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a b s t r a c t 

Lab-based microCT is a powerful means of visualising the internal structure of physical specimens deployed 

across the physical sciences, engineering and the arts. As its popularity has grown, demand for bulk digitisation of 

multiple samples within a single scan has increased. High throughput workflows can increase sample sizes and 

reduce scan time, yet downstream segmentation and meshing remain a bottleneck. We present MiTiSegmenter 

as a new tool for the bulk archiving of valuable zooarchaeological and palaeontological remains. We foresee 

MiTiSegmenter as particularly useful when incorporated into workflows that ultimately require the destructive 

testing of specimens, including sampling for ancient DNA and proteomics. The software may also play an 

important role in national museums’ ongoing mass digitisation effort s, facilit ating the high-speed archiving of 

specimen 3D morphology across extensive collections with very minimal user intervention or prior training. 

• We present MiTiSegmenter , a software package for semi-automated image processing and segmentation of 

array-based batch microCT data. 
• Implemented in Python, MiTiSegmenter expedites cropping, meshing and exporting samples within stacked 

microtiter plates, facilitating the rapid digitisation of hundreds-thousands of samples per scan. 
• We illustrate MiTiSegmenter’s capabilities when applied to bulk archiving of valuable zooarchaeological and 

palaeontological remains 
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Specifications table 

Subject Area: Agricultural and Biological Sciences 

More specific subject area: Zooarchaeology; Palaeontology; Museum Studies 

Method name: ‘MiTiSegmenter’ (MicroTiter Plate Segmenter) 

Name and reference of original 

method: 

NA 

Resource availability: Software executable, user manual, and example scans are available on Github: 

https://github.com/connahKendrickMMU/MiTiSegmenter 

Example Dataset: https: 

//figshare.com/articles/Example _ data _ for _ MitiSegmenter _ software/12349847 

Labels: https://figshare.com/articles/dataset/ 

Example _ labelling _ spreadsheets _ to _ accompany _ MiTiSegmenter/17899916 

Background 

Broader access, falling costs and simplified protocols have ensured that 3D digitisation has become 

an essential component of many researchers’ workflow. Although powerful, digitisation can be a time- 

consuming endeavour, and there is an understandable desire to both reduce scan time and increase 

sample sizes whilst balancing any accompanying trade-off with scan resolution. 

Bulk scanning (in which numerous discrete samples are digitised within a single scan ‘volume’) 

may be deployed to increase the throughput of a digitisation workflow significantly. Bulk CT scanning 

may take the form of multiple specimens arranged in a low-density mounting medium, scanned 

and manually segmented into individual components (rat foetuses [1] ; corn kernels [2] ). In some 

instances, this is accompanied by custom-written code to automate segmentation and downstream 

analyses (sorghum stems [3] ). Most promisingly, such automated segmentation code has occasionally 

been deployed in combination with specially designed ‘holders’ or ‘cassettes’ to speed up further the 

digitisation process (timber cores [4] ; rat hind limbs [5] ). 

No user-friendly GUI-based software exists for the explicit purpose of segmenting such bulk CT 

data whilst also retaining specimen IDs assigned externally to the software, such as museum labels or 

laboratory codes. We present MiTiSegmenter , a software package for the semi-automated processing 

and segmentation of array-based microCT data. Samples are arranged in a grid-like fashion within 

microtiter plates ( Fig. 1 ), common biomolecular laboratory consumables, comprising flat plastic plates 

holding numerous ‘wells’. Microtiter plates are manufactured in multiple array dimensions, most 

commonly 6 × 4, 12 × 8 and 24 × 16 ‘well’ arrays. In guidance set out by the Society for Biomolecular 

Screening, industry standards are now in place for the footprint dimensions (ANSI SLAS 1-2004) and 

well positions (ANSI SLAS 4-2004) of 96, 384 and 1536 well density formats. Therefore, our proposed 

sample holders are low cost, standardised, scalable, stackable, and widely available to labs globally. 

