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Enrichment of Wind Turbine Health History for Condition-Based Maintenance 

Roger Cox 

This research develops a methodology for and shows the benefit of linking records of wind turbine 

maintenance. It analyses commercially sensitive real-world maintenance records with the aim of 

improving the productivity of offshore wind farms. 

The novel achievements of this research are that it applies multi-feature record linkage techniques to 

maintenance data, that it applies statistical techniques for the interval estimation of a binomial 

proportion to record linkage techniques and that it estimates the distribution of the coverage error of 

statistical techniques for the interval estimation of a binomial proportion. The main contribution of this 

research is a process for the enrichment of offshore wind turbine health history. 

The economic productivity of a wind farm depends on the price of electricity and on the suitability of 

the weather, both of which are beyond the control of a maintenance team, but also on the cost of 

operating the wind farm, on the cost of maintaining the wind turbines and on how much of the wind 

farm’s potential production of electricity is lost to outages. Improvements in maintenance scheduling, 

in condition-based maintenance, in troubleshooting and in the measurement of maintenance 

effectiveness all require knowledge of the health history of the plant. To this end, this thesis presents 

new techniques for linking together existing records of offshore wind turbine health history. 

Multi-feature record linkage techniques are used to link records of maintenance data together. Both 

the quality of record linkage and the uncertainty of that quality are assessed. The quality of record 

linkage was measured by comparing the generated set of linked records to a gold standard set of 

linked records identified in collaboration with offshore wind turbine maintenance experts. The process 

for the enrichment of offshore wind turbine health history developed in this research requires a vector 

of weights and thresholds. The agreement and disagreement weights for each feature indicate the 

importance of the feature to the quality of record linkage. This research uses differential evolution to 

globally optimise this vector of weights and thresholds. 

There is inevitably some uncertainty associated with the measurement of the quality of record linkage, 

and consequently with the optimum values for the weights and thresholds; this research not only 

measures the quality of record linkage but also identifies robust techniques for the estimation of its 

uncertainty.  
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1 Introduction 

Section 1.1 will present a brief introduction to the offshore wind energy sector of the energy industry. It 

presents overall trends in the sector: trends in the rating of Offshore Wind Turbines (OWT) and in the 

distance to shore of wind farms. It is included to provide context for section 1.2, which will go into more 

detail about maintenance, and about maintenance record keeping, in this sector and will describe the 

history of attempts to improve the maintenance of wind turbines. It will explore the state of the art of 

the maintenance of OWTs, demonstrating a need to enrich the health history of the OWTs. These 

sections together will show that the challenges of maintaining OWTs, together with their growing 

importance in the energy industry, have brought innovations in OWT maintenance to the forefront of 

maintenance technology and that success in this sector relies on good information. Section 1.3 

specifies this thesis area of research, section 1.4 describes the research process, section 1.5 

identifies some key constraints, section 1.6 describes the thesis structure and section 1.7 details its 

original contributions.  
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1.1 Introduction to the Wind Energy Industry 

This section will locate wind energy in a global context. Renewable energy can refer to a range of 

forms of energy commodities such as electricity, fuel or heating where the energy source is naturally 

replenished on a human timescale. Figure 1-1 shows global consumption of the most important 

sources of electrical energy: the major fossil fuels: oil, gas and coal, nuclear fission and the major 

renewables: hydroelectricity, solar and wind. Data in the BP Statistical Review of World Energy, 2021, 

shows that the total consumption of all these commodities together increased 3.53 times over the 50 

years from 1970. 

Data in the BP Statistical Review of World Energy, 2021, shows that wind energy made up only 2.58% 

of world energy consumption in 2020 but that it was only 0.43% in 2008 so its relative importance is 

increasing. Consumption of wind energy was 1.86 times higher than that of solar in 2020 but it was still 

well behind nuclear and fossil fuels, despite world consumption of oil and gas generated electricity 

dropping by 6% due to Covid 19. 

 

Figure 1-1, World Annual Consumption by Energy Type 

from data in BP Statistical Review of World Energy, 2021. 
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1.1.1 Offshore Wind Energy 

This section presents an overview of the OWT sector of the energy industry. It presents overall trends 

in the sector: trends in the rating of OWTs and in the distance to shore of wind farms. It is included to 

provide context for section 1.2, which will explore the state of the art of the maintenance of OWTs. It 

will describe the main advantages of offshore wind energy over onshore wind energy and the different 

costs of these two distinct technologies. 

The main advantage of offshore is that the wind tends to be stronger and less turbulent offshore 

(Davis et al., 2019). Higher speed increases the power available proportionally to speed cubed, while 

the thrust increases proportionally to speed squared. A structure that can react against higher forces is 

more expensive to manufacture and to install but that is more than offset by the increased generation 

of electricity. Lower turbulence causes less fatigue damage to the structure such that it lasts longer or 

is cheaper to manufacture. 
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Wind farm developers are companies that develop, own and operate wind farms. Figure 1-2 shows 

mean water depth against mean distance to shore of bottom-fixed offshore wind farms in Europe, 

organised by development status. The size of the bubble indicates the overall capacity of the site. It 

shows that some new OWT farms, shown in yellow, are further offshore than those that are already 

generating electricity, shown in blue. Section 1.2 will discuss the consequences for the maintenance of 

offshore wind farms of them being developed further offshore. 

 

Figure 1-2, Mean Water Depth against Mean Distance to Shore of Bottom-Fixed, Offshore Wind 

Farms in Europe, by development status. The size of the bubble indicates the overall capacity of the 

site. Reproduced from WindEurope, 2018, who do not report a scale for the bubble size. 
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The main disadvantage of offshore compared to onshore wind power is that installation, maintenance 

and decommissioning tend to be more expensive offshore. Figure 1-3 illustrates that the rated power 

(rating) of new OWTs in Europe is tending to increase rapidly. The same trend is true in other world 

regions. Increasing the rating allows operators to take advantage of economies of scale, reducing 

operational expenditures per unit production of energy (Prässler and Schaechtele, 2012). 

 

Figure 1-3, Mean Rating of Newly Installed OWTs in Europe. Based on Data from WindEurope 
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This research had access to wind turbine maintenance data of particularly good quality. In the early 

development period of wind farm development, the economic drivers for keeping excellent 

maintenance records were not felt strongly. Records were kept on paper and not computerised (Leahy 

et al., 2019). In contrast to this overview of the sector however, Ørsted recognise the importance of 

excellent maintenance record keeping. In the corrective maintenance of wind turbines, a work order is 

an instruction to carry out a maintenance activity. Figure 1-4 shows an example work order, number 

80135873. 

 

Figure 1-4, Example Work Order 

After a work order has been issued, that work is added to the maintenance schedule. This prompts a 

maintenance team to visit the wind turbine. They asses what maintenance is actually required and, if 

they have brought the spare parts required to do the job, they do it. They often record any problems 

that they encounter on the work order. 
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1.2 The Maintenance of Offshore Wind Turbines 

This section explores the state of the art of the maintenance of OWTs. It also samples applicable 

research on maintenance in other sectors and other industries. It explains the economics that drive 

OWT maintenance practices and it identifies gaps in the literature that, when filled, represent 

opportunities to aid in their improvement. This research has benefitted from access to maintenance 

records; existing records of OWT health history, and links those records together to determine an 

Enriched Health History (EHH). This section will identify gaps in the published literature that an EHH 

enables further work to fill. 

Technicians are transported to OWTs by Crew Transfer Vessels (CTV), by Service Operation Vessels 

(SOV) or by helicopter. CTVs are typically 20m catamarans with 4 berths and a cargo capacity of 2 to 

3 tonnes (Boote et al., 2015). SOVs are typically 90m monohulls with 60 cabins and a cargo capacity 

of 4000 tonnes. (Marine Traffic website).  Vessel manufacturers have proposed new vessel concepts 

to service wind farms that are further from port. For example, Boote et al., 2015 propose a mothership 

for CTVs. 

OWT maintenance activities are classified by operators as either preventive activities (such as the 

OWTs annual service), retrofit, inspections and surveys, condition-based or corrective. This chapter 

will show that health history information is already used to improve condition-based and corrective 

maintenance practices but that literature searches up to 2021 did not find health history, enriched by 

record linkage, described. As such, its use to further improve these maintenance practices is not 

described either. 

OWTs are owned by energy companies that exist in a competitive business environment. The 

protection of their commercially sensitive data is important to them because they are indicative of 

commercial performance and consequently, they can affect deals between wind farm manufacturers, 

developers and owners. These data are also valuable because they embody learning that 

organisations can use to their commercial advantage and because their collection has required 

investment. Commercially sensitive records include failure rates, downtime, maintenance costs and 

maintenance working time. 
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Offshore wind farm operators list how much lost production each failure mode is causing and use this 

data to prioritise their maintenance activities. They typically keep this information confidential but 

despite this, researchers have been able to publish anonymised data on the failure rates of onshore 

and offshore WTs (Hahn et. al., 2007, Ribrant et. al., 2007, Tavner et. al., 2007, Spinato et. al.,2009, 

Feng et. al., 2010, Wilkinson et. al., 2011, Pinar Pérez et. al., 2013, Sheng et. al., 2013, Carroll et. al., 

2015). Spinato et. al., 2009, published failure rate data for onshore WTs in a report that is of particular 

interest because it breaks the data down by component. This thesis presents further analysis of the 

data in Spinato et. al., 2009, shown in Figure 1-5, showing that the mean downtime per turbine per 

year was highest for the electrical system but that the gearbox caused the highest mean downtime per 

failure. 

 

Figure 1-5, Downtime against Mean Downtime per Failure by Subassembly. 

Calculated from data in Spinato et. al., 2009. 
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This thesis presents further analysis of OWT maintenance data published by Carroll et. al., 2015, in 

Figure 1-6. The figure identifies that the gearbox was the component whose failures cost the most in 

terms of material and labour but this does not include the cost of lost production. 

 

Figure 1-6, Total Work Hours against Material Cost of WOs by Subassembly. 

Calculated from data in Carroll et. al., 2015 

Section 2.1.2 introduces outages and section 2.1.3 introduces Work Orders (WO). Of the two figures 

above, Spinato et. al., 2009, present power outage data whereas Carroll et. al., 2015, present data 

from WOs. The first publication in any sector that integrates these two sources of maintenance data 

was Papatzimos et al., 2017. Section 2.2 reviews Papatzimos et al., 2017 and this thesis builds on 

that state of the art research. 

OWTs are fitted with hundreds of sensors (Qiu et al., 2012). Each OWT contains a Condition 

Monitoring Unit (CMU); the sensors send data to the CMU where it is recorded. The CMU is 

programmed with hundreds of condition models designed to identify faults, environmental conditions 

or operational conditions such as that the OWT is in local operation. When one of these models is 

triggered by one or more of the sensor signals, the CMU asserts an alarm and logs it in a database, 

known to operators as the alarm log (Kusiak and Li, 2011).  
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1.2.1 The Economics of OWT Maintenance 

This section will present performance indicators used in OWT maintenance. Earnings Before Interest, 

Taxes, Depreciation, and Amortisation (EBITDA) is a financial metric used to assess productivity 

(Espinoza and Morris, 2013). It is defined by equation 1.1 where OPerational EXpenditures (OPEX) 

are the costs of maintenance and of operating the wind farm. 

 𝐸𝐵𝐼𝑇𝐷𝐴 =  𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑂𝑃𝐸𝑋 (1.1) 

OWT operators use EBITDA to track the effect of maintenance strategies (Gonzalez et al., 2017, 

Pfaffel et al., 2019). In this research, the optimum OWT maintenance strategy is defined as that 

strategy that generates the maximum EBITDA for the operator. 

OPEX summarises operators’ decisions such as how many vessels to hire and how many technicians 

to employ. These decisions depend on the price of electricity and the cost of labour as shown below. 

The optimisation of OWT maintenance is outside of the scope of this research but this research does 

present methodologies that when they are applied will enable the more productive operation of 

OWTs.1 

Equation 1.2 defines revenue over a given interval, where price denotes the price at which the 

electrical energy is sold to the operator’s customer and production denotes the electrical energy 

generated in that interval. It disregards income from ancillary services such as the stabilisation of the 

frequency of the electricity grid and other external sources. 

 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 =  𝑃𝑟𝑖𝑐𝑒 ×  𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (1.2) 

Operators refer to intervals when the OWT is not generating electricity as outages. An outage is 

associated with lost production if, during the interval of the outage, there was a wind resource that 

would, had the OWT been in operation, have been exploited. Outages that occur during intervals 

when the wind speed is too high or too low for the OWT to operate are not associated with lost 

production. To minimise lost production, there is a preference for maintenance activities to be carried 

out on days with low wind speed. 

The capacity factor is defined as the ratio of production to theoretical rated production of the OWT 

where duration is the length of the time interval. 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 ×  𝑅𝑎𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 ×  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (1.3) 

 

1 Applications of this research will be identified in sections 1.2.2 to 1.2.5. 
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Outages occur during intervals when the wind speed is too high or too low for the OWT to operate, 

while an OWT is being maintained and when the OWT is experiencing a fault that has caused it to 

stop. Operators plan maintenance activities with the intention of avoiding or reducing lost production 

from outages to increase the capacity factor. Substituting equation 1.2 and 1.3 into equation 1.1: 

 𝐸𝐵𝐼𝑇𝐷𝐴 =  𝑃𝑟𝑖𝑐𝑒  ×  𝑅𝑎𝑡𝑖𝑛𝑔 ×  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 −  𝑂𝑃𝐸𝑋 (1.4) 

EBITDA does not track changes in working capital, capital expenditure, taxes, or the interest rate. 

To maximise EBITDA, maintenance planners try to understand the relationship between capacity 

factor and OPEX. Alternative approaches to OWT maintenance optimisation, other than maximising 

EBITDA, include the strategy that generates the lowest cost of energy, the strategy that generates the 

highest capacity factor, the strategy that generates the highest time-based availability (the proportion 

of time that an OWT is available to generate) and the strategy that generates the highest production-

based availability (the ratio of actual Production to the Production that would be expected of a fully 

available OWT) (DNV GL, 2017). 

As OPEX increases, capacity factor increases but the detail of this relationship for each farm is 

confidential. This relationship, when combined with equation 1.4, has the following implications: 

• If, rather than maximising EBITDA, operators were instead minimising the cost of energy, less 

OPEX would be required which would mean committing less resources to maintenance. 

• If, rather than maximising EBITDA, operators were instead maximising the capacity factor, 

more OPEX would be required which would mean committing more resources to 

maintenance.  

• If, rather than maximising EBITDA, operators were instead minimising OPEX, they could set 

OPEX to zero, committing no resources to maintenance. This would lead to the failure of all of 

their turbines, resulting in capacity factor of zero and consequently no production of electricity. 

• If, rather than maximising EBITDA, operators were instead minimising OPEX for a specified 

minimum time-based availability or capacity factor, then the resources that they committed to 

maintenance would depend on what their contract specified. Such an arrangement has been 

used in the offshore wind sector but is not assumed in this thesis. 

• Another option is to maximise time-based availability. Capacity factor has the advantage over 

time-based availability that it depends on production; and production takes account of the 

weather: there is no value in an OWT being available during intervals of either too low or too 

high wind speed and there is less value in it being available during intervals of wind speed 

lower than rated speed, where the power output is less than the rated power, than above rated 

speed, where the power output is the rated power. 
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• Another option is to maximise production-based availability. This is a useful and popular 

indicator, but it is not used in this thesis because Ørsted’s Advanced Analytics Lab use 

EBITDA. 

Nielsen et al., 2011, approach maintenance optimisation by minimising the expected total costs 

including the cost of lost production, equivalent to maximising EBITDA. As well as maximising 

EBITDA, operators also protect the future value of their assets by sufficient maintenance to avoid wear 

out. For readability, this thesis will refer to EBITDA as “productivity”. 

1.2.2 Maintenance Scheduling 

This section will present the state of the art in the scheduling of wind turbine maintenance. 

In contrast to corrective maintenance, preventative maintenance is performed regularly while the 

equipment is still operational to lessen the likelihood of it breaking down (Dao et al., 2018). OWT 

preventative maintenance is planned using scheduling tools developed from health history records 

that will be described in section 2.1. 

Maintenance optimisation aims to determine maintenance plans that balance maintenance costs such 

as parts and labour against the consequences of not maintaining the plant such as loss of power 

production. It requires models of the uncertainties associated with wind farm inspection and 

maintenance such as dependencies among components, weather-dependent access to the wind 

turbines, stochastic demand for spare parts and availability of labour. (Shafiee and Sørensen, 2019, 

Seyr and Muskulus, 2019). Stock-Williams and Swamy, 2019, demonstrate that automated 

maintenance planning can significantly improve productivity. 

Yürüşen et al., 2020, present a decision support system for the maintenance of onshore wind turbines. 

They consider a generator replacement operation that requires a crane. Safe working rules limit the 

wind speed and the wind gust speed at which work is allowed at different locations on the turbine. To 

find weather windows when the tasks could be performed, they use records of wind speed and wind 

gust speed with maintenance records that show how long each task takes. They identify all the 

possible scheduling combinations; an optimisation technique known as a brute force search. In order 

to calculate lost production, they combine this model with electricity price records and use the wind 

speed which enables them to identify the best times to carry out maintenance. These researchers 

simply use historical records of the duration of tasks and of the weather whereas a real-world planner 

must deal with the uncertainties in these forecasts. 

There are opportunities to use data more intelligently to further improve maintenance scheduling. 

Work Orders (WO) will be discussed in section 2.1.3; they contain information on what work was done 

and they can be used to identify the cost of repairs. Outages will be discussed in section 2.1.2; when 
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labelled with a failure mode, they indicate the failure rate for that failure mode and can be used to 

estimate the lost production from each outage. Linking WOs to outages would help because the 

integrated information could provide valuable insights into historical costs of maintenance and of lost 

production. These insights could be used to further optimise maintenance scheduling from a logistical 

perspective by providing more robust information to the models. There is therefore the potential to 

develop better maintenance scheduling tools by linking WOs to outages. Literature searches up to 

2021 did not find such techniques described and this thesis will not fill that gap, but it will present novel 

techniques that enable such further work by joining WOs to outages. An enriched health history of the 

machinery under study could be used by engineers and data scientists to develop better maintenance 

scheduling tools. 

1.2.3 Condition-Based Maintenance 

Condition-Based Maintenance (CBM) is a maintenance strategy that monitors the actual condition of 

an asset, such as a specific component in a wind turbine, to identify a requirement to carry out a 

maintenance intervention that is in addition to scheduled maintenance. CBM can reduce the 

requirement for scheduled maintenance while still avoiding delays and consequent production loss in 

repairing a failed turbine. 

Machinery operators are attempting to move from planned and reactive maintenance to proactive 

CBM. CBM can help operators to avoid lost production by forecasting faults and making repairs prior 

to failure but, to predict the future, we need a detailed knowledge of the past. 

This section reviews the state of the art for CBM. It concentrates on wind energy but it also samples 

other sectors and other industries. These samples indicate that wind energy is at the forefront of the 

development of CBM, but that it is also developing in solar energy (Mellit and Kalogirou (2011), 

Dagnely et al., (2015), Dong et al., (2017)), fossil fuels (Doostparast and Doostparast, 2018), 

electricity transmission (Sheng et al., 2018), naval engines (Cipollini et al., 2018), transport (Wang et 

al., 2018), capital goods (Arts et al, 2019) and aviation (Liu et al., (2018), Luo et al., (2018)). 

Operators are introducing CBM both within the offshore wind energy sector and in other sectors. CBM 

uses wear out models to predict failures. It requires prognostic models and these require the 

determination of the health history of the machinery. Health history data such as breakdowns and 

other maintenance activities are required for the development of models that forecast breakdowns, 

facilitating preventative maintenance. Researchers have published wear out models that are based on 

vibration analysis (Crabtree et al., 2010, Bach-Andersen et al., 2015, Koukoura et al., 2017, Artigao et 

al., 2018, Carroll et al., 2019), on acoustic analysis (Wang et al., 2018), on oil particle analysis 

(Crabtree et al., 2010, Feng et al., 2013) and on data from temperature sensors (Garcia et al., 2006, 

Zaher et al., 2009, Feng et al., 2013, Kusiak et al., 2012, Godwin et al., 2014, Qiu et al., 2016, Bach‐
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Andersen et al., 2017). These models each predict failure with different confidence and over a 

different prognostic horizon, from a day to several months. These models are typically based on an 

understanding of a failure mode and that understanding is based on failure data. Applications of the 

health history for CBM include probabilistic models (Sheng et al., 2018, Wang et al., 2018), physics 

models (Qiu et al., 2016, Gray and Watson, 2010) and models developed using supervised machine 

learning methods (Godwin and Matthews, 2014, Hu et al., 2016). 

A fault in a mechanical component tends to reduce its efficiency and consequently to cause its 

temperature to be higher, all else being equal, than it would be in a fault free component. Garcia et al., 

2006 use wind turbine gearbox temperature data with data on whether the 2 cooling fans are on or off 

from a single gearbox fault. They predict that the fault was in the main bearing and also that the main 

shaft was misaligned, but they do not test this hypothesis. 

Zaher et al., 2009, use temperature, power and fan data from 26 wind turbines over 2 years but do not 

have fault data to label what is happening to the wind turbines. They identify some abnormal 

behaviour that could be indicative of a fault, but they have no way of testing whether or not it is. 

Crabtree et al., 2010, use wind turbine gearbox vibration and oil debris ferrous particle count data 

covering a 5-month interval. During this interval a gearbox bearing became damaged and was 

replaced and they plot the data against cumulative energy generation rather than against time to show 

the fault retrospectively. They show that such comparison of these signals indicates that the 

component was developing a fault 2 months ahead of its replacement. They present results that 

indicate that a prognostic model could be developed but because they only use a single instance of a 

fault, they cannot address whether such a model would work across multiple instances. 

Gray and Watson, 2010 use wind turbine power and rotational speed data from 160 wind turbines, 6 of 

which experienced serious gearbox failure in quick succession, to present a physics of failure 

approach to wind turbine CBM that uses design data such as the dynamic load capacity of the 

gearbox bearings to estimate the fatigue damage for each failure mode. They calculate the high cycle 

fatigue Damage (D) for a specific failure mode. They refer to reliability as the probability that a turbine 

will survive at a damage exceeding D and they estimate the relationship between the reliability for the 

failure mode and D. They then use the failure rate to identify correction factors to their wear out model. 

Similarly, operators use failure, inspection and sensor data to update their wear out model for each 

failure mode for each model of wind turbine. 

Feng et al., 2011 use wind turbine gearbox vibration, oil pressure and filter status, temperature, power 

and generator speed data. They report that an operator “achieved success in detecting a number of 

bearing faults in both gearboxes and generators” and that faults can be detected by using multiple 
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signals, which they plot against cumulative energy generation rather than against time to 

retrospectively show the faults. 

Kusiak et al., 2012 use wind turbine temperature, voltage, current and generator speed data covering 

two instances of an over temperature fault on a generator bearing. They use data from 10 turbines 

that do not record this fault to develop a normal behaviour model that predicts the bearing 

temperature. They use these models to predict the over temperature events on average 1.5 hours 

ahead of the fault occurring. They train their model on turbines that they assume to be healthy and 

then test it on turbines that have experienced a fault. This does not constitute testing their model to 

see whether it correctly identifies faults on unlabelled data. 

Godwin et al., 2014 use wind turbine temperature, power, wind speed and generator speed data 

covering one instance of a gearbox failure. They train a model on three turbines that do not suffer the 

fault and test it on another two turbines that also do not suffer the fault and on the single turbine that 

does. Because they only use a single instance of a fault, they cannot address whether such a model 

would work across multiple instances. 

Bach-Andersen et al., 2015, use vibration data from 80 main bearing2 failures on different turbines to 

compare two prognostic models. For each failure, they use the preceding 6 months of vibration data 

and an equal quantity of vibration data that they label as “non-fault”. They divide the 80 turbines into 

40 for training, 15 for validation and 25 to test their models. Their models are a logistic regression and 

a convolutional network. 

Bach-Andersen et al., 2015, use a robust statistical method for measuring the quality of prognostic 

models for wind turbine CBM. To present their method, this section defines the measures of the 

quality of classification that they use. These measures use the number of True Positives (TP), False 

Positives (FP), True Negatives (TN) and False Negatives (FN) as follows. 

True Positive Rate (TPR), (otherwise known as recall, sensitivity or hit rate), defined by equation 1.5, 

measures the proportion of true matches that have been classified correctly. 

 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1.5) 

 

2 The main bearing of an OWT is an important component and is typically fitted with vibration sensors. 

It mounts the turbines rotor on to its nacelle; that is the housing that holds all of the generating 

components. 
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False Positive Rate (FPR), (otherwise known as fallout or false alarm ratio), defined by equation 1.6, 

measures the proportion of false positives in the total number of negatives. 

 
𝐹𝑃𝑅 =  

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

(1.6) 

A Receiver Operating Characteristics (ROC) curve plots TPR against FPR and is robust against 

imbalanced classes (Christen, 2012). The Area Under a ROC Curve (AUC) predicts the probability 

that a classifier will rank a positive sample higher than a negative sample (Fawcett, 2006). Bach-

Andersen et al., 2015, show that their convolutional network outperforms their logistic regression by 

plotting AUC against time to failure. Bach-Andersen et al., 2015, have access to vibration data that is 

labelled with rich information about a specific fault, a wind turbine main bearing failure. This enables 

them to train, validate and test a prognostic model for this fault. Bach-Andersen et al., 2015, is an 

example of health history data being used to develop a model that predicts main bearing failures. 

Standard solar energy Supervisory Control and Data Acquisition (SCADA) systems only collect current 

and voltage data (Dong et al., 2017) and, unlike on OWTs, temperature sensors are not routinely 

fitted. Dong et al., 2017, combine SCADA data with weather data to determine a normal behaviour 

model that identifies the least healthy strings of solar panels. 

Koukoura et al., 2017, use wind turbine gearbox vibration, power and generator speed data from one 

instance of a gearbox tooth issue on the pinion of the intermediate stage of the gearbox. To diagnose 

the state of the gearbox they calculate reference torque using the produced electrical power and 

generator speed and they also calculate health indicators on the second harmonic of the gear mesh 

frequencies of the vibration signals. They train a decision tree classifier, a supervised learning method, 

both on the health indicators and on the reference torque to distinguish signal variations due to loads 

from signal variations due to faults. The loads on a wind turbine fluctuate so this is an appropriate 

approach. They present results indicating that prognostic models could be developed. 

Bach‐Andersen et al., 2017, use wind turbine temperature data from 22 main bearing failures on 

different turbines to compare four prognostic models. They plot the area under the ROC curve against 

time to failure. They have access to temperature data which is labelled with information about a 

specific fault, a main bearing failure. This enables them to train, validate and test a prognostic model 

for this fault. They recognize that this model could be used together with vibration analysis. 

Wang et al., 2018 use data from 4 acoustic sensors on a single set of railway points. By comparing 

new observations to a predicted baseline, they detect by a probabilistic approach that one of the rails 

has no damage but that the other has a crack in it. This result is verified by an urgent site visit and 

repair. Such acoustic sensors are not appropriate for fitting to the whole railway as they require a 

power source. They might alternatively be fitted to a train. 
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Doostparast and Doostparast, 2018, present a methodology for forecasting corrosion in oil pipelines. 

They forecast points of corrosion, approximating the rate of corrosion using a non-homogeneous 

Poisson process. 

Artigao et al., 2018, use high frequency (1.5 kHz) current data from both the stator and the rotor of a 

wind turbine generator with vibration, power and generator speed data from a single instance of a fault 

caused by an imbalance in the shaft between the gearbox and the generator that the operator had 

misdiagnosed as a generator bearing fault. They use their vibration data to validate their result from 

the current data but they do not combine the current data with the vibration data. They present results 

indicating that prognostic models could be developed. 

Carroll et al., 2019, use wind turbine gearbox vibration, temperature, power, wind speed and generator 

speed data. They use operational logs and failure logs to identify two gearbox failure modes that occur 

on different models of wind turbine: 200 instances of a gearbox bearing issue on the low speed 

planetary stage of the gearbox and 28 instances of a gearbox tooth issue on the pinion of the 

intermediate stage of the gearbox. For both failure modes, they use 70% of their data to train a multi‐

class Artificial Neural Network (ANN) and 30% to test it. They use the ANN with the vibration data to 

predict whether the time to failure is 1, 2 or 3 months or whether it is more than 3 months. They also 

use the ANN with the vibration data to predict whether the time to failure is 1 to 2 or 5 to 6 months or 

whether it is more than 6 months. They show that accuracy is higher with the vibration data than with 

the other data but this is not a direct comparison because they have different classes for the two data 

sets. They do not combine the vibration data with the other data. 

Bach‐Andersen et al., 2018, use wind turbine vibration and generator speed data from gearbox faults 

that they break down into 85 rotor bearing faults, 63 planetary stage bearing faults and 103 helical 

stage bearing faults across two models of wind turbine to compare five prognostic models. They do 

not report which faults are on which of their two models of wind turbine. For each model of wind 

turbine, they use 65% of these faults for training, 10% for validation and 25% for testing. Their 

prognostic models are a logistic regression, an ANN and a deep ANN, meaning an ANN with multiple 

layers to extract abstract features. For both the deep and shallow ANN, they compare the results of 

solving tasks separately and of applying multi-task learning (in which multiple learning tasks are 

solved at the same time to exploit commonalities and differences across tasks). They plot the area 

under the ROC curve against time after retrospective detection by a human expert, showing that their 

deep ANNs recognised features in the vibration data at the same time as retrospectively identified by 

their human expert. Bach-Andersen et al., 2018, have access to vibration data that is labelled with rich 

information about these three faults. This enables them to train, validate and test a prognostic model 

for this fault. 
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Lei et al., 2019, use vibration data from a model wind turbine in a wind tunnel. They simulate eleven 

mechanical faults in the drive train. They compare a variety of methods for the classification of their 

simulated faults from the sensor data. These are: support vector machines; supervised learning 

models that construct a set of hyperplanes in a high-dimensional space, multilayer perceptrons; a 

class of feedforward neural network, 2 layer recurrent neural networks; a class of neural networks 

where connections between nodes form a directed graph along a temporal sequence and 

convolutional neural networks; a class of deep neural networks, used for analysing visual imagery. 

They present the best results using long short term memory networks; a recurrent neural network 

architecture with feedback connections used in handwriting and speech recognition. Their method of 

fault classification could be of interest to implement on real wind turbines. 

Wang et al., 2020, use vibration data from a single wind turbine gearbox bearing failure. They combine 

physical knowledge of the bearing’s characteristic frequencies of typical defects relative to shaft speed 

with Bayesian inference to quantify uncertainty. Bayesian inference is a statistical technique that 

updates the probability for a hypothesis as more information becomes available. They present an 

approach that estimates the remaining useful life of such bearings as a probability distribution. 

Operators can plan preventative maintenance more effectively when they better understand the 

uncertainty that exists about the condition of their plant. 

The literature shows a high level of focus on wind turbine gearboxes and main bearings, identified as 

important components for reliability in Figure 1-5 and Figure 1-6 but not as the only important 

components. Operators use outage data (which will be discussed in section 2.1.2) to identify which 

other components are also worthy of study. 

This section has shown that even existing health history data, such as that available to this research, 

described in section 2.2, was not available to many other researchers and that this lack of labels has 

held back research into CBM. There are opportunities to use data more intelligently to further improve 

CBM. When outages are labelled with a failure mode, they indicate the failure rate for that failure 

mode. Work Orders (WO) contain information on what work was done and will be discussed in section 

2.1.3. There is therefore the potential to develop new CBM models and improve existing ones by 

linking WOs to outages. Literature searches up to 2021 did not find such techniques described and 

this thesis will not fill that gap, but it will present novel techniques that enable such further work by 

joining WOs to outages. An enriched health history of the machinery under study could be used by 

engineers and data scientists to develop both more accurate prognostic models and a better 

understanding of the confidence of these forecasts. 

This section has reviewed the literature on CBM; the prognosis of faults. Troubleshooting requires the 

diagnosis of faults. Both CBM and troubleshooting involve the classification of the failure mode and, 

consequently, the literature on CBM also pertains to troubleshooting. 
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1.2.4 Troubleshooting 

Troubleshooting is the activity of repairing a faulty OWT by the replacement of components (Walford, 

2006, Tang et al., 2019). This section will present the state of the art in OWT troubleshooting. 

Data scientists analyse failure histories and derive troubleshooting guides from them. These guides 

are key to the technicians’ diagnosis of faults, alongside their expert knowledge. Technicians refer to a 

trouble shooting guide for advice on how to diagnose the failure mode and the repair activity that is 

most likely to be effective. 

There are opportunities to use data more intelligently to further improve troubleshooting. Work Orders 

(WO) will be discussed in section 2.1.3; they contain information on what work was done including 

what materials were consumed. Outages will be discussed in section 2.1.2 but, when labelled with a 

failure mode, they indicate the failure rate for that failure mode.  

Each troubleshooting guide applies to a single alarm code, rating and manufacturer. It contains a fault 

tree, representing the possible failure modes, their predicted probability, and the recommended repair 

activities. Operators derive the information that they use to generate the fault tree from WO records. 

WOs are sometimes labelled with an alarm code indicative of the failure mode and it is only these 

WOs that are currently used to generate the fault tree. 

This research identified two gaps in the literature on troubleshooting. Firstly, literature searches up to 

2021 did not find Enriched Health History (EHH) information described and as such its use to further 

improve troubleshooting fault trees is not described either. The health history enrichment process 

presented in this thesis uses alarm data to identify the failure mode of each WO and this increases the 

amount of information available to the authors of the troubleshooting guides. The use of an EHH 

(specific to the WT’s rating and manufacturer) provides data that can increase the accuracy of the 

probability assigned to each branch of the fault tree. Increasing the accuracy of the fault tree 

probabilities for a failure mode can avoid unsuccessful repairs, reducing maintenance work and 

avoiding lost production. 

Troubleshooting guides also contain a list of spare parts that might be required to repair the specific 

failure modes indicated by the alarm code. The second gap identified in the literature is that 

techniques to increase the length of these parts lists to improve the probability that the repair team has 

brought the correct part to repair the fault are not described. Extending the troubleshooting guide parts 

list can avoid the lost production caused by the right part not being available. Bringing the correct parts 

to the OWT will be of increasing importance as the distance to shore increases and it could help to 

avoid the cost of an offshore spare parts store. Health history enrichment would fill this gap in the 

literature. 
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To repair a fault, technicians must identify which components to replace and, while it is not strictly 

necessary to identify the failure mode, this is desirable because the root cause can lie in a component 

other than those that are not working. For example, on one occasion, a fault on one wind turbine 

damaged an adjacent turbine so that the service team was sent to the wrong turbine (personal 

conversation with an Ørsted technician, 2019). Troubleshooting is not straightforward and finding the 

root cause requires experience. 

Improving either the parts list or the fault tree reduces the duration of outages, reducing lost 

production and increasing productivity. There is therefore the potential to improve troubleshooting by 

linking WOs to outages. Literature searches up to 2021 did not find such techniques described and 

this thesis will not fill that gap, but it will present novel techniques that enable such further work by 

joining WOs to outages. An enriched health history of the machinery under study could be used by 

engineers and data scientists to develop improved troubleshooting guides. This research elicited the 

opinion from OWT experts that troubleshooting would be the most valuable application of an EHH. 

1.2.5 Maintenance Effectiveness 

The purpose of maintenance is to increase the reliability of plant. Each maintenance activity should 

increase the mean time to failure of the subsystem that was maintained relative to the subsystem’s 

mean time to failure without that maintenance activity. This thesis will refer to the effect of reducing the 

mean time to failure of the subsystem that was maintained as the effectiveness. Garcia et. al., 2006, 

predict that operators could use effectiveness to optimise their planning and troubleshooting, 

increasing productivity. This section will present the state of the art in the measurement of 

maintenance effectiveness. 

Lin et al., 2019, present a model that combines performance deterioration together with maintenance 

effectiveness and that would be applicable to a wide variety of assets including wind turbines. Sewers 

are flushed (a maintenance activity) to remove blockages (a failure mode). Lin et al., 2019, use dated 

sewer pipe flushing records, dated sewer pipe condition data (camera inspection reports that rate the 

condition of the pipe at five discrete grades and record the type of defects), sewer pipe attribute data 

(material, diameter, length, slope) and sewershed area data (the land area that drains into the pipe). 

A Markov chain model is a statistical technique that describes a sequence of possible events in which 

the probability of each event depends only on the state attained in the previous event. Lin et al., 2019, 

model the deterioration process using a continuous-time Markov chain model with a deterioration 

intensity matrix that estimates the probability that, during a time step, a pipe will transition from each of 

the condition grades to each of the other condition grades. They model the maintenance process 

using a discrete-time Markov chain model with a maintenance effectiveness matrix that estimates the 
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probability that, during a flush, a pipe will transition from each of the condition grades to each of the 

other condition grades. 

Bayesian inference is a statistical technique that updates the probability for a hypothesis as more 

information becomes available. A Markov chain Monte Carlo simulation is a statistical technique that 

takes samples from a probability distribution. Lin et al., 2019, estimate the parameters for their 

performance deterioration and maintenance effectiveness models using Bayesian inference with 

Markov chain Monte Carlo simulations.  

Lin et al., 2019, compare two methods that predict the probability of reaching a given grade at a given 

time. The first method uses the mean of the estimate of each parameter value while the second 

method uses the full distribution of the estimate of each parameter value. They show that using the full 

distribution of the estimate of each parameter, rather than using the mean, predicts far lower 

probabilities that, under a given maintenance regime, a given pipe will get blocked. Using the full 

distribution is a more robust approach than using the mean. They recognise that this huge difference 

could result in totally different strategies for flushing programs. Wind turbine operators both plan 

maintenance and measure maintenance effectiveness using the same type of deterioration and 

maintenance effectiveness models as those presented by Lin et al., 2019. 

There are opportunities to use data more intelligently to further improve the measurement of 

maintenance effectiveness. Work Orders (WO) will be discussed in section 2.1.3; they contain 

information on what work was done. Outages will be discussed in section 2.1.2 but, when labelled with 

a failure mode, they indicate the failure rate for that failure mode. If a repair was successful, then the 

time to failure for the modes effected by the repair would tend to increase. There is therefore the 

potential to measure maintenance effectiveness by linking WOs to outages. Literature searches up to 

2021 did not find such techniques described. This thesis presents techniques that link WOs to outages 

and this will enable further work measuring maintenance effectiveness. An enriched health history of 

the machinery under study could be used by engineers and data scientists to develop more accurate 

measures of maintenance effectiveness and a better understanding of the confidence of these 

measures. 

1.2.6 Conclusion to the Maintenance of Offshore Wind Turbines 

The literature search found more literature on CBM than on maintenance scheduling, troubleshooting 

or on maintenance effectiveness. This does not imply that CBM is more important to operators than 

the other aspects of maintenance listed; operators have tended to collaborate with academic 

researchers and to publish their own papers on CBM, while they have tended to keep their work on 

the other aspects of maintenance more in-house. Improvements in troubleshooting are seen as 
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tending to avoid more lost production than improvements in CBM (personal conversation with an 

Ørsted wind turbine data analyst, February 2019). 

Figure 1-7 shows an OWT CBM architecture. The figure is based on the approach of Garcia et. al., 

2006, but this approach is typical of how operators plan OWT maintenance today. Sensor data from 

each turbine is interpreted by comparing it to sensor data from nearby turbines, to meteorological data 

and to models trained on data from the past. This comparison identifies anomalies that could be 

indicative of faults and these are interpreted by OWT experts to diagnose whether a repair activity 

should be planned. The health condition of each turbine is assessed to predict faults and if a fault is 

considered likely then the component can be replaced prior to failure. The effectiveness of 

maintenance activities is appraised by statistical techniques that address whether down time was 

avoided by the maintenance activity. 

 

 

Figure 1-7, Typical OWT CBM Architecture. Adapted from Garcia et. al., 2006 

 

This section has identified the gap in the literature that multi feature record linkage techniques have 

not previously been used to improve wind turbine maintenance strategies; or to improve maintenance 

strategies for any other type of machinery either. Section 2.2 will present the state of the art for record 

linkage techniques. 
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1.3 Research Questions 

This research benefitted from access to Ørsted’s valuable and confidential records of wind turbine 

health history. It applies record linkage techniques to these records to improve maintenance. The 

Research Questions (RQ) that this thesis will address are: 

RQ1 To enable improvements in WT CBM & troubleshooting, how can WT health history be 

enriched? 

RQ2 How can the quality of the Enriched Health History (EHH) be validated? 

RQ3 How can the richness of historical data on wind turbine health be measured? 

This thesis will present new techniques that link together existing records of the health of OWTs to 

determine and validate an EHH. In this thesis, the statement that the health history has been 

‘enriched’ means that the records have been made mode useful for specific maintenance applications 

such as maintenance scheduling, troubleshooting, condition-based maintenance or for the 

measurement of the effectiveness of maintenance activities. 
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Figure 1-8 describes how, by linking WOs to outages, the EHH will facilitate improvements to the 

diagnosis of WT faults, helping with repairs3, and to their prognosis, helping to avoid faults4. The 

dotted circle indicates the scope of this thesis. Methods developed in this project will be applicable to 

other record linkage applications as well. The EHH will also facilitate improvements to the scheduling 

of maintenance activities and to the measurement of the effectiveness of maintenance activities. 

 

Figure 1-8, Enrichment of Health History for CBM & Troubleshooting 

 

  

 

3 Troubleshooting for repairs was described in section 1.2.4 

4 Avoiding faults by condition based maintenance was described in section 1.2.3 
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1.4 Research Process  

This research project involved presentations to conferences and research placements as detailed in 

Table 1-1. 

Discussions with Ørsted data scientists during placement 1 in their office in Gentofte, Denmark, 

identified that a process for the enrichment of offshore wind turbine health history would be a useful 

contribution. Some of the record linkage techniques that will be presented in chapter 4 were 

developed by these discussions. 

By presenting at conferences, this research benefitted from questions from the audience that 

facilitated improvements in how this thesis is presented. Attendance was also a method, alongside 

monitoring the published scientific literature, of identifying other researchers working in related areas. 

The most important of these was Eric Salo, whose research into data mining wind turbine work orders 

(Salo et al., 2019) is of interest to developers but covers a different area to this research. 

Event Subject Location Date Duration 

Research visit   Gentofte May 2017 1 week 

Placement 1   Gentofte August 2017 18 weeks 

Research visit   Wind Farm January 2018 1 day 

Placement 2   Gentofte January 2019 1 week 

Wind Energy Science 
Conference 

Wind Turbine Enriched 
Health History 

University 
College Cork 

June 2019 3 days 

European Academy of 
Wind Energy PhD 
Seminar 

Validation of Wind 
Turbine Health History 

Centrale 
Nantes  

October 2019 2 days 

Table 1-1, Placements and Conferences 
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1.5 Constraints 

This research benefitted from access to Ørsted’s valuable and confidential records of wind turbine 

health history. Ørsted’s policy is that their confidential data may not be copied on to non-Ørsted 

machines and, to comply with this policy, this research was done entirely using a laptop computer 

supplied by Ørsted. 

