
Joint Security-vs-QoS Framework: Optimizing the Selection of
Intrusion Detection Mechanisms in 5G networks

Arash Bozorgchenani
a.bozorgchenani@lancaster.ac.uk

Lancaster University
United Kingdom

Charilaos C. Zarakovitis
c.zarakovitis@iit.demokritos.gr
National Center For Scientific

Research "Demokritos"
Greece

Su Fong Chien
sf.chien@mimos.my
MIMOS Berhad

Malaysia

Heng Siong Lim
hslim@mmu.edu.my
Multimedia University

Malaysia

Qiang Ni
q.ni@lancaster.ac.uk
Lancaster University
United Kingdom

Antonios Gouglidis
a.gouglidis@lancaster.ac.uk

Lancaster University
United Kingdom

Wissam Mallouli
wissam.mallouli@montimage.com

Montimage EURL
France

ABSTRACT
The advent of 5G technology introduces new - and potentially
undiscovered - cybersecurity challenges, with unforeseen impacts
on our economy, society, and environment. Interestingly, Intrusion
Detection Mechanisms (IDMs) can provide the necessary network
monitoring to ensure - to a big extent - the detection of 5G-related
cyberattacks. Yet, how to realize the attack surface of 5G networks
with respect to the detected risks, and, consequently, how to op-
timize the cybersecurity levels of the network, remains an open
critical challenge. In respect, this work focuses on deploying multi-
ple distributed Security Agents (SAs) that can run different IDMs
over various network components and proposes a cybersecurity
mechanism for optimizing the network’s attack surface with respect
to the Quality of Service (QoS). The proposed approach relies on a
new closed-form utility function to describe the trade-off between
cybersecurity and QoS and uses multi-objective optimization to im-
prove the selection of each SA detection level. We demonstrate via
simulations that before optimization, an increase in the detection
level of SAs brings a direct decrease in QoS as more computational,
bandwidth and monetary resources are utilized for IDM processing.
Thereby, after optimization, we demonstrate that our mechanism
can strike a balance between cybersecurity and QoS while show-
casing the impact of the importance of different objectives of the
joint optimization.
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1 INTRODUCTION
5G paves the way for a fully connected world. By blending different
types of technologies and advances it offers various types of services
such as smart home, V2V communication, smart parking, UAV
integrated communication, fog/edge computing, industry 4.0, and
blockchain-based services to name some [5]. However, apart from
the pre-5G security threats (that still need to be addressed), new
security challenges have been introduced in 5G mainly due to
(i) the utilization of 5G enabling technologies such as software-
defined networking, network function virtualization, mobile edge
computing, network slicing etc; and (ii) high degree of 5G network
heterogeneity including internet of things and end-user devices,
service requests, new stakeholders andmission-critical applications,
etc. [9].

Network-based Intrusion Detection Mechanisms (IDMs) are de-
signed to identify attacks, generate alerts and report any detected
suspicious behaviour or attacks that jeopardize the integrity, avail-
ability and confidentiality of a 5G system network [6]. In this work,
we consider the deployment of Security Agents (SA) in a network,
where each SA is enabled to execute IDM functionality for mon-
itoring 5G components/nodes against cyberattacks. We use the
term IDM to differentiate from an Intrusion Detection System (IDS)
since in the latter we may have different mechanisms to detect an
attack. The SAs can perform the system monitoring at different de-
tection levels; hence, they differ in how they identify the potential
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intrusions. The higher the detection level, the higher the efficien-
cy/accuracy of the SA in terms of detecting the network attacks.
However, monitoring the system to identify the potential attacks
results in increasing the consumption of resources. These resources
include, but are not limited to, network bandwidth, computational
resources, and monetary cost. On the other hand, maintaining a
high level of Quality of Service (QoS) when a significant amount of
data is generated in the network is of high importance to preserve
intact the 5G user experience. Thereby, a classical dilemma arises
since although IDMs can provide high-security services, they can
often decrease the QoS performance due to the additional network
resources required for IDM processing. [19]. Hence, the system
faces a trade-off between maximizing the IDM monitoring per-
formance (i.e., keeping the network secure) and minimizing the
resource cost (i.e., preserving the user QoS).

