−10.5yr−1), with a density that is highest in the bins
immediately adjacent to the class boundary. However, the pre-
cise distribution of classification errors varies between the dif-
ferent catalogues (and subsets thereof).

When using the Wide survey mock catalogues, >∼ 50 per cent
of false positives are what we consider to be marginal classifica-
tion errors, i.e., their sSFR is within 0.5 dex of the class bound-
ary. Furthermore, there are very few false positives with high
values of sSFR: less than 25 per cent of the false positives are at
sSFR ≥ 10−9.5yr−1, while false positives with sSFR ≥ 10−9yr−1

are negligible (<∼ 5 per cent). On the other hand, when the Deep
survey mock data are used, the fraction of false positives at rela-
tively high values of sSFR (≥ 10−9yr−1) is non-negligible (∼ 25
per cent). This is true regardless of whether the Int Deep or SED
Deep catalogue is used. The distribution of the incorrect classi-

fications with respect to the stellar mass shows a significant di-
versity and depends strongly on which mock catalogue is used.
In general, the false positives are biased towards relatively high
stellar mass (i.e., ≥ 109M�).

For comparison, in Fig. B.4 we also show the distribution
of errors with respect to sSFR for the IE − YE, JE − HE (left col-
umn) and u − IE, IE − JE (middle column) colour-colour methods
developed by B20. To allow a relevant comparison between the
u − IE, IE − JE colour-colour method and our machine learning
pipeline, Fig. B.4 (right column) also shows results from apply-
ing our pipeline with conditions equivalent to those used for the
u − IE, IE − JE method: (i) Galaxy redshifts are included as a fea-
ture to be trained on; (ii) only galaxies detected in u, IE, and JE

are used; (iii) only galaxies in the redshift ranges 0 < z < 1
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ĪFP = 0.66

4 5 6 7 8 9 10 11 12

log10 (mass/M�)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
a

li
ze

d
d

en
si

ty

Int Wide

FP

FN

all

-1 -0.5 0 0.5 1 1.5 2 2.5 3

IE − YE [mag]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
a

li
ze

d
d

en
si

ty

Int Wide (ugriz required)

FP

FN

all

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7

log10 (sSFR yr)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
a

li
ze

d
d

en
si

ty

Int Wide (ugriz required)

. FP

. FN

. all

F1 =0.86

P =0.88

R =0.83
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Fig. B.2. The distribution of incorrect classifications (FP and FN) with respect to IE − YE, sSFR, and stellar mass, when selecting quiescent
galaxies from the Int catalogues. Also shown is the overall distribution of galaxies in the catalogue (or catalogue subset) on which the selection
was performed. Top row: Using the ugriz, Euclid, W1, W2, and 20 cm photometry from the Int Wide catalogue, excluding only those galaxies
with a non-detection in any Euclid band. Centre row: As above, but excluding galaxies without a non-detection in any of the ugriz or Euclid
bands. Bottom row: Using the ugriz, Euclid, W1, W2, and 20 cm photometry from the Int Deep catalogue, excluding only those galaxies with a
non-detection in any Euclid band. In each case, we include the values of the F1-score, precision, recall, and ĪFP metrics

and 0 < z < 1.5 are used for the Wide and Deep catalogues,
respectively.

Our classification pipeline results in significantly lower ĪFP
than the colour-colour methods. This is due to a reduction in
the fraction of false positives that are located at high sSFR (e.g.
>∼ 10−9yr−1). In other words, our pipeline not only offers a signif-
icant improvement over colour-colour methods, in terms of P, R,
and the F1-score, but also significantly reduces the degeneracy
between quiescent galaxies and dusty, star-forming galaxies.

There is another potential source of classification errors that
should be mentioned. Throughout this work we have tacitly as-
sumed that the target variable accurately represents the ground
truth. This assumption is clearly valid for the SED catalogues,
since they are derived from templates corresponding to known
physical properties. However, for the Int catalogues there is the
possibility that some instances flagged as classification errors
are, in actual fact, instances where our pipeline provides the cor-
rect classification and the target variable is incorrect.

B.3. Reconciling the Int and SED results

As discussed above, our machine learning models were trained
and evaluated using one of the four mock catalogues, but there
are often significant differences between the results obtained us-
ing the Int or SED catalogues for a given Euclid survey (e.g.
Fig.. 8). In particular, the precision, recall, and F1-scores for qui-
escent galaxy selection tend to be higher when using an SED
mock catalogue, compared to its corresponding Int catalogue
(i.e., SED Wide vs. Int Wide; SED Deep vs. Int Deep).

This is due to the different methods used in the construction
of the catalogues (see Sect. 2 and B20). The Int catalogues have
an observationally more realistic starting point since they are
constructed with real photometry, albeit twice convolved with
a filter, but the signal-to-noise ratio of the data is significantly
lower than will be the case for the actual Euclid photometry,
likely increasing the difficulty of the classification problem com-
pared to when the real Euclid (and ancillary) survey data are
used. Conversely, the mock photometry in the SED catalogues
has noise properties that match those expected for Euclid ob-
servations, but the SEDs themselves are forced to conform to
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Fig. B.3. Similar to Fig. B.2, but instead using the SED catalogues.

a restricted set of simplified templates, which could potentially
simplify the classification problem.

Therefore, results obtained using the Int catalogues are likely
to be pessimistic, and results obtained with the SED catalogues
are likely to be optimistic with regard to the performance of our
pipeline when applied to real Euclid (and ancillary) survey data.
Thus, to estimate the performance of our pipeline when select-
ing quiescent galaxies from Euclid (and ancillary) survey data,
we use performance metrics averaged over the Int catalogue and
the corresponding SED catalogue (i.e., Int Wide and SED Wide;
Int Deep and SED Deep). Therefore, Tables 3 and 4 include av-
eraged metrics, where appropriate. We consider results obtained
with the Int and SED catalogues to bracket the likely range of
performance of our pipeline when it is applied to real Euclid
(plus LSST, etc.) photometry.

