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Abstract: The majority of in vitro studies focusing upon particle-lung cell interactions use static
models at an air-liquid interface (ALI). Advancing the physiological characteristics of such systems
allows for closer resemblance of the human lung, in turn promoting 3R strategies. PATROLS (EU
Horizon 2020 No. 760813) aimed to use a well-characterised in vitro model of the human alveolar
epithelial barrier to determine how fluid-flow dynamics would impact the outputs of the model
following particle exposure. Using the QuasiVivo™ (Kirkstall Ltd., York, UK) system, fluid-flow
conditions were applied to an A549 + dTHP-1 cell co-culture model cultured at the ALL DQi,
and TiO, (JRCNMO01005a) were used as model particles to assess the in vitro systems’ sensitivity.
Using a quasi- and aerosol (VitroCell Cloud12, VitroCell Systems, Waldkirch, Germany) exposure
approach, cell cultures were exposed over 24 h at IVIVE concentrations of 1 and 10 (DQ;7) and 1.4 and
10.4 (TiOy) ng/cm?, respectively. We compared static and fluid flow conditions after both these
exposure methods. The co-culture was subsequently assessed for its viability, membrane integrity
and (pro-)inflammatory response (IL-8 and IL-6 production). The results suggested that the addition
of fluid flow to this alveolar co-culture model can influence the viability, membrane integrity and
inflammatory responses dependent on the particle type and exposure.

Keywords: in vitro; micro-fluidics; fluid flow; co-culture; lung; nanoparticles; aerosol exposure;
quasi-ALI exposure

1. Introduction

Engineered nanoparticles (ENPs) are particles that can be defined as having a diameter
> 100 nm [1-3]. These particles are small enough to enter the cell without assistance and
potentially inhibit normal homeostatic processes within the cells [1]. The size of ENPs
relates to a higher surface (area) to volume ratio when compared to the same particles
with a diameter > 100 nm [4]. Both surface area and reactivity have the potential to cause
an (pro-)inflammatory response in vivo and in vitro [5-8]. Further, specific individual
properties of ENPs (e.g., size, particle diameter and polydispersity) have the potential to
influence their cellular interaction [9]. Therefore, it is important to consider different types
of particles and elucidate how the cellular responses may change when exposed to different
particles with different physical and chemical characteristics.

A major route of exposure to humans of ENPs is inhalation, and therefore the lungs are
vitally important in determining the various potential hazards of ENPs [10]. The alveolar
region is of particular interest for ENPs as they are readily deposited within this region of
the lung due to their aerodynamic size [11-14]. One of the most commonly used cell lines
for this region in vitro is the A549 epithelial cell line [15]. Although it is known that this
cell line does have its pitfalls [16], they have similar characteristics to the alveolar epithelial
type II cells (ATII) [17,18]. ATII cells are also responsible for producing lung surfactants
and are known to differentiate to type I epithelial cells in order to help facilitate repair to
damage of the alveolar region [19], and therefore are a key epithelial cell in the homeostasis
of the alveolar epithelium. As well as implementing the use of relevant epithelial cells to
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make an in vitro model, there also needs to be the addition of immune cells present within
the region [17]. Macrophages are sentinel cells [20] and are an important part of the innate
immune response within the lungs (i.e., they are the first cellular defence against inhaled
xenobiotics) [21]. Commonly, these cells are co-cultured with epithelial cells to produce an
alveolar model in vitro [22-24]. Models such as these have previously been used to assist
investigations into the toxicokinetics of ENPs [25].

When using such in vitro systems, it is imperative to consider the physiological rel-
evance of the model. It has been previously identified that the addition of differentiated
THP-1 (dTHP-1) cells to the A549 culture has an enhancing effect [22,26,27], with increases
in inflammatory mediators when compared to monoculture systems. Another considera-
tion is how the cells are grown and acclimatised to this environment before being exposed
to any potential test material. Most early in vitro based studies focusing upon lung cell
cultures exposed to ENPs were performed under submerged conditions with the ENP
added directly into the cell-culture medium [28-30]. However, the alveolar region is not
a monolayer of cells under fluid, it is constructed of bio-fluid (e.g., surfactant) and cell
layers exposed to air [31]. Lung surfactant has the potential to alter the effects of ENP
exposed to the cells [30-32], therefore, it is important to implement cell types (e.g., A549)
that are able to mimic this scenario when cultured at the air-liquid interface (ALI) in this
environment [32-37]. It has also been identified that cellular properties (lipid composition,
surface morphology and surface tension) change when cultured at the ALI [38]. Therefore,
further emphasising the need to use in vitro lung cell studies at the ALL