The process for writing this thesis involved the identification of confidential material and the contents 

of this thesis are as approved for publication by Ørsted. 
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1.6 Thesis Structure 

The structure of this thesis is as follows. The introduction chapter (1) presents a brief introduction to 

the offshore wind energy sector. The main literature review is chapter 2, Background, which presents 

the state of the art for OWT maintenance including the motivation for the enrichment of OWT health 

history and a description of the existing records of OWT health history that this project has benefitted 

from access to. It also presents the state of the art for record linkage. The next chapter (3) presents 

techniques for evaluating health history enrichment and poses, in detail, the research questions that 

this thesis will address. 

The first technical chapter (4) presents an overview of the Process for the Enrichment of OWT Health 

History (PEOHH) developed in this research and of how the PEOHH will be validated. It presents 

twelve record linkage techniques organised into four sub sections; four timestamp based techniques, a 

technique that uses the records of visits to the wind turbine, a technique that considers the recorded 

type of maintenance and lastly six failure mode based techniques. For each record linkage technique, 

the chapter presents its method and the hypothesis that it might be effective as part of an ensemble of 

techniques; it does not test these hypotheses. 

The second technical chapter (5) offers two example work orders and uses them to illustrate the 

PEOHH by linking them to records of OWT power outages. 

Chapter 6 reviews statistical techniques that quantify the uncertainty of measures that will be used in 

chapters 7 and 8: 

• Section 6.1 will review techniques for estimating the uncertainty of the extent to which a 

binomial proportion from of a sample is representative of a population. 

• Section 6.2 will consider the estimation of the uncertainty of a difference between two such 

uncertain estimates. 

• Section 6.3 will investigate the probability that one such an uncertain estimate is greater than 

another. 

Applying these techniques offers, for the first time, an understanding of the uncertainty of the quality of 

record linkage. Understanding uncertainty informs maintenance decision making which can improve 

productivity. 

The primary results from this research are presented in chapters 7 and 8. Chapter 7 reviews 

techniques for global optimisation and presents the optimisation of the weights and thresholds used by 

the PEOHH. It tests the hypotheses that were presented in chapter 4. Chapter 8 demonstrates that the 

PEOHH has indeed succeeded in enriching the health history. Chapter 9 is a critical review of this 
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research and the final chapter (10) presents the conclusions and indicates some useful directions for 

further work. 
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1.7 Contribution of this Thesis 

Outages can be due to routine maintenance, to environmental conditions, to problems with the grid or 

to faults. This thesis will show that the major gap in knowledge impeding progress in this field is 

matching the information available from maintenance logs to an existing database of outages. The 

research contribution made by this project will be to address this gap in knowledge with the advantage 

of academic access to commercially sensitive real-world fault data. 

The original contributions of this research are: 

• The application of multi-feature record linkage techniques to maintenance data 

• The application of statistical techniques for the interval estimation of a binomial proportion to 

record linkage techniques 

• The estimation of the distribution of the coverage error of statistical techniques for the interval 

estimation of a binomial proportion 

The main contribution of this research is a process for the enrichment of offshore wind turbine health 

history. 
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2 Background 

This background chapter is divided into 5 sections. This research has benefitted from access to 

existing records of OWT health history and they are described in section 2.1. This research links those 

records together to determine an Enriched Health History (EHH) and the state of the art for record 

linkage is presented in section 2.2. 

Classification techniques predict the class of a binary dependent variable by analysing a dataset. 

Section 2.3 reviews standard classification techniques in preparation for section 4.4.4.3.2, which 

experiments with the application of a classification technique for record linkage. 

Global optimisation is a branch of applied mathematics that attempts to find the global minima or 

maxima of a function by choosing the system parameters. Section 2.4 will review two appropriate 

techniques for global optimisation in preparation for section 7.6, which will use the most appropriate of 

these techniques for the optimisation of the weights and thresholds used in the PEOHH. 

Section 2.5 is the conclusion to the background. 
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2.1 Existing Records of Wind Turbine Health History 

This research shows that an Enriched Health History (EHH) can be determined by combining four 

existing OWT health history databases. These are databases of alarms, outages, Work Orders (WO) 

and material consumption. This section describes each of these four databases, their salient features 

(also known as tags) and how each database is generated. It reviews literature on similar databases 

and this comparison shows that wind turbine records are at the forefront of maintenance technology. 

This section describes Ørsted’s records (insofar as confidentiality agreements allow). This project has 

not had direct access to other operators’ records which, like Ørsted’s records, are also confidential. To 

apply the Process for the Enrichment of OWT Health History (PEOHH) developed in this research, 

other wind turbine operators, as well as operators in other sectors, would need to adapt it to their 

records. 

2.1.1 Database of Alarms 

Many of the components of an Offshore Wind Turbine (OWT) are fitted with sensors that monitor their 

physical parameters such as temperature, vibration or contamination of the oil. Each OWT contains a 

Condition Monitoring Unit (CMU) which collects data from the sensors. The CMU is programmed with 

a set of models that interpret the sensor data with reference to thresholds to identify environmental, 

operational and fault conditions on the basis of which they assert alarms. Each such model is uniquely 

identified by an alarm code. A free text description, such as “cabinet too hot”, is linked to each alarm 

code. 

The CMU maintains a database known as the alarm log; for each alarm event it records the alarm 

code, start time and end time. These two timestamp features define the duration over which the alarm 

was asserted (Qiu et al., 2012). 

When technicians visit an OWT to carry out corrective maintenance, they first check the database of 

alarms which offers a rich record of the recent health history of the OWT and informs the technicians 

of what seems to be the problem. This information helps the technicians to decide which tests or 

repair activities to use to find the fault and to repair it. 

Dagnely et al., 2015, present a problem faced by data scientists attempting the analysis of alarm data 

from photovoltaic plants in which the inverters and the monitoring systems originate from different 

manufacturers, models and versions: in this situation the alarm labels can differ. They present a 

methodology for the integration of heterogeneous, machine generated alarm data. The OWT health 

history records that this thesis has had access to do not suffer from this problem of heterogeneous 

data. 

Alarm data is used to automatically diagnose the failure mode (Qiu et al., 2012, Gonzalez et al., 2016).  
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Kusiak and Li, 2011, use alarm data to identify the health history of four wind turbines, enabling them 

to develop CBM models. Their approach is like that used, on a larger scale, by Ørsted. They observe 

that better prediction performance can be achieved with higher quality data. The techniques presented 

in this thesis will enable operators to make better use of their data to enable such improvements.  

Leahy et al., 2018, showed that alarm data can be used to automatically identify intervals of faulty 

operation. 

Papatzimos et al., 2019, showed that the frequency of alarms for each OWT subassembly can be 

predicted from the wind speed and the turbulence intensity. 

2.1.2 Database of Outages 

Operators refer to intervals when the OWT is not generating electricity as outages. Outages occur 

during intervals when the wind speed is too high or too low for the OWT to operate, when the OWT is 

being maintained and when the OWT is experiencing a fault that has caused it to stop.  

Ørsted’s database of outages is automatically generated from the alarm log. It contains two 

timestamps: the outage start time and the outage finish time. These define the duration of the outage. 

Ørsted have validated their database of outages’ timestamps against the active power signal. These 

timestamps are very important to operators because they are indicative of the availability of the wind 

turbine, a key performance indicator, and so operators see them as very accurate; checking their 

accuracy is outside of the scope of this thesis. 

Ørsted label each outage with an alarm code indicative of the failure mode using a combination of 

automatic and manual methods. Their automatic system selects an alarm code from the database of 

outages using a confidential algorithm. Ørsted’s data scientists sometimes later manually adjust these 

labels to better reflect the failure mode by discussing what happened with the technical team involved 

in the repair. Literature searches up to 2021 did not find techniques to further automate and to further 

validate this diagnosis by joining work orders to alarms and to outages described. 

The ‘type’ feature classifies each outage as either corrective, predetermined, ‘Balance of Plant / 

OFfshore Transmission Owner’ (BoP/OFTO), condition-based, environmental or unknown. BoP/OFTO 

refers to those outages caused by faults that are outside of the wind turbine. ‘Environmental’ refers to 

those outages caused by the weather: either too low or too high wind speed. This classification is 

useful because breaking the records of power outages down into these categories enables operators 

to identify the performance of different parts of their operation. If some outages were classified 

incorrectly then commercial decision makers would not have reliable data to work on, and so the 

accuracy of this classification is important. Literature searches up to 2021 did not find techniques to 
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investigate the accuracy of this classification by joining work orders to alarms and to outages 

described. 

It is a safety requirement that when an OWT is visited to carry out maintenance, it is brought under 

local operation; a setting in which it cannot produce electricity. The ‘reset’ feature classifies each 

outage that has been classified as corrective as either a visit, a remote reset or an automatic reset. 

The ‘number visits’ feature is either zero or a positive integer. It is Ørsted’s estimate of how many 

times the OWT was visited during the outage. It is calculated using the ‘wind turbine in local operation’ 

alarm. 

The database of outages records the duration of each outage and estimates its lost production as the 

average of energy generated by the farm’s working wind turbines. 
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2.1.3 Database of Work Orders 

This section describes the database of Work Orders (WO). Each WO has an order number: a unique 

identifier for the WO. Figure 2-1 shows an example WO, number 80135873. Each WO is also labelled 

with a notification number: a unique identifier for the notification. There is one notification per WO and 

the notification is the example is number 1171848. The notification is the instruction to the wind farm 

planner to create the WO. Each WO is an instruction to a technical team to undertake a maintenance 

activity; in the example the hydraulic oil needs topping up. WOs often contain free text entries that 

describe maintenance activities in detail. Examples include when routine maintenance is provided, 

such as oil changes, as well as when more significant maintenance is performed, such as replacing 

key components. This data is often entered by the technical team undertaking the maintenance. 

 

Figure 2-1, Example Work Order 

 

WOs contain structured information about the turbine acted upon, semi-structured information about 

the subsystem acted upon and unstructured information about the activities performed. The 

unstructured information is in the form of free text. The free text fields can document alarm codes 

and / or specific actions undertaken by the technical team. The semi-structured and the unstructured 

data can both contain typographical or other errors (inevitable with a field entry system) and these 
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errors present a challenge when linking them together and for other valuable data mining applications 

that were discussed in section 1.2. 

This research involved placements with Ørsted’s data scientists who explained the key features of the 

WO data. It also included visits to wind farms, where conversations with the managers, planners and 

technicians who generate the data validated these descriptions and put them in a more detailed 

context. 

2.1.3.1 Timestamps 

The WO records contain various timestamps including the start date, the finish date, the notification 

date, the created on date and the malfunction start date. The start date refers to when the fault 

started. The finish date refers to when the fault ended. The notification date refers to when the 

notification was created. The created on date refers to when the WO was created. The malfunction 

start date refers to when the malfunction started. This feature was too difficult to extract from the 

database because, while it is accessible when extracting data on an individual WO, it is not accessible 

when extracting data on a list of WOs. Further work should find a way to extract it and investigate its 

usefulness. The advice elicited from technicians and from data scientists was that malfunction start 

date would be very useful. That is because the timestamps are all human generated and can be 

approximate or erroneous. The malfunction start date, on the other hand, is automatically generated 

from the alarm log. All the experts agreed that there would be no relationship between when a WO 

was created and when its matching outage occurred. These experts included a Planner Scheduler 

who creates WOs. 

2.1.3.2 Functional Location  

The ‘Functional Location’ (FL) feature is a standard taxonomy; a human generated feature entered by 

the planner; a string specified by the Reference Designation System for Power Plants standard for 

wind turbines (V.G.B. PowerTech, 2014). It contains a unique identifier for the wind farm. It identifies 

which OWT the WO relates to by giving the number of the row within the wind farm in which the OWT 

is located and the OWTs position along that row. It can include detailed information about which 

subsystem the WO relates to and even which component. The FL will always be accurate about which 

OWT the WO refers to because if an incorrect OWT ID had been entered by the planner then the 

technical team would visit the wrong OWT. Literature searches up to 2021 did not find descriptions of 

techniques to enrich the FL by joining work orders to alarms and to outages. This thesis will not fill that 

gap, but it will present novel techniques that enable such further work by joining WOs to outages. An 

enriched health history of the machinery under study could be used by engineers and data scientists 

to enrich the FL. 
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2.1.3.3 WO Type 

The ‘type’ feature classifies each WO as either preventive (such as annual servicing), retrofit, 

inspections and surveys, condition-based or corrective. The feature is human generated by the 

planner who selects a type from a list of options. 

The WO free text fields are the ‘description’ and the ‘long text’. These fields can be written in any 

natural language but farms where they are not in English are outside of the scope of this thesis. 

Further work could apply automatic translation techniques to WO data. 

2.1.3.4 Description 

The ‘description’ feature, otherwise known as ‘short text’, is a short, free text description of the WO. 

For corrective maintenance it often refers to an alarm code. It may contain the alarm code but it more 

often contains an abbreviated reference to the standard text description of the alarm code. 

Salo et al., 2019, show that this feature can be exploited to cluster WOs by their failure mode using 

manual or automatic, text mining methods. This application might benefit from the addition of other 

features of the health history data. 

2.1.3.5 Long Text 

The ‘long text' feature is a free text description of the notification and of the WO of unlimited length. 

For corrective maintenance it often contains semi structured recent entries from the alarm log that 

include alarm codes. These alarm log entries are automatically copied in when the notification is 

created and are typically error free. It can also contain unstructured notes made by the maintenance 

team relating to faults or to maintenance activities, particularly if these are considered unusual. 

2.1.3.6 Alarm Code 

Some WOs are labelled with an alarm code5. This label is used to identify the failure mode. Ørsted 

decide which alarm code to use by a combination of automatic and manual methods, where wind 

turbine experts’ identification of the most important alarm code supplements automatic methods. 

2.1.4 Database of Material Consumption 

The material consumption database lists what parts were used in the maintenance of the OWTs. Each 

Material consumption Line Item (MLI) refers to a single part number and is assigned to an order 

number. Some WOs have no material consumption line items assigned to them while others have 

many. Materials include replacement parts as well as consumables such as oil, grease or paint. The 

 

Alarm codes were described in section 2.1.1. 
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‘material’ feature is the part number: the identifier of the design of the part. The ‘description’ feature 

describes the part. The material consumption records contain various timestamps: the ‘posting date’ 

and the ‘reserved date’ which are both typically input by the planner. The ‘reserved date’ refers to 

when the part was reserved for use and the ‘posting date’ refers to when the part was used. 

2.1.5 Conclusion to Existing Records of Wind Turbine Health History 

This section has described four offshore wind turbine databases that this research has had the benefit 

of access to. Each of these four databases relates to the same maintenance activities on the same 

wind turbines and was generated as part of the maintenance of Ørsted’s wind farms. The database of 

WOs and the database of material consumption are linked together by order numbers. The database 

of outages is generated from the database of alarms and so linking these two together will be fairly 

trivial. The gap in knowledge is how to link these two sets of maintenance data together. This thesis 

will address this gap by presenting techniques that join WOs to outages to identify an enriched health 

history. It will do this using features of all four of the databases that have been presented in this 

section. 
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2.2 Existing Record Linkage Techniques 

Record linkage techniques aim to determine whether pairs of data records describe the same entity. 

This thesis presents new record linkage techniques and applies these as well as existing record 

linkage techniques in the field of Offshore Wind Turbine (OWT) maintenance. This section explores 

the state of the art of record linkage techniques. Record linkage becomes non-trivial when the records 

do not share a unique key. OWT outages are not currently labelled with an order number, making it 

uncertain which records relate to the same event. Methodologies for linking records under uncertainty 

are known as Probabilistic Record Linkage (PRL) techniques. 

This review included Durham University Library searches of the literature of for terms including “wind 

turbine”, “maintenance”, “record linkage”, “work order” and “condition-based maintenance”. It found 

that there is very little literature on linking wind turbine maintenance records to records of alarms or of 

outages. The one published reference to it is in Papatzimos et al., 2017, in which OWT WOs are 

linked to alarms using a single feature; a timestamp. Papatzimos et al., 2017, do not publish any 

measures of the quality of the classification of this technique, however the literature reviewed in this 

section and the results presented in this thesis show that the quality of record linkage can be 

increased by using more features. Record linkage techniques have been used to link medical records 

(Sayers et al., 2015, Nasseh and Stausberg, 2016, Oliveira et al., 2016), address data (Churches et 

al., 2002, Comber et al., 2019, Lin et al., 2019), census data (Jaro, 1989, Smith et al., 2016) and 

genealogical records (Wilson, 2011) and they have been used to detect duplicate internet search 

results (Hajishirzi et al., 2010). This thesis will present new record linkage techniques and will apply 

these as well as existing record linkage techniques in the field of offshore wind turbine maintenance. 

PRL techniques join two databases together to create a new database in which each row represents 

one Pair Of Linked Records (POLR). They compare ensembles of partially-identifying, non-unique 

data items between pairs of records (Dunn, 1946, Churches et al., 2002). They could compare each 

record in one database with each of the records in the other database but this would be 

computationally expensive and can lead to inaccuracy (Sadinle & Fienberg, 2013) so they instead split 

the data into smaller blocks to disregard very unlikely POLRs. They compare features in the data sets 

being linked together to generate a comparison vector containing comparison features. For example, 

in address matching, comparison features typically include “house number matches” and “post code 

matches”. PRL techniques combine an ensemble of comparison features by weighting each 

dimension of the comparison vector to give an overall score indicative of the probability that each 

POLR is a true match. To compute a score for a given POLR, a weight is added for each feature. If the 

two records agree on the feature, a so called ‘agreement weight’ is added. If they disagree, a 

‘disagreement weight’ is added. If one or both records have no data for the feature, then neither 

weight is added. PRL techniques require a sample “Gold Standard” Set of Linked Records (GSSLR) to 
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determine the optimum weighting. Such a sub-sample can be determined by clerical review (Dunn, 

1946). 

2.2.1 Measures of the Quality of Classification 

This section will define selected measures of the quality of classification, some of which are used in 

the record linkage literature and others that are not but are included to illustrate why they are not used. 

Christen, 2012, is a key reference book that reviews record linkage techniques. It explains measures 

of the quality of classification. These measures use the number of True Positives (TP), of False 

Positives (FP), of True Negatives (TN) and of False Negatives (FN). Many record linkage applications 

have a large and unimportant number of TNs and so the record linkage literature uses those 

measures that do not use true negatives (Christen, 2012). 

TPR and FPR were defined by equation 1.5 and 1.6 respectively. 

 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1.5) 

 
𝐹𝑃𝑅 =  

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

(1.6) 

True Negative Rate (TNR), (otherwise known as specificity or selectivity), defined by equation 2.1, 

measures the proportion of actual negatives, that is true negatives and false positives, that are 

correctly identified as such and it obviously takes account of true negatives. 

 
𝑇𝑁𝑅 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(2.1) 

Positive Predictive Value (PPV), defined by equation 2.2, measures the proportion of classified 

matches that are correctly identified as such. In the record linkage and classification literature it is 

referred to as precision, however it is not analogous to the closeness of a set of measurements to 

each other and so to avoid confusion this thesis will refer to it as PPV. 

 
𝑃𝑃𝑉 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2.2) 

True negatives are important in medical research and in CBM because it is significant if a patient does 

not have a condition or if a device does not have a fault. In such cases TPR, FPR and TNR are 

appropriate measures of the quality of classification. On the other hand, true negatives are numerous 

but unimportant in record linkage, in pattern recognition and in information retrieval and so they should 

not be considered in these disciplines. PPV and TPR are appropriate measures of the quality of 

classification in these disciplines because they do not use true negatives. (Christen, 2012). 
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2.2.2 Probabilistic Record Linkage 

This section will review PRL techniques. Techniques described by Fellegi and Sunter, 1969, for 

Probabilistic Record Linkage (FSPRL) are commonly used in record linkage to determine what weight 

to put on each feature (Christen, 2012). They make the simplifying assumption that each feature is 

independent of the other features, but despite this they achieve useful results in practice. Wilson, 

2011, showed that performance can be improved by not making this assumption. 

Wilson, 2011, used neural networks to adjust the agreement and disagreement weights to overcome 

errors caused by Fellegi and Sunters independence assumption. By observing the effect of weights on 

TPR and PPV and adjusting weights accordingly, neural networks avoid assigning too much weight to 

those features that correlate with other features. If some of the inputs are correlated, the neural 

networks training algorithm will tend to adjust weights to account for this whereas the FSPRL 

approach will not. 

Wilson, 2011, also use what they refer to as ‘full features’, where each feature, such as ‘given name 

agrees’ or ‘given name disagrees’, is replaced by a range of features such as ‘given name agrees 

well’, ‘given name agrees weakly’ and so on. They show that neural networks and full features yield 

dramatic improvements in the quality of record linkage. 

2.2.3 Natural Language Processing 

This section will present Natural Language Processing (NLP) techniques, (otherwise known as 

linguistic analysis techniques) used in record linkage (Rubenstein and Goodenough, 1965, Mikolov et 

al., 2013, Sayers et al., 2015, Comber et al., 2019, Lin et. al., 2019). 

The Levenshtein distance between two text strings is the minimum number of single-character edits 

required to change one string into the other. Sayers et al., 2015, use the Levenshtein distance to 

compare text strings for the linkage of medical records. This thesis uses the Levenshtein distance and 

further work could use the more complex techniques described in the remainder of this section. 

Rubenstein and Goodenough, 1965, present what linguists refer to as the distributional hypothesis: 

That the more semantically similar two words are, the more distributionally similar they will be, and 

thus the more they will tend to occur in similar linguistic contexts. One application of the distributional 

hypothesis is word vectorization; a methodology in natural language processing that maps words or 

phrases from vocabulary to a corresponding vector of real numbers. The vectors are often compared 

by their cosine similarity (for example, Comber et al., 2019). Unlike scalar string comparison 

techniques such as the Levenshtein distance, vector techniques have been shown to find semantic 

and syntactic relationships between words without training. 
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In the information retrieval literature (Mikolov et al., 2013), accuracy, defined by equation 2.3, 

measures the proportion of correctly classified instances. It is not analogous to the closeness of a set 

of measurements to a specific value. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(2.3) 

Mikolov et al., 2013, published Word2vec, a word vectorization algorithm intended to maximise 

accuracy and to minimise computational complexity. Low computational complexity made it possible to 

compute high dimensional word vectors from a large data set6. They presented two neural probabilistic 

language model architectures: The continuous bag of words architecture predicts the current word 

based on the context, and the Skip-gram predicts surrounding words given the current word. These 

were trained using stochastic gradient descent and backpropagation. They used the Google News 

corpus for training the word vectors. This is a very large corpus, containing about 6 billion words, but 

they restricted the vocabulary size to the 1 million most frequent words. 

Figure 2-2 shows accuracy (defined in equation 2.3) on a subset of their semantic-syntactic word 

relationship test set using word vectors from the continuous bag of words architecture with limited 

vocabulary. Semantics is the study of meaning in language and syntax is the set of rules, principles, 

and processes that govern the structure of sentences. Their models do not have any input information 

about word morphology: the analysis of the structure of words and of parts of words. This limits the 

accuracy as a question is assumed to be correctly answered only if the closest word to the vector 

computed is the same as the correct word in the question; synonyms are counted as mistakes. 

Mikolov et al., 2013, said that their data showed that adding more dimensions or adding more training 

data provides diminishing improvements. This thesis presents their results on a logarithmic scale in 

Figure 2-2. It shows that with high dimensionality there are improvements in accuracy from using more 

training data. This did not show up on the linear scale in their paper. This additional observation does 

not contradict those of the authors. 

 

6 Figure 2.6 shows the size of the data set used by Mikolov et al., 2013. 
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Figure 2-2, Accuracy on a Subset of the Semantic-Syntactic Word Relationship Test Set, using Word 

Vectors from the Continuous Bag of Words Architecture with Limited Vocabulary. 

Based on data from Mikolov et al., 2013 

Comber et al., 2019, parse address sequences into features to convert their raw data into a structured 

format for comparison. They train word2vec on 29.6 million parsed postal addresses. Their algorithm 

maps words sharing the same context closer together in the vector space by feeding successive 

address features into the model.  

The technique used by Comber et al., 2019, for measuring the quality of record linkage does not use a 

GSSLR. They instead measure the quality of record linkage using a questionable technique: They test 

their results against an automatically generated ‘ground truth’ dataset consisting of a hundred 

thousand pairs of ‘correctly linked’ address records that they generate by copying a list of addresses. 

They simulate incorrectly linked records by introducing error characteristics to the correct records. The 

match status of these synthetic non‐matches is always set to false, meaning that their machine 

learning techniques learn the representations of non‐matched addresses for what they call “highly 

nuanced cases”. However, typographic errors are not proof of an incorrect POLR. Incorrectly linked 

records could alternatively have been simulated by randomly linking the records. Comber explained 

this in a personal note: 

“We found the problem with simulating random links between addresses is that the 

trained classifier loses discriminative power. i.e. its performance actually diminished in 

cases where we were comparing two highly similar addresses that were only 

differentiated between, for example, "2A, West street, SW14 8RF" and "2B, West 

street, SW14 8RF"” 

Lin et. al., 2019, train a word2vec model with dimensionality of 256 words to transform address 

records into vector representations. They then apply an enhanced sequential inference model; they 
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achieve local inference between two compared address records using a modified decomposable 

attention model: a neural architecture and they achieve global inference between two compared 

address records using a bidirectional long short-term memory: a recurrent neural network architecture. 

They simulate incorrectly linked records using the same method as Comber et al., 2019. 

Neither Comber et al., 2019 nor Lin et. al., 2019, have access to a GSSLR to compare their results 

against and so the measurements of the quality of classification that they present are compromised. 

2.2.4 Conclusion to Existing Record Linkage Techniques 

This section reviewed the literature on record linkage. All the publications cited (except for Papatzimos 

et al., 2017) measure the quality of record linkage, but none of them assesses the confidence that can 

be placed in those measures. This means that the uncertainty caused by the size of the gold standard 

is not quantified. Chapter 6 will address this gap with a review of the mathematical literature on 

interval estimation for a binomial proportion. 
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2.3 Classification Techniques 

This research required a statistical technique that can model the probability that a dependent variable 

that can take only certain discrete values (otherwise known as a label or as the outcome) belongs to a 

specific class (otherwise known as a category). Classification algorithms categorise data into a given 

number of classes, predicting the class of a discrete dependent variable by analysing a dataset 

(otherwise known as covariates, predictors, or explanatory variables). Most of the publications that this 

research found on such problems address the automatic detection of spam emails (unsolicited 

messages sent in bulk).7 

This section presents a variety of methods for probabilistic classification; classification methods that 

use statistical inference to find the best class for a given instance. Probabilistic classification 

techniques model the probability that an observation belongs to a specific class, select the class with 

the greatest probability and assign the observation to that class. 

2.3.1 Linear Regression 

Linear regression models the relationship between variables by fitting a linear equation to continuous 

data. It is the linear form of regression analysis, the statistical processes that estimate the 

relationships between a dependent variable and one or more independent variables (otherwise known 

as predictors, covariates, explanatory variables or features). While it is not used for classification, 

because continuous data do not reflect the probability that a binary or multiclass dependent variable 

belongs to a specific class, it is a very popular statistical technique. It is used to assess the degree of 

correlation between two properties of a sample or to compare such a correlation to relationships 

predicted by theory. It has been used, for example, in medicine, to forecast life expectancy (Aalen, 

1989), in astronomy, to study the structure of the universe by determining the distance to celestial 

objects (Isobe et al., 1990) and for facial recognition, technologies that measure and match people’s 

facial characteristics for their identification or surveillance (Naseem et al., 2010). 

 

7 Section 4.4.4.3.2 will present a technique that uses BNB classification to link WOs to outages by the 

exploitation of material consumption records. It will present results showing that BNB classification is 

not an appropriate technique for this application; testing the hypothesis that an the relationship 

between an OWT failure mode and whether each class of spare part was used for the repair is 

analogous to the relationship between whether or not an email is spam and what words are in the 

email and finding that this analogy didn’t work. It will then present a simplified technique, developed as 

part of this research, that has some of the characteristics of BNB classification. 
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Linear regression algorithms fit a trendline to a data set with 2 dimensions, a plane to a data set with 3 

dimensions or a hyperplane to a data set with more dimensions. They use an estimator, a measure of 

the ‘goodness of fit’ of a statistical model, to assess how closely the trendline fits the data and they 

maximise this estimator by optimising the intercept and gradient of a straight line. A popular estimator 

used by regression algorithms is the ordinary least squares estimator (Gross and Groß, 2003), 

denoted r2, which measures the distance, in the direction of the dependent variable, between the 

trendline and each data point. r2 is one minus the ratio of the sum of the squares of these distances to 

the variance of the dependent variable; it results in a value between zero and one and a higher value 

implies a tighter correlation. A linear regression algorithm fits a trendline to data by maximising the 

estimator. Linear regression is not a classification technique but is included here to differentiate it from 

logistic regression. 

2.3.2 Logistic Regression 

The logistic function is defined by equation 2.4. It results in a value between zero and one. Logistic 

regression uses the logistic function to model the probability that a dependent variable belongs to a 

specific class, given continuous data. The dependant variable can either be binary or multiclass. 

 
𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑥) =  

1

1 + 𝑒𝑥𝑝(−𝑥)
 

(2.4) 

The likelihood function is the probability that the logistic function would produce the training data. 

Maximum likelihood estimation maximises the likelihood function. Logistic regression fits a logistic 

function to training data by maximum likelihood estimation. 

Logistic regression is widely used; for example, in medicine, it has been used to test the significance 

of the null hypothesis that two alternative treatments are equally liable to induce an unwanted side 

effect (Cox, 1958, Hosmer et al., 1991) and to identify risk factors for diseases (Tierney et al., 1985, 

Festa et al., 2005) and it has been used in behavioural ecology to analyse the behaviour of animals 

(Koster and McElreath, 2017). 

This technique can model the probability that a dependent variable belongs to a specific class, as 

required for the application of predicting the probability that a WO matches a particular outage using 

material consumption data. 

2.3.3 Support Vector Machines 

Hyperplanes are decision boundaries used to classify data points. They have n dimensions where n+1 

is the number of dimensions of the data. Data points falling on either side of the hyperplane are 

modelled as belonging to different classes. Support Vector Machines use those data points that fall 

close to the hyperplane to determine its position and orientation (Cortes and Vapnik, 1995). They are 
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used for text classification (Joachims, 1999, Rezaeian and Novikova, 2020), image classification (Lin 

et al., 2011) and handwriting recognition (Bahlmann et al., 2002). 

This technique can model the probability that a dependent variable belongs to a specific class, as 

required for the application of predicting the probability that a WO matches a particular outage using 

material consumption data. 

2.3.4 K-Nearest Neighbours 

K-nearest neighbours classification identifies the distances between a query and all the examples in 

the data, it selects the specified number of examples (K) closest to the query, and then votes for the 

most frequent label. (Fix and Hodges, 1989, Altman, 1992). Similarly to Support Vector Machines, it is 

also used for text classification (Dharmadhikari et al., 2011), image classification (Imani, 2021) and 

handwriting recognition (Lee, 1991). 

This technique can model the probability that a dependent variable belongs to a specific class, as 

required for the application of predicting the probability that a WO matches a particular outage using 

material consumption data. 

2.3.5 Decision Trees 

A decision tree is a branching model of decisions. Classification by decision trees fits a model to a 

dataset using a cost function (Doyle, 1973). Similarly to Support Vector Machines and K-nearest 

neighbours, they are also used for text classification (Sakakibara et al., 1993), image classification (Xu 

et al., 2021) and handwriting recognition (Takagi, 2006). 

This technique can model the probability that a dependent variable belongs to a specific class, as 

required for the application of predicting the probability that a WO matches a particular outage using 

material consumption data. 

2.3.6 Bernoulli Naïve Bayes Classification 

A multi-variate Bernoulli model is a probabilistic model trained using binary data. Naïve Bayes 

methods are commonly used for text classification, typically spam filtering, where binary data are 

generated by checking whether or not a word is used in the email, rather than counting how many 

times the word is used (Kim et al., 2006, Almeida et al., 2011, Jiang et al., 2012, Zhang et al., 2016, 

Xu, 2018, Rezaeian and Novikova, 2020). Bernoulli Naïve Bayes Classification has also been used in 

authorship attribution (Altheneyan and Menai, 2014), sentiment analysis (Abbas et al., 2019), medical 

diagnosis (Al Aidaroos et al., 2012), veterinary diagnosis (Kuncheva 2006) and software defect 

prediction (Arar and Ayan, 2017). 
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The naïve Bayes classifier makes the so called naive Bayes assumption: this is that all of the 

attributes of the examples are independent of each other given the context of the class; for example, 

that the probability of each word occurring in an email is independent of the occurrence of other 

words, given that it is, or is not, a spam email. 

The multi-variate Bernoulli model considers both the probability of occurrence for attributes that do 

occur in the event (such as the probability of occurrence for words that do occur in the email), and, 

importantly, also the probability of non-occurrence for attributes that do not occur in the event. 

Bayes' theorem is stated in equation 2.5. It identifies the posterior probability of A given B (𝑃(𝐴|𝐵)), 

the conditional probability of event A occurring given that B is true, using: 

• The likelihood of A given a fixed B (𝑃(𝐵|𝐴)), that is the conditional probability of event B 

occurring given that A is true 

• The prior probability (𝑃(𝐴)), that is the unconditional probability of observing A 

• The marginal probability (𝑃(𝐵)), that is the unconditional probability of observing B. 

 
𝑃(𝐴|𝐵) =  

𝑃(𝐵|𝐴). 𝑃(𝐴)

𝑃(𝐵)
 

(2.5) 

A Bayesian learning framework can be used for supervised learning with labelled training examples. It 

uses training data (such as emails labelled either as spam or as not spam) to estimate model 

parameters (such as the probability of a word being used (or not being used) in an email, given that 

the email either is or is not spam). It next classifies new events using Bayes' theorem to calculate the 

posterior probability that a class would have generated the test event in question (such as the 

probability that a spam email would contain certain words and would not contain certain other words). 

Finally, it performs classification by selecting the class with the highest probability (such as predicting 

that an email is or is not spam). 

This technique can model the probability that a dependent variable belongs to a specific class, as 

required for the application of predicting the probability that a WO matches a particular outage using 

material consumption data. 
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2.3.7 Conclusion to the Classification Techniques 

This section reviewed standard classification techniques. Any of the techniques reviewed in sections 

2.3.2 to 2.3.6 can be used for classification. Section 4.4.4.3.2 will present two techniques: a technique 

using a Bernoulli Naïve Bayes (BNB) classifier and a frequency-based technique. It will show that BNB 

classification does not support useful interpretation with the unbalanced health history data but that 

the frequency-based technique does. This research selected BNB classification because it is designed 

to work with binary input data, and assumed that the use of a particular part would indicate the failure 

more rather than how many of that part were used. Further work could test the frequency-based 

technique and the various standard classification techniques against each other in a side by side 

comparison. 
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2.4 Techniques for Global Optimisation 

Global optimisation is a branch of applied mathematics that attempts to find the global minima or 

maxima of a function by choosing the system parameters. Most techniques for optimisation can find a 

minimum but not all can find the global minimum of systems where the variable space contains 

multiple distinct minima (Olson 2012). The following sections will review two appropriate techniques 

for global optimisation. Section 7.6 will use the most appropriate of these techniques for the 

optimisation of the weights and thresholds used in the PEOHH. 

2.4.1.1 Brute Force 

The “brute force” method computes a function’s value at each point of a multidimensional grid of 

points. The process for global optimisation by brute force defines this multidimensional grid of points 

as a list of values for each of the system parameters, for example a minimum, maximum and step. 

This method has the advantage that it makes no assumptions about the structure of the system that it 

is investigating and so if the optimum value of each parameter is listed, then the optimum value will be 

found. The optimal parameter value can be missed if it lies outside of the range or if it lies between the 

steps. If the Number of Parameters is NP and the Number of listed Values of each parameter is NV 

then the number of grid points to evaluate is NVNP. For example, to try 11 values for each of the 28 

parameters would require 1128 evaluations. This issue, referred to as the ‘curse of dimensionality’, 

means that the brute force method is unfortunately too computationally expensive for this application. 

2.4.1.2 Differential Evolution 

An evolutionary method is an optimisation method that uses mechanisms inspired by some features of 

evolution; mutation, recombination and selection (Schwefel, 1995). This section will present 

Differential Evolution (DE); an evolutionary method that optimises a function by maintaining a 

population of candidate solutions and creating new candidate solutions by combining existing ones 

(Storn and Price, 1997). It is a popular technique, used for example in electronic circuit design (Storn 

and Price, 1997), in web services (Rodriguez-Mier et al., 2010), in building energy management 

(Rodriguez-Mier et al., 2019), in wind turbine power curve modelling (Lydia et al., 2013), and in 

interplanetary trajectory design (Labroquere et al., 2014). 

The steps in a DE algorithm are the initialisation of the population, mutation, recombination, 

replacement and evaluation. Unlike most techniques for global optimisation, it does not use derivatives 

and so it is appropriate for discontinuous step functions; for example, in the application of this thesis, 

the optimisation of the Positive Predictive Value (PPV). 

DE methods have control variables that adjust the population size, the mutation rate, the variation in 

the mutation rate (or ‘dithering’) and the recombination rate. This section will present a basic DE 
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strategy. Section 6.2.4 will use this DE strategy to optimise a statistical technique and section 7.6 will 

use it to optimise the thresholds and the agreement and disagreement weights of the PEOHH. 

The literature on DE (Storn and Price, 1997, Abbasa et al., 2017) describes an array of parameters; 

for example, in the application of this thesis, the thresholds and the agreement and disagreement 

weights of the PEOHH expressed as a vector. The number of dimensions of the vector is the Number 

of Parameters to be varied (NP). 

DE generates a set of vectors referred to as population vectors. In each generation, DE operates on 

each vector, referred to as the current vector or target vector (𝑥𝑔
𝑖 ). It identifies each vector of each 

generation by a running index (i), (otherwise known as the vector index), it identifies each parameter 

by a parameter index (j) and it identifies each generation of the evolutionary process by a generation 

number (g). The Population Size (PSi) is the number of population vectors produced in each 

generation. DEs mutation operation creates PSi mutant vectors (𝑣𝑔
𝑖 ), (otherwise known as donor 

vectors). This section will present the most popular DE mutation scheme, called ‘best/1’ because it 

selects the ‘best’ vector and because it uses one mutation term. Storn and Price, 1997 and Abbasa et 

al., 2017 define various DE strategies but for brevity this thesis will only present one of them.  

Equation 2.6 defines the ‘best/1’ strategy using the Mutation Probability (MP) (Storn and Price, 1997, 

Abbasa et al., 2017). The best vector in a population is the vector that yields the best fitness, that is 

the lowest cost function and in the case of the PEOHH, it is the parameter values that yield the highest 

�̂�. The best/1 strategy selects the best vector (𝑥𝑔
𝑏𝑒𝑠𝑡) from the set of population vectors and it 

randomly selects two of the population vectors by their index (𝑟2, 𝑟3).  𝑟2, 𝑟3  ∈  {1,2,3 … 𝑃𝑆} and 

𝑟2, 𝑟3  ≠ 𝑖. It adds the weighted difference between the two random population vectors to the best 

population vector using equation 7.9. 

 𝑣𝑔
𝑖 =  𝑥𝑔

𝑏𝑒𝑠𝑡 + 𝑀𝑃(𝑥𝑔
𝑟2 − 𝑥𝑔

𝑟3) (2.6) 

Dithering is the randomisation of the Mutation Probability (MP). It can increase the speed of 

convergence (Price et al., 2005, Dawar and Ludwig, 2014). Dithering is defined by equation 2.7 using 

the mean Mutation rate (Mu), the Dithering rate (Di) and a uniformly distributed real number in the 

range (−0.5, 0.5) generated anew for every generation (𝑟𝑎𝑛𝑑𝑔(−0.5, 0.5)). 

 𝑀𝑃 =  𝑀𝑢 + 𝐷𝑖 × 𝑟𝑎𝑛𝑑𝑔(−0.5,0.5) (2.7) 

This section will present the most popular DE crossover or recombination scheme; called binomial. A 

trial vector (𝑢𝑔
𝑖 ) is a vector that is created in the crossover operation in which DE mixes the mutant 

vector (𝑣𝑔
𝑖 ) with the current vector (𝑥𝑔

𝑖 ). Equation 2.8 presents the binomial crossover scheme (‘bin’) 
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using the Crossover Rate (CR), (otherwise known as the crossover probability or recombination 

constant), the vector index (i), the parameter index (j), the generation number (g), a uniformly 

distributed real number in the range (0, 1) generated anew for every parameter of every vector 

(𝑟𝑎𝑛𝑑𝑗
𝑖[0,1]) and a random integer between 1 and NP (𝑗𝑟𝑎𝑛𝑑) generated anew for every parameter of 

every vector. (Storn and Price, 1997, Dawar and Ludwig, 2014, Abbasa et al., 2017). A larger CR 

increases the mixing of the parameters to perturb the population more and can help the search to get 

out of multi-dimensional ‘dips’ to find whether there is a lower minimum elsewhere. 

 
𝑢𝑗,𝑔

𝑖 = {
𝑣𝑗,𝑔

𝑖 , (𝑟𝑎𝑛𝑑𝑗
𝑖[0,1] ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑗,𝑔
𝑖 , 𝑒𝑙𝑠𝑒

 
(2.8) 

In each generation and for each vector of the population, DE selects the fittest option between the trial 

vector (𝑢𝑔
𝑖 ) and the current vector (𝑥𝑔

𝑖 ). Equation 2.9 presents DEs selection operation where the 

fitness function calculates the value of the objective function, for example, in the application of this 

thesis, it calculates the PPV from a vector of thresholds and the agreement and disagreement weights 

of the PEOHH (𝑢𝑔
𝑖  or 𝑥𝑔

𝑖 ). 

 
𝑥𝑔

𝑖+1 = {
𝑢𝑔

𝑖 , 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑢𝑔
𝑖 ) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑔

𝑖 )

𝑥𝑔
𝑖 , 𝑒𝑙𝑠𝑒

 
(2.9) 

Convergence criteria are the criteria at which the solving stops because DE has converged 

sufficiently. DE uses the convergence criteria defined in equation 2.10. The Population Energies (PE) 

are a table of the function evaluation for each population vector (Sandell, 2020). The Absolute 

Tolerance (AT) is set to the default value of 0. The Relative Tolerance (RT) is set to the default value 

of 0.01. These are the default settings for the convergence criteria of DE. 

 𝜎(𝑃𝐸) ≤ 𝐴𝑇 + 𝑅𝑇. |𝑃𝐸̅̅ ̅̅ | (2.10) 

DE solving stops either when the convergence criteria have been met or when the maximum number 

of iterations, set at the default value of 1000, is reached. 