B.4. Tuning the probability threshold

In some circumstances, it is desirable to maximise either the pre-
cision (purity) or the recall (completeness) of the selected quies-
cent galaxy samples, according to the nature of one’s scientific
objectives. Thus, we investigate and illustrate the impact on the
precision and recall of tuning the value of the class probability
threshold, instead of adopting the default threshold value of 0.5.

In Fig. B.5 we show how precision (P), recall (R), and the
F1-score vary with the class probability threshold when select-

ing quiescent galaxies from the Int Wide mock catalogue (top)
or the SED Wide catalogue (middle). Also shown are the scores
when averaged between the two catalogues (bottom). The red-
shifts are included as a feature in the input data. There exists
a trade-off between precision and recall such that one may be
increased, but at the cost of reducing the other. For example,
from the averaged scores (bottom panel), we find that adopt-
ing a probability threshold of 0.85 yields a sample of quiescent
galaxies that is very pure (P = 0.98) but somewhat incomplete
(R = 0.56). Conversely, using a probability threshold of 0.05
results in a sample with moderate purity (P = 0.61) but high
completeness (R = 0.97).

Tuning the probability threshold allows a balance to be
struck between P and R that is suitable for different scien-
tific needs. For instance, using a probability threshold of 0.3
gives a sample of quiescent galaxies that is both reasonably
pure (P = 0.8) and reasonably complete (R = 0.9). While the
examples given here pertain to selection in the redshift range
0 ≤ z ≤ 3, this exercise can, of course, also be performed for the
selection of quiescent galaxies in narrower redshift bands. As an
example of this, when selecting quiescent galaxies in the redshift
range 1 ≤ z ≤ 2 using a probability threshold of 0.9, we obtain
P = 0.98 and R = 0.51, while using a threshold of 0.1 yields
P = 0.70 and R = 0.95.
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Fig. B.4. The distribution of incorrect classifications for the IE − YE, JE − HE method of B20 ((left column) and the u − IE, IE − JE method of B20
(centre column) To allow a direct comparison between the u − IE, IE − JE and our machine learning selection method, we show results from our
pipeline under conditions equivalent to those used for the B20 u − IE, IE − JE method: Galaxy photometric redshifts are included as a feature to be
trained on; only galaxies detected in u, IE, and JE are used; only galaxies in the redshift ranges 0 < z < 1 and 0 < z < 1.5 are used for the Wide
and Deep catalogues, respectively. In each panel, we include the values of the F1-score, precision, recall, and ĪFP metrics.

B.5. Impact of including redshift as a feature

Here we investigate the impact of several different methods for
the treatment of redshift information in our pipeline. Thus far, we
have included redshift information by pre-binning the mock cat-
alogues using the Laigle et al. (2016) COSMOS2015 photomet-
ric redshifts (Sect. 5.1). Alternatively, we have ignored redshift
information and have instead performed a global selection of
quiescent galaxies, deriving photometric redshifts subsequently
(Sect. 5.2). A further possibility that we now also examine is the
inclusion of redshifts as a feature in the input data for model
training (e.g. Simet et al. 2021).

In Fig. B.6 we show F1-score vs. redshift when selecting qui-
escent galaxies from the Int Wide catalogue, considering several
different configurations for the included redshift information. As
before, we exclude galaxies which have a non-detection in one
or more Euclid band. The left panel of Fig. B.6 shows results
from our pipeline when the mock catalogue data are pre-binned
by redshift as described in Sect. 5.1, and all available photom-
etry is used (i.e., ugriz, Euclid, W1, W2, 20 cm). We find that
including the Laigle et al. (2016) photometric redshifts in the in-
put data significantly increases the F1-scores in bins at z ≤ 0.5 or
z ≥ 2.5, by reducing the degeneracy between redshift and sSFR.
However, the F1-score is not significantly changed for bins in
the range 0.5 < z < 2.5.
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Fig. B.5. Precision (purity), recall (completeness), and the F1-score as
a function of the probability threshold used to separate quiescent and
star-forming galaxies, for Int Wide (top), SED Wide (centre), and the
average result (bottom).

We have also experimented with the inclusion of redshifts for
a fraction of galaxies only, by randomly replacing redshift values
with −99.9. The left panel of Fig. B.6 also shows the result of
including only 50 per cent of the redshifts. At the low end of
the redshift range, we find that the inclusion of 50 per cent of
the redshifts provides a small but significant improvement in the
F1-score. However, at the high endpoint of the redshift range,
there is no noticeable improvement compared to the F1-scores
obtained when no redshifts are included.

We repeat the same experiment, but without pre-binning the
galaxies by redshift (see Sect. 5.1.3). As before, we exclude ob-
jects with a non-detection in any of the Euclid bands, and use all

available photometry from the Int Wide catalogue. The results
are shown in the right panel of Fig. B.6. Within the 0 < z < 2
range, there is essentially no penalty in terms of F1-score as-
sociated with not pre-binning by redshift, provided all redshifts
are included as a feature in the input data (nevertheless, pre-
binning does allow considerably faster training of models, since
the training set is now much smaller). However, at z = 2 and
above, significantly lower F1-scores are obtained compared to
the case where the data are pre-binned by redshift. When only
50 per cent of redshift values are included, we find a significant
decrease in F1-scores compared to the case where 100 per cent
of redshift values are included, but the F1-score are still usu-
ally significantly above those obtained when none of the redshift
values are included. Classification metrics for the global selec-
tion of quiescent galaxies, including 100 per cent, 50 per cent, or
none of the galaxy redshifts are included in Table 4.

