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A B S T R A C T

In robotics, robustness is an important and desirable attribute of any system, from
perception to planning and control. Robotic systems need to handle numerous factors
of uncertainty when they are deployed, and the more robust a method is, the fewer
chances there are of something going wrong. In planning and control, being robust
is crucial to deal with uncertain contact timings and positions, mismatches in the
dynamics model of the system, noise in the sensor readings and communication
delays. In this thesis, we focus on the problem of dealing with uncertainty and
external disturbances applied to the robot.

Reactive robustness can be achieved at the control stage using a variety of control
schemes. For example, model predictive control approaches are robust against external
disturbances thanks to the online high-frequency replanning of the motion being
executed. However, taking robustness into account in a proactive way, i.e., during the
planning stage itself, enables the adoption of kinematic configurations that allow the
system as a whole to better deal with uncertainty and disturbances.

To this end, we propose a novel trajectory optimisation framework for robotic
systems, ranging from fixed-base manipulators to legged robots, such as humanoids
or quadrupeds equipped with arms. We tackle the problem from a first-principles
perspective, and define a robustness metric based on the robot’s capabilities, such as
the torques available to the system (considering actuator torque limits) and contact
stability constraints. We compare our results with other existing approaches and,
through simulation and experiments on the real robot, we show that our method is
able to plan trajectories that are more robust against external disturbances.
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1
I N T R O D U C T I O N

1.1 thesis scope

Trajectory optimisation is a process that allows us to compute control trajectories as
functions of time, which drive a system from an initial state towards a final state, while
satisfying a given set of constraints [5]. A trajectory optimisation problem without
an objective function is called a feasibility problem, since there is no cost function to
be minimised (only a set of rules that need to be satisfied). Sometimes, a feasible
solution is sufficient for solving a problem; but this is not always the case. In robotics,
we often face problems where feasibility is not a sufficient criterion, and instead we
are interested in finding solutions that e.g. minimise power consumption (in order
to prolong battery life) or minimise the time required to complete a task. In robust
trajectory optimisation, we are specifically looking for trajectories that are not only
feasible (from a physical point of view) but also robust (according to a certain kind of
robustness metric).

In this thesis, we tackle the problem of robust trajectory optimisation. More specifically,
we want to be able to optimise trajectories for robots with legs and arms that need
to manipulate their environment while being robust against external disturbances.
This is an interesting and important problem because solving tasks in the real world
involves dealing with numerous factors of uncertainty which may compromise robots’
performance and integrity if left ignored.

Examples of well-known factors of uncertainty are: mismatches in the dynamics
model of the system, noise in sensor readings, and communication delays. Some of
these can be handled directly at the control stage thanks to clever feedback policies.
However, there exist other factors of uncertainty which are more challenging to
address, such as unknown external forces applied to parts of the robot—the subject
of this thesis. Concrete examples of tasks where unknown external forces may cause
complications are: carrying a sizeable container with liquid sloshing inside, lifting a
heavy bucket with unknown contents, or turning a hand wheel which has become
rusty due to exposure to the elements. In all of these examples, the actual forces
applied to the robot during execution of the tasks are really hard to predict: the fluid
dynamics of sloshing liquid are very complex to solve, the weight of a bucket is not
easy to predict without knowing its contents, and estimating the force required to
overcome the rusty axis of a hand wheel is also not trivial. Therefore, if we aim to
successfully deploy robots for solving complex tasks such as these, we need methods
that can handle and withstand those kinds of uncertainty.

Previous work tackling the issue of robustness against external disturbances can
be split into two categories, reactive or proactive, depending on the stage at which
robustness is considered. In a reactive approach, robustness is considered at the control
stage; whereas in a proactive approach, robustness is considered during the planning
stage, i.e., ahead of motor command execution.
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Del Prete et al. [19] proposed a solution to improve the robustness to joint-torque
tracking errors by modelling deterministic and stochastic uncertainties in joint torques
within their control framework. Xin et al. [79] proposed a hierarchical controller in
which external forces are estimated directly, with the goal of minimizing actuator
torques while enforcing constraints on the contact forces. Other approaches, like [21,
42, 54], have looked at the problem from a different perspective: they see disturbances
as something that the robot can handle by continuously replanning its actions, in a
model predictive control (MPC) fashion. According to our categorisation, we classify
all these approaches as reactive, because they handle robustness at the control level.

In [13], Caron et al. proposed the gravito-inertial wrench cone (GIWC), a feasible
region used as a general stability criterion for legged robots. They used the GIWC

to plan stable whole-body configurations for humanoid robots (bipedal platforms
which have to actively balance on their two feet). Later, Orsolino et al. [55] proposed to
extend the properties of the GIWC by incorporating system torque limits, i.e., the lower
and upper torque bounds of the motors at the joints. They employed their method
for planning stable locomotion for quadrupedal robots, thereby ensuring that the
system’s actuation limits were not violated during execution on the real robot. Both
[13] and [55] are examples of approaches that we classify as proactive, since robustness
is considered a priori during planning, rather than at the control stage.

Despite the progress achieved with these previous approaches, there is still plenty of
room for improvement. The robustness at the control stage shown in [19] comes from
deterministic and stochastic uncertainties at the joint torque level; instead, it would be
nice to derive a robustness metric from the actual hardware capabilities of the system,
such as the actuation limits and contact stability criteria. In [79], the actuation limits
of the robot are not enforced, and there is no planner for computing elaborate whole-
body motions considering full-order system dynamics. The representation proposed
in [13] is efficient for testing the robust static equilibrium of legged robots, but it also
neglects the system’s actuation limits. Finally, the stability region presented in [55]
considers actuation limits, but the technique is so expensive to compute that in their
robot experiments it was only used once for the entire duration of each leg’s stepping
sequence.

In this thesis, our goal is to tackle these limitations. We want to be able to quantify the
robustness of robots against external disturbances based on their hardware capabilities,
such as actuation limits and friction cone limits. Additionally, we want to tackle the
problem in a proactive manner, i.e., during the planning stage, and without sacrificing
the ability of finding complex whole-body behaviours that take advantage of the
full-order system dynamics. Next, we describe our approach to tackle this problem.
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1.2 approach

The key components of our approach are twofold:

1. A trajectory optimisation framework capable of computing dynamic trajectories
for a variety of robots (ranging from fixed-base manipulators to floating-base
quadrupeds and humanoids); and

2. An explainable metric for evaluating the robustness of robot trajectories, which
can be employed in trajectory optimisation problems through an objective func-
tion (for maximising the robustness of trajectories being optimised).

1.2.1 Trajectory optimiser

Fundamentally, we are trying to solve trajectory optimisation problems, i.e., we are
trying to find trajectories that satisfy a set of constraints (imposed by robots’ hardware
and the environment in which they operate) and that can be executed (not only in
simulation but also on the actual robots). Therefore, we need a framework which
allows us to formulate and solve trajectory optimisation problems. More specifically,
we need to be able to model robots and the dynamics that govern their motion, a
model for the environment in which the robots operate, and the description of the
tasks that we want robots to solve within those environments.

1.2.2 Robustness metric

Once we have a trajectory optimisation framework that is capable of computing
dynamic trajectories, we want to be able to quantify the robustness of those trajectories,
for any kind of robot platform. More specifically, for a given (feasible) robot trajectory,
we want to be able to evaluate the system’s ability of counteracting forces applied to
it throughout the motion represented by the trajectory. Therefore, we need a metric
(ideally, derived from first principles) which takes the state and control commands
of the robot at any given time of the trajectory and evaluates how robust the robot is
against disturbances at that instant.

Let us understand how it all ties together. Once we have these two key components
(i.e., the trajectory optimiser and the robustness metric) we are then able to: plan
trajectories that can be executed on real robots, and evaluate the robustness of those
trajectories. The interesting bit, however, comes from the combination of these two
components, i.e., employing the robustness metric within the objective function of
trajectory optimisation problems, such that we can plan trajectories that are not only
feasible for execution, but that also maximise the robustness of robots against external
disturbances while they move. Now, that is what this thesis is about!

1.2 approach 3



1.3 thesis outline

While reading this thesis, it is recommended to follow the chapter order. All chapters
include a brief introduction and discussion, which get the main scientific ideas and
contributions across without going into the very fine details of each work. The
connecting thread between chapters is summarised in the paragraphs below. Enjoy!

Our journey starts in Chapter 2, where we look at the problem of planning whole-
body configurations for a humanoid robot while taking into account torque-tracking
errors. This allows us to plan robust pre-grasp bimanual whole-body poses that can
serve as goals for motion and footstep planners. However, due to the serial nature of
this approach, we have no means of guaranteeing robustness of the motion overall
while the robot moves—only the robustness of the final quasi-static configuration.

To tackle this issue, in Chapter 3 we resort to trajectory optimisation as a means
of planning motion for fixed-base robots, and we introduce a novel metric called the
smallest unrejectable force (SUF) for evaluating the robustness of the robot against
external disturbances. We can compute the SUF value for any point along the kinematic
chain of a robot and, in short, it represents the largest force magnitude which the robot
is able to counteract, assuming that force can be applied from any given direction.
By defining the objective of our optimisation problem as the maximisation of the SUF

over time, we show that the resulting trajectories are able to counteract larger force
disturbances when compared with other approaches. Nonetheless, this approach has
a limitation: it relies on numerical routines from computational geometry which are
expensive to evaluate, and therefore it does not scale well to robots with legs, such as
quadrupeds and humanoids.

In Chapter 4, we leverage a new scheme from computational geometry as a way of
scaling our approach from fixed-base robots to legged robots. Instead of computing an
exact representation of the force-rejection capabilities of the robot, we use an accurate
approximation which allows faster inference of the SUF value for a particular state.
Furthermore, we derive a new set of mathematical constraints to formulate a nonlinear
optimisation problem where we can not only evaluate the SUF for a given trajectory,
but also optimise the trajectory itself to further maximise its robustness. We show
experimental results of our approach on a quadruped robot equipped with a robot
arm, for a set of pick and place tasks that do not require taking steps.

In Chapter 5, we continue to develop our planning framework, increasing its
complexity but ultimately extending its functionality. We add a new set of constraints
to handle contact switching, therefore enabling robust loco-manipulation (simultaneous
locomotion and manipulation). We show the robot completing a set of real-world tasks
through various hardware experiments in a mock-up industrial site. We also show
how our framework can optimise robot footstep locations.

In Chapter 6, we improve the core performance of our planning framework by
reformulating the set of mathematical constraints responsible for enforcing physical
realism in robot motion. We revisit the equations of motion that govern actuated rigid-
body systems that make and break contacts with the environment, and we review
the forward and inverse dynamics problems for solving the equations of motion.
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Most importantly, we replace the forward dynamics constraints in our approach with
inverse dynamics constraints, which significantly decreases the time and number of
iterations required to find a solution to a motion planning problem.

Finally, in Chapter 7 we conclude with a list of ideas for improving our approach
and interesting avenues for future research work.

1.4 main contributions

The main contributions of this thesis are summarised below:

• A fast framework for planning robust and collision-free whole-body robot
configurations in cluttered environments with uneven terrain. (Chapter 2)

• The residual force polytope — an exact representation for the set of forces that a
robot can counteract, considering the full-order dynamics of articulated rigid-
body systems. (Chapter 3)

• The smallest unrejectable force (SUF) — a robustness metric representing the mag-
nitude of the largest force that a robot can counteract, assuming that force can
be applied from any given direction. (Chapter 3 and Chapter 4)

• A trajectory optimisation framework for computing robust loco-manipulation
robot trajectories, considering the whole-body dynamics of the system and the
maximisation of the SUF. (Chapter 4 and Chapter 5)

• A direct transcription formulation that uses inverse dynamics to enforce phys-
ical consistency, for constrained trajectory optimisation in domains with rigid
contacts. (Chapter 6)

• Experimental validation through numerous tests in full-physics simulations and
on the real robot (all chapters), including deployment in a realistic scenario
mimicking an industrial offshore platform (Chapter 5).
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2
R O B U S T W H O L E - B O D Y C O N F I G U R AT I O N S

Planning balanced whole-body reaching configurations is a fundamental problem
in humanoid robotics on which manipulation and locomotion planners depend on.
While finding valid whole-body configurations in free space and on flat terrains is
relatively straightforward, the problem becomes extremely challenging when obstacle
avoidance is taken into account, and when balancing on more complex terrains, such
as inclined supports or steps. Previous work using paired forward-inverse dynamic
reachability maps demonstrated fast end-pose planning on flat terrains at different
heights by decomposing the kinematic structure and leveraging combinatorics.

In this chapter, we present an efficient whole-body end-pose planning framework
capable of finding collision-free whole-body configurations in complex environments
and on sloped support regions. Our main contributions are twofold: (i) the integration
of contact property information of support regions into both precomputation and
online planning stages, including whole-body static equilibrium robustness, and (ii)
the proposal of a more informed and meaningful sampling strategy for the lower-body.
We focus on humanoid robots throughout the chapter, but all the principles can be
applied to legged platforms other than bipedal robots. We demonstrate our method on
the NASA Valkyrie humanoid platform with 38 degrees of freedom (DoF) over inclined
supports. Analysis of the results indicate both higher success rates—greater than
95% and 80% on obstacle-free and highly cluttered environments, respectively—and
shorter computation times compared to previous methods.

2.1 introduction

Humanoid robots are complex systems designed to perform dexterous tasks in envir-
onments designed and engineered for people (cf. Figure 1). While their key advantage
is the ability to operate in uneven terrain and unstructured environments such as
disaster sites or outdoor environments, they require active control to maintain balance,
thus rendering fast planning and control challenging problems.

Directly planning motion which includes locomotion and manipulation in a single
formulation is non-trivial as switching contacts and balance have to be taken into
account, and available contact-implicit trajectory optimisation formulations can easily
take hours to compute. Thus, it is a common approach to decompose the overall
planning into subproblems [72, 81], e.g., to first plan a pre-manipulation stance and
configuration (end-pose planning [81]) and use this as a goal for footstep [18] or acyclic
contact planners [72] to generate a guide trajectory along with a sequence of contacts
that navigates to the pre-manipulation stance. The final configuration further serves
as an input to a whole-body motion planner [80] to compute manipulation tasks with
the feet assumed to be stationary.

As such, with a focus on manipulation in complex environments, the success of
these planning pipelines hinges on the quality of the final whole-body configuration.
However, finding an appropriate pre-manipulation stance and configuration is not
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Figure 1: End-pose planning for a bimanual manipulation task where the robot has to reach
for an antenna in a complex environment of sloped support surfaces. Left: photo
of the robot in a pre-grasp stance. Right: visualization of the perceived 3D point
cloud, fitted terrain model, and the planned whole-body configuration. Our method
automatically adapts to the constraints imposed by the environment and chooses
collision-free statically-balanced stance locations and whole-body configurations.
These can later be used as an input to locomotion and motion planners.

trivial due to the necessity of considering collision avoidance in close proximity,
contact support properties, and robot manipulability. Therefore, traditionally, a pre-
grasp whole-body configuration was either provided by a human operator or based
on inverse kinematics without collision avoidance, requiring the operator to manually
confirm validity [24]. This often resulted in little exploration of the redundancy of
high-DoF platforms and did not leverage repositionability, making it unsuitable for
complex environments. Furthermore, such human-in-the-loop processes become a
limiting factor for autonomous operation.

Direct optimisation-based formulations in this setting are unlikely to succeed: the
problem is highly discontinuous and non-convex, with many local minima. Thus, a
good initialization seed is required, especially since many constraints and objectives
are expensive to compute, do not provide gradient information, or are difficult to
replace with proxy constraints.

In order to exploit the redundancy of humanoids, prior work has focused on storing
valid, balanced configurations along with an encoding of manipulability and reachabil-
ity information during an offline preprocessing step [10, 81, 82]. However, these works
are limited to flat terrains by using simple stability criteria. Furthermore, for work
leveraging kinematic splits and combinatorics, no consideration is taken to ensure
that recombined samples are valid and satisfy constraints, increasing requirements for
online checking and planning times. Finally, the questions of required dataset sizes
and good sampling strategies are not addressed.

To this end, we extend the prior work by taking into account support contact
properties during both the offline preprocessing and online planning stages to enable

8 robust whole-body configurations



whole-body, bimanual end-pose planning on sloped surfaces. We estimate the static
equilibrium robustness of a whole-body configuration during the preprocessing stage
through an informed approximation of the upper-body to ensure that recombined
samples provide good initialization seeds. We further extensively evaluate different
dataset sizes and sampling criteria settings in a complex, random benchmark. Finally,
we embed our algorithm in a planning pipeline with multiple failure recovery mechan-
isms, ensuring that a valid pre-grasp configuration will be found if it exists within the
dataset. With these contributions, our reachability encoding enables us to exploit the
null space of the robot to efficiently compute collision-free whole-body configurations
in cluttered environments. A comparison with related end-pose planning methods is
shown in Table 1.

Table 1: Comparison of reachability-based end-pose planning methods.

Method IRM [10], iDRM [81]
Paired Forward-
-Inverse DRM [82]

Our method

Task constraint Single hand (1 × 6D) Bimanual (2 × 6D) Bimanual (2 × 6D)

Feet placement x, y, yaw for mid-feet (1 × 3D)
x, y, z, yaw for each
foot (2 × 4D)

x, y, z, roll, pitch, yaw
for each foot (2 × 6D)

Assumptions

No slip; Horizontal support
surface; Feet with constant
displacement and zero yaw
between each other.

No slip; Horizontal
support surface
(roll = pitch = 0).

No slip.

The planning framework has been validated in full-physics simulation with a model
of the NASA Valkyrie humanoid robot with 38-DoF, demonstrating that the proposed
method is able to find feasible pre-grasp whole-body configurations in complex
environments with inclined support regions. We have further carried out hardware
validation experiments of the simulated scenarios. An accompanying video is available
at https://youtu.be/tt6oYKuPI_A.

2.2 related work

As a robotic system cannot reach every part of its workspace equally well, research
has focused on characterizing the manipulability of workspace areas to find the best
floating base placement by precomputing a map of the reachable workspace. The
reachability map (RM) [84] records the reachable workspace regions of a fixed-base
robot, allowing efficient query of whether a pose is reachable by the end-effector.
Similarly, the inverse reachability map (IRM) [74] encodes feasible stances for a mobile
robot given an end-effector pose. Taking into account constraints such as stability and
kinematic loop closure, Burget and Bennewitz [10] extended the IRM to humanoids.
They used a dense coverage of the sampling space for a single-arm reaching task
through deterministic sampling in C-space and used the results directly without
post-processing, allowing violation of reach constraints according to coverage/quality
of samples and requiring online collision checking. However, these methods only
store the kinematic reachability with collision checking performed online, significantly
contributing to long planning times.

2.2 related work 9
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Yang et al. [81] introduced the inverse dynamic reachability map (iDRM), which
addresses this limitation by computing a custom mapping between C-space and
occupied workspace, therefore offloading collision checking to an offline preprocessing
stage. This mapping was further used to initialize a reduced non-linear optimisation
problem. In order to achieve good dataset coverage, the authors used deterministic
sampling in the workspace. Notwithstanding, iDRM relies on two limiting assumptions:
(i) the terrain of planning scenarios solely consists of a horizontal support surface; and
(ii) the stance configuration always has the feet set parallel to each other and with fixed
separation. These assumptions allow the explicit encoding of robust balance by only
storing whole-body configurations that are in static equilibrium, i.e., configurations
whose centre of mass (CoM) projection falls within their support polygon, akin to [10].
A key limitation, however, is the trade-off between problem complexity and memory
available to store enough samples in order to densely cover the C-space.

More recently, Yang et al. [82] presented a novel end-pose planning algorithm which
allows covering a larger or less constrained C-space without exhausting available
memory by decomposing the kinematic structure at the pelvis link and adding a
recombination of upper- and lower-body samples valid for the selected environments.
The authors explored both deterministic and uniform sampling techniques. The kin-
ematic split allows leveraging the strengths of both forward and inverse dynamic
reachability maps and creates a combinatorial pool of candidate whole-body con-
figurations. The evaluation presented in [82] provided enough evidence to support
that splitting the kinematic structure at the pelvis link is the most practical approach,
considering the trade-off between coverage, planning success rate, and algorithm
runtime. The combinatorics of the modular maps hereby increased C-space coverage,
thus enabling the algorithm to compute pre-grasp whole-body configurations for
problems requiring the feet to be placed on horizontal supports at different heights,
as well as to freely place the feet relatively to each other. The latter is particularly
useful for reaching tasks in environments that include small obstacles, e.g., boxes
below waist height, resulting in expressive poses using the redundancy and flexibility
of legged platforms, such as lunges and support steps. Nevertheless, this approach is
limited to horizontal supports at different heights.

A key criterion for keeping underactuated systems balanced, especially on inclined
terrains, is the robustness of the static equilibrium of contact forces. In assessing
the static equilibrium of whole-body configurations, a key distinction is whether the
support surfaces are flat or sloped, as the gravitational force decomposes into an
orthogonal and a tangential component for non-zero inclinations (cf. Figure 2). For
flat ground (θ = 0◦), there is no tangential component and a system is said to be in
static equilibrium if the vertical projection of its CoM lies within the convex hull of the
support polygon. To account for state estimation and modelling errors (e.g., elasticity
in the legs) and robustness to small disturbances, a common approach is to shrink the
contact polygon, thus creating the so-called support polygon.

For non-flat terrain, the CoM projection must lie within a non-linear convex set
defined by the properties of each contact limb placement [9]. Different measures have
been proposed in order to compare the robustness of the static equilibrium under
arbitrary contacts. Caron et al. [13] proposed the capacity of a system to generate
CoM accelerations within a polytope in the axial plane without a change in angular
momentum. Barthélemy and Bidaud [2] proposed a robustness measure based on
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(a) (b)

Figure 2: (a) Example of a feasible lower-body configuration. The red sphere above the pelvis
represents an approximation of the upper-body as a lumped point mass. The red
arrow markers represent the contact normals for each contact point between the feet
and their virtual support region (represented in blue). (b) Diagram showing the forces
involved with contact on inclined surfaces: the gravitational force decomposes into
an orthogonal and tangential forces. Slippage occurs when the tangential component
exceeds the frictional force Fµ = µFN , where µ is the friction coefficient between the
foot sole and the contact surface materials.

the radius of the largest hypersphere centred at the gravito-inertial wrench (GIW)
and fully contained inside the GIW cone. Subsequently, Del Prete et al. [20] proposed
to account for robustness to errors in the contact-force tracking, i.e., to prevent the
forces necessary to maintain equilibrium from being too close to the boundaries of
the friction cones. The authors proved that the CoM-projection method extends to
quasi-flat terrains but comes with a larger number of false negatives as, for example,
the height difference between the contact points increases. Additionally, they propose
an algorithm that outperforms (in terms of computation time) previous approaches by
approximating friction cones with polytopes defined by a set of linear inequalities.

A robustness metric is essential to assess stability on uneven terrains. We will now
describe how such a metric can be integrated with the reachability map at creation
time to filter out the unstable poses and to reduce the map size.

2.3 dynamic reachability maps construction

A reachability map encodes the reachable poses of a robot link with respect to a
given frame. The forward and inverse reachability maps, i.e., RM and IRM, thus only
differ in the frame by which they are defined: the former in base frame, and the latter
in end-effector frame. In simple terms, the forward RM encodes how well a robot can
reach different regions of its workspace, whereas the IRM encodes where the robot base can
be placed, given a grasping target. The major distinction between RM / IRM and their
dynamic versions is the additional mapping information concerning occupation and
reach lists. Both the dynamic reachability map (DRM) and iDRM involve an initial step
where the workspace is discretized into a bounded 3D voxel grid, V. The resolution
at which discretization is applied depends on the application’s final purpose, and
ultimately, represents a trade-off between memory usage, computation times, and
planning accuracy.
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Similarly to previous work, henceforth we will designate each map’s reference
frame link as root link, i.e., the base link for DRM, and one of the end-effector links for
the iDRM. We will designate the mapped frames as tip links, i.e., the end-effector links
(feet) for the lower-body DRM, and the base link and the remaining end-effector link
for iDRM.

We discretize the reachable workspace during the offline preprocessing stage, and
we create two distinct lists for each voxel v ∈ V: the occupation list, Ov, which maps to
samples intersecting with the voxel v, and the reach list, Rv, containing the indices of
the samples for which one of the tip links falls within the voxel v. These lists are then
used online to efficiently invalidate samples that are in collision or cannot reach the
target. For further detail, please refer to [82].

2.3.1 Upper-Body iDRM

The same sampling process for the upper-body iDRM from [82] is used. There exist
two distinct variants of upper-body datasets: constrained and unconstrained. The
unconstrained variant samples robot configurations within the full scope of the
C-space—this includes upper-body configurations where, in the specific case of a
humanoid, the arms reach behind the robot. The constrained variant uses rejection
sampling to discard samples whose tip links are not comfortably reaching a bounded
region of space in front of the robot—the rationale behind this being favouring the
front side of the robot for increased manipulability where most sensor data is captured.

2.3.2 Robust Lower-Body Samples

A limiting assumption in our previous work [82] was that support regions would
always be flat, even though they could be positioned at different heights, e.g., steps.
As such, the lower-body dataset in that work consisted solely of configurations in
which both feet were constrained to be horizontal (i.e., roll = pitch = 0). Nonetheless,
in order to eliminate the need for that assumption, a lower-body dataset comprising
non-horizontal feet is required.

A robustness measure for the equilibrium of a specified CoM position can be com-
puted as proposed in [20] by solving the following linear programming (LP) problem:

find b, b0

maximize b0

subject to Gb = Dc+ d,

b− 1b0 ≥ 0,

(1)

where b is a vector of coefficients of the contact force generators ( f = Gb), b0 ∈ R is a
scalar parameter proportional to the robustness measure, c ∈ R3 is the CoM position,
G is the matrix whose columns are the GIW generators, D is the matrix mapping the
CoM position to GIW, and d is the 6D vector containing the gravity component of the
GIW. These variables can be computed from kinematic and dynamic properties of the
robot model.
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Since the kinematic structure has been split into upper- and lower-body parts, a
whole-body configuration is not available during preprocessing, and consequently,
neither a CoM position—albeit the masses of the platform’s parts are known. In order
to circumvent this problem, a lumped point mass can be added above the pelvis level
to the lower-body model of the robot to approximate the upper-body CoM position (cf.
Figure 2a). The position of the lumped point mass can be approximated by averaging
the CoM positions of all upper-body samples contained in an upper-body dataset
created beforehand:1

plumped mass =
1
n

n

∑
i=1

fc(Υi) (2)

where p is the approximated position of the lumped point mass being calculated, Υ
is an upper-body dataset with n samples, and fc is a function which returns the CoM

position of a dataset entry Υi. At last, after this addition, a whole-body CoM position
can be estimated, in turn allowing the calculation of an approximated robustness
of a whole-body configuration static equilibrium. Despite such setup being only
an approximation, it indeed provides a close estimation of the likely CoM for the
whole-body robustness.