We note a large body of literature investigating the problem of
intrusion detection in 5G networks, in-vehicle networks, vehicular
communication, Internet of things, and small-cells [7, 8, 10–12].
Moreover, there have been several works studying how to secure
the system by providing countermeasures considering the security
and QoS [4, 15, 16, 18]. These efforts rely on either multi-objective
Genetic Algorithm (GA) optimization or game-theoretic approaches
to provide cybersecurity remediation. However, there is no attempt
to address the problem of SA detection level selection problem as
intended in this work. The significance of such trade-off stands
paramount to realising and optimising the cybersecurity network
because it accounts for the network’s states/conditions and system
preferences at different time instants towards selecting the detection
level of the SAs for IDM.

In respect, in this work, we approach such trade-off by exploiting
multi-objective optimization approaches [2], and by introducing a
multi-objective optimization problem which considers both cyber-
security and QoS performances in a single closed-form function.
Our contributions are summarized in the following:

(1) Design of a new utility function in closed-form to correlate
the detection level selection problem with the QoS of the
network at hand;

(2) Formulation and justification of the detection level selec-
tion problem in the form of joint Security-vs-QoS optimiza-
tion problem, which, to our knowledge, has not yet been
attempted by relevant studies;

(3) Resolution of the optimal result using CPLEX programming
and discussion of its feasibility and applicability over small-
scale and large-scale network settings;

(4) Demonstration via simulations to showcase the performance
of the multi-objective optimization problem under various
utility functions and preference settings.

The rest of the paper is organized as follows. In Section 2, we
describe the system model, formulate the problem and discuss the
problem-solving. In Section 3, we present the simulation results.
Section 4 concludes the paper.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

Let us consider a heterogeneous architecture, which consists of
IoT devices, base stations, servers, and different core-level network

functions. All these nodes are vulnerable to cyberattacks. To pro-
vide a secure network, we consider some pre-deployed SAs in the
network to perform system monitoring. Each SA can perform the
system monitoring with a specific security detection level. Each
of these security detection levels enables the SA to detect certain
attack types in the system. For instance, one security level can
be used for signature-based intrusion detection, another one for
anomaly-based intrusion detection and another one for complex
event processing or hybrid intrusion detection methods. The higher
the detection level, the higher will be the efficiency/accuracy of
the SA in detecting the attack types; however, the higher will be
the system cost. Hence, there exists a trade-off to be studied for
the security detection level selection of each SA, which is what we
address in this paper.

Let us show the set of 𝑀 SAs as A = {𝑎1, . . . , 𝑎𝑚, . . . 𝑎𝑀 }. We
denote the security detection level of a SA as 𝐿𝑚 which equals 𝑙 ,
where 𝑙 ∈ {1, . . . , 𝑁 }, representing different detection levels. The
problem is assigning the proper detection level to each of the SAs
in order to detect the attacks in the system such that the system
utility function is maximized. The system utility function in our
joint security-vs-QoS optimization problem is composed of two
main functions of Υsec𝑚 and ΥQoS𝑚 , which are security and QoS utility
functions, respectively.

The efficiency of a security detection level can be evaluated as
the number of attacks it can detect out of the total number of known
attacks. However, we also consider the probability that there might
exist a certain number of unknown attacks in the system and define
the following as the security utility function:

Υsec𝑚 (𝐿𝑚) = 𝜑 𝐾
′(𝐿𝑚)
𝐾 + 𝐾

(1)

where𝐾 ′,𝐾 ,𝐾 , and𝜑 indicate the number of detected attacks based
on the selected detection level, total number of known attacks, the
number of unknown attacks, and a coefficient parameter for tuning
the range of the values. Number of unknown attacks are also a
portion of the known attacks 𝐾 ∈ [0 %𝜄] × 𝐾 .

On the other hand, a high-security detection accuracy requires
a system to consume resources to enable this functionality for the
SAs. We consider that the SAs consume network bandwidth, and
computational resources and they incur some monetary costs in
order to perform the system monitoring. Let us denote the band-
width that a SA with a specific detection level (i.e., 𝐿𝑚) consumes as
𝐵(𝐿𝑚). This bandwidth is consumed by the SA in order to perform
the system monitoring for the attack detection according to the
selected level. Similarly, let us show the consumed computational
resources by a SA as 𝜂 (𝐿𝑚). Furthermore, as introduced before,
higher security detection levels can affect the system in terms of
monetary cost as well. Hence, we also consider the system mon-
etary cost and denote it as Ψ(𝐿𝑚). The joint QoS utility function
can be written as

Υ
QoS
𝑚 (𝐿𝑚) = −

(
𝛼1𝐵̃(𝐿𝑚) + 𝛼2𝜂 (𝐿𝑚) + 𝛼3Ψ̃(𝐿𝑚)

)
(2)

It should be noted that ∗̃ represents the normalized value and 𝛼∗
represents the weight of each of the QoS objectives (

∑3
𝑖=1 𝛼𝑖 = 1).