MiTiSegmenter is an important contribution to the field of microCT imaging, incorporating both 

an interactive GUI and intuitive specimen mounting protocol. Its novelty lies in using microtiter 

plates as sample holders, which may subsequently be stacked vertically, typically resulting in 3 or 

4 plates per scan volume and sample sizes in orders of hundred-thousands of discrete specimens. 

Within the MiTiSegmenter software, scans are temporarily downsampled upon import to reduce 

processing times. Samples are segmented from the microtiter plates using Cel-shading and standard 

thresholding. Furthermore, individual specimens are isolated using 3D image blobbing. Due to the 

predictable grid-based nature of the microtiter plates, associated museum/laboratory ID codes may 

be imported from externally-generated spreadsheets alongside image data and incorporated into the 

workflow. Identification labels are assigned to each sample using the superimposed grid and reference 

spreadsheets. Finally, resulting image masks are then used as a guide for the export of the original 

https://github.com/connahKendrickMMU/MiTiSegmenter
https://figshare.com/articles/Example_data_for_MitiSegmenter_software/12349847
https://figshare.com/articles/dataset/Example_labelling_spreadsheets_to_accompany_MiTiSegmenter/17899916
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Fig. 1. MiTiSegmenter software is used to automatically segment and export individual tomographic datasets from array-based bulk microCT scans. A. Four microtiter plates of varying 

well number (24, 48 and 96 wells) are used to mount 192 discrete skeletal specimens and are stacked in the z-direction prior to microCT scanning. B. A radiographic projection of the 

microtiter plate array. 
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high-resolution data as individual 8-bit tiff stacks and an accompanying .ply surface mesh, all whilst 

retaining original specimen IDs. This removes the need to assign file names to potentially hundreds- 

thousands of files manually, and crucially, reduces the potential for any naming transcription errors. 

We provided a specific example of the incorporation of MiTiSegmenter into the workflow of 

Zooarchaeology by Mass Spectrometry (ZooMS; [6] ). Archaeological bone assemblages comprise highly 

fragmentary skeletal remains. Recent applications of proteomic methods facilitate the identification 

of bone fragments to species-level using collagen-based peptide mass fingerprinting by MALDI-TOF 

Mass Spectrometry [7] . Yet this analysis is destructive, and valuable morphological data is lost when 

fragments are destroyed during collagen extraction. We highlight the value of MiTiSegmenter for the 

collection of bulk high-resolution microCT data from bone fragments prior to destructive sampling. 

Methodological requirement 

There are several functional requirements that any high throughput CT workflow must meet: 

Optimise resolution - Any mounting ‘holder’ must optimise the spatial density of samples within a 

given scan volume. In microCT, the x-ray cone beam ensures straightforward geometric magnification 

of the scanned object. Thus, the closer specimens may be positioned to the x-ray source, the higher 

the magnification on the detector panel and hence the smaller the voxel size [8] . Any holder must 

place multiple discrete specimens within as small a 3D volume as possible to reduce the maximum 

dimension of the real object. 

Enhance contrast - Resulting CT datasets represent 3D maps of x-ray attenuation through a sample, 

which is itself a function of elemental composition and material density. Similar greyscale values will 

represent objects characterised by similar x-ray attenuation in the resulting CT dataset. To facilitate 

rapid, automated/semi-automated segmentation of samples away from the mount, any holder should 

differ in material properties from the specimens of interest to minimise overlap within the greyscale 

histogram. This is most often achieved through the use of low-density mounting materials. 

Efficiency - CT datasets are often very large in size. A medical CT dataset might typically 

span 100MB-10GB, whilst a reconstructed lab-based microCT dataset will frequently occupy 10GB- 

100GB, depending upon detector size and bit depth (i.e. 32, 16 or 8 bit). Software for downstream 

segmentation of bulk CT scans must be capable of loading and processing such datasets in a timely 

manner. 

Traceability - Samples within a single bulk CT dataset may originate from different species, strains 

or contrasting experimental protocols arranged in a documented array. When processing bulk CT scans 

comprising potentially hundreds-thousands of individual samples, the ability to reliably isolate, label 

and extract discrete specimens whilst retaining this valuable ID information is therefore essential. 