It is important to note that the equilibrium approximation depends on the direction
of the gravity vector with respect to the floating base. Thus, in order to reuse the
approximation computed offline during online recombination, the roll and pitch
components of the pelvis are set to zero while maintaining the yaw component. This
reduces the uncertainty and mismatch of the actual (vs. approximated) robustness
measure when recombining individual upper- and lower-body samples to a whole-
body candidate configuration.

2.3.3 Lower-Body DRM

The lower-body sampling process described in [82], similarly to [10], is carried out
deterministically by stepping through joint range using fixed increments while con-
straining the feet to the flat surface. Instead, we use a pseudo-random rejection
sampling procedure coupled with the static equilibrium robustness measure described
in 2.3.2 to generate the datasets analysed in this study. A sampled lower-body config-
uration is admitted for storage in the dataset being generated if and only if its static
equilibrium robustness is greater than or equal to a certain threshold, Rmin. This is
in order to assure that (a) the forces necessary to maintain the equilibrium of the
stored samples are not too close to the boundaries of the linear approximation of the
friction cones, and (b) the amount of torque each joint is allowed to exert in order to
achieve the pose is limited. We explored different Rmin values during our evaluation
and present the results in Table 4.

Additionally, the sampling strategy we suggest also considers the distance between
feet before admitting a configuration to be stored in a dataset. This is due to the
walking controller employed in the task-planning framework we use: limiting the
maximum distance between the feet ensures that the whole-body configurations
returned by the end-pose planner can be transitioned into. Since the method we

1 We used the Υ4Mc upper-body dataset presented in Table 2 to compute an approximation of the lumped
point mass position.
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present in this chapter can be generalized to any legged platform, even beyond
bipedal systems, this decision variable is left out to be dictated by the targeted robot
platform.2

2.4 end-pose planning on inclined terrain

Figure 3 highlights the pipeline we are proposing for whole-body end-pose planning
on inclined terrains. Two essential prerequisites for the pipeline to function are two
datasets generated offline, storing upper- and lower-body samples. Their computation
has been addressed in 2.3.1 and 2.3.3.

OK OK

Fail Fail

Try next configuration

q2

q1
3

Static equilibrium
check

1

IK adjustment

2

Problem description

⋮
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q''q'
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OK
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4

q''q'

Final collision
check

Paired Forward 
Inverse DRM 

Figure 3: Overview of the proposed planning pipeline. The numbered blocks with a gear
represent the key stages along the pipeline.

A planning request is triggered when a problem description is fed into the pipeline.
This includes a bimanual grasping target and the environment information—including
scene obstacles and support regions. Firstly, in Stage 1, we calculate a set of candidate
whole-body configurations that are collision-free and satisfy the task constraints. This
calculation is performed by the Paired Forward-Inverse DRM module (see [82] for
more details). After the set is complete, the candidates are sorted according to the
following cost function:

f (q) = wT||Trhand(q
∗)− Trhand(q)||+

wR

R(q)
, (3)

where R(q) is the static equilibrium robustness of the whole-body configuration q (i.e.,
b0 in optimisation problem 1), wT is a weight for the distance between a configuration’s
grasping tip Trhand(q) and the target pose Trhand(q

∗), and wR is another weight for the
robustness measure of the static equilibrium of configuration q. Once sorted, candidate
configurations are tested in order. Planning terminates when a whole-body candidate
successfully reaches the end of the pipeline, or the candidate set is exhausted.

Stage 2 consists of an inverse kinematics (IK) adjustment to ensure the target reach-
ing constraints are satisfied and that the feet are in perfect contact with the support
regions.3 Because the robust static equilibrium constraint is not part of the IK for-
mulation problem, the adjusted configuration, q′, must go through Stage 3, where
its static equilibrium robustness is computed. Finally, a full collision check has to
be performed over q′ in Stage 4. The reason for this being that, if the IK adjustment
involves a considerable kinematic displacement, the occupancy encoding of candidate
q (which lead to q′) might no longer hold. Stages 2, 3 and 4 are repeated for each

2 For the purpose of this study, we have opted to use a threshold of 0.5 m for the maximum x-y distance
between feet of the NASA Valkyrie humanoid robot.

3 Here, we use the optimisation-based IK from Drake [68].
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candidate configuration selected in Stage 1 until one of them successfully passes all
the stages.

Figure 4 shows task snapshots of the results obtained after embedding our proposed
planning pipeline into our higher-level control framework. Given a bimanual grasping
target, the previously described pipeline finds a valid stance location and a reachable
whole-body configuration. Afterwards, the feet locations of this result are passed on
to a footstep planner [18] to generate a walking trajectory, bringing the robot to the
desired stance. Finally, after having arrived at the computed standpoint, a whole-body
motion planner [80] is invoked to generate a collision-free whole-body motion to reach
the desired pre-grasping configuration.

(a) Grasping a drill and a wrench in a shelf compartment on complex terrain with multiple support
regions at different inclinations.

(b) Grasping a drill and wrench similarly to the previous task but through a narrow frame atop a table.
This scenario is purposefully built in such a way that the set of feasible solutions is comprised only of
whole-body configurations where the left arm of the robot passes through the frame on top of the
table.

Figure 4: Snapshots of task stage progression in time on two scenarios with the same terrain
but different surroundings. The robot needs to reach for a drill and a wrench in a
shelf compartment and atop a table, respectively. The spatial location of the targets
are the same in both scenarios. Without change, our method automatically adapts to
the different surroundings and returns suitable whole-body configurations.

2.5 evaluation

Based on our previous research and on the trade-off between memory consumption
and mapping completeness, we have chosen to discretize the workspace into 10 cm
voxels. Furthermore, at Stage 1, a whole-body configuration, q, must respect the
following constraints in order to be admitted as a candidate: (i) the z-distance between
each foot and its support region must be less than half the discretized workspace
resolution—5 cm in this case; (ii) the orientation difference between each foot and its
support region, i.e., the angle measured between the normal vector of the support
region and the foot’s normal, must be less than a certain tolerance—we used 0.25 rad.
At Stage 2, we set the following task-specific tolerances for satisfying the equality
constraints: 1 mm for hands and feet positions; 10−5 rad for hand orientations; and
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10−3 rad for feet orientation. At Stage 3, we use four generators per contact and the
contact friction coefficient µ is set to 0.3—which is comparable to half the friction
between rubber and dry concrete on clean and dry surfaces. These are the same
parameters used for computing the lower-body dataset. The work presented in this
chapter was implemented using EXOTica [39] and all evaluations carried out in a
single-threaded process on a 4.00 GHz Intel Core i7-6700K CPU with 32 GB 2133 MHz
RAM.

Table 2: Upper-body map construction analysis.

Designation Constrained
No. of

samples
Build time
(hh:mm:ss)

Size
(MB)

Υ500Kc Yes 5 × 105 02:54:35 645

Υ1Mc Yes 1 × 106 05:39:21 1290

Υ2Mu No
2 × 106 04:20:23 2183

Υ2Mc Yes 10:45:49 2186

Υ4Mu No
4 × 106 08:40:46 4366

Υ4Mc Yes 21:34:39 4372

Table 2 shows the details of the upper-body datasets we have generated for this
work. An upper-body dataset is designated by the symbol Υ followed by the number
of samples it contains and its type (c - constrained, u - unconstrained) in subscript.
The actual size of datasets vary for different robot models as the majority of space is
used to encode workspace occupancy. The sizes shown in the table correspond to the
model of the 38-DoF NASA Valkyrie humanoid robot. It is clear that both the time it
takes to build the dataset and the size it occupies in disk grows with the number of
samples. Moreover, it is noticeable that, due to the nature of the rejection sampling
process, constrained dataset variants take longer to be built than the unconstrained ones.

Table 3: Lower-body map construction analysis.

Designation Rmin
No. of

samples
Build time
(hh:mm:ss)

Size
(MB)

Π1K 10 1 000 00:07:14 1

Π10K1 0

10 000
00:30:53 7

Π10K2 10 01:11:24 7

Π10K3 20 04:27:00 8

Π50K1 0

50 000
02:38:17 38

Π50K2 10 05:59:24 37

Π11K - 11 812 00:01:45 7

Π151K - 151 503 00:22:17 94

Table 3 shows the details of the lower-body datasets we have generated for this
study. A lower-body dataset is designated by the symbol Π followed by the number
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of samples it contains in subscript. Datasets Π11K and Π151K have been generated in a
deterministic fashion, by incrementally stepping through joint values and maintaining
the feet horizontal. All datasets other than Π11K and Π151K have been generated using
our new lower-body sampling strategy. A correlation between the time taken and the
strategy used to create a dataset can be observed: the proposed rejection sampling
method takes longer, as large quantities of low quality samples are rejected. Moreover,
the higher the threshold for Rmin, the longer the dataset generation time. However, as
sampling takes place offline, dataset build times can often be neglected.

Figure 5 shows the testbed we have modelled in order to carry out evaluation tests
of our planning method. It consists of 18 support regions with different inclinations.
The layout is reconfigurable, enabling us to change the arrangement of the support
regions if necessary.

Figure 5: Testbed of inclined support regions used during the benchmarking tests of our
planning method. The testbed is organized in three rows, each with six supports.
Each support is 40 cm × 40 cm and has an inclination of either 10◦ or 15◦.

2.5.1 Obstacle-Free Benchmark

We created a benchmark to evaluate the performance of our method in obstacle-free
environments on the aforementioned testbed (cf. Figure 5). The benchmark tests a
total of 1000 planning requests. Each request is generated by sampling a pseudo-
random upper-body configuration using the same constraints as during dataset
creation. Afterwards, a random yaw is applied to the configuration. Finally, the pose
is translated to a random location in the testbed, subject to the condition of its pelvis
projection lying within the shrunk x-y boundaries of the testbed.

Table 4 shows the benchmark results of different lower-body datasets while using
the same constrained upper-body dataset, Υ2Mc . The two bottom rows of the table (i.e.,
Π11K and Π151K) concern lower-body datasets generated according to the methodology
of our previous work. The remaining rows concern lower-body datasets generated
with our most recent approach. The benchmark results show that our sampling
strategy significantly outperforms the previous, which is reflected under the request
success rate column. The number of “Total Candidates” shows how well the dataset
matches the request criteria during the benchmark. The smallest dataset tested, Π1K,
produces very few candidates, which results in short computation times but also
reduces planning success rate. Moreover, the quality of the candidates is reflected in
the number of “Rejected Candidates”, which indicates how many candidate solutions
were discarded further down the pipeline until an actual feasible solution was found.
The rejection rates of the datasets generated using the proposed method (i.e., Π10Ki
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and Π50Ki ) are an order of magnitude lower than the ones generated in our previous
work (i.e., Π11K and Π151K). Finally, the results also show that the minimum robustness
threshold Rmin does not affect the overall request success rate. However, the robustness
threshold does affect the resilience of the system to external disturbances. Yet, this
was not evaluated in this benchmark.

Table 4: Comparison of different lower-body sampling methods using a constrained upper-
body dataset, Υ2Mc .

Dataset
No. of

samples
Rmin

Success rate (%) Candidates Durations (ms)

Stage 1 Request Total Rejected UB filter IK Request

Π1K 1 000 10 82.9 72.5 9.4 ± 20.5 0.69 ± 1.38 87 ± 17 18.8 ± 2.3 191 ± 77

Π10K1

10 000
0 97.5 94.0 106.5 ± 304.1 2.01 ± 3.79 90 ± 18 18.2 ± 1.9 436 ± 303

Π10K2 10 97.3 93.8 116.1 ± 344.3 1.91 ± 4.45 89 ± 19 18.4 ± 2.6 457 ± 369

Π10K3 20 96.9 93.4 113.9 ± 245.6 1.75 ± 4.05 86 ± 17 18.0 ± 2.2 421 ± 268

Π50K1 50 000
0 99.4 98.6 441.5 ± 1017.7 2.01 ± 3.74 88 ± 17 18.1 ± 3.4 1094 ± 898

Π50K2 10 99.3 98.9 567.3 ± 1874.2 2.37 ± 4.04 87 ± 18 18.0 ± 2.3 1244 ± 1528

Π11K 11 812 - 26.1 23.8 544.7 ± 1690.1 19.27 ± 118.30 84 ± 17 18.1 ± 2.9 1370 ± 3948

Π151K 151 503 - 28.6 27.4 7300.8 ± 25 004.4 108.86 ± 1198.77 85 ± 16 17.5 ± 1.5 9344 ± 29 810

Table 5 provides some valuable insight regarding the pipeline stages at which a
test candidate got rejected. That is, from all the “Rejected Candidates” in Table 4,
Table 5 breaks down at which point in the pipeline a candidate was rejected. With
this information, we can understand why the candidates failed and which is the most
predominant factor for rejecting a candidate. Each entry contains a colour bar with,
from left to right, the percentage of test-candidates rejection during IK adjustment
(Stage 2, purple), static equilibrium check (SEC) (Stage 3, pale blue), and final collision
check (FCC) (Stage 4, dark blue). Failure due to the IK adjustment is minimal (0.8 %,
in the Π50K1 entry, is the greatest percentage in the tests we carried out). The most
frequent stage at which a sample gets rejected is the SEC. Furthermore, a correlation
exists between the minimum robustness threshold, Rmin, and the SEC-FCC rejection
distribution: as the robustness storage criteria gets more demanding, rejection starts
to shift from occurring during the SEC to the FCC stage (cf. Π10K1 , Π10K2 , and Π10K3).
The conclusion to draw from this table is that the bottleneck is due to the adjustment
performed by the IK solver during Stage 2, which returns a whole-body configuration
that is no longer in robust static equilibrium.

2.5.2 Shelf Benchmark

We created a second benchmarking test to evaluate the performance of our method
in environments cluttered with obstacles. For that, we make use of the same testbed
terrain of the previous benchmark, with the addition of a shelf. The benchmark routine
translates the shelf in incremental steps about the testbed, three steps in the y-axis
direction, and 21 steps in the x-axis direction. Finally, for each position of the shelf,
16 bimanual requests located inside one of the shelf compartments are passed on as
inputs to our planning pipeline. This amounts to a total of 1008 requests during a
whole benchmark session.
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Table 5: End-pose planning failure analysis using a constrained upper-body dataset.

Name Failure stage decomposition (%)

Π1K SEC: 58.0% FCC: 41.5%

Π10K1
SEC: 79.3% 20.7%

Π10K2
SEC: 74.2% FCC: 25.7%

Π10K3
SEC: 70.8% FCC: 29.0%

Π50K1
SEC: 78.6% 20.6%

Π50K2
SEC: 75.1% FCC: 24.8%

Table 6 shows a detailed analysis of the benchmark results. The meaning of data
presented under each column follows the same convention as in Table 4—please confer
2.5.1 for a detailed description of what is listed under each column.

Table 6: Detailed analysis of benchmark in the “shelf” environment.

Upper-body Lower-body
Success rate (%) Candidates Durations (ms)

Stage 1 Request Total Rejected UB filter IK Request

Υ2Mc
Π10K2 64.1 57.2 16.6 ± 65.7 0.37 ± 0.93 95 ± 7 17.8 ± 1.5 195 ± 98

Π50K2 77.5 74.1 105.0 ± 547.4 0.63 ± 1.28 94 ± 7 17.4 ± 1.4 299 ± 427

Υ4Mc
Π10K2 68.9 63.0 22.3 ± 123.3 0.41 ± 1.72 166 ± 15 18.1 ± 1.9 318 ± 168

Π50K2 84.9 81.8 104.9 ± 564.3 0.73 ± 2.21 152 ± 12 17.4 ± 1.7 382 ± 445

By inspecting Table 6 we can observe that increasing the number of samples in
the lower-body dataset (e.g., using Π50K2 instead of Π10K2) significantly increases the
total number of candidates per request. This is ideal, since a wider set of available
whole-body configurations translates into more variability, which in turn increases the
chances of successfully finding a solution when dealing with cluttered environments—
cf. the percentage increase in the “Request, Success rate” column. The downside of
having more options available is the time increase required to process and choose the
best solution. This downside can be prevented by employing a good cost function to
sort candidate poses. The “Rejected Candidates” column shows that, on average, fewer
than one candidate had to be re-tested beyond the initial candidate until a feasible
solution was found. In other words, for most of the end-pose planning requests, the
candidate on the top of the sorted candidates list was indeed a valid (and the chosen)
solution. Thus, providing enough evidence to support that the employed cost function
is reliable and adequate.

2.5.3 Obstacle-Free vs. Shelf Benchmark Remarks

Table 7 presents a comparison between the results of the obstacle-free and shelf
benchmarks for upper- and lower-body datasets of different sizes. Results show
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that dataset size has a greater impact on success rates for cluttered environments
rather than obstacle-free environments. Note that the planning request durations
tend to be much longer for the obstacle-free environment when compared to the
shelf environment. This is due to fewer configurations being invalidated by the
configuration-to-workspace-occupancy encoding and thus more candidates having to
be scored and ranked.

Table 7: Benchmark request success rate and duration analysis for varying dataset sizes. Each
cell contains two lines: (1) results concerning the “obstacle-free” environment, and
(2) results obtained for the “shelf” environment.

Lower-Body
Upper-body

Υ500Kc (500K) Υ1Mc (1M) Υ2Mc (2M) Υ4Mc (4M)

Π1K (1K)
43.5% / 78 ± 54 ms 55.7% / 133 ± 77 ms 72.5% / 191 ± 77 ms 80.6% / 355 ± 138 ms

7.3% / 71 ± 33 ms 11.8% / 94 ± 41 ms 24.8% / 153 ± 60 ms 25.7% / 222 ± 71 ms

Π10K2 (10K)
81.7% / 184 ± 121 ms 90.3% / 271 ± 214 ms 93.8% / 457 ± 369 ms 97.7% / 733 ± 507 ms

34.3% / 104 ± 74 ms 38.2% / 122 ± 65 ms 57.2% / 195 ± 98 ms 63.0% / 318 ± 168 ms

Π50K2 (50K)
92.9% / 428 ± 655 ms 96.0% / 787 ± 756 ms 98.9% / 1244 ± 1528 ms 99.5% / 2294 ± 2446 ms

52.3% / 138 ± 121 ms 47.2% / 159 ± 142 ms 74.1% / 299 ± 427 ms 81.8% / 382 ± 445 ms

2.6 discussion

Splitting the kinematic structure of non-homogeneous legged robots leads to a greater
coverage of the C-space thanks to the the combinatorial nature of the recombination
step. However, this also means there is a greater number of whole-body candidate
poses (which grows exponentially with dataset size) that need to be checked and
ranked, which might potentially slow down the planning process.

In this work, we addressed this challenge through an informed and effective cost
function, leaving further speed-ups through parallelization to future work. An ana-
lysis of the different failure stages during an extensive benchmark shows the main
bottleneck is due to adjusted samples no longer meeting the static equilibrium criteria.
A possible step to addressing this issue is to explicitly include the robustness meas-
ure in the formulation of the IK optimisation problem (Stage 2). However, finding a
differentiable proxy metric is non-trivial and an interesting avenue for future work.

Finally, it would be desirable to plan footsteps in a continuous fashion, akin to [23],
in order to overcome the uncertainty of accumulated state estimation drift during
locomotion, and to actively re-plan walking trajectories to avoid dynamic obstacles.

2.7 conclusion

In this chapter, we presented a method for whole-body end-pose planning on inclined
supports in complex environments, taking contact properties such as slope and friction
into account. We analysed the impact of including static equilibrium robustness as
part of the sampling heuristics for the offline preprocessing stage to improve dataset
quality, leading to reduced planning times and increased algorithm success rates
while using smaller datasets and covering larger state spaces. In particular, offloading
the computation of static stability properties to the preprocessing stage allows the
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algorithm to propose candidate poses with higher quality and chance of success. We
validated our approach with the 38-DoF NASA Valkyrie humanoid in full physics
simulation and in real-world experiments, whereby we showed that the proposed
method results in physically-achievable robust configurations on inclined surfaces.

In the next chapter, we are going to continue our investigations on robustness
metrics for robotics applications. More specifically, we are going to propose a new
robustness metric based on first principles, and we are going to include that metric in
a trajectory optimisation framework, which will allow us to optimise robot motion
rather than just a single whole-body configuration.
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3
R O B U S T T R A J E C T O R I E S F O R F I X E D - B A S E R O B O T S

In this chapter, we propose the residual force polytope: a representation for the set of
forces a robot can counteract while considering the full-order system dynamics. Given
the nominal torques required by a dynamic motion, this representation models the
forces which can be sustained without interfering with that motion. The residual
force polytope can be used to analyse and compare the set of admissible forces of
different trajectories, but it can also be used to define metrics for solving optimisation
problems, such as in trajectory optimisation or system design. We demonstrate how
such a metric can be applied to trajectory optimisation and compare it against other
objective functions typically used. Our results show that the trajectories computed
by optimising objectives defined as functions of the residual force polytope are more
robust to unknown external disturbances. The computational cost of these metrics is
relatively high and not compatible with the short planning times required by online
methods, but they are acceptable for offline motion planning.

3.1 introduction

Robots have well-defined actuation limits and, usually, a clear definition of the task to
be completed, but the conditions of the environment in which they operate may be a
source of uncertainty. Besides environmental uncertainty, robots can also be affected by
sensor noise, signal delay, and model mismatches, and these sources of error are often
addressed with a feedback controller. However, controllers have their own limitations,
and their ability to execute a motion depends not only on the complexity of the
trajectory but also on the control authority available to track the motion plan and
counteract any external disturbances at the same time. In general, there are two ways
to improve robustness:

• During control ([19, 58, 79]), by increasing robustness when executing a nominal
motion plan.

• During planning ([48, 55]), by considering uncertainty and robot capabilities to
find trajectories with larger feasibility regions that can be exploited by controllers.

Being robust at the control stage does not necessarily result in a robust execution
overall if the commanded motion is not robust itself. In fact, a bad motion plan will
inherently compromise the robustness strategy of a controller. Despite the importance
of robust controllers, we believe that ensuring robustness at an earlier stage is para-
mount for reliable deployment of robotic systems and, for that reason, this chapter
tackles the problem of increasing robustness during planning. While predicting and
modelling uncertainty at the planning stage is difficult, we can exploit well-known
capabilities and limitations of a system to optimise highly-robust trajectories. We argue
that, by explicitly taking into account robot-specific capabilities and computing the set
of admissible forces in task-space, we can define a metric as a function of that set to
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find trajectories that are more capable of resisting unexpected forces. To that end, we
first propose a representation of admissible task-space forces taking into account the
dynamics of the system (i.e., not limited to quasi-static scenarios). Then, we test our
hypothesis by defining an objective function based on our proposed representation,
and compare it against other established objectives. We use a direct method to formu-
late the optimal control problems where those objectives are employed. This allows
for straightforward definition of mathematical constraints (in the form of equalities
and inequalities) on either state or control variables, as well as the computation of the
force/torque capabilities of the robot as a polytope, for any of the trajectory points
discretized.

The main contributions of this work are:

1. Proposal of a representation of all the realizable forces given a configuration, a
vector of forces/torques, and the system dynamics: the residual force polytope.

2. Elucidation of two models for representing force uncertainty and their combina-
tion with the residual force polytope for optimising robust trajectories.

3. Comparison of several objective functions from related work with an objective
function based on the residual force polytope for dynamic trajectory optimisa-
tion.

3.2 related work

In previous work [26], we exploited the kinematic redundancy of robots with many
degrees of freedom in order to select configurations more robust to torque-tracking
errors. Our method indexes a previously-sampled database efficiently, but it does not
optimise the robot’s ability to resist unknown external disturbances and is limited to
choosing single configurations. In contrast, this chapter focus on robustness against
unexpected forces and demonstrates how the states of the system can be optimised
for entire trajectories to achieve more robust motions.

Other researchers have also exploited kinematic redundancy to improve robot
capabilities. For example, Yoshikawa [83] proposed the force manipulability ellipsoid to
take into account the ability to apply and resist forces based on the robot geometry.
Building on top of this concept, Jaquier et al. [40] proposed a control scheme which
tracks desired profiles of manipulability ellipsoids, either as the main task or as a
secondary objective. Haviland and Corke [35] presented a resolved-rate motion control
also making use of manipulability ellipsoids: their real-time controller tracks the
Cartesian velocity of the end-effector while maximizing the manipulability of the
system. Both [40] and [35] employ manipulability metrics during the control stage,
but such metrics can also be employed for motion planning. An example of this is
Chu et al.’s [17] path planning algorithm for multi-arm robots: their approach uses
Yoshikawa’s measure of manipulability to avoid kinematic singularities while planning
complex and collision-free manoeuvres. Despite the widespread use of manipulability
ellipsoids in robotics applications, the real manipulability of actuated systems is
a convex polytope which cannot be represented accurately using an ellipsoid, i.e.,
the ellipsoid is only an approximation. Additionally, manipulability ellipsoids make
it difficult to capture and incorporate descriptions of other system constraints. In
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contrast, the polytope of admissible forces that we propose in this chapter is not an
approximation, and allows for easy integration of extra constraints through polytope
manipulation.

The ability to manipulate and intersect polytopes can be very useful. For example,
it allows the aggregation of multiple constraints into a single description of necessary
conditions for feasibility of a system, provided that each individual constraint can be
modelled in the form of a polytope. For example, Audren and Kheddar [1] extended
2D stability regions to 3D by accounting for possible centre of mass (CoM) accelerations
in order to achieve robust multi-contact stability in whole-body posture generation.
Orsolino et al. [55] proposed the actuation wrench polytope and intersected it with
the contact wrench cone [36] to create the feasible wrench polytope. The actuation
wrench polytope is a representation of all the wrenches a robot can generate given
its actuation limits. However, it is limited to quasi-static scenarios. In this chapter,
we propose a new representation that accounts for the dynamics of the system and
the torques required by a nominal motion, hence, providing a description of the
admissible forces for dynamic scenarios. In [55], the feasibility polytope was used
to optimise the CoM position of a quadruped’s static crawl gait. However, due to
the required computational cost, they calculated the polytope once at the beginning
of the optimisation and used that as a constant approximation thereafter. As such,
computing the exact polytope at every point of the trajectory during optimisation
and the impact of this approach on performance are two important aspects that have
not been studied before, and which we address in this work. It is also worth noting
that the optimisation problem in [55] optimises four variables in time (the positions
and velocities of the centre of mass in the xy-plane), while our problem optimises 21

variables in time (the state and control inputs of a 7-DoF robot arm) and is therefore
significantly more complex.