The joint security-vs-QoS utility function for SA detection level
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selection can be written as

Υ𝑚 (𝐿𝑚) = 𝛽1Υ
sec
𝑚 (𝐿𝑚) + 𝛽2Υ

QoS
𝑚 (𝐿𝑚) (3)

where 𝛽1 and 𝛽2 represent two non-negative weights for the se-
curity and QoS utility functions (

∑2
𝑖=1 𝛽𝑖 = 1). The optimization

problem can be written as

P1 : max
L𝑚

{
𝑀∑︁

𝑚=1
Υ𝑚 (𝐿𝑚)

}
(4)

where L𝑚 ∈ R𝑀 represents the detection level decision vector for
the SAs. Let us transform P1 and write it as

P2 :max
X

{
𝛽1𝜑

𝐾 + 𝐾

𝑀∑︁
𝑚=1

𝐿∑︁
𝑙=1

𝐾 ′
𝑚,𝑙
𝑥𝑚,𝑙−

𝛽2

𝑀∑︁
𝑚=1

𝐿∑︁
𝑙=1

(
𝛼1𝐵̃𝑚,𝑙 + 𝛼2𝜂𝑚,𝑙 + 𝛼3Ψ̃𝑚,𝑙

)
𝑥𝑚,𝑙

}
(5)

subject to

C2.1 :
𝐿∑︁
𝑙=1

𝑥𝑚,𝑙 ≤ 1 ∀𝑚, (6)

C2.2 :
𝛽1
𝛽2

≥

(
𝛼1𝐵̃𝑚,𝑙 + 𝛼2𝜂𝑚,𝑙 + 𝛼3Ψ̃𝑚,𝑙

)
·
(
𝐾 + 𝐾

)
𝐾 ′
𝑚,𝑙

· 𝜑 , (7)

C2.3 : 𝛽1 + 𝛽2 = 1, (8)

where X ∈ R𝑀×𝐿 is the decision matrix where each element is
binary (i.e., 𝑥𝑚,𝑙 ∈ {0, 1}) representing if the 𝑙th detection level is
selected for the𝑚th SA. Constraint (6) assures each SA is assigned
only one detection level. In order to find the feasibility condition
of P2, we set 𝜕𝑓

𝜕X = 0, which yields constraint (7). Constraint (8)
denotes that the sum of the two objective coefficients equals one.

The optimization problem assigns the detection level to the SAs
such that the trade-off between maximizing the security detection
efficiency and the QoS is addressed. The optimization problem runs
every time the decision needs to be made, which can be every time
instant or periodically. P2 is a Binary Integer Programming problem.
The problem can be solved by using standard solvers such as CPLEX
with low execution time on modest hardware. CPLEX is widely
used in the literature for problem solving [1, 3]. In the following
section, we present the results of our study.

3 SIMULATION RESULTS
In this section, we present the numerical results obtained by com-
puter simulations, which are performed in CPLEX and MATLAB.
Before delving into details about the choice of parameter values, it
is important to mention that in the European research project SAN-
CUS [13, 17], a taxonomy is developed to systematically document
and assess the impact of various 5G security attacks, which pose a
threat to the network. This taxonomy first identifies the security
and privacy threats in 5G. Later it introduces the efficiency of each
of the security levels in identifying the network threats. In this
paper, we use synthetic values to demonstrate the performance of
the formulated multi-objective optimization problem.