While a culture is at the ALI there are various exposure methods that can be utilised
for toxicity testing of ENPs. These include the use of the quasi-ALI exposure method [39]
and aerosol exposure (either wet [40] or dry aerosol exposure [41]). Careful consideration
is required upon selection of these methods, due to the amount of material necessary and
the availability for cellular endpoint testing.

A further component when developing a more physiologically relevant model [42-44]
of the alveolar region for ENP toxicity testing is the addition of fluid flow on the basal side
of the membrane to mimic vascular flow [45-47]. These components have been combined
in very low throughput, high physiological relevance models, such as lung-on-a-chip
devices that can combine multiple cell types under microfluids [48]. Thus, it is important to
consider all these aspects to develop a model that considers the area of the lung of interest,
the relevant exposure method and the addition of physiological aspects in order to produce
a “next level” system that is capable of investigating the potential impact of inhaled ENPs.

Therefore, the aim of this study, was to develop further an established static in vitro
model used to test ENP aerosol toxicology to incorporate fluid-flow dynamics. This was
achieved by implementing the QuasiVivo™ (Kirkstall Ltd., York, UK) system with a
characterised A459_dTHP-1 coculture exposed (e.g., Vitrocell Cloud12, VitroCell System:s,
Waldkirch, Germany) to different particle samples at the ALL It is hypothesised that the
addition of fluid flow would increase the sensitivity of the model compared to the static
environment, but the exposure method (i.e., quasi-ALI vs. aerosol exposure) would have
no impact on the response to ENPs.

2. Materials and Methods

All chemicals and reagents were purchased from Sigma Aldrich (UK) unless other-
wise stated.

Cell Cultures

A549 (ATCC® CCL-185™) cells were obtained from American Tissue Culture Collec-
tion (ATCC, Middlesex, UK) and were cultured at 37 °C in 5% CO,. A549 were cultivated
in RPMI-1640 medium (Gibco, Paisley, UK) supplemented with 10% heat inactivated foetal
bovine serum (FBS; Gibco, Paisley, UK), 2 mM L-Glutamine (Gibco, Paisley, UK), 100 U/mL
penicillin and 100 pg/mL streptomycin (Gibco, Paisley, UK), cited as complete cell culture
medium (CCM). Cells were passaged when ~80% confluent and used between passages
9-21 for all experimentation.

™
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THP-1 (ATCC® TIB-202™) cells were obtained from American Tissue Culture Collec-
tion (ATCC, Middlesex, UK) and were cultured at 37 °C in 5% CO,. THP-1 were cultivated
in the above CCM. Cells were maintained within cultures of 1 x 10° cells/mL and used
between passages 5-12 for all experimentation.

Ab549 cells were seeded on the apical side of a Falcon cell culture insert (transparent
PET membrane with 3 um pores; Corning, Flintshire, UK, 12-well or 24-well size) at a
density of 2.78 x 10° cells/cm? in CCM (500 and 100 uL, respectively) with CCM in the
basal compartment (1.5 mL and 500 pL, respectively). Specifically, 12-well transwell inserts
were implemented for static conditions while 24-well transwell inserts were implemented
for the fluid flow conditions (as they are the only ones that will fit within the QuasiVivo™
system). On the 4th day (i.e., 96 h) after cell seeding, the medium was changed and
cells were switched to the air-liquid interface (ALI) with CCM in the basal compartment
and apical compartment exposed to air (i.e., no medium on the apical layer) [49]. After
switching to the ALI, epithelial cells were provided for 24 h to habituate to the new culture
environment prior to ENP exposures [50-52].