The idea of improving the robustness of robot motions using trajectory optimisation
has been explored before: Manchester and Kuindersma [48] presented an algorithm
that incorporates linear feedback, bounded disturbances, and a penalty for closed-loop
deviations from a nominal trajectory. A key advantage of their method is that the
resulting control trajectories avoid bang-bang control, and leave margins of stability for
LQR feedback control around the nominal trajectory. Our approach also retains these
advantages as a result of the polytope-based objective functions and, additionally,
the new representation we propose allows determining the exact margins remaining
before torque saturation occurs.

The more general idea of increasing robustness of an optimisation model is also
important in fields outside of robotics. For instance, Ben-Tal and Nemirovsky [4]
applied the more general idea of increasing robustness of an optimisation model to
truss topology design (TTD). They cast TTD problems as semidefinite programs to
minimize worst-case compliance of trusses under external loads, and used additional
constraints to increase their robustness. For that, they considered not only primary
loads (specified by the user), but also secondary loads from different directions and
with reasonable magnitude.
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3.3 preliminaries

3.3.1 Polytopes and the Double Description Method

A convex polytope [86] can be defined in one of two ways:

• Vertex representation (V-rep): a finite set of points;

• Half-space representation (H-rep): a bounded intersection of a finite set of
half-spaces.

For some mathematical operations, one representation has some inherent advantages
over the other. For example, the intersection of two or more polytopes is easier to
perform in H-rep than in V-rep, and a Minkowski sum is easier to carry out in V-rep
than in H-rep.

It may happen that a V-rep is required when only an H-rep is available, or vice
versa—this is known as the representation conversion problem. It is possible to convert
from one representation to the other using the double-description method [32]. Non-
etheless, switching between representations can be computationally very expensive
and should be avoided.

3.3.2 Robot Model Formulation

Consider a fully-actuated robot manipulator with n degrees of freedom, a fixed base,
and with an end-effector operating in an m-dimensional task-space. Such a system
can be parameterized with a generalized coordinates vector q ∈ Rn and a generalized
velocities vector v ∈ Rn. The dynamics of the system are given by the equations of
motion:

M (q)v̇ + h(q,v) = τ + J⊤
e (q)ftip, (4)

where M (q) ∈ Rn×n is a symmetric positive-definite mass matrix, h(q,v) ∈ Rn is
the vector of Coriolis, centrifugal, and gravity terms, τ ∈ Rn is the vector of joint
forces and torques, Je ∈ Rm×n is the Jacobian matrix that maps joint velocities to the
linear velocity of the end-effector, and ftip ∈ Rm is a force applied to the end-effector.
The transpose of Je maps a linear force applied at the end-effector to a vector of
torques experienced at the joints of the mechanism—in the following referred to as
τftip . Conversely, we can determine an end-effector force generated from a vector of
input torques with

ftip = J−⊤
e τftip . (5)

In some cases, it may not be possible to invert J⊤
e because it is singular. Likewise,

kinematically redundant systems have more joints than the dimension of their task
space (n > m) and therefore J⊤

e is not square and cannot be inverted. However, for
such cases, we can still solve equation (5) by using the Moore-Penrose pseudoinverse
to invert J⊤

e .
The mapping in equation (5) is instrumental for computing force polytopes, which

we explain next.

26 robust trajectories for fixed-base robots



3.3.3 Joint Force Polytope and Force Polytope

The joint force polytope [16] is an n-dimensional region bounded by the upper and
lower actuation limits of the system. It is described by the 2n bounding inequalities

|τi| ≤ τi,lim i = 1, · · · , n, (6)

where τi,lim is the bound on the i-th joint force.
The force polytope is the convex set of all the realizable forces by the end-effector for

quasi-static scenarios, given the actuation limits of the system. A force polytope Pf

results from transforming a joint force polytope Pτ with Pf = J−⊤
e Pτ , analogous to

how equation (5) converts a vector of joint-space forces and torques into a task-space
force. Because of this nonlinear relationship, different robot configurations result in
force polytopes with different shapes. Figure 6 illustrates this trait: two redundant
configurations, q1 and q2, reach the same end-effector target, but their respective force
polytopes, P1 and P2, have distinct shapes.

Figure 6: Two valid configurations for reaching the same end-effector target. The blue polygons
P1 and P2 are the force polytopes of configurations q1 and q2, respectively. The green
circles B1 and B2 are the largest balls centred at the end-effector that can be inscribed
inside those polytopes. The radius of B1 and B2 are denoted by r1 and r2, and here
r2 > r1.

3.4 residual force polytope

In Section 3.3.3 we have reviewed what a force polytope is and how it results from the
mapping of the actuation limits of a robot into the task-space. The force polytope is
limited to quasi-static scenarios and, besides the kinematic configuration of the robot,
it does not take into account any information about the task being performed.

We propose a new representation called the residual force polytope, which takes the
dynamics of the robot into account, as well as the nominal forces and torques required
by a task. We define the residual forces and torques of a robot state as the difference
between the absolute actuation limits and a given vector of joint forces and torques.
Residual forces and torques are important to deal with disturbances, as they represent
the control authority left in a system after accounting for the task at hand. The residual
force polytope is the result of transforming those residual forces and torques with
J−⊤

e , similarly to equation (5). In summary, the residual force polytope is a subset
of its force polytope counterpart. It represents exclusively the forces that the robot is
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capable of resisting (as a secondary task) while tracking a nominal trajectory as its
primary task.

Figure 7 shows the relationship between forces/torques in actuation-space and
forces in task-space. For convenience of illustration, it displays a planar manipulator
with three degrees of freedom in joint-space and two-dimensional task-space forces.
The figure highlights how the residual force polytope P3 is obtained for a given
configuration q1.

Figure 7: Equation (5) transforms actuation-space representations (on the left) into task-space
representations (on the right). The blue polyhedron on the left is the joint force
polytope, and by taking into account a given vector of torques it is reduced along
some dimensions into the yellow polyhedron. The yellow polygon P3 (on the right)
is the residual force polytope.

3.5 modelling force uncertainty

As we have seen so far, polytopes are useful to represent and model regions of interest
in space. But in addition to this, we may want to extract a single metric that quantifies
one of those regions. For example, given a configuration q1 and its corresponding
force polytope P1, we may want to know how robust that configuration is with respect
to forces applied at the end-effector of the robot.

3.5.1 Largest Ball Inscribed in a Polytope

One way to tackle this problem is to consider the worst-case scenario, i.e., the situation
with most uncertainty, where a force could originate from any given direction. In order
to represent this uncertainty, we can use a ball to model a set of forces with any given
direction and with a magnitude ranging from 0 N to the radius of the ball. Then, if we
constrain the ball to be centred at the end-effector, and maximize the size of the ball
without exceeding the boundaries of the force polytope, we obtain the set of all forces
that the robot is able to deliver without saturating its torque limits. Consequently,
the radius of this ball denotes the magnitude of the greatest force that the robot can
counteract, and it can be used as a metric for isotropic robustness of a configuration.1

For example, both q1 and q2 shown in Figure 6 solve the same reaching task, but q2 is
more robust than q1 because r2 > r1.

1 In light of directional uncertainty, an isotropic robustness metric is more useful than other general
quantities like the overall volume of a polytope.
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The centre of the largest ball B inscribed in a bounded set of non-empty interior is
known as the Chebyshev centre [7]. We can find the Chebyshev centre of a polytope
P by solving a linear programming (LP) problem where the centre of the ball B and
its radius r are the decision variables, and the goal is to maximize r subject to the
constraint B ⊆ P. In our work, we are interested in a similar problem but where the
centre of the ball lies at the origin of the end-effector frame. This is because we only
care about the forces that can be applied specifically to the end-effector. Therefore,
we formulate an LP problem which maximizes r subject to the constraint B ⊆ P, but
where the only decision variable is the radius r (since the centre of B is known and
given by the forward kinematics function of the robot’s current configuration).

3.5.2 Largest Intersection with a Polytope

The previous subsection demonstrated how to calculate the robustness of a robot
to completely unknown external disturbances. However, there are cases where the
interaction between the robot and its environment is not fully uncertain. As an
example, consider a task where the robot needs to open or close a door of unknown
mass: the robot may not know a priori how much force is needed to solve the task, but
the door can only open or close in a specific way—see Figure 8 for a further example.

(a) For legged robots locomoting on complex ter-
rains, the direction of the terrain normals can
change greatly with small variations in the
contact location, leading to very different con-
tact forces applied to the feet.

(b) In the context of a manipulation task, the dir-
ection of action/reaction forces for lifting a
box attached to a rope is well-known a priori,
and regardless of the weight of the box.

Figure 8: Illustration of two different levels of uncertainty concerning the direction of inter-
action forces for two real-world scenarios. On the left, factors such as controller
tracking errors or noisy state estimation can ultimately lead to inaccurate foot place-
ment, which in turn, and depending on the terrain, can induce forces applied in
unexpected directions (high direction uncertainty). In contrast, on the right, the
forces are expected to be close-to-vertical due to the nature of the task (low direction
uncertainty).

The direction of the interaction can therefore be exploited to our advantage. We can
use a cone to model the set of forces originating from some expected direction and
applied to the end-effector: the cone axis is aligned with the expected direction, the
cone apex is fixed at the end-effector frame, and the aperture of the cone represents
the prediction uncertainty of the force direction. Then, if we intersect the cone with a
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force polytope, we obtain a subset of the forces in the cone which the robot can cancel
out within its actuation limits. Consequently, the volume of the resulting intersection
is proportional to how much the robot is capable of resisting forces modelled by the
cone, and it can be used as a surrogate metric of robustness to expected forces. An
example of modelling expected forces using this approach is illustrated in Figure 9,
where the intersection of a cone C1 with a residual force polytope P3 results in the
purple polygon P4, i.e., P4 = P3 ∩ C1.

Figure 9: Two distinct models for representing force disturbances: the ball B3 models unex-
pected forces, whereas the cone C1 models the direction of an expected force. The
aperture of the cone is proportional to the uncertainty of the force direction. The
purple polygon P4 results from the intersection of the residual force polytope with the
cone, i.e., P4 = P3 ∩ C1.

In this section, we showed that redundant configurations result in different cap-
abilities to counteract external forces applied to the end-effector. We proposed a
representation for modelling those capabilities, and discussed two robustness metrics
that can be extracted from it. In the next section, we will demonstrate how to formulate
a trajectory optimisation problem with objective functions that employ those metrics in
order to plan dynamic motions more robust to unexpected forces through exploitation
of kinematic redundancy.

3.6 optimisation of robust trajectories

Trajectory optimisation is a process that allows to compute control trajectories as
functions of time that drive a system from an initial state towards a final state while
satisfying a given set of constraints [5]. In robotics, the problem is a second-order
dynamical system governed by the equations of motion (4).

Direct transcription [65] is a popular approach within trajectory optimisation and
works by transcribing a continuous problem into a constrained nonlinear optimisation
problem by means of explicit discretization of the state and control trajectories. The
result of this transcription is the formulation of a large and sparse nonlinear problem
which can be solved using a large-scale nonlinear programming solver [5].

We have chosen direct transcription to demonstrate how the residual force polytope
can be used to plan robust and dynamic trajectories. Thanks to the discretization
of states and controls, the configuration of the robot and the commanded torques
are represented as decision variables for every discrete point of the trajectory. This
means that all the “ingredients” required to compute the polytope representations
(discussed in previous sections) are readily available as decision variables. Similarly,
it also means that it is easy to define equality and inequality constraints using those
decision variables, which general off-the-shelf nonlinear programming (NLP) solvers
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can then handle during problem resolution. In contrast, the most popular alternative,
differential dynamic programming (DDP) [50], does not allow for easy definition of
constraints (neither equalities nor inequalities). There are variations and extensions
to classical DDP which attempt to mitigate this inconvenience (e.g., [33, 49, 67]), but
this topic is still a subject of ongoing research and those variations are not yet mature
enough.

In summary, we chose direct transcription because:

• Discretization of both states and controls is particularly convenient for computing
polytope representations;

• Defining general state and path constraints using direct transcription is more
straightforward than alternatives;

• Its simplicity of formulation and implementation.

3.6.1 Problem Formulation

We divide the trajectory into N equally spaced segments

tI = t1 < t2 < · · · < tM = tF, (7)

where tI and tF are the start and final instants, respectively. Thus, the number of
discretized mesh points is M = N + 1. Let xk ≡ x(tk) and uk ≡ u(tk) be the values of the
state and control variables at the k-th mesh point, respectively. We treat xk ≜ {qk,vk}
and uk ≜ {τk} as a set of nonlinear programming variables, and formulate the
trajectory optimisation problem as:

argmin
ξ

M

∑
k=1

g(xk, uk)

subject to ẋ = f (x, u)

xk ∈ X
uk ∈ U

(8)

where ξ is the vector of decision variables, g(·, ·) is a cost function, ẋ = f (x, u) gives
the nonlinear dynamics of the system, and X and U are sets of feasible states and
control inputs enforced by a set of equality and inequality constraints. The vector of
decision variables ξ results from aggregating the generalized coordinates, generalized
velocities, and control inputs of every mesh point:

ξ ≜ {q1,v1, τ1, · · · , qN ,vN , τN , qM,vM}.2 (9)

3.6.2 Constraints

We want to optimise trajectories that are consistent with the full dynamics of the
robot, do not exceed the kinematic and actuation limits of the robot, and use the
end-effector for a given task. We formulate all these requirements as equality and
inequality constraints which the solver must respect.

2 The control inputs at the final state τM need not be discretized.
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3.6.2.1 End-effector task

The exemplar task we use for this evaluation is to move the end-effector of a multi-
degrees of freedom (DoF) robot arm from an initial point pI to a final point pF:

fFK(q1) = pI and fFK(qM) = pF (10)

where fFK(·) is the forward kinematics function. In addition, the end-effector must
always lie on a rectangular surface R positioned in its workspace:

fdist(R, fFK(qk)) = 0 ∀k = 1 : M (11)

where fdist(·) is the distance between a surface and a point. This task is analogous to
drawing a line on a whiteboard using a marker attached to the end-effector, where
the initial and final points are given and the path taken by the end-effector does not
matter as long as it does not lift the tip of the marker off from the surface of the
whiteboard.

3.6.2.2 System dynamics

We enforce the nonlinear dynamics of the system with a finite set of defect constraints. In
summary, defect constraints are nonlinear equality constraints that ensure consistency
between two consecutive mesh points.3 They make sure that the robot state at the
next time step (xk+1) matches the propagation of the previous robot state (xk) given its
control inputs (uk). In our formulation, we define these constraints as

xk+1 −
(

xk + h · f (xk, uk)
)
= 0. (12)

For simplicity of exposition, we integrate the differential equations of the system
dynamics using the explicit Euler method, where h = (tF − tI)/N is the integration
time step.

3.6.2.3 Initial and final joint velocities

We enforce the initial and final velocities of every joint to be zero with

v1 = vM = 0. (13)

3.6.2.4 Bounds of the decision variables

We constrain the joint positions, velocities, and torques to be within their correspond-
ing lower and upper bounds:

qlb ≤ qk ≤ qub ∀k = 1 : M (14)

vlb ≤ vk ≤ vub ∀k = 1 : M (15)

τlb ≤ τk ≤ τub ∀k = 1 : M − 1 (16)

3 See Chapter 3.4 of Betts [5] for further detail regarding defect constraints.
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3.6.3 Objectives

There are many objective functions which could be used to achieve different optimal
results under the same problem constraints. We will now list some well-known
objectives as well as our own. Later, in our experiments, we will compare the obtained
trajectories against each other in terms of their robustness, torque expenditure, and
computation time.

It is typical in optimal control to use energy as a cost, and this is usually formulated
as a minimization of torques:

gA : min
ξ

M

∑
k=1
τ⊤k τk (17)

In order to avoid torque saturation, we can define a simple objective function to
maximize residual actuator torques:

gB : max
ξ

M

∑
k=1

(τlim − τ )⊤ (τlim − τ ) (18)

Yoshikawa [83] defined a quantitative measure of manipulability as w =
√

det (JeJ⊤
e ).

Later, Chiacchio et al. [16] proposed a more accurate definition by scaling the joint
forces with W = diag (1/τ1,lim, · · · , 1/τn,lim), which allowed to define a scaled Jac-
obian J ′⊤

e =WJ⊤
e and a more accurate measure of manipulability w′ =

√
det (J ′

eJ
′⊤
e ).

For our formulation, we can maximize the manipulability of every configuration in a
discretized trajectory with the following objective:

gC : max
ξ

M

∑
k=1

w′
t (19)

We can also define objectives with metrics extracted from polytopes. Let us denote
the force polytope of a configuration as Pk ≡ P(qk). Similarly to [55], and assuming
static equilibrium, we can maximize the robustness to external forces from any given
direction with:

gD : max
ξ

M

∑
k=1

Br(Pk) (20)

where Br(·) denotes the radius of the largest ball centred at the end-effector and
inscribed in the given polytope.

For the dynamic scenario, let us consider the residual force polytope as P′
k ≡

P′(qk, τk), which is the novel representation we propose in this chapter. Analogous to
(20), we can maximize the largest ball centred at the end-effector and inscribed in P′

k
for every mesh point with:

gE : max
ξ

M

∑
k=1

Br(P′
k) (21)

The last objective function we consider in this work is the intersection of the residual
force polytope with a cone that models an expected force but with some level of
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uncertainty—we proposed this in Section 3.5.2. An objective function that maximizes
the robustness in this scenario is:

gF : max
ξ

M

∑
k=1

Pvol(P′
k ∩ Ck) (22)

where Pvol(·) denotes the volume of a given polytope, and Ck ≡ C(tk) is a cone
modelling a disturbance at instant tk.

3.7 experimental results

Using a KUKA LWR robot arm with 7-DoF, we solved the optimisation problem
formulated in the previous section for each of the objective functions gA–gF without
changing the problem constraints. We considered 1 s trajectories divided into 10

equally spaced segments (11 mesh points). Figure 10 shows the motion trace of the
resulting trajectories. We used Julia [6] to implement our trajectory optimisation
framework, and the library Knitro [11] to solve the nonlinear optimisation problems.

(a) Objective gA (b) Objective gB (c) Objective gC (d) Objective gD (e) Objective gE

(f) Objective gF , 0◦ (g) Objective gF , 90◦ (h) Objective gF , 180◦ (i) Objective gF , 270◦

Figure 10: Visualization of the trajectories obtained using the interior-point method without
a payload. The configuration samples are equally spaced in time. The orange and
yellow spheres denote the start and final targets for the end-effector. Trajectories
generated with gF depend on a specific direction; here we show four examples: 0◦,
90◦, 180◦, and 270◦. These angles correspond to being robust to forces originating
from the front, left, back, and right sides of the robot.

In this section, we first compare the performance of two state-of-the-art optimisation
methods for solving the problem we formulated. Afterwards, we compare the obtained
trajectories against each other in terms of their robustness, simulated torque expendit-
ure, and computation time. All evaluations were carried out in a single-threaded
process on an Intel i7-6700K CPU at 4.0 GHz and with 32 GB 2133 MHz memory.

3.7.1 Interior-Point vs. Active-Set Methods

We want to compare the objective functions in our formulation using different classes
of optimisation algorithms. There are two broad classes of methods for solving
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constrained nonlinear optimisation problems categorized based on how they handle
constraints: interior-point (IP) methods incorporate the constraints into the objective
(e.g., via a barrier function or an augmented Lagrangian), while active-set methods
formulate a tractable model (e.g., by linearizing part of the constraints and penalizing
them as well in the objective, as done with sequential quadratic programming (SQP)
algorithms). For highly nonlinear problems, SQP methods are known to suffer from
excessive pivoting, requiring expensive gradient evaluations of the constraints to
update the active-set. As such, they are said to scale poorly to systems with many
constraints. As a result, in robotics literature, IP methods are commonly used for
direct transcription and collocation [64, 76], while some rely on SQP-based solvers
[59]. However, few related work compare IP and SQP methods for solving equivalent
problems, with the notable exception of [77]. In this subsection, we compare the
performance of state-of-the-art, commercial large-scale sparse IP and SQP methods
on the equivalent direct transcription problem (8) for all objective functions gA–gF.
This emphasizes the differences between classical IP and SQP for direct transcription
applications.
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Figure 11: These plots show, for each function gA–gF, the evolution of the objective value and
the feasibility error along the solver iterations. In the feasibility plots, the faint-green
line at y = 10−3 denotes the absolute tolerance under which a problem is considered
feasible. We can see that all metrics were able to handle the payload. We can also
see the back-and-forth progression of feasibility error for the SQP method due to
excessive pivoting.

We used the SQP and IP method provided by [11]. For all comparisons and either
method, we used automatic differentiation to obtain the Jacobian of the constraints,
finite-differencing for the gradients of the objectives, and L-BFGS4 for Hessian ap-
proximation (with 10 limited memory pairs). The results are presented in Figure 11,
Table 8, and Table 9. In Figure 11, we can see that the interior-point method required
very few iterations to converge when compared with the active-set method. As shown
in Table 8, the total amount of time taken to find a locally optimal solution by the
interior-point method was significantly less than the active-set method. In Table 9, we
can see that the active-set method required significant more function and gradient
evaluations than the interior-point method for the majority of the objective functions,

4 L-BFGS stands for Limited-memory quasi-Newton BFGS.
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which is expected and related to SQP’s excessive pivoting (clearly observable in the
feasibility error plots of SQP in Figure 11).

Table 8: Convergence times (in seconds).

Objective
function

No payload With payload

Interior Point Active Set Interior Point Active Set

gA 0.07± 0.01 64.50± 0.85 0.82± 0.02 14.44± 0.32

gB 0.08± 0.01 22.51± 0.31 0.24± 0.01 25.87± 0.47

gC 0.11± 0.01 18.21± 0.21 0.11± 0.01 20.99± 0.54

gD 150.46± 0.28 590.44± 5.27 1529.20± 2.97 2177.93± 40.91

gE 261.66± 3.42 3698.82± 9.99 1120.90± 1.71 8195.97± 184.67

gF 384.28± 0.61 14 354.95± 88.38 512.91± 1.10 19 902.78± 369.43

Table 9: Number of function evaluations and gradient evaluations of the problem constraints.

Objective
function

No payload With payload

Interior Point Active Set Interior Point Active Set

#
fu

nc
ti

on
ev

al
s. gA 509 34629 9399 787

gB 484 4084 8686 4829

gC 1734 11066 542 9992

gD 571 2285 1594 8470

gE 952 15041 25217 32655

gF 953 34909 1104 45864

#
gr

ad
ie

nt
ev

al
s. gA 21 1192 391 30

gB 20 144 361 156

gC 64 341 20 306

gD 21 73 59 256

gE 19 272 504 587

gF 19 637 22 825

3.7.2 Robustness to External Disturbances

We want to evaluate each trajectory’s ability to counteract external forces while
executing its planned motion. As such, we first consider the torques required by the
planned motion, and then calculate the set of all admissible forces from the remaining
torques available. We define our evaluation metric as the magnitude of the maximum
admissible force, considering all possible force directions. Therefore, each trajectory is
evaluated as follows: for each point, (i) compute the residual force polytope, then (ii)
find the largest ball centred at the end-effector inscribed in that polytope, and (iii) take
the radius of the ball as the robustness metric. This is how we computed the forces
shown in Figure 12.
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(a) Interior-Point method.
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(b) Sequential Quadratic Programming method.

Figure 12: These plots show the maximum admissible force magnitudes over time of trajector-
ies computed using objective functions gA–gE. We can see that the objective function
gE, which uses the residual force polytope, resulted in greater admissible magnitudes
than any other objective function.

3.7.2.1 Overview of all objective functions

Figure 12 shows the evaluation results considering all objectives gA–gE. In the plot,
greater values correspond to greater robustness against unpredicted forces. The
trajectory computed with the residual force polytope resulted in greater robustness than
any other objective function considered.5

3.7.2.2 Force Polytope vs. Residual Force Polytope

Figure 13 shows the evaluation results for a scenario without a payload and for
a scenario with a 2 kg cylindrical payload. The results in the plot correspond to
trajectories obtained using gD and gE. We can see that the objective using the residual
force polytope provided a significant improvement over the traditional force polytope;
more specifically, for the 1-second-long trajectories we computed, an improvement of
53.2 ± 6.52 N without the payload, and 40.55 ± 21.37 N with the 2 kg payload.

0.0 0.3 0.6 0.9
130

190

250

310

370
Without payload

time [s]

fo
rc

e 
[N

]

0.0 0.3 0.6 0.9

With payload

time [s]

Figure 13: These plots show the magnitude of forces applied to the end-effector from any given
direction and which the robot is able to cancel out given its actuation limits. Solid
lines represent the maximum admissible magnitude over time, and shaded areas
represent the magnitudes in between zero (no disturbance at all) and the maximum
admissible magnitude. We can see that using the residual force polytope (shown in
blue) provided a significant improvement over the classical force polytope (shown
in red).

5 The trajectory computed with gC for the scenario with the payload and using the interior-point method
resulted in an initial configuration with greater robustness than the other objective functions. However,
we are interested in the robustness overall during the trajectory (area under the curve) and, for that, the
objective function gE defined as a function of the residual force polytope performed best.
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3.7.3 Unexpected Forces vs. Expected Forces

In this experiment, we want to compare the torque required by the trajectories op-
timised using objectives gE and gF, which optimise a motion for resisting forces from
any given direction and from a specific direction, respectively. More specifically, we
want to determine how much torque the robot would need to complete a planned
motion while, at the same time, resisting an external force applied to its end-effector.
In order to do that, we apply an impulse to the robot and, for each point of the
trajectory, we compute the extra torques required to oppose the external force with
equation (5). The magnitude of the force applied to the robot at each instant is given by
f (t) = fpeak · exp(−(t − 0.5)2/0.02), where fpeak defines the magnitude at the peak
of the impulse. The profile of this test force is shown in Figure 14.

Figure 14: Profile of the test force applied to the end-effector. The impulse of this force is
87.73 N s and the peak magnitude is 350 N (at t = 0.5 s).

In order to compare optimal resistance to forces from any given direction (gE)
against optimal resistance to forces from a specific direction (gF), we compute the
torque required by the optimised trajectories for a test impulse that matches the
direction estimation used during optimisation of the specialized trajectory with gF.
Afterwards, we invert the direction of the impulse and repeat the test to compute the
required torques again. The results are shown in Figure 15.