2.4.1.3 Conclusion to the Techniques for Global Optimisation 

This section reviewed the “brute force” method of global optimisation and DE and it showed that to 

yield a computable result in the multi-dimensional application of this research it will be necessary to 

use DE. Chapter 7 will present its application. 
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2.5 Conclusion to the Background 

This background chapter has presented a description of the existing records of OWT health history 

that this project has benefitted from access to, the state of the art for record linkage (used in chapters 

3 and 4), a classification technique (used in section 4.4.4.3.2) and a global optimisation technique 

(used in section 7.6). 

This chapter has identified a gap in the literature that techniques joining wind turbine WOs to alarms 

and to outages are only described in one publication. This publication, Papatzimos et al., 2017, links 

offshore wind turbine WOs to records of control system alarms. It uses a single feature; a timestamp, 

but this literature review has shown that multi-feature record linkage techniques outperform single-

feature record linkage techniques. 

This thesis will address that gap in the literature by presenting new techniques that link together 

existing records of WOs and outages to determine and validate an Enriched Health History (EHH). 

Section 1.2 predicted that this will enable improvements in the maintenance of OWTs in the areas of 

maintenance scheduling, troubleshooting, CBM and in the measurement of the effectiveness of 

maintenance activities. 

The literature on record linkage does include measures of the quality of record linkage but Papatzimos 

et al., 2017, do not measure the quality of their record linkage. The literature does recognise that a 

small GSSLR can only yield an uncertain estimate of the quality of record linkage but it does not 

quantify this uncertainty. The literature also measures the quality of record linkage but it does not 

assess the confidence that can be placed in those measures. When applied to maintenance, 

understanding this uncertainty informs maintenance decision making; which, as section 1.2 showed, 

can improve productivity. Chapter 6 will review statistical techniques that will be used in chapters 7 

and 8 to assess that confidence.  
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3 Evaluating Health History Enrichment 

This chapter discusses the aims behind the methodology used in the Process for the Enrichment of 

OWT Health History (PEOHH) developed in this research and the assessment of the success of the 

PEOHH. It discusses which of the measures of the quality of classification presented in section 2.2.1 

are appropriate for this research and it develops a new measure based on these. 

Chapter 2 identified a gap in the literature that multi feature record linkage techniques have not been 

used to improve maintenance strategies. This thesis presents new record linkage techniques and 

applies these as well as existing record linkage techniques in the field of OWT maintenance, as 

described in the following Research Question (RQ): 

RQ1 To enable improvements in WT CBM & troubleshooting, how can WT health history be 

enriched? 

Chapter 4 will present a process for linking together existing records of OWT health history to identify 

an Enriched Health History (EHH). These records, all described in section 2.1, are the: 

• database of alarms 

• database of outages 

• database of Work Orders (WO) 

• database of material consumption 

Ørsted generated the database of outages from the database of alarms and so linking these together 

is trivial since the records timestamps can be used as an index. The database of material usage is 

labelled with WO numbers and so linking these together is also trivial, since the order number can be 

used as an index. For reasons that were discussed in chapter 1, it is important to link WOs to records 

of outages and literature searches up to 2021 did not find such techniques described. In this thesis, a 

Pair of Linked Records (POLR) is generated when a single WO is linked to a single outage record. 

Record linkage is not a new area of research but applying it to maintenance records is. 

Each POLR is either correct (the WO does refer to the same event as the outage) or it is incorrect (the 

WO refers to a different event to the outage).  
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The probability that any given POLR in the EHH is correct (P) is the probability that the WO does refer 

to the same event as the outage. If P can be predicted, then the EHH could be filtered by P. This 

would identify a filtered EHH in which each record was of at least a minimum value of P. If the quality 

of record linkage is not always perfect, then filtering would be beneficial for the applications detailed in 

section 1.2. For example, in the application of troubleshooting, a developer might filter the EHH to only 

include higher scoring POLRs to increase the quality of the EHH. With a high quality EHH its quantity 

is lower. The optimum depends on the application, where some applications benefit from a higher 

quality EHH and other applications benefit from a larger quantity of EHH data. For example, it is 

important to operators that maintenance technicians have confidence in the analytic tools that are 

made available to them. An analytic tool that recommended that technicians take parts that they would 

be unlikely to need might not win the confidence of technicians. In that case, a higher quality EHH 

would help to win the confidence of the technicians. On the other hand, if the tool were well 

understood by the technicians then they might choose a larger quantity EHH, so as to bring parts that, 

while unlikely, might turn out to be required for repairing their OWTs. As new wind farms are 

constructed at increasing distance from shore, the optimum set of spare parts will tend to get larger. 
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3.1 Validation 

If the EHH were to contain incorrect information then this would be detrimental to any application of it. 

Verification, Validation and Testing (VVT) are techniques that together assess whether a product, 

service, or system meets requirements and specifications and fulfils its intended purpose. This section 

will introduce the processes that later chapters use for the VVT of the PEOHH. This thesis uses VVT 

terminology from Balci, 1994, Robinson, 1999, Sargent, 2013 and Hicks et al., 2015. VVT will measure 

the quality of the EHH and this measurement will enable the maximisation of that quality and is 

addressed in the following RQ: 

RQ2 How can the quality of the EHH be validated? 

Figure 3-1 and Figure 3-2  illustrate the techniques that this thesis will use for the VVT of the PEOHH. 

This thesis breaks this process down into four sub processes:  

• Data validation: validation of the existing records of health history against the EHH, best 

carried out after the validation of the EHH. It results in measures of the quality of the existing 

records of health history down to a level of detail that can for example predict the confidence 

that a WO start date is accurate. 

• Conceptual model validation: validation of the conceptual record linkage models against the 

existing records of health history, testing the assumptions behind each model. 

• Computational model verification: verification of the computational models against conceptual 

models. This involved the checking of each line of code to identify errors and to check logic as 

well as running a manual test on each algorithm, checking that it works correctly and that it 

does not contain coding errors. 

• Operational validation: Operational validation is the comparison of the model (or in this case 

the EHH) to reality. Reality is represented in this case by a gold standard sub-sample. Section 

2.2 presented existing record linkage techniques. It was described in that section that “PRL 

techniques require a sample “Gold Standard” Set of Linked Records (GSSLR) to determine 

the optimum weighting. Such a sub-sample can be determined by clerical review (Dunn, 

1946).” A clerical review by a wind turbine expert at Ørsted and this author8 identified the 

GSSLR. 

 

8 The clerical review will be described in section 4.3, as will a semi random method that will be used to 
identify a set of WOs that is representative of the more important WOs, as only these will be included 
in the GSSLR. 
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Figure 3-1, Conceptual Model Validation and Computational Model Verification 

 

 

Figure 3-2, Data Validation and Operational Validation 

 

All four of these forms of validation are essential but operational validation is the most important.9 

The PEOHH uses an ensemble of record linkage techniques to compare features of the WOs to 

features of the outages. Section 2.2 showed that, in the fields of medicine, census data, genealogy 

and in the detection of duplicate internet search results, using an ensemble of record linkage 

 

9 The operational validation of the EHH will be discussed in section 4.3 and its results presented in 

chapters 7 and 8. 
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techniques gives a better quality result than using a single record linkage technique. This research will 

test the hypothesis that this also applies in the field of offshore wind turbine maintenance and chapters 

7 and 8 will present the result that it does.  

Section 4.3 will present the techniques that were used by this research for the validation of the EHH. 
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3.2 Measures of the Quality of Record Linkage 

Each of the record linkage techniques that will be presented in chapter 4 is based on a set of 

assumptions; this thesis, however, does not rely on these assumptions but instead it tests them as 

hypotheses. These hypotheses are tested by the validation of a sample from the Enriched Health 

History (EHH) against the Gold Standard Set of Linked Records (GSSLR). Consider a set of WOs, 

each one linked correctly to its corresponding outage. This will be referred to as the ‘true EHH’. All of 

these hypothesis tests rely on the assumption that the GSSLR is representative of the true EHH. The 

GSSLR was randomly selected from the important WOs10 so it will be reasonably representative but a 

larger GSSLR would tend to be more representative11. Later chapters will present measures of the 

uncertainty of how representative the GSSLR is and will compare techniques that use this 

understanding to identify the confidence of the correctness of the EHH. 

3.2.1 True Positive Rate and True Negative Rate 

Measures of the quality of classification were discussed in in section 2.2.1 but as a recap, True 

Positive Rate (TPR), defined by equation 1.5, measures the proportion of true matches that have been 

classified correctly. 

 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1.5) 

Similarly, True Negative Rate (TNR), defined by equation 2.1, measures the proportion of actual 

negatives that are correctly identified as such. 

 
𝑇𝑁𝑅 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(2.1) 

In other record linkage applications, each record might not link to any other records or it might link to 

multiple other records. The PEOHH assumes that each WO links to one outage. This means that 

unlike other record linkage applications, the PEOHH does not generate negative links which means 

that TPR and TNR are unknown. That the PEOHH does not generate negative links does not mean 

that it does not generate false links. This is neither an assumption nor an advantage of the PEOHH; it 

is one of its features. 

 

10 The selection of the GSSLR will be described in section 4.3. 

11 Section 4.3.2 will present the method used in this thesis for the validation of the techniques for 
health history enrichment and will explain that the size of GSSLR, 29 WOs, was constrained by the 
amount of expert time that was available. 
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3.2.2 Positive Predictive Value 

As discussed in section 2.2.1, the Positive Predictive Value (PPV), defined by equation 2.2, measures 

the proportion of classified matches that are correctly identified as such. It indicates the quality of 

record linkage. 

 
𝑃𝑃𝑉 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2.2) 

This thesis will compare a sample from the EHH to the GSSLR. It will calculate the PPV, referred to as 

the PPV of the GSSLR or just as the PPV. A point estimate is a single value estimate of an unknown 

population parameter. The PPV of the GSSLR is a point estimate of the PPV of the EHH. 

The binomial distribution describes the behaviour of a count variable for a fixed number of 

observations where each observation is independent, where each observation has one of two possible 

outcomes and where the probability of each outcome is the same for each observation. The binomial 

proportion is the number of successes divided by the number of trials. The PPV of the GSSLR will be 

modelled as a binomial proportion and chapter 6 will present methods for the estimation of the 

uncertainty of a binomial proportion. To identify the confidence of the correctness of the EHH, section 

7.6.2 will construct confidence intervals (defined in chapter 6) for the PPV of the EHH. 

3.2.3 Negational Positive Predictive Value 

Section 2.2 presented the existing Probabilistic Record Linkage (PRL) techniques: 

PRL techniques combine an ensemble of comparison features by weighting each 

dimension of the comparison vector to give an overall score indicative of the probability 

that each POLR is a true match. 

Where the weight assigned to a dimension of the comparison vector is set to zero, the corresponding 

feature is disregarded for record linkage comparison. This thesis will refer to setting the weight to zero 

as ‘disregard’. Consider disregarding one of the features: the effect of not using a feature is a useful 

measure of the effectiveness of that feature. This thesis presents the Negational Positive Predictive 

Value (NPPV); the Positive Predictive Value (PPV) calculated using all the features except one feature 

or set of features that is disregarded. This measure of the quality of classification is useful because if a 

feature has a low NPPV then the PEOHH can avoid unnecessary computation by excluding it from the 

ensemble of features in the PEOHH. 
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3.3 Measures of the Richness of Health History  

The claim that the health history has been enriched must be tested. This thesis is interested in 

whether the health history has been made more useful for the applications detailed in section 1.2. This 

thesis defines the richness of a health history data set as how much useful information it contains on 

each fault including the time that it occurred, the failure mode and the severity. The severity of a fault 

is determined by how much production was lost and the cost of repair. This section introduces the 

following RQ: 

RQ3 How can the richness of historical data on wind turbine health be measured? 

By joining work orders to outages, the PEOHH develops a new, integrated database, the EHH, that 

contains both information from the WOs such as material consumption and work hours and 

information from the database of outages such as lost production. It enriches the health history by 

joining these records together, enabling applications of the health history that improve maintenance 

such as the applications detailed in section 1.2. 

For the applications detailed in section 1.2, the EHH that is required only describes corrective work, 

excluding preventive, retrofit, inspections and surveys and condition-based work. The PEOHH filters 

the WO data by type to include only corrective work. 

Chapter 4 will frame RQ1 and chapter 7 will answer it. Sections 2.2 and 3.1 addressed RQ2. This 

section has presented RQ3 which will be addressed in Chapter 8, which will also discuss what is 

meant by enrichment and will quantify the uncertainty of the measures of enrichment. 

3.4 Conclusion to Evaluating Health History Enrichment 

This chapter has presented the theory that underlies the validation of the PEOHH. It has presented 

measures of the quality of record linkage that will be used in the following chapters to optimise and to 

validate the PEOHH. It has identified the research questions that will be addressed by this thesis. 

Chapter 8 will present measures of the richness of health history and will use them to validate the 

claim that the health history has been enriched. 
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4 Techniques for Health History Enrichment 

Chapter 3 presented the techniques that will be used to evaluate the Process for the Enrichment of 

OWT Health History (PEOHH) developed in this research and identified the following research 

question (RQ): 

RQ1 To enable improvements in WT CBM and troubleshooting, how can WT health history be 

enriched? 

This chapter introduces the PEOHH. This process joins together four existing records; a database of 

alarms, a database of outages, a database of Work Orders (WO) and a database of material 

consumption12. Section 4.1 will present the PEOHH but will not detail the techniques that the PEOHH 

uses. Section 4.2 will discuss how this research developed the process. The techniques used for the 

validation of the PEOHH will be presented in section 4.3. The techniques that the PEOHH uses, 

structured by the type of feature that the technique uses, will be presented in section 4.4. This 

research selected a single wind farm for the development of the techniques that this thesis presents. 

The identity of the farm is commercially privileged information and to protect its anonymity the reasons 

for selecting it are not discussed in this thesis, but it is a relatively mature farm and therefore has a 

useful amount of maintenance history available, which would not be the case with a more recent wind 

farm. Table 4-1 presents the size of these existing records of OWT health history. The number of 

material consumption line items in Table 4-1 includes parts used for all types of maintenance. This 

should not be confused with the number of parts used as each material consumption line item details 

a quantity of material, for example a number of parts or a volume of paint or oil. 

  

 

12 The existing records of wind turbine health history were described in section 2.1. 
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Table 4-1 gives the number of corrective13 WOs rather than the total number of all types of WO 

because, for reasons that will be presented in Section 4.4.2, the PEOHH filters the WO data by order 

type to include only corrective work orders. The population size of 9.82x10
3
 WOs and a larger number 

of alarms, outages and Material Consumption Line Items (MLI) is smaller than that required by some 

Natural Language Processing (NLP) techniques14 but chapter 8 will show that this dataset is large 

enough for this research to derive statistically robust results. 

 Count 

Alarms 6.70x106 

Outages 5.32x104 

Corrective WOs 9.82x103 

MLIs 1.35x104 

Table 4-1, Size of the Existing Records of OWT Health History 

 

  

 

13 Section 2.1.3.3 presented the WO ‘type’ feature which classifies each WO as either preventive, 

retrofit, inspections and surveys, condition-based or corrective. 

14 NLP techniques were described in section 2.2.3. 
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4.1 Process for the Enrichment of OWT Health History 

Section 2.2 presented existing record linkage techniques and introduced blocking: 

“Probabilistic Record Linkage (PRL) techniques join two databases together to create a 

new database in which each row represents one Pair Of Linked Records (POLR). PRL 

techniques could compare each record in one database with each of the records in the 

other database but this would be computationally expensive and can lead to inaccuracy 

(Sadinle and Fienberg, 2013) so they instead split the data into smaller blocks to 

disregard very unlikely pairs. They compare features in the data sets being linked 

together to generate a comparison vector containing comparison features” 

Any record linkage approach that did not include blocking would be computationally intractable. 

The first step of the PEOHH is to join WOs to outages to create POLRs. It uses the WO start date for 

blocking after this research elicited the opinion from wind turbine experts that the technique that uses 

this feature would be the most effective. The PEOHH could have only used WOs that have their start 

date on the same day as or during the outage. This would mean that, if there was an error in the 

record of the start date, no POLR would be created and so the other features would not be compared. 

The PEOHH instead adds a 40-day margin to the outage start and finish times to create an extended 

duration. It joins each WO to each of the outages of which the WOs start date lies within the outages 

extended duration.15 the PEOHH creates POLRs using a Python algorithm posted by Stack Overflow 

internet forum user “Josh Friedlander” (Friedlander, 2019). 

The blocking process creates a Set of Pairs Of Linked Records (SPOLR). Some of the POLRs in the 

SPOLR link a WO to the outage that it refers to (true links) but others link a WO to a different outage 

(false links). The aim of this research is that the PEOHH should identify the true links in the SPOLR. 

In record linkage, an agreement pattern is a matrix in which each row represents one POLR, each 

column represents one feature and each value registers agreement, disagreement or neither 

agreement nor disagreement for the corresponding feature and POLR. The PEOHH identifies the 

agreement pattern using techniques that will be detailed in section 4.3.16 

The PEOHH calculates a Weight for each Feature for each POLR (𝑊𝐹𝑒𝑃𝑂𝐿𝑅
) using the Agreement 

Weight for that Feature (𝐴𝑊𝐹𝑒), the Disagreement Weight for that Feature (𝐷𝑊𝐹𝑒) and equation 4.1. 

 

15 This research investigated the effect of varying the 40-day blocking threshold and the results are 
presented in section 7.1. 

16 Chapter 5 will illustrate the agreement pattern by linking two example WOs to outages. 
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The following pages will present the process used in this research for estimating optimal values of 

𝐴𝑊𝐹𝑒 and 𝐷𝑊𝐹𝑒 for each feature. For any feature for which 𝐴𝑊𝐹𝑒 and 𝐷𝑊𝐹𝑒 for a feature can be set 

to zero without reducing, this research cannot conclude that there is a benefit of calculating that 

feature and so operators might consider disregarding that feature so as to avoid computation with no 

proven drop in the quality of record linkage.17 

 

𝑊𝐹𝑒𝑃𝑂𝐿𝑅
=  {

𝐴𝑊𝐹𝑒 , 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑃𝑂𝐿𝑅

𝐷𝑊𝐹𝑒 , 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑃𝑂𝐿𝑅

0, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 𝑛𝑒𝑖𝑡ℎ𝑒𝑟𝑃𝑂𝐿𝑅

 

(4.1) 

The PEOHH calculates a Score for each POLR (𝑆𝑃𝑂𝐿𝑅), the sum across all the features of the 

𝑊𝐹𝑒𝑃𝑂𝐿𝑅
 using equation 4.2. 

 𝑆𝑃𝑂𝐿𝑅 =  ∑ 𝑊𝐹𝑒𝑃𝑂𝐿𝑅
𝐹𝑒

 (4.2) 

Each POLR in the SPOLR is assigned a unique identifier, ‘match ID’, in order of when the outage 

started. The PEOHH sorts the POLRs by match ID, by ∆𝑡𝑆𝑡
18 and then by 𝑆𝑃𝑂𝐿𝑅 and then it filters the 

POLRs to retain only the first POLR for each WO. This process identifies a version of the EHH with 

the highest 𝑆𝑃𝑂𝐿𝑅 for each WO. Where the highest 𝑆𝑃𝑂𝐿𝑅 scores for a WO are equal, it selects the 

POLR with the smallest ∆𝑡𝑆𝑡; that is the POLR in which the WO start time is recorded closest to or 

during the outage. Where the smallest ∆𝑡𝑆𝑡 scores for a WO are equal, for example where they are 

both zero (that is that the WOs is recorded as occurring during both of the outages) it selects the 

POLR with the smallest match ID; that is the POLR with the outage that started first. Selecting the 

POLR with the smallest match ID is an arbitrary decision taken to keep the results consistent. Two 

power outages cannot happen at the same time on the same OWT and so a WO cannot in reality start 

during more than one outage; however selecting the POLR with the smallest match ID makes the EHH 

consistent even when the PEOHH is working with unrealistic dummy data. 

 

17 Section 7.6.4 will consider the pros and cons of using features where their benefit is uncertain 

18 Section 4.4.1 will define ∆𝑡𝑆𝑡. 
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The PEOHH uses a set of thresholds19 and a set of weightings.20 Each of these will be optimised to 

maximise the Positive Predictive Value (PPV)21, 22. 

For any feature for which 𝐴𝑊𝐹𝑒 and 𝐷𝑊𝐹𝑒 can be set to zero without reducing PPV, this research 

cannot conclude that there is a benefit of calculating that feature and so operators might consider 

disregarding that feature so as to avoid computation with no proven drop in the quality of record 

linkage.23 

This section introduced the PEOHH. It described how the PEOHH was implemented and how it was 

validated. Section 4.4 will present the hypotheses that different features of the health history data can 

be used for record linkage comparison. Chapter 7 will present the use of the GSSLR to optimize the 

weights and thresholds used by the PEOHH and chapter 8 will use it to validate the EHH. If the 

optimized agreement and disagreement weights for a feature are zero, then the hypothesis that this 

feature makes a useful contribution to the process of record linkage will have been disproved. If 

whether they are zero or not is uncertain then the hypothesis will have been neither proved nor 

disproved. If they are not zero, then the hypothesis will have been proved. With a larger GSSLR, the 

confidence of such a conclusion would be higher. 

  

 

19 For example, the Threshold for the Time difference between Outages and Alarms (TTOA) that will 
be defined in section 4.4.4. 

20 For example, the Agreement Weight for the Start time feature (𝐴𝑊𝑆𝑡). Agreement weight was 
defined in this section and the start time feature will be defined in section 4.4.1. 

21 PPV was described in section 3.2.2. 

22 This optimisation process will be described in chapter 7, after all the features have been presented. 
A larger Gold Standard Set of Linked Records (GSSLR) would improve the quality of this optimisation. 

23 Section 7.6.4 will consider the pros and cons of using features where their benefit is uncertain 
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4.2 Development of the Process 

This section will describe how this research decided which record linkage features to investigate. 

This researcher was trained within Ørsted’s Advanced Analytics Lab in how they manually link work 

orders to outages. This training inspired the techniques using timestamps, particularly the Basic start 

Date. It also inspired the technique that uses the WO ‘description’ feature. 

The WO ‘description’ feature is indicative of the failure mode and this inspired the investigation of 

other features indicative of the failure more. 

The feature that uses material usage data is currently implemented as an algorithm that takes some 

time to run but the optimisation of these algorithms was outside of the scope of this thesis. 

Experiments to optimise the PEOHH required these algorithms to be run repeatedly and these made 

up time-consuming tests.24 

Further discussions with data scientists at Ørsted inspired the feature using the order type and the 

feature visits to the wind turbine. 

It was an important breakthrough in this research when it identified that linking records together, such 

as linking WOs to outages, is referred to in scientific literature as record linkage. This realisation 

occurred during the second year of research. This research had already developed some of the 

features of the PEOHH but this literature showed how to combine multiple features.25 

A colleague at Durham University suggested that maintenance vessel tracking logs could be used to 

validate the outage timestamps. These logs show when the vessel visited each turbine and are 

independent of the maintenance records. This research did not investigate this feature because it 

judged that validating the outage timestamps would probably not contribute towards linking WOs to 

outages. Outage timestamps are more accurate than WO timestamps and it was expected that the 

vessel visits would coincide with the outage timestamps but not with the WO timestamps. 

  

 

24 Section 4.5 details and discusses the computation times. 

25 Section 2.2 reviews the literature on record linkage. 
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4.3 Validation 

4.3.1 Aim 

Chapter 3 identified the following research question (RQ) and described various validation processes 

that will be used in this thesis. 

RQ2 How can the quality of the EHH be validated? 

This section will focus on the operational validation of the Enriched Health History (EHH) and will 

present the Process for the Validation of the EHH (PVEHH). This includes the process used for 

selecting a sample from the database of WOs and for matching each WOs in this sample to its 

corresponding outage to identify a sample “Gold Standard” Set of Linked Records (GSSLR) and the 

process for comparing the GSSLR to the EHH. 

4.3.2 Method 

This research selected WOs for the sample using a process that was semi random and semi 

structured. 

This thesis considers significant faults to be those that represent a significant cost to the operator due 

to any combination of lost production, worker time or material cost. It is these faults that analysts 

applying the EHH are interested in identifying in the historical record. The record also includes 

insignificant faults and the repair of these insignificant faults can also be associated with a WO 

recorded as ‘corrective’. The PEOHH filters the WO records to only include those WOs that are 

recorded as ‘corrective’ but to identify the sample the PVEHH filters the corrective WOs again to 

include only those that are significant.  

It is an essential requirement that the validation processes are as independent as possible from the 

process that they validate. It is therefore necessary that the PVEHH is independent of the PEOHH. 

That means that the process for selecting which records are significant could use either the WO 

records or the outage records. The PVEHH should not use the EHH which is those records joined 

together. 

Lost production information is contained in the database of outages whereas worker time, material 

cost and order type information is contained in the database of WOs so to ensure that the PVEHH is 

independent of the PEOHH, the PVEHH could either use lost production information or worker time, 

material cost and order type information to decide which records are significant. This research elicited 

the opinion of Ørsted’s wind energy experts about which features would be required to identify 

important health history events. They all agreed that worker time, the number of person hours 

recorded against the WO, is the most appropriate measure of the importance of faults. This is because 
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faults with significant lost production tend to require significant work to resolve and because work time 

tends to be accurately recorded as it is closely tied to the worker’s remuneration. 

This research identified more important WOs by including only those WOs with worker time booked 

against them. This research could alternatively have selected WOs at random from the full population 

of WOs but this would have resulted in a sample that included unimportant WOs. To identify the 

GSSLR, this research randomly selected a set of WOs from the set of important corrective WOs. 

Random selection was used with the intention of getting a sample representative of the population. 

The researcher and a wind turbine expert with experience of the wind farm in question attended the 

validation meeting. The meeting was designed to elicit the correct outage for each WO in the sample, 

to identify the GSSLR. The researcher read out the WO features that are referred to as wind turbine 

ID, start date and description. At this point, if the wind turbine expert identified a single candidate 

outage to match to the WO then the researcher recorded the outage ID. Alternatively, if there were 

multiple candidate outages then the researcher read out the material consumption and long text for 

the WO. The researcher recorded the outages identified by the wind turbine expert in a table; the 

GSSLR. The GSSLR represents expert experience and this thesis will assume that it is a set of true 

matches although of course it could contain errors. 

As discussed in section 2.2.1, the Positive Predictive Value (PPV), defined by equation 2.2, measures 

the proportion of classified matches that are correctly identified as such and indicates the quality of 

record linkage. 

 
𝑃𝑃𝑉 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2.2) 

This research will identify the PPV of the GSSLR and will use this sample to estimate the PPV of the 

EHH.  

The first operational validation meeting checked 9 WOs in 2 hours. The second meeting checked 5 

WOs in 1.5 hours. These were compared to the automatically generated results. Feedback from this 

validation exercise informed improvements to the PEOHH. 

To derive a more accurate estimate of p, this research needed a larger GSSLR, however the wind 

turbine experts’ time was constrained and so it needed a faster method of extracting the health history 

data used for validation. The third operational validation meeting checked 29 WOs in 2 hours. This 

meeting used data from a different farm from which, for reasons that are commercially privileged, data 

was quicker to extract. 

Differences between farms and any consequent differences in the practice of record linkage are 

outside of the scope of this research. This thesis only uses the results from the third validation meeting 
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because it relates to a different farm from the results from the other meetings. The PEOHH only works 

with one farm at a time because the differences between different farms would be difficult to account 

for but further work might overcome this constraint. Consequently, this research did not combine the 

results of the validation meetings for the two farms. The PEOHH was tested using data from the same 

farm from which the GSSLR was derived. 

To summarise, the size of the GSSLR, 29 WOs, was constrained by the amount of expert time that 

was available. 

4.3.3 Result 

For one of the WOs in the validation set, the wind turbine expert could not tell which outage matched 

it. The WO description field reads “Lightning card bracket missing in blade” and its long text reads 

“The Lightning card bracket is missing from blade A The Lightning card holder is missing from blade 

B”. This fault does not require immediate remedy and its repair would have been bundled with other 

jobs. It would not cause the turbine to stop working and so there is no outage associated with this 

fault. This research kept this WO in the GSSLR because it is a feature of the EHH that it contains 

WOs like this one that are not associated with an identifiable power outage. This limits the maximum 

value of the PPV of the GSSLR to (n-1) / n = (29-1) / 29 = 96.6%. 
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4.4 Features 

This section presents the hypothesis that an ensemble of features from the WO data, from the outage 

data, from the alarm data and from the material consumption data can be used for record linkage 

comparison. It presents each record linkage feature as a technique for Health History Enrichment 

(HHE). 

The techniques that will be presented in this section were developed by a process that started with 

conversations with Ørsted’s wind turbine experts and with researchers from Durham University’s 

Department of Engineering and Department of Mathematical Sciences. The starting point was 

observation of how Ørsted’s wind turbine experts manually link WOs to outages. This research 

automated each of these techniques and further developed them by experiment. Chapter 7 will 

discuss which of these techniques should be applied in practice and how they can be optimised. 

For each technique, this research developed code in the Python programming language. For some of 

these techniques, this research benefitted from support from volunteer contributors to the online forum 

Stack Overflow (StackExchange, accessed 2021).26 

This section presents twelve record linkage techniques organised into four sub sections: 

• Four timestamp-based techniques 

• A technique that considers the recorded type of maintenance 

• A technique that uses the records of visits to the wind turbine 

• Six failure mode-based techniques 

For each record linkage technique, the chapter only presents its method and the hypothesis that it 

might be effective as part of an ensemble of techniques. 

Section 4.4.1 will present the hypothesis that that timestamps from the WO data and from the outage 

data can be used for record linkage comparison as part of an ensemble of features. Section 4.4.2 will 

present the hypothesis that the ‘type’ feature from the WO data and from the outage data can be used 

for record linkage comparison as part of an ensemble of features. Section 2.1.3 will present the 

hypothesis that the ‘number visits’ and ‘duration’ features from the outage data can be used for record 

linkage comparison as part of an ensemble of features. Section 4.4.4 will present two hypotheses: (1) 

that features indicative of the failure mode from the WO data, from the outage data, from the alarm 

data and from the material consumption data can be used as part of an ensemble of features for 

record linkage comparison and (2) that a selection of these techniques could be used to the same 

 

26 These contributions are individually referenced in this thesis. 
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effect. All these hypotheses will be tested in chapter 7. Techniques that will be reviewed in chapter 6 

will identify uncertainty that will render the results of these hypothesis tests indeterminate. Chapter 9 

will recommend an innovation in maintenance record keeping that would drastically reduce this 

uncertainty. 

4.4.1 HHE Techniques Using Timestamps 

This section will test the hypothesis that that timestamps from the WO data and from the outage data 

can be used for record linkage comparison as part of an ensemble of features. It will present a novel 

technique for this purpose. 

Section 2.1.2 described the outage start time and the outage finish time. Section 2.1.3.1 described the 

WO start date, the WO finish date and the WO notification date. Section 2.1.4 described the material 

‘posting date’. While the timestamps in the outage records are generated automatically from the alarm 

log27, the timestamps in the WO records are human generated28. 

Papatzimos et al., 2017, linked OWT WOs to alarms using a single feature; a timestamp. To achieve a 

better quality of record linkage, this research builds on the state of the art with three innovations:  

(1) Rather than using a single timestamp, it uses up to four timestamp features together as part of 

an ensemble of features. 

(2) Rather than using only timestamps, it uses other features as well as part of an ensemble of 

features. 

(3) Rather than considering the outage as a single point in time, it instead considers the full 

outage duration, such that a WO timestamp occurring during a long outage is recognised as 

agreeing even if it is not close in time to the outage start time. 

This section presents techniques using four timestamps:  

• WO start date 

• WO finish date 

• WO notification date  

• Part posting date 

 

27 The database of outages was described in section 2.1.2. 

28 The database of WOs was described in section 2.1.3. 
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This chapter will compare the effectiveness of four techniques that each use one of these four 

features. The PEOHH compares the POLRs that it generated using the blocking process29.  

This section presents two techniques that both use any one of the four timestamps for record linkage 

comparison as part of an ensemble of features. Technique A returns the difference between the WO 

or part timestamp to the outage start or finish time. Technique B assesses whether the timestamp is 

during the outage, if so then it returns zero and if not then it returns how far outside. It returns a 

positive time difference whether the timestamp is before or after the outage. Technique B has the 

benefit of registering positive agreement for timestamps that occur during long outages, where they 

may not be close to the start or finish times and so the PEOHH uses technique B. 

The PEOHH compares each WO timestamp to the outage start and finish times to give a positive time 

difference (∆𝑡𝐹𝑒). If the timestamp is during the outage then it records a ∆𝑡𝐹𝑒 of zero. This section 

presents time differences for each of four Features: 

• The time difference between the WO Start date and the outage (∆𝑡𝑆𝑡) 

• The time difference between the WO Finish date and the outage (∆𝑡𝐹𝑖) 

• The time difference between the WO Notification date and the outage (∆𝑡𝑁𝑜) 

• The time difference between the Part posting date and the outage (∆𝑡𝑃𝑎) 

These time differences will be referred to as time features. This research presents the agreement 

Threshold for each time Feature (𝑇ℎ𝐹𝑒). If ∆𝑡𝐹𝑒 < 𝑇ℎ𝐹𝑒 then the PEOHH records positive agreement. 

Where the timestamp is missing, the PEOHH records neither positive nor negative agreement. The 

PEOHH otherwise records negative agreement. This research uses a nominal 𝑇ℎ𝐹𝑒 value of 2 days for 

each feature.30 

The PEOHH could alternatively compare the WO start date or notification date to the outage start 

date, or it could compare the WO finish date to the outage finish date. These alternative methods are 

less attractive than the method used by the PEOHH because it would count WOs that occur in the 

middle of long outages as non-matches. 

The PEOHH calculates the ∆𝑡𝑃𝑎 for each part associated with the WO. It compares the minimum ∆𝑡𝑃𝑎 

in the WO to 𝑇ℎ𝑃𝑎. If ∆𝑡𝑃𝑎 < 𝑇ℎ𝑃𝑎 then the PEOHH records positive agreement. Where the part 

 

29 The blocking process was described in section 4.1. 

30 7.6 will present the optimisation of 𝑇ℎ𝐹𝑒 for each of the time features alongside other interrelated 
weights and thresholds. 
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posting date timestamp is missing or if no parts are associated with the WO then the PEOHH records 

neither positive nor negative agreement. The PEOHH otherwise records negative agreement. 

Rather than comparing the minimum ∆𝑡𝑃𝑎 in the WO to 𝑇ℎ𝑃𝑎, the PEOHH could alternatively use the 

mean or the median ∆𝑡𝑃𝑎 in the WO, or it could use a combination of these averages with the 

minimum. Such techniques could be worthy of further work. They are not considered in this thesis 

because comparing too many techniques makes the optimisation of weights and thresholds31 

intractable. 

Table 4-2 presents the outage timestamps and the WO timestamps for two POLRs. Both POLRs 

relate to the same WO. Table 4-2 is included in this section as an example of the existing records of 

wind turbine health history. The notification date is a month prior to the start date which implies that 

the issue in this example did not require urgent resolution. 

POLR 
ID 

Work Order Outage 

Start Date 
Finish 
Date 

Notification 
Date 

Date Time 
On 

Date Time 
Off 

1 06/06/2018 10/06/2018 29/04/2018 
2018-06-02 
06:48:41 

2018-06-02 
10:49:16 

2 06/06/2018 10/06/2018 29/04/2018 
2018-06-06 
07:32:56 

2018-06-06 
13:02:09 

Table 4-2, Outage and WO Timestamps for Two POLRs 

  

 

31 Chapter seven will present the optimisation of the weights and thresholds. 
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Table 4-3 presents the comparison of the outage timestamps to the material timestamps for the two 

POLRs detailed in Table 4-3. This WO has four material line items recorded against it, meaning that 

four types of spare part were used to do this work. One of the MLIs (Part 2) has its part posting date 

missing. The PEOHH calculates ∆𝑡𝑃𝑎 for each part. As illustrated in Table 4-3, it identifies the 

minimum ∆𝑡𝑃𝑎 for each POLR. 

Material ∆tPa∆𝑡𝑃𝑎 (days) 
 

MLI 
ID 

Posting Date 
POLR ID 

1 2 

1 29/05/2018 4.28 8.31 

2    

3 07/06/2018 4.55 0.46 

4 06/06/2018 3.55 0.31 

minimum 3.55 0.31 

Table 4-3, Comparison of Outage Timestamps to Material Timestamps for Two POLRs 

Table 4-4 presents the comparison of the outage timestamps to the WO and material timestamps of 

the two POLRs detailed in Table 4-2. If ∆𝑡𝐹𝑒 < 𝑇ℎ𝐹𝑒 then the PEOHH records positive agreement. 

Where the timestamp is missing, the PEOHH records neither positive nor negative agreement. The 

PEOHH otherwise records negative agreement. 

POLR 
ID 

∆𝑡 (days) Agreement 

Start Finish Notification 
Part 
Posting 

Start Finish Notification 
Part 
Posting 

1 3.55 7.55 34.28 3.55 False False False False 

2 0.31 3.46 38.31 0.31 True False False True 

Table 4-4, Comparison of Outage Timestamps to WO and Material Timestamps for Two POLRs 

Each of the four timestamp features will be evaluated as part of an ensemble of features for record 

linkage comparison. Chapter 7 will present the optimisation of the weights and thresholds used in the 

PEOHH, that were defined in section 4.1, including the agreement and disagreement weights. If the 

optimised agreement and disagreement weights for some or all of the four timestamp features are not 

zero then this research will have found that the hypothesis that timestamps from the WO data and 

from the outage data can be used for record linkage comparison as part of an ensemble of features is 
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true. This section has presented the hypothesis that timestamps from the WO data and from the 

outage data can be used for record linkage comparison as part of an ensemble of features. 

4.4.2 HHE Techniques Using the Order Type 

This section will present the hypothesis that the ‘type’ feature from the WO data and from the outage 

data can be used for record linkage comparison as part of an ensemble of features. It will present a 

very simple technique for this purpose. The use of a simple technique for the purpose of record 

linkage is analogous to the gender feature in the linkage of records of people. For example, if two 

records are recorded as both being male then a process for linking records of people would record 

positive agreement for the gender feature. Features such as the gender feature of people or the type 

feature of maintenance records are not used by themselves for the purpose of record linkage because 

they are too general but can be used as part of an ensemble of features. The use of simple features 

such as these is typical in record linkage (Dunn, 1946, Churches et al., 2002). 

Section 2.1.2 described the outage types: 

“The ‘type’ feature classifies each outage as either corrective, predetermined, ‘Balance 

of Plant / OFfshore Transmission Owner’ (BoP/OFTO), condition-based, environmental 

or unknown.” 

Section 2.1.3.3 described the WO types: 

“The ‘type’ feature classifies each WO as either preventive, retrofit, inspections and 

surveys, condition-based or corrective. The feature is human generated by the planner 

who selects a type from a list of options.” 

This section presents two techniques that use the WO and Outage ‘type’ features for record linkage 

comparison as part of an ensemble of features. Technique A is to filter the outage data by type to 

include only corrective work. Technique B is that when the outage is recorded as corrective then 

positive agreement is recorded and that when the outage is recorded as other than corrective then 

negative agreement is recorded. Technique A assumes that all outages that match corrective WOs 

are classified as corrective in the outage data. Preliminary validation meetings elicited the expert 

advice that such an assumption would not be valid and so the PEOHH uses Technique B.  

Backing up this expert opinion, this section can report that the type matches in only seven of the 

twenty-nine records in the GSSLR. This does not imply that the records are incorrect; different record 

systems may use different terminology to define the same features.  This result means that the PPV of 

the GSSLR would be limited to a maximum value of 25% under technique A, which disproves the 

hypothesis that technique A would be useful for record linkage. Technique B, on the other hand, does 

not exclude those outages not classified as corrective from the EHH; it merely investigates the 
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possibility that there could be a statistical likelihood that if the type matches then it is more likely that 

the WO and the outage are a true match. For equivalent data, technique B can yield a maximum PPV 

of 100%. 

The PEOHH compares the POLR that it generated using the blocking process32. Table 4-5 presents 

the comparison of the outage type to the WO type for two POLRs. The WO type is corrective for all 

POLRs because only corrective WOs are required for the applications detailed in section 1.2 and so 

the WO data has been filtered to only include corrective WOs. The outage type for POLR 1 is 

predetermined, that is that the database of outages has identified this outage as for scheduled 

maintenance rather than for a corrective repair. The PEOHH registers disagreement for POLR 1 and 

agreement for POLR 2. Each WO and each outage has a type so there are no instances of POLRs 

that register neither agreement nor disagreement for this feature. 

POLR ID WO Type Outage Type Agreement 
 

1 Corrective Predetermined False 

2 Corrective Corrective True 

Table 4-5, Comparison of the Outage Type to the WO Type for two POLRs 

If the feature agrees then the PEOHH records positive agreement. If the feature disagrees then it 

records negative agreement. If the feature were not recorded then it would record neither negative nor 

positive agreement, but the data does not include missing values for this feature and so this does not 

occur in practice. 

The ‘type’ feature will be evaluated as part of an ensemble of features. This section has presented the 

hypothesis that this feature from the WO data and from the outage data can be used for record linkage 

comparison as part of an ensemble of features. 

  

 

32 The blocking process was described in section 4.1. 
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4.4.3 HHE Techniques Using Visits 

This section will present the hypothesis that the ‘number visits’ and ‘duration’ features from the outage 

data can be used for record linkage comparison as part of an ensemble of features. 

Section 2.1.2 described the outage ‘number visits’ and ‘duration’ features: 

It is a safety requirement that when an OWT is visited to carry out maintenance, it is 

brought under local operation; a setting in which it cannot produce electricity. Whether 

or not there is a visit to the OWT, operators refer to intervals of non-production as 

outages. The ‘reset’ feature classifies each outage that has been classified as 

corrective as either a visit, a remote reset or an automatic reset. The ‘number visits’ 

feature is either zero or a positive integer. It is Ørsted’s estimate of how many times the 

OWT was visited during the outage. It is calculated using the ‘wind turbine in local 

operation’ alarm (Papatzimos et al., 2019). 

The database of outages records the duration of each outage. This section presents two techniques 

that use the ‘number visits’ and ‘duration’ features from the outage data for record linkage comparison 

as part of an ensemble of features. Technique A filters the outage data by the ‘reset’ feature so that 

only records of outages labelled as a visit are included. Three experts agreed that, in practice, the 

correct match for one of the WOs tested in the validation exercise is not correctly identified as a visit in 

the outage data set. This outage was not identified as of the ‘corrective’ ‘type’ in the outage data set 

and so was not labelled as a visit. This identified that technique A is not an appropriate technique for 

the PEOHH. 