Flexibility - To be broadly adopted by the academic community, any segmentation software must 

have the capability of functioning across a diverse array of sample holders and/or operate upon 

standardised mounts that are widely available to users. 

Software description 

MiTiSegmenter is a GUI-based application released under the MIT license. It is built under Python 

3.6 using the Tkinter GUI library. A path through the system is illustrated in Fig. 2 . 

A file menu loads and exports images and 3D models. MiTiSegmenter offers three orthogonal views 

of the dataset ( Fig. 3 ) navigated using scroll bars (top). 

Image import 

MicroCT stacks are very large, often exceeding 4K resolution. Large slice numbers ( ∼20 0 0-30 0 0) 

make storing frames into memory challenging. MiTiSegmenter requires either a .raw image or a folder 

of tiffs of any standard bit depth (6, 18, 32, 64). Data is downsampled upon loading to act as a 

template before the final protocol is applied to the original dataset, saving processing power and 

time by overworking end-to-end with full-resolution images. The user selects a downsample rate on 

importing the data. The user also can work end-to-end with the full dataset (reading multiple stacked 
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Fig. 2. MiTiSegmenter GUI interface guides the user through each step of the process, providing real-time feedback on the 

user’s choices. The simple GUI changes to the next/ previous window on the ‘next’ and ‘back’ button press. Thus, the user 

is not presented with a single multipurpose window and a potentially overwhelming number of functions and options upon 

first viewing. Each of the image viewer windows is resizable and floats separately, allowing users to reposition and resize as 

required. Not all changes affect the system’s data, allowing users to go back and adjust until they are satisfied with the final 

result. 
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Fig. 3. An example of the 3 floating windows opened by MiTiSegmenter on the example data. The views show an X, Y and Z slice view of the image stack. 
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‘plates’ into memory at once) or pre-processing the data to isolate discrete plates and save them as 

separate tiff stacks first (saving on memory by reading a single plate at a time). As the images contain 

no scale information, MiTiSegmenter refers to a text file within the image folder for scale and sequence 

information. This file is typically generated at the reconstruction phase (with the extension ‘.info’) but 

can be generated internally if absent. 

Segmentation 

In the most basic approach to segmentation, a global threshold ( Error! Reference source not 

found. ) assigns all pixels greater than or equal to a predetermined greyscale value to the foreground 

and the remainder to 0: 

X = 

{
0 , X < T lower 

X, X ≥ T lower 
(1) 

X = 

{
0 , X > T upper 

X, X ≤ T upper 
(2) 

Where X is the pixel value, and T the threshold value, this assumes that all samples of interest will 

be denser (i.e. higher pixel value) than the surrounding mounting medium. As this is frequently not 

the case, as an initial approach, we employ greyscale bracketing Eq. (1 ) and ( (2) deployed together), 

assigning all pixels outside a user-determined range to the foreground. 

CT images experience ‘partial volume averaging’ however; when two materials of different x-ray 

absorption occur within the same voxel, resulting greyscale values reflect their average. A ‘halo’ of 

lower greyscale voxels around object margins can result. Basic global thresholding may remove said 

intermediate voxels and erode object surfaces ( Fig. 4 A-B). 

Furthermore, although mounting media is selected for minimal overlap with sample density, 

additional noise and scan artefacts can result in sections of the mount remaining within the threshold. 

Increasing x-ray projections or frame averaging can reduce noise but considerably lengthen scan time. 

For high throughput protocols, such methods may be undesirable, and some noise is likely inevitable. 

An optional step is added to account for noise: namely Cel-shading . Cel-shading ‘ quantises’ the 

image gradient (i.e. reduces the number of greyscale values by binning similar values by a predefined 

factor, see Fig. 4 C-D), applied through 3: 

X new 

= X − ( X % C ) (3) 

Where X is the voxel’s intensity value and C the base value, for 8-bit images comprising 255 

greyscale values, a base value of 10 produces Cel-shaded images of 25 grey values. Voxels are 

rounded upwards/downwards into adjacent bins, potentially adding or removing material from the 

mask. Binning simplifies the selection of an appropriate cut-off threshold and assists in noise removal 

Fig. 4 C-D). It may, however, cause erosion at sample margins and must be used cautiously. After Cel- 

shading, the image is thresholded as per Eq. (1 ) and ( (2) via a user-inputted threshold. 