3.7.4 Summary of Computational Runtime

Table 10 shows the average time required to evaluate each of the objective functions
per solver iteration. The average was calculated from 10 samples. It is clear that the
objectives defined as functions of polytopes take significantly longer to evaluate than
the other objective functions tested.

Table 11 shows the average time required to compute: a force polytope, a residual
force polytope, the largest ball inscribed in a polytope, the intersection of two poly-
topes, and the volume of a polytope. These methods are considerably expensive and
are the reason why objectives gD–gF take so much time to evaluate.

3.8 discussion

Our initial hypothesis was that optimising trajectories with an objective defined
as a function of admissible forces in task-space—after accounting for the torques
required by the motion itself—would result in motion plans more robust to external
disturbances. We defined an objective function based on the residual force polytope to
optimise a trajectory robust to forces from any given direction, and compared it against
other objective functions commonly used in trajectory optimisation, such as torque
minimization, and manipulability maximization. The results we obtained support our
initial hypothesis: as shown in Figure 12, for both the interior-point and active-set
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Figure 15: Joint torques required to complete the planned task and resist the disturbance. The
torques have been normalized to [−1, 1] according to actuation limits (solid red
horizontal lines). The nominal torques are shown as dotted lines. The left and right
columns correspond to the trajectories computed with gE and gF, respectively. On
the left, we can see that the limits were not exceeded. On the top right, the trajectory
resisted the impulse with less torque than gE (this impulse was applied in the same
direction as the estimation during optimisation). On the bottom right, when we
applied the impulse in the opposite direction to what the specialized trajectory
expected, the torques required exceeded the actuation limits of the robot.

methods tested, the objective function gE we propose leads to optimal trajectories that
are able to counteract forces from any direction with greater magnitude than any other
objective function we explored. Moreover, the objective function gF, which optimises
trajectories specialized in specific directions, leads to even more robust motion plans
than gE if the disturbance is applied approximately in the same direction as the one
considered for the specialization. However, specialized trajectories are less robust if the
direction taken into account during optimisation does not match the actual disturbance
accurately (case shown in the bottom right plot of Figure 15). Therefore, in terms of
robustness, if a disturbance originating from a completely unexpected direction is not
out of question, the objective considering any given direction (gE) should be preferred
over the optimisation of a specific direction (gF). On the other hand, any accurate bias
about disturbance directions that may arise out of known environmental constraints
(e.g., axis of fixation of articulated objects being manipulated) should be incorporated
into gE to allow more dynamic range of motion.

Despite the promising results in terms of robustness, the objective functions we
proposed are very demanding computationally: even though we used a coarse problem
discretization, all the objectives defined as functions of polytopes took at least 3 orders-
of-magnitude longer to converge than the simpler objective functions gA–gC. This
significant difference is due to the double description method required to convert
across polytope representations as discussed in Section 3.3.1, and due to the other
mathematical operations involving polytopes (benchmarked in Table 11). Nonetheless,
the objectives gE and gF utilizing the residual force polytope representation did not
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Table 10: Time required to evaluate
each objective function once.

Objective Average time (ms)

gA 0.007 ± 0.029

gB 0.012 ± 0.002

gC 0.023 ± 0.096

gD 85.004 ± 10.342

gE 72.565 ± 7.209

gF 102.036 ± 9.069

Table 11: Time benchmark of computational
geometry methods.

Operation Time (µs)

Force polytope 22 ± 124

Residual force polytope 24 ± 146

Largest inscribed ball 7354 ± 2405

Polytope intersection 7081 ± 2049

Polytope volume 6312 ± 1923

incur significant convergence time differences compared to objective gD using the
traditional force polytope.

3.8.1 On the Scalability of Our Metric

We did not carry out experiments using different robot arms. While the absolute
values shown in our results will vary across different manipulators, we speculate that
the relative differences observed should generalize to manipulators of different sizes
and with more or less joints.

Regarding the scalability of our approach to floating-base robots—such as quadru-
peds or bipeds—there is a distinction to be made: whether the metric is to be used
as an evaluation metric for existing trajectories, or if it is to be used as an objective
function in a trajectory optimisation setting.

Robustness as an evaluation metric. Given an existing dynamic trajectory, comput-
ing the residual force polytope for each point in time is straightforward. A possible
application for this is to evaluate the robustness of different trajectories, and to com-
pare them against each other. In fact, this is exactly what we did in Section 3.7.2 in
order to evaluate the robustness of the motions obtained from the optimisation of
different objective functions. For this use-case, our metric should be scalable to differ-
ent platforms, but it will become more computationally demanding—and therefore
slower—as the degrees of freedom of the system increase: the number of vertices of
the polytope grows with the number of degrees of freedom of the system, and the
complexity of converting representations (from V-rep to H-rep, or vice-versa) grows
with the number of vertices.

Robustness as an objective function. In the context of trajectory optimisation,
using our metric as an objective function for floating-base systems with many degrees
of freedom is not straightforward and presents significant scalability issues. The
reason for this is related (but not limited) to the point mentioned above: computing
the residual force polytope becomes more demanding and slower as the number of
degrees of freedom of the robot increases. For purposes of evaluating a trajectory, the
polytope only needs to be computed once for each mesh point. On the other hand,
in trajectory optimisation, the solver takes several iterations (in our case, hundreds
of iterations) while converging to a locally optimal solution, and for each of those
iterations it may need to perform more than one function or gradient evaluation, which
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requires computing the residual force polytope again and again. As a consequence,
optimising trajectories for high-DoF robots in a reasonable amount of time is not
possible, and could take multiple days to complete. We would like to emphasize that
this is not a limitation of the residual force polytope we propose, but a limitation
of using any polytope. Since this is a well-known issue, other authors have tried to
use approximations to work around it. Next, we list a few options for mitigating this
drawback.

3.8.2 Mitigating the Computational Cost

Less frequent polytope evaluations. One way to decrease computational cost is by
evaluating the polytope less frequently. For online planning and control, this would
mean computing the polytope at regular time intervals, using it to adapt the motion
of the robot every now and then. This approach was used by Orsolino et al. [55] for
optimising the centre-of-mass position of a quadruped’s static crawl gait. In that work,
the feasibility polytope was calculated once at the beginning of the optimisation and
used as a constant approximation thereafter.

Approximation of polytope geometries. Another way to decrease computational
cost is to approximate polytope geometry with morphing techniques or with surrogate
models. Bratta et al. [8] used polytope morphing for computing the polytope of each
leg of a quadruped robot. The authors computed an exact polytope representation
for two key configurations, and then approximated the polytope for intermediate
configurations by interpolating its shape. Another option (not yet explored) is to use a
surrogate model. Surrogate models approximately mimic the behaviour of functions
that are computationally expensive to evaluate. They can be constructed offline by
exploring the states of the system, and then evaluated online quickly.

Specialized solvers. In this work, we used an off-the-shelf optimisation library,
Knitro [11], which implements state-of-the-art algorithms for solving numerical prob-
lems. Instead of using generic solvers, one could attempt to take advantage of problem-
specific features to customize the solver’s internal implementation (e.g., with heuristics,
linearized relaxations, cutting planes), trading off generality for performance. How-
ever, developing such custom solvers is very time-consuming and requires expert
knowledge in numerical optimisation.

3.9 conclusion

In this chapter, we proposed an exact representation for task-space forces which the
robot can counteract: the residual force polytope. The representation takes into account
the whole-body dynamics of the robot, and considers only the torques remaining
after accounting for the controls of a nominal trajectory (or the controls of a trajectory
being optimised). Our proposition contrasts with approximate representations (e.g., in
ellipsoidal forms) from previous related work, which do not account for the nominal
control trajectory and therefore overestimate the true capabilities of a system. We
defined two functions based on the residual force polytope, for two different levels of
disturbance uncertainty, and used them as objectives in trajectory optimisation to plan
motions more robust to external disturbances.
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Despite the qualitative benefits of the trajectories obtained using our method, its
computational cost does not allow deploying it as a real-time planning method. How-
ever, our approach can be used for offline motion planning (where time consumption
is not as critical), as well is in other areas besides trajectory optimisation, such as
system analysis and co-design.

Another drawback of our current approach is that it does not scale to robots with
a floating base (such as quadrupeds or humanoids) due to the immense amount of
vertices in exact polytopes that high-dimensional systems would generate. However,
instead of using explicit polytope descriptions, we can approximate them6 [85] in
exchange for scalability and decreased computational cost. For that, choosing the right
level of approximation becomes an important decision [78], and the trade-off between
speed and accuracy has to be considered carefully.

In the next chapter, we are going to tackle that very problem. We will work out how
to compute our robustness metric without exact polytope descriptions, and we will
reformulate the trajectory optimisation problem in a way that enables our framework
to scale to complex underactuated robots.

6 Not to be confused with approximations to dynamic quantities of the controlled system, which our
proposed representation is trying to avoid.
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4
R O B U S T T R A J E C T O R I E S F O R F L O AT I N G - B A S E R O B O T S

This chapter focuses on robustness to external forces and uncertain payloads. We
present a novel formulation to optimise the robustness of dynamic trajectories. A
straightforward transcription of this formulation into a nonlinear programming prob-
lem is not tractable for state-of-the-art solvers, but it is possible to overcome this
complication by exploiting the structure induced by the kinematics of the robot. The
non-trivial transcription that we propose allows trajectory optimisation frameworks to
converge to highly-robust and dynamic solutions. We demonstrate the results of our
approach using a quadruped robot equipped with a manipulator.

4.1 introduction

When an external force is applied to a legged robot with a manipulator, it may
cause the robot to slip, or to fail to track a path with its end-effector. Similarly, the
performance degrades when the robot poorly estimates how slippery the ground is
or how heavy is its payload. In either case the motion fails because completing the
task while compensating for the external force requires the robot to either command
more torque to its actuators than they are capable of delivering, to produce unrealistic
contact forces, or both. These limitations impose constraints that the robot motion has
to satisfy. Therefore, one way to look at robustness is to define it as some metric of
distance to these constraints, for instance, as the force the robot can compensate for
before violating the motion constraints. This kind of robustness could be optimised
over by the robot controller, however, considering robustness during motion planning
would allow us to avoid difficult-to-execute motions altogether.

We tackle the problem of robustness against external perturbations and unmod-
elled payloads for complex legged robots with manipulation capabilities. We focus
on increasing robustness at the planning stage to provide any tracking controller,
including robust control schemes, with greater margins of control authority. Previous
work [78] used the smallest unrejectable force (SUF) applied at some link of the robot
as a robustness metric for improving single configurations via convex conic optim-
isation. In this work, we propose a novel formulation to make the computation more
tractable and versatile, allowing us to consider the optimisation of entire trajectories
with nonlinear dynamics. Our new computational framework enables us to combine
trajectory optimisation (TO) with the SUF metric to produce highly robust and dynamic
trajectories.

4.2 related work

Bellicoso et al. [3] presented a motion planning and control framework for a platform
similar to ours (see Figure 16). The authors demonstrated successful execution of
tasks such as opening a door and carrying a box alongside a human. The authors
addressed robustness to external disturbances with an inverse dynamics-based whole-
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Figure 16: A legged loco-manipulation system: ANYmal [37] is a fully torque-controlled quad-
ruped robot. We equipped it with a Kinova Jaco [12] robot arm. An accompanying
video is available at https://youtu.be/vDesP7IpThw.

body controller and by re-planning locomotion continuously in a receding-horizon
fashion. However, contrary to our approach, they did not take into account robustness
explicitly at the planning-level.

Del Prete and Mansard [19] proposed a solution to improve the robustness to joint-
torque tracking errors at the control stage. The authors modelled deterministic and
stochastic uncertainties in joint torques within their control framework optimisation.
Their idea is similar to what we present in this chapter, but we maximize the upper-
bound force magnitude the system can withstand from any possible direction—and
we do this during planning.

The authors of Xin et al. [79] included external forces estimation directly into
their hierarchical controller. Their objective was to minimize actuator torques while
enforcing constraints on the contact forces. However, contrary to our work, they did
not enforce actuator limitations explicitly.

Modelling the capabilities of the system explicitly using polytopes has recently
become more popular than using simplified metrics for robustness. In Caron, Pham
and Nakamura [13], the authors derived the equations of a so-called gravito-inertial
wrench cone (GIWC). It is a feasible region used as a general stability criterion. This
representation is very efficient for testing robust static equilibrium of a legged robot,
but it fails to take into account any actuation limits. Orsolino et al. [55] proposed to
incorporate the properties of [13] with system torque limits. They use the resulting
polytopes to optimise the centre of mass (CoM) trajectory in the xy-plane for the base-
transfer motion of a quadruped. Despite the reduced size of this problem, the technique
used to compute polytopes was prohibitively expensive, and as a workaround they
computed polytopes once at the beginning and used them as an approximation for
the remaining motion.

We have followed this line of research in our previous work [30] and we proposed a
force polytope representation considering system dynamics: the residual force polytope.
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The polytope is computed from the forces and torques remaining after accounting
for Coriolis, centrifugal, and gravity terms, as well as nominal motion feed-forward
torques.

All the polytope calculations proposed in the literature [30, 55, 83] require a sig-
nificant amount of computation time. In general, deriving an explicit description
of a projected polytope is NP-hard [70]. As a result, prior work using polytopes in
trajectory optimisation, e.g., Orsolino et al. [55], resorted to the approximation of
fixing the polytope for an entire trajectory.

Zhen and Hertog [85] recently formulated a computationally tractable approach for
finding maximally sized convex bodies inscribed in a projected polytope. Their scheme
does not require an explicit description of the projection and works by combining
Fourier-Motzkin elimination with techniques from adjustable robust optimisation. The
scheme was adapted for robustness computations in robotics in [78], where the SUF

were estimated for static configurations. However, despite an improvement over exact
computation, due to the computational complexity of their formulation it was not
previously possible to consider trajectory optimisation of full system dynamics and
maximization of robustness based on dynamic polytopes at the same time. We further
adapt the technique of Zhen and Hertog [85] to reformulate the problem of computing
the SUF. The resulting reformulation allows considering trajectory optimisation and
robustness maximization in a bilevel optimisation setting.

Bilevel optimisations are mathematical programs that include the solution to other
programs in their constraints or objectives. They are common in robustness settings,
and have been used for robust control of robots. [46] optimised trajectories with full
dynamics for robustness as a bilevel problem; it is particularly related to our work, but
with some key differences: they considered robustness to noise and dealt with a fixed
base manipulator—both differences allowed for simplifications in their optimisation
problem.

We present a TO framework capable of planning robust and dynamic manipulation
tasks for legged robots, such as the one shown in Figure 16. Our main contributions
are:

1. Proposal of a novel solution to a bilevel optimisation problem that marries
dynamic trajectory optimisation with maximization of robustness against dis-
turbances.

2. Explanation of the non-trivial transcription and reformulation required to make
this problem tractable for a nonlinear programming (NLP) solver.

3. Comparison of our method’s results against a traditional optimisation objective
across different scenarios.

4. Validation of the planned motions using both full-physics simulation and real-life
hardware experiments.

4.3 trajectory optimisation

Trajectory Optimisation (TO) is a well-known and powerful framework for planning
locally-optimal trajectories of dynamic systems such as legged robots subject to
constraints. TO falls under the broader category of optimal control problems. In
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general, TO aims to design a finite-time control trajectory as a function of time, u(t),
which drives the system from an initial state x(tI) towards a final state x(tF), and
given the system dynamics ẋ = f (x, u) which must be satisfied over the entire interval
tI ≤ t ≤ tF. Optimal control problems can be solved using dynamic programming or
by means of transcription (see Betts [5]).

In this work, we employ a technique called direct transcription because it readily
handles strict constraints on states and controls. Such constraints take a key role in
computing the SUF. The main alternative, differential dynamic programming (DDP), of-
fers faster computation and provides a linear controller next to the optimised trajectory.
However, handling constraints with DDP is a challenging subject of research [33, 49].
This currently makes DDP less applicable to our case. A second alternative, shooting
methods, have been reported to result in slower computations and higher suscept-
ibility to local optima [5]. Using direct transcription, we formulate the continuous
optimisation problem by explicitly discretizing the system state and control trajectories.
This method results in the formulation of a large and sparse NLP problem [5]. The
resulting constrained nonlinear optimisation problem can then be solved using a
sparse, large-scale nonlinear programming solver such as Knitro [11].

4.4 model formulation

The model of a legged robot can be formulated as a free-floating base B to which
limbs are attached. For the specific case of the robot shown in Figure 16, the kinematic
tree stemming from the base branches into four legs and one robotic manipulator with
six degrees of freedom (DoF). The motion of the system can be described with respect
to (w.r.t.) a fixed inertial frame I. Let us express the position of the base w.r.t. the inertial
frame, expressed in the inertial frame, as IrIB ∈ R3. Let qIB ∈ H be a Hamiltonian
unit quaternion defining the orientation of the free-floating base w.r.t. the inertial frame,
and let ψIB ∈ R

3 be the modified rodrigues parameters (MRP) [34, 69] of the unit
quaternion qIB.1 We use ψIB to parameterize the orientation of the free-floating base.2

The joint angles describing the configuration of the 6-DoF arm and the four 3-DoF legs
are stacked in a vector qj ∈ Rnj , where nj = 18. The generalized coordinates vector q
and the generalized velocities vector v of this floating-base system may therefore be
written as

q =

IrIB

ψIB

qj

 ∈ R3 × R
3 × Rnj , v =

[
νB

q̇j

]
∈ Rnv , (23)

where nv = 6 + nj and the twist νB = [IvB BωIB] ∈ R6 encodes the linear and
angular velocities of the base B w.r.t. the inertial frame expressed in the I and B

1 R = R ∪ {−∞,+∞} is the affinely extended set of real numbers. We use the same notation as Terzakis,
Lourakis and Ait-Boudaoud [69].

2 The MRP encode a 3D rotation with the stereographic projection of a Hamiltonian unit quaternion.
The derivatives of the rotation matrix w.r.t. the MRP parameters are rational functions, making this
representation a particularly good choice for purposes of differentiation and optimisation.
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frames, respectively. The equations of motion of a floating base system that interacts
with the environment are written as

M (q)v̇ + h(q,v) = S⊤τ + J⊤
s (q)λ+ J⊤

e (q)f , (24)

where M (q) ∈ Rnv×nv is the mass matrix and h(q,v) ∈ Rnv is the vector of Cori-
olis, centrifugal, and gravity terms. The selection matrix S = [0nτ×(nv−nτ) Inτ×nτ ]

selects which DoF are actuated. Here, nτ = nj as all limb joints are actuated. The
vector of ground-feet contact forces and contact torques λ is mapped to joint-space
torques through the support Jacobian Js ∈ Rns×nv , which is obtained by stacking
the Jacobians which relate generalized velocities to limb end-effector motion as
Js = [J⊤

C1
· · · J⊤

Cnc
]⊤, with nc being the number of limbs in contact and ns the

total dimensionality of all contact wrenches. We assume ANYmal has point-feet, and
thus we only model linear contact forces at the feet. Finally, f represents any external
force applied to the end-effector. This force may be the result of a push or some
unpredicted disturbance. In a nominal scenario, this force is zero, i.e., f = 0. The
Jacobian Je ∈ R3×nv is used to map a linear force f applied at the end-effector to
joint-space torques.

4.5 problem formulation

We transcribe the continuous optimisation problem by explicitly discretizing the
system state and the control trajectory using a direct transcription technique. We divide
the trajectory into N equally spaced segments or intervals

tI = t1 < t2 < · · · < tM = tF, (25)

where the points are referred to as mesh points.3 The number of mesh points is given
by M = N + 1. Henceforth, we use xk ≡ x(tk) and uk ≡ u(tk) to indicate the value of
the state and control variables, respectively, at mesh point k. We treat the values of xk
and uk as a set of NLP variables, and we finally formulate the general TO problem as:

argmin
ξ

gM(xM) +
M−1

∑
k=1

g(xk, uk)

subject to xk+1 = xk + h f (xk, uk)

xk ∈ X
uk ∈ U

(26)

where g(·, ·) and gM(·) form an optional cost function, h = (tF − tI)/N is a fixed
integration step size, and X and U are the sets of feasible states and inputs, respectively.
We use the explicit Euler method to integrate the differential equations of the system
dynamics, but other K-stage Runge-Kutta schemes could be used, e.g., the Trapezoidal
method (implicit, K = 2) or the Hermite-Simpson method (implicit, K = 3).

4.5.1 Parameterization

Similarly to Posa, Cantu and Tedrake [59], we directly optimise over the space of
feasible states, control inputs, and constraint forces, i.e., for each discretized mesh

3 Some authors also refer to these mesh points as nodes, knots, way points, or grid points.
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point k, the vectors of generalized coordinates qk, generalized velocities vk, control
inputs τk, and contact forces λk form the vector of decision variables ξk. The entire
vector of NLP decision variables is:

ξ ≜ {q1,v1, τ1,λ1, · · · , qN ,vN , τN ,λN , qM,vM}.4 (27)

Methods that treat contact forces as optimisation variables are referred to as planning
“through contact”. This approach increases the number of decision variables, but the
problem becomes better conditioned [45].

4.5.2 Objectives

We consider three different optimisation objectives G1–G3. The first objective corres-
ponds to the feasibility problem, i.e., a problem with constraints but without any cost to
minimize.

The second objective G2 achieves the minimization of actuator torques and is defined
as

G2 : argmin
ξ

M−1

∑
k=1

τ⊤k τk. (28)

Finally, objective G3 corresponds to the maximization of the SUF at the end-effector.
G3 involves a problem reformulation which is explained in Section 4.6.1—the main
contribution presented in this chapter.

4.5.3 Constraints

We now analyse the constraints formulated in the NLP in detail. Table 12 shows a
summary of these constraints.

4.5.3.1 Bounds on decision variables

We constrain the joint positions, velocities, and torques to be within their respective
lower and upper bounds with (29)–(31).

qL ≤ qk ≤ qU ∀k = 1 : M (29)

vL ≤ vk ≤ vU ∀k = 2 : M − 1 (30)

τL ≤ τk ≤ τU ∀k = 1 : M − 1 (31)

We further fix the initial and final velocities to zero:

v1 = vM = 0. (32)

4 Notice that τM and λM (i.e., the control and contact forces at the final state) are not required, and thus
not part of ξ.
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Figure 17: The figure shows the robot at the beginning of a pick-and-place task. The ground-
feet contact forces are shown in yellow and the friction cones are shown in red. The
blue line represents the CoM projection.

4.5.3.2 Friction cones

Similarly to Caron, Pham and Nakamura [13], we model friction at the contact points
using an inner linear approximation with a four-sided friction pyramid. Consider the
set of points {Ci} where the robot is in contact with its environment. Let ni and µi
be the unit normal and the friction coefficient of the support region at each contact,
respectively. A point contact remains fixed as long as its contact force f c

i lies inside
the linearized friction cone directed by ni:

|f c
i · ti| ≤ (µi/

√
2)(f c

i ·ni), (33)

|f c
i · bi| ≤ (µi/

√
2)(f c

i ·ni), (34)

f c
i ·ni > 0, (35)

where (ti, bi) form the basis of the tangential contact plane, such that (ti, bi,ni) is a
direct frame.

4.5.3.3 System dynamics

Using explicit Euler integration, we enforce the nonlinear system dynamics ( f ) with a
finite set of defect (or gap) constraints in our NLP formulation:[

qk+1

vk+1

]
−
[
qk

vk

]
− h f

([
qk

vk

]
,

[
τk

λk

])
= 0. (36)

4.5.3.4 Stationary feet

Let the forward kinematics function for a foot-point contact i be given by f fk(q, i).

f fk(qk, i) = pi ∀i = 1 : 4, k = 1 : M (37)

4.5.3.5 Gripper task

The gripper is constrained at the initial and final instants of the trajectory (k = 1 and
k = M). For both of these mesh points, there exist five constraints: three to constrain
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the placement of the end-effector, and two for constraining the pitch and roll describing
the orientation of the end-effector. This enforces a specific location for the pick and
placing of a bottle (e.g., see Figure 17), as well as the correct orientation of the fingers
to embrace it, while leaving the grasp yaw as a degree of freedom to the solver.

Table 12: Summary of the formulated NLP constraints.

Constraint Structure Relation

Bounds on ξ Linear Mixed

Friction Cones Linear Inequality

System Dynamics Nonlinear Equality

Stationary Feet Nonlinear Equality

Gripper Task Nonlinear Equality

Building on the formulation above, we now want to implement additional terms to
model the external disturbances. We are interested in maximizing the forces applied
at the end-effector that the robot can compensate for while still satisfying all the NLP

constraints from Table 12.

4.6 robustness to disturbances

External forces applied to the robot can cause the robot to slip, lose contact between a
foot and the environment, or to fail to track the desired end-effector path. In each of
these cases, the motion fails because the external force causes a violation of one of the
motion constrains. We therefore define robustness as some metric of distance to the
constraints. More specifically, we consider the friction cone constraints on the contact
forces and the actuator torque bounds limiting the control commands that can be
used to compensate for external forces. As pointed out by [55], when transformed into
a common reference frame, these constraints form a convex polytope bounding the
volume of all admissible external wrenches applied to the robot. In [30] we proposed a
geometric method to inscribe a ball into the polytope and use its radius as a metric of
robustness. This approximation is especially useful since the radius of the maximum
volume inscribed ball gives a bound on the magnitude of forces from any direction
that the system can compensate for without violating the constraints.