Technique B filters the outage data by duration. 20 minutes is the minimum duration of those outages 

associated with a visit to the WT so all outages under 20 minutes duration, even if they are not 

recorded as involving a visit, are excluded. The PEOHH records agreement if the number of visits is 

not null. This is a probabilistic approach that will test the hypothesis that outages associated with a 

visit are more likely to be true matches to WOs. 
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It was described in section 4.1 that the PEOHH uses the POLRs that it generated using the blocking 

process. Table 4-6 gives three examples of the three features of the outage data called ‘Reset’, 

‘Duration’ and ‘Number Visits’ and of their use by the PEOHH: 

• POLR 1 is shorter than 20 minutes and so, prior to blocking, the PEOHH filters out the outage 

that would generate this POLR. 

• POLR 2 records the ‘reset’ feature as ‘visit’ but the PEOHH does not use this feature. POLR 2 

records the ‘number visits’ feature as ‘1’ so the PEOHH records positive agreement for this 

feature on this POLR.  

• POLR 3 does not record a positive integer in the ‘number visits’ feature so the PEOHH 

records negative agreement for this feature on this POLR. 

POLR ID Reset 
Duration 
(mins) 

Number 
Visits 

Agreement 

1 Remote 19   

2 Visit 213 1 True 

3 Remote 27  False 

Table 4-6, Examples of the Technique Using Visits 

The ‘number visits’ and ‘duration’ features will be evaluated as part of an ensemble of features. This 

section has presented the hypothesis that this feature from the outage data can be used for record 

linkage comparison as part of an ensemble of features. 

4.4.4 HHE Techniques Using Features Indicative of the Failure Mode 

Records of wind turbine health history contain records of the identification and repair of faults and 

these records contain features indicative of the failure mode. This section will present the hypotheses 

(1) that features indicative of the failure mode from the WO data, from the outage data, from the alarm 

data and from the material consumption data can be used as part of an ensemble of features for 

record linkage comparison. Following on from that, another hypothesis (2) is that a selection of these 

techniques could be used to the same effect. 

The practice of manually linking WOs to outages starts by identifying the wind turbine and matching 

the WO basic start date to a time interval around the outage start time. This yields a list of candidate 

outages to match to each WO. Wind turbine experts then use their experience of possible failure 

modes to compare the outage alarm code ‘description’ to the WO ‘description’ field. The usefulness of 

features indicative of the failure mode in manual record linkage suggests that they may also be 

applicable to automatic record linkage, as in hypothesis (1). 
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Most of the detailed data within maintenance records are indicative of the failure mode. These are 

important features that differentiate one outage from another. Section 2.2 presented existing record 

linkage techniques. It was described in that section that record linkage techniques using various 

features of the data have proven effective in the fields of linking medical records (Sayers et al., 2015, 

Nasseh and Stausberg, 2016, Oliveira et al., 2016), address data (Churches et al., 2002, Comber et 

al., 2019, Lin et al., 2019), census data (Jaro, 1989, Smith et al., 2016) and genealogical records 

(Wilson, 2011) and that they have been used to detect duplicate internet search results (Hajishirzi et 

al., 2010). 

The PEOHH uses three features of the data that are each indicative of the failure mode: the 

description, the alarm code and the list of parts used. The first three sub-sections of this section 

present record linkage techniques that each use one of these three features; section 4.4.4.4 is the 

conclusion to the HHE techniques using the failure mode. 

For each of these three features this section compares two methods for linking WOs to outages. The 

first of these two methods, like the methods presented in sections 4.4.1 to 0, for each POLR in the 

SPOLR, compares the specific feature of the WO to the equivalent feature of the outage. 

Section 2.1.2 presented the database of outages: 

“Ørsted label each outage with an alarm code indicative of the failure mode using a 

combination of automatic and manual methods. Their automatic system selects an 

alarm code from the database of outages using a confidential algorithm. Ørsted’s data 

scientists sometimes later manually adjust these labels to better reflect the failure mode 

by discussing what happened with the technical team involved in the repair.” 

The second method recognises the possibility that an outage may be labelled with an alternative 

failure mode label to that in the database of outages. For each POLR, the second method first links 

the outage to a set of alarms. It then compares the specific feature of the WO to the equivalent feature 

of each alarm. If any of the alarms agrees then the method records agreement for the POLR. There 

may be alarms indicative of the failure mode recorded before an outage occurs. An OWT is typically 

not rotating during an outage and so it is these alarms that occur prior to an outage that are of 

particular interest when identifying the failure mode. Therefore, the PEOHH adds a time difference to 

the outage start and finish times to yield a time interval longer than that of the outage. The PEOHH 

identifies all the alarms that occur during this extended interval. The Threshold for the Time difference 

between Outages and Alarms (TTOA) denotes the extra time added. The PEOHH extracts all the 
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alarms from the alarm log from +/- TTOA of the outage start and finish times. This research used an 

initial value of TTOA of 10 minutes, the value initially recommended by a wind turbine expert33. 

This section will consider three features indicative of the failure mode: description, alarm code and 

parts. In applying these two methods to these three features, this section will present six techniques. 

4.4.4.1 HHE Techniques Using the Description 

This section will present two hypotheses. The first is that that the ‘description’ feature from the WO 

data and the description of the alarm code from the outage data can be used as part of an ensemble 

of features for record linkage comparison. The second is similar to the first except that it uses the 

database of alarms from which the database of outages was derived. It is that the ‘description’ feature 

from the WO data and the description of the alarm code from a set of alarms associated with the 

outage can be used as part of an ensemble of features for record linkage comparison. 

The WT control unit generates alarms and some of these are indicative of a failure mode. (Qiu et al., 

2012). These are logged by the condition monitoring unit. The outage data is labelled with one alarm 

code per outage and each alarm code corresponds to a text field called Description such as “cabinet 

too hot”. 

Section 2.1.3.4 described the WO description field: 

“The ‘description’ feature is a short, free text description of the WO. For corrective 

maintenance it often refers to an alarm code. It may contain the alarm code but it more 

often contains an abbreviated reference to the standard text description of the alarm 

code.” 

The methods presented in this section use the comparison of text strings involving some simple 

Natural Language Processing (NLP) techniques. 

In NLP, text pre-processing is the practice of cleaning and preparing text data; transforming it into a 

more digestible form to improve the effectiveness of the analytic techniques that follow it. One of the 

simplest problems in NLP is to compare two text strings to determine how similar they are to each 

other. This section presents techniques which compare text strings that are indicative of the failure 

mode to identify whether they are similar to each other; if they are similar then they are more likely to 

refer to the same failure mode than if they are different. If they do refer to the same failure mode then 

they are more likely to refer to the same maintenance activity. 

 

33 Section 7.2 will use the GSSLR to investigate the effect of varying TTOA but will recommend 
keeping it at 10 minutes. 
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Prior to comparison, both strings are pre-processed to remove everything but the words. This section 

presents a simple, scalar technique for comparing what letters these text strings contain. An 

alternative would be to use a vector technique such as word2vec to apply semantic record linkage 

techniques such as those described in section Error! Reference source not found. that might find d

escriptions that refer to the same activity using different words. Word2vec or other relatively 

complicated NLP techniques are not proportionate for this project which uses a simpler approach 

instead. 

The PEOHH compares the POLRs that it generated using the blocking process.34 

The PEOHH uses text pre-processing techniques that are standard in natural language processing. 

This section will describe these processes using for example the original text string: 

‘404 Pitch A tracking during stops’: 

• The PEOHH converts each string to upper case letters: 

‘404 PITCH A TRACKING DURING STOPS’ 

• Tokenisation is to separate each string into tokens, that is shorter strings without spaces. 

Tokens can be words, numbers or alpha-numeric strings. 

‘404, PITCH, A, TRACKING, DURING, STOPS’ 

• Lemmatisation is the removal of inflectional endings from each token (Porter, 1980): 

‘404, PITCH, A, TRACKING, DURING, STOP’ 

• The PEOHH removes any numbers. (These numbers are typically alarm codes and these are 

used in a separate technique35). It does this using a Python algorithm posted by Stack 

Overflow internet forum user “Silenced Temporarily”, (Silenced Temporarily, 2019). 

‘PITCH, A, TRACKING, DURING, STOP’ 

• The PEOHH joins the tokens together to generate a hyphenated string: 

‘PITCH-A-TRACKING-DURING-STOP’ 

 

34 The blocking process was described in section 4.1. 

35 A technique using alarm codes will be described in section 4.4.4.2. 
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By pre-processing each text string, the PEOHH avoids some errors that would otherwise be caused by 

differences between strings that have similar contents but different formatting. 

Table 4-7 demonstrates the techniques used by the PEOHH for the pre-processing and for the 

comparison of text strings. It uses the example of two pairs of text strings (POLR 1 and POLR 2). 

The Levenshtein distance between two text strings is the minimum number of single-character edits 

required to change one string into the other (Levenshtein, 1966). This research chose to use it 

because it provides a simple comparison of text strings. While it does not replicate the use of expert 

knowledge in manual record linkage that different words may refer to the same repair activity, it does 

identify different spellings that may refer to the same word. 

The PEOHH calculates Levenshtein distance using a Python algorithm posted by Stack Overflow 

internet forum user “Adam Smith” (Smith, 2017). 

The Similarity Ratio (SR) is defined by equation 4.3 (Sayers et al., 2015). 

 
𝑆𝑅 = 1 −

Levenshtein distance

𝑀𝑖𝑛 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ
    

(4.3) 

The PEOHH registers agreement when SR is above the Description Threshold (𝑇ℎ𝐷𝑒). 𝑇ℎ𝐷𝑒 is 

nominally set to 0.75 but section 7.3 will investigate the effect of varying it. 

POLR 
ID 

  

WO 

Description 

Outage or Alarm 

Alarm Text 

Levenshtein 
distance 

Minimum 
String 
Length 

SR 
 

A
g
re

e
m

e
n
t 

   

1 

Raw 
lnv. Cool. W. 
temp hiqh 

Inv. cool. w. temp 
high 

   
  

Pre-
processed 

LNV-COOL-
TEMP-HIQH 

INV-COOL-TEMP-
HIGH 

2 18 89% Yes 

2 

Raw 
UPS battery  
failure 

404 Pitch A 
tracking during 
stops 

    

Pre-
processed 

UPS-BATTERY-
FAILURE 

PITCH-A-
TRACKING-
DURING-STOP 

24 19 21% No 

Table 4-7, Pre-processing and Comparison of Text Strings from two POLRs 

Some of the outages in the database of outages are labelled with an alarm code that is not indicative 

of the failure mode, such as ‘manual stop’. In these cases, the PEOHH sets SR to zero and 
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consequently registers negative agreement. This is done to avoid the risk that descriptions not 

indicative of the failure mode might falsely register agreement. 

The ‘description’ feature will be evaluated as part of an ensemble of features. This section has 

presented the hypotheses that: 

1) The ‘description’ feature from the WO data and the description of the alarm code from the outage 

data can be used as part of an ensemble of features for record linkage comparison. 

2) The ‘description’ feature from the WO data and the descriptions of the alarm codes from a set of 

alarms associated with the outage can be used as part of an ensemble of features for record 

linkage comparison. 

4.4.4.2 HHE Techniques Using Alarm Codes 

This section will present two hypotheses. The first is that that the ‘long text’ feature from the WO data 

and the alarm code from the outage data can be used as part of an ensemble of features for record 

linkage comparison. The second is similar to the first except that it uses the database of alarms from 

which the database of outages was derived. It is that the ‘long text’ feature from the WO data and the 

alarm code from a set of alarms associated with the outage can be used as part of an ensemble of 

features for record linkage comparison. 

Section 2.1.3.5 described the WO ‘long text’ field: 

“The ‘long text' feature is a free text description of the notification and of the WO of 

unlimited length. For corrective maintenance it often contains semi structured recent 

entries from the alarm log that include alarm codes. These alarm log entries are 

automatically copied in when the notification is created and are typically error free. It 

can also contain unstructured notes made by the maintenance team relating to faults or 

to maintenance activities, particularly if these are considered unusual.” 
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The methods presented in this section identify alarm codes in the WO ‘long text’ field. If the WOs ‘long 

text’ feature contains the alarm code then the PEOHH records agreement. If it does not, including if 

the long text field is empty, then it registers disagreement. Table 4-8 presents two examples. 

POLR 
ID 

WO 

Long Text 

Outage or 
Alarm 

Alarm Code 

A
g
re

e
m

e
n
t 

 

1 11.01.2017 09:32:25 CET name (email) transformer room 
temperature sensor error, fault code 12114, --------------------------------
--------36 01.03.2017 14:06:53 CET name (email) We found the pt100 
sensor had detached from the cable in the transformer = room. So 
we replaced the the pt100. All ok after power up. 

1001 No 

2 12114 Yes 

Table 4-8, Examples of the Technique Using Alarm Codes 

An additional technique could identify alarm codes in the WO ‘description’ field. That additional 

technique was not developed in this research because this research identified by familiarisation with 

the data that the WO ‘long text’ field is a richer data set than the WO ‘description’ field. The WO ‘long 

text’ field for corrective maintenance includes the text of the notification of a fault that initiated the 

generation of a WO. While there often is an alarm code in the WO ‘description’ field, this alarm code is 

always copied from the WO ‘long text’ field. In the 3 years that this research spent investigating the 

WO data, it found no examples of an alarm code in the WO ‘description’ field that was not also in the 

WO ‘long text’ field. Wind turbine experts agreed that, where WO ‘long text’ data is available, there is 

no value in also looking for alarm codes in the WO ‘description’ field. 

The use of the WO ‘long text’ field, rather than its ‘description’ field, for alarm code identification 

contrasts with the techniques presented in section 4.4.4.1 that use the WO ‘description’ field for the 

comparison of text strings. The WO ‘description’ field, after pre-processing, is of a comparable length 

to the alarm code description, allowing for a straightforward comparison that would be less 

computationally expensive than searching for text strings in the WO ‘long text’ field would be. The 

decision to use the WO ‘description’ field in the techniques presented in section 4.4.4.1 but the WO 

‘long text’ field in this section is therefore appropriate. 

The PEOHH calculates the ‘alarm code’ feature using a Python algorithm posted by Stack Overflow 

internet forum user “BENY” (BENY, 2019). 

  

 

36 ---- Confidential information redacted 
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The ‘alarm code’ feature will be evaluated as part of an ensemble of features. This section has 

presented the hypotheses that: 

1) The ‘long text’ feature from the WO data and the alarm code from the outage data can be used as 

part of an ensemble of features for record linkage comparison. 

2) The ‘long text’ feature from the WO data and the alarm codes from a set of alarms associated with 

the outage can be used as part of an ensemble of features for record linkage comparison. 

4.4.4.3 HHE Techniques Using the Parts 

This section will present two hypotheses. The first is that the material consumption data and the alarm 

code from the outage data can be used as part of an ensemble of features for record linkage 

comparison. The second is similar to the first except that it uses the database of alarms from which 

the database of outages was derived. It is that the material consumption data and the alarm code from 

a set of alarms associated with the outage can be used as part of an ensemble of features for record 

linkage comparison. 

Section 2.1.4 described the database of material consumption: 

“The material consumption database lists what parts were used in the maintenance of 

the OWTs. Each Material consumption Line Item (MLI) refers to a single part number 

and is assigned to an order number. Some WOs have no material consumption line 

items assigned to them while others have many. Materials include replacement parts as 

well as consumables such as oil, grease or paint. The ‘material’ feature is the part 

number: the identifier of the design of the part. The ‘description’ feature describes the 

part number.” 

The methods presented in this section use statistical techniques that seek to identify whether the parts 

assigned to a WO are typical of the failure mode of the outage. When the maintenance team decide 

which parts to use to repair a fault they provide an expert validation of the fault diagnosis. The 

methods presented in this section study patterns in the material consumption data that embody this 

expert diagnosis. 

This section presents two techniques: BNB Classification and a frequency-based technique. It shows 

that BNB classification does not support useful interpretation with the unbalanced health history data 

but that the frequency-based method does. Both techniques require training data that they use with 

the intention of recognising which parts are typical of each failure mode. 
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4.4.4.3.1 Training Data 

This section will present the Process for the Identification of the Training data (PIT). The PIT provides 

the training data to the PEOHH, which uses it to identify which parts are indicative of each alarm code. 

Both the BNB classification technique presented in section 4.4.4.3.2 and the frequency-based 

technique presented in section 4.4.4.3.3 use the same training data selected for their relatively good 

quality. This quality is predicted using the overall score from the other features as a metric for the 

confidence of the correctness of the failure mode. The use of other features than the parts to identify 

the training data means that the parts-based techniques are not independent of the other techniques. 

The parts-based techniques are consequently also not independent of the database of alarms. While 

the material consumption data embody an expert validation of the fault diagnosis, these dependencies 

on the other features hinder the technique’s ability to capture that independence from the other 

features. Unfortunately, such dependencies are logically necessary because any model would need to 

be trained to identify which parts are typical of each failure mode. 

Section 4.3 presented the technique that the PEOHH uses to select POLRs for the EHH. It was 

described in that section that: 

“The PEOHH sorts the POLRs by match ID, by ∆𝑡𝑆𝑡 and then by 𝑆𝑃𝑂𝐿𝑅 and then it 

filters the POLRs to retain only the first POLR for each WO. This process identifies a 

version of the EHH with the highest 𝑆𝑃𝑂𝐿𝑅 for each WO.” 

The PEOHH selects POLRs for inclusion in the training data using the same criteria that it uses to 

select POLRs for the EHH. It then filters the training data to retain those POLRs that have 𝑆𝑃𝑂𝐿𝑅 

above a threshold (𝑇ℎ𝑆𝑃) of 1.7. Section 7.4 will present the effect of varying this threshold. A higher 

𝑇ℎ𝑆𝑃 would mean that the training data were of higher quality, tending to contain fewer misleading 

POLRs where the WO is matched to an outage that does not relate to it, but of lower quantity, 

containing fewer POLRs. At the optimum value of 𝑇ℎ𝑆𝑃 there will be enough data to train on but it will 

be of high enough quality that it is not too misleading. 

Chapter 7 will recommend the optimum weights and thresholds for the PEOHH. This section uses 

these the optimised weights and thresholds detailed in table 7.10 to identify the training data. 

Both techniques presented in this chapter consider which MLIs are assigned to the WO; whether a 

given part was used rather than how many of the part were used. 

The PEOHH identifies the training data as a two-dimensional binary dataset of which parts are 

assigned to each WO. Where a part is assigned to a WO, the PEOHH ascribes the value TRUE to the 

data element for that part number and that order number. Where a given part number is not assigned 
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to a given WO, the PEOHH ascribes the value FALSE to the data element for that part number and 

that order number. 

Unbalanced data are data in classification problems where there are unequal instances for different 

classes. The training data is unbalanced. For the farm used, the training data contains 560 parts of 

which only 192 are used more than once. It contains 156 alarm codes of which only 21 occur more 

than 5 times. Unbalanced data tends to bias machine learning models to predict the more common 

class. 

Sections 4.4.4.3.2 and 4.4.4.3.3 present two techniques that use the material usage data for record 

linkage comparison. Section 4.4.4.3.3 presents a simpler technique that works more robustly despite 

the unbalanced data. 

4.4.4.3.2 HHE Techniques Using Bernoulli Naïve Bayes Classification 

This research investigated a technique in which the PEOHH used a Bernoulli Naïve Bayes (BNB) 

classifier37 to predict the probability for each POLR that the parts used in the WO correspond to the 

alarm code of the outage. This section shows that the parts data can’t be used to calculate a useful 

metric using BNB Classification and investigates why it doesn’t work. 

Methodology 

A BNB classifier was used to predict the probability that the parts used in the WO correspond to the 

alarm code of the outage. Each feature of a multi-variate Bernoulli model is a binary variable. A 

probabilistic model is trained using binary data; in this case which parts were used. Each row; in this 

case a Pair of Linked Records; is assigned a class, in this case the outage alarm code. 

BNB identifies the Log Odds that each POLR belongs to a given class (𝐿𝑂𝐶𝑙𝑎𝑠𝑠). 𝐿𝑂𝐶𝑙𝑎𝑠𝑠 is defined 

by equation 4.4: 

 
𝐿𝑂𝐶𝑙𝑎𝑠𝑠 = 𝑙𝑜𝑔 (

 𝑃𝐶𝑙𝑎𝑠𝑠

1 − 𝑃𝐶𝑙𝑎𝑠𝑠
) 

(4.4) 

Where 𝑃𝐶𝑙𝑎𝑠𝑠 is the probability predicted by the BNB algorithm that each POLR belongs to a given 

class. 

This section presents the results of testing the BNB method on a known failure mode. A specific set of 

fans are replaced when one of them fails and this failure mode is indicated by a specific “cabinet too 

 

37 Section 2.3 reviewed classification techniques including BNB. 
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hot” alarm. The classifier should predict a higher probability of this alarm when this part is used than 

when it is not used. 

This report presents a measure called ‘classification score’ that measures whether clear classification 

has been achieved. It is defined by equation 4.5 where A, B, C, D are integrals of the number of linked 

records with respect to predicted probability of the “cabinet too hot” alarm. A, B, C, D are defined 

below but equation 4.5 only uses C and D. This section will use this measure to identify whether 

successful classification has been achieved. Successful classification has been achieved if the range 

of LO scores for one class does not overlap with the range of LO scores for the other class.  

 
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =

 𝐷 − 𝐶

𝐶 + 𝐷
 

(4.5) 

Consider for example the 𝐿𝑂𝐶𝑙𝑎𝑠𝑠 of the “cabinet too hot” alarm (𝐿𝑂𝐴𝑙𝑎𝑟𝑚). In this example: 

• A is the number of POLRs where both the fan was replaced and the 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 is less than the 

minimum 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 for all the POLRs where the fan was not replaced. 

• B is the number of POLRs where both the fan was replaced and the 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 is more than the 

minimum 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 for all the POLRs where the fan was not replaced. 

• C is the number of POLRs where the fan was not replaced and the 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 is less than the 

maximum 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 for all the POLRs where the fan was replaced. 

• D is the number of POLRs where the fan was not replaced and the 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 is more than the 

maximum 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 for all the POLRs where the fan was replaced. 

A and D are the number of POLRs in the regions where the classes do not overlap. B and C are the 

overlap between the two classes. 
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A, B, C and D are illustrated in Figure 4-1, a frequency diagram of the Count of POLRs (CO) against 

𝐿𝑂𝐴𝑙𝑎𝑟𝑚. The figure shows those POLR where the fan was replaced (A and B) and where it was not 

replaced (C and D). 

Figure 4-1(a) presents an example where perfect classification has not been achieved. The classes do 

overlap so B and C are not zero. Imperfect classification means that the distributions A and B have an 

overlap with distributions C and D and is indicated by a classification score less than 1. Negative 

classification scores mean that C > D; more than half of the POLRs are not clearly classified. The 

figure features vertical lines that illustrate aspects of the definitions of A, B, C and D (listed above). 

The line between A and B is the minimum 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 for all the POLRs where the fan was not replaced 

and the line between C and D is the maximum 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 for all the POLRs where the fan was 

replaced. 

Figure 4-1(b) presents an example where perfect classification has been achieved. The classes do not 

overlap so B and C are zero. Perfect classification means that the distributions A and B have no 

overlap with the distributions C and D and is indicated by a classification score of 1. 

a) 

C
O

 

 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 

Classification score 

≈ -30% 

b) 

C
O

 

 𝐿𝑂𝐴𝑙𝑎𝑟𝑚 

Classification score 

= 1 

 Fan was replaced  Fan was not replaced 

Figure 4-1 Demonstration of the Classification Score: Count (POLRs) (CO) 

against Log Odds (𝐿𝑂𝐴𝑙𝑎𝑟𝑚) 

 

When the only part considered is the fan, clear classification is achieved, which confirms the 

hypothesis that a part can be used to identify the failure mode. A useful record linkage technique could 

be developed if parts could be used to identify the failure mode when the relationship between the part 

and the failure mode was not already known. 

This research implemented the model using Python library Scikit-learn (Pedregosa et al., 2011). 
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Results 

This research investigated the effect of considering additional parts as well as the fan. Sets of 

additional parts of various number of parts were considered as well as the fan. The parts to include in 

these sets were selected at random. The result of using each set of parts is shown in Figure 4-2. It 

shows that clear classification is achieved when fewer than around 20 to 30 parts are included but that 

it is not achieved when 60 or more are. For this application, all the 156 failure modes and all the 560 

parts would need to be included, which exceeds the number of parts from this unbalanced dataset for 

which BNB classification would be an appropriate method. 

 

Figure 4-2, BNB Classification Score against Number of Parts  

 

The following section will present an alternative technique that cannot suffer from the problem with 

unbalanced data because it only looks at the relevant event code. 

4.4.4.3.3 HHE Techniques Using the Parts Frequency 

This section will present a simpler technique to that presented in the previous section that also uses 

the records of material consumption for record linkage comparison, the Parts Frequency Technique 

(PFT). 

The PFT can be used with any test data. It identifies an individualised set of filtered training data for 

each Pair of Linked Records in the test data (test POLR). The failure mode labels from the training 

data are used to train the PFT. For each test POLR, the training data38 are filtered to only include 

those POLRs with the same outage alarm code as the test POLR. To avoid testing and training on the 

same data, the test POLRs WO is excluded from the filtered training data. The test POLR is given a 

 

38  The training data were described in section 4.4.4.3.1. 
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“Parts Score” (PS) with an initial value of 0. If the WO contains a part that is in the filtered training 

data, then PS is increased by 1. If the WO contains a part that is not in the filtered training data then 

PS is reduced by 1. The PFT repeats this process of identifying an individualised set of filtered training 

data and calculating PS for each POLR in the test data. Figure 4-3 presents the algorithm that 

calculates PS. 

As an example of the technique, consider a WO with 4 parts. 2 of these parts are, according to the 

training data, typical of the alarm code but 2 of the parts are atypical of it. PS = 2 - 2 = 0. Further work 

could look at applying unequal weightings to the typical and to the atypical parts. 

1: C_F_H   = Identify the set of the best POLRs for training 

2: Tr_D  = Join C_F_H to the parts data 

3: Di_Q_B  = Create a dictionary of the alarm code for each POLR in Tr_D 

4: Loop: for each POLR in the test data: 

5:   WO  = Identify the order number of the POLR 

6:   Te_C  = Identify the parts for the WO 

7:   Tr_C  = Filter the training data to remove the WO 

8:   Tr_E  = Filter Tr_C to only include the alarm code of the POLR, 
     identified using Di_Q_B 

9:   Q_Tr  = Create a table of whether each part is in each WO in Tr_E 

10:  Z_Tr  = Create a table of whether any WOs in Q_Tr contain each part 

11:   train  = Create list of which parts are in Z_Tr 

12:   Te_C['T']  = Identify whether the parts in Te_C are in train 

13:   typical  = sum of Te_C['T'] 

14:   atypical  = (length of Te_C) - typical 

15:   PS  = typical - atypical 

Figure 4-3, Pseudo Code for the PFT 

Line 9 of the code in Figure 4-3 considers all the parts in the database of material consumption. This is 

a longer list of parts than that in the training data. The PEOHH uses this longer list of parts because 

there are cases where a POLR to be tested contains a part that is not in the training data. In these 

cases, the part is considered to be atypical of the alarm code. The PEOHH does this using a Python 

algorithm posted by Stack Overflow internet forum user “piRSquared” (piRSquared, 2018). 



 

110 

 

While this technique considers whether the parts assigned to a WO are typical of the POLR alarm 

code, further work could consider whether they are also typical of another alarm code. If they are then 

this might imply that the POLR is less likely to be a true match than if the parts are exclusively 

associated with the alarm code. 

4.4.4.3.4 Conclusion to the HHE Techniques Using the Parts 

This section used a database of material consumption in which each material line item is labelled with 

an order number. It developed two techniques that use these data as part of an ensemble of features 

for record linkage comparison. 

The first technique used a BNB classifier to predict the probability for each POLR that the parts 

assigned to the WO correspond to the alarm code of the outage. Historical data on machinery failures 

tends to be unbalanced such that some failure modes feature more than others. It showed that, 

because of the unbalanced data, BNB classification is not an appropriate method. 

The second technique is simpler, checking whether or not records for the outage failure mode contain 

each part assigned to the WO. It does not suffer from the problem with unbalanced data because it 

only looks at the relevant event code. 

The ‘parts’ feature will be evaluated as part of an ensemble of features. This section has presented 

the hypotheses that: 

1) The material consumption data and the alarm code from the outage data can be used as part of 

an ensemble of features for record linkage comparison. 

2) The material consumption data and the alarm codes from a set of alarms associated with the 

outage can be used as part of an ensemble of features for record linkage comparison. 

4.4.4.4 Conclusion to the HHE Techniques Using the Failure Mode 

The hypothesis presented in section 4.4.4 is that that features indicative of the failure mode from the 

WO data and from the outage data can be used for record linkage comparison as part of an ensemble 

of features. It considered three of these; description, alarm code and parts. For each of these three 

features this section compares two methods for linking WOs to outages. The first of these two 

methods uses the alarm labels in the outage data while the second uses the alarm codes of a set of 

alarms that occurred around the start and end of the outage. In applying these two methods to these 

three features, this section presented six techniques. 

Chapter 7 will show that this thesis cannot offer conclusive advice as to whether or not to use any of 

the features indicative of the failure mode for record linkage comparison as part of an ensemble of 

features. This research predicts that this uncertainty will be drastically reduced by an upcoming 
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innovation in maintenance record keeping that will be discussed in chapter 9; the automatic linking of 

new WOs to outages will result in a larger GSSLR and consequently in more certainty for this 

estimate. 
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4.5 Computation Times 

Table 4-9 presents the computation time for each technique. The technique using the description and 

the technique using the parts are both relatively time consuming. These computations were performed 

on a standard laptop39. These computation times do not represent a problem for running them once 

per day which would be sufficient for everyday record linkage implementation. Such algorithms are 

routinely run automatically and are the responsibility of Ørsted’s IT department, they are not run by the 

technicians themselves. These run times did represent a problem for the optimisation of the weights 

and thresholds in this research, where they needed to be repeated hundreds of times40.  

Process 
Duration 

seconds 

Technique 
Described 
in Section 

Import the data 19.71 4.1 

Link WOs to outages to create the POLRs 3.34 4.1 

Type 4.27 4.4.2 

Visits 0.06 0 

Link alarms to outages 109.39 4.4.4 

Pre-processing 428.11 4.4.4.1 

Description 520.61 4.4.4.1 

Alarms 12.67 4.4.4.2 

Identify the training data 0.30 4.4.4.3.1 

Parts 1200.94 4.4.4.3.3 

Calculate the weights using all features 0.32 4.1 

Table 4-9, Computation Time for Each Technique 

Further work optimising these computationally expensive algorithms or running them on a faster 

computer (such as a parallel cluster) would improve these computation times but is outside of the 

 

39 Intel Core i7-8665U CPU @ 1.90GHz 2.11GHz 

40 Computational run time was an issue for calculations of the coverage of techniques that estimate 
the uncertainty of a difference between two binomial proportions (section 6.2.6) and for optimising the 
weights and thresholds (chapter 7). 
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scope of this thesis. Ørsted’s confidential data may not be copied onto Durham University parallel 

clusters, but Ørsted might consider using their own in-house parallel clusters for this purpose.41 

4.6 Conclusions to the Techniques for Health History Enrichment 

This chapter presented the PEOHH and how this thesis will validate it. The PEOHH can use an 

ensemble of up to twelve record linkage features for joining WOs to outages. That ensemble of 

features was broken down into four sub sections: 

• Four timestamp-based features 

• A feature that considers the recorded type of maintenance 

• A feature that uses the records of visits to the wind turbine 

• Six failure mode-based features 

The following results chapters will test that ensemble of features.  

 

41 Chapter 9 discusses the effect on this research of not using more computing power for the 
optimisation described in chapter 7. 
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5 Results: Examples of Health History Enrichment 

Chapter four introduced the Process for the Enrichment of OWT Health History (PEOHH). This 

chapter offers two example Work Orders (WO) and uses them to illustrate the PEOHH by linking them 

to outages. Agreement Weights (AW) and the agreement Threshold for each time Feature (𝑇ℎ𝐹𝑒) 

were defined in chapter four and chapter seven will illustrate the effect that varying them has on the 

Enriched Health History (EHH). This chapter will illustrate the effect that varying them has on the 

individual Pairs of Linked Records (POLR) that make up the EHH. 

5.1 Example 1 

Table 5-1 presents the first example WO, the replacement of a detached temperature sensor, PT100, 

a resistance thermometer. 

Some information about the WO is not published here for reasons of commercial sensitivity. The first 

five characters of the functional location that identify the wind farm are redacted, as are the following 

three characters that identify the row and the specific wind turbine. In the example in Table 5-1, the 

WO does not record any further details of the functional location. The name (name) and email address 

(email) of the two technicians who recorded their work in the WO long text field are also redacted. 

The order ID is a unique identifier for the WO42. The table shows that the start date is recorded as two 

months later than the notification date. The long text corroborates that the notification was generated 

on the recorded notification date and that the corrective work was done on the recorded basic start 

date. The long text also details the times that these notes were generated at, in Central European 

Time (CET). There is no finish date recorded for this WO. 

Order ID 
Notification 
Date 

Start Date Finish Date 
Maintenance 
Activity Type 

Functional 
Location 

Description 

80116285 11/01/2017 01/03/2017  Corrective ******** 
transformer 
room temp 
sensor error 

Long Text 

11.01.2017 09:32:25 CET name (email) transformer room temperature sensor error, 
fault code 12114, ----------------------------------------43 01.03.2017 14:06:53 CET name 
(email) We found the pt100 sensor had detached from the cable in the transformer = 
room. So we replaced the the pt100. All ok after power up. 

Table 5-1, First Example WO 

 

42 The database of WOs was described in section 2.1.3. 

43 ---- Confidential information redacted 
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Table 5-2 presents the material consumption data for the first example WO. The ‘posting date’, which 

refers to when the material line item was used, corroborates the date on which the temperature sensor 

was replaced. The ‘reserved’ field details the number of pieces (PC) that were reserved to be available 

so that this maintenance activity could be actioned: one sensor. The material description field details 

that the sensor is fitted with a 6m long cable that is shielded against electromagnetic noise. 

Material Material Description Reserved Unit 
Posting 
Date 

A9B00017802 
SENSOR PT100 /6M 
SHIELDED WIRE 

1 PC 01/03/2017 

Table 5-2, Material Consumption Data for Order 80116285 

The PEOHH links the WO to all the outages that start or finish within forty days of the start date44. 

Table 5-3 presents two of the outages linked by the PEOHH to the first example WO, referred to here 

as outage A and outage B. Ørsted label each outage with an alarm code indicative of the failure mode 

using a combination of automatic and manual methods45. The table details the description of each 

alarm code. 

The database of outages classifies outage A as ‘predetermined’ and outage B as ‘corrective’. Section 

2.1.2 explained that the ‘reset’ feature classifies each outage that has been classified as corrective as 

either a visit, a remote reset or an automatic reset and that “the ‘number visits’ feature is either zero or 

a positive integer. It is Ørsted’s estimate of how many times the OWT was visited during the outage. It 

is calculated using the ‘wind turbine in local operation’ alarm.” 

Outage 
ID 

Date Time 
On 

Date Time 
Off 

Alarm 
Code 

Description Outage Type Reset 
Number 
Visits 

A 
01/03/2017 

08:36:33 

01/03/2017 

11:20:41 
1001 

Manual 
stop 

Predetermined   1 

B 
30/03/2017 

13:08:12 

01/04/2017 

10:39:12 
63025 

Smoke in 
the A3 box 

Corrective Visit 1 

Table 5-3, Two Outages Linked to Order 80116285 

 

44 This blocking threshold will be optimised in section 7.1. 

45 The database of outages was described in section 2.1.2. 
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It will be clear to the reader, by comparison of the WO ‘long text’ field with the outage timestamps, that 

outage A is the correct match for the WO. Outage B happened a month later and in this case, correct 

record linkage could be achieved using one feature, the WO start date. This section will use this 

example to illustrate the PEOHH. 

Table 5-4 shows the duration of outage A and outage B. Both outages have more than the minimum 

duration of 20 minutes required by section 4.4.3. It also shows the time difference (∆𝑡𝐹𝑒) for each of 

the four time features46. 

The POLR made up of the WO and outage A has  ∆𝑡𝑆𝑡 and ∆𝑡𝑃𝑎 of 0.36 days (8.6 hours), which is 

less than the 2-day agreement threshold (𝑇ℎ𝐹𝑒) that was proposed in section 4.4.1 and that will be 

optimised in section 7.6. These time differences are shown in green. The other time differences are 

above this threshold and are shown in pink. There is no time difference for the finish time feature 

because this item is missing from the WO and these missing time differences are shown in orange. 

Outage 
ID 

Duration 
(days) 

∆𝑡𝐹𝑒 (days) 
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A 0.11 0.36  49.36 0.36 

B 1.9 29.55  78.55 29.55 

Table 5-4, Duration and Time Difference (∆𝑡𝐹𝑒) for Two Outages Linked to Order 80116285 

Section 4.1 presented the PEOHH: 

“The PEOHH calculates a Weight for each Feature for each POLR (𝑊𝐹𝑒𝑃𝑂𝐿𝑅
) using the 

Agreement Weight for that Feature (𝐴𝑊𝐹𝑒), the Disagreement Weight for that Feature 

(𝐷𝑊𝐹𝑒) and equation 4.1. The following pages of this section will present the process 

used in this research for estimating optimal values of 𝐴𝑊𝐹𝑒 and 𝐷𝑊𝐹𝑒 for each feature. 

Where 𝐴𝑊𝐹𝑒 and 𝐷𝑊𝐹𝑒 for a feature can be set to zero, this research has not identified 

evidence of a benefit of calculating that feature and so operators might consider 

 

46 The time features were described in section 2.1.3.1. 
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disregarding that feature so as to avoid computation with no proven drop in the quality 

of record linkage. 

 

𝑊𝐹𝑒𝑃𝑂𝐿𝑅
=  {

𝐴𝑊𝐹𝑒 , 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑃𝑂𝐿𝑅

𝐷𝑊𝐹𝑒 , 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑃𝑂𝐿𝑅

0, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 𝑛𝑒𝑖𝑡ℎ𝑒𝑟𝑃𝑂𝐿𝑅

 
(4.1) 

The PEOHH calculates a score for each POLR (𝑆𝑃𝑂𝐿𝑅), the sum across all the features 

of the Weight for that Feature and for that POLR (𝑊𝐹𝑒𝑃𝑂𝐿𝑅
) using equation 4.2.” 

 
𝑆𝑃𝑂𝐿𝑅 =  ∑ 𝑊𝐹𝑒𝑃𝑂𝐿𝑅

𝐹𝑒
 

(4.2) 
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Table 5-5 shows the calculation of 𝑆𝑃𝑂𝐿𝑅 for the POLRs made up of the WO and the two outages. In 

this example, for each feature, 𝐴𝑊𝐹𝑒 is set to one (shown in green) and 𝐷𝑊𝐹𝑒 is set to negative one 

(shown in red). These weights will be optimised in section 7.6. Because the finish time is missing from 

the WO, this feature registers neither agreement nor disagreement and is set to zero (shown in 

orange). The table shows each of the ensemble of twelve features presented in chapter 4. For both 

POLRs in this case, most of the features register disagreement. 

For the six features indicative of the failure mode that were presented in section 4.4.4, all register 

disagreement between the WO and the outage. The alarm code for outage A, 1001, “manual stop”, is 

not indicative of any specific failure mode and the alarm code for outage B, 63025, ‘smoke in the A3 

box’, does not match either the WO description or long text. The disagreement for the parts feature47 

indicates that this alarm code is not linked to this temperature sensor in the parts feature training data. 

The alarm code feature registers agreement between the WO and an alarm that the PEOHH has 

linked to outage B48. 

𝑆𝑃𝑂𝐿𝑅 is the sum of the row and in this case both POLRs yield the same value, negative five. 
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A 1 0 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -5 

B -1 0 -1 -1 -1 -1 -1 1 -1 -1 1 1 -5 

Table 5-5, Calculation of 𝑆𝑃𝑂𝐿𝑅 for Two Outages Linked to Order 80116285 

As both POLRs yield the same value of 𝑆𝑃𝑂𝐿𝑅, the PEOHH selects the POLR with the smallest ∆𝑡𝑆𝑡, in 

this case outage A. For this WO, the PEOHH has selected the correct outage without optimisation. For 

other WOs, optimisation of the weights and thresholds used in the PEOHH improves the quality of 

record linkage, as will be demonstrated in Chapter 7. 

 

47 The parts feature was presented in section 4.4.4.3.3. 

48 The linkage of outages to alarms was presented in section 4.4.4. 
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Table 5-6 investigates the effect of changing the Agreement Weight for the Start time feature (𝐴𝑊𝑆𝑡) 

from positive one to negative one (underlined). The POLR with the highest value of 𝑆𝑃𝑂𝐿𝑅 is now the 

POLR made up of the WO and outage B and has an 𝑆𝑃𝑂𝐿𝑅 of negative five while the POLR made up 

of the WO and outage A now has an 𝑆𝑃𝑂𝐿𝑅 of negative seven. Due to the change to 𝐴𝑊𝑆𝑡, the 

PEOHH has selected a different outage. This change would reduce the quality of record linkage and it 

would reduce its measure, Positive Predictive Value (PPV). 
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A -1 0 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -7 

B -1 0 -1 -1 -1 -1 -1 1 -1 -1 1 1 -5 

Table 5-6, Calculation of 𝑆𝑃𝑂𝐿𝑅 for Two Outages Linked to Order 80116285 after changing the 

Agreement Weight for the Start time feature (𝐴𝑊𝑆𝑡) 

This section has illustrated the effect that varying 𝐴𝑊𝑆𝑡 has on an individual POLR. Chapter seven will 

illustrate the effect that varying it has on the Enriched Health History (EHH). 
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5.2 Example 2 

Table 5-7 presents the second example WO, this time triggered by an alarm in the wind turbine’s drive 

train subsystem which is referred to in the Reference Designation System for Power Plants standard 

for wind turbines (V.G.B. PowerTech, 2014) as ‘MDK’. The Low speed Monitoring Unit (LMU) is 

located on the low speed side of the power train; between the rotor and the gearbox. It is an 

emergency system that triggers a hydraulic brake in the event of an ‘overspeed’; an otherwise 

dangerous event where the rotary speed of the wind turbine exceeds a set limit. (European Patent 

Application EP 2 339 174 A1, 2011). This time, there is no entry in the ‘long text’ field. 

Order ID 
Notification 
Date 

Start Date Finish Date 
Maintenance 
Activity Type 

Functional 
Location 

Description 

80166733 22/11/2018 24/11/2018 25/11/2018 Corrective 
******** 

MDK 

LMU alarm 
overspeed 

Long Text  

Table 5-7, Second Example WO 

The material consumption data in Table 5-8 show that as well as the LMU, the maintenance team also 

replaced an inductive sensor, a cable, an optical isolator (optocoupler) and a converter for linearising 

electronic measurement (PR module 4222). The replacement of such auxiliary components is 

standard operating practice because re-using a component, even one that is not faulty, is typically 

associated with a shorter time to failure than replacement. 