In parallel, THP-1 cells were differentiated into a macrophage-like phenotype (ATHP-
1) by incubating with 20 mM phorbol 12-myristate-13-acetate (PMA) for 48 h with a further
48 h of recovery in CCM. The medium was removed from the apical side of the epithelial
culture and dTHP-1 cells were seeded onto the epithelial cells. The co-cultures were then
incubated for 2 h (to allow for adherence of the macrophage cells to the epithelial cell layer)
prior to the apical medium being removed (and the whole co-culture being switched to an
ALI). The co-culture was then incubated at 37 °C for 24 h (included in the 48 h recovery
phase of the dTHP-1 cells) before exposure.

Fluid Flow System

A QuasiVivo 600 system (Kirkstall Ltd., York, UK) was used, connected to a peristaltic
pump (Parker pump model PF22X0103) with a flow rate of 0.32-0.4 mL/min. The system
consists of three bioreactors and a media reservoir connected by tubes. The peristaltic
pump circulates the media and was positioned after the media reservoir and before the
bioreactors. Each bioreactor fits a 24-well transwell, where the co-culture is established.
The three technical repeats are positioned in series, sharing the media. The total fluid
circulating is 30 mL (note that this media is shared for the 3 technical repeats).

The three biological repeats (n = 3) are three independent experiments of the system
described above.

Characterisation

The co-culture was grown until the switch to ALI before it was either placed in static
conditions or fluid flow conditions. It was then characterised at ALI days one through to
four to characterise any changes that the addition of fluidics to the model may induce. The
same biochemical analyses were completed for characterisation as post ENP exposure. The
monoculture was previously characterised as previously outlined Barosova, Meldrum [49].

ENP

TiO, JRCNMO01005a) were supplied by the European Commission Joint Research Centre
Nanomaterial Repository (https://ec.europa.eu/jrc/en/scientific-tool/jrc-nanomaterials-repo
sitory (accessed on 23 August 2021)). The specific physical and chemical characteristics have
previously been reported by [53] (Table 1).

DQ;; particles [54] were kindly donated by the Institute of Occupational Medicine
(IOM), Edinburgh, and previously characterised [54,55] (Table 1). A previous study was
also completed to determine if activated DQ; particles [25] would be more biologically
reactive, however they were not, so historical particles were implemented within this study.


https://ec.europa.eu/jrc/en/scientific-tool/jrc-nanomaterials-repository
https://ec.europa.eu/jrc/en/scientific-tool/jrc-nanomaterials-repository

Nanomaterials 2022, 12, 3431 4 of 14
Table 1. Summary of primary characterisation data [53,54,56].
Polydispersity Index BET Surface
Z-Average (nm) (PDI) m?/g
TiOy 125.4 0.171 46.175
DQ1» 720 0.52 10.1

All particles were dispersed and sonicated based on “The NANOGENOTOX disper-
sion protocol” (https:/ /www.anses.fr/fr/system/files/nanogenotox_deliverable_5.pdf,
accessed on 23 August 2021). Particles were dispersed by sonication (Branson Sonifier
250, @ 13 mm, 400 W output power, 20 kHz) in sterile water. A stock suspension of
ENPs was prepared at a concentration of 2.56 mg/mL, which was diluted in sterile
water [25] to the desired concentration. All exposure concentrations, previously deter-
mined via IVIVE approaches (https://www.patrols-h2020.eu/publications/sops/index.p
hp and https:/ /www.patrols-h2020.eu/publications/sops/SOP-library-pdfs/3105_PAT
ROLS-Guidance-Document-for-ENMs-lung-dosing-consideration.pdf?m=1636040473&, ac-
cessed on 23 August 2021), have been previously found to induce significant inflammatory
effects in vivo (0-5.2 and 0-1 ug/ cm?).

Particle Exposures

Cells were exposed either via a quasi-ALI exposure technique formally described in
(39) for the static conditions, or through an aerosol exposure (VitroCell Cloud12, VitroCell
Systems, Waldkirch, Germany), they were then placed in either static conditions or under
fluid flow conditions (QuasiVivo™ System (Kirkstall Ltd., York, UK)). Figure 1 outlines
the various exposure approaches and conditions. For the quasi-ALI exposure method, this
approach allows an accessible ALI exposure approach for when there are no aerosol expo-
sure systems available [57]. This method entails exposing the cells apically to 100 uL of the
particle suspension using a 6-well plate setup. In respect to aerosol exposures, co-cultures
were exposed via the VitroCell Cloud12 (VitroCell Systems, Waldkirch, Germany) exposure
system which entails exposing the cells apically to 200 uL of the particle suspension which
is then nebulized and deposited. Real-time measurement of deposited particles is acquired
via the use of a quartz microbalance (QCM) (40). For the higher concentrations, repeat
exposures were required until the desired deposited concentration was reached. Vehicle
controls (sterile water spiked with 1% NaCl) for both the low and high exposures (single
and repeat controls) were completed as well as incubator negative and assay positive
controls (specific to each biological assay kit and endpoint).

