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ABSTRACT

Juvenile myoclonic epilepsy (JME) is a form of idiopathic generalized epilepsy. It is yet
unclear to what extent JME leads to abnormal network activation patterns. Here, we
characterized statistical regularities in magnetoencephalograph (MEG) resting-state networks
and their differences between JME patients and controls by combining a pairwise maximum
entropy model (pMEM) and novel energy landscape analyses for MEG. First, we fitted the
pMEM to the MEG oscillatory power in the front-oparietal network (FPN) and other
resting-state networks, which provided a good estimation of the occurrence probability of
network states. Then, we used energy values derived from the pMEM to depict an energy
landscape, with a higher energy state corresponding to a lower occurrence probability. JME
patients showed fewer local energy minima than controls and had elevated energy values for
the FPN within the theta, beta, and gamma bands. Furthermore, simulations of the fitted
pMEM showed that the proportion of time the FPN was occupied within the basins of energy
minima was shortened in JME patients. These network alterations were highlighted by
significant classification of individual participants employing energy values as multivariate
features. Our findings suggested that JME patients had altered multistability in selective
functional networks and frequency bands in the fronto-parietal cortices.

AUTHOR SUMMARY

We proposed an energy landscape method to quantify the occurrence probability of network
states in magnetoencephalograph (MEG) oscillatory power during rest, which was derived
from a pairwise maximum entropy model (pMEM). We compared the energy landscapes
measures of three resting-state networks between patients with juvenile myoclonic epilepsy
(JME) and healthy controls. The pMEM provided a good fit to the binarized MEG oscillatory
power in both patients and controls. Patients with JME exhibited fewer local minima of the
energy and elevated energy values than controls, predominately in the fronto-parietal
network across multiple frequency bands. Furthermore, multivariate features constructed
from energy landscapes allowed significant single-patient classification. Our results further
highlighted the pMEM as a descriptive, generative, and predictive model for characterizing
atypical functional network properties in brain disorders.
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Energy landscape of resting MEG reveals FPN impairments in epilepsy

INTRODUCTION

Juvenile myoclonic epilepsy (JME) is the most common syndrome of the wider group of idio-Juvenile myoclonic epilepsy (JME):
The most common form of
generalized epilepsy, characterized
by myoclonic jerks, generalized
tonic-clonic seizures, and absence
seizures.

pathic generalized epilepsies (Wolf & Beniczky, 2014). Patients with JME often exhibit three
main types of seizures: myoclonic, absence, and generalized tonic-clonic seizures (Wolf et al.,
2015a). Typical JME characteristics are normal or close to normal clinical MRI of the brain and
interictal EEG with irregular spike-waves or polyspike-waves with frontal predominance
(Camfield, Striano, & Camfield, 2013a). JME patients are susceptible to seizure precipitation
after sleep deprivation, alcohol usage, excise, or demanding cognitive processing (Delgado-
Escueta & Enrile-Bacsal, 1984; Yacubian & Wolf, 2014). JME is a lifelong condition, and treat-
ment with antiepileptic drugs is usually necessary.

Although the pathogenetic mechanisms of JME are still not fully understood (Berkovic,
Howell, Hay, & Hopper, 1998), JME has been recognized as a network disorder affecting brain
activity and connectivity that leads to cognitive impairments (Chowdhury et al., 2014; Wolf
et al., 2015a) and personality traits similar to patients with frontal lobe lesions (Engel, 1997).
BOLD functional MRI (fMRI) and diffusion-weighted imaging showed hyperconnectivity in
the frontal lobe in JME (Caeyenberghs et al., 2015; Vollmar et al., 2012). Electrophysiological
data suggests that JME has an impact on multiple functional networks, including the fronto-
parietal network (FPN) (Wolf et al., 2015a), the default mode network (DMN) (McGill et al.,
2012), and the sensorimotor network (SMN) (Clemens et al., 2013), which may be driven
by dysfunctional thalamocortical circuitry (Betting et al., 2006; Gotman et al., 2005; Hamandi
et al., 2006; J. H. Kim et al., 2007).

Several sensitive markers from resting EEG and magnetoencephalography (MEG) recordings
have been identified for classifying patients with epilepsy and predicting seizure onsets, in-
cluding information entropy (Kannathal, Choo, Acharya, & Sadasivan, 2005; Song, Crowcroft,
& Zhang, 2012; Song & Zhang, 2013), Lyapunov exponent (Babloyantz & Destexhe, 1986;
Iasemidis, Chris Sackellares, Zaveri, & Williams, 1990), and phase plane portraits (Iasemidis
et al., 1990). These methods describe statistical regularities of electrophysiological signals from
a dynamical system perspective, in line with the theoretical account of epileptic seizures as
bifurcations from stable states (da Silva et al., 2003). In JME, however, it is yet unclear whether
atypical statistical properties of network activation are present during rest, and if so, whether
the changes are frequency specific.

This study addressed these problems by applying a pairwise maximum entropy model
(pMEM) approach (Yeh et al., 2010) to source-localized, frequency-specific MEG resting-satePairwise maximum entropy model

(pMEM):
A maximum entropy model that
takes into account both average
activity and pairwise interactions.

oscillatory activity (Figure 1). The pMEM is a statistical model of the occurrence probability
of network states, with its parameters being constrained by the network’s regional activity and

Network state:
A binary vector that denotes high
(+1) and low (−1) oscillatory activity
in each region of a network.

pairwise regional coactivation from empirical data. According to the principle of maximum
entropy, the pMEM is the most parsimonious second-order model of a system with minimum
assumptions (Jaynes, 1957), and it permits multistability in a system with metastability states
(Cirillo & Lebowitz, 1998; Deco, Senden, & Jirsa, 2012). The pMEM has been successfully ap-
plied to the collective behavior of spiking neural networks (Bialek, 2017; Schneidman, Berry,
Segev, & Bialek, 2006; Tang et al., 2008; Tkacik, Schneidman, Berry, Michael, & Bialek, 2006)
and BOLD fMRI responses (Ashourvan, Gu, Mattar, Vettel, & Bassett, 2017; Ezaki, Sakaki,
Watanabe, & Masuda, 2018; Watanabe et al., 2013; 2014a). Here, we extended this theoreti-
cal framework to MEG oscillatory activity in three functional networks: FPN, DMN and SMN.
Furthermore, based on the pMEM fitted to individual participants, we depicted an energy land-
scape for each of the networks at theta (4–7 Hz), alpha (8–13 Hz), beta (15–25 Hz), and gamma

Energy landscape:
A graphical representation of the
mapping from brain states to their
energy values defined by the
pairwise maximum entropy model. (30–60 Hz) bands. The energy landscape is a graphical representation of all network states and
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Energy landscape of resting MEG reveals FPN impairments in epilepsy

Figure 1. Illustration of the energy landscape analysis on a network of four regions of interst
(ROIs). (A), Selection of ROIs from the source-space signals. (B), Signal filtering in frequency bands
of interest. (C), Envelope extraction using the absolute value of the analytical representation of the
signal. (D), Binarization of the data. (E), Fitting the pMEM to match the empirical data distribution
of binarized network states. (F), Determining the relationships between network states using the
Dijkstra algorithm on energy values. (G), Interpretation of local minima of the energy on the anatom-
ical level. (H), Simulation of the occurrence of network states belonging to different basins.

their energy values (Ezaki, Watanabe, Ohzeki, & Masuda, 2017). We then compared several
quantitative measures obtained from the energy landscapes between JME patients and controls.