4.6.1 Maximum-Volume Ball Inscribed in a Polytopic Projection

In order to reject a disturbance force, additional motor torques and ground reaction
forces are needed. Our robustness metric, the SUF, is the smallest force for which
no reaction forces/torques exist that also satisfy friction-cone constraints and motor
limitations. In previous work [30], the SUF was computed via a linear programming (LP)
problem. The trajectory optimisation would have this LP problem inside its objective,
but that is not desirable if the underlying solver for the LP is not differentiable itself.
Hence, we propose a new way to compute the SUF. The key idea in this robustness
analysis is to approximate the relationship between the disturbance force and reaction
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forces/torques as affine. Adapting the results from [85], we find a practically efficient
way to simultaneously optimise the robustness metric and the affine relationship
prescribing it. These results go beyond earlier adaptations in robotics by [78] because
those, like our work relying on LP, were not suitable for use in a trajectory optimisation
setting.5

Let us define the extended torques and ground-feet contact forces as τ+ and λ+,
respectively:

τ+ = τ +Kτf (38)

λ+ = λ+Kλf , (39)

where τ and λ are the nominal torques and ground-feet contact forces, Kτ and Kλ

are some (instantaneous) gain matrices which map a force expressed in end-effector
space to joint-torque space and ground-feet contact space, respectively, and f is a
potential external force applied at the end-effector. In a nominal situation, there are no
disturbance forces and thus f = 0, τ+ = τ , and λ+ = λ. Assuming no variation in
accelerations, replacing τ and λ in the equations of motion (24) with the right-hand
side of (38) and (39) gives:

0 =
(
S⊤Kτ + J⊤

s Kλ + J⊤
e

)
f (40)

Alternatively to constraints (31) and (33)–(34), we can represent the actuator torque
bounds and friction cones constraints using τ+ and λ+ as:

Aττ
+ ≤ bτ (41)

Aλλ
+ ≤ bλ. (42)

We then substitute (38)–(39) into (41)–(42) and for each row aτ of matrix Aτ we write
the constraint as:

a⊤τ (τ +Kτf ) ≤ bτ ∀ |f | ≤ ρ, (43)

where ρ is the radius of the maximum volume inscribed ball of a polytopic projection,
and it represents the magnitude of the smallest potential disturbance that cannot be
directly rejected. We then define f = ρχ, where χ ∈ R3 is a vector with unit length,
which allows us to find the greatest ρ with:(

max
χ

a⊤τ (τ +Kτ ρχ)

)
≤ bτ . (44)

The objective function of the left-hand side of equation (44) can be seen as a scalar
product of the vectors a⊤τKτ ρ and χ, which is greatest when these vectors are collinear:

argmax
χ

a⊤τKτ ρχ ≡ K⊤
τ aτ

∥a⊤τKτ ∥
. (45)

Simplifying (44) with the right-hand side of (45) leads to:

a⊤τ τ +
∥∥∥a⊤τKτ

∥∥∥ ρ ≤ bτ . (46)

5 This is due to the fact that computing derivatives of an LP would require a differentiable solver. Solving
an LP inside an optimisation problem can also lead to higher computational time.
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Equations (43)–(46) address the constraints on actuation limits. We repeat the same
process for the ground-feet contact forces to obtain:

a⊤λλ+
∥∥∥a⊤λKλ

∥∥∥ ρ ≤ bλ. (47)

Next, we substitute Kτ =Kτ ρ and Kλ =Kλρ into (40), (46) and (47) and write:

S⊤Kτ + J⊤
s Kλ + J⊤

e ρ = 0, (48)

a⊤τ τ +
∥∥∥a⊤τKτ

∥∥∥ ≤ bτ , (49)

a⊤λλ+
∥∥∥a⊤λKλ

∥∥∥ ≤ bλ. (50)

This substitution removes the bilinear products between Kτ , Kλ and ρ while keeping
the equality and inequalities valid.

4.6.2 Constraints’ Structure Exploitation

We now extend the problem formulation and transcribe the constraints (48)–(50)
directly into NLP constraints, and we extend the vector of decision variables with Kτ ,
Kλ, and ρ. However, by trying this, one will soon realize we face an NP-hard problem.
Additionally, there is a significant increase in the amount of decision variables, and the
dependency of both Js and Je on joint positions means that constraint (48) is nonlinear
and non-convex. Ultimately, this quickly renders any efforts of a naïve transcription
ineffective, as the solver would be unable to digest it.

In order to solve this issue, we have to analyse the inherent structure of the problem
and its constraints. Let Kτ be the unknown in constraint (48). Splitting the structure
of the constraint as[

0

I

]
Kτ = −

[
J
⊤base
s

J
⊤limbs
s

]
Kλ −

[
J
⊤base
e

J
⊤limbs
e

]
ρ (51)

highlights that Kτ can be obtained as a function of Kλ and ρ without performing
any inversions. Doing this satisfies the bottom equality implicitly. The top part of the
equality affecting the floating base still needs to be enforced.

This key-insight into the structure of the constraints allows us to transcribe the
problem so that the solver will converge successfully.

4.6.3 NLP Reformulation

4.6.3.1 Parameterization

We extend the previous definition of ξ to accommodate for the extra decision variables
required. Recall that Kτ k need not be discretized.

ξ+ ≜ ξ ∪ {ρ1,Kλ1, · · · , ρN ,KλN}. (52)
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4.6.3.2 Objective

G3 is the sum of all the ρk in ξ+:

G3 : argmax
ξ+

M−1

∑
k=1

ρk (53)

4.6.3.3 Constraints

We bound all the ρk in ξ+ to R+ with a linear one-sided inequality:

ρk ≥ 0 ∀k = 1 : M − 1. (54)

We enforce the top part of constraint (51) explicitly:

J
⊤base
s Kλ + J⊤base

e ρ = 0 (55)

Finally, (49) is rewritten as:

a⊤τ τ +
∥∥∥a⊤τ (−J⊤limbs

s Kλ − J⊤limbs
e ρ

)∥∥∥ ≤ bτ , (56)

A summary of the constraints added to the NLP with the reformulation is shown in
Table 13.

Table 13: Summary of the reformulated NLP constraints.

Constraint Structure Relation

Bounds on ρ Linear Inequality

Equation (55) Nonlinear Equality

Equation (56) Nonlinear Inequality

Equation (50) Conic Inequality

4.7 performance evaluation

In order to evaluate our work, we compared the robustness of the three objective func-
tions proposed in Section 4.5.2: feasibility (G1), minimum torques (G2), and maximum
SUF (G3). We ran the comparison across different scenarios for a pick-and-place task.
Furthermore, we benchmarked the times taken to evaluate all NLP constraints and the
convergence times for problems of different sizes.

Figure 18 shows four different settings for a pick-and-place task of a bottle on a
table. We set up scenarios with challenging terrain, where the robot stands on steps
with different heights or inclined slabs. The trajectories optimised with our method
(G3) demonstrated greater robustness, as shown in plots (a)–(c) in Figure 18. The initial
guess used for G2 and G3 was the result of the feasibility problem G1.

We also verified the robustness of trajectories for different inclines. For this, we
varied the grade of the slopes in the “ramp” scenario (Figure 18b) from 0◦ to 60◦. The
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(a) “Steps” terrain.
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(b) “Ramp” terrain.
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(c) “Valley” terrain.
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(d) “Handstand” scenario.

Figure 18: We set up a multitude of terrains for testing a pick-and-place task: flat ground,
slabs at different heights (a), and inclined supports (b)–(c). An extreme scenario
where the robot performs a “handstand” is shown in (d). The plots underneath
each scene show the SUF (in newtons) for the trajectories computed using different
optimisation objectives.
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Figure 19: Mean and standard deviation of the SUF at the end-effector for varying inclinations
on the “ramp” scenario.

trajectories computed with our metric consistently showed a greater SUF for all the
tested slopes (see Figure 19).

As an extreme example, we created a scenario where the robot has to perform a
“handstand”, i.e., support its own weight on two of its legs (see Figure 18d) while using
the remaining two for keeping its balance. In this scenario, it is especially important
for the robot to press downwards against the floor and upwards against the ceiling
to maintain stability. Because of this, torque minimization (G2) is not an appropriate
objective for this scenario, as confirmed by the degraded SUF when compared to the
initial seed in plot (d). On the other hand, our method is able to increase the robustness
of the initial seed by a small amount, because it allows to trade off torque expenditure
for more stable ground/ceiling-feet contact forces. We would like to emphasize that
the motions in all the scenarios are within the actual physical capabilities of the robot,
even the “handstand” scenario.

Table 14 shows the computation times for function and Jacobian evaluations of
the NLP problem constraints. The longest time is spent computing the Jacobian of
the system dynamics. Evaluating the Jacobian of the SUF—which is involved when
optimising G3—takes the second-longest time.

Table 15 shows the total time it takes for the solver to converge for problems of
different size. We benchmarked problems with 11, 21, and 41 mesh points (for a
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Table 14: Times taken to evaluate the NLP constraints.

Constraint Function (µs) Jacobian (µs)

Gripper Task 9.15± 25.18 14.93± 2.47

Stationary Feet 18.29± 2.07 57.67± 225.53

System Dynamics 55.07± 169.64 3801.85± 1353.08

SUF Constraints 73.76± 239.97 1396.90± 989.31

Table 15: Convergence times of objectives G1–G3 for problems with different size: 11, 21, and
41 mesh points.

M G1 (s) G2 (s) G3 (s)

11 0.46± 0.007 115.45± 0.27 229.34± 0.39

21 0.74± 0.009 143.48± 5.56 608.09± 8.04

41 1.21± 0.005 835.81± 15.59 1775.23± 12.85

1-second trajectory, this is the equivalent of a discretization at 10, 20, and 40 Hz). Each
average and standard deviation are taken from five samples. G1 is the fastest to solve,
as it is a feasibility problem and does not consider any optimality function. In our tests,
the overall best robustness of G3 (shown in Figure 18) also comes with the trade-off of
the longest times required until convergence.

All evaluations in this section were carried out in a single-threaded process on
an Intel i7-6700K CPU with 4.0 GHz and 32 GB 2133 MHz memory. The proposed
optimisation framework has been implemented using Julia [6] and the optimisation
library Knitro [11]. The chosen solving algorithm was the interior-point method6

presented by Waltz et al. [75].

4.8 experiments

We conducted hardware experiments on an ANYmal [37] quadruped equipped with
a Kinova Jaco [12] robot arm. The motion planning is performed a priori, and the
optimised trajectories are then sent to the controller for playback.

4.8.1 Robot Control

To execute our whole-body motions, we tracked the joint position with feed-forward
velocity and torque. We updated the references for joint position, joint velocity, and
joint torque at 400 Hz. The decentralized motor controller at every joint closes the loop,
compensating for friction effects. During our experiments, we used kp = [150, 150, 100]
as proportional and kd = [0.5, 0.5, 0.45] as derivative joint space gains for each leg,

6 Interior-point methods (also known as barrier methods) replace the NLP problem by a series of barrier
subproblems controlled by a barrier parameter. They are generally preferable for large-scale problems.
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respectively. The arm used Kinova’s driver for joint trajectory control. We synchronized
the execution of both controllers.

In order to evaluate how well the real robot tracks motions using our controller,
we compared the planned joint states over time with the state estimation data from
the robot. We computed a 2-seconds long trajectory using our framework for a pick-
and-place task sampled at 400 Hz and commanded the robot at the same frequency.
Figure 20 shows the plots of the planned trajectory against the data collected during
our experiments. The plots show that joint positions are within acceptable tolerances
and joint velocities are tracked well, but joint efforts are significantly different. This
validates that the motions generated by our trajectory optimisation are dynamically
consistent. The mismatch in joint efforts is expected due to differences between the
real robot and our model, and also due to signal delays. Additionally, as we executed
our trajectory open-loop without re-planning, the errors accumulated. Nonetheless,
the tracking controller can execute the dynamic motions we planned.
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Figure 20: Joint positions, velocities, and torques of ANYmal for a 2-seconds long trajectory on
flat ground. The dotted lines correspond to the planned trajectory. The solid lines
show the data collected by the state estimation on the real robot.

4.8.2 Description of the Experiments

(a) “Ramp” terrain (b) “Skateboard” scenario

Figure 21: Snapshots of the real robot executing the planned motions on a ramp (see Figure 18b)
and on a skateboard.
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We executed the pick-and-place of a bottle on a table for different terrain: on flat
ground and on a “ramp” (Figure 21a). The object being grasped was not modelled, and
it is therefore an external disturbance. We also tested the trajectories for ground-feet
friction coefficient mismatches by placing a skateboard underneath the feet of the
robot (Figure 21b). A video is available at https://youtu.be/vDesP7IpThw.

For the motions shown in the video, we optimised the trajectories at 100 Hz and
then linearly interpolated them to 400 Hz. It was the interpolation result that was then
tracked by the controller. We did this because computing optimal trajectories with
G3 gets more computationally expensive as the problem discretization increases (see
Table 15).

To select the frequency of the trajectory before interpolation, we computed the
root-mean-square error (RMSE) of the SUF over time for the same trajectory using
different discretization resolutions, with a 400 Hz resolution as a baseline. As shown
in Figure 22, for a trajectory discretized at 100 Hz its SUF RMSE ≈ 0.5 N, which is
acceptable for our purposes.
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Figure 22: Root-mean-square error (RMSE) in newtons of the SUF given different discretisations,
for a 400 Hz baseline.

4.9 conclusion

In this chapter, we looked at how we can formulate trajectory optimisation problems
that maximise robustness against external disturbances for legged robots with a
floating base (underactuated systems). However, the current approach is only valid
for standing balance behaviours.

In the next chapter, we are going to extend our formulation such that we can
consider contact switches, i.e., the making and breaking of contacts between the feet
of the robot and its environment.
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5
R O B U S T L O C O - M A N I P U L AT I O N W I T H A P P L I C AT I O N S T O
I N D U S T RY

Deployment of robotic systems in the real world requires a certain level of robustness
in order to deal with uncertainty factors, such as mismatches in the dynamics model,
noise in sensor readings, and communication delays. Some approaches tackle these
issues reactively at the control stage. However, regardless of the controller, online
motion execution can only be as robust as the system capabilities allow at any given
state. This is why it is important to have good motion plans to begin with, where
robustness is considered proactively. To this end, we propose a metric (derived from
first principles) for representing robustness against external disturbances. We then use
this metric within our trajectory optimisation framework for solving complex loco-
manipulation tasks. Through our experiments, we show that trajectories generated
using our approach can resist a greater range of forces originating from any possible
direction. By using our method, we can compute trajectories that solve tasks as
effectively as before, with the added benefit of being able to counteract stronger
disturbances in worst-case scenarios.

5.1 introduction

In this chapter, we tackle the problem of robust loco-manipulation for quadruped ro-
bots equipped with robot arms, such as the one shown in Figure 23. Here, the challenge
is not only to generate whole-body trajectories for solving complex tasks requiring sim-
ultaneous locomotion and manipulation (commonly referred to as loco-manipulation),
but also to optimise the robustness of such trajectories against unknown external
disturbances. This is an important problem for two reasons: first, loco-manipulation

(a) (b) (c) (d)

Figure 23: Snapshots of our robot solving real-world tasks in an industrial setting: (a) turning
a hand wheel, (b) pulling a lever, (c) opening a gate whilst standing on a ramp, and
(d) lifting a bucket by pulling a rope. The robot and the objects being manipulated
have been highlighted for clarity. The overlaid yellow arrows indicate motion. Video
footage: https://youtu.be/3qXNHVCagL8.
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allows us to extend the workspace of an otherwise-fixed-base-manipulator through
the mobility of a mobile base, such as a legged robot; and second, increasing the
robustness of the overall motion against disturbances leads to systems that are more
reliable, and that can therefore be deployed in the real world with greater confidence.

Enabling loco-manipulation is a very challenging problem because it involves
repeatedly breaking and making contacts between the feet and the environment in
order to move around, while maintaining balance and avoiding kinematic/actuation
limits. Moreover, robust motion planning is a complex subject on its own, as it requires
the derivation of good metrics that are able to quantify how robust trajectories are.
Consequently, combining loco-manipulation and robustness is not trivial, as it brings
together the challenges from both problems.

Most of the previous research done on loco-manipulation, [47, 52, 87], has tackled
the problem by splitting the arm from the base, planning the manipulation separately
from the locomotion, and then considering arm movement as a disturbance that the
base should compensate for. Furthermore, most of the existing research [19, 47, 61, 79]
has focused on reactive robustness at the control stage, rather than taking into account
robustness proactively during planning.

The key components of our approach are (i) a trajectory optimisation framework
which is able to solve complex real-world tasks and which takes into account the
full system dynamics, and (ii) a robustness metric derived from first principles. This
allows us to calculate the largest force magnitude that the robot can counteract from
any given direction, while considering ground-feet contact stability and the actuation
limits of the system. Our results show that, given a contact sequence, our framework
is able to plan whole-body trajectories that are significantly more robust to external
disturbances compared to other approaches.

This chapter is a direct follow-up of our previous work. In the previous chapter,
our framework was able to optimise whole-body trajectories for standing balance
behaviours only, i.e., not actual loco-manipulation. In contrast, this chapter proposes
an improved formulation which is able to optimise trajectories involving making,
breaking and switching contacts. We are also able to better enforce the nonlinear
dynamics of rigid-body systems, as we have incorporated our findings from [28].
Furthermore, we show that our formulation can handle cases where contact positions
are not enforced explicitly, which actually allows it to further maximize robustness
through the adoption of more suitable feet contact positions. Finally, the significant
amount of systems integration work that we have done in comparison to [29] allowed
us to deploy the robot in a realistic scenario mimicking an industrial offshore platform,
where we showed the robot operating uninterrupted and repeatedly solving the
complex sequence of tasks highlighted in Figure 23. This has resulted in a robust
loco-manipulation system which is capable of online motion planning for deployment
in realistic scenarios.

5.2 related work

We now summarize previous research related to motion planning for quadruped
robots equipped with arms, as well as existing research on the topic of robustness.
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5.2.1 Planning and Control for Quadrupeds with Arms

Murphy et al. [52] were one of the first to investigate the use of a legged robot base to
improve the capabilities of a robotic arm. They used trajectory optimisation (TO) with
a simplified dynamics model to generate open-loop behaviours for Boston Dynamics’
robot BigDog. As a result of the coordinated motion between the robot arm and the
robot base, they were able to increase the performance of lifting and throwing tasks.
In their hardware experiments, they showed the robot dynamically tossing cinder
blocks as heavy as 16.5 kg and as far as 4.2 m. However, they only considered standing
balance behaviours (which do not change support contacts/move the feet). In contrast,
we consider the full dynamics model of the robot during TO, and we also consider
behaviours where the robot’s feet can make and break contact with the environment.

A few years later, Zimmermann et al. [87] equipped Boston Dynamics’ flagship
quadruped robot Spot with a Kinova arm in order to perform dynamic grasping
manoeuvres. Direct control of Spot’s actuated joints is not possible because of restricted
access to its low-level controller. As Spot’s whole-body controller for locomotion
compensates for the wrench induced by the manipulator, the tracking and executed
motion can differ from planned motion, resulting in poor performance. To achieve
precise loco-manipulation, Zimmermann et al. treated Spot’s overall behaviour as a
black box, and built a simplified model of the combined platform from experimental
data. While their approach successfully grasped the target most of the time, it failed
when the estimated position of the ball was inaccurate or when the robot started
executing the planned trajectories from slight offset poses. There were also cases when
the robot failed to grasp the target due to Spot’s complex internal behaviour not being
fully captured by their simplified model. For example, when the disturbance induced
by the arm to the base was sufficiently large, it could cause a delay that brought
the individual trajectory components out of sync. In contrast, our approach does not
suffer from this drawback because the robot we use in our experiments grants us full
control over its joints, and because we optimise trajectories for the robot considering
the dynamics of its whole body.

Ma et al. [47] combined manipulation using model predictive control (MPC) with
a locomotion policy obtained from reinforcement learning (RL). First, they modelled
the wrenches (arising from the motion of the arm) applied to the base of the robot
as external disturbances that can be predicted. Then, they trained the base control
policy to counteract those disturbances while (i) trying to keep a horizontal base
orientation and (ii) tracking velocity commands from the MPC controller of the arm.
In other words, their base policy uses wrench predictions from the arm’s motion to
compensate for the disturbances applied to the base of the robot.

All the previous work mentioned thus far [47, 52, 87] have one thing in common:
they all see the arm as a disturbance to be compensated for. In contrast, Bellicoso et
al. [3] approached the problem differently, and took into account the dynamics of the
whole system. The authors used a whole-body controller based on inverse dynamics,
re-planned locomotion continuously in a receding-horizon fashion, and explicitly
provided end-effector forces for the controller to track. They equipped ANYbotics’
quadruped robot ANYmal B with a Kinova arm—a combination which results in a
fully torque-controlled mobile manipulator, and one which users have full control over.
Bellicoso et al. demonstrated that the resulting system is able to perform dynamic
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locomotion while executing manipulation tasks, such as opening doors, delivering
payloads, and human-robot collaboration.

In [52], the manipulation task is planned offline and separately from the locomotion
planner; and in [3], the task for opening the door uses a controller that tracks gripper
forces, which need to be explicitly specified. Sleiman et al. [61] tackled both these
weaknesses when they proposed a unified MPC framework for whole-body loco-
manipulation. Their approach augments the dynamics of the object being manipulated
to the centroidal dynamics and full kinematics of the robot. This allows the solver to
exploit the base-limb coupling and, e.g., to use the arm as a balancing “tail”. Despite
using an MPC approach, their planner is not adaptive with respect to the dynamic
properties of the objects being manipulated.

In our previous work [29], we proposed a motion planning framework for legged
robots equipped with manipulators. In that work—and in this chapter—we used the
same robot arm and quadruped shown in [3], with a difference only in the number of
fingers on the gripper. Our motion planning approach was similar to [61] in the sense
that we formulated the planning problem for the whole body of the robot in a unified
manner, i.e., for the quadrupedal base and the robot manipulator simultaneously.
There are a couple of differences in the problem formulation between our previous
work [29] and [3, 61]; e.g., we use a full model of the robot’s articulated rigid-body
dynamics1 instead of a simplified version, which allows us to plan trajectories more
faithfully to the real hardware. However, the most important difference and our
main contribution is that we focus on planning motions that are not only physically
feasible, but that also maximize robustness against unknown external disturbances.
This aspect is something that none of the previous work mentioned [3, 47, 52, 61, 87]
have considered.

5.2.2 Motion Robustness Against Disturbances

Del Prete et al. [19] proposed a solution to improve the robustness to joint-torque
tracking errors at the control stage. The authors modelled deterministic and stochastic
uncertainties in joint torques within their control framework optimisation. In our case,
we maximize the upper-bound force magnitude the system can withstand from any
possible direction, and we do this during the planning stage. Xin et al. [79] proposed a
hierarchical controller in which external forces are estimated directly. Their goal was to
minimize actuator torques while enforcing constraints for the contact forces. However,
in contrast to our work, they did not explicitly enforce actuator limits; and since
their main focus is on control, they do not have a planner for computing elaborate
whole-body behaviours.

The robot experiments shown in [47] and in [61] demonstrate some capability of
resistance against external forces; but this robustness is reactive, in the sense that it is
either the learned locomotion policy or the MPC that compensate for the disturbances
online in a reactive fashion. In contrast, research on proactive robustness [13, 30, 55]
attempts to take uncertainty into account at the planning stage, i.e., ahead (or just in
time) of online execution. The latter approach allows planning frameworks to increase
the system’s ability of counteracting disturbances by exploiting kinematic redundancy.

1 Henceforth, we shall refer to this as the ‘full dynamics model’ of the robot.
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In [13], Caron et al. proposed a feasible region (a polytope), called gravito-inertial
wrench cone (GIWC), which can be used as a general stability criterion. This represent-
ation is very efficient for testing the robust static equilibrium of a legged robot, but
it neglects the system’s actuation limits. Subsequently, Orsolino et al. [55] proposed
to extend the properties of the GIWC by incorporating the torque limits of the system.
They demonstrated how the resulting polytopes can be used to e.g. optimise the centre
of mass (CoM) trajectory in the xy-plane for the base-transfer motion of quadrupeds.
Orsolino et al. formulated a reduced version of the problem, but even then the tech-
nique used to compute polytopes was prohibitively expensive. As a workaround, they
computed the polytope only once for the first point of the trajectory, and used that as
an approximation for the rest of the motion. We have followed this line of research in
our previous work [30], where we proposed a force polytope representation, called
residual force polytope, which considers not only the torque limits but also the dynamics
of the system during trajectory execution. The polytope is computed from the forces
and torques remaining after accounting for Coriolis, centrifugal, and gravity terms, as
well as from the nominal feed-forward torques of the motion.

The polytope calculations in [55] and [30] require significant computation time
and, in general, deriving explicit descriptions of a projected polytope is NP-hard
[70]. Zhen et al. [85] formulated a computationally-tractable approach for finding
maximally-sized convex bodies inscribed in projected polytopes. Later, Wolfslag et al.
[78] adapted that approach for computing the robustness of static robot configurations.
Their work was an improvement over exact computations; however, it was still too
complex for being considered in trajectory optimisation. In our previous work [29], we
adapted the technique from [85] to reformulate the problem of computing the smallest
unrejectable force (SUF), which allowed us to formulate bilevel trajectory optimisation
problems for maximizing the robustness of the generated trajectories. In this chapter,
our work extends those ideas further to motion with contact changes.

5.3 robust trajectory optimisation

5.3.1 Robot Model Formulation

We formulate the model of a legged robot in the same way as in our previous work [29],
i.e., as a free-floating base B to which the limbs are attached to. For example, the robot
we used for our experiments (seen in Figure 23), has four legs and one arm attached
to its base; each leg has three motors and the arm has six.2 We describe the motion of
the system with respect to (w.r.t.) a fixed inertial frame I. We represent the position of
the free-floating base w.r.t. the inertial frame, and expressed in the inertial frame, as
IrIB ∈ R3. As for the orientation of the base, we represent it using modified rodrigues
parameters (MRP) [34, 69] as ψIB ∈ R3. The joint angles describing the configuration
of the 6-degrees of freedom (DoF) arm and the four 3-DoF legs are stacked in a vector

2 Please note that our formulation is not tied to the specific robot shown in Figure 23. In fact, it is general
enough such that it can be applied to any legged robot, biped or quadruped, with or without arms.
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qj ∈ Rnj , where nj = 18. Finally, we write the generalized coordinates vector q and
the generalized velocities vector v as

q =

IrIB

ψIB

qj

 ∈ R3 × R
3 × Rnj , v =

[
νB

q̇j

]
∈ Rnv , (57)

where the twist νB = [IvB BωIB]
⊤ ∈ R6 encodes the linear and angular velocities of

the base B w.r.t. the inertial frame expressed in the I and B frames, and nv = 6 + nj.
The equations of motion of a floating-base rigid-body system that interacts with the

environment are written as

M (q)v̇ + h(q,v) = S⊤τ + J⊤
s (q)λ+ J⊤

e (q)f , (58)

where M (q) ∈ Rnv×nv is the mass matrix, and h(q,v) ∈ Rnv is the vector of Coriolis,
centrifugal, and gravity terms. On the right-hand side of the equation, τ ∈ Rnτ

is the vector of joint torques commanded to the system, and the selection matrix
S = [0nτ×(nv−nτ) Inτ×nτ ] selects which DoF are actuated. We consider that all limb
joints are actuated, thus nτ = nj. The vector λ ∈ Rns denotes the forces and torques
experienced at the contact points, with ns being the total dimensionality of all contact
wrenches. The support Jacobian Js ∈ Rns×nv maps the contact wrenches λ to joint-
space torques, and it is obtained by stacking the Jacobians which relate generalized
velocities to limb end-effector motion as Js = [J⊤

C1
· · · J⊤

Cnc
]⊤, with nc being the

number of limbs in contact. Finally, f represents any external force applied to the
end-effector. This force may be the result of a push or of some unpredicted disturbance.
Under nominal circumstances, this force is zero, i.e., f = 0. The Jacobian Je ∈ R3×nv is
used to map a linear force f applied at the end-effector to joint-space torques.

