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Abstract
This paper extends a series of deep learning models developed on US equity data to the Australian market. The model

architectures are retrained, without structural modification, and tested on Australian data comparable with the original US

data. Relative to the original US-based results, the retrained models are statistically less accurate at predicting next day

returns. The models were also modified in the standard train/validate manner on the Australian data, and these models

yielded significantly better predictive results on the holdout data. It was determined that the best-performing models were a

CNN and LSTM, attaining highly significant Z-scores of 6.154 and 8.789, respectively. Due to the relative structural

similarity across all models, the improvement is ascribed to regional influences within the respective training data sets.

Such unique regional differences are consistent with views in the literature stating that deep learning models in compu-

tational finance that are developed and trained on a single market will always contain market-specific bias. Given this

finding, future research into the development of deep learning models trained on global markets is recommended.

Keywords Deep learning � Machine learning � Candlesticks � Technical analysis

1 Introduction

This paper investigates the application of deep learning

models between two regionally distinct financial markets.

The aim is to determine if such financial models can

replicate their performance on regionally distinct, though

comparable, markets. Specifically, this study examines this

problem using a range of deep learning techniques

including fully connected, convolutional, and recurrent

networks. Evaluation of the performance of neural network

architectures across various regional markets is of interest

due to the different microstructure factors present within

each market. These factors impact the ability of models to

generalise across markets.

Motivation for such research is also driven by the

ongoing need of professionals to use the latest tools when

investing in financial markets. As a result of the industry-

wide push to identify investment opportunities more

accurately, there is a continuing drive towards the adoption

of predictive algorithms such as neural networks, which

have been shown to obtain significant results in several

fields, including computer vision, natural language pro-

cessing, health analytics, engineering, and game-playing

[1–9]. The attraction to such investment pursuits has driven

the value of the world’s stock markets to the point that it is

well-known that these markets comprise a substantial

quantity of global wealth. A recent estimate places the

value of the global equities market at more than USD $110

trillion [10].

The past two decades have also seen enormous growth

in the predictive power of neural networks as well as the

development of several new neural network classes such as

generative adversarial networks and transformers [11, 12].

A symbiotic increase in computational power has fuelled

the growth and widespread adoption of deep neural net-

works. This increasing use of neural networks is
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predominantly due to their ability to act as automated

pattern recognition machines that can be trained on real-

world data without an explicit theoretical basis as to the

complete inner workings of these models. As pattern

recognition machines, neural networks have been used

previously to identify patterns in the financial markets

[13–24].

Two of the most widely used neural network classes in

the financial modelling literature are convolutional neural

networks (CNN) and recurrent neural networks (RNN).

Convolutional neural networks are typically used for

computer vision tasks, such as image recognition or video

classification. However, due to their ability to extract

increasingly abstract and generalised features, they have

achieved substantial successes in a broad range of fields,

particularly in finance [25]. A common input to convolu-

tional neural networks in finance is raw numerical data. As

an example, Gudelek et al. [26] use a 2-D CNN to predict

the following day’s stock price for exchange-traded funds

(ETFs). They use trend and momentum indicators as inputs

to their CNN and are able to obtain a significant and pos-

itive return from their backtesting procedure. Hoseinzade

and Haratizadeh [27] extend the finance and deep learning

literature through the use of a 3-D CNN. They use a set of

82 variables including economic factors, technical indica-

tors and index-specific factors as inputs to this 3D-CNN.

Beyond the standard application of convolutional neural

networks to raw numerical data, there is a small, but

growing body of the literature that utilises visual financial

inputs as an alternative style of input data. From the small

number of studies, it appears that the use of visual inputs

(e.g. price or candlestick charts) is able to produce signif-

icant results [28–30]. In addition, research is ongoing to

improve our ability to understand what features of the input

data (or features extracted within hidden layers) are having

the most important effect on the learning and prediction

process. Traditional methods such as Hinton diagrams

[31, 32] are still in use in the financial literature [17], but

there is an increasing body of work that seeks to improve

upon the traditional approaches to gain insight into what

are often deemed to be black boxes [33, 34].

Recurrent neural networks make allowance for temporal

factors and are therefore often used for modelling time-

series data, particularly in finance [17, 25]. There are many

varieties of recurrent neural networks; however, the most

commonly used are the long-short term memory (LSTM)

[35] and the gated recurrent unit (GRU) [36]. One partic-

ular study of note [17] utilised recurrent neural networks

(as well as a suite of deep and machine learning models) to

predict the next day return for stocks in the S &P500 index.