Material Material Description Reserved Unit 
Posting 
Date 

A9B00030596 
Sensor cable M12 
8POL  5M 

1 PC   

A9B00030713 
Sensor Inductiv M12 
5Mtr. 

1 PC  

A9B00300151 
OPTO COUPLER 24-
60VDC 

1 PC  

A9B10124433 LMU UNIT 3.6MW 1 PC 24/11/2018 

A9B10162244 
PR modul 4222 V/F 0-
5V/0-10.7Hz 

1 PC  

Table 5-8, Material Consumption Data for Order 80166733 
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Table 5-9 presents three of the outages linked by the PEOHH to the second example WO, referred to 

here as outage C, D and E. Outage C involved a visit to the wind turbine but not the resolution of the 

fault as it recurs three hours later and is remotely reset. Work to replace the LMU was carried out on a 

second visit, two and a half hours after the remote reset, outage E. 

Outage 
ID 

Date Time 
On 

Date Time 
Off 

Alarm 
Code 

Description 
Outage 
Type 

Reset 
Number 
Visits 

C 
22/11/2018 

21:30:51 

23/11/2018 

10:14:34 
6101 

LMU alarm 
overspeed 

Corrective Visit 1 

D 
23/11/2018 

13:29:29 

23/11/2018 

17:06:27 
6101 

LMU alarm 
overspeed 

Corrective Remote  

E 
23/11/2018 

19:24:22 

24/11/2018 

11:38:14 
6101 

LMU alarm 
overspeed 

Corrective Visit 1 

Table 5-9, Two Outages Linked to Order 80166733 

Table 5-10 shows the duration of outage C, D and E. All three outages have more than the minimum 

duration of 20 minutes required by section 4.4.3. It also shows ∆𝑡𝐹𝑒. For each POLR in the table, the 

PEOHH registers agreement for each of the four time features. 
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C 0.53 0.57 1.57 0.90 0.57 

D 0.15 0.29 1.29 1.56 0.29 

E 0.68 0.00 0.52 1.81 0.00 

Table 5-10, Duration and Time Difference (∆𝑡𝐹𝑒) for Three Outages Linked to Order 80166733 
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Table 5-11 shows the calculation of 𝑆𝑃𝑂𝐿𝑅 for the POLRs made up of the WO and the three outages. 

Outage D registers disagreement for the ‘visits’ feature because this outage was resolved by a remote 

reset and so did not involve a visit to the wind turbine. Apart from this feature, all the other features 

register the same agreement pattern for each outage. 

Outage 
ID 

Timestamp 
Failure Mode 
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C 1 1 1 1 0 1 -1 0 1 -1 1 1 6 

D 1 1 1 1 0 1 -1 0 1 -1 1 -1 4 

E 1 1 1 1 0 1 -1 0 1 -1 1 1 6 

Table 5-11, Calculation of 𝑆𝑃𝑂𝐿𝑅 for Three Outages Linked to Order 80166733 

As both outage C and outage E yield the same value of 𝑆𝑃𝑂𝐿𝑅, the PEOHH selects the POLR from 

these with the smallest ∆𝑡𝑆𝑡; outage C. 
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Table 5-12 investigates the effect of changing the agreement Threshold for each time Feature (𝑇ℎ𝐹𝑒)49 

from two days to zero (underlined). Setting these four thresholds to zero has the effect of only 

registering agreement when the WO timestamp occurs during the outage. The POLR with the highest 

value of 𝑆𝑃𝑂𝐿𝑅 is now the POLR made up of the WO and outage E. Changing the thresholds has 

caused the PEOHH to link the WO to the outage where the work was carried out. 

Outage 
ID 

Timestamp 
Failure Mode 
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C -1 -1 -1 -1 0 1 -1 0 1 -1 1 1 -2 

D -1 -1 -1 -1 0 1 -1 0 1 -1 1 -1 -4 

E 1 -1 -1 1 0 1 -1 0 1 -1 1 1 2 

Table 5-12, Calculation of 𝑆𝑃𝑂𝐿𝑅 for Three Outages Linked to Order 80166733 after changing the 

agreement Threshold for each time Feature (𝑇ℎ𝐹𝑒) 

This section has illustrated the effect that varying 𝑇ℎ𝐹𝑒 has on an individual POLR and the necessity 

of optimising these four thresholds50. 

5.3 Conclusions to the Examples of Health History Enrichment 

This chapter has illustrated the PEOHH by linking two WOs to outages creating POLRs and has 

shown the effect on individual POLRs of varying weights and thresholds. Chapter seven will illustrate 

the effect that varying the weights and thresholds has on the EHH.  

 

49 The agreement Threshold for a time Feature (𝑇ℎ𝐹𝑒) was presented in section 4.4.1. 
50 𝑇ℎ𝐹𝑒 will be optimised in section 7.6. 
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6 Quantifying Uncertainty 

Any statistic is only meaningful if its uncertainty is understood. The small size of the sample “Gold 

Standard” Set of Linked Records (GSSLR)51 creates uncertainty. Understanding this uncertainty 

informs maintenance decision making which can improve productivity. Investigating uncertainty has 

enabled this research to present the uncertainty of its conclusions. 

As was described in section 4.3, the GSSLR was created by manually matching a random sample 

from the corrective Work Order (WO) data to outages, to avoid systematic sampling errors. Random 

variations in a population can introduce differences between its statistical characteristics and those of 

a small sample from it. This chapter will review techniques for quantifying such uncertainty. 

Section 6.1 will review techniques for estimating the uncertainty of the extent to which a binomial 

proportion52 should be representative of the population from which it has been sampled. These 

techniques will be used in chapters seven and eight for estimating the uncertainty of the extent to 

which the PPV of the GSSLR should be representative of the PPV of the EHH and in chapter eight for 

estimating the uncertainty of the extent to which a specific measure of the richness of the EHH should 

be representative of the that property of the GSSLR. 

Section 6.2 will consider the estimation of the uncertainty of a difference between two such uncertain 

estimates. These techniques will be used in chapter seven to estimate the uncertainty of a difference 

between two estimates of the PPV of the EHH and in chapter eight to estimate the uncertainty of a 

difference between two estimates of a measure of the richness of the EHH; of how much the health 

history has been enriched by. 

Section 6.3 will investigate the probability that one such an uncertain estimate is greater than another. 

These techniques will be used in chapter seven to estimate the probability that a change to a 

parameter would increase the PPV of the EHH and in chapter eight to estimate the probability that the 

Process for the Enrichment of wind turbine Health History (PEOHH) developed in this research does 

enrich the health history. Section 6.4 will summarise this chapter. 

 

51 Section 4.3.2 presented the method for the validation of the techniques for health history enrichment 
used in this thesis. The size of the GSSLR, 29 WOs, was constrained by the amount of expert time 
that was available. 

52 The binomial proportion was defined in section 3.2.2. To recap, the binomial distribution describes 
the behaviour of a count variable for a fixed number of observations where each observation is 
independent, where each observation has one of two possible outcomes and where the probability of 
each outcome is the same for each observation. The binomial proportion is the number of successes 
divided by the number of trials. 
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6.1 Interval Estimation for a Binomial Proportion 

Section 3.2.2 discussed the Positive Predictive Value (PPV): 

 
𝑃𝑃𝑉 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2.8) 

“This thesis will compare a sample from the EHH to the GSSLR. It will calculate the 

PPV, referred to as the PPV of the GSSLR or just as the PPV. A point estimate is a 

single value estimate of an unknown population parameter. The PPV of the GSSLR is a 

point estimate of the PPV of the EHH. 

The binomial distribution describes the behaviour of a count variable for a fixed number 

of observations where each observation is independent, where each observation has 

one of two possible outcomes and where the probability of each outcome is the same 

for each observation. The binomial proportion is the number of successes divided by 

the number of trials. The PPV of the GSSLR will be modelled as a binomial proportion.” 

This section will compare five techniques for estimation of the uncertainty of a binomial proportion, 

referred to as intervals. 

Section 4.3.2 presented the method for the validation of the techniques for health history enrichment 

used in this thesis. Please recall from the chapter that the size of the GSSLR, 29 WOs, was 

constrained by the amount of expert time that was available. 

A standard technique to get a point estimate of any measure (p) of a property of a population is to 

apply the same measure (�̂�) to a representative sample from that population. �̂� corresponds to the 

PPV of the GSSLR and p corresponds to the PPV of the EHH. 

A Confidence Interval (CI) is a range of values for an unknown parameter with a specified, nominal 

probability that it contains the feature of interest. This probability is known as the Confidence Level 

(CL). For example, a 95% CI for p predicts with 95% CL that p lies within the CI. This section will 

construct CIs for p.53 

The coverage of a CI is a measure of the quality of a technique for constructing CIs. It will be defined 

in section 6.1.2, after the standard technique for constructing CIs for a binomial proportion has been 

presented. That sequence for the introduction of concepts in this section enables it to illustrate 

 

53 To identify the confidence of the correctness of the EHH, section 8.2 will use a method that will be 

selected in this section to construct CIs for the PPV of the EHH. 
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coverage with examples from a CI. The standard technique for a binomial proportion is referred to in 

this thesis as the Wald interval (Wald, 1943). It has surprisingly poor coverage and so sections 6.1.3 

to 6.1.6 will go on to present a variety of alternative techniques: Wilson (1927), Clopper and Pearson 

(1934), Jeffreys (1973) and Agresti and Coull (1998). All these techniques are also presented in 

Brown et al., 2001, who recommend that either the Wilson interval or the Jeffreys interval should be 

used for sample size (n) ≤ 40. This will be followed by a review of the literature on the comparison of 

these techniques and the presentation, for the first time, of a novel and useful method of comparison 

to identify the technique with the best coverage in the region of interest. The technique that this 

section selects will be used thereafter throughout this thesis. 

Section 6.1.8 will review the “bootstrapping” technique and explain that the statistical package that this 

research used does not include a bootstrapping method. While python libraries do include 

bootstrapping methods, they do not include a tool for calculating the coverage of confidence intervals 

calculated using bootstrapping. The coverage of the Wilson interval is acceptable, so this research did 

not find it necessary to investigate the coverage of a bootstrapping interval for constructing confidence 

intervals of a binomial proportion. 

Section 6.1.9 is the conclusion to this section. 

This research performed the statistical tests that generated Figure 6-3 to Figure 6-11 using the R 

software suite (R Core Team, 2021) with the binom package (Dorai-Raj, 2014) through the rpy2 

Python module (Cock, 2005). It benefitted from support in how to implement these techniques posted 

by Stack Overflow internet forum users “SergioR” (SergioR, 2020) and “horseoftheyear” 

(horseoftheyear, 2020). 

6.1.1 Wald Interval 

Laplace, 1812 and Wald, 1943, both present what is referred to in this thesis as the Wald interval but 

is alternatively known as the normal approximation interval. It relies on the assumption that the 

binomial distribution can be approximated by the Gaussian without any modifications or corrections. 

The Gaussian (𝜙(𝑧)), otherwise known as the probability density function of the standard normal 

distribution, is defined by equation 6.1, where z is a normalised random variable. 

 

𝜙(𝑧) =  
𝑒

−𝑧2

2⁄

√2𝜋
 

(6.1) 
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Significance (S) is 1 – CL, for example for a 95% CI, S = 0.05. The probit function (𝛷−1) is the 

inverse54 of the cumulative Gaussian distribution. Equation 6.2 gives the 1 − 𝑆
2⁄  quantile of the probit 

function (𝜅). 

 𝜅 = 𝛷−1(1 − 𝑆
2⁄ ) (6.2) 

That is: 

 
𝜅 = 𝛷−1 (

𝐶𝐿 + 1

2
) 

(6.3) 

The Wald interval is defined by equation 6.4 and is a function of the sample size (n) and the sample 

proportion (�̂�)55.  

 

𝐶𝐼𝑊𝑎𝑙𝑑(𝑝) =  �̂� ± 𝜅√
�̂�. (1 − �̂�)

𝑛
 

(6.4) 

Brown et al., 2001, report that the Wald interval was at the time of writing the standard technique 

found in textbooks and that its properties, described in the following pages, are ‘erratically poor’. 

Consider for example the extreme case where a sample of one from a population is successful so that 

n=1 and the number of True Positives in the sample (TP)=1. Figure 6-1(a) presents upper and lower 

limits of the CI for this case predicted using the Wald interval against p. In this case the Wald interval 

predicts the 95% CI as (1, 1). The figure appears to be blank because all the estimates of both the 

upper and lower bounds of the CI are one which means that the interval predicts with all values of 

confidence that the proportion of classified matches that are correctly identified as such in the whole 

population lies between one and one. This is incorrect as one positive match does not prove that each 

item in the population would also be a positive match. It is not performing appropriately in this range. 

As a less extreme example, consider the case where, of a sample of 20 from a population, 11 are 

successful so that n=20 and TP=11. Figure 6-1(b) presents upper and lower limits of the CI for this 

 

54 The inverse cumulative distribution function transform, also known as the quantile function or 

percent point function, specifies the value of the random variable such that the probability of the 

variable being less than or equal to that value equals the probability u, where (0 ≤ u ≤ 1). 

55 The sample proportion (�̂�) was discussed in the introduction to section 6.1. 
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case predicted using the Wald interval against p. In this case the interval predicts the 95% CI as 

(0.332, 0.768) and zero confidence that p is exactly 11/20. p could be 11/20 but with a large 

population it is unlikely to be exactly that and this assumption is not problematic in practice. 

Problematically, the interval predicts the 100% CI as (-inf, inf), whereas p must, by definition, be 

between zero and 1. 

a) 

 

b) 

 

Figure 6-1, Confidence Level against Upper and Lower Limits of CI(p), 

Predicted using the Wald Interval, for (a) n=1, TP=1 and (b) n=20, TP=11 

 

Figure 6-2 presents upper and lower limits of the 95% CI (p) predicted using the Wald interval against 

the number of samples (n) for cases where (a) half of the samples are correct (�̂� = 1/2) and (b) all but 

one of the samples are correct (�̂� = (n-1) / n). It also shows �̂�, the point estimate of p. Both examples 

show the CI narrowing down on a smaller range of p as n increases, which is intuitively credible. 

a) 

 

b) 

 

 

 
p̂  

 95% CI 

Figure 6-2, �̂� and 95% CI of p, Predicted using the Wald Interval, against n 

for (a) �̂� = 1/2 and (b) 𝑝 ̂= (n-1) / n 
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6.1.2 Length and Coverage 

The length of an interval (𝐿𝑒𝑛𝑔𝑡ℎ𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙) is defined by equation 6.5 and is the difference between the 

Upper limit of the interval (𝑈𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙) and its Lower limit (𝐿𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙). 

 𝐿𝑒𝑛𝑔𝑡ℎ𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑇𝑃, 𝑛) =  𝑈𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 − 𝐿𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (6.5) 

For example, in the case where, of a sample of 20 from a population, 11 are a positive match; n=20, 

TP=11. The Wald interval predicts the 95% CI as (0.332, 0.768) and has a length of 0.436. Where 

other considerations are equivalent, a shorter interval is considered more informative or useful 

because it expresses more certainty about p. 

To recap, a Confidence Interval (CI) is a region that contains a feature of interest with a specified, 

nominal probability, the Confidence Level (CL). The probability that the CI contains this feature of 

interest is called the Coverage Probability (CP). CP would ideally equal CL, so the difference between 

them will be used as a measure of the quality of techniques used for the construction of CIs. 

Figure 6-3 to Figure 6-12 show features of the binomial distribution that are not features of any data 

and that are not intuitive. Brown et al., 2001, describe such features: “An interesting phenomenon for 

the standard interval is that the actual coverage probability of the confidence interval contains 

nonnegligible oscillation as both p and n vary.” 

Some examples of this phenomenon will now be presented. Figure 6-3 shows CP against CL 

predicted using the Wald interval for p=0.5, (a) n=100 and (b) n=10. The coverage would ideally equal 

the confidence level but both examples show errors where the result deviates from the x=y line in a 

step pattern. This error is caused by the underlying structure of the binomial distribution (Brown et al., 

2001). The figures show that increasing n or CL tends to reduce the size of the steps. Other CIs, 

presented in the following pages, have better coverage properties. 

a) 

 

b) 

 

Figure 6-3, Coverage against Confidence Level, Predicted using the Wald Interval, 

for p=0.5, (a) n=100, and (b) n=10 
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Figure 6-4 shows coverage of the 95% CI predicted using the Wald interval (a) against p for n = 25, (b) 

against n for p = 0.99. While coverage would ideally equal the CL, 95%, it instead shows oscillation in 

coverage both with p and with n and extremely bad coverage for low n or small or large p. Figure 6-4 

is a reproduction of a figure in Brown et al., 2001. 

a) 

 

b) 

 

Figure 6-4, Coverage of the 95% CI, Predicted using the Wald Interval, 

(a) against p for n = 25, (b) against n for p = 0.99 

The following subsections will use the same example cases as in Figure 6-4 to illustrate that other 

techniques for constructing CIs for a binomial proportion have better coverage properties. Section 

6.1.7 will compare the coverage and length of the intervals in the region that is of interest to this 

thesis. 

6.1.3 Wilson Interval 

The Wilson Interval (Wilson, 1927) is a modification of the Wald interval, adjusted to improve 

coverage. It is a function of the sample size (n), the sample proportion (�̂�) and of  56. The derivation of 

the interval is not included in this thesis, which is only concerned with its coverage and length. 

 

𝐶𝐼𝑊𝑖𝑙𝑠𝑜𝑛(𝑝) =  
𝑇𝑃 + 𝜅2

2⁄

𝑛 + 𝜅2
±

𝜅. 𝑛
1

2⁄

𝑛 + 𝜅2 (
�̂�(1 − �̂�) + 𝜅2

4𝑛
 )

1
2⁄

 

(6.6) 

Figure 6-5 shows coverage of the 95% CI predicted using the Wilson interval (a) against p for n = 25, 

(b) against n for p = 0.99. While coverage would ideally equal the CL, 95%, it instead shows oscillation 

in coverage both with p and with n. The ordinate is expanded to show the oscillation. In comparison 

with Figure 6-4 it shows better coverage. Section 6.1.7 will compare the coverage and length of the 

intervals in the region that is of interest to this thesis. 

 

56 𝜅 was defined by equation 6.2. 
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a) 

 

b) 

 

Figure 6-5, Coverage of the 95% CI, Predicted using the Wilson Interval, 

a) against p for n = 25, (b) against n for p = 0.99 

6.1.4 Clopper-Pearson Interval 

The Clopper-Pearson interval (Clopper and Pearson, 1934) is alternatively known as the exact 

interval. For all values of probability and sample size, it has coverage at a minimum of CL, that is it 

never under covers, but this causes it to over cover. It is based on the exact binomial distribution 

whereas the Wald and Wilson intervals are based on the Gaussian. 

Equation 6.7 defines the Beta distribution (𝐵(𝑥; 𝛼, 𝛽)) where 𝛼 and 𝛽 are positive shape parameters, 

𝑐 is a normalisation constant to ensure that the total probability is 1 and 0 ≤ 𝑥 ≤ 1. 

 𝐵(𝑥; 𝛼, 𝛽) =  𝑐. 𝑥𝛼−1(1 − 𝑥)𝛽−1 (6.7) 

The Clopper-Pearson interval is a function of the sample size (n), the number of True Positives in the 

sample (TP) and Significance (S), which is 1 – CL. For a 95% CI, S = 0.05. The derivation of the 

interval is not included in this thesis, which is only concerned with its coverage and length. 

 𝐶𝐼𝐶𝑙𝑜𝑝𝑝𝑒𝑟−𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑝) =  [𝐿𝐶𝑙𝑜𝑝𝑝𝑒𝑟−𝑃𝑒𝑎𝑟𝑠𝑜𝑛,  𝑈𝐶𝑙𝑜𝑝𝑝𝑒𝑟−𝑃𝑒𝑎𝑟𝑠𝑜𝑛] (6.8) 

Equation 6.9 defines its Lower limit (𝐿𝐶𝑙𝑜𝑝𝑝𝑒𝑟−𝑃𝑒𝑎𝑟𝑠𝑜𝑛). 

 𝐿𝐶𝑙𝑜𝑝𝑝𝑒𝑟−𝑃𝑒𝑎𝑟𝑠𝑜𝑛 =  𝐵(𝑆
2⁄ ;  𝑇𝑃, 𝑛 − 𝑇𝑃 + 1) (6.9) 

Equation 6.10 defines its Upper limit (𝑈𝐶𝑙𝑜𝑝𝑝𝑒𝑟−𝑃𝑒𝑎𝑟𝑠𝑜𝑛). 

 𝑈𝐶𝑙𝑜𝑝𝑝𝑒𝑟−𝑃𝑒𝑎𝑟𝑠𝑜𝑛 =  𝐵(1 − 𝑆
2⁄ ;  𝑇𝑃 + 1, 𝑛 − 𝑇𝑃) (6.10) 

Figure 6-6 shows coverage of the 95% CI predicted using the Clopper-Pearson interval (a) against p 

for n = 25, (b) against n for p = 0.99. The ordinate is expanded to show the oscillation. While coverage 
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would ideally equal the CL, 95%, it instead shows oscillation in coverage both with p and with n. In 

comparison with Figure 6-4 it shows better coverage. Section 6.1.7 will compare the coverage and 

length of the intervals in the region that is of interest to this thesis. 

a) 

 

b) 

 

Figure 6-6, Coverage of the 95% CI, Predicted using the Clopper-Pearson Interval, 

a) against p for n = 25, (b) against n for p = 0.99 

6.1.5 Jeffreys Interval 

The Jeffreys interval (Jeffreys, 1973) is alternatively known as the Bayesian highest posterior density 

credible interval. It is based on Bayesian statistical inference which assumes a prior distribution of 

expected outcomes (Bayes, 1763). The Jeffreys interval uses a Beta57 prior with shape parameters 𝛼 

= 𝛽 = 0.5. The derivation of the interval is not included in this thesis, which is only concerned with its 

coverage and length. 

 𝐶𝐼𝐽𝑒𝑓𝑓𝑟𝑒𝑦𝑠(𝑝) =  [𝐿𝐽𝑒𝑓𝑓𝑟𝑒𝑦𝑠 , 𝑈𝐽𝑒𝑓𝑓𝑟𝑒𝑦𝑠] (6.11) 

Equation 6.12 defines its Lower limit (𝐿𝐽𝑒𝑓𝑓𝑟𝑒𝑦𝑠). It is a function of the sample size (n) and the sample 

proportion (�̂�). It makes an exception for the case where �̂�= zero where the lower limit of p is known to 

be zero as at least one item in the population is incorrect. 

 
𝐿𝐽𝑒𝑓𝑓𝑟𝑒𝑦𝑠 =  {

0, �̂� = 0

𝐵(𝑆
2⁄ ;  𝑛. �̂� + 1

2⁄ , 𝑛. (1 − �̂�)  + 1
2⁄ ), �̂� ≠ 0

 
(6.12) 

 

  

 

57 The Beta distribution was defined in equation 6.7. 
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Equation 6.13 defines its Upper limit (𝑈𝐽𝑒𝑓𝑓𝑟𝑒𝑦𝑠). It makes an exception for the case where �̂�= 1 where 

the upper limit of p is known to be 1 as at least one item in the population is correct. 

 
𝑈𝐽𝑒𝑓𝑓𝑟𝑒𝑦𝑠 =  {

1, �̂� = 1

𝐵(1 − 𝑆
2⁄ ;  𝑛. �̂� + 1

2⁄ , 𝑛. (1 − �̂�)  + 1
2⁄ ), �̂� ≠ 1

 
(6.13) 

Brown et al., 2001, include a table of 95% limits of the Jeffreys interval. The research presented in this 

thesis validated its implementation of this interval against their table. 

Figure 6-7 shows coverage of the 95% CI predicted using the Jeffreys interval (a) against p for n = 25, 

(b) against n for p = 0.99. The ordinate is expanded to show the oscillation. While coverage would 

ideally equal the CL, 95%, it instead shows oscillation in coverage both with p and with n. In 

comparison with Figure 6-4 it shows better coverage. Section 6.1.7 will compare the coverage and 

length of the intervals in the region that is of interest to this thesis. 

a) 

 

b) 

 

Figure 6-7, Coverage of the 95% CI, Predicted using the Jeffreys Interval, 

a) against p for n = 25, (b) against n for p = 0.99 

6.1.6 Agresti-Coull Interval 

The Agresti-Coull interval (Agresti and Coull, 1998) is a simple modification to the Wald interval. It 

adds two to the number of True Positives in the sample (TP) and four to the sample size (n). Adding 

these artificial observations has the effect of pulling the distribution of p towards 0.5, where the 

coverage of the Wald interval is closer to CL. 

  



 

134 

 

Figure 6-8 shows coverage of the 95% CI predicted using the Agresti-Coull interval (a) against p for n 

= 25, (b) against n for p = 0.99. The ordinate is expanded to show the oscillation. While coverage 

would ideally equal the CL, 95%, it instead shows oscillation in coverage both with p and with n. In 

comparison with Figure 6-4 it shows better coverage. Section 6.1.7 will compare the coverage and 

length of the intervals in the region that is of interest to this thesis. 

a) 

 

b) 

 

Figure 6-8, Coverage of the 95% CI, Predicted using the Agresti-Coull Interval, 

a) against p for n = 25, (b) against n for p = 0.99 

6.1.7 Interval Selection Process 

This section will compare a set of standard methods for CI estimation. It will use results from chapter 

7, the sample size (n) and the number of true positives (TP), to select a technique for constructing CIs 

for a binomial proportion to be used throughout this thesis. Table 6-1 shows that the length of the 

confidence interval for n=29, TP=24 for each of the techniques presented in the preceding chapters 

are similar. 

Technique 
Upper 
Limit 

Lower 
Limit Length 

Wald 0.690 0.965 0.275 

Clopper-Pearson 0.642 0.942 0.299 

Agresti-Coull 0.650 0.929 0.279 

Wilson 0.655 0.924 0.270 

Jeffreys 0.663 0.931 0.268 

Table 6-1, Estimates of the 95% CI for n=29, TP=24 

Several researchers have compared techniques for estimating CIs on binomial population proportions. 
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Cameron, 2011, reviews three techniques for estimating CIs on binomial population proportions. He 

finds that the Clopper-Pearson interval consistently provides a mean level of coverage close to the 

nominal level, even for small sample sizes. Dean and Pagano, 2015, compare techniques by 

calculating the mean coverage in three ranges of p. The mean coverage is not an appropriate 

indicator of the quality of coverage, as over-coverage in one part of the range would offset under-

coverage in another part. 

This thesis presents Coverage Error (CE), defined by equation 6.14. It is the difference between the 

nominal coverage of a CI or Confidence Level (CL), typically 95%, and the interval’s true coverage. 

The CE will be used to assess the risk of poor coverage. 

 𝐶𝐸 = 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 − 𝐶𝐿 (6.14) 

This section presents a Process for predicting the Distribution of the CE (PDCE) given the size of the 

sample (n) and number of True Positives in the sample (TP). While previous approaches have used 

the average coverage, the PDCE uses the distribution of coverage to compare techniques for 

constructing CIs for a binomial proportion in the relevant region. This is an improved approach 

because it reduces the risk of poor coverage. The PDCE comprises the steps listed in Figure 6-9.  

PDCE step 1 uses the Jeffreys’ interval. It could equally well use any interval that has acceptable 

coverage. 

PDCE step 2 makes the simplifying assumption that p is equally likely to lie anywhere within the 95% 

CI of p. Further work could adjust the PDCE to put more weight on more likely values of p. This 

research tried increasing the number of values and found that it had no discernible effect on the result 

and so concluded that 30 is an appropriate number of values. 

 

1: Use the Jeffreys’ interval to calculate the 95%CI of p 

2: Calculate an equally spaced range of 30 values of p that lie within this CI  

3: Calculate the coverage for the given value of n and each of these 30 values of p 

4: Use equation 6.14 to calculate the CE for each of these 30 values of p 

5: Present the distribution of this list of CE values 

Figure 6-9, Process for Predicting the Distribution of the CE (PDCE) 
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Consider for example the case where the sample size is 10 and that they are all a positive match; 

n=10, TP=10. In this case, the PDCE uses the Jeffreys’ interval to predict the 95% CI for p of [0.783, 

1]. Figure 6-10(a) presents the coverage for this case where n=10 against p. PDCE step 4 uses 

equation 6.14 to calculate the CE for each value of p that is within the 95% CI (Figure 6-10(b). 

a) 

C
P

 

 

b) 

C
E

 

 

  p   p 

Figure 6-10 (a) Coverage Probability (CP) against p, (b) Coverage Error (CE) against p, 

of the 95% CI for n=10, TP=10 

Finally, the PDCE compares the distribution of this list of CE values. This thesis uses the PDCE to 

compare techniques for constructing CIs for a binomial proportion in the relevant region. A kernel 

density plot is a smooth curve estimating the probability density function of a continuous variable. 

Figure 6-11 presents kernel density against Coverage Error (CE) for n=29, TP=24 of a selection of 

techniques for constructing CIs for a binomial proportion of the (a) 95% CI (b) 99% CI. 
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Figure 6-11 shows the results for the PDCE. Please recall that figures 6.3 to 6.12 show features of the 

binomial distribution that are not features of any data and that are not intuitive. If a technique has a low 

risk of poor coverage (that is that the technique is relatively appropriate) then in figure 6.11 CE will be 

clustered around zero. Figure 6-11 shows that the Wald interval has very bad coverage in this region, 

the Clopper-Pearson interval has too high coverage in this region and the other intervals have 

acceptable coverage in this region. Figure 6-11(b) shows that the Wilson interval has CE clustered the 

most closely around zero, giving it the best coverage on the 99% CI. This indicates that it has even 

tails on the 95% CI; that is that the (small) probability of over-coverage is close to the (small) 

probability of under-coverage for this interval in this region. Figure 6-11 shows that the Wald and 

Clopper-Pearson intervals are both less appropriate than the Agresti-Coull, Wilson or Jeffreys 

intervals. Figure 6-11(a) and (b) show that the Wilson interval has CE clustered the most closely about 

zero which means that it has the least risk of poor coverage in the region of interest and so this thesis 

will use that technique for constructing confidence intervals. 

 

a) 

 

b) 

 

Figure 6-11, Kernel Density against Coverage Error (CE) for n=29, TP=24 of a Selection of 

Techniques for Constructing Confidence Intervals (CI) of a Binomial Proportion for (a) Confidence 

Level (CL) = 95%, (b) CL=99% 
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6.1.8 Bootstrapping 

Bootstrapping (Efron, 1979) is a statistical procedure that identifies subsamples from the original 

sample from a population. Each element of the sample can be included repeatedly in the same 

subsample. To average out random sampling errors, a large set of subsamples is used. This is known 

as random sampling with replacement. Bootstrap methods can be used for constructing confidence 

intervals of a binomial proportion (Mantalos and Zografos, 2008). 

This research performed the statistical tests that generated Figure 6-3 to Figure 6-11 using the R 

software suite (R Core Team, 2021) with the binom package (Dorai-Raj, 2014) through the rpy2 

Python module (Cock, 2005). Binom does not include a bootstrapping method, and, while python 

libraries including scikit-learn, scipy-stats and pandas do include bootstrapping methods, they do not 

include a tool for calculating the coverage of confidence intervals calculated using bootstrapping.58 

Consequently, this thesis does not investigate the use of bootstrapping for the estimation of the 

uncertainty of a binomial proportion, for which it considers that the coverage from the Wilson interval is 

acceptable. It will use bootstrapping for other applications which will be presented in sections 6.2 and 

6.3; the comparison binomial proportions by estimating the uncertainty of, firstly, the ratio between 

them and, secondly, the probability that one proportion is greater than another.59

 

58 Section 6.2.6 will compare the computational expense of assesing the coverage of an application 
that uses bootstrapping against using other, less computationally expensive, techniques. 

59 The start of this chapter explained why this research required these methods. 
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6.1.9 Conclusion to Interval Estimation for a Binomial Proportion 

This section has reviewed techniques for constructing confidence intervals for a binomial proportion. 

Brown et al., 2001, demonstrated that there is difficulty understanding a class of uncertainties that are 

caused by the underlying structure of the binomial distribution and this chapter has reproduced their 

result. It has demonstrated how to assess the risk of poor coverage and shown that this risk can be 

high when using some popular techniques. It has investigated how to minimise this risk by selecting 

an appropriate technique. 

This chapter has presented a new and useful approach for deciding which technique to select for 

constructing confidence intervals for a binomial proportion. Previous approaches selected a technique 

by its mean coverage, but this new approach instead selects a technique by the distribution of its 

coverage. This research reviewed the literature and did not find this approach, so it can be concluded 

that the approach is novel. This approach is useful in that it minimises the risk of poor coverage more 

effectively than using the mean coverage. 

To minimises the risk of poor coverage, chapters 8 and 9 will use the Wilson interval for constructing 

confidence intervals for binomial proportions. This will enable those chapters to quantify their 

uncertainty as to the extent to which measures of a random sample from a population can be used to 

draw inferences about that population. 
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6.2 Interval Estimation for the Ratio of Two Proportions 

The previous section reviewed techniques for estimating the uncertainty as to the extent to which a 

binomial proportion is representative of the population from which it has been sampled. This section 

will compare two such uncertain estimates. They will be considered as two cases, referred to in this 

chapter as case A and case B, applied to the same sample. 

This section will consider the comparison of the enriched health history to the unenriched health 

history using the GSSLR. This statistical situation occurs repeatedly in this thesis and one of its 

occurrences will be used as an example, presented in section 6.2.1. Sections 6.2.2 to 6.2.5 present 

three techniques for interval estimation for a change in a proportion. These techniques make different 

assumptions about how these proportions are related to each other. Section 6.2.6 compares them and 

section 6.2.7 concludes this section. 

6.2.1 Example of Comparing Proportions 

This section uses the following example to illustrate techniques for estimating the uncertainty of a 

change in a proportion and to select a technique. This thesis will use the selected technique in its 

analysis of other results as well. 

To investigate whether the Process for the Enrichment of wind turbine Health History (PEOHH) 

developed in this research does meet its object, that is to enrich health history, chapter 8 will address 

RQ3: 

RQ3 How can the richness of historical data on wind turbine health be measured? 

To quantify how much enrichment is achieved by the PEOHH, chapter 8 will compare the Enriched 

Health History (EHH) to the unenriched health history. It will define richness and then quantify richness 

using a variety of measures. 

Section 1.2.4 reviewed the literature on troubleshooting as an aspect of the maintenance of offshore 

wind turbines. Please recall from that section that troubleshooting is the activity of repairing a faulty 

OWT by the replacement of components. Section 8.5 will consider the application of wind turbine 

health history to troubleshooting. This chapter considers the statistical theory that will be required to 

understand uncertainty in section 8.5 and in other applications as well, such as to understand the 

uncertainty of a change in the quality of record linkage. As a measure of the richness of historical data 

on wind turbine health, it will present the concept of the Proportion of POLRs in a set where the health 

history would recommend all the Material needed, (PM), a measure of the quality of simulated 

troubleshooting guides. PM is defined by equation 6.15 using the number of POLRs in the EHH where 

the health history Would Recommend all the required parts (𝑊𝑅𝐸𝐻𝐻) and the number of POLRs in the 
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EHH where the Health History would Not Recommend all the required parts (𝑁𝑅𝐸𝐻𝐻), making various 

assumptions that will be detailed in section 8.5. 

 
𝑃𝑀 =  

𝑊𝑅𝐸𝐻𝐻

𝑊𝑅𝐸𝐻𝐻 + 𝑁𝑅𝐸𝐻𝐻
 

(6.15) 

PM is estimated using the PM of the GSSLR (𝑃�̂�) and is consequently expressed as a binomial 

proportion. The small size of the GSSLR60 creates uncertainty about the true value of PM prior to and 

after enrichment. Rather than considering the uncertainty of these two values of PM separately, as in 

section 6.1, this section considers the uncertainty of the increase. 

Section 8.5 will define those WOs already labelled with an alarm code as the unenriched health 

history. These are the existing records of health history prior to enrichment. This section refers to the 

case prior to enrichment as ‘A’ and to that post enrichment as ’B’. Since knowledge of both cases is 

based on the GSSLR they are not independent of each other. Most statistical literature describes 

inferences from independent datasets and so this section will address the unusual situation where 

independence cannot be assumed.  

This example considers the Increase in PM between cases A and B (𝐼𝐴𝐵). 𝐼𝐴𝐵 is important to this 

research because, in this example, it estimates the extent to which the health history has been 

enriched.61 Equation 6.16 defines 𝐼𝐴𝐵 using the Proportion of POLRs where the health history would 

recommend all the Material needed for case A (𝑃𝑀𝐴) and the same Proportion for case B (𝑃𝑀𝐵). 

 
𝐼𝐴𝐵 =  

𝑃𝑀𝐵

𝑃𝑀𝐴
− 1 

(6.16) 

𝑃𝑀𝐴 and 𝑃𝑀𝐵 are unknown and so this chapter will use estimates of them. 

This chapter will consider the uncertainty of the estimate of 𝐼𝐴𝐵 caused by the small number of 

samples. Equation 6.17 identifies a point estimate of 𝐼𝐴𝐵, (𝐼𝐴�̂� ) using the number of POLRs in the 

GSSLR where the health history Would Recommend all the required parts for case A (𝑊𝑅𝐺𝑆𝑆𝐿𝑅𝐴
) and 

the same quantity for case B (𝑊𝑅𝐺𝑆𝑆𝐿𝑅𝐵
), again making various assumptions that will be detailed in 

 

60 Section 4.3.2 presented the method for the validation of the techniques for health history enrichment 
used in this thesis. The size of the GSSLR, 29 WOs, was constrained by the amount of expert time 
that was available. 

61 Chapter 8 will further discuss and interpret 𝐼𝐴𝐵. 
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section 8.5. In this example, case A has a 𝑊𝑅𝐺𝑆𝑆𝐿𝑅 of 11 but case B has a 𝑊𝑅𝐺𝑆𝑆𝐿𝑅 of 18. PM has 

increased by 64%. 

 
𝐼𝐴�̂� =  

𝑊𝑅𝐺𝑆𝑆𝐿𝑅𝐵

𝑊𝑅𝐺𝑆𝑆𝐿𝑅𝐴

− 1 =
18

11
− 1 = 64% 

(6.17) 

This example will also use the following experimental results from Chapter 8: 

• For 11 Pairs Of Linked Records (POLR) in the GSSLR, for both case A and case B, the health 

history would recommend all the required parts. 

• For no POLRs in the GSSLR, for case A the health history would recommend all the required 

parts but for case B it would not. 

• For 7 POLRs in the GSSLR, for case A the health history would not recommend all the 

required parts but for case B it would. 

• For 10 POLRs in the GSSLR, for neither case A nor case B, the health history would 

recommend all the required parts. 

Table 6-2 presents this example as a table. 

 

Case B 

Would 
Recommend 

Would Not 
Recommend 

Case 
A 

Would 
Recommend 

11 0 

Would Not 
Recommend 

7 10 

Table 6-2, Example of a Change in a Proportion 

The following sections will present techniques for constructing Confidence Intervals (CI) for 𝐼𝐴𝐵. 

6.2.2 Assuming Independence 

A statistical theory based on independent samples is not applicable to a case where the samples are 

far from independent. The vast majority of statistical research has been on systems that can usefully 

be modelled as independent, such as gambling and medicine. In medical research for example, 

comparative trials are not carried out on the same patients. If method A is tested on sample A and 

method B is tested on sample B, sample A is made up of different individuals from sample B and the 

results can often be assumed to be independent. 
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Section 6.2.6 will demonstrate that the assumption of independence presented in this section is 

inappropriate for this application of comparing record linkage techniques on the same GSSLR. 

Newcombe, 1998 compares methods for the estimation of CIs for the difference between independent 

proportions, using examples from medicine. In appendix I, Newcombe uses the Wilson interval to 

construct CIs for the ratio of two independent binomial proportions. If 𝑃𝑀𝐴 were independent of 𝑃𝑀𝐵 

then it would be appropriate to use the approach described by Newcombe, 1998, to construct a CI for 

𝐼𝐴𝐵. 

This section presents the Technique Assuming Independence between 𝑃𝑀𝐴 and 𝑃𝑀𝐵 (TAI). It 

hypothesises that 𝑃𝑀𝐴 is not independent of 𝑃𝑀𝐵 and that therefore TAI will have poor coverage. 

Equation 6.18 is derived from Newcombe, 1998, appendix I. For a specific Confidence Level (CL), 𝐿𝑊 

is the Lower limit of the Wilson CI62 and 𝑈𝑊 is its Upper limit. 

 
𝐶𝐼𝑇𝐴𝐼 (

𝑃𝑀𝐵

𝑃𝑀𝐴
) =  [

𝐿𝑊

1 − 𝐿𝑊
,

𝑈𝑊

1 − 𝑈𝑊
] 

(6.18) 

Substituting equation 6.18 into equation 6.16, equation 6.19 estimates the uncertainty of the Increase 

(𝐼𝐴𝐵): 

 
𝐶𝐼𝑇𝐴𝐼(𝐼𝐴𝐵) = [

2𝐿𝑊 − 1

1 − 𝐿𝑊
,
2𝑈𝑊 − 1

1 − 𝑈𝑊
 ]  

(6.19) 

For the case in the example described in section 6.2.1, the TAI estimates the 95% CI of 𝐼𝐴𝐵 as (-21%, 

241%). Section 6.2.6 will show that this CI grossly over-covers, indicating that TAI is not an 

appropriate technique for this application because the results of tests conducted on the same sample 

are not independent of each other. 

 Unlike TAI, the techniques described in the following sections will both require significant 

computation. 

  

 

62 The Wilson interval was defined in section 6.1.3. 
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6.2.3 Assuming Equally Representative Samples 

The previous section presented the Technique Assuming Independence between 𝑃𝑀𝐴 and 𝑃𝑀𝐵 

(TAI). The opposite assumption is that the sample is just as representative of the population for case A 

as it is for case B. This section presents the Technique Assuming Equally representative samples 

(TAE). TAE approximates 𝐼𝐴𝐵 by evaluating probability distribution functions 𝑃𝑀𝐴 and 𝑃𝑀𝐵. 

Equation 6.20 defines a vector of Probabilities (Prob) where: 

• 𝑃11 is the Probability that a randomly sampled POLR would recommend all the required parts 

for both case A and case B 

• 𝑃01 is the Probability that it would not recommend all the required parts for case A but would 

recommend all the required parts for case B 

• 𝑃10 is the Probability that it would recommend all the required parts for case A but would not 

recommend all the required parts for case B 

• 𝑃00 is the Probability that it would not recommend all the required parts for both case A and 

case B 

 𝑃𝑟𝑜𝑏 = [𝑃11, 𝑃01, 𝑃10, 𝑃00]  (6.20) 

Where: 

 
∑ ∑ 𝑃𝑖𝑗

𝑗𝑖

= 1  
(6.21) 

TAE estimates 𝑃𝐴 and 𝑃𝐵 for a full range of points in probability space that reflect how representative 

the sample is of the population. This embeds the assumption that the sample is just as representative 

of the population for case A as it is for case B in TAEs estimation of 𝐼𝐴𝐵. 