B.6. The impact of noise

In this subsection, we explore the impact of different types of
noise that are expected to be present within the data. The experi-
ments presented here are intended to be informative and illustra-
tive, but not necessarily exhaustive.

B.6.1. Adding noise to the photometry

In Fig. B.7 we show results from modelling the impact of the ad-
dition or the reduction of noise in the data. For this experiment,
we select quiescent galaxies at 0 ≤ z ≤ 3 from the Int Wide
mock catalogue, using our pipeline in fast mode. The upper panel
of Fig. B.7 shows how the F1-score decreases when each mag-
nitude measurement has a random offset, drawn from a Gaus-
sian distribution of σ, applied. Interestingly, even when the data
are extremely noisy, the pipeline remains nominally functional.
For instance, even when the photometry has been degraded to a
signal-to-noise ratio of ∼ 3, it is nonetheless still able to perform
a global selection of quiescent galaxies, albeit with somewhat
reduced precision, recall, and F1-scores of ∼ 0.67.

To simulate a reduction in noise, we perform a cut to remove
galaxies fainter than an arbitrary IE threshold, where lower val-
ues of this threshold result in a higher average signal-to-noise
ratio for the mock catalogue (Fig. B.7, lower panel). Despite the
crudeness of these tests, it is clear that reducing (increasing) the
signal-to-noise ratio of the data results in lower (higher) quality
classification models, as evaluated by the F1-scores. While the
different noise characteristics probably play a significant rôle in
the differences in pipeline performance between the Int and SED
catalogues, additional effects may also be important.

B.6.2. Label noise

Heretofore, we have tacitly assumed that the ‘quiescent’ and
‘star-forming’ labels used in the training and evaluation of
our classification models give an accurate representation of the
ground truth. However, there is the possibility that some labels
are incorrect, i.e., quiescent galaxies labelled as star-forming, or
vice versa. We examine the potential impact of incorrect labels
using two slightly different approaches.

In the first approach, we assess the impact on model quality
from introducing incorrect labels at random. To do this, we se-
lect a subset of galaxies in the mock photometry catalogue, and
for these galaxies we replace all occurrences of the value 0 with
the value 1, and all occurrences of the value 1 with 0. We then
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Fig. B.6. The impact of including source redshifts as an additional feature in the input data. Left: The case where the data set is binned by
photometric redshift prior to model training, with 100 per cent, 50 percent, or none of the redshifts included as a feature in the data. Right:
Illustrating the case where no redshift binning is performed, with classifiers being trained to identify quiescent galaxies at specific redshift intervals.
For this test, the Int Wide mock catalogue was used.
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Fig. B.7. Testing the impact of photometry measurement uncertainties
on the results from our classification pipeline. Top: An example of how
the F1-score is reduced when Gaussian noise is added to the optical and
near-IR photometry in the Int Wide catalogue. Bottom: An example of
how the F1-score is increased when galaxies fainter than an arbitrary IE

threshold are excluded from the Int Wide catalogue.

perform our standard preprocessing and model training steps as
described in Sect. 4. For these tests, the ARIADNE pipeline is used
in fast mode. The classification metrics are evaluated for two dif-
ferent cases, where (i) the test set class predictions are compared
with the original unaltered test set labels, or (ii) the test set class
predictions are compared with the altered (noisy) test set labels.

In the context of this experiment we point out that the ‘ran-
dom errors’ discussed here can either be truly random errors
arising from the methodology used to generate the labels (e.g.
LePhare template fitting), or else can be systematic errors that
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Fig. B.8. Results from our transfer learning method. When we train
models on SED Wide data, and use them to select quiescent galax-
ies from Int Wide data (dashed orange curve), the F1-scores are only
slightly lower than those we obtain from models trained on Int Wide
data (solid blue curve). A generally similar result is obtained when we
train models on Int Wide data and use them to select quiescent galax-
ies from SED Wide data (dotted black curve). For comparison we also
show the results from the LePhare template fitting method applied to
the SED Wide mock catalogue (see Sect. 6.4), using Euclid, ugriz, W1,
W2, and 20 cm photometry, and with redshifts fixed at the Laigle et al.
(2016) values.

the machine learning algorithms are unable to model and repro-
duce. An example of the latter type of error might be a systematic
error driven by photometric bands that are present in the multi-
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wavelength dataset used to generate the labels, but which do not
appear in the data that are seen by our pipeline.

Under these conditions, the presence of noisy labels varies
depending on the particular classification problem that is being
addressed. For instance, when selecting quiescent galaxies at 0 ≤
z ≤ 3 from the Int Wide catalogue, without foreknowledge of
redshifts, and with 33 per cent of the labels having been flipped,
the metrics obtained when the test set labels contain errors are
relatively poor, at P = 0.62, R = 0.12, and F1-score = 0.21.
This is to be expected, because the classification results are being
evaluated against a ‘ground truth’ that contains many incorrect
labels, leading to artificially poor metrics.

Conversely, the metrics we obtain are substantially better if
we instead evaluate the same classification results against the
original ‘ground truth’, yielding P = 0.86, R = 0.68, and
F1-score = 0.76; these values are only slightly different com-
pared to the case where label errors are not introduced at all
(P = 0.84, R = 74, F1-score = 0.79). In other words, for this
case the presence of randomly incorrect labels in the training
data did not have a substantial impact on the classification of
sources in the test set.