5.3.2 Problem Discretization

In order to plan motions for complex robot systems, we use an approach called direct
transcription, which is a powerful technique for TO.

We start by converting the original motion planning problem (which is continuous
in time) into a numerical optimisation problem that is discrete in time. We divide the
trajectory into N equally spaced segments, tI = t1 < · · · < tM = tF, where tI and
tF are the start and final instants, respectively. This division results in M = N + 1
discrete mesh points, for each of which we explicitly discretize the states of the system,
as well as the control inputs. Let xk ≡ x(tk) and uk ≡ u(tk) be the values of the state
and control variables at the k-th mesh point. We treat xk ≜ {qk,vk} and uk ≜ {τk,λk}
as a set of nonlinear programming (NLP) variables, and formulate the basis of our
trajectory optimisation problem as

find ξ s.t. xk+1 = f (xk, uk), xk ∈ X , uk ∈ U , (59)

where ξ is the vector of decision variables, xk+1 = f (xk, uk) is the state transition
function incorporating the nonlinear dynamics of the system, and X and U are sets
of feasible states and control inputs enforced by a set of equality and inequality
constraints. The decision variables vector ξ results from aggregating the generalized
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coordinates q1:M, generalized velocities v1:M, joint torques τ1:N , and contact forces
λ1:N , i.e.,

ξ ≜ {q1,v1, τ1,λ1, · · · , qN ,vN , τN ,λN , qM,vM}. (60)

5.3.3 System Constraints

After having discretized the states and controls of the system over time as decision
variables, we need to define a set of rules that restrict the motion represented by those
variables. We do this by specifying a set of mathematical equalities and inequalities,
so that the solver “knows” how to compute trajectories that are not only physically
feasible but that also complete the tasks we want the robot to solve.

5.3.3.1 Domain of decision variables

The most straightforward constraints we need to write are the lower and upper bounds
of each decision variable in ξ. We constrain the joint positions, velocities, and torques
to be within their corresponding lower and upper bounds.

qL ≤ qk ≤ qU ∀k = 1 : M (61)

vL ≤ vk ≤ vU ∀k = 1 : M (62)

τL ≤ τk ≤ τU ∀k = 1 : M − 1 (63)

5.3.3.2 Initial and final velocities

We enforce the initial and final velocities of every joint to be zero, i.e., v1 = vM = 0.
Note, however, that this is not a strict requirement of our framework, but is chosen to
ensure static start and end configurations.

5.3.3.3 End-effector poses

We enforce end-effector poses with

f fk(qk, i) = pi, (64)

where f fk(·) is the forward kinematics function, qk are the joint coordinates at the k-th
mesh point, i refers to the i-th end-effector of the robot, and pi ∈ SE(3) is the desired
pose. We use these constraints for defining the position and orientation of the robot’s
hand at specific mesh points, as well as to define the point contacts for the robot’s feet
during stance phases.3 We pre-specify the contact sequence for the feet, which can be
computed e.g. using contact planners such as [73].

5.3.3.4 Contact forces

For mesh points where the robot is not in contact with the environment (according to
the pre-specified contact sequences), we enforce the contact forces at the respective
contact points to be zero, i.e., λk = 0.

3 We do not constrain the robot’s feet positions during leg swing phases.
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5.3.3.5 Friction cone constraints

Similarly to [13], we model friction at the contact points using an inner linear approxim-
ation with a four-sided friction pyramid. Consider the set of points {Ci} where the
robot is in contact with its environment. Let ni and µi be the unit normal and the
friction coefficient of the support region at each contact, respectively. A point contact
remains fixed as long as its contact force f c

i lies inside the linearized friction cone
directed by ni:

|f c
i · ti| ≤ (µi/

√
2)(f c

i ·ni), (65)

|f c
i · bi| ≤ (µi/

√
2)(f c

i ·ni), (66)

f c
i ·ni > 0, (67)

where (ti, bi) form the basis of the tangential contact plane, such that (ti, bi,ni) is a
direct frame.

5.3.3.6 System dynamics

In order to enforce the equations of motion (Equation 58), we use inverse dynamics
rather than forward dynamics. This is because problems formulated using inverse
dynamics are faster, more robust to coarser problem discretization, and converge in
fewer iterations [28]. (We will discuss this in the next chapter.4)

The inverse dynamics problem computes the joint torques and forces required to
meet desired joint accelerations at a given state, i.e.,

τ ∗k = f id(qk,vk, v̇∗k ,λk), (68)

where f id(·) is the function that solves the inverse dynamics problem, and the desired
joint accelerations can be calculated implicitly with v̇∗k = (vk+1 − vk)/h. We compute
q̇∗k+1 from vk+1, and integrate it (using semi-implicit Euler integration) to compute the
next generalized coordinates q∗k+1. Finally, we define the dynamics defect constraints
as

q∗k+1 − qk+1 = 0 and τ ∗k − τk = 0. (69)

5.3.4 Robustness Against Disturbances

5.3.4.1 NLP Problem 1

Thus far, we have modelled the robot and its full body dynamics, discretized the
motion planning problem, and defined a set of rules in the form of mathematical
constraints. At this stage, we have all the “ingredients” required for planning feasible
trajectories that can be executed on the robot. Henceforth, we will refer to this version
of the formulation as NLP Problem 1—a summary for this version of the formulation
is shown on the left block in Figure 24.

4 Our work [28] on inverse dynamics vs. forward dynamics for computing dynamics defects in direct
transcription problems was carried out (time-wise) between Chapter 4 and Chapter 5. However, in order
to not break the flow regarding the research thread on robustness against external disturbances, we have
decided to present that work as the last chapter of this thesis (i.e., just before the concluding chapter).
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NLP Problem 1 NLP Problem 3NLP Problem 2

Required inputs
  Footstep locations and timings.

Required inputs
  A whole-body trajectory.

Required inputs
  Same as in Problem 1.

Decision variables
  , joint positions
  , joint velocities
  , actuator torques
  , contact forces
   -
   -

Decision variables
   -
   -
   -
   -
  , SUF magnitude
  , gain matrix

Decision variables
  , joint positions
  , joint velocities
  , actuator torques
  , contact forces
  , SUF magnitude
  , gain matrix

Constraints
  Task-related constraints and 
  whole-body dynamics.

Constraints
  Rigid-body dynamics equations 
  related to the SUF magnitude.

Constraints 
  Aggregation of constraints 
  from Problems 1 and 2.

Purpose
  Compute feasible trajectories 
  with full-body dynamics.

Purpose
  Analyze the robustness of 
  already-existing trajectories.

Purpose 
  Compute trajectories that are 
  robust to external disturbances.

Objective
  Minimization of actuator torques 
  and contact forces, or none at all.

Objective
  Maximization of SUF magnitude.

Objective
  Same as in Problem 2.

Figure 24: Block summaries of NLP Problems 1, 2, and 3. Inside each block, the summary
states the purpose for using that formulation, the required inputs, the decision
variables and constraints involved, and the objective function employed. The empty
lines with a ‘-’ under ‘Decision variables’ emphasize that NLP Problem 3 is a
combination of Problems 1 and 2.

Next, we are going to build upon our previous work [29] to present two different
problem formulations, NLP Problem 2 and NLP Problem 3, which can be used to
analyse the robustness of known trajectories and to maximize the robustness of
trajectories being computed, respectively.

5.3.4.2 NLP Problem 2

When we compute a robot trajectory using NLP Problem 1, we may be interested
in understanding how robust those trajectories are against forces applied to e.g. the
end-effector. Thus, one way of determining the robustness of that trajectory is by
studying the set of forces that the end-effector is able to resist, both in terms of force
magnitude and direction. The metric proposed in our previous work [29], the SUF,
represents the smallest force magnitude (applied from any possible direction) that the
robot is not able to counteract. In other words, it gives the magnitude of the largest
force that the robot can counteract in a worst-case scenario. Next, we explain how to
compute it.

Given a discretized robot trajectory (e.g., the output of NLP Problem 1), we can com-
pute the SUF magnitude throughout that motion by re-formulating the NLP problem.
The decision variables for such a problem are

ξNLP Problem 2 ≜ {ρ1,Kλ1, · · · , ρN ,KλN}, (70)
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where, for each k-th mesh point, ρk is the magnitude of the SUF and Kλk is the
instantaneous gain matrix mapping a force expressed in end-effector space to ground-
feet contact space. Each and every ρk is bound to R+, i.e.,

ρk ≥ 0 ∀k = 1 : N. (71)

Kλk have no explicit bounds; but they are constrained by

a⊤λλ+
∥∥∥a⊤λKλ

∥∥∥ ≤ bλ, (72)

with aλ and bλ pertaining to the alternative form of writing the friction cone con-
straints, i.e., Aλλ ≤ bλ.5 The relationship between the SUF and the robot capabilities
at every mesh point is given by[

0

I

]
Kτ = −

[
J
⊤base
s

J
⊤limbs
s

]
Kλ −

[
J
⊤base
e

J
⊤limbs
e

]
ρ. (73)

We enforce this relationship by splitting it into two parts. For the top part of the
equation, concerning the floating base, we write the following nonlinear equality:

J
⊤base
s Kλ + J⊤base

e ρ = 0. (74)

As for the bottom part, concerning the limbs of the robot, we write the following
nonlinear inequality:

a⊤τ τ +
∥∥∥a⊤τ (−J⊤limbs

s Kλ − J⊤limbs
e ρ

)∥∥∥ ≤ bτ . (75)

Once we have defined the above constraints and decision variables, we can maximize
the following objective function with any off-the-shelf nonlinear solver:

argmax
ξNLP Problem 2

N

∑
k=1

ρk. (76)

In summary, for a given (constant) trajectory, the outcome of this nonlinear optim-
isation problem will be the magnitude of the SUF over time (i.e., the ρk for every mesh
point of the discretized trajectory) and Kλk. Kτ are also an output, since they can be
computed as a function of Kλ and ρ without performing any inversion—as hinted
by Equation 73. The outputs Kλ and Kτ can be used to understand and explain the
specific constraint that determines the upper bound of the SUF (i.e., friction cone or
torque, on which foot or motor), although that is something we do not investigate in
this chapter.

5.3.4.3 NLP Problem 3

NLP Problems 1 and 2 allow us to compute a feasible whole-body trajectory and to
calculate the robustness of said trajectories, respectively. By combining NLP Problem
1 and NLP Problem 2, we obtain a single (albeit more complex) problem formulation
which is able to compute whole-body trajectories that are not only feasible but also

5 We refer readers to [29] for a full explanation and derivation of the terms.
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more robust against external disturbances. We call this single formulation NLP Problem
3, and it is summarized on the right block in Figure 24. The decision variables of NLP
Problem 3 are

ξNLP Problem 3 ≜ {q1,v1, τ1,λ1, ρ1,Kλ1,

· · · ,

qN ,vN , τN ,λN , ρN ,KλN ,

qM,vM}.

(77)

The constraints are the combined constraints of NLP Problems 1 and 2. The objective
function is the same as NLP Problem 2, i.e., the maximization of every mesh point’s
SUF added up:

argmax
ξNLP Problem 3

N

∑
k=1

ρk. (78)

5.3.5 Contact Switching

In contrast to our previous work [29], the NLP formulations in Figure 24 consider the
making and breaking of contacts between the feet of the robot and its environment.
This is one of the main contributions of this chapter, and we will now explain how we
have enabled this.

As we have previously explained in ‘System Constraints’ (Section 5.3.3), during
problem discretization, we handle feet that are in contact with the ground (stance phase)
differently from feet that are moving through free space (swing phase). In short, for each
mesh point of the trajectory, and for each foot of the robot: if that foot is in stance phase,
we enforce it to remain still, and we also enforce the contact force to lie within friction
cone boundaries; otherwise, we enforce only a zero contact force constraint. Since this
is done during the problem transcription process, it requires knowing the timings for
contact switches a priori, as well as feet positions6 for each stance phase. The upside
is that the problem complexity does not increase much, especially compared with
other approaches that consider contact switching by formulating complementarity
constraints (e.g. Posa et al. [59]).

The approach explained in the last paragraph is enough for enabling contact
switching in NLP Problem 1. However, additional changes are needed for Problems
2 and 3, since those problem formulations involve extra constraints and decision
variables regarding the maximization of the SUF. In essence, the decision variables
Kλk pertaining to the feet in swing phase must be set to zero, since no contact forces
exist in that context. Fortunately, we need not worry about Kτk , since it is defined
as a function of Kλk (see Equation 73). Nonetheless, the most challenging aspect of
these modifications is not in the writing of the constraints, but rather in the writing
of the functions that evaluate the Jacobian of those constraints (together with their
sparsity structure). To this end, we use modern automatic differentiation capabilities
from Julia [6], but the process of passing the results of the Jacobian and sparsity
structure evaluations to specialized NLP solvers remains tricky and requires particular

6 For now, we will consider the feet positions to be fixed, but we will release this limitation in Section 5.5,
where we discuss this subject further.
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attention by the programmer to the indexing of the decision variables and constraints.
We formulate large but sparse NLP problems through our framework and therefore
specifying the sparsity pattern is very important to attain shorter computation times,
as the Jacobian of the constraints contain mostly zeroes (especially the dynamics
Jacobian, which is block diagonal).

5.4 experiments

We now present the experiments we carried out for evaluating our work and their
respective results. This section is organized as follows:

6.4.1 Describes the system integration work required for combining the quadruped
robot and the robot arm, as well as our planning framework with existing
controllers;

6.4.2 Presents a repeatability test where we commanded the robot to turn an industrial
hand wheel multiple times from different starting positions and orientations;

6.4.3 Compares the robustness of two distinct trajectories for turning a hand wheel
and for pulling a lever;

6.4.4 Explains how the SUF can be used as a tool for analysing existing robot trajector-
ies;

6.4.5 Demonstrates the capabilities of our framework to plan robust whole-body
motions involving making and breaking of contacts; and finally,

6.4.6 Tests the robustness of a loco-manipulation trajectory for lifting a bucket with
incremental weights until failure.

Subsections 6.4.1, 6.4.2, 6.4.3, and 6.4.6 are concrete evaluations of our method on
real robot hardware. Whereas the focus of subsections 6.4.4 and 6.4.5 is to demonstrate
new features.

In Table 16, we list all the videos supplementing our work, in the same order as
they appear in this chapter. A playlist is also available here: shorturl.at/csDY2.

Table 16: Supplementary videos.

Description Link (YouTube)

System demonstration youtu.be/3qXNHVCagL8

Repeatability experiment youtu.be/Ok8Pcwn_I0w

Robustly turning a wheel youtu.be/1M32AHuuDhI

Robustly pulling a lever youtu.be/6A9eSdfcj7A

SUF with contact switching youtu.be/H6-g8NLGyYE

Test with incremental weights youtu.be/puy2S90_3CM

Robust footstep locations youtu.be/tUXQUqLneTE

70 robust loco-manipulation with applications to industry

https://shorturl.at/oFJU0
https://youtu.be/3qXNHVCagL8
https://youtu.be/Ok8Pcwn_I0w
https://youtu.be/1M32AHuuDhI
https://youtu.be/6A9eSdfcj7A
https://youtu.be/H6-g8NLGyYE
https://youtu.be/puy2S90_3CM
https://youtu.be/tUXQUqLneTE


5.4.1 System Integration

In order to demonstrate the capabilities of our planning framework on the real robot,
we integrated it with the existing software stacks of the ANYmal quadruped and
Kinova arm.

For the quadruped, we used one of ANYbotics’ software releases, which comes
with multiple locomotion controllers working out-of-the-box. Human operators can
control the robot remotely via a joystick to tell the robot where to walk and which
gait to use, or they can pre-specify a mission as a set of waypoints for the robot to
walk through. Moreover, they provide an interface for specifying a custom payload
attached to the robot, but this is assumed to be a static payload, such as a thermal
camera, or an imaging sensor.

For controlling the robot as a whole (quadruped + arm), we settled on two operation
modes: teleoperated and autonomous. When the robot is in teleoperated mode, we do not
move the Kinova arm; it remains still in a “parked” configuration (stowed on top of
the quadruped). Doing this allows us to consider the arm a static payload, which
we can specify using the interface provided by ANYbotics. In turn, this allows us to
take advantage of every existing capability provided by ANYbotics’ stack. Finally,
whenever we wish to operate the arm, we switch to autonomous mode. In this mode,
we use a custom controller7 for the quadruped base and Kinova’s velocity controller
for the arm. This is the mode we use to execute the whole-body trajectories generated
with our planning framework.

In summary, we start the robot in teleoperated mode by default. In this mode, we
can walk the robot on flat ground and over ramps, but we cannot move the arm. We
use the teleoperated mode to walk the robot around a facility and towards points of
interest. Then, once the robot reaches said points of interest, it awaits an instruction
(e.g, “turn the wheel”, or “pull the lever”). As soon as the robot is given an instruction,
it switches into autonomous mode, our planning framework is triggered and computes
a whole-body trajectory for the robot. This trajectory is then passed on to the arm and
quadruped controllers for synchronous execution. Once the robot finishes executing
the task autonomously, it switches back into teleoperated mode and the system returns
control to the human operator, who can walk the robot remotely towards the next task
of the mission.

A demonstration of the entire system is available here: https://youtu.be/3qXNHVCagL8.
In the video, a human teleoperates the robot to walk around a mock-up scaffolding
of an offshore platform (such as an oil rig). The operator approaches different points
of interest, and commands the robot to autonomously turn a hand wheel, pull a
lever, push a gate whilst standing on a ramp, and pull a rope to lift a 1.1 kg bucket.
These tasks are the ones shown in Figure 23. Although we have focused on tasks
relevant for industrial inspection, our framework allows us to formulate virtually any
loco-manipulation task through the definition of a set of constraints for the robot.

7 We use the same controller as in our previous work [29]. We commanded each joint of the quadruped
with feedforward torque and feedback on position and velocity. Position, velocity, and torque references
are updated at 400 Hz.
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5.4.2 Repeatability Test

Our goal for this experiment was to ensure the following characteristics of our system:

• the robot is able to operate continuously for extended periods of time without
falling;

• the operator is able to send walking commands to the robot during teleoperated
mode, but not during autonomous mode;

• the Vicon motion capture system calculates the relative transform between the
free-floating base of the robot and the manipulation target reliably;

• the planning framework computes a feasible whole-body trajectory for complet-
ing the manipulation task;

• the controller is able to reach and grasp targets, and track reference trajectories
accurately.

To verify the points above, we carried out a repeatability test for turning an industrial
hand wheel. During this test, we operated the robot continuously for 30 min without
a safety harness. During this time, a human operator walked the robot to different
points near the manipulation target and triggered the “turn wheel” behaviour. The
test was completed successfully and our system passed all the points listed above.
Figure 25 shows a few snapshots of the robot grasping the wheel during the test.
Video footage is also available here: https://youtu.be/Ok8Pcwn_I0w.

Figure 25: Snapshots of the robot grasping the hand wheel during the repeatability test. Notice
how the position and orientation of the robot base relative to the wheel are different
on every snapshot. Video: https://youtu.be/Ok8Pcwn_I0w.
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5.4.3 SUF Optimisation for Turning a Wheel and Pulling a Lever

In this experiment, our goal is to compare the resulting SUF of two different objective
functions: the first trajectory (baseline) is optimised considering a cost function that
minimizes torques and contact forces, while the second trajectory (proposed) maximizes
the SUF explicitly. We run this experiment for two tasks: (i) turn a hand wheel clockwise
by a full revolution, and (ii) pull down a lever from its resting position. Figure 26

shows an instance of the results of this experiment.
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Figure 26: Initial configuration of the baseline trajectories (left), initial configuration of the
proposed trajectories (centre), and plot comparing the SUF of the baseline and proposed
trajectories (right). Top and bottom rows concern the tasks of turning an industrial
hand wheel and pulling down a lever, respectively.

5.4.3.1 Turning the hand wheel

In Figure 26’s left column, we can see that the SUF magnitude of the proposed trajectory
(orange line) is within 73 N to 76 N throughout the entire motion; whereas the SUF

of the baseline trajectory (blue line) lies within 56 N to 66 N—it starts and ends at
∼56 N, increasing slightly in the middle of the trajectory where it peaks at ∼66 N.
The SUF mean-percentage-increase of the proposed approach versus the baseline is
approximately 24 %. Video: https://youtu.be/1M32AHuuDhI.

5.4.3.2 Pulling the lever

In Figure 26’s right column, the SUF magnitude of the proposed trajectory (orange
line) remains within 68 N to 75 N throughout the entire motion; on the other hand,
the SUF magnitude of the baseline trajectory (blue line) remains within 50 N to 69 N.
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The SUF mean-percentage-increase of the proposed approach versus the baseline is
approximately 18 %. Video: https://youtu.be/6A9eSdfcj7A.

We repeated this experiment multiple times for different robot orientations relative
to the wheel and the lever. The results were identical to those shown in Figure 26.
Both the baseline and proposed trajectories successfully completed the task. However,
trajectories planned using the proposed approach outperformed the baseline version
in both tasks in terms of their robustness against external disturbances.

5.4.4 The SUF as a Tool for Analysing Trajectories

Earlier in this chapter, when we presented Figure 24, we explained how the SUF allows
us to analyse the robustness of existing trajectories, and also how it allows us to
compare multiple trajectories with each other. In this experiment, we want to further
develop the idea of using the SUF as an analysis tool. Our goal is to show that, thanks
to our problem formulation, we can analyse individual trajectories to understand e.g.
how important of a role each of the legs play during a motion.

In Figure 27a, we show a robot trajectory planned with our framework for picking
up something from the ground; and in Figure 27b, the solid blue line represents the
SUF over time for that motion. An important question we may ask is: how important
is each leg for a successful execution of the motion? We can ask a similar question
from a different perspective: if there is a hardware fault on any of the quadruped legs,
how much of the initial motion’s robustness remains? Next, we explain how we can
answer these questions.

Thanks to the way we formulated the SUF constraints, we can set individual terms
in Kλk to zero in order to “simulate” what would happen if the torques of the motors
of a specific leg of the robot were at their torque limits, or what would happen if
the contact force at a specific foot was on the boundary of the friction cone—or both.
We solved Figure 24’s NLP Problem 2 four times (one for each leg) with the goal of
analysing the SUF at the end-effector while considering the motor torques to be at their
limits and the ground-feet contact forces to be at the boundaries of their respective
friction cones. The dashed lines plotted in Figure 27b show the results.

We can see that the magnitude of the SUF decreases, regardless of which leg is
affected. We can also see that the dashed lines are slightly different from each other,
which is expected since the trajectory is not perfectly symmetric and each leg has a
slightly different load from every other leg. Moreover, we can actually identify which
leg plays the most important role in this motion by looking at the dashed line with
the lowest values (the one for which the SUF magnitude decreased the most)—it was
the hind right (HR) leg.

5.4.5 SUF Optimisation with Making and Breaking Contacts

In this experiment, we wanted to verify that our planning framework is able to
optimise trajectories involving switching contacts. We also evaluated whether the
proposed objective function is able to compute a trajectory that is more robust to
external disturbances than the baseline cost.
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Figure 27: The image on the top shows a motion plan for picking up an object from the floor.
The plot on the bottom shows, for each leg, how the SUF decreases if we were to
consider the current torques to be at actuator limits and current contact force at the
friction cone boundary.

We defined a task in which the robot starts with all four feet on pre-specified
positions and then raises its right hind foot off the ground for a short time. We also
constrained the gripper to remain still at a certain location for the duration of the
whole motion. We then solved the task in two different ways: with NLP Problem
1 (baseline) and with NLP Problem 3 (optimised). The plot in Figure 28 shows the
magnitude of the SUF over time for the resulting trajectories. Because NLP Problem
1 only outputs a trajectory, we passed it to NLP Problem 2 afterwards in order to
compute the SUF values—keep in mind that this did not change the baseline trajectory.
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Figure 28: Plot of the SUF magnitude over time for two trajectories solving the same task
specification. Blue shows the baseline version (solved with NLP Problem 1), and
orange shows the optimised version (solved with NLP Problem 3).

The planner was able to compute a feasible trajectory for solving the task using both
approaches. However, as we can see in Figure 28, the optimised trajectory is more
robust than the baseline. Moreover, the plot shows that the breaking and making of
contacts directly influences the magnitude of the SUF. For both trajectories, the SUF

magnitude decreases when the right hind foot breaks contact with the floor; and then
increases again as the foot re-establishes contact. Video: https://youtu.be/H6-g8NLGyYE.
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Figure 29: Snapshots of the robot lifting a bucket with weight plates, weighing 4.1 kg in total.
This task requires the quadruped base to take steps at the same time as the arm
moves (loco-manipulation). Despite the dynamics of the heavy bucket not being
modelled, the robot is still able to complete the task, thanks to the robustness of the
planned motion and to the feedback gains of the controller.

5.4.6 Robustness Test with Incremental Weights

In this last (but central) experiment, we plan a robust loco-manipulation trajectory for
pulling a rope attached to a bucket and execute it on the real robot. Our goal is to
show that the extended version of our framework can handle problems that require
simultaneous locomotion and manipulation while maximizing robustness against
disturbances. Planning loco-manipulation trajectories where robustness is considered
proactively was not possible before, and this is really what we have been trying to
tackle with our work in this chapter.

The experimental setup (shown in Figure 29) consisted of a rope threaded through
a pulley. On one end, the rope was attached to a bucket on the ground; and on the
other end, the rope was attached to a handle on a platform. The task for the robot was
to grasp the handle from the top of the scaffolding and then pull the rope to lift the
bucket. Importantly, in order to lift the bucket high enough, the robot had to take a
few steps back while simultaneously pulling the rope with its arm. The position of the
handle w.r.t. the robot was calculated with the Vicon motion capture system (similarly
to the other tasks), and the footsteps were pre-specified using a static crawl gait.

To test the robustness of the trajectory planned with our framework, we asked
the robot to lift the bucket in multiple trials, wherein the weight of the bucket was
incremented 1 kg in each trial (and the bucket was empty on the first trial). The bucket
itself weighs approximately 1.1 kg.