Table 1: Simulation Parameters

Parameter Value
Number of detection levels (𝑁 ) 5
Number of SAs (𝑀) 20
Number of known attacks (𝐾 ) 95
Ratio of unknown to known attacks (𝜄) % 5
Consumed bandwidth for the detection levels
(𝐵(𝐿𝑚)) [3.3-33]

Consumed computational resources for the de-
tection levels (𝜂 (𝐿𝑚)) [3.3-33]

Consumed monetary cost for the detection lev-
els (Ψ(𝐿𝑚)) [3.3-33]

Table 1 summarises the used simulation parameters. The number
of detected attacks for each SA is a value in the range [0 100]
according to the selected level, i.e., the higher/lower detection levels,
the higher/lower number of detected attacks, which also differs
across SAs. The values for consumed bandwidth, computational
resources and monetary cost are normalized in the range of [3.3
33], where for lower/higher detection levels lower/higher values
are selected, where these values vary across the SAs. These upper
and lower values are selected for each objective since they allow
the three QoS objectives to be in the same range as the security
objectives to avoid biased results. It is worth mentioning that the
same results can also be obtained by any other ranges.

3.1 Impact of 𝛼 on the QoS utility
In this section, we evaluate the impact of QoS objectives coefficients
i.e., 𝛼 , on the QoS utility function. We have studied scenarios with
different values of 𝛼 and the result is depicted in Figure 1. As seen,
different values of 𝛼 results in different QoS utility values. The
impact of the monetary cost on the utility function is the highest
and the impact of the bandwidth on the utility function is the lowest
according to the generated values for each objective and this can
be seen when we set the corresponding coefficient to 0.9, which is
the highest. However, in order to consider all of the objectives with
the same level of priority, we select equalizing the coefficients of
the objective (i.e., 𝛼𝑖 = 0.3, 𝑖 = 1, 2, 3) for the rest of the simulation
results. It is worth mentioning that depending on our preferences
at different time instants by observing the status of the network
and availability of the resources, we can select different values of 𝛼
in the QoS utility function.

3.2 Impact of 𝛽 on the security-vs-QoS trade-off
In this section, we evaluate the trade-off between the coefficients
of the joint objective (i.e., 𝛽). As seen in Figure 2, a higher value
of 𝛽1, i.e., higher security priority, results in higher efficiency in
terms of detecting the attacks (higher utility). This is because the
SAs tend to select the highest security levels for monitoring, and
since the QoS coefficient is low, the negative impact of QoS cost
on the overall utility function is also reduced. On the other hand,
a higher value of 𝛽2 (i.e., 𝛽2 = 0.5) leads to selecting low-security
levels in order to lower the system costs; however, this decreases
the overall system efficiency in terms of detecting the attacks and
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Figure 1: QoS utility for different 𝛼 values

Figure 2: Security-vs-QoS trade-off for different 𝛽 values

might put the system at higher risk. To conclude, there is no single
pair of 𝛽 values that are optimal for all of the SAs for each decision-
making. Instead, each of these values can be preferred at a specific
time instant depending on the system status (i.e., security and QoS
status). When the system is under high attack, the best case can
be setting 𝛽1 = 0.9, and when the system is under low attack a
more balanced case by setting 𝛽1 = 𝛽2 = 0.5 addresses the trade-off
better according to the results. Please note that higher values of 𝛽2
would not be possible as they violated the feasibility condition in
C2.2.

3.3 SAs Detection level selection
In this section, we demonstrate the detection level selection for 20
SAs with different values of 𝛽 coefficients.

As discussed before, different values of 𝛽 indicates different
priority for security and QoS objectives. When prioritizing the
security (i.e., 𝛽1 = 0.9), all SAs select the highest detection level

Table 2: SAs detection level selection for 𝛽1 = 0.8, 𝛽2 = 0.2

Agent
Selected
detection
level

Agent
Selected
detection
level

Agent 1 5 Agent 11 5
Agent 2 5 Agent 12 4
Agent 3 5 Agent 13 5
Agent 4 5 Agent 14 5
Agent 5 5 Agent 15 5
Agent 6 4 Agent 16 5
Agent 7 4 Agent 17 5
Agent 8 5 Agent 18 5
Agent 9 5 Agent 19 5
Agent 10 4 Agent 20 5

Table 3: SAs detection level selection for 𝛽1 = 0.7, 𝛽2 = 0.3

Agent
Selected
detection
level

Agent
Selected
detection
level

Agent 1 5 Agent 11 5
Agent 2 4 Agent 12 4
Agent 3 5 Agent 13 4
Agent 4 5 Agent 14 5
Agent 5 5 Agent 15 5
Agent 6 4 Agent 16 5
Agent 7 4 Agent 17 5
Agent 8 5 Agent 18 5
Agent 9 5 Agent 19 5
Agent 10 4 Agent 20 5