In another example, selecting quiescent galaxies at 1 ≤ z ≤
1.25 with no foreknowledge of redshifts, and with 10 per cent
of labels in error, results in an F1-score of 0.13 when evaluated
using the test set ‘ground truth’ with label errors injected. Re-
markably, when evaluating the same classification results using
the test set ‘ground truth’ without label errors, the F1-score is
0.69, effectively unchanged from the case where no label errors
are injected at all (F1-score = 0.69). In this case, the presence of
random errors in the training set labels had no detrimental effect
on the final classifications of sources in the test set.

One of the interesting implications of these results is that our
pipeline is generally able to ignore random label errors. Further-
more, when random label errors are present, our pipeline may
even produce predictions that are of higher quality than the la-
bels in the input data, in terms of how close the predictions are to
the real ground truth. Further research (beyond the scope of this
paper) is needed to test whether machine learning methods such
as those discussed herein may be able to improve on traditional
SED fitting methods, rather than simply emulating them.

The second approach is similar to the first, but aims to sim-
ulate systematic errors in the class labels. For this, we use the
KMeans clustering algorithm from Scikit-Learn to separate
galaxies from the Int Wide catalogue into an arbitrary number
of clusters, with an arbitrary number of the clusters being se-
lected to have an arbitrary fraction of their class labels inverted.
For illustrative purposes, we have separated the data into 100
clusters, and inverted 99 per cent of the labels in 3 randomly se-
lected clusters; the inverted labels represent 11 per cent of all
labels. We then selected quiescent galaxies at 0 ≤ z ≤ 3, again
using features derived from the ugriz, Euclid, W1, W2, and 20
cm bands, and without foreknowledge of galaxy redshifts. Eval-
uating the metrics when using the modified labels for the test set,
we obtain P = 0.89, R = 85, and an F1-score of 0.87. In con-
trast, evaluating the metrics using the original test set labels, we
obtain the substantially lower values P = 0.36, R = 0.69, and
an F1-score of 0.47. In this case, our pipeline is able to emulate
the systematic label errors present in the training set, resulting in
test set class predictions that contain similar systematic errors.

B.6.3. Redshift noise

As we have demonstrated heretofore, the inclusion of redshift in-
formation in the training data often results in classification mod-

els that are better able to correctly identify quiescent galaxies
(e.g. Appendix B.5). A key point to be considered is whether our
results are significantly affected by the accuracy of the photomet-
ric redshifts used, especially since the 30-band COSMOS2015
redshifts (Laigle et al. 2016) we have used could potentially be
more accurate than the redshifts that will be estimated from Eu-
clid photometry and the anticipated ancillary data (see e.g. Eu-
clid Collaboration: Desprez et al. 2020). Therefore, we explore
the impact of adding Gaussian noise to the COSMOS2015 red-
shifts prior to model training. While a full treatment of this issue
is beyond the scope of the present work, we consider several dif-
ferent cases in order to obtain indicative results.

Random samples were drawn from a Gaussian distribution
with standard deviation σz; these values were multiplied by
1 + z and then added to the photometric redshift values after
the Target variable was set, simulating the addition of Gaussian
noise. The global selection of quiescent galaxies in the range
0 < z < 3 was then repeated with the (now noisier) redshifts
included as a feature, along with the ugriz, Euclid, and Wise
photometry, and colours derived therefrom. This test was per-
formed for the Int Wide and SED Wide catalogues, for the values
σz = 0.025, 0.05, 0.075.

The results from this test, averaged over an equal number
of pipeline runs on the Int Wide and SED Wide catalogues, are
shown in Table 4. While P is essentially unchanged, R, and the
F1-score are slightly reduced by ∼ 0.01–0.02.

Next, we consider the impact of redshift noise on the selec-
tion of quiescent galaxies in the narrower redshift bins used in
Sect. 5.1. As one might expect, it is more difficult to select quies-
cent galaxies inside these narrower redshift bins when the photo-
metric redshifts are noisier. This is because the models, in addi-
tion to separating quiescent and star-forming galaxies, must now
also separate quiescent galaxies by their redshift. For example,
in the case where σz = 0.05, the F1-score is typically reduced
by ∼ 0.07 compared to the case where no noise is added. Never-
theless, the F1-scores are still significantly higher than when the
redshifts are not included at all, with the improvement ranging
from ∼ 0.02 at 1 < z < 1.5, to ∼ 0.2 at z < 0.5 and z > 2. In-
terestingly, even in the case where σz = 0.1, representing rather
noisy redshifts (NMAD ∼ 0.1), the F1-scores at z < 0.5 and
z > 2 are still ∼ 0.1 higher than when redshifts are not included.
In other words, even when photometric redshifts are somewhat
noisy, their inclusion in the data can nevertheless result in signif-
icantly stronger classification models, compared to when photo-
metric redshifts are not used.

B.7. Transfer learning experiments

B.7.1. Training on templates and predicting on real SEDs

We have also experimented with the possibility of using classifi-
cation models trained on spectral templates to select quiescent
galaxies from catalogues of observed photometry. To explore
this, our pipeline trained its classification models on the SED
Wide mock catalogue, and selected quiescent galaxies from the
Int Wide catalogue using the resulting classifier. Essentially, we
gave our pipeline the task of identifying and weighting the defin-
ing characteristics of quiescent and star-forming galaxies from a
set of simplifying abstractions (galaxy SED templates), rather
than from observed SEDs. The train-test split was performed
as described in Sect. 4.1, ensuring that each galaxy is present
in either the training set or the test set, but not both. For this
experiment, the data are pre-binned by redshift as described in
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Sect. 5.1, but we did not include the redshift values as a feature
in the input data for the classification pipeline.