Our results demonstrated that the pMEM provided a good fit to the statistical properties of
functional networks in both JME and control groups. JME patients showed reduced numbers
of local energy minima and elevated energy values in the theta-, beta-, and gamma-band FPN
activity, but not in the SMN. We further demonstrated that the pMEM could be used as a
generative model for simulating dysfunctional network dynamics in JME, and as a predictive
model for single-patient classification. These findings suggest anatomically- and frequency-
specific network abnormalities in JME.

METHODS

Participants

Fifty-two subjects participated in the experiment. Demographic and clinical features of the
participants are summarized in Table 1. Twenty-six patients with JME were recruited from a
specialist clinic for epilepsy at University Hospital of Wales in Cardiff. Consensus clinical
diagnostic criteria for JME were used by an experienced neurologist (Trenité et al., 2013). In-
clusion criteria were (1) seizure onset in late childhood or adolescence with myoclonic jerks,
with or without absence seizures; (2) generalized tonic-clonic seizures; (3) normal childhood
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Table 1. Demographics of patients with JME and healthy control participants.

Patients Controls

Number of participants 26 (8 males) 26 (7 males)
Age median 27 27
Age range 19–45 18–48

Seizure type (number of patients)
MJ (26)
Absences (15) −

GTCS (26)

Antiepileptic drugs (Number of patients taking the drug)
LEV (13), VPA (12),
LTG (5), TPM (4), −

ZNM (4) −

Note. MJ myoclonic jerks, GTCS generalised tonic clonic seizures, LEV leveiracetam, VPA sodium
valproate, LTG lamotrigine, TPM topiramate, ZNM zonisamide.

development as assessed on clinical history; and (4) generalized spikewave on EEG and normal
structural MRI. Twenty-six healthy control participants with no history of significant neuro-
logical or psychiatric disorders were recruited from the regional volunteer panel. All testing
was performed with participants taking their usual medication. The study was approved by
the South East Wales NHS ethics committee, Cardiff and Vale Research and Development
committees, and Cardiff University School of Psychology Research Ethics Committee. Written
informed consent was obtained from all participants.

MEG and MRI data acquisition

All participants underwent separate MEG andMRI sessions.Whole-headMEG recordings were
made using a 275-channel CTF radial gradiometer system (CTF Systems, Canada) at a sampling
rate of 600 Hz. An additional 29 reference channels were recorded for noise cancellation pur-
poses, and the primary sensors were analyzed as synthetic third-order gradiometers (Vrba &
Robinson, 2001). Up to three sensors were turned off during recording because of excessive
sensor noise. Subjects were instructed to sit comfortably in the MEG chair while their head was
supported with a chin rest and with eyes open focused on a red dot on a gray background. For
MEG/MRI co-registration, fiduciary markers that are identifiable on the subject’s anatomical
MRI were placed at fixed distances from three anatomical landmarks (nasion, left and right
preauricular) prior to the MEG recording, and their locations were further verified using high-
resolution digital photographs. The locations of the fiduciary markers were monitored before
and after MEG recording. To ensure that the movement artifacts did not dominate the record-
ing, the average Euclidean distance between fiducials was computed for every participant.
There was no significant difference between head movements of the JME and control group
(t(25) = −1.27, p = 0.22) with the mean head shift of 0.55 cm. Each recording session lasted
approximately 5 minutes.

Whole-brain T1-weighted MRI data were acquired using a General Electric HDx 3T MRI
scanner and an 8-channel receiver head coil (GE Healthcare, Waukesha, WI) at the Cardiff
University Brain Research Imaging Centre with an axial 3D fast spoiled gradient recalled se-
quence (echo time 3ms; repetition time 8ms; inversion time 450ms; flip angle 20◦; acquisition
matrix 256 × 192 × 172; voxel size 1 × 1 × 1 mm).

Data pre-processing

ContinuousMEG data was first segmented into 2 s epochs. Before segmentation, MEG data was
filtered with a 1 Hz high-pass and a 150 Hz low-pass filter to avoid DC step changes between
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epochs. Every epoch was visually inspected. Those containing major motion, muscle or eye-
blink artifact, or interictal spike wave discharges were excluded from subsequent analysis.
The artifact-free epochs were then reconcatenated. This artifact rejection procedure resulted
in cleaned MEG data with variable lengths between 204 s and 300 s across participants, and
the data lengths were comparable between JME patients and controls (t(50) = 1.38, p = 0.17).
The 200 s of cleaned MEG data was used in subsequent analysis. For participants with longer
than 200 s of cleaned MEG data, a continuous segment of 200 s during the middle of the
recording session was used.

Source localization of oscillatory activity in resting-state networks

We analyzed the MEG oscillatory activity using an established source localization method for
resting-state networks (Brookes et al., 2011; Hall, Woolrich, Thomaz, Morris, & Brookes, 2013;
Muthukumaraswamy et al., 2013). For each participant, the structural MRI scan was coregis-
tered to MEG sensor space using the locations of the fiducial coils and the CTF software (MRIV-
iewer and MRIConverter). The structural MRI scan was segmented, and a volume conduction
model was computed using the semirealistic model (Nolte, 2003). The preprocessed MEG
data was band-pass filtered with a fourth-order zero phase lag Butterworth filter into four fre-
quency bands: theta 4–8 Hz, alpha 8–12 Hz, beta 13–30 Hz, and low-gamma 35–60 Hz
(Niedermeyer, 2005). For each frequency band, we downsampled the data to 250 Hz and com-
puted the inverse source reconstruction using an LCMV beamformer on a 6mm template with a
local spheres forward model in Fieldtrip (version 20161101, http://www.fieldtriptoolbox.org).
The atlas-based source reconstruction was used to derive virtual sensors for every voxel in
each of the 90 regions of the Automated Anatomical Label (AAL) atlas (Hipp et al., 2012).
Each virtual sensor’s time course was then reconstructed.