They were able to achieve significant positive returns using

relatively small RNNs. Nelson et al. [37] obtained similarly

promising results, but they also provide a suite of technical

indicators as well as price history as additional inputs to the

LSTM. Matsumoto and Makimoto [38] investigated the

performance of various machine and deep learning models

in equity investing and found that LSTM models outper-

formed a range of other candidate models on the S &P500.

Similar results were also obtained by Fischer and Krauss

[19]. It is also becoming more common for a variety of

neural networks to be combined to create a hybrid network,

such as the LSTM-CNN employed by Kim and Kim [39].

A similar study by Liu et al. [40] also used an LSTM-CNN

to perform strategy analysis, as well as to improve stock

selection and timing, and found that their hybrid neural

network was able to outperform two benchmarks: the

respective index and the classic momentum strategy.

Overall, as demonstrated above, there are a variety of

ways in which financial data can be input to machine

learning models. Candlesticks are one such representation

of the standard stock time-series [41]. It has been argued

for some time that both finance academics and practitioners

would benefit from better understanding the predictive

information contained in candlestick charts (see, e.g.

[42, 43]). To this end, research has begun that examines the

ability of deep neural networks to extract such patterns

[44, 45]. Indeed, a systematic review of the contemporary

literature investigating the development and application of

machine learning to the equities markets has been recently

completed by [46] that documented the different machine

learning categories that dominate the literature. They make

three main conclusions in their review. The first is that

there needs to be an increased emphasis on the generalis-

ability of results from machine learning studies. As a result,

they suggest that models and approaches should be eval-

uated across several distinct markets in the future research.

The second conclusion notes that the use of machine

learning techniques for financial modelling work (regard-

less of whether it is a black box or not) needs to have due

consideration for the financial theory in terms of the inputs

to the model, the algorithms utilised, and the subsequent

performance analysis. They also conclude that artificial

neural networks are best suited for regression-style prob-

lems in this area, while support vector machines are better

suited for classification tasks.

In keeping with the direction of the literature, the work

of Ghoshal and Roberts [17], which was published in an

earlier volume of this journal, developed and compared

several networks trained on 22 years of US equity data.

They found that optimised neural networks outperform

standard technical and other shallow learning methods. By

examining the weight-space visualisation (Hinton dia-

grams) of their CNN, they provide a visual interpretation of

what the network has recognised as significant candlestick

sequences. Their validated best model is statistically sig-

nificantly better than random choice at predicting the
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direction of the next day’s returns. However, and in

keeping with the first conclusion of Strader et al. [46], they

did not attempt to develop or apply their model to other

markets. Such extensions are commonplace in the financial

literature. Works such as [47, 48] investigate the efficacy of

methodologies developed in one market that are then

applied to other distinct regional markets. As such, the

motivation of this current work is to extend the work of

Ghoshal and Roberts [17] to the Australian equities market

since in doing so, it will address the key research gap that

exists as their approach has not yet been applied to other

markets or over various market cycles.

The contributions of the current paper are twofold. First,

it provides a continuation study of Ghoshal and Roberts’

[17] work on Australian data as supported by the call for

future research by Strader et al. [46]. We address their

comment on the need to assess results over various market

cycles. Secondly, the universal workflow of machine

learning [25] is used to independently develop models that

best fit the Australian data. Together these contributions

address the benchmarking and application of neural net-

work models developed on one market to similar, but

geographically separated markets. As such, the key

objective of this work is to determine the performance

differential of deep learning architectures between regional

markets. An additional objective of this work is to begin to

address the lack of generalisability of results that has been

identified as a key issue in the financial literature [46].

The remainder of this work proceeds as follows: First,

the methodology is presented in Sect. 2, including

emphasis on the data, deep learning techniques and the

training methodology. The results are then discussed in

Sect. 3, where it is shown that the findings are statistically

significant. Finally, the work concludes in Sect. 4 and

future research directions are discussed.

2 Methodology overview

This section provides an overview of the methodological

details involved in this study. Neural networks have dom-

inated in popularity over the past decade as the go-to

modelling methodology for pattern recognition applica-

tions [25]. The application of these pattern recognition

models to financial data is a natural step in the application

of deep learning models, and their use within finance

research has grown substantially over the past decade [46].

The use of deep neural network architectures that follow in

this paper necessarily follows Ghoshal and Roberts [17]

given that this is a comparative study. A description of the

data used herein, and the methods used to ensure a valid

comparison with the previous work are described. Details

specific to the construction of balanced datasets are

provided to ensure conformance and reproducibility with

the methodology adopted in Ghoshal and Roberts [17].