The results are shown in Fig. B.8, where it can be seen that
classifiers trained on the SED Wide catalogue are indeed able
to select quiescent galaxies from the Int Wide catalogue, albeit
with marginally lower F1-scores compared to models trained
on the Int Wide catalogue itself. This opens up the interesting
possibility of using machine learning models trained on syn-
thetic galaxy SEDs as a potential alternative to traditional colour-
colour or template fitting methods (e.g. Girelli, Bolzonella, &
Cimatti 2019; Cecchi et al. 2019) of selecting quiescent galaxies
that have redshifts (or other properties) for which there are no
(or few) known examples.

Fig. B.8 also reveals that the transfer learning method can
also function in reverse. When the training and test data sets
are swapped with each other, such that classification models are
trained on the Int Wide catalogue and are then used to select
quiescent galaxies from the SED Wide catalogue, very similar
results are obtained. The exception is in the lowest redshift bin
(0 < z < 0.25), where the F1-score is now reduced by ∼ 0.12
compared to the previous case. Classification metrics for the
global selection of quiescent galaxies using transfer learning are
also included in Table 4.

We also show in Fig. B.8 (red dashed line) the F1-scores ob-
tained when using LePhare to fit templates to SED Wide mock
data using the same photometry, and with redshifts fixed to the
values from Laigle et al. (2016, see also Sect. 6.4). This template
fitting method clearly provides results of similar quality to our
pipeline in the 1.0 <∼ z <∼ 2.0 redshift range, but at z <∼ 1.0 or at
z >∼ 2 the method significantly under-performs our transfer learn-
ing method. The under-performance of our LePhare template
fitting method is likely caused, at least partly, by the absence of
priors concerning (i) the known (or suspected) distribution of the
galaxy classes within the redshift and colour-spaces, and (ii) the
relative importance (or weighting) that should be given to each
data point in the broad-band spectral energy distribution, aside
from their signal-to-noise ratio.

B.7.2. Training on Deep and predicting on Wide survey data

The Euclid Deep Survey will provide photometry (and spec-
tra) in several fields for which there are pre-existing multiwave-
length observations, allowing the construction of source cata-
logues with high-quality labels. In turn, this is expected to facil-
itate the training of classifiers which can then be used to predict
labels for the enormous number of sources that will be detected
in the Euclid Wide Survey. An important question, however, is
whether models trained using the deep field photometry are suit-
able for use in selecting quiescent galaxies in the wide field sur-
vey. While the Deep and Wide Surveys are expected to be some-
what similar (but clearly not identical) within the magnitude-
space covered by the Wide Survey, at least 60 per cent of the
galaxies in the Deep Survey are below (or close to) the IE 3σ de-
tection threshold of the Wide Survey. It is not clear a priori how
the presence of these faint galaxies will affect the quality of the
classification models.

To test this, we train our pipeline using the Int Deep cat-
alogue, and use the resulting classification model to predict
classes for the galaxies in the Int Wide catalogue. No galaxy was
permitted to be present in both the training and the test set. In
addition, no foreknowledge of redshifts was assumed, all avail-
able photometry bands were used (ugriz, Euclid, W1, W2, and
20 cm), and only galaxies detected in all four Euclid bands were
included. Under these conditions, the resulting F1-score for se-

lection of quiescent galaxies from the Int Wide catalogue is 0.74,
moderately lower than the F1-score of 0.80 obtained using mod-
els trained using Int Wide (see Table 4). Conducting this test
instead using the SED catalogues resulted in a similarly reduced
F1-score of 0.76, compared to 0.82 when using only SED Wide
catalogue.

Thus, although it is possible to separate quiescent and star-
forming galaxies in the Wide Survey mocks, the F1-score suffers
a significant penalty and is reduced by at least ∼ 0.06. Clearly,
the presence of a large number of additional, faint galaxies in
the training set exacerbates at least some of the degeneracies de-
scribed in Sect. 1, and induces the learning algorithms to place
undue weight on galaxies near the faint end of the magnitude
distribution.

In this study we are, of course, only able to make use of mock
Euclid photometry catalogues, but we must also consider how
the training set for this task will be constructed from real Euclid
data. Based on the analyses presented heretofore, we propose
constructing the training set(s) from Deep Survey photometry
from fields which have high-quality multi-wavelength observa-
tions (and spectroscopy), using the deepest available data in or-
der to generate high-quality ‘ground truth’ labels, but then train-
ing classification models on Wide Survey-depth observations.

B.8. Alternative targets

In this work, we have used target labels that were generated us-
ing an sSFR threshold to differentiate between quiescent and star
forming galaxies. However, it is also interesting to consider other
methods for generating the labels. Thus, here we explore the im-
pact of using labels derived from the NUV − r vs. r − JE (Ilbert
et al. 2010, 2013) or NUV − r vs. r − K (Arnouts et al. 2013)
colour-colour methods, instead of the sSFR-based labels used
throughout this work. The mock catalogue used for these tests
is Int Wide, and features derived from the ugriz, IE, YE, JE, HE,
W1, W2 and 20 cm bands were used, with detections required in
all of the Euclid bands. Our pipeline was used in fast mode. The
results are summarized in Table B.1.

In the global selection of quiescent galaxies (0 ≤ z ≤ 3),
the impact of using labels the alternative labels is limited. In the
case of the labels derived from the NUV−r vs. r−JE method, the
F1-score is improved by ∼0.03 compared to the original (sSFR)
labels. On the other hand, the F1-score when using the labels de-
rived from the NUV−r vs. r−K method is ∼0.02 lower compared
to when the original labels are used.