A categorical distribution is a discrete probability distribution that describes the possible results of a 

random variable that can take on one of a set of possible categories, with the probability of each 

category separately specified. The multinomial distribution models the outcome of a set of tests where 

the outcome of each test is modelled by a categorical distribution. The binomial distribution is the case 

of the multinomial distribution where the number of categories is 2. Section 6.1 reviewed the 

application of the Wilson interval to binomial proportions, but it can also be used to estimate CIs for 

multinomial proportions (Wilson, 1927). This section will model Prob as a multinomial distribution. 

TAE finds a CI for each of the four elements of Prob for any CL where (0 ≤ CL ≤ 1). It assumes a 

multinomial distribution and estimates this using the Wilson interval. The natural multidimensional 

extension of the Wilson interval is the same as that interval for a binomial proportion.  
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The Wilson interval is defined for the multinomial case by equation 6.22 and is a function of the 

sample size (n), the sample proportion (�̂�) and  63. 

 

𝐶𝐼𝑊𝑖𝑙𝑠𝑜𝑛(𝑃𝑖𝑗) =  
𝑥𝑖𝑗 + 𝜅2

2⁄

𝑛 + 𝜅2
±

𝜅𝑛
1

2⁄

𝑛 + 𝜅2 (
𝑝𝑖�̂�(1 − 𝑝𝑖�̂�) + 𝜅2

4𝑛
 )

1
2⁄

 

(6.22) 

Where: 

 
𝑛 =  ∑ ∑ 𝑥𝑖𝑗

𝑗𝑖

 
(6.23) 

And: 

 
𝑝𝑖�̂� =  

𝑥𝑖𝑗

𝑛
 

(6.24) 

This research investigated the effect on each element of Prob of varying CL for the case in the 

example described in section 6.2.1. The results, taking 𝑃00 as an example element, are shown in 

Figure 6-12. The median of 𝑃00 is where CL is zero and the figure shows that in this example it is at 

approximately 0.35. 

  

       𝑃00 

Figure 6-12, Confidence Level (CL) against the Probability that a Random Sample would Not 

Recommend all the Required Parts for either Case A or Case B (𝑃00) for the Example in Section 6.2.1 

TAE approximates 𝐼𝐴𝐵 by evaluating probability distributions 𝑃𝐴 and 𝑃𝐵. It uses the inverse Cumulative 

Distribution Function (CDF) transform, (also known as the quantile function or percent point function), 

which specifies the value of the random variable such that the probability of the variable being less 

than or equal to that value equals the probability u, where (0 ≤ u ≤ 1). The median is at u = 0.5. For the 

 

63 𝜅 was described in section 6.1.1. 
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case in the example described in section 6.2.1, for u = 0.5, the inverse CDF transform returns a 

median of 𝑃00 = 0.35. 

To approximate the inverse CDF transform of the Wilson interval, this section assumes that the Wilson 

interval is symmetric about the median such that for any CL, where (0 ≤ CL ≤ 1), the median minus the 

lower bound of the CI approximates the upper bound of the CI minus the median. This assumption is 

conceivable because Figure 6-12 does appear to be approximately symmetric about the median. This 

section will sensitivity test the assumption of symmetry by replacing it with an alternative assumption. 

This sensitivity test will show that the assumption is appropriate because replacing it does not make a 

significant difference. The assumption of symmetry implies equation 6.25. 

 𝐶𝐿 ≈ |2𝑢 − 1| (6.25) 

TAE takes a set of equally distributed samples from u with Step Size (SS), as defined by equation 

6.26. 

 𝑢 = (𝑆𝑆, 2𝑆𝑆, 3𝑆𝑆 …  1 − 𝑆𝑆) (6.26) 

For each value of u, (𝑢𝑖), TAE uses equation 6.25 to identify the corresponding value of CL. TAE uses 

the Wilson interval to find the multinomial CIs for Prob, yielding a CI for each of (𝑃11|𝑢𝑖), (𝑃01|𝑢𝑖),  

 (𝑃10|𝑢𝑖) and (𝑃00|𝑢𝑖). Equations 6.27 and 6.28 are implied by the definitions of 𝑃𝑀𝐴 and 𝑃𝑀𝐵. 

 𝑃𝑀𝐴 = 𝑃11 + 𝑃10 (6.27) 

 𝑃𝑀𝐵 =  𝑃11 +  𝑃01 (6.28) 

Substituting equations 6.27 and 6.28 into the definition of a CI yields equations 6.29 and 6.30. TAE 

uses equations 6.31 and 6.32 to construct CIs (𝐶𝐼𝑇𝐴𝐸) for (𝑃𝑀𝐴|𝑢𝑖) and for (𝑃𝑀𝐵|𝑢𝑖). 

 𝐶𝐼𝑇𝐴𝐸(𝑃𝑀𝐴|𝑢𝑖)  = [((𝐿11|𝑢𝑖) + (𝐿10|𝑢𝑖)), ((𝐻11|𝑢𝑖) + (𝐻10|𝑢𝑖))] (6.29) 

 𝐶𝐼𝑇𝐴𝐸(𝑃𝑀𝐵|𝑢𝑖)  = [((𝐿11|𝑢𝑖) + (𝐿01|𝑢𝑖)), ((𝐻11|𝑢𝑖) +  (𝐻01|𝑢𝑖))] (6.30) 

Substituting (𝑃𝑀𝐴|𝑢𝑖) and (𝑃𝑀𝐵|𝑢𝑖) into equation 6.16 yields equation 6.31, which TAE uses to 

construct 𝐶𝐼𝑇𝐴𝐸 for (𝐼𝐴𝐵|𝑢𝑖). 

 
𝐶𝐼𝑇𝐴𝐸(𝐼𝐴𝐵|𝑢𝑖) =  

(𝑃𝑀𝐵|𝑢𝑖)

(𝑃𝑀𝐴|𝑢𝑖)
− 1 

(6.31) 

For each item in the list of values of probability (u), TAE now has an estimate of 𝐼𝐴𝐵. TAE estimates 

the 95% CI of 𝐼𝐴𝐵 as the 2.5th percentile and the 97.5th percentile of this list of estimates of 𝐼𝐴𝐵.  
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This research investigated the effect of varying SS64 and he results are shown in Figure 6-13. It shows 

that the estimate of 𝐼𝐴𝐵 levels out below an SS of 10-4 which indicates that 10-4 is an appropriate value 

for SS. 

 𝐼 𝐴
𝐵
 

 

 

 𝐼𝐴�̂�  

 95% CI 

  

         SS   

Figure 6-13, Increase (𝐼𝐴𝐵) and 95% Confidence Interval (CI) against Step Size (SS) 

For the example described in section 6.2.1, the TAE estimates the 95% CI of 𝐼𝐴𝐵 as (45%, 64%). 

Section 6.2.6 will show that this CI grossly under-covers, indicating that TAE is not an appropriate 

technique for this application because the results of tests conducted on the same sample are not just 

as representative of the population for case A as they are for case B. 

6.2.4 Alternative Assuming Equally Representative Samples 

The previous section presented the Technique Assuming Equally representative samples (TAE). It 

explained that the TAE assumes that the CI of each element of Prob is symmetric. To sensitivity test 

this assumption, this section will replace it with an alternative assumption. This section presents the 

Alternative Technique Assuming Equally representative samples (ATAE). 

Just as does TAE, ATAE also approximates 𝐼𝐴𝐵 by evaluating probability distributions 𝑃𝑀𝐴 and 𝑃𝑀𝐵. 

To estimate 𝐼𝐴𝐵 for each of a list of values of probability (u), ATAE models 𝑃𝑀𝐴 and 𝑃𝑀𝐵 using the 

skew normal distribution which is a skewed version of the normal distribution. ATAE fits this 

distribution to 𝑃𝐴 and 𝑃𝐵 using Differential Evolution (DE), which was reviewed in section 2.4.1.2. 

The Cumulative Distribution Function (CDF) of a random variable X, evaluated at x, is the probability 

that X will take a value less than or equal to x. ATAE uses the inverse CDF transform of the skew 

 

64 The Step Size (SS) was defined by equation 6.26. 
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normal distribution to yield an estimate of 𝐴 and of 𝐵 for each of the list of values of probability (u). 

Figure 6-14(a) shows the results for the example in section 6.2.1. 

A Probability Density Function (PDF) is a function whose value at any given sample can be interpreted 

as providing a relative likelihood that the value of the random variable would equal that sample. It is 

the differential of the CDF with respect to x. To visualise the distributions, this research used ATAE to 

construct the PDF for case A and for case B. Figure 6-14(b) shows the results for the example in 

section 6.2.1. 

Figure 6-14 shows that most estimates of 𝑃𝑀𝐵, the probability that a truly matching POLR for case B, 

the health history after enrichment, would be yielded from a record selected at random from the 

general population, are higher than most estimates of 𝑃𝑀𝐴, the probability that a truly matching POLR 

for case A, the health history prior to enrichment, would be yielded from a record selected at random 

from the general population. 
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Figure 6-14, (a) Inverse CDF Transform, (b) PDF, for Case A and for Case B 

ATAE identifies a list of estimates of 𝐼𝐴𝐵 using equation 6.16 to calculate 𝐼𝐴𝐵 for each pair of estimates 

of 𝐴 and 𝐵. It estimates the 95% CI of 𝐼𝐴𝐵 as the 2.5th percentile and the 97.5th percentile of this list of 

estimates. 
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Running ATAE repeatedly yielded various estimates of the 95% CI of 𝐼𝐴𝐵. The results are shown in 

Figure 6-15. This inconsistency in ATAE estimates is caused by the difficulty of fitting skew normal 

distributions to 𝑃𝐴 and to 𝑃𝐵. The estimate from TAE is in the same region as the estimates from 

ATAE which indicates that the assumption of symmetry made by TAE is appropriate. 

 

Figure 6-15, Upper and Lower Bounds of the 95% CI of 𝐼𝐴𝐵, 

Estimated by the Technique Assuming Equally Representative Samples (TAE) and 

by the Alternative Technique Assuming Equally Representative Samples (ATAE) 

The previous section explained that the TAE assumes that the CI of each element of Prob is 

symmetric. To sensitivity test this assumption, this section replaced it with an alternative assumption 

and showed that this yields a similar estimate of the 95% CI of 𝐼𝐴𝐵. This showed that the assumption 

of symmetry made by TAE is appropriate. 

6.2.5 Using Bootstrapping 

Bootstrapping65 (Efron, 1979) is a statistical procedure that identifies subsamples from the original 

sample from a population. Each element of the sample can be included repeatedly in the same 

subsample. To average out random sampling errors, a large set of subsamples is used. This is known 

as random sampling with replacement. The size of the subsample is known as the Bootstrap Size 

(BS). It is recommended that BS should be equal to the size of the original sample (n). 

 

65 Section 6.1.8 introduced bootstrapping and explained why this research thesis does not use it for 

constructing confidence intervals of a binomial proportion. This section does use bootstrapping to 

estimate the uncertainty of a difference between two binomial proportions and section 6.3 will use it to 

estimate the probability that one binomial proportion is greater than another.  
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Bootstrap methods can be used for constructing Confidence Intervals (CI) of a binomial proportion 

(Mantalos and Zografos, 2008). This section investigates the use of bootstrapping for constructing a 

CI for Increase (𝐼𝐴𝐵), defined in section 6.2.1, and presents it as the Technique Using Bootstrapping 

(TUB). 

TUB generates a list of estimates of 𝐼𝐴𝐵. It estimates the 95% CI of 𝐼𝐴𝐵 as the 2.5th percentile and the 

97.5th percentile of this list of estimates of 𝐼𝐴𝐵. 

This research investigated the effect of varying BS between 1 and 100 for the case in the example 

described in section 6.2.1 which has sample size n = 28. (This is the number of WOs in the GSSLR 

that have materials assigned to them). Figure 6-16(a) presents 𝐼𝐴𝐵 against BS. It shows that TUB 

would estimate a wider CI if BS were less than 28 and a narrower CI if BS were more than 28. This 

research will use BS = n, as recommended by Efron, 1979. 

This research investigated the effect of varying the number of subsamples. The results are shown in 

Figure 6-16(b), which shows that in this case 1000 subsamples are sufficient to average out random 

sampling errors. 

a) 

 𝐼 𝐴
𝐵
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b) 

 𝐼 𝐴
𝐵
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 𝐼𝐴�̂�  

 95% CI 

Figure 6-16, Increase (𝐼𝐴𝐵), (a) against Bootstrap Size (BS) for Number of Subsamples = 100, 

(b) against Number of Subsamples for BS = n = 28 

For the case in the example described in section 6.2.1, TUB estimates the 95% CI of 𝐼𝐴𝐵 as (20%, 

167%). Section 6.2.6 will show that this CI slightly under-covers, indicating that TUB is an appropriate 

technique for this application because the its underlying assumptions are more appropriate than those 

of TAI or TAE. 

Bootstrapping assumes that each element of the sample is independent of the other elements. The 

next section will show that it has much better coverage than the techniques presented in the previous 

sections. 
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6.2.6 Coverage 

Section 6.1.2 reviewed the coverage of a CI. Please recall from the section that: 

The probability that the CI contains this feature of interest is called the Coverage 

Probability (CP). CP would ideally equal CL and the CP will be used as a measure of 

the quality of methods used for the construction of CIs. 

Sections 6.2.2 to 6.2.4 presented three techniques for interval estimation for a change in a proportion: 

• The Technique Assuming Independence (TAI) 

• The Technique Assuming Equally representative samples (TAE) 

• The Technique Using Bootstrapping (TUB)  

This section presents a Process for Comparing Techniques for interval estimation for a change in a 

proportion (PCT) and uses it to compare the CP of these three techniques. The CP of a CI can be 

estimated by simulation; however, CP varies with n and with the probability of each outcome (Brown et 

al., 2001). 

The PCT calculates CP using a Python algorithm that repeats an experiment and stores the results, 

posted by Stack Overflow internet forum user “anky” (anky, 2019). 

TAE and TUB are both computationally expensive, as detailed in Table 6-3, which makes it intractable 

to estimate the CP for many values of the probability of each outcome. As an alternative, and using a 

similar approach to that was used in the interval selection process that was presented in section 6.1.7, 

PCT concentrates on the region of interest. 

Just as in the TAE, the PCT also uses the Wilson interval to find the multinomial CIs for 𝑃11, 𝑃01, 𝑃10, 

and 𝑃00. For the case in the example described in section 6.2.1, these are detailed in Table 6-3. 

  Estimate Low High 

 𝑃11 0.393 0.236 0.576 

 𝑃01 0.000 0.000 0.121 

 𝑃10 0.250 0.127 0.434 

 𝑃00 0.357 0.207 0.542 

Table 6-3, Estimate and 95% CI of the Probability of Each Outcome 
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Section 6.2.3 presented the TAE. Please recall equations 6.22 and 6.23 from that section: 

 𝑃𝑟𝑜𝑏 = [𝑃11, 𝑃01, 𝑃10, 𝑃00]  (6.22) 

Where: 

 
∑ 𝑃𝑟𝑜𝑏 = 1  

(6.23) 

The PCT estimates CP by simulating sets of values of Prob that are in the region of interest (as 

detailed in Table 6-3 for the case in the example described in section 6.2.1). It identifies the range of 

likely values of 𝑃01 (the Probability that a random sample from the population NR for case A but WR 

for case B) and selects four values across this range, ranging from zero to 0.12. Keeping 𝑃11 and 𝑃00 

constant, it varies 𝑃10 to maintain equation 6.23. For the case in the example described in section 

6.2.1, this process yields four sets of values of Prob: 

• Prob = [0.3, 0.0,   0.3,   0.4] 

• Prob = [0.3, 0.04, 0.26, 0.4] 

• Prob = [0.3, 0.08, 0.22, 0.4] 

• Prob = [0.3, 0.12, 0.18, 0.4] 

These four Prob vectors will be used to identify the coverage of each of the three techniques for 

constructing CIs. Such a sensitivity study of the effect of variation in 𝑃01 in the region of interest would 

ideally be combined with similar studies varying 𝑃11, 𝑃10, and 𝑃00 but this would be intractable as TAE 

and TUB are both computationally expensive when repeated 10,000 times to yield a useful estimate of 

coverage for each set of values of Prob, as detailed in Table 6-4. The table shows that TAI is 

computationally inexpensive and so could be repeated 100,000 times for each set of values of Prob, 

yielding a more accurate estimate of the coverage. 
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The computational expense of TAE and of TUB is only a concern when repeating them to estimate 

coverage, not when using them a single time. The computation times detailed in Table 6-4 are for a 

standard laptop PC processor66. It is important that the computation times detailed are for 10,000 runs, 

100,000 in the case of TAI, and this is the reason for the lengthy computation time. Computation time 

is a difficulty for the problem of measuring the coverage of a statistical technique, not for the real world 

application the health history enrichment techniques presented in this thesis67. Further work optimising 

the bootstrapping algorithm or running it on a faster computer would improve its computation time. 

 TAI TAE Bootstrap 

BS   28 

Subsamples   1,000 

Reps 100,000 10,000 10,000 

run time 41 seconds 32 hours 41 hours 

Table 6-4, Comparing the Computation Time of Techniques for Interval Estimation 

Substituting equations 6.27 and 6.28 into equation 6.16 yields equation 6.24. For each of the sets of 

values of Prob, the PCT uses equation 6.34 to identify the ‘true’ value of 𝐼𝐴𝐵 that would be yielded 

from an infinite sample from a population with the given set of values of Prob. 

 
𝐼𝐴𝐵 =  

𝑃11 +  𝑃01

𝑃11 + 𝑃10
− 1 

(6.24) 

To generate sample data, the PCT takes random samples from a multinomial distribution generated 

from the given set of values of Prob with sample size n. It then applies the technique on test to 

estimate the 95% CI of 𝐼𝐴𝐵. If the estimate of the 95% CI of 𝐼𝐴𝐵 includes the ‘true’ value of 𝐼𝐴𝐵 then it 

records a positive outcome and it otherwise records a negative outcome. It repeats this many times 

(Reps). The PCT estimates CP as the proportion of positive outcomes. 

Brown et al., 2001, demonstrated that “For larger n, the Wilson, the Jeffreys and the Agresti-Coull 

intervals are all comparable”, so, when n=40, any of these three intervals can be used with acceptable 

coverage. The PCT estimates the 95% CI for the coverage of the 95% CI, again using the Wilson 

interval. 

 

66 Section 4.5 detailed the processor. 

67 Section 4.5 detailed the computation times for the PEOHH. 
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Figure 6-17 shows CP against 𝑃10 for each of the three techniques. The coverage of TAI is around 

99.88%, grossly over the target 95%. (4.88% may appear to be a small error but it is in fact a large 

error at this end of the probability range. The odds is the probability that an event will occur divided by 

the probability that the event will not occur and is an alternative format for describing probability. 95% 

has the equivalent odds of 19 while 99.88% has the much greater equivalent odds of 832.) The 

coverage of TAE is around 32%, grossly under the target 95%. The coverage of TUB is around 93%, 

slightly under the target 95%. It is clear that, of the techniques presented, only TUB gives acceptable 

performance and consequently this thesis will use TUB for interval estimation for a change in a 

proportion. 
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Figure 6-17, Coverage Probability (CP) against the Probability that a Random Sample from the 

Population WR for case A but NR case B (𝑃10) for the: 

(a) Technique Assuming Independence (TAI) 

(b) Technique Assuming Equally Representative Samples (TAE) 

(c) Technique Using Bootstrapping (TUB) 
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6.2.7 Conclusion to Interval Estimation for a Change in a Proportion 

This section presented three techniques for interval estimation for a change in a proportion: 

• The Technique Assuming Independence (TAI) 

• The Technique Assuming Equally representative samples (TAE) 

• The Technique Using Bootstrapping (TUB)  

It showed that TAI and TAE yield very poor coverage. This is an important result because one might 

intuitively make the assumptions from TAI when assessing the uncertainty of a difference in an 

uncertain estimate. 

Chapters 7 and 8 will use TUB for constructing CIs for changes in proportions. This will enable the 

chapters to quantify their uncertainty as to the extent to which changes in measures of a random 

sample from a population can be used to draw inferences about that population. 
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6.3 The Comparison of Proportions 

Section 6.2.5 presented the Technique Using Bootstrapping (TUB) for interval estimation for 

comparing proportions. This section will use TUB to investigate the probability that one proportion is 

greater than another. 

Table 6-5 presents two examples of changes in a proportion. Making various assumptions that will be 

detailed in section 8.5, these are example results of the number of POLRs in the GSSLR where a 

simulated troubleshooting guide would recommend all the required parts and the number of POLRs in 

the EHH where that same guide would not recommend all the required parts. As in the previous 

section, this section also refers to the case prior to enrichment as ‘A’ and to that post enrichment as 

’B’. 

Example I is taken from the results that will be presented in section 8.5 while example II is included to 

illustrate the inferences that would be drawn from different results. 

Example I Example II 
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Table 6-5, Two Examples of Changes in a Proportion 

Please recall equation 6.16 which defines the Increase (𝐼𝐴𝐵) using the Proportion of POLRs where the 

health history would recommend all the Material needed for case A (𝑃𝑀𝐴) and the same Proportion for 

case B (𝑃𝑀𝐵). 

 
𝐼𝐴𝐵 =  

𝑃𝑀𝐵

𝑃𝑀𝐴
− 1 

(6.16) 



 

157 

 

To estimate the confidence that the PEOHH enriches the health history, this section will illustrate 

techniques to estimate the probability that 𝑃𝑀𝐵 > 𝑃𝑀𝐴, in other words that 𝐼𝐴𝐵 is positive. This 

section uses as an example the question of whether the health history has been enriched but this 

research will also use these techniques for other applications, such as to estimate the probability that 

the quality of record linkage has increased. 

Please recall that TUB generates a list of estimates of 𝐼𝐴𝐵. This research investigated the distribution 

of this list for both examples. The results are shown in Figure 6-18. 

Bootstrapping is conditional on the original sample. It is limited by the sample data and this limitation 

of the technique is illustrated by Figure 6-18(a) which shows that the estimates of 𝐼𝐴𝐵  for example I 

are restricted to a narrow range of values that are all non-negative. This occurs because of the zero 

count of records in the sample where Case A would recommend all the required parts but Case B 

would not. In example I, TUB can never yield a negative estimate of 𝐼𝐴𝐵 but the probability that 𝑃𝑀𝐵 <

𝑃𝑀𝐴 cannot really be zero because it is possible that the sample is not fully representative of the 

population. The proportion of bootstrap samples in example I for which 𝑃𝑀𝐵 < 𝑃𝑀𝐴 is however zero 

and this strongly indicates that, in the parent population, 𝑃𝑀𝐵 ≥ 𝑃𝑀𝐴. 

These results indicate that in both examples the probability that the health history had not been 

enriched would be low. 
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        𝐼𝐴𝐵 

Figure 6-18, Frequency of Estimates of 𝐼𝐴𝐵, with Subsamples = 4000, for (a) Example I, (b) Example II 

The risk that the health history has not been enriched is the probability that 𝑃𝑀𝐵 ≤ 𝑃𝑀𝐴 and is 

estimated by the proportion of bootstrap subsamples for which 𝑃𝑀𝐵 ≤ 𝑃𝑀𝐴. The list of estimates is 

filtered to only include negative and zero values. The proportion of bootstrap subsamples for which 

𝑃𝑀𝐵 ≤ 𝑃𝑀𝐴 is then simply the length of this filtered list divided by the number of subsamples. 

The risk that the health history has been made less rich is the probability that 𝑃𝑀𝐵 < 𝑃𝑀𝐴 and is 

estimated by the proportion of bootstrap samples for which 𝑃𝑀𝐵 < 𝑃𝑀𝐴. This time, the list of 
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estimates is filtered to only include negative values. The proportion of bootstrap samples for which 

𝑃𝑀𝐵 < 𝑃𝑀𝐴 is then simply the length of this filtered list divided by the number of subsamples. 

This research investigated the effect of varying the number of subsamples. The results are shown in 

Figure 6-19. Figure 6-19(a) uses data from example I. It shows no change in 𝑃(𝑃𝑀𝐵 < 𝑃𝑀𝐴) with the 

number of subsamples because, in example I, as explained above, however many times TUB 

resamples, it can never yield a negative estimate of 𝐼𝐴𝐵. 

Figure 6-19(b) uses data from example II. It shows that in this example, 𝑃(𝑃𝑀𝐵 < 𝑃𝑀𝐴) does change 

with the number of subsamples. The figure shows that the number of subsamples that are sufficient to 

adequately average out TUBs random sampling errors varies. For example I, 𝑃(𝑃𝑀𝐵 ≤ 𝑃𝑀𝐴) has just 

about stabilised after 50,000 subsamples. For example II, 𝑃(𝑃𝐵 < 𝑃𝐴) has stabilised after 4000 

subsamples but 𝑃(𝑃𝑀𝐵 ≤ 𝑃𝑀𝐴) has just about stabilised after 20,000 subsamples. For each 

application, this thesis will plot the proportions of interest against the number of subsamples to check 

that sufficient subsamples have been used to adequately average out TUBs random sampling errors. 

The estimate of 𝑃(𝑃𝑀𝐵 < 𝑃𝑀𝐴) having the value zero for example I, which represents real data, 

indicates that it is in fact unlikely that the health history has been made less rich and the estimate of 

𝑃(𝑃𝑀𝐵 ≤ 𝑃𝑀𝐴) of 0.03% for the same example indicates that it is unlikely that it has not been 

enriched. The estimate of 𝑃(𝑃𝑀𝐵 < 𝑃𝑀𝐴) of 0.2% for example II indicates that even with these 

alternative results it would still be unlikely that the health history had been made less rich and the 

estimate of 𝑃(𝑃𝑀𝐵 ≤ 𝑃𝑀𝐴) of 0.7% for the same example indicates that it would still be unlikely that 

the health history had not been enriched. 
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Figure 6-19, Proportion of Bootstrap Samples for which 𝑃𝐵 ≤ 𝑃𝐴 and that for which 𝑃𝐵 < 𝑃𝐴  

against Number of Subsamples for (a) Example I, (b) Example II 
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This section has shown that TUB can be used to identify the proportion of bootstrap samples for which 

𝑃𝑀𝐵 ≤ 𝑃𝑀𝐴 and that for which 𝑃𝑀𝐵 < 𝑃𝑀𝐴. This technique will be used to assess: 

• The probability that the health history has been enriched 

• The probability that the health history has been made less rich 

• The probability that the quality of record linkage has increased  

• The probability that the quality of record linkage has decreased 
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6.4 Conclusion to Quantifying Uncertainty 

Section 6.1 proposed the use of statistical techniques for the interval estimation of a binomial 

proportion to understand the uncertainty of measures of the quality of record linkage. It reviewed 

literature (Wilson, 1927, Clopper and Pearson, 1934, Jeffreys, 1973, Agresti and Coull, 1998, Brown 

et al., 2001) demonstrates that, due to the underlying structure of the binomial distribution, there is no 

perfect technique for estimating the uncertainty as to the extent to which a binomial proportion should 

be representative of the population from which it has been sampled. It also demonstrates that some 

techniques such as that of Wilson, 1927, yield much better coverage than the standard technique of 

Wald, 1943. The section presented a novel and useful technique for comparing these methods. 

Section 6.2 considered how to estimate the uncertainty of a difference in an uncertain estimate. It 

considered the case of comparing the enriched health history to the unenriched health history using 

the GSSLR. That case is analogous to comparing two medical techniques by testing them on the 

same patients at the same time. Such a medical experiment would of course not be feasible and 

statistical techniques for assessing this situation are consequently obscure. This chapter used a 

similar approach to that taken by Brown et al., 2001; estimating the Coverage Probability (CP) of the 

Confidence Interval (CI) at a specific Confidence Level (CL). It found that bootstrapping gave relatively 

good coverage and is an appropriate technique for this application. 

Section 6.3 presented a test that will be applied to questions such as whether the PEOHH actually 

enriches the health history by finding the proportion of bootstrap samples for which it does. 

Chapter 7 will use techniques from section 6.1 to understand the uncertainty of the Positive Predictive 

Value (PPV)68, from section 6.2 to understand the uncertainty of how much changing a record linkage 

parameter changes the PPV and from section 6.3 to understand the uncertainty of whether changing a 

record linkage parameter increases the PPV. Section 7.6.2 will use bootstrapping to estimate the PPV. 

Sections 8.3 to 8.5 will use techniques from section 6.1 to understand the uncertainty of various 

measures of the enrichment of the health history, from section 6.2 to understand the uncertainty of 

how much changing a health history filtering parameter changes these measures and from section 6.3 

to understand the uncertainty of whether changing a health history filtering parameter increases these 

measures. 

  

 

68 The PPV, a measure of the quality of record linkage, was defined in section 2.2.1 
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7 Results: Optimisation of the Weights and Thresholds 

This chapter will present the results from the validation of the Process for the Enrichment of OWT 

Health History (PEOHH) developed in this research. The PEOHH uses agreement and disagreement 

weights (defined in section 4.1) for each feature (defined in section 4.4) as well as various thresholds 

(each defined in chapter 4). It will present their optimisation. The literature on global optimisation will 

be reviewed and a global optimisation process applied. 

Five of the thresholds that the PEOHH uses will be optimised outside of the global optimisation 

process and will instead be optimised individually. Optimising these five thresholds individually means 

that each of them is optimised only for a single value of each of the other weights and thresholds in 

the PEOHH. This has the disadvantage that it might not find the vector of values of the weights and 

thresholds that would yield the best quality of record linkage. 

The five thresholds feature at the early stages of the PEOHH. This chapter optimises them by running 

the PEOHH for a range of values of the threshold. The optimisation of thresholds that feature early in 

the PEOHH is more computationally expensive than that of those weights and thresholds that feature 

later in the PEOHH because repeatedly running the last part of the PEOHH, the application of the 

weights, is less computationally expensive than repeatedly running more of the PEOHH. The inclusion 

of the five thresholds in the global optimisation process would make that process far too 

computationally expensive to be tractable.69 

The review of global optimisation in section 2.4 described the so called ‘curse of dimensionality’ which, 

alongside the early stages of the PEOHH that the five thresholds feature at, is another reason why 

including these five thresholds in the global optimisation process would be so computationally 

expensive as to be unfeasible. 

The computation times detailed in Section 4.5 are for a standard laptop PC processor. This research 

did not try a faster computer because it is Ørsted’s policy that their confidential data may not be copied 

on to non-Ørsted machines such as a Durham University parallel cluster. Further work could optimise 

the weights and thresholds using faster computers within Ørsted or another data owner’s permitted 

hardware. 

This chapter will optimise the PEOHH by maximising the Positive Predictive Value (PPV), the 

proportion of classified matches that are correctly identified as such. Before this chapter presents the 

 

69 Section 4.5 details the computation times for the PEOHH. 
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optimisation of the five thresholds it will first explain how changes in the weights and thresholds affect 

changes in the PPV. 

Figure 7-1 considers the effect of changing two of the weights that will be optimised in the global 

optimisation process. It shows the PPV against: (a) Agreement Weight for the Start time feature (𝐴𝑊𝑆𝑡) 

by Disagreement Weight for the Start time feature (𝐷𝑊𝑆𝑡) and (b) Disagreement Weight for the Start 

time feature (𝐴𝑊𝑆𝑡) by Agreement Weight for the Start time feature (𝐷𝑊𝑆𝑡) with all the other agreement 

weights set to 1 and all the other disagreement weights set to -1. 

The figure shows that PPV changes with 𝐴𝑊𝑆𝑡 and with 𝐷𝑊𝑆𝑡. The next figure will present an 

explanation of this phenomenon. 

There are no missing work order start times and so, in the case of the start time feature, those POLRs 

in the GSSLR that do not agree all disagree. This causes symmetry between Figure 7-1(a) and (b).  

a) 

P
P

V
 

 

b) 

P
P

V
 

 

Figure 7-1, Positive Predictive Value (PPV) against: 

(a) Agreement Weight for the Start time feature (𝐴𝑊𝑆𝑡) 

by Disagreement Weight for the Start time feature (𝐷𝑊𝑆𝑡) 

(b) Disagreement Weight for the Start time feature (𝐷𝑊𝑆𝑡) 

by Agreement Weight for the Start time feature (𝐴𝑊𝑆𝑡) 

 

To explain what causes the change in the PPV of the GSSLR, this chapter will now present in greater 

detail the effect of varying a weight. Figure 7-2 shows the effect of varying 𝐴𝑊𝑆𝑡 with all other weights 

and thresholds constant. Each row in Figure 7-2 represents one WO. As 𝐴𝑊𝑆𝑡 is varied, different 

versions of the EHH are created. Where the outage linked to the given WO in the version of the EHH 

generated at the specified value of 𝐴𝑊𝑆𝑡 is the same as that in the GSSLR, figure 7.2 shows blue. 

Where they are different, Figure 7-2 shows white. Values of 𝐴𝑊𝑆𝑡 with a higher proportion of blue in 

the figure yield a higher PPV. As 𝐴𝑊𝑆𝑡 changes, which WOs it is that are matched to their correct 

outage changes and so PPV fluctuates. 
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Consider a set of WOs, each one linked correctly to its corresponding outage. This will be referred to 

as the ‘true EHH’. At a hypothetical weighting that yielded the true EHH, the column would be blue and 

the PPV of the GSSLR would be 1. 

As shown in Figure 7-2, the start time feature registers either agreement or disagreement. All the 

features of the PEOHH register either agreement, disagreement or neither for each WO at a given 

value of the relevant thresholds. This three-state approach is what causes the stepped behaviour in 

the fluctuations of the PEOHH that were shown in Figure 7-1. 

In Figure 7-2, some WOs in the GSSLR register agreement for all values of 𝐴𝑊𝑆𝑡 while others register 

disagreement for all values. 

 

 

 
Agreement 

 
Disagreement 

  

Figure 7-2, Effect of varying the Agreement Weight for the Start Time Feature (𝐴𝑊𝑆𝑡) on the 

Agreement or Disagreement of the EHH with GSSLR for each Work Order (WO) in the GSSLR 

 

Using 𝐴𝑊𝑆𝑡 as an example, we have seen that changing the weights and thresholds changes the PPV. 

Each element of the vector of values of weights and thresholds can be conceived of as a dimension 

that the PPV can be plotted against.  

The PPV of the GSSLR is an uncertain estimate of the PPV of the EHH. The previous chapter found 

an appropriate technique for quantifying that uncertainty. If we conceive of the plot of the PPV of the 

EHH against all the elements of the vector of values of weights and thresholds as a stepped, multi-

dimensional surface then we should understand that we cannot measure the exact level of that 

surface but that we can only estimate it from the PPV of the GSSLR. 
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7.1 Optimisation of the Blocking Threshold 

Section 4.1 presented the blocking threshold. It was described in that section that the first step of the 

PEOHH is to join WOs to outages to create POLR. The PEOHH adds a 40-day margin, known in this 

thesis as the blocking threshold, to the outage start and finish times to create an extended duration. It 

joins each WO to each of the outages of which the extended duration includes the WOs start date. 

Section 4.3.2 presented the method for the validation of the techniques for health history enrichment 

used in this thesis. Please recall from that section that the size of the sample “Gold Standard” Set of 

Linked Records (GSSLR), 29 WOs, was constrained by the amount of expert time that was available. 

Section 4.4.1 introduced the time difference between the WO start date and the outage (∆𝑡𝑆𝑡). To 

optimise the blocking threshold, this research investigated the distribution of ∆𝑡𝑆𝑡 in the GSSLR and 

the results are shown in Figure 7-3. Of the 29 POLRs in the GSSLR only 2 have a ∆𝑡𝑆𝑡, defined in 

chapter 4, of zero. This result shows that the blocking threshold is required. The figure shows that one 

POLR in the GSSLR is an outlier in terms of ∆𝑡𝑆𝑡, at 39.5 days. On the assumption that this extreme 

point is genuine, and therefore representative of the real-life situation, it should be within the blocking 

threshold and so this should be at least 40 days. It is not possible that the real date when work started 

was not during the correctly matched outage. A WO start date could be outside of an outage for two 

reasons: that the WO refers to a different outage or that there is an error in the start date record. The 

start date is a human generated data point and all the wind turbine experts that this research elicited 

the opinions of expressed the opinion that such errors are expected. In the design of the process for 

developing the PEOHH, this research assumed that 40 days was a conservatively high starting value 

and that results would show that it could be reduced. The result in Figure 7-3, however, shows that the 

full 40-day threshold is required and that further work might consider an even larger threshold. 

 

Figure 7-3, Count (POLRs) against Time Difference between the WO Start Time and the Outage (∆𝑡𝑆𝑡) 

for the GSSRL 
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7.2 Optimisation of the Time Difference Between the Outage and the Alarm 

Section 4.4.4 presented the Threshold for the Time difference between the Outage interval and Alarm 

interval (TTOA). It was described in that section that the PEOHH extracts all the alarms from the alarm 

log from +/- TTOA of the outage start and finish times. 

This research investigated the effect of varying TTOA to maximise the PPV. The results are shown in 

Figure 7-4which shows PPV against TTOA. Other weights and thresholds are kept constant. The 

Agreement Weight for the Description and the Alarm Code features using Alarms and Outages 

(𝐴𝑊𝐷𝑒𝑂𝑢
, 𝐴𝑊𝐴𝐶𝑂𝑢

, 𝐴𝑊𝐷𝑒𝐴𝑙
, 𝐴𝑊𝐴𝐶𝐴𝑙

) are set to 1 and their Disagreement Weights (𝐷𝑊𝐷𝑒𝑂𝑢
, 

𝐷𝑊𝐿𝑇𝑂𝑢
, 𝐷𝑊𝐷𝑒𝐴𝑙

, 𝐷𝑊𝐿𝑇𝐴𝑙
) are set to -1 while all other agreement and disagreement weights are set to 

0. 

The maximum PPV  in Figure 7-4 (0.517) occurs at TTOA = 0; at this value, the effect of the features 

using alarms is null and so the failure mode features have the least effect, increasing the relative 

effect of the start date time difference which results in a higher PPV. The second highest PPV (0.483) 

occurs when TTOA is at values between 4 and 21 minutes. The initial value of TTOA was 10 minutes 

and this is shown to be within the range that achieves the highest value of PPV (disregarding zero as 

this value effectively turns the feature off). This result implies that further iteration is not required, and 

that this thesis can recommend a TTOA of 10 minutes, the value initially recommended by a wind 

turbine expert. This section will consider the uncertainty of this recommendation. 

a) 

 

b) 

 

  

 
𝑃𝑃�̂� 

 95% CI 

  

Figure 7-4, Positive Predictive Value (PPV) and 95% CI against Time Difference Threshold Between 

the Outage Interval and the Alarm Interval (TTOA), (a) Linear scale, (b) Log scale for the x axis 
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Figure 7-4 shows the 95% CI for the PPV of the EHH identified using the Wilson interval which was 

discussed in section 6.1.3. The small size of the GSSLR, only 29 POLRs, means that, for a PPV of the 

GSSLR of 0.483, the 95% CI of the PPV of the EHH is (0.314, 0.656).  

Section 6.2 considered techniques for interval estimation for a change in a proportion. It showed that 

the Technique Assuming Independence (TAI) yielded very poor coverage and that the Technique 

Using Bootstrapping (TUB) yielded acceptable coverage. In Figure 7-4, the width of the CI is greater 

than the difference between the maximum and minimum values of the PPV of the GSSLR. Intuitively, 

one might infer from this that there is a significant risk that the optimum value has not been identified. 

Such an inference would however be based on the invalid assumption that the measurements of the 

PPV of the GSSLR are independent of each other. This section will instead use TUB for constructing a 

CI for the change in the PPV of the EHH. 

Table 7-1 shows the effect on the quality of record linkage of varying TTOA. ‘True’ is the number of 

records from the GSSLR in which the version of the health history linked the WO to the same outage 

as that in the GSSLR and ‘False’ is the number in which it linked the WO to a different outage. TUB 

uses these results to estimate the uncertainty of the difference that it makes. 

 
TTOA = 10 mins 

True False 

TTOA = 
100 
mins 

True 12 0 

False 2 15 

Table 7-1, Effect on the Quality of Record Linkage of Varying the Time Difference Threshold between 

the Outage Interval and the Alarm Interval (TTOA) 

 

Equation 7.1 defines the Increase in the PPV of the EHH that would by yielded by a TTOA of 10 

minutes over that yielded by a TTOA of 100 minutes (  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

10
100). It uses the Probability distribution of 

estimates of the PPV of the EHH that would be yielded by a TTOA of 10 minutes 

(𝑃(𝑃𝑃𝑉 | 𝑇𝑇𝑂𝐴 = 10)) and the same distribution that would be yielded by a TTOA of 100 minutes 

(𝑃(𝑃𝑃𝑉 | 𝑇𝑇𝑂𝐴 = 100)) 

 
 𝐼 𝑇𝑇𝑂𝐴

𝑃𝑃𝑉
100
10 =  

𝑃(𝑃𝑃𝑉 | 𝑇𝑇𝑂𝐴 = 10)

𝑃(𝑃𝑃𝑉 | 𝑇𝑇𝑂𝐴 = 100)
− 1 

(7.1) 
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Equation 7.2 evaluates  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10̂

, a point estimate of  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10 , using the data from table 7.1. 

 
 𝐼 𝑇𝑇𝑂𝐴

𝑃𝑃𝑉
100
10̂ =  

12 + 2

12 + 0
− 1 = 17% 

(7.2) 

This research used TUB to estimate the uncertainty of  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10 , which yielded a 95% CI of (0, 56%). 

This research predicts that this uncertainty will be drastically reduced by an upcoming innovation in 

maintenance record keeping that will be discussed in chapter 9; the automatic linking of new WOs to 

outages will result in a larger GSSLR and consequently in more certainty for this estimate. 

To better understand this uncertainty, this research investigated the distribution of TUBs list of 

estimates of  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10  using techniques discussed in section 6.3. The results are shown in Figure 7-5 

(a). The most important features of this distribution are the proportion of negative estimates and the 

proportion of zero estimates because these indicate respectively that the quality of record linkage has 

reduced and that it has not increased, as detailed in Figure 7-5. The probability that a TTOA of 10 

minutes would yield a lower PPV of the EHH than a TTOA of 100 minutes is estimated by the 

proportion of bootstrap samples for which  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10 ≤ 0, which this research found to be 12%. This 

indicates that there is a significant risk that optimising TTOA using a GSSLR of the size available does 

not improve the quality of record linkage. 