The robot completed 4 successful trials, in which it lifted 1.1, 2.1, 3.1, and 4.1 kg.
On the 5th trial (5.1 kg) the robot was able to lift the bucket momentarily, but then
the handle slipped off the gripper and we counted this as a failure. A video of the
experiment is available: https://youtu.be/puy2S90_3CM, and Figure 29 shows some
snapshots of the last successful trial (i.e., trial 4), where the robot lifted the bucket
containing three 1 kg weight plates. Finally, Figure 30 shows the magnitude of the SUF

over time for this task, where we can see the dips corresponding to the intervals when
the robot was taking steps.

This experiment showed that our robot was capable of reliably executing a loco-
manipulation trajectory planned with our framework. Moreover, it showed that the
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Figure 30: SUF magnitude over time for the bucket task.

robot is indeed capable of dealing with external disturbances while executing a
trajectory. It is worth remembering that for this experiment (as well as for the other
experiments shown in this chapter) we did not model the payload; in other words,
the system does not know about the bucket or how much it weighs a priori (during
planning). Instead, the weighted bucket is acting as a disturbance, and the robot’s
ability to lift the bucket is therefore a direct outcome of our robustness metric and the
feedback terms used in our controller.

5.5 optimisation of contact locations

Thus far, we pre-specified the position for each foot of the robot during the loco-
manipulation planning stage. For example, when the human operator commands
the robot to turn the hand wheel, our framework calculates the feet positions of the
robot at that instant via forward kinematics, and then the mathematical constraints
of our optimisation problem ensure the robot’s feet remain on those positions while
the wheel is being turned. But this raises an important question: when we optimise
a trajectory that maximizes robustness, if we constrain the feet to specific positions,
will that not limit how robust the resulting trajectory is? In other words, perhaps the
resulting trajectory could be more robust if another set of feet locations had been
chosen.

In light of this, we set out to investigate an approach for choosing more adequate
contact locations within our motion planning framework. We now consider the addi-
tional problem of optimising the continuous location of the feet contacts. Our goal
was to understand whether our planner is capable of adapting feet positions such that
the resultant whole-body trajectory can be more robust.

In order to enable optimisation of feet locations, we extended our NLP formulation.
For that, we expand the vector of decision variables of the NLP problem to include
the xy-coordinates of each foot for the beginning of each individual stance phase. We
added the xy-coordinates of each foot to our problem as decision variables, assuming
that the robot would stand on flat ground (i.e., we assume the z-coordinate for each
foot is zero). We also modified Equation 64 to consider those decision variables, since
previously their right hand-side (i.e., pi) were a pre-specified constant position for each
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foot. The extended NLP formulation is more complex than the one previously used
throughout this work: it has additional decision variables (some of them coupled8),
and more complex constraints for enforcing the contact positions; however, it provides
more flexibility to the solver, which should now be able to compute feasible trajectories
that further maximize robustness by adapting foot contact locations.

To test this more-flexible NLP formulation, we defined a motion planning task in
which the robot must maintain its configuration while reaching a target point in
task-space with its end-effector. Then, we solved three slightly different versions of
the optimisation problem:

Nominal - In this version of the problem, we fixed the configuration of the robot
base to its default joint positions (defined by the manufacturer). We did not
constrain the configuration of the Kinova arm. Therefore, the solution to this
version of the problem consists of the robot moving only its arm to reach for the
target and then holding that configuration. No objective function is provided, so
this is a feasibility problem.

Baseline - In this version, the solver is able to change the configuration of the
whole-body of the robot. This is similar to the baseline formulation used in
previous sections, but the feet locations are now decision variables. The torques
and contact forces over time are minimized.

Proposed - In this version, the solver is also able to change the configuration of
the whole-body of the robot. This is similar to the proposed formulation used
in previous sections, but the foot locations are now decision variables. The
magnitude of the SUF over time is maximized.

Next, we show the results of these slightly different problem versions. The robot
configurations of each version are shown in Figure 31. The feet position of each
solution are shown in the plot of Figure 32. After solving each version of the problem,
we then computed the magnitude of the SUF at the gripper. The computed SUF spheres
are also shown in Figure 31, and labelled with their respective magnitude.

(a) Nominal (b) Baseline (c) Proposed

Figure 31: Robot configurations resultant from the extended NLP formulation, which allows
the solver to optimise feet locations. The radius of the sphere corresponds to the
magnitude of the SUF.

The first thing we can observe from these results is that the solver did take the liberty
of optimising the feet locations. This verifies that the solver is able to deal with our

8 Feet positions are represented explicitly by the new xy-coordinates, but also implicitly by the forward
kinematics of the robot’s configuration q.
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Figure 32: Feet locations, support polygons, and projected centres of mass of the trajectories
computed using the nominal (blue), baseline (orange), and proposed (green) versions of
the optimisation problem. Feet positions are shown using circles; the line segments
connecting the circles form the support polygons; and the diamonds denote the
center of mass positions projected onto the support polygons.

more-complex NLP formulation, albeit taking longer than the previous formulation.
Secondly, the plot of the feet locations clearly shows that the trajectory optimised with
the baseline approach has a smaller support polygon than the trajectory optimised
with the proposed approach. This is relevant because we know that the support
polygon is a good representation for the region where the CoM projection can lie for
achieving static balance. However, the support polygon is only an approximation since
it does not take into account robot capabilities (torques and friction at the contacts);
e.g., it is not guaranteed that the robot has enough actuation power to maintain a
pose whose CoM projection lies on one of the corners of the support polygon. This
leads to our next observation: while the baseline approach keeps the CoM position
close to the nominal version, the CoM of the trajectory optimised with the proposed
approach lies further from the centre of the support polygon. Our metric converges
to this configuration because it takes into account the robot capabilities, and is able
to find a more stable and robust pose, even though its CoM projection does not lie at
the centre of the support polygon. Finally, we can see that the worst-case disturbance
scenario that the robot can resist is better for the proposed approach, and worse for the
nominal scenario. As labelled in Figure 31, the magnitude of the SUF for the nominal,
baseline, and proposed approaches were 58 N, 57 N, and 76 N, respectively.

The above results show that our formulation is able to optimise feet locations, and
that our metric is able to guide the solver to solutions that have increased capabilities
of resisting external forces—at least in theory, that is. However, when we deploy our
method on the robot, there are always practical subtleties that may affect how the
robot behaves, such as signal delay or the type of controller being used. With that in
mind, we carried out an experiment to assess the actual force-rejection capabilities of
the real robot. Next, we explain the experiment setup and then analyse the results.

In this experiment, we executed the trajectory optimised with each approach on the
real robot and, for each case, we disturbed the robot by pulling its end-effector from
three different angles. A summary of the events that occurred for each angle/trajectory
is given below:
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Summary of Angle #1

Nominal - First, the end-effector deviated from its set point. Then, the right
hind and right front feet started to slide. However, the robot did not fall
over.

Baseline - First, the end-effector deviated from its set point. Then, the right
front foot started to slide. Next, the right hind foot lost contact. Finally, the
robot toppled to its left side.

Proposed - First, the end-effector deviated from its set point. Then, the right
front foot started to slide. Next, both left and right hind feet slipped, but
only slightly. The robot did not fall over.

Summary of Angle #2

Nominal - The end-effector deviated from its set point and the hind feet started
to slip at approximately the same time. The robot would have fallen down,
but the harness prevented it from collapsing on the floor.

Baseline - The end-effector deviated from its set point. The feet did not move
and the robot did not fall over.

Proposed - First, the end-effector deviated from its set point. Then, the hind
feet started to move. If the harness had not supported it, the robot would
have fallen down.

Summary of Angle #3

Nominal - The end-effector deviated from its set point. The left hind foot
moved. The robot did not fall.

Baseline - The end-effector deviated from its set point. The left front foot
moved and the left hind foot lost contact. Finally, the robot toppled over to
its right side.

Proposed - The end-effector deviated from its set point. The left front foot
moved and the left hind foot lost contact. Finally, the robot toppled over to
its right side.

When we carried out the experiment, we used a force gauge between the end-effector
of the robot and the source of the disturbance in order to measure—and capture on
video—the magnitude of the force being applied to the robot’s end-effector.

In Figure 33, we show the state of the experiment at the instant when the force
gauge indicated the greatest force magnitude, for each trajectory and for each angle.
The label in the bottom right corner of each snapshot indicates the magnitude of the
value measured by the force gauge. For each row, i.e., for each trajectory, the label
highlighted in red corresponds to the magnitude of the SUF found experimentally for
the three distinct angles used for the experiment. The way to interpret these results is
to take the smallest SUF found experimentally for each trajectory (highlighted in red
and signifying the worst case perturbation), and then compare those magnitudes to
find the trajectory with largest worst case SUF (indicating the highest robustness).

As highlighted in Figure 33, the proposed trajectory exhibited the highest SUF

(60 N). In percentage terms, the SUF of the proposed trajectory was approximately 33 %
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Figure 33: Snapshots of the experiment in which we disturbed the robot by pulling its end-
effector. Pictures on the same row correspond to the same trajectory, whereas
pictures under the same column share the same disturbance angle. The snapshots
were taken from the video footage collected during the experiment, at the time the
force gauge indicated the greatest force magnitude—which is shown in the label in
the bottom right corner of each picture. Labels highlighted in red are the worst-case
scenario for each row (out of the three angles shown). The five red circles on each
snapshot represent the initial positions of the four feet and of the end-effector.
Video: https://youtu.be/tUXQUqLneTE.

better than both nominal and baseline trajectories, which is a significant improvement.
Moreover, the SUF magnitudes found experimentally were 21 % to 22 % smaller than
the SUF predicted originally (the ones shown in Figure 31). We understand this is due
to model mismatch and unaccounted factors when we deploy the trajectory on the
real robot. But the fact that the percentage decrease is similar for each trajectory is
reassuring, as it tells us that the unaccounted factors of the real robot affected the SUF

equally, and the proposed trajectory performed better than the nominal and baseline
trajectories as we had predicted in relative terms.

5.6 conclusion

In this chapter, we presented a framework for planning whole-body loco-manipulation
trajectories robust to external disturbances. We integrated our framework with existing
software stacks to enable easy switching between teleoperated and autonomous modes.
We demonstrated the capabilities of that integration by having a human operator
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remotely control the robot via a joystick in a mock-up rig of an industrial site, and
by having the robot autonomously plan complex and rich whole-body motions for
real-world tasks within that setting, such as turning a hand wheel, pulling a lever,
opening a gate whilst on a ramp, and lifting a heavy bucket by pulling a rope.
We also carried out a wide range of experiments to test the reliability of the full
system, analyse the SUF of existing trajectories, optimise the robustness of trajectories
(including those involving making and breaking of contacts). Finally, we carried out
an initial investigation on the possibility of using our framework for the purpose of
optimising feet positions.

In the next chapter, we are going to discuss a topic that sits at the core of our
framework, which can have (and does have!) a big impact on solver performance: the
constraints used for evaluating dynamics defects in direct transcription problems.
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6
I N V E R S E D Y N A M I C S A S A N A LT E R N AT I V E T O F O RWA R D
D Y N A M I C S I N D I R E C T T R A N S C R I P T I O N F O R M U L AT I O N S

Benchmarks of state-of-the-art rigid-body dynamics libraries report better performance
solving the inverse dynamics problem than the forward alternative. Those benchmarks
encouraged us to question whether that computational advantage would translate
to direct transcription, where calculating rigid-body dynamics and their derivatives
accounts for a significant share of computation time.

In this chapter, we implement both approaches for enforcing the system dynamics in
our trajectory optimisation framework. We evaluate the performance of each approach
for systems of varying complexity, for domains with rigid contacts. Our tests reveal
that formulations using inverse dynamics converge faster, require fewer iterations,
and are more robust to coarse problem discretisation. These results indicate that
inverse dynamics should be preferred to enforce the nonlinear system dynamics in
simultaneous methods, such as direct transcription.

6.1 introduction

Direct transcription [5] is an effective approach to formulate and solve trajectory
optimisation problems. It works by converting the original trajectory optimisation
problem (which is continuous in time) into a numerical optimisation problem that
is discrete in time, and which in turn can be solved using an off-the-shelf nonlinear
programming (NLP) solver. First, the trajectory is divided into segments and then,
at the beginning of each segment, the system state and control inputs are explicitly
discretized—these are the decision variables of the optimisation problem. Due to
this discretisation approach, direct transcription falls under the class of simultaneous
methods. Finally, a set of mathematical constraints is defined to enforce boundary and
path constraints, e.g., initial and final conditions, or intermediate goals. In dynamic
trajectory optimisation, there exists a specific set of constraints dedicated to enforce
the equations of motion of the system, the so-called defect constraints. This chapter
discusses different ways of defining these constraints, as well as their implications.

The dynamics defects are one of the most important constraints in optimisation
problems when planning highly dynamic motions for complex systems, such as legged
robots. Satisfaction of these constraints ensures that the computed motion is reliable
and physically consistent with the nonlinear dynamics of the system. The dynamics
defect constraints are usually at the very core of optimal control formulations, and
require computing rigid-body dynamics and their derivatives—which account for a
significant portion of the optimisation computation time. Therefore, it is of utmost
importance to use an algorithm that allows to compute the dynamics of the system
reliably, while achieving low computational time.

In the study of the dynamics of open-chain robots, the forward dynamics problem
determines the joint accelerations resultant from a given set of joint forces and torques
applied at a given state. On the other hand, the inverse dynamics problem determines
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the joint torques and forces required to meet some desired joint accelerations at a
given state. In trajectory optimisation, most direct formulations use forward dynamics
to enforce dynamical consistency [57]. However, benchmarks have shown that most
dynamics libraries solve the inverse dynamics problem (e.g., with the Recursive Newton-
Euler Algorithm) faster than the forward dynamics problem (e.g., with the Articulated
Body Algorithm) [44, 53]. For example, for the humanoid robot TALOS [62], the
library Pinocchio [14] solves the inverse dynamics problem in just 4 µs, while the
forward dynamics problem takes 10 µs. These differences in performance motivated
us to question whether the computational advantage of inverse dynamics would
translate to direct transcription—where the dynamics problem needs to be solved
several times while computing the defect constraints. Moreover, there is biological
evidence suggesting that inverse dynamics is employed by the nervous system to
generate feedforward commands [60], while other studies support the existence of a
forward model [51]—which increased our interest in this topic.

In this chapter, we present a trajectory optimisation framework for domains with
rigid contacts, using a direct transcription approach. Particularly, our formulation
allows defining dynamics defect constraints employing either forward dynamics or
inverse dynamics. We defined a set of evaluation tasks across different classes of
robot platforms, including fixed- and floating-base systems, with point and surface
contacts. Our results showed that inverse dynamics leads to significant improvements
in computational performance when compared to forward dynamics—supporting our
initial hypothesis.

6.2 related work

RigidBodyDynamics.jl (RBD.jl) [43], RBDL [25], Pinocchio [14], and RobCoGen [31] are
all state-of-the-art software implementations of key rigid-body dynamics algorithms.
Recently, Neuman et al. [53] benchmarked these libraries and revealed interesting
trends. One such trend is that implementations of inverse dynamics algorithms have
faster runtimes than forward dynamics.1 Koolen and Deits [44] also compared RBD.jl

with RBDL, and their results showed that solving inverse dynamics was at least two
times faster than solving forward dynamics for the humanoid robot Atlas. Both of these
studies only consider computation time of rigid-body dynamics; they do not provide
insight into how these algorithms perform when used in trajectory optimisation.

Lee et al. [66] have proposed Newton and quasi-Newton algorithms to optimise mo-
tions for serial-chain and closed-chain mechanisms using inverse dynamics. However,
they used relatively simple mechanisms for which analytic derivatives can be obtained.
In our work, we are interested in dynamic motions of complex mechanisms in domains
with contact, for which the derivation of analytic derivatives is an error-prone process,
involving significant effort.

In the same spirit, Erez and Todorov [22] generated a running gait for a humanoid
based on inverse dynamics under external contacts. This method allowed them to
formulate an unconstrained optimisation where all contact states can be considered
equally, contact timings and locations are optimised, and reaction forces are computed

1 RobCoGen is an exception to this observation as it implements a hybrid dynamics solver which has a
higher computational cost, and is significantly different from the implementations used by the other
libraries.
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using a smooth and invertible contact model [71] with convex optimisation. However,
their approach requires “helper forces”, as well as tuning of contact smoothness
and of the penalty parameters on the helper forces to achieve reasonable-looking
behaviour. In contrast, our approach does not require helper forces or any tuning
whatsoever; we consider contact forces as decision variables and model contacts
rigidly. Another difference is that we formulate a constrained optimisation problem
and enforce the nonlinear system dynamics with hard constraints, which results in
high-fidelity motions. This is especially important for deployment on real hardware,
where dynamic consistency and realism are imperative. The main focus of this chapter
is not the contact problem, and we assume contact locations and contact times are
known a priori.

Finally, to the best of our knowledge, there is no current work directly comparing
inverse dynamics against forward dynamics in the context of direct methods. Posa et
al. [59] also identified that a formal comparison is important, but missing so far. They
argued that one of the reasons for this was that the field had not yet agreed upon a
set of canonical and hard problems. In this chapter, we tackle this issue, and compare
the two approaches on robots of different complexity on a set of dynamic tasks.

The main contributions of this work are:

1. A direct transcription formulation that uses inverse dynamics to enforce phys-
ical consistency, for constrained trajectory optimisation in domains with rigid
contacts.

2. Evaluation of the performance of direct transcription formulations using either
forward or inverse dynamics, for different classes of robot platforms: a fixed-base
manipulator, a quadruped, and a humanoid.

3. Comparison of performance for different linear solvers, and across strategies to
handle the barrier parameter of the interior point optimisation algorithm.

We validated our trajectories in full-physics simulation and with hardware experiments.
We also open-sourced a version of our framework for fixed-base robots, TORA.jl [27].

6.3 trajectory optimisation

6.3.1 Robot Model Formulation

We formulate the model of a legged robot as a free-floating base B to which limbs
are attached. The motion of the system can be described with respect to (w.r.t.) a fixed
inertial frame I. We represent the position of the free-floating base w.r.t. the inertial
frame, and expressed in the inertial frame, as IrIB ∈ R3; and the orientation of the
base as ψIB ∈ R3, using modified rodrigues parameters (MRP) [34, 69]. The joint angles
describing the configuration of the limbs of the robot (legs or arms) are stacked in a
vector qj ∈ Rnj , where nj is the number of actuated joints. The generalized coordinates
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vector q and the generalized velocities vector v of this floating-base system may
therefore be written as

q =

IrIB

ψIB

qj

 ∈ R3 × R3 × Rnj , v =

[
νB

q̇j

]
∈ Rnv , (79)

where the twist νB = [IvB BωIB]
⊤ ∈ R6 encodes the linear and angular velocities of

the base B w.r.t. the inertial frame expressed in the I and B frames, and nv = 6 + nj.
For fixed-base manipulators, the generalized vectors of coordinates and velocities

can be simplified to q = qj ∈ Rnj and v = q̇j ∈ Rnj , due to the absence of a
free-floating base.

6.3.2 Problem Formulation

We tackle the motion planning problem using trajectory optimisation; more specifically,
using a direct transcription approach. The original problem is continuous in time, so we
start by converting it into a numerical optimisation problem that is discrete in time. For
that, we divide the trajectory into N equally spaced segments, tI = t1 < · · · < tM = tF,
where tI and tF are the start and final instants, respectively. This division results in
M = N + 1 discrete mesh points, for each of which we explicitly discretize the states
of the system, as well as the control inputs. Let xk ≡ x(tk) and uk ≡ u(tk) be the
values of the state and control variables at the k-th mesh point. We treat xk ≜ {qk,vk}
and uk ≜ {τk,λk} as a set of NLP variables, and formulate the trajectory optimisation
problem as

find ξ s.t. xk+1 = f (xk, uk), xk ∈ X , uk ∈ U , (80)

where ξ is the vector of decision variables, xk+1 = f (xk, uk) is the state transition
function incorporating the nonlinear system dynamics, and X and U are sets of feasible
states and control inputs enforced by a set of equality and inequality constraints. The
decision variables vector ξ results from aggregating the generalized coordinates,
generalized velocities, joint torques, and contact forces at every2 mesh point, i.e.,

ξ ≜ {q1,v1, τ1,λ1, · · · , qN ,vN , τN ,λN , qM,vM}. (81)

Similarly to Winkler et al. [76] and differently to Erez and Todorov [22], we tran-
scribe the problem by only making use of hard constraints; and satisfaction of those
constraints is a necessary requirement for the computed motions to be physically
feasible and to complete the task successfully. This design decision is motivated by
the fact that considering a cost function requires expert knowledge to carefully tune
the weighting parameters that control the trade-off between different objective terms.
Optimising an objective function also requires additional iterations and computation
time. Nonetheless, for the sake of completion, one of the experiments we present later
in this chapter does include and discuss the minimisation of a cost function.

For tasks where the robot makes or breaks contacts with the environment, we
assume contact locations and contact timings are known a priori. This assumption

2 The control inputs at the final state need not be discretized.
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allows us to enforce zero contact forces for mesh points where the robot is not in
contact with the environment, and therefore our formulation does not require any
actual complementarity constraints. On the other hand, such assumption depends on
pre-determined contact sequences specified either by a human or by a contact planner
(such as [63, 73, 76]).

6.3.3 Problem Constraints

6.3.3.1 Bounds on the decision variables

We constrain the joint positions, velocities, and torques to be within their correspond-
ing lower and upper bounds.

6.3.3.2 Initial and final joint velocities

We enforce the initial and final velocities of every joint to be zero: v1 = vM = 0.

6.3.3.3 End-effector pose

We enforce end-effector poses with f fk(qk, i) = pi, where f fk(·) is the forward kin-
ematics function, i refers to the i-th end-effector of the robot, and pi ∈ SE(3) is the
desired pose.

6.3.3.4 Contact forces

For mesh points where the robot is not in contact with the environment, we enforce
the contact forces at the respective contact points to be zero: λk = 0.

6.3.3.5 Friction constraints

We model friction at the contacts with linearized friction cones, in the same way as
[13].

6.3.3.6 System dynamics

We enforce nonlinear whole-body dynamics, ẋ = f (x, u), with defect constraints. The
approach used to define these constraints is the main subject of this chapter, and the
next section explains this in detail.

6.4 system dynamics

The equations of motion for a floating-base robot that interacts with its environment
can be written as

M (q)v̇ + h(q,v) = S⊤τ + J⊤
s (q)λ, (82)

where M (q) ∈ Rnv×nv is the mass matrix, and h(q,v) ∈ Rnv is the vector of Coriolis,
centrifugal, and gravity terms. On the right-hand side of the equation, τ ∈ Rnτ is
the vector of joint torques commanded to the system, and the selection matrix S =

6.4 system dynamics 87



[0nτ×(nv−nτ) Inτ×nτ ] selects which degrees of freedom (DoF) are actuated. We consider
that all limb joints are actuated, thus nτ = nj. The vector λ ∈ Rns denotes the forces
and torques experienced at the contact points, with ns being the total dimensionality
of all contact wrenches. The support Jacobian Js ∈ Rns×nv maps the contact wrenches
λ to joint-space torques, and it is obtained by stacking the Jacobians which relate
generalized velocities to limb end-effector motion as Js = [J⊤

C1
· · · J⊤

Cnc
]⊤, with

nc being the number of limbs in contact. For fixed-base robots that are not subject to
contact forces, we can simplify the equations of motion to M (q)v̇ + h(q,v) = τ .

In order to enforce the equations of motion of nonlinear systems, we define a set
of equality constraints within our framework, the so-called defect constraints. Usually,
these constraints are defined using a forward dynamics algorithm, but in this chapter
we argue that using inverse dynamics can be more computationally advantageous.

The standard problem of forward dynamics computes the joint accelerations result-
ant from commanding torques and applying forces to the robot at a given state, i.e.,

v̇∗k = f fd(qk,vk, τk,λk), (83)

where f fd(·) is the function that solves forward dynamics. The asterisk (·)∗ denotes
intermediately computed values, whereas terms without an asterisk are NLP variables.
Using the semi-implicit Euler method as the integration scheme and h = (tF − tI)/N
as the integration time step, we can compute the state of the robot after h seconds.
First, we integrate v̇∗k to compute the next generalized velocities v∗k+1 = vk + h v̇∗k .
Then, we can compute the time derivative of the generalized coordinates, q̇∗k+1, from
those velocities, v∗k+1. In turn, we integrate that time derivative to compute the next
generalized coordinates, q∗k+1 = qk + h q̇∗k+1. After these calculations, we end up with
two different values for the state of the system at mesh point k + 1: one from the
discretized NLP variables, and another computed as a result of the controls applied to
the system at mesh point k. To enforce dynamical consistency, we define the defect
constraints as

q∗k+1 − qk+1 = 0 and v∗k+1 − vk+1 = 0. (84)

However, there is an alternative way to enforce dynamical consistency: with inverse
dynamics. In contrast to (83), inverse dynamics computes the joint torques and forces
required to meet desired joint accelerations at a given state, i.e.,

τ ∗k = f id(qk,vk, v̇∗k ,λk), (85)

where f id(·) is the function that solves the inverse dynamics problem, and the desired
joint accelerations can be calculated implicitly with v̇∗k = (vk+1 − vk)/h. Similarly to
the forward dynamics case, we compute q̇∗k+1 from vk+1, and integrate it to compute
the next generalized coordinates q∗k+1. And finally, we define the dynamics defect
constraints as

q∗k+1 − qk+1 = 0 and τ ∗k − τk = 0. (86)

Notice that the main difference between equations (84) and (86) is that forward
dynamics enforces consistency of the generalized velocities, whereas inverse dynamics
enforces consistency of joint torques commanded to the system.
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The main subject of this chapter revolves around the two formulations explained
above to enforce the nonlinear system dynamics: forward dynamics vs. inverse dynamics.
We developed our framework with both options in mind, and we are able to easily
toggle between one approach and the other, which was particularly useful for our
experiments.

6.5 experiments and results

This section is organized into four subsections:

A. Compares the computation time and number of solver iterations required to
find locally-optimal solutions;

B. Evaluates the robustness of each approach as problem discretisation gets more
coarse (larger time steps);

C. Analyses the performance of each formulation for the minimisation of a cost
function; and finally,

D. Shows hardware validation of the planned motions.

All evaluations were carried out in a single-threaded process on an Intel i7-6700K
CPU with clock frequency fixed at 4.0 GHz, and 32 GB 2133 MHz memory. The frame-
work we propose has been implemented in Julia [6], using the rigid-body dynamics
library RBD.jl [43], and the optimisation library Knitro [11]. To solve the formulated
NLP problems, we used the interior-point method of Waltz et al. [75].