When selected quiescent galaxies in narrower redshift
ranges, having first removed sources whose photometric red-
shifts place them outside the range of interest, we usually obtain
slightly higher F1-scores when using labels from the NUV − r
vs. r− JE method, compared to when the original labels are used.
in the z = 2.5 − 3 bin, there is a particularly large improve-
ment in trhe F1-score (from ∼0.4 to ∼0.6). Conversely, in the
z = 0 − 0.25 bin we obtain a significantly lower F1-score when
using when using labels from the NUV−r vs. r−JE method (0.53
compared to 0.69). When labels derived from the NUV − r vs.
r − K method are used, the resulting F1-scores are consistently
lower compared to the case where the original labels (sSFR) are
used.
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Table B.1. Selection of quiescent galaxies in the redshift range 0 ≥ z ≥ 3, using the Int Wide catalogue with its labels replaced by labels derived
from the NUV− r vs. r− JE or NUV− r vs. r−K colour-colour methods. For this test the ugriz, IE, YE, JE, HE, W1, W2 and 20 cm bands were used,
with detections required in all of the Euclid bands. Here, the ARIADNE pipeline was used in its fast mode. No results are shown for the NUV − r
vs. r − K case in the redshift ranges 2 − 2.5 or 2.5 − 3, due to the very low number of sources labelled as quiescent by this method.
The columns are as follows:
(1) Redshift range in which the test was conducted;
(2) information on whether photometric redshifts were used to restrict the dataset to source in the specified redshift range (‘Yes’ or ‘No’);
(3) precision P for quiescent galaxy selection when using labels derived from the NUV − r vs. r − JE method;
(4) recall R for quiescent galaxy selection when using labels derived from the NUV − r vs. r − JE method;
(5) the F1-score for quiescent galaxy selection when using labels derived from the NUV − r vs. r − JE method;
(6) precision P for quiescent galaxy selection when using labels derived from the NUV − r vs. r − K method;
(7) recall R for quiescent galaxy selection when using labels derived from the NUV − r vs. r − K method;
(8) the F1-score for quiescent galaxy selection when using labels derived from the NUV − r vs. r − K method;
(9) precision P for quiescent galaxy selection when using labels derived from the sSFR;
(10) recall R for quiescent galaxy selection when using labels derived from the sSFR;
(11) the F1-score for quiescent galaxy selection when using labels derived from the sSFR.

NUV − r vs. r − JE labels︷                          ︸︸                          ︷ NUV − r vs. r − K labels︷                          ︸︸                          ︷ sSFR labels︷                          ︸︸                          ︷
Redshift range Redshift binning P R F1-score P R F1-score P R F1-score

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
0 − 3 No 0.86 0.79 0.82 0.79 0.74 0.77 0.84 0.74 0.79

0 − 0.25 Yes 0.51 0.56 0.53 0.41 0.46 0.43 0.72 0.67 0.69
0.25 − 0.5 Yes 0.82 0.81 0.82 0.78 0.74 0.76 0.81 0.80 0.80
0.5 − 0.75 Yes 0.86 0.85 0.86 0.84 0.81 0.83 0.86 0.85 0.85
0.75 − 1 Yes 0.90 0.90 0.90 0.80 0.85 0.82 0.85 0.87 0.86
1 − 1.25 Yes 0.90 0.90 0.90 0.79 0.86 0.82 0.88 0.88 0.88

1.25 − 1.5 Yes 0.81 0.85 0.83 0.69 0.80 0.74 0.82 0.84 0.83
1.5 − 2 Yes 0.77 0.79 0.78 0.61 0.72 0.66 0.80 0.82 0.81
2 − 2.5 Yes 0.70 0.69 0.69 – – – 0.62 0.69 0.65
2.5 − 3 Yes 0.62 0.65 0.62 – – – 0.40 0.57 0.37

B.9. Which observables are useful to select quiescent
galaxies?

Heretofore, we have approached the question of the usefulness of
different features (colours, magnitudes, etc.) in terms of whether
they are informative and whether their inclusion significantly im-
proves the quality of our classification models (see Sect. 4.2.4).
However, it is also desirable to reach a deeper understanding of
the usefulness of each feature, and how their usefulness depends
on the circumstances under which quiescent galaxies are to be
selected. For instance, the colours that are most useful for select-
ing quiescent galaxies in one redshift range may be less useful
in another.

Moreover, while it may be self-evident that the inclusion of
photometry in various optical bands allows for better character-
isation of galaxy SEDs, and thus more accurate classification of
galaxies, the degree of improvement may not always justify the
cost of acquiring additional observations. Fig. 8 illustrates such
an example, where the inclusion of ugriz photometry provides
little or no significant improvement in the selection of quiescent
galaxies at z >∼ 1.25, compared to when only the Euclid photom-
etry is used (see Sect. 5.1.3 for further details).

Our objective for this section, therefore, is to provide anal-
yses that can inform the planning of future surveys regarding
which filters or frequencies would be important to include, and to
guide the construction of new selection methods, be they colour-
colour, template- fitting, or machine learning-based. For this we
employ feature importance analysis (see also Sect. 4.2.4). The
machine learning models we use for these analyses are trained
using the XGBoostClassifier learning algorithm and the Int
Wide mock catalogue, because its feature importance values are
more robust, as discussed in Appendix A. We also perform A/B

tests using our pipeline in fast mode to examine the impact on
the F1-score from the addition of ancillary bands to the Euclid
IE, YE, JE, HEphotometry.