»® & '@ & ® ® e ®
Static conditions
=]
| oR -
L VitroCell (aerosol) exposure
| 200y |
ENM Su)s_;;ension f i i i g
OR b | t i Peristaltic
- [ |® & @ ® e & ® ® @ Pump
Fluid-flow (Kirkstall system
ﬁouasivALl exposure ( ¥ )
1 100p!

Figure 1. Exposure scenarios used. An exposure of an ENM is completed and analysed 24 h after
exposure via either the quasi-ALI exposure or the VitroCell (aerosol) exposure method. Cultures are
either in static conditions or under fluid-flow conditions using a peristaltic pump and the Kirkstall
QuasiVivo™ exposure system. All exposures equate to the same deposited exposure concentration
regardless of the exposure scenario chosen. Cells are maintained at 37 °C and 5% CO,. Created with
BioRender.com (accessed on 20 July 2022).
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Post exposure, static conditions were obtained by placing the transwells from the
aerosol exposure chamber back into the companion plates and then placed into the incuba-
tor. Fluid flow conditions were established using the QuasiVivo™ exposure system and
pumping medium around (0.32-0.4 pL/min) the system with a reservoir volume of 30 mL.
For each exposure implementing fluid flow conditions, three transwells were used due to
the limitations in cell growth area (and therefore the number of cells for endpoint analysis).

Endpoint analyses were completed after 24 h of single exposures in both static and
fluid flow conditions as well as after quasi-ALI and VitroCell exposures at 5% CO, and
37 °C. With both systems, additional controls need to be considered to confirm that any
effects identified within these studies are dependent on the particulate exposure and not
the changes in humidity or temperature [58]. These controls included incubator controls
(where the cells remained within the incubator instead of being placed into the VitroCell
exposure chamber) and negative controls (including repeat exposures when the ENPs
required multiple exposures to reach the required deposition concentration).

Biochemical Analysis

All samples from both exposure systems were processed for viability assessment
(Trypan blue exclusion assay), whilst supernatants were collected and stored at —80 °C for
future investigation of specific (pro-)inflammatory mediators.

For the comparison between fluid-flow and static, the differences in medium volume
used were taken into consideration and corrected for as well as ensuring the cells on the
different sizes of inserts were calculated in cells/cm?.

Trypan Blue Exclusion Assay

Cellular viability was determined using the trypan blue exclusion assay. Briefly, 10 uL
of trypan blue dye (0.4%) was added to 10 uL of the cell suspension, before being counted
with a haemocytometer and percentage viability calculated [49].

Blue Dextran—Membrane Integrity Analysis

The membrane integrity was analysed by measuring the translocation of Blue Dextran
dye (Mw 200 kDa, Sigma Aldrich, Dorset, UK) from the apical to the basal compartment
of the cultures after exposure to the particles. The translocation of Blue Dextran in an
empty transwell (with no cells) was used as the negative control and results normalised
against this. All medium was removed from the culture (leaving the cells on the membrane)
before adding CCM to the basal side and 0.5% Blue Dextran (dissolved in PBS) added to
the apical surface. The cultures were then incubated for 2 h at 37 °C before measuring
the concentration of blue dextran in the basal compartment by measuring the absorbance
values at 600 nm. This value was then shown as fold over the control value.

(Pro-)Inflammatory Response

The (pro-)inflammatory response of the cells following exposure to DQ;, and TiO,
was measured by quantifying the amount of the (pro-)inflammatory mediators released into
the basal medium via Enzyme-Linked Immunosorbent Assay (ELISA). Lipopolysaccharide
(LPS) (from Escherichia coli) was used as a positive (pro)-inflammatory control at 1 ng/mL
on the basal side of the culture for 24 h. Cell culture supernatant was collected 24 h
after exposure and analysed for cytokine levels of IL-8 (Cat no. DY208) and IL-6 (Cat no.
DY206) using DuoSet kits from R&D systems (Bio-techne, Abingdon, UK) according to the
manufacturer’s instructions. Samples were analysed in triplicate from three independent
experiments (n = 3) and absorbance was assessed at 450 nm with background correction at
570 nm. Extrapolation of protein concentration was carried out from a standard curve of
known concentrations (IL-8 (0-2000 pg/mL) and IL-6 (0-200 pg/mL)).