Figure 7-5 (b) also shows that the proportion of bootstrap samples for which  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10 < 0  is 0. As 

explained in section 6.3, bootstrapping is conditional on the original sample, but this indicates that 

there is little risk that optimising TTOA using a GSSLR of the size available reduces the quality of 

record linkage. 

a) 

 

 

 

b) 

 

 

 

Subsamples 

  

 𝑃(  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10 ≤ 0) 

  

 𝑃(  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10 < 0) 

 𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10    

Figure 7-5, (a) Frequency of  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10  for 20,000 Subsamples, (b) Proportion of Bootstrap Samples 

for which  𝐼 𝑇𝑇𝑂𝐴
𝑃𝑃𝑉

100
10 ≤ 0 and for which  𝐼 𝑇𝑇𝑂𝐴

𝑃𝑃𝑉
100
10 < 0 against Number of Subsamples 
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This research kept TTOA as a single variable for all three of the failure mode features. It could instead 

have used a separate variable for each of these features. The decision to use a single variable was a 

simplifying assumption taken because the relationship between outages and alarms can be assumed 

to be independent of which feature indicative of the failure mode is used. 

This research did not investigate the effect of varying TTOA on the feature that uses parts data to 

identify the failure mode (described in section 4.4.4.3.3) because  this feature takes a long time to run 

and so running it multiple times would take far too long. The results from varying TTOA on the other 

two features that use the failure mode (described in section 4.4.4.1 and in section 4.4.4.2) are 

sufficient to optimise TTOA because all these techniques refer to the same WOs and to the same 

outages. 

This section presented the effect of varying TTOA and recommended keeping it at 10 minutes. 
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7.3 Optimisation of the Description Threshold 

This section will present the effect of varying the Description Threshold (𝑇ℎ𝐷𝑒) that was introduced in 

section 4.4.4.1. Please recall from that section that the PEOHH records agreement for the description 

feature when the Similarity Ratio (SR) is above a 𝑇ℎ𝐷𝑒 nominally set to 0.75. Section 7.6.3 will present 

results that indicate that the effect of this feature and of all of the set of features that use the failure 

mode as part of an ensemble of features for record linkage comparison are too small to measure with 

a GSSLR of the size available. For that reason, this section will consider this feature used alone. 

This research investigated the effect of varying 𝑇ℎ𝐷𝑒 to maximise the PPV. The results are shown in 

Figure 7-6 which shows PPV against 𝑇ℎ𝐷𝑒. Other weights and thresholds are kept constant. The 

Agreement Weight for the Description feature using Alarms and Outages (𝐴𝑊𝐷𝑒𝑂𝑢
, 𝐴𝑊𝐷𝑒𝐴𝑙

) are set to 

1 and their Disagreement Weights (𝐷𝑊𝐷𝑒𝑂𝑢
, 𝐷𝑊𝐷𝑒𝐴𝑙

) are set to -1 while all other agreement and 

disagreement weights are set to 0. 

Figure 7-6 shows that a wide range of values of 𝑇ℎ𝐷𝑒 (0.5 to 1) all yield the same value of PPV of 

0.552. This thesis recommends that 𝑇ℎ𝐷𝑒 continues to be set to 0.75. This section will consider the 

uncertainty of this recommendation. 

 

 

  

 
𝑃𝑃�̂� 

 95% CI 

Figure 7-6, Positive Predictive Value (PPV) and 95% CI against Description Threshold between the 

Outage Alarm Description and the WO Description (𝑇ℎ𝐷𝑒) 

Figure 7-6 shows the 95% CI for the PPV of the EHH identified using the Wilson interval which was 

discussed in section 6.1.3. The small size of the GSSLR, only 29 POLRs, means that, for a PPV of the 

GSSLR of 0.552, the 95% CI of the PPV of the EHH is (0.375, 0.716).  
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Again, this section will use TUB, presented in section 6.2, for constructing a CI for the change in the 

PPV of the EHH. Table 7-2 shows the effect of varying 𝑇ℎ𝐷𝑒. ‘True’ is the number of records from the 

GSSLR in which the version of the health history linked the WO to the same outage as that in the 

GSSLR and ‘False’ is the number in which it linked the WO to a different outage. TUB uses these 

results to estimate the uncertainty of the difference that it makes. 

 
𝑇ℎ𝐷𝑒 = 0.75 

True False 

𝑇ℎ𝐷𝑒 = 0 
True 8 1 

False 8 12 

Table 7-2, Effect on the Quality of Record Linkage of Varying the Description Threshold (𝑇ℎ𝐷𝑒) 

 

Equation 7.3 defines the Increase in the PPV of the EHH that would by yielded by a 𝑇ℎ𝐷𝑒 of 0.75 over 

that yielded by a 𝑇ℎ𝐷𝑒 of zero (  𝐼 𝑇ℎ𝐷𝑒 
𝑃𝑃𝑉

0.75
0 ). It uses the Probability distribution of estimates of the PPV 

of the EHH that would be yielded by a 𝑇ℎ𝐷𝑒 of 0.75 (𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝐷𝑒  = 0.75)) and the same 

distribution that would be yielded by a 𝑇ℎ𝐷𝑒 of zero (𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝐷𝑒  = 0)). 

 
 𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75 =  

𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝐷𝑒  = 0.75)

𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝐷𝑒  = 0)
− 1 

(7.3) 

Equation 7.4 evaluates  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75̂

, a point estimate of  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75, using the data from Table 7-2. 

 
 𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75̂ =  

8 + 8

8 + 1
− 1 = 78% 

(7.4) 

This research used TUB to estimate the uncertainty of  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0.75
0 , which yielded a 95% CI of (13%, 

225%). Again, this research predicts that this uncertainty will be drastically reduced by an upcoming 

innovation in maintenance record keeping that will be discussed in chapter 9. 

To better understand this uncertainty, this research investigated the distribution of TUBs list of 

estimates of  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75 using techniques discussed in section 6.3. The results are shown in Figure 7-7 

(a). The most important features of this distribution are the proportion of negative estimates and the 

proportion of zero estimates because these indicate respectively that the quality of record linkage has 

reduced and that it has not increased, as detailed in Figure 7-7 (b). The probability that a 𝑇ℎ𝐷𝑒 of 0.75 

would yield a lower PPV of the EHH than a 𝑇ℎ𝐷𝑒 of zero is estimated by the proportion of bootstrap 
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samples for which  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75 ≤ 0, which this research found to be 0.6%. This indicates that there is 

little risk that optimising 𝑇ℎ𝐷𝑒 using a GSSLR of the size available does not improve the quality of 

record linkage. 

Figure 7-7 (b) also shows that the proportion of bootstrap samples for which  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75 < 0  is 0.2%. 

This indicates that there is little risk that optimising 𝑇ℎ𝐷𝑒 using a GSSLR of the size available reduces 

the quality of record linkage. 

a) 

 

 

 

 

b) 

 

 

 

        Subsamples 

  

 
 

𝑃(  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75 ≤ 0) 

   

  𝑃(  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75 < 0) 

          𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75    

Figure 7-7, (a) Frequency of  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75 for 20,000 Subsamples, (b) Proportion of Bootstrap Samples  

for which  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75 ≤ 0 and for which  𝐼 𝑇ℎ𝐷𝑒

𝑃𝑃𝑉
0
0.75 < 0 against Number of Subsamples 

The conclusion of this section is to recommend keeping 𝑇ℎ𝐷𝑒 at 0.75.  
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7.4 Optimisation of the Parts Training Data Score Threshold 

Section 4.4.4.3.1 showed how the training data to be used by the HHE techniques using the parts are 

selected. Please recall from the section that: 

“The PEOHH selects POLRs for inclusion in the training data using the same criteria 

that it uses to select POLRs for the EHH. It then filters the training data to retain those 

POLRs that have 𝑆𝑃𝑂𝐿𝑅 above a Threshold (𝑇ℎ𝑆𝑃).” 

This section will present the Process for the Optimisation of 𝑇ℎ𝑆𝑃 (POTS) and its result. It will show 

that a value of 1.7, as is used throughout the other sections of this thesis, is appropriate. This value 

was originally identified by inspection of the distribution of 𝑆𝑃𝑂𝐿𝑅. 

The parts frequency technique presented in section 4.4.4.3.3 is trained for each WO separately 

against all the other WOs in the dataset. POTS simulates this process using a computationally less 

expensive process. 

POTS trains its model using a version of the EHH generated using the optimised weights and 

thresholds that will be presented in section 7.6.3. These weights will disregard the parts data. If the 

optimised PEOHH did use the parts data then it would be necessary to generate an alternative version 

of the EHH disregarding the parts data in order to ensure that the inputs to the PEOHH are 

independent of its output. This would ensure that POTS was measuring features of the real material 

consumption data and that it was not distorted by circular logic. 

POTS identifies an Edited version of the EHH (EEHH) by removing those WOs that feature in the 

GSSLR from the EHH. POTS is trained against the EEHH. Generating a single set of training data that 

can be used for each WO in the GSSLR is less computationally expensive than training for each WO 

against all the other WOs in the dataset. 

POTS trains the parts frequency technique on health history datasets generated using a full range of 

values of 𝑇ℎ𝑆𝑃. 

Table 7-8 will present the optimised weights and thresholds. The sum of the column of agreement 

weights will be 3.127 and the sum of the column of disagreement weights will be -2.643. These values 

are the limits of possible values of Score for each POLR (𝑆𝑃𝑂𝐿𝑅). Varying 𝑇ℎ𝑆𝑃 from -4 to 4 exceeds 

the range of possible values of 𝑆𝑃𝑂𝐿𝑅 and so it is a full range of values. 

This research investigated the effect of varying 𝑇ℎ𝑆𝑃 to maximise the PPV. The results are shown in 

Figure 7-8. It shows that 𝑇ℎ𝑆𝑃 values from 1.1 to 1.9 yield the maximum PPV of 0.552. This section 
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consequently recommends that 𝑇ℎ𝑆𝑃 should remain at its initial value of 1.7. This section will consider 

the uncertainty of this recommendation. 

 

 

  

 
𝑃𝑃�̂� 

 95% CI 

Figure 7-8, Positive Predictive Value (PPV) and 95% CI  

Against Parts Training Data Score Threshold (𝑇ℎ𝑆𝑃) 

Figure 7-8 shows the 95% CI for the PPV of the EHH identified using the Wilson interval which was 

discussed in section 6.1.3. The small size of the GSSLR, only 29 POLRs, means that, for a PPV of the 

GSSLR of 0.552, the 95% CI of the PPV of the EHH is (0.375, 0.716).  

Again, this section will use TUB, TUB, presented in section 6.2, for constructing a CI for the change in 

the PPV of the EHH. Table 7-3 shows the effect of varying 𝑇ℎ𝑆𝑃. ‘True’ is the number of records from 

the GSSLR in which the version of the health history linked the WO to the same outage as that in the 

GSSLR and ‘False’ is the number in which it linked the WO to a different outage. TUB uses these 

results to estimate the uncertainty of the difference that it makes. 

 
𝑇ℎ𝑆𝑃 = 1.7 

True False 

𝑇ℎ𝑆𝑃 = 0 
True 14 0 

False 2 13 

Table 7-3, Effect on the Quality of Record Linkage of Varying the Parts Training Data Score Threshold 

(𝑇ℎ𝑆𝑃) 
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Equation 7.5 defines the Increase in the PPV of the EHH that would by yielded by a 𝑇ℎ𝑆𝑃 of 1.7 over 

that yielded by a 𝑇ℎ𝑆𝑃 of zero (  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
1.7
0 ). It uses the Probability distribution of estimates of the PPV of 

the EHH that would be yielded by a 𝑇ℎ𝑆𝑃 of 1.7 (𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝑆𝑃 = 1.7)) and the same distribution that 

would be yielded by a 𝑇ℎ𝑆𝑃 of zero (𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝑆𝑃 = 0)) 

 
 𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7 =  

𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝑆𝑃 = 1.7)

𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝑆𝑃 = 0)
− 1 

(7.5) 

Equation 7.6 evaluates  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7

̂
, a point estimate of  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7, using the data from Table 7-3. 

 
 𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7̂ =  

14 + 2

14 + 0
− 1 = 14% 

(7.6) 

This research used TUB to estimate the uncertainty of  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7, which yielded a 95% CI of (0, 45%). 

Again, this research predicts that this uncertainty will be drastically reduced by an upcoming 

innovation in maintenance record keeping that will be discussed in chapter 9. 

To better understand this uncertainty, this research investigated the distribution of TUBs list of 

estimates of  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7 using techniques presented in section 6.3. The results are shown in Figure 

7-9(a). The most important features of this distribution are the proportion of negative estimates and the 

proportion of zero estimates because these indicate respectively that the quality of record linkage has 

reduced and that it has not increased, as detailed in Figure 7-9(b). The probability that a 𝑇ℎ𝑆𝑃 of 1.7 

would yield a lower PPV of the EHH than a 𝑇ℎ𝑆𝑃 zero is estimated by the proportion of bootstrap 

samples for which  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7 ≤ 0, which this research found to be 13%. This indicates that there is a 

significant risk that optimising 𝑇ℎ𝑆𝑃 using a GSSLR of the size available does not improve the quality 

of record linkage. 
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Figure 7.9 (b) also shows that the proportion of bootstrap samples for which  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7 < 0  is 0. As 

explained in section 6.3, bootstrapping is conditional on the original sample, but this indicates that 

there is little risk that optimising TTOA using a GSSLR of the size available reduces the quality of 

record linkage. 

a) 

 

 

 

b) 

 

 

 

Subsamples 

  

 𝑃(  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7 ≤ 0) 

  

 𝑃(  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7 < 0) 

 𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7   

Figure 7-9, (a) Frequency of  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7 for 20,000 Subsamples, (b) Proportion of Bootstrap Samples 

for which  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7 ≤ 0 and for which  𝐼 𝑇ℎ𝑆𝑃

𝑃𝑃𝑉
0
1.7 < 0 against Number of Subsamples 

The conclusion of this section is to recommend keeping 𝑇ℎ𝑆𝑃 at 1.7.  
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7.5 Optimisation of the Parts Score Threshold 

This section will present the effect of varying the Parts score Threshold (𝑇ℎ𝑃𝑎) presented in section 

4.4.4.3.3. It was described in that section that the PEOHH records agreement when PS > 𝑇ℎ𝑃𝑎 and 

that 𝑇ℎ𝑃𝑎 was set to a nominal value of 0. 

Section 7.6.3 will present results that indicate that the effect of this feature and of all of the set of 

features that use the failure mode as part of an ensemble of features for record linkage comparison 

are too small to measure with a GSSLR of the size available. For that reason, this section will consider 

this feature used alone. 

This research investigated the effect of varying 𝑇ℎ𝑃𝑎 to maximise the PPV. The results are shown in 

Figure 7-10 which shows PPV against 𝑇ℎ𝑃𝑎. Other weights and thresholds are kept constant. The 

Agreement Weight for the Parts feature using Alarms and Outages (𝐴𝑊𝑃𝑎𝑂𝑢
, 𝐴𝑊𝑃𝑎𝐴𝑙

) are set to 1 

and their Disagreement Weights (𝐷𝑊𝑃𝑎𝑂𝑢
, 𝐷𝑊𝑃𝑎𝐴𝑙

) are set to -1 while all other agreement and 

disagreement weights are set to 0. This has the effect of looking at the parts feature alone. It shows 

that a range of values of 𝑇ℎ𝑃𝑎 (1 to 3 and also -3), all yield the same value of PPV of 0.517. This 

thesis recommends that 𝑇ℎ𝑃𝑎 be set to 2. This section will consider the uncertainty of this 

recommendation. 

 

 

 

 

  

 
𝑃𝑃�̂� 

  

 95% CI 

          𝑇ℎ𝑃𝑎   

Figure 7-10, Positive Predictive Value (PPV) and 95% CI against Parts Score Threshold (𝑇ℎ𝑃𝑎) 

 

Figure 7-10 shows the 95% CI for the PPV of the EHH identified using the Wilson interval which was 

discussed in section 6.1.3. The small size of the GSSLR, only 29 POLRs, means that, for a PPV of the 

GSSLR of 0.517, the 95% CI of the PPV of the EHH is (0.344, 0.686). 



 

177 

 

Again, this section will use TUB, presented in section 6.2, for constructing a CI for the change in the 

PPV of the EHH. Table 7-4 shows the effect of varying 𝑇ℎ𝑃𝑎. ‘True’ is the number of records from the 

GSSLR in which the version of the health history linked the WO to the same outage as that in the 

GSSLR and ‘False’ is the number in which it linked the WO to a different outage. TUB uses these 

results to estimate the uncertainty of the difference that it makes. 

 

 
𝑇ℎ𝑃𝑎 = -0.5 

True False 

𝑇ℎ𝑃𝑎 = 2 
True 11 0 

False 4 14 

Table 7-4, Effect on the Quality of Record Linkage of Varying the Parts Score Threshold (𝑇ℎ𝑃𝑎) 

 

Equation 7.7 defines the Increase in the PPV of the EHH that would by yielded by a 𝑇ℎ𝑃𝑎 of 2 over that 

yielded by a 𝑇ℎ𝑃𝑎 of -0.5 (  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
2
−0.5). It uses the Probability distribution of estimates of the PPV of the 

EHH that would be yielded by a 𝑇ℎ𝑃𝑎 of 2 (𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝑃𝑎 = 2)) and the same distribution that would 

be yielded by a 𝑇ℎ𝑃𝑎 of -0.5 (𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝑃𝑎 = −0.5)) 

 
 𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2 =  

𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝑃𝑎 = 2)

𝑃(𝑃𝑃𝑉 | 𝑇ℎ𝑃𝑎 = −0.5)
− 1 

(7.7) 

Equation 7.8 evaluates  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉

−0.5

2̂
, a point estimate of  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2 , using the data from Table 7-4. 

 
 𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2̂ =  

11 + 4

11 + 0
− 1 = 36% 

(7.8) 

This research used TUB to estimate the uncertainty of  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2 , which yielded a 95% CI of (7% , 

100%). Again, this research predicts that this uncertainty will be drastically reduced by an upcoming 

innovation in maintenance record keeping that will be discussed in chapter 9. 

To better understand this uncertainty, this research investigated the distribution of TUBs list of 

estimates of  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2  using techniques presented in section 6.3. The results are shown in Figure 

7-11 (a). The most important features of this distribution are the proportion of negative estimates and 

the proportion of zero estimates because these indicate respectively that the quality of record linkage 

has reduced and that it has not increased, as detailed in figure 7.11 (b). The probability that a 𝑇ℎ𝑃𝑎 of 
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2 would yield a lower PPV of the EHH than a 𝑇ℎ𝑃𝑎 of -0.5 is estimated by the proportion of bootstrap 

samples for which  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2 ≤ 0, which this research found to be 1.5%. This indicates that there is 

little risk that optimising 𝑇ℎ𝑃𝑎 using a GSSLR of the size available does not improve the quality of 

record linkage. 

Figure 7-11(b) also shows that the proportion of bootstrap samples for which  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2 < 0  is 0. As 

explained in section 6.3, bootstrapping is conditional on the original sample, but this indicates that 

there is little risk that optimising 𝑇ℎ𝑃𝑎 using a GSSLR of the size available reduces the quality of 

record linkage. 

a) 

 

 

 

b) 

 

 

 

Subsamples 

  

 𝑃(  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2 ≤ 0) 

  

 𝑃(  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2 < 0) 

 𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2    

Figure 7-11, (a) Frequency of  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2  for Subsamples = 20,000, (b) Proportion of Bootstrap 

Samples for which  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2 ≤ 0 and for which  𝐼 𝑇ℎ𝑃𝑎

𝑃𝑃𝑉
−0.5
2 < 0 against Number of Subsamples 

 

The conclusion of this section is to recommend setting 𝑇ℎ𝑃𝑎 at 2. 
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7.6 Optimisation of the Weights and of the Remaining Thresholds 

This section presents the optimisation of the 28 remaining weights and thresholds used in the PEOHH 

that have not already been addressed. These are: 

• The Agreement and Disagreement Weight for each of the 12 Features (𝐴𝑊𝐹𝑒, 𝐷𝑊𝐹𝑒) 

presented in section 4.1. 

• The Threshold for each of four time Features (𝑇ℎ𝐹𝑒) presented in section 4.4.1. 

This optimisation will search for the maximum value of PPV. If the optimised 𝐴𝑊𝐹𝑒 or 𝐷𝑊𝐹𝑒 for a 

feature is not zero then this research will have found that the hypothesis that the feature can be used 

for record linkage comparison is true. It will use Differential Evolution (DE), which was reviewed in 

section 2.4.1.2, for this purpose. 

This section will again use techniques from chapter 6 to quantify the uncertainty of this optimisation 

and will go on to consider how this uncertainty limits what conclusions can be drawn. 

The optimisation process described in this section constrained all 𝐴𝑊𝐹𝑒 between zero and one and all  

𝐷𝑊𝐹𝑒 between zero and negative one. These weights are relative to each other, so this is equivalent 

to constraining all the agreement weights between zero and + infinity and the disagreement weights 

between zero and - infinity. This means that any positive value of relative agreement weight and any 

negative value of relative disagreement weight is within the bounds of the search. 

Section 4.1 presented the PEOHH: 

The PEOHH calculates a score for each POLR (𝑆𝑃𝑂𝐿𝑅), the sum across all the features 

of the Weight for that Feature and for that POLR (WFePOLR
) using equation 4.2. 

 
𝑆𝑃𝑂𝐿𝑅 =  ∑ 𝑊𝐹𝑒𝑃𝑂𝐿𝑅

𝐹𝑒
 

(4.2) 

7.6.1 Initial Optimisation 

This section will use Differential Evolution (DE)70 to optimise a set of weights and thresholds in the 

PEOHH. It will define a function (fun) that, for each POLR, uses the weights and thresholds to 

calculate 𝑆𝑃𝑂𝐿𝑅 and, for each WO, finds the highest scoring POLR. For any combination of weights 

and thresholds, fun identifies an EHH that might be the same or that might be different to the EHH 

 

70 Section 2.4.1.2 reviewed DE. 
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identified using another combination of weights and thresholds. Fun uses the GSSLR to yield a value 

of the PPV for the given combination of weights and thresholds. 

This section will present results obtained by DE for the optimisation of the PEOHH. It will present the 

effect on PPV of disregarding individual features and sets of features. The results from this section will 

inform the conclusions that this chapter will draw about which of the new and existing methods for 

record linkage presented in this chapter are beneficial for the application of wind turbine health history 

enrichment. 

The maximum number of iterations was not reached in this research as instead the convergence 

criteria were reached. 

For each weight and each threshold to be optimised together, the optimisation process defined a 

range of values. The optimisation process ran the Python tool ‘differential_evolution’ from the library 

‘scipy.optimize’ on the function fun. This process yielded an optimised combination of weights and 

thresholds. 

This research investigated the effect of adjusting the settings of the DE optimiser. DE with lower CR 

and Mu and higher Di and PSi has the effect of widening the search radius; increasing the chance of 

finding the optimum; but it also has the effect of slowing convergence (Piotrowski, 2017). This 

research ran DE with such control parameter settings (CR = 0.1, Mu = 0.5, Di = 1, PSi = 100) but 

stopped the solving after it had run without convergence for 5 days. That run found the optimum value 

of PPV of 0.828. This research will use standard parameter values for DE, as defined by Table 7-5. 

Parameter Abbreviation Value 

Mutation Mu 0.75 

Dithering Di 0.5 

Population Size PSi 15 

Crossover Rate CR 0.7 

Table 7-5, Control Parameter Values 

10 runs optimising the agreement and disagreement weights for the PEOHH all yielded the same 

value of PPV of 0.828. These results repeat the result from using wide search radius control 

parameters, indicating that this value is genuinely the global maximum, as opposed to the solver being 

stuck at a local maximum, such as an elevated crater in 28-dimensional space. Figure 7-12 shows that 

the optimised results represent a wide range of agreement and disagreement weight values. This wide 

range indicates uncertainty, caused again by the small size of the GSSLR, about what the optimum 

values are. This research predicts that this uncertainty will be drastically reduced by an innovation in 
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maintenance record keeping that will be discussed in chapter 9. The following sections will 

recommend values for these weights to be used by the PEOHH. 

 

Figure 7-12, Vectors of Values of Agreement Weight and of the Negative of Disagreement Weight that 

all Yield Optimum Results 

7.6.2 Positive Predictive Value 

Section 7.6.1 optimised the weights and thresholds to the extent achievable with a GSSLR of the size 

available. It yielded the maximum value of PPV of 0.828. This value of PPV was calculated using a 

small sample of the health history and will therefore be over fitted to the data. To measure a more 

accurate value of PPV, this research split the GSSLR into training and testing data sets. 

Overfitting is an error that occurs when a theoretical model is too closely fitted to a small set of data 

points. Rather than optimising the weights and thresholds by training on the whole GSSLR, training on 

a sample of the already small GSSLR increases the amount of overfitting to the data. This research 

will then then calculate the PPV of the remainder of the GSSLR that was not used for training. 

Overfitting to the training data means that this technique will under-estimate PPV against the test data. 

This research investigated the effect of varying the Size of the Test data sample (TeS) between 0.1 

and 0.5 of the GSSLR. It used for training all of the data in the GSSLR that will not be used for testing, 

so the Size of the Training data sample (TrS) = 1 – TeS, that is that this research varied TrS between 

0.9 and 0.5. This research repeated the optimisation of PPV 5 times for each value of TeS using DE. 

This technique is an example of bootstrapping, which refers to a test that uses random sampling with 

replacement. 

Figure 7-13 presents PPV against TeS for (a) training and (b) testing as a violin plot which shows the 

distribution and median value for PPV. Figure 7-13 (b) shows that the median PPV for testing does not 

vary with TeS. It might be expected that overfitting would cause PPV to tend to increase for training 

and reduce for testing with a smaller TrS, that is for larger TeS, but that did not happen, showing that 

the amount of overfitting does not change significantly within this range of TeS. 
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The median value of PPV for training is 0.889, compared to 0.571 for testing. The higher value of PPV 

for training is due to overfitting. It follows that the values of PPV for testing will be under fitted to the 

data. Each value of PPV calculated here is a point estimate of the PPV of the EHH. 0.571 is therefore 

a low point estimate of it. The next chapter will look at whether the health history has been enriched 

and will include discussion of the PPV. 

a) 
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b) 
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Figure 7-13, Positive Predictive Value (PPV) against Test Size (TeS) for (a) Training and (b) Testing 

 

This research will use the 95th percentile of the distribution of the PPV of the GSSLR to estimate the 

95% CI of the PPV of the EHH. It is (0.667, 1) for training and (0.416, 0.706) for testing and so this 

research estimates the 95% CI of the PPV of the EHH as (0.416, 0.706). This estimation did not 

require the techniques for interval estimation of a binomial proportion described in section 6.1 because 

it has instead used the distribution of results from repeated trials. 
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7.6.3 Negational Positive Predictive Value 

This section will now investigate the relative effectiveness of each of the techniques for the enrichment 

of the health history that were presented in section 4.3. It will use all of the GSSLR to optimise the 

weights and thresholds, investigating the effect of setting some of the agreement and disagreement 

weights to zero. If, when the agreement and disagreement weights for a feature are set to zero, the 

maximum value of �̂� yielded is not lower than with them varied, then that feature is not contributing 

anything and therefore health history enrichment can be done without it without any drop in quality. 

The small size of the GSSLR means that the following results are uncertain but they are advice based 

on the best evidence available. Further work could increase this work with a larger GSSLR to find 

whether the techniques that seem from these results to not add quality do actually add quality to the 

PEOHH. 

Section 3.2.3 presented the Negational Positive Predictive Value (NPPV): 

Where the weight assigned to a dimension of the comparison vector is set to zero, the 

corresponding feature is disregarded for record linkage comparison. This thesis will 

refer to setting the weight to zero as ‘disregard’. Consider disregarding one of the 

features: the effect of not using a feature is a useful measure of the effectiveness of 

that feature. This thesis presents the Negational Positive Predictive Value (NPPV); the 

Positive Predictive Value (PPV) calculated using all the features except one feature or 

set of features that is disregarded. 
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Table 7-6 presents optimised values of NPPV. When the PEOHH used all the features, that is that 

none of them were disregarded, DE yielded the maximum value of 0.828. DE also yielded this 

maximum value when the start time feature, defined in section 4.4.1, the type feature, defined in 

section 4.4.2, the visits feature, defined in section 4.4.3 or all but one of the failure mode features 

defined in section 4.4.4 was disregarded. When the PEOHH did not use each of the other features, 

DE yielded lower values of NPPV. This result indicates that those features where DE yielded a lower 

value of 𝑝�̂� when they were disregarded, that is the finish, notification and part posting time features 

defined in section 4.4.1, may tend to be the most important features for wind turbine maintenance 

record linkage. 

Set of Features Feature NPPV 

All features present 0.828 

Time 

w/o Start 0.828 

w/o Finish 0.793 

w/o Notification 0.724 

w/o Part Posting 0.759 

w/o Type 0.828 

w/o Visits 0.828 

Failure 
Mode 

Outage 

w/o Description 0.828 

w/o Alarm Code 0.828 

w/o Parts 0.793 

Alarms 

w/o Description 0.828 

w/o Alarm Code 0.828 

w/o Parts 0.828 

Table 7-6, Optimised Values of NPPV, Calculated Disregarding Selected Features 

The next step, after disregarding individual features, is to disregard selected sets of features. It would 

have been of interest to find the optimum PPV for each permutation of features. For 12 features, this 

would be 212 = 4096 permutations which would unfortunately have taken too long. 

Table 7.7  presents optimised values of NPPV calculated disregarding selected sets of features. When 

the PEOHH used all the features, that is that none of them was disregarded, DE yielded the maximum 

value of 𝑝�̂�   of 0.828. DE also yielded this maximum value when the type feature defined in section 

4.4.2 and the visits feature defined in section 4.4.3 were disregarded, when all the failure mode 
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features defined in section 4.4.4 were disregarded or when all the failure mode features and the start 

time feature defined in section 4.4.1 were disregarded. When the PEOHH disregarded each of the 

other sets of features listed, DE yielded lower values of NPPV. 

The failure mode features are relatively computationally expensive and so it might be inferred that, if 

there is no evidence of them improving the quality of record linkage, unnecessary computation should 

be avoided by not using them. The next section will consider the limits of that conclusion. 

This result indicates that wind turbine maintenance record linkage should use an ensemble of features 

made up of the finish, notification and part posting time features, defined in section 4.3.1, the type 

feature, defined in section 4.4.2 and the visits feature, defined in section 4.4.3, and that it should avoid 

unnecessary computation by not using the failure mode features, defined in section 4.4.4 and the start 

time feature, defined in section 4.4.1. 

Sets of Features NPPV 

All features present 0.828 

w/o Type and Visits 0.828 

w/o Failure Mode 0.828 

w/o Failure Mode and Start 0.828 

w/o Failure Mode and Finish 0.793 

w/o Failure Mode and Type 0.793 

w/o Failure Mode, Type and Visit 0.793 

w/o Failure Mode and Part Posting 0.759 

w/o Failure Mode and Visits 0.759 

w/o Failure Mode, Finish and Part Posting 0.759 

w/o Failure Mode, Type and Finish 0.759 

w/o Failure Mode and Notification 0.724 

w/o Failure Mode, Type and Part Posting 0.724 

w/o Time 0.517 

Table 7-7, Optimised Values of NPPV, Calculated Disregarding Selected Sets of Features 
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There are two sources of uncertainty in this result.  

Firstly, the PPV of the GSSLR is a point estimate of the PPV of the EHH. A confidence interval (CI) is 

a region with a specified, nominal probability that it contains a feature of interest. The small size of the 

GSSLR, only 29 POLRs, means that, for a PPV of the GSSLR of 0.828, the 95% CI of the PPV of the 

EHH, identified using the Wilson interval which was discussed in chapter 6, is (0.655, 0.924). The 

previous section recognised that this is an over estimate of PPV caused by over fitting and that a 

better estimate of the PPV of the EHH is 0.571 with a 95% CI of (0.416, 0.706). The significance of the 

CI of the over fitted PPV is that it quantifies the uncertainty of the optimisation presented in this 

section. 

Secondly, DE does not always find the optimum vector. As the number of dimensions increases, the 

optimisation problem becomes more difficult as the space required to compute solutions increases 

exponentially with the number of dimensions. This is referred to in the literature as the ‘curse of 

dimensionality’ (Bellman, 1956, Rust 1997). The more features the PEOHH disregards, the easier the 

optimisation problem becomes. The following section will consider the uncertainty of the optimisation 

presented here and will conclude from this and from further investigation that all of the features should 

be used for record linkage. 

Table 7.8 presents the optimised weights and thresholds. Table 7.8 does not record optimised values 

for the time Threshold for the start time Feature (𝑇ℎ𝑆𝑡), the description similarity threshold (𝑇ℎ𝐷𝑒) or 

the parts score threshold (𝑇ℎ𝑃𝑎) because, with the agreement and disagreement weights for these 

features set to zero, these thresholds are meaningless.  

Where the PEOHH uses the weights and thresholds set out in Table 7.8 the sums of the columns 

equal the limits of possible values of Score for each POLR (𝑆𝑃𝑂𝐿𝑅). The sum of the column of 

agreement weights is 3.127. The sum of the column of disagreement weights is -2.643. 
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The PEOHH yields its best performance with the weights and thresholds set to the values in Table 

7-8, however, the following section will present some alternative weights and thresholds at which, to 

the measurement accuracy yielded with the size of the GSSLR that is available, the PEOHH yields an 

equally good performance but that this thesis advises should be used instead. 

Set of Features Feature 
Agree  

(AW) 

Disagree 

(DW) 

Threshold 

(days) 

Time 

Start 0 0   

Finish 0.995 -0.602 2.534 

Notification 0.588 -0.088 1.312 

Part Posting 0.668 -0.846 2.260 

Type 0.095 -0.280   

Visit 0.781 -0.827   

Failure 
Mode 

Outage 

Description 0 0   

Alarm Code 0 0   

Parts 0 0   

Alarms 

Description 0 0   

Alarm Code 0 0   

Parts 0 0   

Sum 3.127 -2.643   

Table 7-8, Optimised Weights and Thresholds 

7.6.4 Using all the Features 

The previous section tested techniques using an ensemble of features and found that if any of the 

failure mode based techniques has a useful effect then it is too subtle to be measured with a GSSLR 

of the size available. This section will use a different validation approach to investigate whether it 

might be advantageous to use all of the features, rather than disregarding the computationally 

expensive failure mode based features. 

This section investigates the effect of using all the features, dividing them into two sets; the minor 

features; those that are indicative of the failure mode and the WO start time feature, and the major 

features; the remainder of the features. It gives the major features their optimum values from the 
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previous section. It gives all the Minor Features the agreement Weight 𝑊𝑒𝑀𝐹 and a disagreement 

weight of negative 𝑊𝑒𝑀𝐹. 

Using all of the features is more computationally expensive than using only the major features, 

however, because section 1.2 showed that an EHH is valuable to a wind farm developer, if it does 

yield an even slightly better quality of record linkage then the more computationally expensive 

approach might be justified. 

This research investigated the effect of varying 𝑊𝑒𝑀𝐹 between zero and 1. A 𝑊𝑒𝑀𝐹 of zero yields the 

agreement and disagreement weights detailed in Figure 7-14 in which a selection of features have 

their weights set to zero and so are effectively not used. Where 𝑊𝑒𝑀𝐹 is not zero, all the features are 

used by the PEOHH with the weights that in that figure are set to zero  replaced by 𝑊𝑒𝑀𝐹. The results 

are shown in Figure 7-14. 

The maximum PPV in figure Figure 7-14 (0.828) occurs throughout the range 𝑊𝑒𝑀𝐹 = zero to 0.33. 

With a GSSLR of the size available, the process for the validation of the EHH cannot distinguish 

between these values of 𝑊𝑒𝑀𝐹. That means that all the features can be used within this range with no 

measurable drop in record linkage quality. This section will consider the uncertainty of this 

recommendation and will report the results of a small additional test of what happens to the EHH when 

the PEOHH uses a 𝑊𝑒𝑀𝐹 of 0.1. It will find that using a 𝑊𝑒𝑀𝐹 of 0.1 would most likely improve the 

quality of record linkage, which is consistent with the figure. 

 

 

  

 𝑃𝑃�̂� 

 95% CI 

Figure 7-14, Positive Predictive Value (PPV) and 95% CI against Minor Feature Weight (𝑊𝑒𝑀𝐹) 
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Figure 7-14 shows the 95% CI for the PPV of the EHH identified using the Wilson interval which was 

discussed in section 6.1.3. The small size of the GSSLR, only 29 POLRs, means that, for a PPV of the 

GSSLR of 0.828, the 95% CI of the PPV of the EHH is (0.655, 0.924).  

Again, this section will use TUB, presented in section 6.2, for constructing a CI for the change in the 

PPV of the EHH. Table 7.9 shows the effect of varying 𝑊𝑒𝑀𝐹. ‘True’ is the number of records from the 

GSSLR in which the version of the health history linked the WO to the same outage as that in the 

GSSLR and ‘False’ is the number in which it linked the WO to a different outage. TUB uses these 

results to estimate the uncertainty of the difference that it makes. 

 

 
𝑊𝑒𝑀𝐹 = 0 

True False 

𝑊𝑒𝑀𝐹  

= 1 

True 23 0 

False 1 5 

Table 7-9, Effect on the Quality of Record Linkage of Varying the Minor Feature Weight (𝑊𝑒𝑀𝐹) 

 

Equation 7.9 defines the Increase in the PPV of the EHH that would by yielded by a 𝑊𝑒𝑀𝐹 of zero 

over that yielded by a 𝑊𝑒𝑀𝐹 of 1 (  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0). It uses the Probability distribution of estimates of the PPV 

of the EHH that would be yielded by a 𝑊𝑒𝑀𝐹 of zero (𝑃(𝑃𝑃𝑉 | 𝑊𝑒𝑀𝐹 = 0)) and the same distribution 

that would be yielded by a 𝑊𝑒𝑀𝐹 of 1 (𝑃(𝑃𝑃𝑉 | 𝑊𝑒𝑀𝐹 = 1)). 

 
 𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0 =  

𝑃(𝑃𝑃𝑉 | 𝑊𝑒𝑀𝐹 = 0)

𝑃(𝑃𝑃𝑉 | 𝑊𝑒𝑀𝐹 = 1)
− 1 

(7.9) 

Equation 7.10 evaluates  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0̂
, a point estimate of  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0, using the data from Table 7-9. 

 
 𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0̂ =  

23 + 1

23 + 0
− 1 = 4% 

(7.10) 

This research used TUB to estimate the uncertainty of  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0, which yielded a 95% CI of (0, 16%). 

Again, this research predicts that this uncertainty will be drastically reduced by an upcoming 

innovation in maintenance record keeping that will be discussed in chapter 9. 
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To better understand this uncertainty, this research investigated the distribution of TUBs list of 

estimates of  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0 using techniques presented in section 6.3. The results are shown in Figure 

7-15(a). The most important features of this distribution are the proportion of negative estimates and 

the proportion of zero estimates because these indicate respectively that the quality of record linkage 

has reduced and that it has not increased, as detailed in Figure 7-15(b). The probability that a 𝑊𝑒𝑀𝐹 

of zero would yield a lower PPV of the EHH than a 𝑊𝑒𝑀𝐹 of 1 is estimated by the proportion of 

bootstrap samples for which  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0 ≤ 0, which this research found to be 36%. This indicates that 

there is a significant likelihood that reducing 𝑊𝑒𝑀𝐹, from 1 to zero would not increase the quality of 

record linkage. There is a 63% chance that such a reduction would increase the quality of record 

linkage. 

Figure 7-15(b) also shows that the proportion of bootstrap samples for which  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0  < 0  is 0. As 

explained in section 6.3, bootstrapping is conditional on the original sample, but this indicates that 

there is little likelihood that reducing 𝑊𝑒𝑀𝐹 from 1 to zero would increase the quality of record linkage. 

a) 

 

 

 

b) 

 

 

 

Subsamples 

  

 𝑃(  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0 ≤ 0) 

  

 𝑃(  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0 < 0) 

 𝐼 𝑊𝑒𝑀𝐹
𝑃𝑃𝑉

1
0   

Figure 7-15, (a) Frequency of  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0 for 20,000 Subsamples, (b) Proportion of Bootstrap Samples 

for which  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0 ≤ 0 and for which  𝐼 𝑊𝑒𝑀𝐹

𝑃𝑃𝑉
1
0 < 0 against Number of Subsamples 

 

This section presented the effect of varying 𝑊𝑒𝑀𝐹 and identified that this effect is too subtle to 

measure accurately with a GSSLR of the size available. 

This section will test what happens to the EHH when the PEOHH uses a 𝑊𝑒𝑀𝐹 of 0.1. It will compare 

that version of the EHH (EHH 1) to the version of the EHH that is yielded when the baseline 𝑊𝑒𝑀𝐹 

value from the previous section of zero is used (EHH 0). When compared to EHH 0, out of 9820 WOs, 

EHH 1 has 74 different POLRs. This section will refer to this set of 74 WOs that link to Different 

outages in EHH 1 to those that they link to in EHH zero as DiWO. Using the whole EHH rather than 
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just the GSSLR gives much more detail about such relatively subtle differences in results because it is 

the whole population of the health history data rather than being a sample from it. 

If there is any benefit in using all the features then it is most likely to derive from those POLR that 

yielded the highest quality of record linkage, where TPs are more common. This section therefore 

selects for investigation the best WO from DiWO. It selects as a sample the WO from DiWO that yields 

the highest 𝑆𝑃𝑂𝐿𝑅 when 𝑊𝑒𝑀𝐹 = 0.1. This sampling method is systematic, not random, and of course 

the sample is not representative of the population. In EHH 1 the example WO is linked to an outage 

with the alarm code description of ‘Yaw hydraulic oil level low’ while in EHH 2 it is ‘Manual idle stop - 

yawing‘. The WO description is identical to the outage alarm code description in EHH 1; ‘Yaw 

hydraulic oil level low’. This authors experience of the data and of participation in the validation 

meetings is that, in this case, EHH 1 has obviously yielded a higher quality record linkage result than 

EHH 0. 

In this one systematically selected case, EHH 1 has outperformed EHH 0, that is that 𝑊𝑒𝑀𝐹 = 0.1 has 

outperformed 𝑊𝑒𝑀𝐹 = 0. This thesis therefore recommends that the PEOHH most likely yields its best 

performance with the weights and thresholds set to the values in Table 7.10. 

Set of Features Feature 
Agree 

(AW) 

Disagree 

(DW) 

Threshold 

(days) 

Time 

Start 0.100 0.100 2.000 

Finish 0.995 -0.602 2.534 

Notification 0.588 -0.088 1.312 

Part Posting 0.668 -0.846 2.260 

Type 0.095 -0.280   

Visit 0.781 -0.827   

Failure 
Mode 

Outage 

Description 0.100 -0.100   

Alarm Code 0.100 -0.100   

Parts 0.100 -0.100   

Alarms 

Description 0.100 -0.100   

Alarm Code 0.100 -0.100   

Parts 0.100 -0.100   

Table 7-10, Recommended Weights and Thresholds 
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7.6.5 Simplifying the Parts Frequency Techniques 

The parts frequency techniques presented in this thesis are computationally expensive. For a single 

farm, it took 1 day to calculate the Parts Score for Outages (PSO) for each POLR and 2 weeks to 

calculate the Parts Score for Alarms (PSA) for each POLR. PSA takes longer to calculate than PSO 

because there can be multiple alarms linked to an outage.  