We focused our analysis on three resting-state networks (Figure 2): the FPN, the DMN, and
the SMN in which electrophysiological changes had been reported in patients with epilepsy
(Clemens et al., 2013; McGill et al., 2012; Wolf et al., 2015a). Each resting-state network
comprised bilateral regions of interest (ROIs) from the AAL atlas identified in previous studies

Figure 2. The regions of interest (ROIs) of three resting state networks: the fronto-parietal network
(FPN), the default mode network (DMN), and the sensori-motor network (SMN). The ROIs were
obtained from the 90 AAL atlas (Hipp et al., 2012).
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(Rosazza & Minati, 2011; Tewarie et al., 2013a). The FPN included 10 ROIs: middle frontal
gyrus (MFG), pars triangularis (PTr), inferior parietal gyrus (IPG), superior parietal gyrus (SPG),
and angular gyrus (AG). The DMN included 10 ROIs: orbitofrontal cortex (OFC), anterior cin-
gulate cortex (ACC), posterior cingulate cortex (PCC), precuneus (pCUN), and AG. The SMN
included 6 ROIs: precentral gyrus (preCG), postcentral gyrus (postCG), and supplementary
motor area (SMA). For each ROI, its representative time course was obtained from the voxel
in that ROI with the highest temporal standard deviation. The mean MEG activities of the
ROIs of each network were not significantly different between JME patients and controls (FPN:
F(1, 50) = 0.75, p = 0.39; DMN: F(1, 50) = 0.21, p = 0.65; SMN: F(1, 50) = 0.15, p = 0.70).

To calculate the oscillatory activity, we applied Hilbert transformation to each ROI’s time
course, and computed the absolute value of the analytical representation of the signal to gen-
erate an amplitude envelope of the oscillatory signals in each frequency band.

Pairwise maximum entropy model of MEG oscillatory activity

During rest, different brain regions exhibitpairwise co-occurrence of oscillatory activity (Horwitz,
2003) and rapid changes of brain network states (C. J. Stam & Straaten, 2012). To obtain an
estimate of network-state transitions and their probabilities, we fitted a pMEM to individual
participant’s MEG data, separately for each resting-state network and each frequency band.

According to the principle of maximum entropy, among all probabilistic models describing
empirical data, one should choose the one with the largest uncertainty (i.e., entropy), because
it makes the minimum assumptions of additional information that would otherwise lower the
uncertainty (Yeh et al., 2010). The pMEM estimates the state probability of a network, with its
regional activity and regional co-occurrence to be constrained by empirical data. It is equiv-
alent to the Ising model in statistical mechanics (Bialek, 2017). In neuroscience, the pMEM
was first used in a seminal study for fitting the distribution of neuronal spiking activity across
cells (Schneidman et al., 2006; Tkacik et al., 2006). More recently, the same method was used
in fMRI study in which it was shown that the model is capable of estimating the underly-
ing structural connectivity with a higher accuracy than other functional connectivity methods
(Watanabe et al., 2013). Later studies using the pMEM for fMRI have identified key charac-
teristics of brain state transition (Kang, Pae, & Park, 2019), perceptual metastability (Watanabe
Masuda, Megumi, Kanai, & Rees, 2014b), and the effects of aging (Ezaki et al., 2018). A further
advantage of using the pMEM is that various statistical physics theory of the model is available,
potentially contributing to the understanding of multivariate data when they are fitted with
the pMEM (Bialek, 2017). The current study used this approach to unveil differences between
the JME patients and controls in large-scale brain networks (Figure 1). Below we outlined the
theoretical background and the fitting procedure. A more detailed description of the pMEM
modeling and subsequent energy landscape analysis is available elsewhere (Ezaki et al., 2017).

Consider a resting-state network consisting of N ROIs. For each ROI’s real-valued signal,
we thresholded the ROI’s Hilbert envelope according to the median of the amplitude. Data
points above the threshold were denoted as high oscillatory power (+1), and data points be-
low the threshold were denoted as low oscillatory power (−1). The oscillatory activity in ROI
i (i = 1, . . . , N) at time t was transformed to a binary time series ri(t), with ri(t) = +1 for
high oscillatory activity and ri(t) = −1 for low oscillatory activity. The activity pattern of a
N-dimensional binary vector s(t) = [r1(t), r2(t), . . . , rN(t)] represents the state of the network
at time t.

The N-ROI network has a total of 2N possible states sk (k = 1, . . . , 2N). From the binarized
oscillatory activity, we calculated the probability of occurrence of each network state, denoted
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by Pemp(sk). We further calculated the empirical average activation rate for each ROI 〈ri〉emp

and the pairwise co-occurrence between any two ROIs 〈rirj〉emp:

〈ri〉emp =
1

T

T

∑
t=1

ri(t), (1)

〈rirj〉emp =
1

T

T

∑
t=1

ri(t)rj(t), (2)

where T denotes the number of time points in the data. The fitting procedure aimed to identify a
pMEM model that preserves the constraints in Equations 1 and 2 and reproduces the empirical
state probability Pemp(sk) with the maximum entropy. It is known that the pMEM follows the
Boltzman distribution (Yeh et al., 2010), given by

PpMEM(sk|h, J) =
exp (−E(sk))

∑
2N

k′=1 exp (−E(sk′))
, (3)

where E(sk) represents the energy of the network state sk, defined by

E(sk) = −
N

∑
i=1

hiri(sk)−
1

2

N

∑
i=1

N

∑
j=1

j 6=i

Jijri(sk)rj(sk), (4)

and ri(sk) refers to the ith element of the network state sk. h and J are the model parameters to
be estimated from the data: h = [h1, h2, . . . , hN ] represents the bias in the intensity of the oscil-
latory activity in each ROI; J = [J11, J12, . . . , JNN ] represents the coupling strength between two
ROIs. The average of the activation rate 〈ri〉mod and pairwise co-occurrence 〈rirj〉mod expected
by the pMEM are given by:

〈ri〉mod =
2N

∑
k=1

ri(sk)PpMEM(sk|h, J), (5)

〈rirj〉mod =
2N

∑
k=1

ri(sk)rj(sk)PpMEM(sk|h, J). (6)

We used a gradient ascent algorithm to iteratively update h and J, until 〈ri〉mod and 〈rirj〉mod

match 〈ri〉emp and 〈rirj〉emp from the observed data, with a stop criterion of 5 × 106 steps. In
each iteration, the updates of the parameters were given by hnew

i = hold
i + ǫ(〈ri〉emp−〈ri〉mod)

and Jnewij = Joldij + ǫ(〈rirj〉emp − 〈rirj〉mod). The learning rate ǫ was set to 10−8.