Statistical Analysis

All data are presented as the mean + standard deviation (SD). All endpoints were
assessed following three independent cell cultures (n = 3), except the static quasi-ALI
exposures which were n = 5 after following the exposure protocol outlined previously [25].
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Statistical analyses were performed using GraphPad Prism 8 (GraphPad Software Inc.,
San Diego, CA, USA) software. A two-way analysis of variance (ANOVA) with a subse-
quent Tukey’s multiple comparisons test was performed for each endpoint. Results were
considered significant if p < 0.05.

3. Results
3.1. Model Characterisation

The addition of dynamic fluid flow to the model did significantly (p < 0.01) decrease
the viability of the culture when compared to the static model (Figure 2A) on ALI days 1,
2, and 4, however, the viability of the model remained above 80% on every day analysed
thereafter. For both IL-6 and IL-8 (Figure 2B,C), there was a significant decrease (p < 0.01) in
the concentration in the fluid flow model when compared to the static culture. However, the
IL-8 concentration does increase over the four-day period in the fluid flow model (though
remained significantly decreased compared to the static model). The IL-6 concentration
was not detectable in the A549_dTHP-1 co-culture under fluid flow conditions. The concen-
tration of both IL-6 and IL-8 remained consistent (average within experimental variation)
between ALI day 1 and day 4 analysed in the static model.

mm Static IL-6 IL-8.
= Kirkstall 50— Hm Static 2000+ Em Static
=3 Kirkstall =3 Kirkstall
< _ 4 £ . _ 1500 4
E N E
S 30 =) " "
= 2 1000
3 20+ 3
10 500+
0- T T T 0-
AlLldayl Allday2 AlLlday3 ALlday4 ALl day1 ALlday 2 ALl day 3 ALl day 4 ALl dayl ALlday2 ALl day 3 ALl day 4

Figure 2. Characterisation of A549 + dTHP-1 co-cultures in both static (black bar) and under fluid
flow conditions (grey bar). Cells were analysed at ALI days 1, 2, 3 and 4, focusing on cytotoxicity
(A), IL-6 (B) and IL-8 (C) concentration. N = 3 with all assays performed in triplicate. The data is
presented as the mean =+ standard deviation. Significance is denoted as the following: compared to
the fluid-flow equivalent p < 0.01 (*).

3.2. Quasi-ALI Exposure
Viability and Membrane Integrity

The lower concentration of both DQ;, and TiO, (1 and 1.4 pg/ cm?) caused no changes
in either the viability or membrane integrity of the A549 + dTHP-1 co-culture in either
the static or the fluid flow model 24 h after a quasi-ALI exposure, when compared to the
negative control (Figure 3A,B). However, there was a significant decrease in the viability
(p < 0.05) after exposure to 10 pg/ cm? of DQj, when compared to the lower DQ1, concen-
tration and a significant decrease in the viability (p < 0.05) after exposure to 10.4 pg/cm?
TiO; in the fluid flow model compared to the medium control, the lower TiO, concentration,
and the static equivalent (Figure 3A).
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Figure 3. Viability and membrane integrity, 24 h post quasi-ALI exposure of both DQp, and TiO, on
Ab549 + dTHP-1 co-cultures. Cells were exposed for 24 h at an ALI using the quasi-ALI method and
incubated in either static or fluid flow conditions, before analysing cytotoxicity (A) and membrane
integrity (blue dextran (B)). N = 3 for fluid flow and N = 5 for static with all assays performed
in triplicate. The data is presented as the mean =+ standard deviation. Significance is denoted as
the following: compared to the medium control p < 0.01 (*); compared to the lower concentration
p <0.01 (#); line is comparing the two systems p < 0.01 (*).