This technique is computationally expensive because it uses as training data all the records except for 

the one being tested; each time a record is tested, the techniques generate a new set of training data 

from all the other records and this requires additional computation. 

A less computationally expensive alternative would be to split the data in two; set A and set B. Set A 

could be tested on a model trained using set B and set B could be tested on a model trained using set 

A. That simpler and quicker technique was developed as part of this research. The results are not 

presented because the technique used by the PEOHH is more comprehensive and, despite it being 

trained on more data, its effect could not be measured with a GSSLR of the size available. 
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7.7 Conclusion to the Optimisation of the Weights and Thresholds 

This chapter has presented the results from the validation of the PEOHH. It has presented the effect 

on the quality of record linkage of varying the weights and thresholds that the PEOHH uses. It has 

presented the optimisation of the agreement and disagreement weights (defined in section 4.1) for 

each feature (defined in section 4.4). 

Chapter 4 presented the PEOHH. It presented 12 novel record linkage techniques that can be used as 

part of the PEOHH. This chapter presented the result that an ensemble of five of these techniques 

yielded an optimal Enriched Health History (EHH). The identification of which outage to match to each 

WO was achieved to the same quality whether using the full ensemble of twelve techniques or using 

all of them except for the six techniques indicative of the failure mode. The six techniques using the 

failure mode could be disregarded with the PEOHH still yielding an optimum quality of record linkage. 

This result indicates that if any of the failure mode-based features has a useful effect then it is too 

subtle to be measured with a GSSLR of the size available. This result is counter-intuitive because the 

manual methods that are frequently and consistently used by practitioners for linking WOs to outages 

do make use of the WO description field, one of the features indicative of the failure mode. 

Practitioners do not tend to use the WO finish date, the notification date or the part posting date for 

manual record linkage and this result indicates that these features can substitute for the features 

indicative of the failure mode. 

The size of the GSSLR, only 29 POLRs, was constrained by the amount of expert time that was 

available. This chapter quantified the consequent uncertainty of its estimate of the PPV of the EHH. It 

reported considerable uncertainty as to the optimum values of the weights and thresholds. This 

research predicts that this uncertainty will be drastically reduced by an innovation in maintenance 

record keeping that will be discussed in chapter 9; the automatic linking of new WOs to outages will 

result in a larger GSSLR and consequently more certainty in this estimate. Given that uncertainty, this 

research advises using all the features rather than disregarding those features that use the failure 

mode. 

Operators should initially use the weights and thresholds for the EHH detailed in Table 7-10 but should 

re-assess this when a larger GSSLR becomes available. 

Chapter 8 will assess the EHH’s usefulness.  
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8 Results: Has the Health History been Enriched? 

To investigate whether the Process for the Enrichment of wind turbine Health History (PEOHH) 

developed in this research does what it is for, that is to enrich health history, this chapter will address 

RQ3: 

RQ3 How can the richness of historical data on wind turbine health be measured? 

This chapter will present four measures of the richness of historical data on wind turbine health. They 

will be defined later in this section but will be referred to as the number of WO records, the number of 

MLI records, the number of MLIs per alarm code and the prevalence of POLRs in the EHH where the 

health history would recommend all the required parts. 

Section 8.1.2 will define those WOs already labelled with an alarm code as the unenriched health 

history. This chapter will measure the richness of both the unenriched and the enriched health history 

and compare them to quantify how much enrichment has been achieved. It will then measure the 

effect of enrichment in a more practical way by assessing the EHHs usefulness for the application of 

troubleshooting, described in section 1.2.4. If the EHH has become more useful for troubleshooting 

then it can be claimed that the health history has been enriched. This research selected 

troubleshooting as the application to consider because health history enrichment will have a very 

direct impact on advising which parts might be required to repair each fault. This research expects that 

a health history that has, by enrichment, become more useful for the application of troubleshooting will 

also be more useful for the applications of maintenance scheduling, described in section 1.2.2, 

Condition Based Maintenance (CBM), described in section 1.2.3 and for the measurement of 

maintenance effectiveness, described in section 1.2.5. This expectation is based on extensive 

discussions with wind turbine experts conducted as part of this research but could be tested by further 

work, applying the EHH in practice. 
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8.1 What is Enrichment? 

By enrichment, this thesis means enhancing the utility of the EHH for maintenance, to maximise 

productivity. The following sections will consider how operators might quantify the impact of the 

application of the EHH by defining some richness metrics; increases in these metrics imply 

enrichment. 

Operators try to quantify the impact of any innovations to their maintenance practice and they use 

such measures to assess the value added as a return on their investment in innovation. The 

measurement of productivity, defined in section 1.2.1, before and after the implementation of an 

innovation is not a useful measure because there are too many stochastic variables to account for, 

such as wear out failures, human error and changing weather. The same would be true of measuring 

the cost of energy, capacity factor, time-based availability or OPEX, which are all also defined in 

section 1.2.1, or any other overall metric. All the applications of the EHH that this research has 

identified are designed to help maximise productivity, but its impact on each application would be 

measured by a different technique. 

The following section will propose richness metrics that would be available after the implementation of 

the PEOHH. Section 8.1.2 will review the data that are available to this thesis for the identification of 

richness metrics. 

8.1.1 Further Work on Richness Measurement 

Section 1.2 identified 4 potential applications for the EHH and these could be used to identify richness 

metrics: 

• Section 1.2.2 reviewed maintenance scheduling. Operators could assess the value added by 

implementing the application of the EHH to maintenance scheduling. They could record their 

inputs to their decision support tools prior to and after enrichment and estimate the 

consequent change in productivity. 

• Section 1.2.3 reviewed CBM. Operators could assess the value added by implementing the 

application of the EHH to using the notifications that prognostic models generate for each farm 

on which they are implemented. These notifications are used to initiate Work Orders (WO) and 

it is this remedial work that creates value by avoiding faults that can cause power outages. 

The value of a notification is the product of the number of notifications that it will create and 

the average productivity of those notifications. After a model has been implemented the 

estimated productivity is compared to the productivity that it did create by looking at how many 

of the notifications were used to create WOs. 

• Section 1.2.4 reviewed troubleshooting. Operators could assess the value added by 

implementing the application of the EHH to troubleshooting by identifying those maintenance 
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operations where the required part was not brought. They could count each time that the 

troubleshooting guide consulted did not list the correct part. It would be possible to use 

information on lost production, linked to WOs by the PEOHH, to calculate the value added by 

this work. 

• Section 1.2.5 reviewed the measurement of maintenance effectiveness. Operators could 

assess the value added by implementing the application of the EHH to the measurement of 

maintenance effectiveness. An EHH of the machinery under study could be used by engineers 

and data scientists to develop more accurate measures of maintenance effectiveness and a 

better understanding of the confidence of these measures. They could then estimate the value 

added by these innovations. 

The applications of the EHH described above have not been implemented yet but this research 

advises that such implementation is the most immediate further work that it has enabled. This chapter 

will assess the richness of the health history before and after enrichment. 

8.1.2 Richness Data Review 

This section will review the data that are available to this thesis for the identification of richness 

metrics. 

Section 1.2.4 reviewed troubleshooting on offshore wind turbines: 

“Data scientists analyse failure histories and derive troubleshooting guides from them. 

These guides are key to the technicians’ diagnosis of faults, alongside their expert 

knowledge. Technicians refer to a trouble shooting guide for advice on how to diagnose 

the failure mode and the repair activity that is most likely to be effective… Each 

troubleshooting guide applies to a single alarm code, rating and manufacturer.” 

Section 2.1.3.6 presented the alarm code data in the database WOs: 

“Some WOs are labelled with an alarm code. This label is used to identify the failure 

mode.” 

Section 2.1.2 presented Ørsted’s database of outages: 

“Ørsted label each outage with an alarm code indicative of the failure mode.” 

When Ørsted produce their troubleshooting guides they use those WOs that are already labelled with 

an alarm code to identify which parts might be required to repair each failure mode. This chapter will 

use those WOs already labelled with an alarm code as the unenriched health history and will use them 

to measure the richness of the unenriched health history. By joining each WO to an outage, the 
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PEOHH links each WO with an alarm code. This chapter will use all the WOs in the farm’s history, 

linked to outages by the PEOHH, to measure the richness of the EHH. This will inform a comparison 

of the enriched health history with the unenriched health history. 

Section 2.2 presented existing record linkage techniques: 

“Probabilistic record linkage techniques join two databases together to create a new 

database in which each row represents one Pair Of Linked Records (POLR).” 

Section 4.1 presented the PEOHH: 

“The PEOHH calculates a score for each POLR (𝑆𝑃𝑂𝐿𝑅), the sum across all the features 

of the Weight for that Feature and for that POLR (𝑊𝐹𝑒𝑃𝑂𝐿𝑅
) using equation 4.2.” 

 
𝑆𝑃𝑂𝐿𝑅 =  ∑ 𝑊𝐹𝑒𝑃𝑂𝐿𝑅

𝐹𝑒
 

(4.2) 

Section 4.3 presented the method for the validation of the PEOHH: 

“To identify the GSSLR, this research randomly selected a set of corrective WOs from 

the database of WOs. Random selection was used with the intention of getting a 

sample representative of the population.” 

This research filtered the EHH and the GSSLR to only include POLRs with an 𝑆𝑃𝑂𝐿𝑅 above a Score 

Threshold (𝑇ℎ𝑆) or that are already labelled with an alarm code. A 𝑇ℎ𝑆 greater than the maximum 

possible value of 𝑆𝑃𝑂𝐿𝑅 excludes all the linked records from the filtered EHH, leaving only those WOs 

already labelled with an alarm code, and yields the unenriched health history. A 𝑇ℎ𝑆 less than the 

minimum possible value of 𝑆𝑃𝑂𝐿𝑅 excludes none of the linked records from the filtered EHH and yields 

the full EHH. Varying 𝑇ℎ𝑆 will enable this chapter to compare the unenriched health history with the 

enriched health history and with the partially enriched health history. 

Table 7-8 presented the optimised weights and thresholds that will be used in this chapter. It showed 

that the sum of the column of agreement weights was 3.127 and that the sum of the column of 

disagreement weights was -2.643. These values are the limits of possible values of Score for each 

POLR (𝑆𝑃𝑂𝐿𝑅). Figure 8-1 presents the distribution of 𝑆𝑃𝑂𝐿𝑅 in the EHH and in the GSSLR. It shows 

that the values of 𝑆𝑃𝑂𝐿𝑅  are within this range. A 𝑇ℎ𝑆 of 4 yields the unenriched health history and a 

𝑇ℎ𝑆 of -4 yields the EHH. 

The PEOHH calculates these values of 𝑆𝑃𝑂𝐿𝑅 using values of the weights and thresholds optimised 

using the GSSLR. Please recall that overfitting is an error that occurs when a theoretical model is too 
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closely fitted to a small set of data points. Overfitting would be expected to cause higher values of 

𝑆𝑃𝑂𝐿𝑅 in the GSSLR than in the EHH. Figure 8-1 shows that the distributions are broadly similar, each 

having a mode at 0.5, but that the GSSLR is more weighted towards higher values indicating that 

there is some overfitting. Further work with a larger GSSLR would reduce the amount of over fitting 

but, as the distributions are broadly similar, valid conclusions can be based on the data used in this 

thesis. 

 

Figure 8-1, Frequency of the Score for each POLR (𝑆𝑃𝑂𝐿𝑅) in the EHH and in the GSSLR 

 

A higher 𝑇ℎ𝑆 means that the criterion for recommending parts is more stringent. A lower 𝑇ℎ𝑆 means 

that the criterion for recommending parts is less stringent. It would recommend parts that might be 

needed but this would be less likely. A 𝑇ℎ𝑆 between these extremes yields a partially enriched health 

history. This technique models the effect of filtering the EHH to only include higher scoring POLRs to 

increase the quality of the EHH. If the number of POLRs in the EHH is its quantity and the minimum 

𝑆𝑃𝑂𝐿𝑅 in the EHH is its quality then, with a high 𝑇ℎ𝑆, the quality of the EHH is higher but its quantity is 

lower. This section will present the results of filtering the EHH to only include higher scoring POLRs to 

increase the quality of the EHH. 

The optimum value of 𝑇ℎ𝑆 depends on the application of the EHH, where some applications benefit 

from a higher quality EHH and other applications benefit from a larger quantity of EHH data. For 

example, it is important to operators that maintenance technicians have confidence in the analytic 

tools that are made available to them. An analytic tool that recommended that technicians take parts 

that they would be unlikely to need might not win the confidence of technicians. In that case, a higher 

value of 𝑇ℎ𝑆 would help to win the confidence of the technicians. On the other hand, if the tool were 

well understood by the technicians then they might choose to set a lower value of 𝑇ℎ𝑆 so as to bring 

parts that, while unlikely, might turn out to be required for repairing their OWTs. Section 1.2.1 defines 
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the productivity of OWT maintenance. Variations in technicians’ confidence in the troubleshooting 

guides would have the consequence that the value of 𝑇ℎ𝑆 that can be expected to yield the most 

productive troubleshooting varies from site to site. 

This section has defined enrichment as enhancing the utility of the EHH for maintenance, so as to 

maximise productivity. It has introduced a trade-off between quality and quantity any it has explained 

how this trade-off has different effects on productivity at different sites. Section 8.2 will measure the 

quality of record linkage and sections 8.3 to 8.5 will present four measures of the richness of the EHH. 

These measures will illustrate a trade-off between quality and quantity. This chapter will demonstrate 

that the wind turbine health history has been substantially enriched. 
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8.2 Quality of Record Linkage 

The quality of record linkage is the likelihood that each WO is linked to its corresponding outage. 

Section 2.2 presented a record linkage quality metric: 

Positive Predictive Value (PPV), defined by equation 2.2, measures the proportion of 

classified matches that are correctly identified as such. 

 
𝑃𝑃𝑉 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2.2) 

This research uses the Process for the Validation of the EHH (PVEHH)71 for assessing the quality of 

record linkage. The PVEHH identifies the PPV of the EHH and of the unenriched health history by the 

comparison of these linked records with the GSSLR. Any errors in the GSSLR would therefore lead to 

errors in the estimation of the PPV of the linked records. This research considers the risk of systematic 

errors to be insignificant because the GSSLR was identified by one wind turbine expert, was checked 

by another wind turbine expert and was then re-checked as part of this research. 

This research investigated the effect on record linkage quality of varying the Score Threshold (𝑇ℎ𝑆). 

The results are shown in Figure 8-2(a) which shows the PPV of the GSSLR (𝑃𝑃�̂�) and the 95% 

confidence interval (CI) of the PPV of the EHH against Score Threshold (𝑇ℎ𝑆). A higher value of 𝑇ℎ𝑆 

yields a higher value of 𝑃𝑃�̂�; that is a higher quality of health history. Increasing 𝑇ℎ𝑆 increases 𝑃𝑃�̂� 

from 0.828 to 1. A the 𝑃𝑃�̂� of 1 means that all the POLRs in the GSSLR are true matches, indicating 

a high prevalence of true matches in the EHH, that is a high quality EHH. 

Figure 8-2 shows the 95% confidence interval (CI) of the PPV of the EHH, calculated using the Wilson 

interval which was presented in section 6.1. A higher value of 𝑇ℎ𝑆 yields a greater CI, showing 

reduced confidence caused by the smaller number of samples remaining in the filtered GSSLR. 

In Figure 8-2, values of 𝑇ℎ𝑆 above 3 yield no results as the number of samples remaining in the 

filtered GSSLR is reduced to zero. Figure 8-2(a) presents PPV calculated using the same data, the 

GSSLR, for training and for testing. These results are over fitted to the data, yielding an over-estimate 

of the PPV of the EHH. Section 7.6.2 presented the result, based on training and testing on different 

samples from the GSSLR, that 0.571 is a more realistic estimate of PPV. Figure 8-2(a) uses the 

optimised values of the PEOHH’s weights and thresholds which yield the over fitted estimate of PPV. 

Figure 8-2 (b) calculates values of PPV using the number of true matches adjusted by an OverFitting 

 

71 Section 3.1 presented the PVEHH. 
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Factor (OFF); OFF = 0.571 / 0.828 = 0.690. Figure 8-2(b) presents a more representative estimate of 

PPV. 

Figure 8-2 shows the effect of varying 𝑇ℎ𝑆 on the quality of the EHH. A higher value of 𝑇ℎ𝑆 yields a 

higher point estimate of PPV but a lower estimate of the lower bound of the 95% CI of PPV; that is a 

higher quality EHH but a lower confidence in that quality. 

a) 

  
  
  
  
  

𝑃
𝑃

𝑉
 

 

b) 
  
  
  
  
  

𝑃
𝑃

𝑉
 

 

 

 𝑃𝑃�̂�  

 95% CI 

Figure 8-2, Positive Predictive Value (PPV) and 95% CI against Score Threshold (𝑇ℎ𝑆) 

(a) Raw and (b) Adjusted by the OverFitting Factor (OFF) 
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8.3 Number of WO and of Material Line Item Records 

This section will use the database of material consumption, described in section 2.1.4. It was 

described in that section that: 

“The material consumption database lists what parts were used in the maintenance of 

the OWTs. Each Material consumption Line Item (MLI) refers to a single part number 

and is assigned to an order number. Some WOs have no material consumption line 

items assigned to them while others have many. Materials include replacement parts as 

well as consumables such as oil, grease or paint.” 

This research investigated the effect of varying 𝑇ℎ𝑆 through a full range of values from -4 (enriched) to 

4 (unenriched). The results are shown in Figure 8-3. 

Figure 8.3 (a) shows the count of POLRs in the EHH against Score Threshold (𝑇ℎ𝑆). It shows that 

there are 606 POLRs in the unenriched health history compared to 8246 in the EHH. Each POLR 

counted here represents one WO joined to an outage, that means, for the application for example of 

troubleshooting, that any material consumption associated with the WO is made available for the 

improvement of troubleshooting guides. 

Figure 8-3 (b) shows the count of MLIs in the EHH against 𝑇ℎ𝑆. It shows that there are 2642 MLIs in 

the unenriched health history compared to 13377 in the EHH. Each MLI counted here means, for the 

application for example of troubleshooting, that there is one more instance of a part number being 

associated with a specific failure mode. Figure 8.3 indicates that the health history has been enriched. 

Figure 8-3(a) and (b) appear similar to each other because, as more POLRs are included in the 

filtered EHH, these are associated with more MLIs.  

a) 

 

 

b) 

 

 

 

Figure 8-3, (a) Count of POLRs, (b) Count of Material Line Items (MLIs), 

in the EHH against Score Threshold (𝑇ℎ𝑆) 
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8.4 Number of Material Line Items per Alarm Code 

Many maintenance activities require a specific set of replacement parts. Offshore wind farm operators 

decide which parts to take to each job, for example how to stock a Crew Transfer Vessel (CTV) for a 

day’s maintenance work. Section 1.2 identified the typical capacity of a CTV as 2 to 3 t and this places 

an upper limit on the mass of spare parts that can be selected. They weigh such considerations 

against the risk of an extended interval of downtime caused by a required part not being available. 

This section presents, as a measure of richness, the use of the number of spare parts associated with 

each alarm code. If more spare parts are associated with an alarm code then, when that alarm code is 

associated with a fault that requires a visit to a wind turbine to repair it, the repair technicians can bring 

that larger set of spare parts to the wind turbine to affect a repair. If that larger list of spare parts 

includes some parts that could need replacing to repair the fault then the likelihood that the 

technicians have brought the parts necessary to repair the wind turbine is improved. Health history 

enrichment can help to avoid costly power outages by better informing the decision of what to load. 

This section uses the median number of parts per alarm code as a measure of the richness of the 

EHH. It uses the median rather than the mean so as to avoid placing undue weight on outliers. It also 

identifies the effect of health history enrichment on outlying alarm codes using percentiles of the 

number of parts per alarm code. 
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This research investigated the effect of varying 𝑇ℎ𝑆 through a full range of values from -4 (enriched) to 

4 (unenriched). The results are shown in Figure 8-4 and Figure 8-5. Figure 8-4 shows percentiles of 

the number of MLIs in each Alarm Code in the EHH against 𝑇ℎ𝑆 while Figure 8-5 shows the 

distribution of the number of MLIs for each alarm code in the EHH by 𝑇ℎ𝑆. This is another way of 

looking at the results presented in Figure 8-4 and the findings from the two figures are consistent. 

Both figures show that there are more MLIs at lower values of 𝑇ℎ𝑆. Each MLI counted here means, for 

the application for example of troubleshooting, that there is one more instance of a part number being 

associated with a specific failure mode and therefore that the health history has been enriched for that 

failure mode. Figure 8-5shows that the distribution of the number of MLIs for each alarm code is 

similar at different values of 𝑇ℎ𝑆 which shows that the PEOHH enriches both those failure modes that 

require a wide range of parts to repair them and those that require fewer. 

 

Figure 8-4, Percentiles of the number of Material Line Items (MLI) in each Alarm Code in the EHH 

against Score Threshold (𝑇ℎ𝑆) 

 

Figure 8-5, Frequency of the number of Material Line Items (MLI) for each Alarm Code in the EHH 

by Score Threshold (𝑇ℎ𝑆) 
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8.5 Application to Troubleshooting 

This chapter has explained that, to effect a repair, the correct parts are required. This section will use 

the application of health history to OWT troubleshooting to assess whether the health history has been 

enriched. 

Consider the practice of troubleshooting prior to the identification of the EHH. When an OWT fails, its 

maintenance team use the alarm log to make a preliminary diagnosis of the failure mode. At this point, 

the alarm log may indicate more than one possible failure mode. The maintenance team consult their 

troubleshooting guide for each of these failure modes. Each troubleshooting guide includes a list of 

parts that it recommends be brought to the OWT in case one of them might be required to effect the 

repair. If the maintenance team visit an OWT but have not brought a part required to make the repair 

then they need to come back with the outstanding part. The OWT may be out of availability until the 

required part is in place. 

Now, consider the practice of troubleshooting after the identification of the EHH. Troubleshooting 

guides will be used in the same way but, alongside other potential improvements not considered in 

this section, they may now contain a more appropriate list of parts. This would reduce the risk that a 

required part would not be available at the OWT and would consequently reduce the risk that the 

outage would be extended unnecessarily. 

This section will make the simplifying assumption that only one troubleshooting guide would be 

consulted for each fault. This assumption is not realistic, but it does simplify the analysis. Applying it 

consistently to both the unenriched health history and to the enriched health history is a valid 

comparison and thus a valid approach to the assessment of whether the health history has been 

enriched. 

This section will analyse each WO in the GSSLR to identify whether all the parts that were used would 

have been brought according to a simulated troubleshooting guide based on the health history. It will 

use the GSSLR which should be representative of the corrective WOs from the selected wind farm 

since it was randomly selected from them. The degree to which the GSSLR is representative is 

subject to its constrained size which was discussed in section 4.3.2. 

Consider a POLR in which the simulated troubleshooting guide for the outage alarm code lists all the 

parts associated with the WO. In this case, this research assumes that the health history would 

recommend all the required materials. Now consider a POLR in which the simulated troubleshooting 

guide for the outage alarm code is missing one or more of the parts associated with the WO. In this 

case, this research assumes that the health history would not recommend all the required materials. 
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8.5.1 Example of the Application to Troubleshooting 

Table 8-1 presents the MLIs used in WO 80109138, in which a processor (the M-System) and a signal 

input module for a vibration sensor were replaced. The process based on the unenriched health 

history does not predict that any parts would be required. The process based on the EHH, on the other 

hand, predicts all but one of them. In this example, based on the assumptions stated above, neither 

process would identify all the parts that it is assumed would be required to complete the work and 

consequently it is assumed that the health history has not been usefully enriched in this case. 

In practice, the part that was not predicted using the EHH is one of the three cables. The decision of 

which parts to bring is not really based purely on this process; planners pack an ensemble of spare 

parts based mostly on their experience. It is quite possible that the repair might have been achievable 

without this spare part. 

This repair required three visits to the wind turbine, in which the processor was reset before being 

replaced. A repair strategy that utilises the EHH would inform the planner before the first visit that 

these parts might be required, and this would mean that this type of repair could be carried out in one 

visit. 

Material Material Description Reserved Unit 

A9B00030597 Sensor cable M12 8POL 15M 1 PC 

A9B00030733 Sensor cable M12 3POL 10M 1 PC 

A9B00030734 Sensor cable M12 3POL 15M 1 PC 

A9B00552369 ADAPTER F VIBRATION SENSOR 1 PC 

A9B10001484 VIBRATION SENSOR ICP-MODULE  WR12000M8 1 PC 

A9B10043236 M-System for ******** (8 channel) 1 PC 

A9B10144676 Cables ******** upgrade kit 8 ch 1 PC 

Table 8-1, MLIs used in WO 80109138 
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8.5.2 Results 

This section presents the concept of the estimated Proportion of POLRs in a set where the health 

history would recommend all the required Materials (PM), a measure of the quality of simulated 

troubleshooting guides. PM is defined by equation 6.17 using the number of POLRs in the EHH where 

the Health History Would Recommend all the required parts (𝑊𝑅𝐸𝐻𝐻) and the number of POLRs in the 

EHH where the Health History would Not Recommend all the required parts (𝑁𝑅𝐸𝐻𝐻). 

 
𝑃𝑀 =  

𝑊𝑅𝐸𝐻𝐻

𝑊𝑅𝐸𝐻𝐻 + 𝑁𝑅𝐸𝐻𝐻
 

(6.15) 

Chapter 6 discussed the Bernoulli distribution. PM is a Bernoulli distribution; the PM of the GSSLR is 

analogous to the PPV of the GSSLR; and the PM of the EHH is analogous to the PPV of the EHH. 

The PM of the GSSLR is a point estimate of the PM of the EHH. This thesis will refer to the PM of the 

EHH as PM and to the PM of the GSSLR as 𝑃�̂�. 
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This research investigated the effect of varying 𝑇ℎ𝑆 through a full range of values from -4 (enriched) to 

4 (unenriched). The results are shown in Figure 8-6. 

There are 29 POLRs in the GSSLR and 28 of them have parts associated with them. 28 is therefore 

the maximum number of POLRs in the GSSLR for which the Health History could recommend all the 

required parts, which would indicate a prefect set of troubleshooting guides. 

The maximum PM in Figure 8-6 (0.643) occurs at a range of values of 𝑇ℎ𝑆 between -4 and -0.5. This 

means that, with a GSSLR of the size available, changing 𝑇ℎ𝑆 between these values does not change 

PM. 

Figure 8-6 shows that PM is higher at lower values of 𝑇ℎ𝑆, which indicates that health history 

enrichment increases PM, improving the proportion of repairs made potentially successful by the 

recommendation of the correct spare parts. This indicates that the PEOHH does enrich the health 

history in a way that is potentially useful for troubleshooting. This section will consider the uncertainty 

of this conclusion. 

 

 

 

 𝑃�̂�  

 95% CI 

Figure 8-6, Estimated Proportion of POLRs where the Health History Would Recommend all the 

Required Materials (PM) and 95% CI against Score Threshold (𝑇ℎ𝑆) 

 

Section 4.3.2 presented the method for the validation of the techniques for health history enrichment 

used in this thesis. Please recall from the chapter that the size of the sample “Gold Standard” Set of 

Linked Records (GSSLR) was constrained by the amount of expert time that was available. A 

Confidence Interval (CI) is a region with a specified, nominal probability that it contains a feature of 

interest. Figure 8-6 shows the 95% CI for the PM of the EHH identified using the Wilson interval which 

was discussed in section 6.1.3. The small size of the GSSLR, only 28 POLRs with materials assigned 
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to them, means that, for a PM of the GSSLR of 0.643, the 95% CI of the PM of the EHH is (0.458, 

0.793). 

Section 6.2 considered techniques for interval estimation for a change in a proportion. It showed that 

the Technique Assuming Independence (TAI) yielded very poor coverage and that the Technique 

Using Bootstrapping (TUB) yielded acceptable coverage. In Figure 8-6, the width of the CI is greater 

than the difference between the maximum and minimum values of the PPV of the GSSLR. Intuitively, 

one might infer from this that there is a significant risk that the optimum value has not been identified. 

Such an inference would however be based on the invalid assumption that the measurements of the 

PPV of the GSSLR are independent of each other. This section will instead use TUB for constructing a 

CI for the change in the PPV of the EHH. 

Table 8-2 shows the effect of varying 𝑇ℎ𝑆. Please recall that WR is the number of POLRs in the 

GSSLR where the simulated troubleshooting guide Would Recommend all the required parts and that 

NR is the number of POLRs in the GSSLR where that same guide would Not Recommend all the 

required parts, given the assumptions that have been described earlier in this section. TUB uses these 

results to estimate the uncertainty of the difference that it makes. 

 
𝑇ℎ𝑆 = -4 

WR NR 

𝑇ℎ𝑆 = 4 
WR 11 0 

NR 7 10 

Table 8-2, Effect on the Richness of the Health History of Varying the Score Threshold (𝑇ℎ𝑆) 

Equation 8.1 defines the Increase in the PM of the EHH that would by yielded by a 𝑇ℎ𝑆 of -4 over that 

yielded by a 𝑇ℎ𝑆 of 4 (  𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4). It uses the Probability distribution of estimates of the PM of the EHH 

that would be yielded by a 𝑇ℎ𝑆 of 4 (𝑃(𝑃𝑀 | 𝑇ℎ𝑆 = −4)) and the same distribution that would be 

yielded by a 𝑇ℎ𝑆 of -4 (𝑃(𝑃𝑀 | 𝑇ℎ𝑆 = 4)) 

 
 𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4 =  

𝑃(𝑃𝑀 | 𝑇ℎ𝑆 = −4)

𝑃(𝑃𝑀| 𝑇ℎ𝑆 = 4)
− 1 

(8.1) 

Equation 8.2 evaluates  𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4̂

, a point estimate of  𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4, using the data from Table 8-2. 

 
 𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4̂ =  

11 + 7

11 + 0
− 1 = 64% 

(8.2) 
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This research used TUB to estimate the uncertainty of  𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4, which yielded a 95% CI of (20%, 

167%). Again, this research predicts that this uncertainty will be drastically reduced by an upcoming 

innovation in maintenance record keeping that will be discussed in chapter 9; the automatic linking of 

new WOs to outages will result in a larger GSSLR and consequently in more certainty for this 

estimate. 

To better understand this uncertainty, this research investigated the distribution of TUBs list of 

estimates of  𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4 using techniques presented in section 6.3. The results are shown in Figure 8-7 

(a). The most important features of this distribution are the proportion of negative estimates and the 

proportion of zero estimates because these indicate respectively that the quality of record linkage has 

reduced and that it has not increased, as detailed in Figure 8-7 (b). The probability that a 𝑇ℎ𝑆 of -4 

would yield a lower 𝑃𝑀 of the EHH than a 𝑇ℎ𝑆 of 4 is estimated by the proportion of bootstrap samples 

for which  𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4 ≤ 0, which this research found to be 0.03%. This indicates that there is little risk that 

the PEOHH does not enrich the health history. 

Figure 8-7 (b) also shows that the proportion of bootstrap samples for which  𝐼 𝑇ℎ𝑆

𝑃𝑀
−4
4 < 0  is 0. As 

explained in section 6.3, bootstrapping is conditional on the original sample, but this indicates that 

there is little risk that the PEOHH reduces the richness the health history. 

a) 

 

 

 

b) 

 

 

 

       Subsamples 

  

 𝑃(  𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4 ≤ 0) 

  

 𝑃(  𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4 < 0) 

             𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4   

Figure 8-7, (a) Frequency of  𝐼 𝑇ℎ𝑆

𝑃𝑀
−4
4  for 50,000 Subsamples, (b) Proportion of Bootstrap Samples  

for which  𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4 ≤ 0 and for which  𝐼 𝑇ℎ𝑆

𝑃𝑀
4
−4 < 0 against Number of Subsamples 

This section showed that the PEOHH does enrich the health history. It estimated that the health 

history has become more useful for troubleshooting by 64% with a 95% CI of (20%, 167%). This 

result, based on the GSSLR, can be considered in combination with the results from sections 8.3 and 

8.4 which are based on the entire health history of the farm. Those previous results do not suffer from 

the same uncertainty caused by a small sample size and show without uncertainty that the health 

history has been enriched. 
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8.6 Conclusion to ‘Has the Health History been Enriched?’ 

To investigate whether the PEOHH does what it is for, that is to enrich health history, this chapter has 

addressed RQ3: 

RQ3 How can the richness of historical data on wind turbine health be measured? 

This chapter has presented four measures of the richness of historical data on wind turbine health. It 

has measured the richness of both the unenriched and the enriched health history. Each of the four 

measures showed that enrichment has been achieved. For each measure, this chapter has quantified 

how much enrichment has been achieved. Section 8.5 predicted the effect of enrichment by assessing 

the EHHs usefulness for the application of troubleshooting. It estimated that the health history has 

become more useful for troubleshooting by 64% with a 95% CI of (20%, 167%). 
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9  Critical Review of this Research 

This short chapter will review and evaluate this research. Salient points are the chronological order of 

work in this research and the size of the GSSLR. It will recommend a change of maintenance record 

keeping procedure. 

This research benefitted from privileged access to Ørsted’s records. It has not had direct access to 

other operators records which, like Ørsted’s records, are also confidential. To apply the Process for 

the Enrichment of OWT Health History (PEOHH) developed in this research, other wind turbine 

operators, as well as operators in other sectors, would need to adapt it to their record keeping system. 

This research has shown the benefit of linking records in the wind turbine maintenance sector. Dunn, 

1946, observed that probabilistic record linkage techniques require a sample “Gold Standard” Set of 

Linked Records (GSSLR) to determine the optimum weighting for each feature. The identification of 

the GSSLR for this research was carried out in a series of meetings around 3 years after the start of 

the project. It was done so late with the intention that the validation of the PEOHH should be done 

after the development of the PEOHH. Such a sequence would ensure that the process of validation 

was independent of the process of development. In retrospect, it would have been advisable to identify 

the GSSLR as early as possible. The techniques used in this research that split the GSSLR into 

separate sets for testing and for training would have been sufficient to make testing independent of 

training without a requirement to develop the PEOHH before identifying the GSSLR. 

The GSSLR represents expert experience and this thesis assumed that it is a set of true matches, 

although it could of course contain errors. This would mean that true and false linkages were 

incorrectly identified as such which in turn would cause errors in the optimisation of the PEOHH and in 

the measurement of its qualities. Such errors will be rectified by the following innovation in 

maintenance record keeping. 

The size of the GSSLR, only 29 POLRs, was constrained by the amount of expert time that was 

available. The small size of the GSSLR meant that the results of the optimisation of the weights and 

thresholds used in the PEOHH is so uncertain that it is not clear whether all of the record linkage 

techniques presented in this thesis should be used or whether any of them can be disregarded without 

risking a drop in the quality of record linkage. It also means that the optimised weights and thresholds 

used by the PEOHH are approximate. 

The uncertain work of linking WOs to outages could be made unnecessary for records generated in 

the future by a change of maintenance record keeping procedure. A record linking these two 

databases should be generated by the maintenance teams themselves. One way to do this would be 



 

213 

 

to give each outage a unique identifier; the outage number. Then, when maintenance technicians 

were back on the boat after completing a WO, they could note the outage number on the WO record.  

Such labelling would negate the need for probabilistic methods to link future WOs to outages but it 

would not negate the need for probabilistic methods to link the existing records of outages to WOs. 

Older records are important to operators because improvements in Condition-Based Maintenance 

(CBM) can reduce the failure rate, more so for those failure modes that have effective CBM models. 

The study of how to more accurately link unlinked, historical maintenance records will therefore be of 

continuing importance. 

Ready-linked maintenance records may in the future be used to train and to test techniques for linking 

unlinked, historical maintenance records. If and when new, very large GSSLRs become available, the 

uncertainty in the estimation of the PPV of the EHH that this research worked with will vastly reduce, 

improving confidence in the results. The record linkage techniques presented in this thesis should then 

be re-assessed to identify what combination of techniques yields the highest quality of record linkage 

and consequently the most useful EHH. 

When searching for the global maximum of an irregular, multi-dimensional surface, it is problematic to 

determine whether the maximum identified is a global maximum or a local maximum. A more powerful 

computer can assess more combinations of features in the same time and so has a higher probability 

of identifying the true global maximum. To comply with Ørsted’s confidentiality requirements, this 

research had to run the optimisation of weights and thresholds72 on a standard laptop computer73. For 

future studies, the uncertainty of finding the global maximum would be reduced if it were reproduced 

using a more powerful processor. 

  

 

72 Chapter 7 presented the optimisation of weights and thresholds. 

73 Section 4.5 detailed the computer used for this research. 
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10 Conclusions to the Thesis 

This research has developed new techniques for linking existing records of offshore wind turbine 

health history together. These techniques identify an Enriched Health History (EHH) with the aim of 

enabling improvements in the maintenance of offshore wind turbines. The productivity of a wind 

energy project depends on the price of electricity and on the suitability of the weather, both beyond the 

control of a maintenance team, but also on how much of its potential production of electricity is lost to 

outages and on the costs of maintenance and of operation. The EHH will enable improvements in 

maintenance scheduling, CBM and troubleshooting, and in the measurement of maintenance 

effectiveness. The wind farm maintenance sector can use the intelligence embodied in an EHH to 

increase productivity. Maintenance record linkage will also be of interest for the maintenance of 

equipment in other sectors. 

This research developed new techniques for linking existing offshore wind turbine health history 

records together by joining WOs to outages. Previous authors (Leahy et al., 2017) have studied how 

to use wind turbine alarm logs to identify outages and generate a database of outages labelled with a 

failure mode while Papatzimos et al., 2017 use offshore wind turbine Work Orders (WO) to build a 

health history database. Multi-feature record linkage techniques are an established technology when 

applied to linking medical records (Sayers et al., 2015, Nasseh and Stausberg, 2016, Oliveira et al., 

2016), address data (Churches et al., 2002, Comber et al., 2019, Lin et al., 2019), census data (Jaro, 

1989, Smith et al., 2016) or genealogical records (Wilson, 2011) and have been used to detect 

duplicate internet search results (Hajishirzi et al., 2010). However, this thesis is the first to link records 

of maintenance data using multi-feature techniques. 

In the only publication identified in the literature survey on the linkage of maintenance records, 

Papatzimos et al., 2017, link offshore wind turbine WOs to records of control system alarms but using 

a single feature (the timestamp). This thesis has shown that multi-feature record linkage techniques 

outperform single-feature record linkage techniques and has taken a significant step forward from 

Papatzimos by measuring the quality of the record linkage. The literature on record linkage does 

recognise that a small gold standard set of linked records can only be used to yield an uncertain 

estimate of the quality of record linkage but it does not quantify this uncertainty. This thesis has shown 

how uncertainty can be quantified. 

The quality of record linkage was measured using a well-established method (Dunn, 1946), which 

compares the generated set of linked records to a gold standard set of linked records identified by 

human expertise. The Process for the Enrichment of OWT Health History (PEOHH) developed in this 

research requires a vector of weights and thresholds and the agreement and disagreement weights for 

each feature indicate the importance of the feature to the quality of record linkage. If the PEOHH can 

achieve the same quality of record linkage with the weights for a set of features set to zero then it can 
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disregard those features, avoiding the need for their computation. This research used differential 

evolution (Storn and Price, 1997) to globally optimise this vector of weights and thresholds. 

To achieve a better quality of record linkage, this research developed and tested new record linkage 

innovations specific to the application of linking WOs to outages. There is inevitably some uncertainty 

associated with the measurement of the quality of record linkage, and consequently with the optimum 

values for the weights and thresholds; this research has not only measured the quality of record 

linkage but also estimated the uncertainty associated with that quality. 

This research has identified an innovation in maintenance record keeping that would drastically reduce 

this uncertainty. Whilst a consequence of this uncertainty is that this thesis cannot offer conclusive 

advice as to which features to include in an ensemble of features for record linkage comparison, the 

thesis can recommend the use of all of the features presented until new maintenance record linkage 

practices can remedy the uncertainty. 

This research has defined enrichment and has quantified the extent to which the process for the 

enrichment of the health history actually enriches the health history. It estimated that the PEOHH will 

improve offshore wind turbine fault troubleshooting by 64% with a 95% CI of (20%, 167%) and 

anticipates similar improvements in maintenance scheduling, in condition-based maintenance, and in 

the measurement of maintenance effectiveness. 

This research used a database of material consumption in which each material line item is labelled 

with an order number. It developed two techniques that use these data as part of an ensemble of 

features for record linkage comparison. The first technique used a Bernoulli Naïve Bayes (BNB) 

classifier to predict the probability for each pair of Linked Records (POLR) that the parts used in the 

WO correspond to the alarm code of the outage. Historical data on machinery failures tends to be 

unbalanced; some failure modes feature more than others. As a result of this unbalance, this thesis 

has shown that BNB classification is not an appropriate method for this application. The second 

technique is simpler, checking whether the records for the outage failure mode contain each part 

assigned to the WO. It does not suffer from the problem with unbalanced data because it only looks at 

the relevant event code. This thesis has shown that the second technique is an appropriate method for 

this application. 

This research has shown the potential that linking offshore wind turbine maintenance records together 

has in enabling improvements in maintenance practice. Further work linking together maintenance 

records from other sectors will be informed by the record linkage techniques presented in this thesis. 

Each wind energy operator holds their own set of health history data. This research will enable them to 

use their data to identify an EHH and this will enable further innovations in maintenance scheduling, 

CBM, troubleshooting and the measurement of maintenance effectiveness. 
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The EHH will provide valuable insights into historical costs of maintenance and of lost production. 

These insights could be used to further optimise maintenance scheduling from a logistical perspective 

by providing more robust information to the models. 

The EHH will provide more detailed labels than currently available for the training and for the testing of 

CBM models. This will enable developers to develop new models and to improve existing ones. 

The EHH will extend the troubleshooting guide parts list and this can avoid the lost production caused 

by the right part not being available. Bringing the correct parts to the OWT will be of increasing 

importance as the distance to shore increases and it could help to avoid the cost of an offshore spare 

parts store. 

The EHH integrates records of what work has been done on each turbine with failure mode specific 

information on the failure rate. If a repair was successful, then the time to failure for the failure modes 

effected by the repair would tend to increase. The EHH makes it possible to use this integrated data 

for the first time to measure maintenance effectiveness. 

To summarise the contributions made by this research:  

• Applied multi-feature record linkage techniques to maintenance data for the first time. 

• Applied statistical techniques for the interval estimation of a binomial proportion to record 

linkage techniques for the first time. 

• Estimated the distribution of the coverage error of statistical techniques for the interval 

estimation of a binomial proportion for the first time. 

The resulting main contribution of this research is a process for the enrichment of offshore wind 

turbine health history. 
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