It is worth noting that these analysis methods provide infor-
mation about machine learning models and how they make use
of the input data, rather than the data itself. As such, the infor-
mation provided is limited by what the learning algorithms were
able to learn from the data, and it is quite possible that additional
relationships exist between features and the target that the learn-
ing algorithm was unable to find. Thus, while features found
to be important are highly likely to be useful for the selection
of quiescent galaxies, features found to be unimportant (or less
important) may nevertheless hold hidden information that other
selection methods (e.g. template fitting) may find useful when
selecting quiescent galaxies.

B.9.1. Which single optical band is most useful?

In Fig. B.9 we show the effect of adding one optical band to
the Euclid photometry set, when selecting quiescent galaxies
in specific redshift ranges from the Int Wide catalogue using
XGBoostClassifier, with no foreknowledge of redshifts. In
addition, Fig. B.10 shows the improvement in F1-score due to
the inclusion of each optical band.

First, we examine feature importance as a function of redshift
when only the Euclid data are available (Fig. B.9, top left). In this
circumstance, there is no single, decisive broad-band colour for
the selection of quiescent galaxies at z <∼ 0.5. The lack of sensi-
tivity to the 4000 Å break, or to emission blueward thereof, re-
sults in models with relatively low F1-scores (see Fig. 8). In this
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Fig. B.9. Visual representation of the feature importances derived from XGBoostCLassifier models trained to select quiescent galaxies us-
ing only Euclid photometry and colours (top left panel), or Euclid photometry with the addition of one ground based optical band, and the
relevant broad-band colours. The optical bands are u (top right), g (middle left), r (middle right), i (bottom left), and z (bottom right). The
XGBoostCLassifier models were trained without foreknowledge of the redshifts.
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Fig. B.10. The effect on the F1-score due to the including one ad-
ditional band with the Euclid photometry set. The ARIADNE pipeline
was run in fast mode using the LightGBMClassifier base learner, or
XGBoostClassifier at 2.5 < z < 3, without foreknowledge of galaxy
redshifts.

regime, our XGBoostCLassifiermodels assign a fairly similar
importance value to each feature.

Above z = 0.4, the 4000 Å break becomes redshifted into the
IE band, becoming potentially detectable via one or more of the
Euclid broad-band colours. In the range 0.5 < z < 1.5, the colour
IE − YE is the most sensitive to the presence of the 4000 Å break,
and our XGBoostCLassifiermodels consider this feature to be
the single most important for these redshifts. At z > 1.5, where
the 4000 Å break is now redshifted into the near-IR bands, other
colours become more important: IE − JE at 1.5 < z < 2, YE − HE

at 2 < z < 2.5, and JE − HE at 2.5 < z < 3.
The addition of u-band photometry allows the 4000 Å break

to be detected at z <∼ 0.5, resulting in significantly increased F1-
scores in this redshift range (see Fig. B.10). In this case, IE − u
and/or YE − u become the most important in the redshift range
0 < z < 0.75 by a large margin. Features using the u-band pho-
tometry continue to have significant (or non-zero) importance up
to z ∼ 2, before dropping to ∼ 0 at z > 2.5.

In the case where models are trained using features derived
from the g-band and Euclid photometry, colours involving g are
found to be the most important within the range 0.25 < z < 1.
While the inclusion of g also helps significantly at z < 0.25, the
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Fig. B.11. Similar to Fig. B.9, but showing the feature importances
when the W1 (top), W2 (middle) or 20 cm (bottom) bands are included
with the Euclid photometry.

improvement is considerably smaller compared to when the u
is used, because the 4000 Å break is blueward of the u-band’s
wavelength range. While the importance values of features us-
ing the g-band decrease substantially at z > 1.25, these features
remain useful even in the 2.5 < z < 3 bin.

When the r, i, or z band is used together with the Euclid
bands, the situation is similar to that described above for g, with
the main differences being the substantially lower feature impor-
tances at 0.25 < z < 0.5 for colours that use either of the three
bands, and the relatively high importance of IE−z at 1 < z < 1.25.

In summary, there is no single ‘ideal’ optical band to include
alongside the Euclid bands when selecting quiescent galaxies,
and a trade-off should be made depending on whether low-
redshift (z <∼ 0.25) or high-redshift (z >∼ 2) galaxies are required.
Of course, one may circumvent this choice if ugriz photometry
is available.
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Fig. B.12. Similar to Fig. B.10, but showing the effect on the F1-score
due to the including W1, W2, or the 20 cm radio band with the Eu-
clid photometry when training LightGBMClassifier (z < 2.5) or
XGBoostClassifier (2.5 < z < 3) models.

B.9.2. Importance of long wavelength bands

We repeat the process described in Appendix B.9.1, this time
considering the addition of the W1, W2, or 20 cm radio band
and related broad-band colours. The data for these three bands is
very sparse, with detection fractions of 0.053, 0.024, and 0.0076
for W1, W2, and 20 cm, respectively.

The feature importance as a function of redshift is shown in
Fig. B.11, and the improvement from including the W1, W2, or
20 cm bands with the Euclid photometry is shown in Fig. B.12.
Despite being very sparse, each of the three bands provide a
significant improvement in F1-score within the redshift ranges
0 < z < 1 and 1.5 < z < 3. We find little or no improvement
evident in the redshift range 1 < z < 1.5.

The usefulness of the 20 cm band for discriminating quies-
cent galaxies from star-forming galaxies is intriguing and some-
what surprising. Clearly, there is a correlation (or correlations)
between the galaxy class and the presence of radio continuum
emission. We speculate that this may be due to a subset of star-
forming galaxies being detected in radio continuum, and/or the
presence of radio-loud massive elliptical galaxies whose X-ray
emission is below the COSMOS2015 detection threshold.