As in previous studies (Ezaki et al., 2017, 2018; Watanabe et al., 2014a), we used an accu-
racy index:

d = (D1 − D2)/D1 (7)

to quantify the goodness of fit of the pMEM (Figure 3), where

D2 =
2N

∑
k=1

Pemp(sk) log2(Pemp(sk)/PpMEM(sk)) (8)

is the Kullback-Leibler divergence between the probability distribution of the pMEM and the
empirical distribution of the network state. D1 represents the Kullback-Leibler divergence be-
tween the independent maximum entropy model (MEM) and data. By definition, the indepen-

Maximum entropy model (MEM):
A statistical model of data with the
highest entropy among all those that
satisfy empirical constraints.

dent MEM is restricted to have no pairwise interaction (i.e., J = 0). Therefore, d represents the
surplus of the fit of the pMEM over the fit of the independent model. The index d = 1 when
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Figure 3. The pMEM fitting. (A), The occurrence probability of each network state of the FPN
from the fitted pMEM (Pmod ) was plotted against that from the empirical data (Pemp). Each data
point was averaged across juvenile myoclounic epilepsy (JME) patients (red) and controls (blue).
(B), The averaged accuracy index d in the JME and control groups for each network and frequency
band. Error bars denote the standard errors across participants.

the pMEM reproduces the empirical distribution of activity patterns and interactions without
errors, and d = 0 when the pairwise interactions do not contribute to the description of the
empirical distribution.

Energy landscape of resting-state network dynamics

The pMEM parameters h and J determine the energy E(sk) of each network state sk (k =

1, . . . , 2N), given by Equation 4. It is worth noting that the current study used pMEM as a
statistical model to be constructed from the MEG data, not as its literal notion from statistical
physics.We did not claim that E(sk) represents the metabolic or physical energy of a biological
system. Instead, the concept of the energy of a resting-state network stems from the information
theory. Here, E(sk) indicates the model prediction of the inverse appearance probability of
the state sk under the empirical constraints of regional activity (parameter h) and regional
interactions (parameter J). For instance, if E(si) < E(sj), the pMEM predicts that the network
activity pattern is more likely to be at the state si than sj.

For each resting-state network and each frequency band, we depicted an energy landscape
as a graph of the energy function across the 2N possible network states sk, characterizing state
probabilities and state transitions from the perspective of attractor dynamics (Watanabe et al.,
2014a). Because the computational cost increases dramatically with the size of a network, we
estimated an energy landscape separately for each resting-state network.

The energy landscape of a network was defined by two factors: the energy E(sk) of each
network state, and an adjacency matrix defining the connectivity between network states. Two
states were defined to be adjacent, or directly connected, if and only if just one ROI of the
network had different binarized oscillatory activity (high vs. low). In other words, two states
are adjacent when they have a Hamming distance of 1 between their binary activity vectors.
For example, for a network with four ROIs, states [−1,−1,−1,+1] and [−1,−1,+1,+1] are
adjacent, and states [−1,−1,−1,+1] and [−1,−1,+1,−1] are not.
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Quantitative measures of energy landscape

We used three measures to understand the differences in the energy landscape between JME
patients and healthy controls: (1) the number of local energy minima of within-network dy-Local energy minima:

The networks state with a lower
energy value than all its neighbors.

namics, (2) the relative energy of the local minima, and (3) the generative basin duration at
significant minima.

Number of local energy minima A local energy minimum was defined as the network state
with a lower energy value than all its adjacent states. Because lower energy corresponds to a
higher probability of occurrence, network states of local minima can be likened as attractors
in attractor dynamics. For each participant, we exhaustively searched through the 2N network
states to identify all the local minima of the participant’s energy landscape. We then compared
the number of local energy minima between JME and control groups (Figure 4).

Relative energy of the local minima The number of local minima is determined by the energy
difference between network states and their neighbors (i.e., a minimum has a lower energy
level than all its neighbors). On the other hand, the energy value of a specific state is deter-
mined by its occurrence probability (Equation 3). Therefore, theoretically, the two measures
had no direct dependency. The energy values of local minima on aggregated energy landscapes
indicate the ease of transition from one stable state to another (Ezaki et al., 2017; Kang et al.,
2019).

We calculated the mean energy Ē(sk) of each network state sk averaged across all partici-
pants. Then, we used the mean energy to depict an aggregated landscape, which allowed us
to identify common energy minima shared between JME patient and control groups. To test
whether each local minimum in the aggregated energy landscape is a characteristic feature of
the observed data, we conducted non-parametric permutation tests on themean energy values.
For each resting-state network and each frequency band, we conducted 1,000 permutations.
In each permutation, we randomly shuffled the pMEM parameters h and J (between ROIs and
ROI pairs, respectively) that were fitted to individual participants. We then calculated an aver-
aged energy landscape across all participants based on the shuffled parameters. This gave us a
sampling distribution of the energy of each network state, under the null hypothesis that the en-
ergy values are not related to the observed oscillatory activities or observed pairwise regional
co-occurrence. For each local minimum of the aggregated landscape, the level of significance
(p value) of that local minimum’s energy was estimated by the fraction of the permutation sam-
ples that were higher than the mean energy Ē(sk) of that network state in the empirical data
without shuffling. To account for the multiple statistical tests that were performed for all the

Figure 4. The average number of local minima in the JME and control groups. Error bars denote
the standard errors across participants.
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local minima of each network, we evaluated the results using a Bonferroni-corrected threshold
(p < 0.05) for significance.

Because the shape of an energy landscape was partly determined by the global minimum
(Ezaki et al., 2018; Watanabe et al., 2014a), for each participant, we calculated the energy dif-
ference between a significant local minimum and the global energy minimum (i.e., the state
with the lowest energy value on the landscape). We then compared this relative energy of
the within-network local minima between JME patients and healthy controls. From the net-
works with significant alternations of relative energy values in JME patients, we constructed
a disconnectivity graph to describe clusters of local minima and the relationships between
them (Becker & Karplus, 1997), where a cluster represents a group of local minima with high
probabilities of subsequent occurrences (Ezaki et al., 2017).

Basin duration at significant minima On the aggregated energy landscape, the energy basinEnergy basin:
A group of network states that are the
most closely associated with a
common local minimum.

for each significant local minimum was identified using an existing method (Watanabe et al.,
2014a). We started at an arbitrary network state and moved downhill on the energy landscape
to one of its neighboring states with the lowest energy, until a local minimum was reached.
The starting state is then assigned to the basin of the resulting local minimum. We repeated
this procedure for all network states as the starting state.