Labelling 

Most samples undergoing high throughput microCT possess preassigned specimen numbers (e.g. 

museum accession numbers, trial IDs, site codes). As MiTiSegmenter permits the digitisation of 

hundreds or even thousands of samples simultaneously, assigning specimen numbers to exported data 

is essential. Thus, the semi-automatic labelling of outputted 3D models and image stacks is enabled. 

MiTiSegmenter’s labelling method relies upon evenly spaced microplate arrays. MiTiSegmenter requires 

specimen numbers to be recorded in an accompanying .csv spreadsheet in a grid format reflecting 

the underlying plate layout for the auto-labeling. However, the specimens can be exported numbered, 

which does not require a csv file. An example scan ( https://figshare.com/articles/dataset/Example _ 

data _ for _ MitiSegmenter _ software/12349847 ) and labelling spreadsheets ( https://figshare.com/articles/ 

dataset/Example _ labelling _ spreadsheets _ to _ accompany _ MiTiSegmenter/17899916 ) are provided on 

Figshare. The system will highlight the IDs of corner samples, to allow the user to manually verify 

https://figshare.com/articles/dataset/Example_data_for_MitiSegmenter_software/12349847
https://figshare.com/articles/dataset/Example_labelling_spreadsheets_to_accompany_MiTiSegmenter/17899916
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Fig. 4. Thresholding implemented in MiTiSegmenter . A. The raw input data, with a partial volume ‘halo’ around the specimen edges; B. Cel-shading applied to group greyscale values, 

allowing for a more straightforward selection of threshold values; C. Original greyscale histogram of a single image. Peaks, highlighted red, at 0, 31 and 114 represent air, mount and 

sample, respectively; D. Histogram of the same data following Cel-shading with a base = 10. E. Raw data with mount visible; F. Same data as E with global threshold applied; G. Same data 

as E with Cel-shading followed by thresholding applied. 
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the scan is not mirrored. However, for bulk scanning items that do not require an ID, the system 

will assign a number to each separate object. The number of plates stacked vertically is detected by 

identifying consistent gaps in the z-direction between samples, determined by the presence/absence 

of thresholded samples (when a layer has a pixel count less than the min blob size). A plate’s centre 

in the z-direction is determined at the median slice between the start and end slice of said plate. .csv 

files for the relevant plates are imported from a dialogue box, and labelling grids of corresponding 

dimensions are automatically generated over the data ( Fig. 5 C). The grid may be translated, rotated, 

flipped and scaled by the user to ensure agreement between labels and underlying data. This allows 

the user to align the grid with the specimens in the scan. The centroid of each grid square is matched 

to the centroid of the nearest masked sample via Euclidean distance, linking specimens and the 

labelling spreadsheet, this allows for specimens to not entirely be in the grid. In addition, the program 

can handle empty cells, as well as when to samples are in the same well, e.g., damage during transfer. 

File names are assigned at export on this basis. 

Stack export 

MiTiSegmenter exports individual 8-bit TIFF stacks for each specimen and a corresponding 3D mesh. 

Although initially downsampled to preserve memory, MiTiSegmenter refers back to the original files 

and exports full-resolution image stacks. Users are presented with three export options: 

1. ‘Raw unprocessed images’. Cropped raw input data without further processing, potentially including 

sections of the mount ( Fig. 5 D). 

2. ‘Segmentation mask’. A binary mask representing the specimen detected during imaging blobbing 

( Fig. 5 E). 

3. ‘Processed’. The result of segmentation. Pixels from the original dataset falling within the binary 

mask are segmented ( Fig. 5 F). 

3D model export 

MiTiSegmenter also exports individual surface meshes. To preserve as much of the original data as 

possible, smoothing is not currently performed during mesh generation. Users may further process 

resulting meshes depending upon their requirements. 