2.1 Candlestick data

In keeping with this work being a continuation study,

candlestick data from the Australian stock market were

collected for training, validation, and test data. Ghoshal

and Roberts [17] justify the use of candlestick data as they

note that it is widely believed by technical analysts to be a

leading indicator of future price movements. The raw data

were collected for each company from the publicly avail-

able Yahoo Finance website. This included the daily Open,

High, Low, Close, Adjusted Close price and Volume data.

In their study, Ghoshal and Roberts [17] selected the US S

&P500 as their market. For consistency, comparable stocks

from the Australian ASX50 were collected. This approach

ensured that, just as with the S &P500, these 50 Australian

stocks have a significant influence on the local market. All

data were adjusted in the usual manner on a per-day basis

over the entire period by applying the ratio of the adjusted

close and the close price on each day to that day’s can-

dlestick values.

For consistency with the original research, this study

involved a binary classification for the dependent variable.

The dependent variable was either a next-day upward move

in the closing price or a next-day downward move in the

closing price. In Table 1, the standard data split, broken up

by classification, is shown. In this study, great care was

taken to ensure that the stocks selected would have suffi-

cient liquidity to allow for realistic results to be obtained.

As the Australian market is significantly less liquid than the

US market, the top set of stocks with sufficient liquidity is

much more limited. Ghoshal and Roberts [17] were able to

use a selection of 500 US stocks, where this study was

limited to just the top 50 Australian stocks. As such, the

judicious manner in which the Australian stocks were

selected did not impact upon the continuation of the orig-

inal study due to the comparable liquidity of the two sets of

equities. In addition, the resultant model architectures that

were trialled were selected with care to ensure there were

sufficient training vectors for the network to be appropri-

ately trained. In order to determine the final set of model

hyperparameters, the standard training and validation pro-

cedure was applied with the optimization goal of max-

imising the attained accuracy. Embedded within this

optimization was also consideration of the number of

trainable parameters used by the model. In the event that

two models attained similar performance, but one had

substantially fewer trainable parameters than the other, the

smaller model would be selected. The entire training and

validation process was conducted consistent with standard

practice to avoid biasing final out-of-sample results.
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2.2 Sequencing and balancing the datasets

As is well-known with binary classification tasks, and as

commented upon in Ghoshal and Roberts [17], conver-

gence of the model parameters during training was cru-

cially dependent upon having balanced input datasets. This

is a well-discussed, well-known issue in the deep learning

literature when training binary classification systems. As

can be seen in Table 1, this issue is addressed here in the

standard manner of ensuring the training data is equally

balanced between the binary values of the daily returns,

assessed close-to-close. In balancing the training data,

there are three outcomes in the raw data (assuming the

stock continues to trade): the price either increases,

remains the same, or decreases. The approach that Ghoshal

and Roberts [17] adopted was to introduce noise generated

from a Gaussian distribution (with a mean of zero and

standard deviation of 0.001) to jitter those data sets with

zero-return days into one of either the ‘UP’ or ‘DOWN’

classes. This approach satisfactorily reduces the classifi-

cation task to a binary one for the purposes of training the

model. Furthermore, to ensure the entire training dataset is

balanced, a threshold is calculated that would place 50% of

the jittered returns above that value and 50% beneath. To

reduce bias, this dataset-specific threshold was calculated

using only the training set and then applied to the training,

validation and testing datasets.

In keeping with the approach taken by Ghoshal and

Robert [17], the input datasets were then batched into

tensors of shape (20, 4). These tensors create a 20-day

historical window for each input vector consisting of the

Open, High, Low and Close prices of each day. This

window overlaps the temporally ordered input training

vectors when developing one input training vector per day.

It is argued [17] that the rationale for including this his-

torical data window is that it provides a context within

which the candlestick pattern of each day could be exam-

ined by the neural network. To ensure a fair comparison

during the current continuation study, this historical win-

dow was kept at 20 days for the Australian data as well.

Finally, each (20, 4) tensor generated (following

Ghoshal and Roberts [17]) was individually normalised to

ensure the visual appearance of the normalised candlestick

is identical to the unscaled candlestick. The (20, 4) input

data tensors were stacked into one of either the training,

validation or testing datasets, based on date, and consistent

with the approach of Ghoshal and Roberts [17]. The

resultant tensors had dimensionality (# samples in data

split, 20, 4).

2.3 Training methodology and implementation

Ghoshal and Roberts [17] did not explicitly learn any of the

standard candlestick patterns. Their approach was to allow

the deep learning models to extract potential candlestick

patterns as opposed to explicitly learning set patterns based

on established candlestick pattern theory. A significant

difference between the two approaches is the predictive

ability that emerges. Whilst learning theoretical patterns

yields apparently superior predictive power, unsupervised

learning may be better suited where the nuances contained

within the training data (such as geographical location) can

be inferred by the network itself.