6.5.1 Evaluation of Convergence

In order to evaluate and compare forward dynamics against inverse dynamics in the
context of direct transcription, we used our framework to specify tasks in the form
of numerical optimisation problems for different types of robots: a manipulator, a
quadruped, and a humanoid. Those robots were selected as they allow us to evaluate
the formulations for distinct features: fixed- and floating-base systems, single-point
and surface contacts, and low and high dimensionality. For each task on each robot,
we solved the optimisation problem twice: first defining the defect constraints with
forward dynamics, and then with inverse dynamics. The only changing factor was
the toggling between forward and inverse dynamics for the definition of the defect
constraints; every other aspect of the formulation was kept unchanged.

The performance of general NLP solvers is greatly affected by the linear solver
used for solving the linear systems of equations of the problem. For this reason, we
tested different state-of-the-art linear solvers exhaustively. For interior-point methods,
another important factor that affects performance is the update strategy of the barrier
parameter. Therefore, for all of our evaluations, we tested the different strategies
available within the Knitro [11] library exhaustively.

In the remainder of this subsection, we present the task specifications for each
robot and indicate all the parameters for reproducibility. Then, we present the results
we obtained for each task, which evaluated the solver’s performance in terms of
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computation time and number of iterations taken by the solver until a locally-optimal
solution was found.

(a) Manipulator (b) Quadruped (c) Humanoid

Figure 34: Left to right: KUKA iiwa tracing a circular path, ANYmal jumping in-place, and
TALOS jumping forward.

6.5.1.1 Manipulator

We evaluated the different formulations using a fixed-base robot arm with seven DoF

(shown in Figure 34a). We specified the end-effector to trace a circular path given
by [0.5, 0.2 cos θ, 0.8 + 0.2 sin θ]∀θ ∈ [0, 2π]. The total duration was set to 2.0 s and the
trajectory was discretized at 150 Hz, resulting in a total of 301 mesh points.

6.5.1.2 Quadruped

The quadruped robot we used is shown in Figure 34b. This system is more complex
than the manipulator due to its floating-base, more DoF (three motors per leg), and
because it needs to handle contact forces. We defined a jumping task by enforcing the
contact forces to be zero for a short period of time. The trajectory was discretized at
100 Hz, the total duration of the motion was 2.0 s, and the interval specified for the
flight-phase was [1.0, 1.2] s. We did not constrain feet positions during the flight-phase,
which allowed the solver to converge to a solution where the feet swing most naturally
according to the system dynamics.

6.5.1.3 Humanoid

Finally, we considered the humanoid robot shown in Figure 34c. This robot is more
complex than the quadruped because it has 27 DoF3 (seven per arm, six per leg, and
one at the torso), and its feet cannot be simplified to single-point contacts. We also
defined a jumping task for this robot. The motion duration was 1.2 s, discretized at
125 Hz, and the interval for the flight-phase was [0.5, 0.8] s.

For all the tasks, the initial guess was a fixed standing configuration and zero
velocities, torques, and contact forces.

3 The real robot has more DoF: grippers, neck, and one more DoF at the torso. For simplicity, we assumed
those joints were fixed to zero.
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The results of the experiments on these robots are shown in Table 17, where smaller
numbers indicate better performance. The rows of the table are grouped according
to robot, dynamics, and linear solver. Each row shows the time taken to solve the
optimisation problem for each barrier update strategy, as well as the total number of
iterations (within parenthesis). The last column shows the time spent on each iteration,
averaged over all the update strategies.

Table 17: Computation time (in seconds) and number of iterations (within parenthesis) for
each robot. Truncated values (‘—’) denote cases that did not converge. The best
computation time for each dynamics and each robot is highlighted in bold.

Linear Barrier strategy (bar_murule) Average time

Solver adaptiv dampmpc quality per iteration (s)

K
U

K
A

iiw
a

Fw
d

D MA27 0.40 (5) 0.49 (6) 0.43 (5) 0.08 ± 0.002

MA57 0.41 (5) 0.48 (6) 0.42 (5) 0.08 ± 0.001

MA97 0.46 (5) 0.56 (6) 0.50 (5) 0.09 ± 0.002

In
v

D MA27 0.20 (4) 0.26 (5) 0.23 (4) 0.05 ± 0.002

MA57 0.22 (4) 0.28 (5) 0.24 (4) 0.05 ± 0.001

MA97 0.27 (4) 0.33 (5) 0.29 (4) 0.07 ± 0.002

A
N

Y
m

al
B Fw

d
D MA27 2.26 (7) 2.80 (9) 2.34 (7) 0.31 ± 0.021

MA57 2.80(10) 2.49 (9) 32.13(99) 0.29 ± 0.020

MA97 2.21 (7) 2.76 (9) 2.26 (7) 0.31 ± 0.009

In
v

D MA27 2.99(13) 2.60(11) 2.18 (9) 0.23 ± 0.005

MA57 2.90(13) 2.54(11) 2.10 (9) 0.22 ± 0.004

MA97 3.21(13) 2.81(11) 2.37 (9) 0.25 ± 0.007

TA
LO

S Fw
d

D MA27 — — 14.82(15) 0.94 ± 0.115

MA57 — 13.47(19) 44.23(66) 0.68 ± 0.020

MA97 13.42(18) 11.48(15) 12.92(16) 0.76 ± 0.026

In
v

D MA27 8.38(15) 8.02(13) 38.59(70) 0.57 ± 0.035

MA57 7.36(15) 6.59(13) 36.88(73) 0.50 ± 0.014

MA97 7.43(15) 6.61(13) 41.84(82) 0.50 ± 0.012

In general, we can see that the computation time depends mostly on the complexity
of the system, regardless of linear solver or barrier update strategy; i.e., solving the
manipulator task was faster than solving the quadruped task, which in turn was faster
than the humanoid task. More importantly, for each robot and given the same choice
of linear solver and update strategy, the computation time of inverse dynamics was
better than forward dynamics. We can also see that the number of iterations required

3 This table (and future tables) show the minimum time value observed over 10 trials. Reporting the
minimum time is more reliable than the median or the mean, since all measured noise is positive, as
explained in [15].
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to solve the problem did not change significantly (apart from a few exceptions). This
indicates that the difficulty of the problem itself did not change with the different
dynamics defects; it just took longer to solve using forward dynamics—as supported
by the information in the last column of the table.

6.5.2 Robustness to Coarser Problem Discretisation

In the next experiment, we compare the ability of each formulation to handle trajector-
ies discretized using fewer mesh points. We defined the same quadruped jumping
task repeatedly, but transcribed it with different resolutions. First, we divided the
trajectory into equally spaced segments with a time step of h = 0.01; we solved the
optimisation problem and took the resulting trajectory as our baseline. Then, we
incrementally changed h, making the problem more coarse each time, and compared
the obtained trajectories against the baseline. The problems were initialized with a
nominal configuration repeated for each point, and zero velocities, torques and contact
forces. The results of this experiment are shown in Figure 35 and Table 18.

Figure 35: Root-mean-square error (RMSE) of joint positions, velocities, torques, and contact
forces of each formulation for different discretisations, using a baseline of 120 Hz.

The plots in Figure 35 show that the solutions deviate more from the baseline as the
number of mesh points used to discretize the problem decreases (in the x-axis, from
right to left). But more importantly, the plots reveal that the rate at which deviation
occurs is significantly different depending on the formulation. We can see that the root-
mean-square error (RMSE) of the formulation using inverse dynamics is significantly
lower than that of the forward.

Table 18 shows the computation time (in seconds) and the number of iterations
required to solve the quadruped task using different discretisation. We can see that
the time required to solve the problem using inverse dynamics follows a clear pattern:
it decreases as the problem gets more coarse; and the same goes for the number of
iterations. In contrast, a pattern does not seem to exist for forward dynamics.

The results shown in Figure 35 and Table 18 provide strong evidence that defining
the defect constraints with inverse dynamics is the approach more robust to different
problem discretisation, both in terms of deviation from realistic solutions and in terms
of computation performance.
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Table 18: Computation time and number of iterations required by different problem discretisa-
tions, for the quadruped jump.

Frequency
Forward Dyn. Inverse Dyn.

Time (s) Iter. Time (s) Iter.

100 Hz 3.289 10 3.295 13

90 Hz 3.916 14 2.774 13

80 Hz 5.227 21 1.821 9

70 Hz 4.062 19 1.344 8

60 Hz 1.518 9 1.193 8

50 Hz 2.226 16 0.983 8

40 Hz 1.099 9 0.785 8

30 Hz 0.731 8 0.534 7

20 Hz 0.433 7 0.354 7

6.5.3 Optimisation with an Objective Function

Thus far, we have analysed the trajectory optimisation performance for feasibility
problems. However, in optimisation, it is common to define a cost function to be
minimised (or a value function to be maximised). In this next experiment, we evaluate
the performance of our formulation when a cost function is considered. We minimise

the actuator torques and ground-reaction contact forces with minξ ∑M−1
k=1

τ⊤
k τk+λ⊤

k λk
M−1 .

We tested this cost function on the quadruped jump task, with the MA57 linear solver
and adaptive barrier parameter update strategy.

Both formulations converged to very similar solutions: the RMSE between the two
trajectories was 0.038. The final objective value was 3.567 801 × 104 and 3.567 804 ×
104 for forward and inverse dynamics, respectively. Despite converging to similar
solutions, the formulation employing inverse dynamics finished in 6.208 s, showing
better performance than the formulation using forward dynamics, which took 14.570 s.
The time in seconds corresponds to the minimum value measured over a total of 10

samples.

Figure 36: Evolution of the cost and the feasibility error during convergence. The faint-green
line at y = 10−3 denotes the tolerance under which we consider a problem to be
feasible.

Figure 36 shows the evolution of the cost and feasibility error throughout the
optimisation. The star-shaped marker denotes the point at which the local minimum
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of the problem was found. In the left plot, we can see that inverse dynamics reached
values close to the optimal cost much earlier than forward dynamics. In the right plot,
we can see that inverse dynamics required fewer iterations than forward dynamics
to cross the faint-green line, which marks the point at which the error becomes
acceptable to be considered feasible. Inverse dynamics converged in 26 iterations, and
forward dynamics converged in 43 iterations. Inadvertently, one advantage of the
forward formulation was that its final feasibility error was smaller than that of inverse
dynamics.

When minimising a cost function, the locally-optimal solutions computed with
either formulation are essentially the same. However, when an objective function is
not considered, the formulations may diverge to different solutions. Experimentally,
we have observed that the solutions computed with inverse dynamics are easier to
perform in real hardware. The reasons behind this divergence are not yet clear to us,
and this is something that should be investigated in future work.

6.5.4 Hardware Validation

We conducted real-world experiments with ANYmal [37] and TALOS [62] to validate
the trajectories computed with our framework. The motion planning is performed
offline, and then the trajectories are sent to the controller for playback. To execute the
whole-body motions, we commanded each joint with feedforward torque and feedback
on joint position and velocity. For the quadruped, we updated the references for each
joint’s position, velocity, and torque at 400 Hz. The decentralized motor controller at
every joint closes the loop, compensating for friction effects. On the humanoid, we
updated the references at 2 kHz, and a centralized controller compensates for the
motor dynamics and friction.

(a) Initial state (b) Take-off (c) Full-flight phase (d) Landing (e) Final state

Figure 37: Snapshots of ANYmal [37] performing a 0.5 m-long jump. The length of the black
tape on the ground is 0.5 m.

Figure 37 and Figure 38 contain snapshots of the jumps realized with the quadruped
and with the humanoid, respectively. These experiments can be seen in our supple-
mentary video: https://youtu.be/pV4s7hzUgjc. Jumping motion is challenging to
execute in real hardware because it includes a severely underactuated phase when
the robot is fully off the ground. Nonetheless, our controller is able to execute our
planned trajectories reliably, attesting the dynamical consistency of our formulation.

As a final note, we would like to mention that we observed interesting emerging
behaviours from our framework. For example, on the task in which the humanoid
robot jumps, the resulting motions swing the arms upwards to build up energy
before the take-off instant (see Figure 38). This reminded us of the feature that Erez
and Todorov [22] observed in their results: an emergent coordination between legs
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Figure 38: Snapshots of the humanoid TALOS [62] jumping.

and opposite arms during a running gait. Both in [22] and our work, these features
originated without any explicit modelling, reaffirming the power of dynamic trajectory
optimisation.

6.6 conclusion

In this chapter, we have observed that direct transcription implementations relying
on forward dynamics to define defect constraints can be reformulated with inverse
dynamics to see an increase in performance, for both feasibility or minimisation
problems, and without sacrificing the feasibility of the solutions to the optimisation
problem. An additional reason to prefer inverse dynamics is robustness to coarser
discretisation, both in terms of computation efficiency and faithfulness of solutions
with respect to finer discretisation.

In the next chapter, we will conclude this thesis by looking back at our contributions,
summarising our work’s limitations, and listing possible avenues for future work.
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7
C O N C L U S I O N A N D F U T U R E W O R K

In this thesis, we have presented our latest research work in the field of robotics, where
we have focused on optimising dynamic trajectories for legged robots that maximise
robustness against external disturbances. We started by looking at how to plan robust
single whole-body configurations only, and then we looked at how to optimise robust
trajectories, first for fixed-base robot arms, then for legged robots without making or
breaking contacts (standing balance behaviours), and finally for legged robots with
contact switching. We also investigated the use of inverse dynamics instead of forward
dynamics for improving the core of our trajectory optimisation framework.

The main outcomes of our work is this thesis, which collects the body of knowledge
that we have built, and a mature trajectory optimisation framework for legged robots
capable of manipulating their environment. We have shown multiple robot hardware
experiments, whereby the trajectories computed by our framework were put to the
test for solving real-world tasks. The results of these experiments have shown that our
system is reliable and versatile. In our industrial demonstrator, a quadruped robot
equipped with an arm was able to navigate the scaffolding and successfully execute
all the challenges we prepared: turn a wheel, pull a lever, open a gate whilst standing
on a ramp, and pulling a rope in order to lift a heavy bucket. Moreover, we have
shown that the smallest unrejectable force (SUF) is a valuable metric, both for analysing
existing trajectories and for maximising the robustness of new trajectories. Finally, our
preliminary research on the optimisation of feet locations showed promising results.

In the remaining of this chapter, we will discuss the limitations of our current
approach and propose ways to tackle those limitations, and we will also suggest
interesting avenues for future work.

7.1 framework limitations

We now present the three main limitations of our framework in its current state.

7.1.1 Lack of Collision Avoidance

Collision avoidance is completely neglected in the current implementation of our
framework. The trajectories we have shown in the videos and figures of this thesis
are collision-free thanks to the way tasks are formulated and thanks to the initial
guess provided to the solver. Nonetheless, it is the end-user’s (i.e., human operator)
responsibility to double-check the solutions visually at first and then in simulation
before playing them back on the hardware. This is important to ensure there are no
self-collisions or collisions with obstacles in the environment (including e.g. robot
limbs clipping underneath the floor).

In general, collision avoidance is very expensive and it increases the computational
burden on solvers. It is not clear to us whether collision avoidance should be part
of our NLP formulation. Perhaps a workaround would be to either provide a better
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initial guess by means of a sampling-based method with explicit collision avoidance
(similar to the one we implemented in Chapter 2), or by checking the solution for
collisions at the end of the optimisation and re-running the optimisation if collisions
occur—or possibly both.

7.1.2 Inaccurate Dynamics Models

In our trajectory optimisation work, we have always considered the full-order system
dynamics of the robots that we used. This means that we consider the mass, inertia,
and other dynamic quantities of every link of the robot, instead of using other more-
simplistic models. However, this does not mean that our model is perfect, nor does it
mean that we take into account the dynamics of every physical component inside the
robots. For example, we do not model the mass and inertia of the cables inside the
robot, nor their motion while the robot is moving. One can argue that these should be
neglected as they are very small but, in fact, the combined motion of all the cabling
inside robots does indeed affect the dynamics of the real robot—it just so happens
that most robot controllers see these as just another disturbance (in this case internal)
to be compensated for.

Perhaps a more important aspect than unmodelled loose cables inside the robot is
the unmodelled dynamics of actuators. We do not model the gearing friction, stiction,
and other dynamical aspects of robot actuators. Unfortunately, it is well-known that
actuator dynamics should not be ignored, as they plan an important role in motion
control [41]. Neglecting actuator dynamics is one of the main reasons why the sim-
to-real gap of complex actuators is much more significant than it is for direct drive
motors. Since analytical models for actuator dynamics are very difficult to obtain, one
could resort to machine learning techniques, similar to the work of Hwangbo et al.
[38]. An interesting avenue for future work would be to incorporate such a neural
network (NN) as a component within our trajectory optimisation framework. This
would result in a hybrid framework, in the sense that there would be a model-based
component for the trajectory optimisation and a learning-based component for the
actuators’ dynamics (which would have to be differentiable for the sake of computing
first- and second-order derivatives).

7.1.3 Too Expensive for Continuous Re-planning

For many real-world tasks, such as the ones we showed throughout our experiments,
it is sufficient to take the current state of the world, plan a motion in “one-shot” for
completing the task, and then executing that trajectory. However, there are scenarios
where this approach might fail, especially if the state of the world changes as the robot
executes the task—meaning that the planned trajectories become invalid. Real-time
control schemes, such as model predictive control (MPC), are usually employed for
dealing with those scenarios. Currently, the computation times of our framework for
planning robust trajectories are too slow to be compatible with the budget available in
those real-time control schemes. There are a few possible approaches for tackling this
challenge, if we want to use our framework for such scenarios.
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In the first approach, we can try to decrease the computational time by, e.g., mak-
ing the robot model more simple, making the problem smaller (through coarser
discretisation), or decreasing the complexity of the problem constraints.

Another approach would be to change the NLP solver used for solving the trajectory
optimisation problems. For example, we could attempt to formulate our robustness
optimisation problem using a DDP-based approach, such as [49], instead of using
a direct transcription approach that relies on off-the-shelf solvers. However, the
disadvantage of this approach is that enforcing general constrains with DDP-based
approaches is pretty much an active research topic of its own, whereas commercial
solvers are able to deal with a wide range of constraints out of the box.

Finally, a third approach would be to speed up the computation of the robustness
metric itself. Perhaps there is a way the metric can be learnt, represented by a surrogate
model, or stored in a look-up table for quick retrievals. In the ‘Future Work’ section
below, we will come back to this point.

7.2 future work

We now suggest interesting avenues for future work in this line of research. The
suggestions are sorted from (what we believe to be) the most straightforward to the
most challenging.

7.2.1 Parallelising the Framework

Simultaneous methods, like direct transcription, discretise states and controls over
time as decision variables. Representing the entire trajectory in this way is amenable
for parallelisation.

Currently, our trajectory optimisation framework uses a single thread for all compu-
tations, but it is possible to use multiple threads in order to evaluate the constraints’
functions and derivatives simultaneously. This could impart some overhead for small
problems, but for larger problems with many mesh points it should greatly improve
performance.

7.2.2 Analysing Whole-Body Robustness

Throughout this thesis, we have focused on improving robustness against external
disturbances applied at the end-effector. This is because we were interested in applica-
tions where the robot had to interact with objects, but we did not want to model the
dynamics of those objects. However, the mathematical derivation of the SUF applies to
any point on any rigid body of the robot mechanism. In other words, it is possible to
compute the SUF at the robot’s base or knees, rather than just at the end-effector.

An interesting path for future work would be the development of a software tool
for analysing robot trajectories where a robot and a trajectory are given as inputs, and
then as an output it would show the SUF spheres at multiple points along the robot’s
kinematic chain. This kind of visualization would allow us to better understand and
have a very clear visual representation of bottlenecks and weaknesses in trajectories.
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In short, a tool for visualising the SUF for different points of the robot during a
trajectory would allow us to spot if the robot is susceptible to failure at specific parts
of its body, even for small disturbances, and at which instants of the motion.

7.2.3 Learning the Robustness Metric

As mentioned in the previous section, ‘Framework Limitations’, our current approach
for calculating the SUF requires a significant amount of computational power. An
interesting way to tackle this would be to approximate the robustness metric with a
surrogate model. For example, we could train a NN using an offline-generated dataset
of ground truth samples. Evaluating the SUF through the NN model would lead to
much faster inference times, compared to calculating the SUF with the optimisation
approach that we have been using. So, in short, the goal would be to decrease inference
time by sacrificing the accuracy of the output.

Orsolino et al. [56] have already shown promising results in this direction. They
trained a multilayer perceptron in order to learn a stability metric for quadrupedal
locomotion. Then, they used the model for learning locomotion through reinforcement
learning, and they also showed that the model could be embedded in a trajectory
optimisation framework—which is just what we would like to do.

In our case, faster function and derivative evaluations of the learnt model would
allow planning frameworks (not only ours) to consider the robustness criterion at
more-compatible rates for re-planning motion during execution. It would also alleviate
the burden of developers, since they would no longer need to define and formulate all
the mathematical constraints that we have derived in our work; instead, they would
simply be able to embed a pre-trained model in their optimisation framework, by
introducing an extra term in their cost functions.

7.2.4 Taking Into Account Force-Feedback During Execution

In our work, we have disregarded the dynamics model of objects being manipulated by
the robot. We maximized robustness against external disturbances at the end-effector
in order to demonstrate that we do not have to necessarily model the object dynamics
(which may not be available at planning time), as the controller is able to track the
reference trajectory and compensate for the object dynamics through feedback terms
at the controller level. However, in extreme cases, controller feedback terms are not
enough to execute the desired motion appropriately.

An immediate extension of our work would be to take into account force-feedback
during execution of the task. We could plan the motion just like we have done
throughout this chapter before starting the actual manipulation task. However, once
the robot starts executing the task, the object being manipulated will exert a set of
forces that in turn apply torque at the robot’s joints. An interesting direction for future
work would be to take into account those torques at the joint level to estimate the force
being applied to the robot as a consequence of the robot-object interaction, and then
replanning the motion taking into account that force estimation. This would mean that
we would still be able to maximize the SUF, but we would now have a much better
model of the task taking place.
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7.2.5 Maximising Robustness Through Environment Exploitation

Throughout this thesis (except for parts of Chapter 3), we have focused on isotropic
robustness, i.e., being robust against external disturbances from any given direction.
However, for some tasks, e.g., the ones shown in Figure 39, it may be more appropriate
to be able to resist disturbances along a particular direction.

Figure 39: Sketches of a quadruped robot equipped with an arm opening and closing two
different types of doors. The door on the left rotates around a pivot point at its
hinges, whereas the door on the right slides left and right on a frame.

It would be interesting to maximise the robustness along pre-determined directions
by changing our formulation to find the maximum-volume ellipsoid inscribed in
the projection of the residual force polytope, rather than fitting a maximum-volume
ball. The most straightforward way to do this would be to pre-specify the ellipsoid
profile that we would like to maximise (i.e., the shape of the ellipsoid), and then
modify our mathematical constraints to take that into account instead of considering
a uniform ball. Then, the ρ parameter (see Equation 43) in the decision variables of
our optimisation problem would represent the scaling factor of the ellipsoid, rather
than the radius of the maximum-volume ball inscribed in the polytope.

7.2.6 Minimising the Loss of Robustness

Our framework maximises the robustness of a trajectory assuming reliable execution.
However, the system dynamics around a nominal trajectory are not linear, and given
large enough perturbations the robot may be driven into areas of low robustness.

It would be interesting to implement and derive a new formulation that accounts
for the robustness of neighbouring states and the noise at the control stage. This
would allow solvers to compute trajectories that are robust in nominal cases and near
that nominal region, instead of just being very robust in the nominal path and yet
susceptible to a quick loss of robustness due to small trajectory deviations.
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A
A P P E N D I X

In this appendix, we give a brief and (hopefully) intuitive explanation of how direct
transcription works.

a.1 direct transcription illustrated

Consider the two axes in the plot below. The horizontal axis represents time, and
the vertical axis represents the state of a system, e.g., the state of a robot, rocket, or
satellite. This means that, while the horizontal axis represents only one dimension,
the vertical axis can represent multiple dimensions.

Direct transcription works by splitting time into segments, like so:
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Next, at the beginning of each segment in time, we represent the state of the system
as decision variables. These states are denoted by the blue circles in the plot:

For each segment, in addition to the system state, we also represent (as decision
variables) the control inputs commanded to the system for the duration of that segment.
Those control inputs determine how system states evolve throughout the duration of
their respective time "slice". In the plot below, the state evolution within each slice is
represented as the blue line segment originating from the blue circles.

When solving an optimization problem, we need to assign an initial value to the
decision variables we choose for our formulation. Initial guesses strongly affect how
quickly solvers converge to a final solution: the closer an initial guess is to a feasible
solution, the less numerical work the solver needs to do to “tune” the values of the
decision variables—in order to make up a valid trajectory, that is.

Researchers and scientists often try different initialization approaches. These ap-
proaches can be as simple as setting all decision variables to zeros (or random values),
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linearly interpolating between initial and target states, or as elaborate as querying a
pre-built cache/library of feasible trajectories.

These guesses do not have to be accurate. In fact, more often than not, they are not
physically feasible due to state mismatches from one time segment to the next. These
mismatches are called dynamics defects. In the plot below, they are highlighted in red.

After transcribing the optimal control problem and providing an initial guess for the
trajectory, we end up with a mathematical formulation of a nonlinear programming
problem. This is then passed on to a numerical solver, which solves the optimization
problem—closing the gaps in the process.

Finally, in order to better approximate the nonlinear dynamics of high-dimensional
systems, trajectories are often discretized using small time steps:

A.1 direct transcription illustrated 105



In summary, direct transcription discretizes a trajectory in time, and takes the
state of the robot and the control inputs as decision variables. Then, it tries to find a
trajectory that satisfies the system dynamics, as well as other task-related constraints.

a.2 dynamics defects illustrated

Let us now better understand what the dynamics defects are by looking at an isolated
instance of such a defect:

In the plot above, the blue circle at time step tk represents the state given by the
joint positions and joint velocities qk and vk. The blue line coming out of that circle
shows how the state progresses over time (as a consequence of the torques and forces
applied to the robot). The red diamond represents the state where the robot ends up
according to the decision variables from time step tk, whereas the bottom blue circle
represents the state of the robot at that point according to the decision variables from
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time step tk+1. The red line represents the mismatch between the evolved state and
the discretized state.

In summary, there is redundancy in the way direct transcription represents a
trajectory, and so we must ensure that the underlying values are consistent. For that,
we must be able to calculate the defects, and define constraints so that the solver
eliminates those defects. In order to quantify them, we have to solve either the forward
or the inverse dynamics problem—which we compared in Chapter 6.
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