B.10. Selection of quiescent galaxies from SPRITZ: Euclid
Deep Survey

To complement the results presented in Sect. 5.1.1, we have also
tested the selection of quiescent galaxies using the simulated Eu-
clid Deep Survey from SPRITZ (Bisigello et al. 2021). Com-
pared to the Euclid Deep Survey catalogues, the SPRITZ cata-
logue has the advantage of being complete down to the expected
depth for the actual survey Deep Survey and the expected an-
cillary ground-based data. For the Euclid and ugriz bands, we
adopt identical photometric uncertainties and detection limits to
those used for the SED Deep catalogue given in Sect. 2. In the
case of Spitzer Space Telescope IRAC bands, we adopt the fol-
lowing four cases based on Euclid Collaboration: Moneti et al.
(2022):

– Case 1: no IRAC photometry;
– Case 2: IRAC photometry 3σ depths of 24.55, 24.39, 22.61,

and 22.17 mag in channel 1, 2, 3 and 4, respectively;
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Fig. B.13. Results from applying the ARIADNE pipeline to the selection
of quiescent galaxies from the SPRITZ Euclid Deep Survey simulated
catalogue. Four cases described in Appendix B.10 are shown.

– Case 3: IRAC photometry 3σ depths of 25.55, 25.39, 23.61,
and 23.17 mag in channel 1, 2, 3 and 4, respectively;

– Case 4: IRAC photometry 3σ depths of 26.55, 26.39, 23.61,
and 23.17 mag in channel 1, 2, 3 and 4, respectively.

The ARIADNE pipeline was used in its default configuration,
where five base-learners are employed. Galaxies not detected in
one or more of the Euclid bands were removed from the dataset,
as were galaxies containing an AGN. The results are shown in
Table B.2 and Fig. B.13.

Appendix C: Number of detections in each
catalogue and band
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Table B.2. Selection of quiescent galaxies in the redshift range 0 ≥ z ≥ 3, using the (1) Redshift range in which the test was conducted;
(2) information on whether photometric redshifts were used to restrict the dataset to source in the specified redshift range (‘Yes’ or ‘No’);
(3) precision P for quiescent galaxy selection for SPRITZ Case 1;
(4) recall R for quiescent galaxy selection for SPRITZ Case 1;
(5) the F1-score for quiescent galaxy selection for SPRITZ Case 1;
(6) precision P for quiescent galaxy selection for SPRITZ Case 2;;
(7) recall R for quiescent galaxy selection for SPRITZ Case 2;
(8) the F1-score for quiescent galaxy selection for SPRITZ Case 2;;
(9) precision P for quiescent galaxy selection for SPRITZ Case 3;;
(10) recall R for quiescent galaxy selection for SPRITZ Case 3;;
(11) the F1-score for quiescent galaxy selection for SPRITZ Case 3;;
(12) precision P for quiescent galaxy selection for SPRITZ Case 4;;
(13) recall R for quiescent galaxy selection for SPRITZ Case 4;;
(14) the F1-score for quiescent galaxy selection for SPRITZ Case 4.

SPRITZ Case 1︷                          ︸︸                          ︷ SPRITZ Case 2︷                          ︸︸                          ︷ SPRITZ Case 3︷                          ︸︸                          ︷ SPRITZ Case 4︷                          ︸︸                          ︷
Redshift range Redshift binning P R F1-score P R F1-score P R F1-score P R F1-score

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
0 − 3 No 0.92 0.86 0.89 0.92 0.88 0.90 0.93 0.90 0.91 0.93 0.91 0.92

0 − 0.25 Yes 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.86 0.86
0.25 − 0.5 Yes 0.92 0.90 0.91 0.92 0.91 0.91 0.92 0.91 0.91 0.92 0.91 0.92
0.5 − 0.75 Yes 0.96 0.92 0.94 0.96 0.92 0.94 0.96 0.93 0.94 0.96 0.93 0.95
0.75 − 1 Yes 0.93 0.91 0.92 0.94 0.91 0.93 0.94 0.92 0.93 0.95 0.92 0.94
1 − 1.25 Yes 0.95 0.92 0.93 0.96 0.92 0.94 0.97 0.93 0.95 0.97 0.94 0.96

1.25 − 1.5 Yes 0.93 0.95 0.94 0.96 0.95 0.95 0.97 0.96 0.97 0.98 0.97 0.97
1.5 − 2 Yes 0.90 0.93 0.91 0.94 0.94 0.94 0.95 0.95 0.95 0.96 0.96 0.96
2 − 2.5 Yes 0.91 0.84 0.87 0.93 0.89 0.91 0.95 0.91 0.93 0.95 0.93 0.94
2.5 − 3 Yes 0.82 0.83 0.83 0.86 0.84 0.85 0.89 0.89 0.89 0.91 0.89 0.90

Table C.1. The number of 3σ detections in each of the bands, for each mock catalogue. Also shown are the numbers of quiescent galaxies. The
SED catalogues do not contain 20 cm radio band.

Catalogue IE YE JE HE u g r i z W1 W2 20 cm Quiescent
Int Wide 315755 212019 231039 250077 140782 226514 198564 194912 204649 10476 4704 1536 21998 (7.0 %)
Int Deep 517890 486394 491588 500299 499565 504416 490457 493018 499140 10476 4704 1698 30990 (6.0 %)

SED Wide 3249101 2056800 2270138 2455887 1498518 2330338 2091921 2040916 2031115 131703 65904 – 213837 (6.6 %)
SED Deep 5121526 4763050 4890667 4963038 3971472 4796448 4828112 4802416 4766807 134656 69493 – 303761 (5.9 %)
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