In justification of their adopted approach, Ghoshal and

Roberts [17] used a variety of classic statistical models in

addition to machine learning algorithms. The deep learning

models produced the most significant results of all their

models with Z-scores up to 36.546. That particular result

was achieved using a CNN with a single convolutional

layer and a filter length equivalent to one trading day.

Given a 1-day kernel considers each candlestick individu-

ally, and the other 2- or 3-day kernels consider the 2- or

3-day candlestick patterns, this suggests that it is preferable

to allow the CNN to identify the combination of individual

candlesticks itself, rather than explicitly instructing it to

consider more than one candlestick at a time. It is well-

known that inputs that carry no information are simply

ignored by a network, and thus, in the context of this study,

the model determines during training the appropriate

number of candlesticks for its representations. The best-

performing deep learning model architectures developed

by Ghoshal and Roberts [17] were chosen for comparison

with the current study. In addition, Ghoshal and Roberts’

[17] finding that deep learning methods outperform clas-

sical machine learning methods for this task further moti-

vates this work’s emphasis on deep learning techniques.

Specifically, this work makes use of fully connected,

recurrent, and convolutional layers. The multi-layer

Table 1 Summary of final data

Data split Date range Number of ‘UP’ Number of ‘DOWN’ Total number of samples

Training 01/01/1999–31/12/2011 76,436 76,436 152,872

Validation 01/01/2012–31/12/2015 25,071 23,777 48,848

Testing 01/01/2016–31/12/2019 25,411 24,108 49,519
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perceptron (MLP) is a classic artificial neural network and

is known as a fully connected or densely connected net-

work [25]. Each neuron in each layer is connected to each

neuron in the immediately preceding and succeeding layer

(where applicable). It consists of at least three layers: an

input layer, any number of hidden layers and an output

layer. Dense layers are found in a number of other network

architectures, typically as classifiers. Although they are

also commonly used independently, meaning that the dense

layers complete both the feature extraction and

classification.

Recurrent neural networks (RNNs) retain information

from the current input using internal structures. This

retained information is replaced with each subsequent input

[25]. As a result of this information progression, they are

commonly used for natural language processing or finan-

cial time-series modelling [19, 49]. Dense layers are used

in recurrent neural networks to classify the outputs from

the recurrent layers. There are many types of RNN,

although the RNN architectures used in this study are the

long short-term memory (LSTM) [35] and the gated

recurrent unit (GRU) [36]. Both models were designed to

address the vanishing gradient problem [25]. In addition,

they share many similarities, but differ primarily because

of the gates used. As a result, the GRU also has fewer

trainable parameters.

Convolutional neural networks utilise convolutional

layers to complete feature extraction. Convolutional layers

are spatially invariant, meaning that features learnt in one

area of the input may be applied to other areas of that input.

This is a significant improvement from the MLP, since they

are spatially variant and as a result require additional

parameters to learn the same features. Dense layers are

employed in CNNs to classify the features that have been

extracted by the convolutional layers. CNNs also learn

pattern hierarchies, meaning that local features are

extracted first and then combined to create more gener-

alised global features [25]. The primary application of

CNNs is to computer vision tasks; however, they can also

be used on data such as financial time-series. For additional

information on these networks, as well as the mathematical

formulations, the reader is referred to the work of Good-

fellow et al. [50].

In order to compare the results of the models with those

of Ghoshal and Roberts [17], the same set of metrics are

adopted. Specifically, the metrics used are accuracy, pre-

cision, recall, F-score, area under the receiver operating

characteristic curve (AUC), Z-score and P value. The

standard formulation for accuracy is adopted, which rep-

resents the proportion of predictions which are correct.

This is calculated using the number of true positives (TP),

true negatives (TN), false positives (FP) and false negatives

(FN). Precision and recall can also be calculated using

these counts. Precision represents the number of true pos-

itives relative to the total number of predicted positives,

while recall represents the number of true positives relative

to the total number of actual positives. The F-score is a

combined representation of precision and recall. Following

the methodology and notation of Ghoshal and Roberts [17],

we calculate the AUC using the popular scikit-learn Python

package and then use this result to obtain the test statistic,

U, of the Mann–Whitney–Wilcoxon test as per Mason and

Graham [51]. Here, the number of positive and negative

samples in the holdout set are represented by nP and nN ,

respectively. The equivalence is then used to obtain the Z-

score. We note that the accuracy and Z-score metrics are

not directly derived from one another, and however, both

metrics do reflect similar attributes of model performance.