We used the fitted pMEM as a generative model to simulate the dynamical changes in
each resting-state network, and estimated the duration of the basin of each local minimum
in the simulated dynamics. Similar to previous studies, we employed the Metropolis-Hastings
algorithm to simulate time courses of network activity (Hastings, 1970). Each simulation started
with a random network state sk. On each time step, one of the current state’s N neighboring
state sk′ was selected with a probability of 1/N as the potential target of state transition, and
the state transition occurred with a probability of exp [E(sk)− E(sk′)] when E(sk′) > E(sk)

or 1 otherwise. For each participant, each network, and each frequency band, we simulated
20,000 time steps, and discarded the first 1,000 time steps to minimize the effect of initial
condition. From the remaining 19,000 time steps, we calculated the proportion of duration of
the network states that belongs to each energy basin.

Classification of individual patients based on energy values

To investigate the predictive power of pMEM energy measures, we used a support vector ma-
chine (SVM) classifier with a radial basis function kernel and a leave-one-out cross-validation
procedure to classify individual JME patients and controls. The trade-off between errors of the
SVM on training data and margin maximization was set to 1. For each resting-state network
and each frequency band, the feature space for classification included the energy values of all
the significant local minima. In each cross-validation fold, one participant was first removed
and the remaining participants’ data were used as a training set to train the classifier. To avoid
overfitting, the feature space (i.e., the local minima) was identified from the aggregated energy
landscape constructed from the participants in the training set. The participant left out was
then classified into one of the two groups (patients or controls). Classification performance
was evaluated by the proportion of correctly classified participants over all cross-validations.

We used permutation tests to evaluate the classification results. The significance of each
classification was determined by comparing the observed classification accuracy with its null
distribution under the assumption of no difference between patients and controls. The null dis-
tribution was generated by 1,000 random permutations of leave-one-out classification results,
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with group labels shuffled in each permutation. We obtained a permutation p value by calcu-
lating the fraction of the permuted samples exceeding the observed classification accuracy.

Software and Data Accessibility

The scripts for analysis used in the current study are open-source and freely available online
(https://github.com/dokato/energy_landscape). Raw MRI and MEG data are not publicly avail-
able due to informed consent restrictions concerning confidential patient information.

RESULTS

A summary of participant demographics and clinical characteristics is given in Table 1. The
JME and control groups were well matched for age (F(1, 51) = 0.13, p = 0.72) and gender
(p = 0.31, χ

2 test). For each participant, we performed source localization of preprocessed
MEG resting-state data and estimated oscillatory activity (i.e., Hilbert envelope) in each of the
90 ROIs from the AAL atlas, separately in the theta (4–8 Hz), alpha (8–12 Hz), beta (13–30 Hz),
and low-gamma (35–60 Hz) bands. We focused our analysis on the differences between JME
patients and controls in three resting-state networks (Figure 2): the FPN, the DMN, and the
sensorimotor network (SMN).

Fitting of pairwise maximum entropy models (pMEM) to MEG oscillatory activity

We thresholded an ROI’s oscillatory amplitude at each time point t to assign the binary states
of “high” (+1) or “low” (−1) activity. The state of a network at time t was then represented by
a binary vector, consisting of the binarized activity of all the ROIs in the network. We fitted a
pMEM to the series of binarized network oscillatory activities, separately for each participant,
each resting-state network, and each frequency band (Equation 3, and see Methods for details).
For a network of N ROIs, there are a total of 2N possible states. The pMEM provides a statistical
model of the occurrence probabilities of the 2N network states, while it satisfies the empirical
constraints of mean regional activities at each ROI and pairwise co-occurrence between each
pair of ROIs within the network.

To evaluate the model fit, we compared the predicted and observed occurrence probabili-
ties of the 2N possible network states, averaged across the participants in each group. There was
a good agreement between the model predictions and observed data across networks in the
JME (R2

> 0.90 in all networks and frequency bands, based on a log-log regression, Figure 3)
and control groups (R2

> 0.89). We further used an accuracy index to quantify the goodness
of fit of the pMEM (Equation 7). The accuracy index was calculated as the percentage of im-
provement of the pMEM fit to the empirical data compared with a null model, which assumed
no pairwise co-occurrence between ROIs (i.e., an independent maximum entropy model).
The pMEM achieved high accuracy indeces in both JME patients and controls (Figure 3). A
Mann-Whitney U-test on accuracy indeces showed no significant main effect of group (JME
vs. controls: U = 266.0, p = 0.19), suggesting the robustness of the pMEM on MEG oscillatory
activities in both patients and controls. As determined by nonparametric repeated-measures
Friedman test, there were main effects of the networks (χ2 = 87.5, p < 0.00001) and the fre-
quency bands (χ2 = 46.27, p < 0.00001), suggesting that the distinct properties of the networks
and information carried by the frequency bands affected the goodness of fit.

Inferences from pMEM energy landscape

The fitted pMEM yielded an energy value for each network state (Equation 4). We used energy
values from the pMEM to depict an energy landscape of the network. The energy landscape is a
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graph representation of energy values from all possible network states (Figure 1F). We defined
two network states being adjacent if there is one and only one ROI whose binarized activity
(i.e. +1 or −1) is the opposite between the two states. According to the pMEM (Equations 3
and 4), network states with a higher energy would occur less frequently than those with a lower
energy. As a result, transitions from high to low energy states would bemore likely to occur than
that from low to high energy states. Here, we examined the differences in three quantitative
measures of energy landscape between patients with JME and controls: (1) the number of
energy minima, (2) the relative energy values at the local minima, and (3) the generative basin
duration at significant minima.

Number of energy minima We located local minima on the energy landscape, defined as the
network states with lower energy than all their adjacent states. Because a local minimum state
would have a higher occurrence probability than all of its neighboring states, transitions of
network states near an energy minimum is akin to a fixed point attractor in a deterministic
dynamical system, and the number of energy minima quantifies the degree of multistability of
a network.

We calculated the number of local minima for each participant (Figure 4) and compared
it between groups, resting-state networks, and frequency bands with a repeated-measures
ANOVA. Compared with controls, JME patients had significantly less local energy minima
(F(1, 50) = 7.602, p = 0.008). Across all participants, there were significant main effects of
the resting-state network (F(1.52, 76.25) = 99.89, p < 0.00001, Greenhouse corrected) and
frequency band (F(2.83, 141.57) = 21.08, p < 0.00001). No significant network by group
(F(1.52, 76.25) = 3.15, p = 0.07) or frequency band by group (F(2.83, 141.57) = 2.12, p = 0.11)
interaction was observed. These results suggested that MEG oscillatory activities in JME patients
had altered multistability in some networks and frequency bands.