Once samples are identified using blobbing, each blob is cropped from the original dataset, 

resulting in a 3D matrix comprising a stack of 2D images ( Fig. 5 F). Voxels within the mask (value = 1) 

are assigned as points within the 3D point cloud ( Fig. 6 A). To reduce memory and processing 

requirements, users may opt for canny edge detection [11] , making resulting point clouds “hollow”

rather than filled (models retain internal surfaces and void spaces). 

From point clouds, MiTiSegmenter generates 3D meshes via the Marching Cube algorithm [ 9 , 10 ] and 

exports in ‘.ply.’ format readable by most 3D visualisation programs and 3D printers. As the models 

are offset in their world coordinates due to originating from a larger original matrix, models are re- 

centred around their origin (0,0,0). Finally, the voxel size of the scan (as provided in the accompanying 

text file or user input) converts the scale of the mesh from arbitrary integers into real units. A 

rendering of a 3D mesh is shown in Fig. 6 B. 

Method validation 

MicroCT data was collected at the Manchester X-Ray Imaging Facility (MXIF), the University of 

Manchester, using a Nikon XTEK XTH 225kV cabinet scanner (Nikon Metrology, Tring) equipped 

with a 30 0 0 × 30 0 0-array detector and tungsten target. The stacked specimens were scanned at 

a resolution of 48 microns, a voltage of 120 kV and current of 110 uA, using a 0.1 mm copper 

filter and 5013 projections. Raw projection data were reconstructed into a 3D volume in Nikon’s 

XCT software and export as a 32-bit .vol file of ∼80GB. An example 8-bit raw dataset is available 

for download from Figshare ( https://figshare.com/articles/dataset/Example _ data _ for _ MitiSegmenter _ 

software/12349847 ), downsampled to 95 microns to reduce file sizes ( ∼670MB) and facilitate sharing. 

Load time into MiTiSegmenter was ∼4 minutes for a 3191 ∗3191 ∗1869 voxel 8-bit dataset 

(PC hardware: Intel i7-7700 Quad core 3.60GHZ, 64GB DDR4/2400mhz, GTX 1080 Ti (11GB)), 

https://figshare.com/articles/dataset/Example_data_for_MitiSegmenter_software/12349847
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Fig. 5. Stages of MiTiSegmenter. A, An radiograph of the stack. B, An example of a thresholded 2 plate stack where the blue 

line represent the midway point of each tray. C, an example of a labelling grid imported from a CSV file, for visualation the 

labels are shown in the grid, but in the program only the four corners are labeled. D, a visualisation of raw image, where the 

microtiter plate and scanner noise is visible. Where the bottom red arrow is the tray, and the top arrow is a edge blur create by 

the scanner difficult to see in most images. E, an example of a segmentation binary mask, produced that removes the blurred 

edges and tray. F, The processed image containing only the sample, but preserving internal detail. 
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Fig. 6. A. Point cloud rendering of three stacked microtiter plates containing archaeological specimens. Colours reflect the distance of the points from the origin (0, 0, 0); B. 3D surface 

rendering of an archaeological skipjack tuna vertebra (20 mm x 18 mm x 12 mm) microCT scanned at a resolution of 48 microns. 
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downsampled by a factor of 4. For Cel-shading, we used a base value of 6 as this successfully grouped 

most of the microplate voxels into a single histogram bin and a threshold of 52 to remove background 

noise. Image blobbing removed any remaining voxels of the mount, falling below that of the smallest 

sample. Having assigned the labelling grid, export time for the three TIFF stacks (raw, mask and 

processed) plus .ply surface models averaged 40 seconds per specimen. 

To compare the output of MiTiSegmenter to those derived from a more user-intensive ‘manual’ CT 

segmentation workflow, the same dataset was imported into the software ‘InVesalius’ [14] . InVesalius 

is a popular piece of open-source software for reconstructing CT and MRI images. Still, it lacks 

functionality for the automated file naming and export of multiple cropped ROIs and surfaces, as 

available in MiTiSegmenter. To simulate the manual approach to CT segmentation often applied to 

archaeological and palaeontological samples, a single specimen was selected from the scan and a 