Table 4: SAs detection level selection for 𝛽1 = 0.6, 𝛽2 = 0.4

Agent
Selected
detection
level

Agent
Selected
detection
level

Agent 1 5 Agent 11 5
Agent 2 4 Agent 12 4
Agent 3 5 Agent 13 4
Agent 4 5 Agent 14 5
Agent 5 5 Agent 15 4
Agent 6 4 Agent 16 5
Agent 7 4 Agent 17 5
Agent 8 4 Agent 18 5
Agent 9 5 Agent 19 4
Agent 10 4 Agent 20 5

since this maximizes the objective function in P2. However, as we
decrease the coefficient of security (i.e., 𝛽1), the SAs tend to select
lower detection levels. This is because they try to consider the
impact of their selection on the QoS objective as well and a lower
detection level maximizes the QoS objective. As can be seen in
Tables 2 to 4, the SAs select detection level 4 more, as 𝛽1 decreases.
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Table 5: SAs detection level selection for 𝛽1 = 0.5, 𝛽2 = 0.5

Agent
Selected
detection
level

Agent
Selected
detection
level

Agent 1 5 Agent 11 1
Agent 2 4 Agent 12 5
Agent 3 2 Agent 13 2
Agent 4 4 Agent 14 4
Agent 5 1 Agent 15 3
Agent 6 1 Agent 16 1
Agent 7 4 Agent 17 4
Agent 8 4 Agent 18 3
Agent 9 1 Agent 19 2
Agent 10 4 Agent 20 1

On the other hand, when the two objectives have equal coefficients
(i.e., 𝛽1 = 𝛽2 = 0.5), each of the SAs selects a different detection
level depending on the security and QoS values. As seen in Table 5,
each of the SAs has selected a different detection level that leads to
the maximization of the objective function in P2. That is, depending
on how much bandwidth, computational resources and monetary
cost the SAs consume and how much a detection mechanism can
detect the potential attacks, the detection level decision can change
too. For instance, when the QoS cost is low for higher detection
levels, the system can select higher levels since this maximizes
the security and meanwhile not incurs a high cost to the system.
However, if the system has highQoS cost values for higher detection
levels, it might try to choose a medium detection level to balance
between the two objectives. Furthermore, as seen, by changing the
values of objectives coefficients, we can tune the importance of
each objective.

3.4 Discussion on large-scale scenario
As demonstrated, the problem P2 can be easily solved using the
CPLEX optimization solver which exploits the Simplex algorithm as
one of the methods for problem-solving. However, when the num-
ber of variables increases, the number of iterations and complexity
grows exponentially which makes it unsuitable for large-scale sce-
narios [14]. While for large-scale scenarios obtaining the optimal
results is difficult, sub-optimal solutions can be easily achieved by
exploiting heuristic or meta-heuristic solutions. For instance, by
adopting a GA and considering point mutation, one-point crossover
and roulette wheel selection, the complexity can be in the order of
𝑂 (𝑔𝑛𝑚), where 𝑔 is the number of iterations, 𝑛 the population size
and𝑚 the individuals’ size. In our future work, we aim to study
larger-scale scenarios and propose heuristic and meta-heuristic so-
lutions. Moreover, we aim to address the SA placement problem to
optimize the locations of SAs for achieving a higher attack detection
efficiency.

4 CONCLUSION
In this work, we studied the problem of SA detection level selection
where the SAs perform the system monitoring for intrusion detec-
tion. We considered a scenario with 20 SAs where each of them

can perform the system monitoring with several detection levels.
Higher detection levels provide higher attack detection accuracy,
however, they also lead to a higher system cost. As a result, there ex-
ists a trade-off to be addressed for this problem.We have formulated
the joint security-vs-QoS optimization problem and obtained the
optimal results using the CPLEX optimization solver. Furthermore,
we have studied the impact of the importance of different objectives
of the joint optimization in the simulation results. In our future
work, we aim to target larger-scale scenarios where we can propose
heuristic or meta-heuristic solutions to cope with the network size
growth. Moreover, we anticipate optimizing the placement of the
SAs for achieving a higher intrusion detection efficiency.
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