Relative energy values of the local minima To identify common energy minima at the group
level, we averaged across all participants the energy value of each network state and identi-
fied the energy minima on the aggregated energy landscape. In all three resting-state networks
(FPN, DMN, and SMN) and all frequency bands, permutation tests showed that the energy val-
ues of two network states, “all off” (i.e., all ROIs had low oscillatory activities [−1,−1, . . . ,−1])
and “all on” (i.e., all ROIs had high oscillatory activities [+1,+1, . . . ,+1]), did not differ sig-
nificantly from those from a randomly shuffled energy landscape (p > 0.88, Bonferroni cor-
rected). That is, the observed energy values at these two minimawere not significantly sensitive
to regional activation and pairwise coactivation in empirical data (see Methods for details). In
addition, the “all off” state was also the global minimum of the energy landscape at both group
and individual levels, which had the lowest energy value in all network states.

For each significant local minimum state that survived the permutation test, we calculated
the relative energy difference between the local minimum and the “all off” state (i.e., the global
minimum) for the individual participants. Then, we compared the obtained relative energy
values between the JME and control groups. This subtraction step controlled for the individual
variability in the occurrence probability of the global minimum state (Watanabe et al., 2014a).

In the FPN, the relative energy values at the local minima were significantly higher in JME
patients than in controls in the theta band (Figure 5A, F(1, 50) = 18.90, p < 0.0001), beta band
(Figure 5B, F(1, 50) = 15.43, p = 0.0002), and gamma band (Figure 5C, F(1, 50) = 7.2558,
p = 0.009), but not in the alpha band (F(1, 50) = 0.80, p = 0.37). The aggregated energy
landscapes in the beta and gamma bands contained the same set of 14 local minima. Post hoc
tests showed that all the 14 local minima states had higher relative energy values in JME patients
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Figure 5. Relative energy values of the local minima in (A), theta FPN. (B), beta FPN. (C), gamma
FPN, and (D), beta DMN. At the top of each panel, the disconnectivity graph showed the relative
energy values of local minima from the aggregated energy landscape across all participants. The end
of each branch on the disconnectivity graph represent a local minimum. The middle of each panel
showed the network states of the corresponding local minima. White boxes denote high oscillatory
activity (i.e., a binary value of +1) and gray box denote low oscillatory activity (i.e., a binary value
of−1). The bottom of each panel showed the t-values from two sample t-tests (JME patients vs. con-
trols) on the relative energy values of each local minimum. Asterisks indicate significant difference
between JME patient and control groups (p < 0.05, FDR corrected).

than controls in the beta band, and 5 of the 14 local minima states showed a significant group
differences in the gamma band (p < 0.05, Šidák correction). The theta-band energy landscape
contained six local minima states, which were a subset of the 14 local minima in the higher
frequency bands, and all had higher relative energy values in JME patients than controls.
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In the DMN, there were trends of higher relative energy values in the JME patients than
controls in the beta band (F(1, 50) = 3.68, p = 0.06) and gamma band (F(1, 50) = 3.81,
p = 0.06), and no significant difference in the theta band (F(1, 50) = 0.01, p = 0.92) or
alpha band (F(1, 50) = 0.82, p = 0.37). One local minimum in the beta band, comprising co-
activation in bilateral mPFC and ACC (Figure 5D), showed a group difference in post hoc tests at
an uncorrected threshold (t(50) = 2.34, p = 0.03). In the SMN, there was no significant group
difference in the relative energy values (theta: F(1, 50) = 1.26, p = 0.27; alpha: F(1, 50) =

0.06, p = 0.81; beta: F(1, 50) = 0.002, p = 0.97; gamma: F(1, 50) = 0.12, p = 0.73).

Overall, JME patients had higher relative energy values than controls in selective resting-
state networks and frequency bands. This result indicates that some local minima on the ag-
gregated energy landscape were less stable (i.e., having a higher relative energy level) in JME
patients than controls.

Basin duration at significant minima Each local minimum of an energy landscape is accompa-
nied by a basin, which includes the local minimum itself and its neighboring states from which
the local minimum is relatively easily reached (Ezaki et al., 2017). Therefore, the proportion of
time for which each basin is visited gives a granular description of network dynamics. For each
of the group-level significant minima on the aggregated energy landscape, we identified all the
network states belonging to the same basin. For each participant, we then used the fitted pMEM
to numerically simulate network dynamics, and calculated the proportion of time for which
the simulated network activities visit each basin. The rationale to simulate basin durations is
twofold. First, our simulation demonstrated the feasibility of the derived energy landscape to be
used as a generative model of network dynamics. Second, because we removed MEG epochs
strongly affected by artífacts, the source reconstructed data was not fully continuous in time,
and hence basin duration estimated directly from the empirical data would be less accurate.

In the FPN, simulations showed that network dynamics in JME patients contained shorter
basin duration at those significant local minima than controls in the theta (F(1, 50) = 42.72,
p < 0.000001), beta (F(1, 50) = 10.49, p = 0.002), and gamma (F(1, 50) = 6.18, p = 0.016)
bands, but not in the alpha band (F(1, 50) = 3.92, p = 0.053). There was no significant
group difference in the basin duration in the DMN (theta: F(1, 50) = 0.015, p = 0.90; al-
pha: F(1, 50) = 2.67, p = 0.11; beta: F(1, 50) = 2.76, p = 0.10; gamma: F(1, 50) = 3.12,
p = 0.08) or SMN (theta: F(1, 50) = 0.09, p = 0.76; alpha: F(1, 50) = 0.31, p = 0.58; beta:
F(1, 50) = 1.59, p = 0.21; gamma: F(1, 50) = 1.25, p = 0.27).

Classification of individual patients

We used a leave-one-out cross-validation procedure for a binary classification of participant
groups (JME patients and healthy controls), using the relative energy values of local minima
as features. Consistent with the group comparisons (Figure 5), the relative energy values ob-
tained from the fitted pMEM showed significant predictive power, with high classification ac-
curacies from theta-band FPN (92.3%, p < 0.001, permutation test) and gamma-band FPN
(67.3%, p = 0.012) (Figure 6). The classification based on the energy values from theta-band
FPN achieved high specificity (89.3%) and sensitivity (94.8%). For the classification based on
gamma-band FPN features, the specificity and sensitivity were 71.4% and 64.5%, respectively.
The classification accuracy in the SMN, DMN, and other frequency bands of the FPN was not
significant (p > 0.26, permutation test).