(Pro-)Inflammatory Response

There was a significant increase (p < 0.05) in the concentration of IL-6 after exposure to
both concentrations of TiO; when compared to both the control and the static equivalent
(Figure 4A). There was a slight increase (though not significant (p > 0.05)) in the IL-6
concentration after exposure to 10 pg/cm? of DQ;; when compared to the negative control
and the static equivalent. LPS exposure also did not cause significant increases in IL-6.
There were no changes in the concentration of IL-8 after any of the exposures using the
static model (Figure 4B). With the fluid flow model there was a significant increase (p < 0.01)
in IL-8 after exposure to 10 pg/ cm? DQ;; when compared to the medium control, the lower
DQj; exposure and the static equivalent, as well as the exposure to LPS (p < 0.01).
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Figure 4. IL-6 and IL-8 basal concentration 24 h post quasi-ALI exposure of both DQj, and TiO,
on A549 + dTHP-1 co-cultures. Cells were exposed for 24 h at an ALI using the quasi-ALI method
and left to incubate in either static or fluid flow conditions, before analysing IL-6 (A) and IL-8
(B) concentrations in the basal compartment of the ALI culture after a single particle exposure (onto
the apical side). N = 3 for fluid flow and N = 5 for static with all assays performed in triplicate.
The data is presented as the mean =+ standard deviation. Significance is denoted as the following;:
compared to the medium control p < 0.01 (*); compared to the lower concentration p < 0.01 (#); line is
comparing the two systems p < 0.01 (*).
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3.3. Aerosol Exposure

Viability and Membrane Integrity

The introduction of the co-culture to the VitroCell exposure chamber did cause a
decrease in the viability (~10% decrease) in both the single and repeat exposure controls
(endpoints are measured at 24 h regardless) when compared to the incubator control,
however, no significant changes (p > 0.05) in viability were noted (Figure 5A). There was a
significant decrease (p < 0.05) in the viability of the co-culture after exposure to both DQ;,
concentrations in the static model when compared to the appropriate control. Additionally,
10 pg/cm? induced a significant decrease (p < 0.05) when compared to the fluid flow
equivalent and the lowest DQp, exposure. There was no change in the co-culture viability
after TiO, exposure in any of the physiological conditions (Figure 5A). There were no
significant changes in the membrane integrity after any of the exposures when compared
to the appropriate controls, however, there was a significant decrease in the membrane
integrity induced by 10 pg/cm? DQ; exposure when comparing the fluid flow exposure
to the static (Figure 5B).

A VitroCell B Blue Dextran
150 mm Stalic = mm Static
o -
=3 Kirkstall = 0.20 - =3 Kirkstall
3
2100+ — 5 0.151 A
= >
=} o
g 2 0.10
S 0.104
e _ = =
>~ 50 & =
; i
£ 0.05
DD
(=]
5 0.00-
= (@“ N & SEERS S ‘,_‘6\
& O o KR X &
> QO P W o 4
& SR A Y
& & 0
o L 2
e‘ﬁ 00 §
A A2 \Qo

Figure 5. Viability and membrane integrity, 24 h post VitroCell exposure of both DQ;, and TiO, on
A549 + dTHP-1 co-cultures. Cells were exposed for 24 h at an ALI using the VitroCell method and
incubated in either static or fluid-flow conditions, before analysing cytotoxicity (A) and membrane
integrity (blue dextran) (B). N = 3 with all assays performed in triplicate. The data is presented as
the mean =+ standard deviation. Significance is denoted as the following: compared to the negative
control p < 0.01 (*); compared to the lower concentration p < 0.01 (#); line is comparing the two
systems p < 0.01 (*).