‘best effort’ segment ation by one of the authors (CAB). This was conducted blind to the segmentation 

within MiTiSegmenter detailed above. An initial global greyscale threshold of 50 was applied across 

the scan, as determined ‘by eye’ to best differentiate bone from air without any discernable haloing 

around the specimen. The individual specimen of interest was manually selected by clicking on 

the sample of interest using the ‘select parts’ function and moved to a new mask. Subsequently, 

a threshold paintbrush tool (greyscale value 40-255) was applied slice-by-slice to manually capture 

additional specimen regions characterised by a slightly lower material density and missed by the 

global threshold. A 3D surface model was created using the ‘binary’ function, avoiding any smoothing 

and thus being directly comparable to the surface model produced by MiTiSegmenter, and exported as 

a .ply file. Meshes exported from MiTiSegmenter and InVesalius were compared using mesh distances 

calculated in CloudCompare [15] . Fig. 7 

The MiTiSegmenter workflow outlined above results in the segmentation, labelling and surface 

meshing of ∼200 discrete samples from microCT data. Elsewhere, the ‘Separate Objects’ module 

of Avizo, for example, already allows for separating discrete ‘blobs’ from a binarised dataset and 

assignment of a unique index label prior to meshing. Yet as far as the authors are aware, no 

comparable software exists for the automated file naming of exported data based on an associated 

data frame. Such functionality depends on the grid-like layout of samples associated with the use of 

microtiter plates. It highlights the benefit of MiTiSegmenter when deployed on extensive collections 

within a museum setting, in which the maintenances of specimen IDs are essential throughout 

the digitisation process. Further downstream analyses such as density, porosity or fibre orientation 

calculations, and geometric morphometric analyses, may be conducted on the exported image stacks 

and surface meshes. 

Future directions 

Here we have introduced MiTiSegmenter , a Python-based software application for the high 

throughput segmentation, labelling, meshing and export of bulk microCT data of specimens mounted 

in microtiter plates. 

In the future, we foresee the incorporation of several additional features: 

- Microtiter plates are an essential component of the proteomic workflow for which MiTiSegmenter 

was initially designed. Yet using such rectangular plates demands a wider field of view in microCT 

than may otherwise be necessary, resulting in a compromise with scan resolution. A cylindrical 

mounting arrangement would instead be optimal. For those wishing to achieve higher resolution 

scans without using microtiter plates (e.g. researchers beyond the field of proteomics), we foresee 

providing .stl files for 3D printing cylindric mounting disks, accompanied by a modified labelling 

workflow in MiTiSegmenter. 

- MiTiSegmenter currently uses a very simplistic segmentation protocol, which may struggle with 

multiphase specimens, or those overlapping considerably in density with the mounting medium. 

Given the large volume of material available, a trainable machine-learning approach to segmentation 

may be further explored, as it has already been successfully deployed on microCT data elsewhere 

[ 12 , 13 ], or advance thresholding technique. 
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Fig. 7. Comparision of mesh topology. Manually segmented InVesalius mesh was aligned to the MiTiSegmenter mesh in CloudCompare using Iterative Closest Point. Colours represent 

calculated distances between the two meshes, superimposed back onto the MiTiSegmenter mesh. Hot colours represent greatest deviation between meshes. Mean intermesh distance was 

calculated as 7.7 microns (standard deviation of 120 microns) indicating excellent agreement between meshes considering the scan resolution of 48 microns. One parhypurapophysis (far 

right image, red region) failed to be captured adequately by the global threshold of MiTiSegmenter, but was manually resolved ‘by eye’ during segmentation in InVesalius. Specimen is 

approximately 30mm in maximum dimension. 



14 K. Connah, B. Michael and C. Brassey / MethodsX 9 (2022) 101849 

- Although conservative, the use of the Marching Cubes algorithm generates surface meshes of a 

blocky texture. In future versions, users may be provided with a suite of meshing options including 

surface smoothing, which may be preferable for 3D visualisation or 3D printing purposes. 

- A comparison of advanced threshold and segmentation techniques, such as Otsu [16] for 

thresholding and Deep learning threshold techniques to segment [17] , the tray, objects and tray 

voids. This is to remove the Human variance and error, in the process and allow for a more intuitive 

approach to the system. 

Data Availability 

Data will be made available on request. 
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