DISCUSSION

We proposed a pMEM approach to quantify the dynamics of MEG oscillatory activity and ap-
plied this method to derive energy landscape measures, quantifying the abnormal statistical
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Figure 6. Support vector machine leave-one-out binary classification accuracy of JME patients
versus controls. The energy values of the local minima were used as features for classifiers. Blue
data points denote the mean classification accuracy. Black lines denote the 95% confidence level
under the null hypothesis of no difference between the groups, based on 1,000 permutations of
randomly shuffled labels of the data.

characteristics of resting-state networks in JME patients. The number of within-network local
minima from individual participant’s energy landscape indicates the degree of multistability
from an attractor network perspective (Kelso, 2012) on MEG oscillatory power. The local min-
ima are defined here, and should always be interpreted, in the context of a specific resting-state
brain network. The energy values of minima on aggregated energy landscapes indicate the ease
of transition from one stable state to another (Ezaki et al., 2017; Kang et al., 2019), and their ef-
fects on network dynamics was demonstrated in the simulation of basin duration. Furthermore,
the activation profiles of local minima provided key anatomical insights into functional con-
figurations of cortical networks that differ between JME patients and controls. Our approach
described network abnormalities in multivariate data from a statistical account. This extended
previous research on the temporal evolution of system dynamics leading to seizures, which
measures chaoticity (Iasemidis et al., 1990) or entropy (Song et al., 2012) in single or com-
bined channels.

In this study, we found that patients with JME showed altered pMEM-derived energy land-
scapes in selective resting-state networks and frequency bands (Figure 7). For the energy land-
scapes estimated at the individual level, JME patients exhibited fewer local minima than
controls (Figure 4). For the aggregated energy landscapes estimated across participants, JME
elevated relative energy values at the local minima of the FPN (theta, beta, and gamma bands)
oscillatory activities (Figure 5). Our results confirmed the abnormalities of electrophys-
iological signals in JME (Aliberti, Grünewald, Panayiotopoulos, & Chroni, 1994), and provided
new insights into JME pathophysiology affecting selective functional network configurations.

The fitted pMEM defined the energy values of all activity states of a network, from which
an energy landscape of the network was depicted (Ezaki et al., 2017). Because a local min-
imum of the energy landscape refers to a network state with higher occurrence probability
than its neighboring states, the fewer number of local minima and elevated energy values
in JME suggested alterations in the multi-stable dynamics of the brain networks that may be
prone to perturbation and ictogenesis, in line with the dynamical disease account for epilepsy
(da Silva et al., 2003; Elger et al., 2000; C. Stam, 2005). The energy landscape further allowed
to characterize clusters of energy minima and their hierarchies in terms of the disconnectivity
graphs (Figure 5). In the FPN, the energy minima with bilateral high activation in the frontal
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Figure 7. A schematic diagram of altered energy landscape of MEG oscillatory power in JME
patients (left) compared with controls (right). In selective functional networks and frequency bands,
JME patients exhibited less local energy minima and elevated energy values (e.g., in theta-band
FPN), suggesting that resting-state networks exhibit changes in the degree of multistability and in
the ease of state transitions.

or parietal regions were clustered separately and interleaved with lateralized energy minima
(i.e., high activation in unilateral ROIs). This may indicate that network states with lateralized
high activation represent transition statuses between frontal and parietal dominant states. In
contrast, the DMN energy minima contained coactivation in bilateral ROIs, consistent with the
evidence of strong interhemispheric and long-range connectivity in the DMN during awake
states (Baker et al., 2014; Salvador et al., 2005).

Our results highlighted JME as a distributed network disorder involving frontal and parietal
lobes (Fernandez et al., 2011; Niso et al., 2015; Wolf et al., 2015b). JME patients commonly
exhibit impaired frontal cognitive functions (Piazzini, Turner, Vignoli, Canger, & Canevini,
2008), including working memory (Swartz, Halgren, Simpkins, & Syndulko, 1994), decision-
making (Zamarian et al., 2013), response inhibition (S.-Y. Kim et al., 2007), and verbal fluency
(O’Muircheartaigh et al., 2011). Demanding cognitive efforts during visuomotor coordination
and decision-making can provokemyoclonic seizures in JME patients (Yacubian &Wolf, 2014),
and the degree of cognitive dysfunctions were associated with fronto-parietal BOLD fMRI ac-
tivity and connectivity (Vollmar et al., 2011). Cortical and subcortical pathology may underlie
the cognitive phenotype in JME. Activities in the lateral parietal cortex and precuneus have
a dominant role in initiating and sustaining characteristic spike-and-wave discharges in JME
(Lee et al., 2014). MR spectroscopy imaging of JME patients has identified reduced N-Acetyl
aspartate concentrations in the frontal lobe and the thalamus (Savic, Lekvall, Greitz, & Helms,
2000; Zhang, Li, Hong, & Zou, 2016), which, together with widespread cortical morphologi-
cal abnormalities (Ronan et al., 2012), indicates dysfunctions in the corticothalamic loops in
JME (Hattingen et al., 2014). Further research should extend our results to associate specific
abnormal energy minima to JME patients’ cognitive and behavioral phenotypes.

We further demonstrated that the pMEM and energy landscapes can be used as a generative
model to simulate the duration of the network activity in each energy basin (Figure 1) and as a
predictive model for single-patient classification (Figure 6) beyond simple descriptive model-
ing (Shmueli, 2010): it allowed us to combine measures from multiple energy minima to make
inferences at an individual level. Such analysis, as demonstrated in the current study, would be
useful in clinical applications for identifying patients from controls, or for detecting changes
in electrophysiological data prior to seizure onset in future studies (Song & Zhang, 2013). In
addition, because classification-based analysis makes no assumption about data variances or
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distributions, it is a more stringent test than conventional statistical methods and provides accu-
rate estimates of between-group differences (Kim & Oertzen, 2018). The normalized energies
of the theta-band FPNminima achieved the best classification results (>90%), comparable with
other studies (Goker et al., 2012) and consistent with our hypothesis of selective abnormalities
of oscillatory activity in JME. Indeed, pathological theta oscillations were reported as a hall-
mark of idiopathic generalized epilepsy (Clemens, 2004), possibly owing to the involvement
of the thalamus in initiating or facilitating theta oscillations through thalamocortical coherence
(Sarnthein, Morel, Von Stein, & Jeanmonod, 2003).

The energy landscape measures for the SMN did not significantly differ between JME pa-
tients and controls. This result might seem counterintuitive, given that motor cortex hyperex-
citability has been reported in JME (Badawy, Curatolo, Newton, Berkovic, &Macdonell, 2006).
Nevertheless, previous research on resting-state functional connectivity also showed the lack
of altered connectivity in the motor cortex in JME (Elshahabi et al., 2015; Li et al., 2015; Liao
et al., 2011). Our results suggested that the network states (i.e., patterns of coactivation) in the
SMN, comprising pre- and postcentral gyri as well as SMA, were not affected by JME during
rest. However, this result does not rule out the possibility of network dysfunction in the motor
circuit under stimulation or perturbation (Vollmar et al., 2011).