(Pro-)inflammatory Response

There was a significant increase (p < 0.05) in the IL-6 concentration after both the higher
concentrations of DQ1; and TiO, (10 and 10.4 ug/ cm?, respectively) when compared to the
appropriate negative control, the lower concentration, and the static equivalent (Figure 6A).
There was no change in the IL-6 concentration after any of the exposures in the static model.
There was an increase in IL-8 concentration after TiO, exposure (1.4 ug/ cm?) in the fluid
flow model when compared to the negative control, but this was not significant (Figure 6B).
There were significant increases (p < 0.05) in the IL-8 concentration after exposure to both
DQ; and TiO;, (10 and 10.4 ug/cm?, respectively) when compared to the negative control.
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Figure 6. IL-6 and IL-8 basal concentration, 24 h post VitroCell exposure of both DQ;, and TiO,
on A549 + dTHP-1 co-cultures. Cells were exposed for 24 h at an ALI using the VitroCell method
and left to incubate in either static or fluid-flow conditions, before analysing IL-6 (A) and IL-8
(B) concentrations in the basal compartment of the ALI culture after a single particle exposure
(onto the apical side). N = 3 with all assays performed in triplicate. The data is presented as the
mean + standard deviation. Significance is denoted as the following: compared to the medium
control p < 0.01 (*); compared to the lower concentration p < 0.01 (#); line is comparing the two
systems p < 0.01 (*).

4. Discussion

The aim of this study was to determine if the incorporation of dynamic fluid flow to an
established static A549 + dTHP-1 co-culture model using both a quasi-ALI and wet aerosol
exposure had the potential to increase the sensitivity of the model when compared to the
static environment. After completing the characterisation of the co-culture it was indicated
that the addition of fluid flow to the model system did not have detrimental effects (i.e.,
changes in viability and (pro-)inflammatory mediator release) to the static model (Table 2).

Table 2. Summary of data. Trend is indicated by arrow and significance is indicated by appropri-

ate symbol.
Quasi-ALI Aerosol
Static Kirkstall Static Kirkstall

Viability 1L-8 1L-6 Viability IL-8 1L-6 Viability IL-8 IL-6 Viability 1L-8 IL-6

DQ 1 < > > > > > 1*$ > > T > >
. 10 © P e o 4% 1 1$ 1$ P W o 4%

TO 14 > “ 1* L# > 1$ I < > 1 N <
2 10.4 1 “ ¥ 1#$ “ 18 ) 1$ I 1 “ 14

* compared to Kirkstall system at the same concentration with the same particles; # compared to lower concentra-
tion; $ compared to negative control.

4.1. Addition of Dynamic Fluid Flow

The addition of fluid flow to the herein used in vitro lung cell model when applying
the QuasiVivo™ (Kirkstall Ltd., York, UK) was a straightforward way of implementing
a model that was more physiologically relevant than traditional static in vitro models.
Previously, using cells of the blood-brain barrier (i.e., astrocytes, pericytes and endothelial
cells) with the fluid flow system, a slight decrease in cellular viability was identified in
the fluid flow model when compared to the static model [59]. This was also identified
within the current study, though with different cells from a different organ (i.e., the lung).
This indicates that the implementation of fluid flow influences cellular viability within the
initial 24 h period. From previous studies using the fluid flow model using an intestinal
epithelium, it was identified that using the fluid flow system increases the barrier integrity
and permeability, more closely mimicking the in vivo models [60]. This has also been
identified with airway epithelial cells where the addition of fluid flow to the model led
to an increase in the TEER value measured [61], which corresponds to the membrane
integrity measured within this study (Figures 3B and 5B) with blue dextran which was
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either slightly increased or remained the same when adding fluid flow. Previous work
has identified that the TEER values previously measured have not matched what is found
within the literature, however, these have increased when the A549-based models have
been switched to an ALI [49]. Taken together, this suggests that the addition of fluid flow to
the model has the potential to decrease the viability of multiple cell types when compared
to the static controls, but the viability of the models remains consistently high, enabling the
implementation of these systems for (ENP) toxicology testing.

IL-8 is a neutrophil chemoattractant [62] with limited downstream effects, whereas
IL-6 is a much more diverse cytokine and the continual production of IL-6 plays a role
in chronic inflammation as well as tissue damage [63]. Both inflammatory mediators are
produced by both epithelial and macrophage cells [64,65]. IL-6 links more so to chronic
inflammation and lung epithelial damage. Due to the feedback loop of IL-6 [66], there is
the potential that an initial release of this cytokine from the co-culture within the fluid flow
system is then circulated around the system inducing the epithelial cells to further release
IL-6, leading to the enhanced concentration found after both the quasi-ALI (Figure 3A) and
the VitroCell (Figure 6A) exposures. In these exposures there is also a decrease in cellular
viability which has been known to be linked to an increase in I1-6 production in specifically
type II epithelial cells [67]. IL-6 has also been identified to protect A549 cultures from
reactive oxygen species (ROS)-induced cell death [68], from our studies there is increased
cytotoxicity after exposures paired with increased IL-6 production after the quasi-ALI
exposures (Figures 3 and 4A), this could potentially indicate that the cells are not dying
due to ROS exposure, though future work is required to confirm this. This pattern is not
identified in the VitroCell exposed cultures suggesting that this effect is relevant to the
specific exposure method of ENPs to the in vitro cell culture.

4.2. Quasi-ALI and Aerosol Exposures

The comparison of quasi-ALI and aerosol exposures has been previously completed
within the literature, however, the addition of fluidics is something that is significantly
lacking within the literature. Using the same TiO, ENPs, at a very similar concentra-
tion (10.3 pg/cm?) there was no change in viability, however, at higher concentrations
(such as 20.6 and 41.2 pg/cm?) a significant decrease in viability was induced after sub-
merged exposures. However, this is a significant decrease at a much lower concentration
(1.14 ug/ cm?) when using an aerosol exposure [69], agreeing with what has been identified
in the current study. Cellular uptake of TiO, was found to be higher in submerged cultures
of lung epithelial cells when compared to the aerosol exposure [70]. A549 cells grown
at an air-liquid interface were previously exposed to silica nanoparticles (~50 nm) using
both an “ALI deposition system (ALIDA)” (which implemented an electrostatic field and
had higher deposition efficiency compared to the VitroCell) and a submerged exposure.
It was determined that the submerged exposure elicited a stronger concentration of IL-8
when compared to the deposited particles [71]. This was not identified in our study; in
fact the IL-8 concentration was ~100 times higher in the VitroCell exposures (Figure 6B)
when compared to the quasi-ALI exposures (Figure 4B) in the static model and ~150 times
higher in the fluid flow exposures (Figures 4B and 6B) after exposure to both the high-
est concentrations of DQ;j, and TiO,. This has also been identified using ZnO ENPs (at
1 ug/cm?) and an aerosol and “traditional” exposures using A549 cells [72]. The same was
also true for IL-6 concentrations after exposure to the higher concentrations of DQ1, and
TiO; there was a ~5 and ~3 times increase, respectively, after VitroCell exposure compared
to quasi-ALI exposures. However, this pattern was identified in the IL-6 concentration for
the lower concentrations of DQ1; and TiO,, where more cytokine was released after quasi-
ALI exposure compared to VitroCell exposure (Figures 4A and 6A). It has been previously
hypothesised [25] that IL-6 has the potential to be a better marker of a (pro-)inflammatory
response after ENP exposures. This difference may also be related to the monoculture use
previously [71], when compared to the use of a co-culture in this study. Other studies using
the same TiO; at similar concentrations (~1 pg/cm?) identified a significant increase in the
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concentration of IL-6, IL-8 and TNF-« post aerosolization when compared to the submerged
control groups [73]. It has been previously identified that different exposure methods do
have the capability to elicit different responses at different time points [74]. With changes
to the exposure time and fractionated doses also contributing to these differences [25],
endpoints must also be carefully planned due to potential degradation of the samples to be
analysed [75].

It is important to note that the present study highlights the notion that the incorpo-
ration of additional physiological components may impact upon the biological responses
(i.e., only the cytotoxicity and (pro-)inflammatory) tested, based upon the particle type and
concentration as well as the exposure approach used. Further investigation is necessary,
and ongoing, to confirm that the implementation of this physiological characteristic en-
courages the ability for such alternative systems to have the potential to predict the human
health hazard of ENP inhalation exposure in a reproducible manner.

5. Conclusions

Taken together, it is evident that the addition of the physiological advancement (fluid
flow) enhances the sensitivity of this co-culture (A549_dTHP-1) model when exposed to
the specific particles at the herein tested concentrations, which is then further increased
by implementing a more physiologically relevant exposure method (i.e., aerosolization
of the particles, compared to quasi-ALI). However, with all things, the additions of these
methods need to be balanced with the potential for the model to be implemented within
other laboratories (both experience and monetary costs) and for the models to be further
used as a part of the battery of models used for standard toxicological testing in the future.
In conclusion, all future experimental work needs to consider the addition of physiological
enhancements as well as exposure time and duration.
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