Our study provides new methods for studying the dynamics of MEG oscillatory activity.
We showed that MEG oscillatory activity in resting-state networks was accurately described
by the pMEM (Figure 3) and that the model fits were comparable between JME patients and
controls. The pMEM was originally developed in the field of statistical mechanics and has
been applied to population of spiking neurons (Schneidman et al., 2006; Yeh et al., 2010).
More recently, it has been applied to quantify the dynamics of BOLD fMRI data (Ashourvan
et al., 2017; Ezaki et al., 2018; Gu et al., 2018; Watanabe et al., 2013, 2014a). However,
achieving satisfactory pMEM fitting requires a large number of data samples (Ezaki et al., 2017;
Macke, Murray, & Latham, 2012). Because of the low temporal resolution of the BOLD signal,
the applications of the pMEM to fMRI signals often need long scanning time that may be
unrealistic for clinical populations, or to concatenate data across participants that limits the
possibility of individual-level inferences (Ashourvan et al., 2017; Watanabe et al., 2014a).
Here, we highlighted the feasibility and benefits of fitting the pMEM to MEG oscillatory power,
which provided anatomically specific and frequency-dependent results. Capitalizing on the
high sampling rate of MEG, we showed that one can make inferences on energy landscapes at
the individual level from a short recording session that was well tolerated by patients. Future
studies could use longer recording sessions to systematically examine the effect of data length
on pMEM fitting to MEG data.

Other methods are available to describe transient network dynamics. Microstate analysis
from scalp EEG has identified successive short time periods during which the configuration
of the scalp potential field remains semistable (Baker et al., 2014), and the spatial patterns of
EEG microstates have been mapped onto distinct mental states (Brodbeck et al., 2012; Michel
& Koenig, 2018). Recent studies using hidden Markov models (HMM) characterized whole-
brain spontaneous activity and identified hidden states with spatiotemporal patterns at dura-
tions of 100–200 ms (Quinn et al., 2018). Both microstate and HMM analyses are based on
time-windowed approaches and provide abstractions of the interactions within large-scale net-
works. In the current study, we defined the state of a network as an instantaneous snapshot of
regional activities, and the pMEM provided a probabilistic model of the network states with
minimum assumptions.

There are several limitations of this study. First, to quantify network dynamics as the oc-
currence probability of a finite number of network states, the oscillatory power in each ROI
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needed to be binarized (i.e., high vs. low activity), similar to other functional connectivity stud-
ies (Liao et al., 2010). The binarization procedure for applying pMEM in neuroscience differs
between data modalities. For single-unit recording and local field potentials (LFPs) (Tang et al.,
2008; Yeh et al., 2010; Yu et al., 2011), a threshold based on signal variance was applied to
continuous data to identify active states (spikes in single units or negative deflections in LFPs).
For resting-state fMRI data, a threshold based on the mean of BOLD responses was used (Kang
et al., 2019; Watanabe et al., 2014b). Unlike spiking trains or LFPs that have a clear definition
of neuronal activity status, MEG oscillatory power reflects the level of synchronized activity in
macroscopic neural populations, which, as a continuous measure, does not impose an a priori
threshold for active/inactive binarization. The current study used the median of the oscillatory
power envelope from each ROI as the threshold to binarize MEG source reconstructed data.
The use of a median split is robust to signal outliers. Furthermore, our approach allows a com-
mon statistical criterion adaptive across regions and participants, appropriate for a potentially
heterogeneous ensemble (Deco et al., 2012). Future research could consider more complex
quantification scheme such as ternary quantization that reduces oscillatory power to ternary
values (Zhu, Han, Mao, & Dally, 2016).

Second, the model fitting procedure for pMEM is computationally intensive. Currently, it is
practically possible to exactly fit the pMEM to a network of approximately 15 ROIs, because the
number of network states increases exponentially with more ROIs. As a result, the current study
focused on the dynamics within well-established large-scale resting-state networks, rather than
a whole-brain network comprising all the regions. Other approximate model fitting procedures
may allow us to extend our approach to larger networks with more ROIs (Ezaki et al., 2017),
which is beyond the scope of the current study. To facilitate future research, we have made our
analysis scripts open source and freely available (https://github.com/dokato/energy_landscape).

Third, the current study chose, a priori, the AAL template for cortical parcellation. The
AAL atlas is based on anatomical landmarks (Rolls, Joliot, & Tzourio-Mazoyer, 2015; Tzourio-
Mazoyer et al., 2002) and commonly used in MEG resting-state analysis (Hillebrand et al.,
2016; Papanicolaou et al., 2006; Routley, Singh, Hamandi, & Muthukumaraswamy, 2017).
Previous studies have defined resting-state networks, including the ones used in our study,
with the ROIs from the AAL atlas (Rosazza & Minati, 2011; Tewarie et al., 2013a). It is worth
noting that there is an abundant group of atlases for cortical parcellation with various levels
of granularity (Desikan et al., 2006; Destrieux, Fischl, Dale, & Halgren, 2010; Gordon et al.,
2014; Klein & Tourville, 2012), and energy landscape measures from a network may change
with different ROI definitions from an alternative atlas. Future research employing the pMEM
for MEG needs to make informed decisions on the choice of parcellation scheme based on
specific research questions and intended networks.

Fourth, the sample size in the current study is sufficient for comparing and classifying
between JME patient and control groups. However, JME patients are often on a phenotypic
spectrum, with variations among seizure frequencies, epileptic traits, and treatment response
(Baykan & Wolf, 2017). A larger clinical cohort with comprehensive neuropsychological as-
sessments is necessary to investigate whether our energy landscape approach is sensitive to
the quantitative spectrum of JME. Moreover, the scanning protocol of this experiment did not
enable continuous movement tracking. As a result, we could not directly compare the exact
level of movements between groups. Nevertheless, even if the residual movement artifacts in
MEG data did differ between patients and controls, they would affect multiple networks and
hence could not readily explain the network-specific group differences in energy landscape
measures.
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In conclusion, by fitting a pMEM to MEG oscillatory activity, we showed that JME patients
exhibited atypical energy landscapes in selective brain networks and frequency bands, with a
smaller number of local minima of the energy and elevated energy levels leading to altered
multistable network dynamics. We further demonstrated that the pMEM and energy landscape
offered generative and predictive power for discriminating between JME patients and controls.
These results have the potential to be exploited in future diagnostic and pharmacological stud-
ies for a mechanistic understanding of ictogenesis in JME.
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