As such, each provides a different perspective on the

overall results. We adopt the standard formulae (in keeping

with Ghoshal and Roberts [17]) to define the following

measures:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN

Precision ¼ TP

TPþ FP

Recall ¼ TP

TPþ FN

F-score ¼ 2� Precision � Recall

Precision þ Recall

U ¼ AUC � nP � nN

Z ¼ U � lU
rU

lU ¼ nP � nN
2

rU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nP � nN � ðnP þ nN þ 1Þ
12

r

Finance-specific metrics such as profit and compound

annual growth rate (CAGR) are also included for com-

parison purposes. As per [17], the profit is formulated as a

multiple of the starting balance, while CAGR is a repre-

sentation of the annual rate of return.

CAGR ¼ BalanceEnd

BalanceStart

� �1=t

�1

The models and data manipulation were implemented in

Python 3.7.6 using TensorFlow 2.2.0. The typical training

time for each model on an NVIDIA GeForce RTX 2080Ti

averaged between five and ten minutes each with early

stopping enabled. Automated routines were developed

specific to this study to ensure a fair and efficient coverage

of the parameter phase-space for both models. Training the

US-validated model on the Australian data was a

straightforward procedure as no model validation was
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required. The training and validation data splits were used

to ensure the best possible alternative model was developed

for the Australian market. The comparison of the results of

these models is now detailed.

3 Discussion of results

Tables 2, 3 and 4 present the structure of the MLP, CNN

and RNN models trained and validated on the Australian

regional data. Interestingly, like the US-validated models,

the Australian-validated models share the same general

structure, in terms of the number of layers and the number

of neurons within those layers.

Utilising the Z-scores as a measure of the efficacy of

each model [17], the continuation study did not return the

same level of significance compared to the original finan-

cial study overall but did perform better on a few of the

metrics, as shown in Table 5. The results for US data were

obtained from [17], and those reported for Australian data

were completed by this study. These initial results were

inconclusive as to the efficacy of the model replication. It

was proposed to extend the study to include a model

chosen by validation of several original models trained on

the Australian data. This extension therefore investigates

the effect of market-specific microstructure factors on the

selection of the final model architecture.

Upon training these models, every originally developed

and Australian data validated model generated more

favourable results (for most metrics) than those produced

by the American data validated (albeit retrained on the

same Australian data) model. From the perspective of deep

learning model construction, these better results were

achieved with significantly fewer trainable parameters, as

shown in Table 6. Given these current results could not

statistically discriminate between the predictive capabili-

ties of the best-performing models, the LSTM and 1-Day

CNN, the standard practice of choosing the architecture

with the fewer weights was used to nominate the best

model. This standard practice is the application of Occam’s

razor for deep learning models [52]. In this case, given the

CNN has utilised 15 times as many weights, the LSTM is

thus chosen to be the superior model. In addition, the

LSTM is designed for tasks with temporal elements,

whereas the CNN is not. This acts as additional support for

this selection of the LSTM model. It may also help to

explain why comparable results were obtained by the

LSTM, but with far fewer trainable parameters.

It is interesting to note that Ghoshal and Roberts’ [17]

final models were also substantially larger than those val-

idated in this study (see Table 6). Consequently, it is pro-

posed that, because the Australian market is smaller and

less liquid than the US market, fewer significant features

can be extracted. This is in keeping with network capacity

being proportionate to the size and liquidity of the market

of interest. Utilising larger networks validated on larger

markets results in masking out the key small regional

market features due to the excess capacity of the networks.

That is, the excess capacity masks out the other factors that

clearly had a larger relative influence in the Australian

market. As a result of this, a model developed on multiple

regional markets would necessarily need a significantly

deeper structure to extract the individual regional market

factors.

The practical applications of this work appear in an

examination of a simple trading strategy over the holdout

test period using the Australian-validated LSTM. Follow-

ing the methodology adopted by Ghoshal and Roberts [17],

the strategy takes positions in those stocks for which the

predicted probability on the day exceeds the centile

threshold. We determine this centile threshold using the

training set and each position is an equally weighted pro-

portion of the portfolio value. The same range of transac-

tion costs used by Ghoshal and Roberts [17] is

implemented here, and the cumulative profit and CAGR

results are presented in Table 7. There are some striking

differences in the results shown in this table, and however,

given the differences between the markets (such as regu-

lation and the number of market participants), this variation

is to be expected and within reasonable bounds. In addi-

tion, Ghoshal and Roberts [17] reported breakeven at a

transaction cost of 0.35%, whilst the Australian model

breaks even at 0.26%.

Table 2 The validated MLP

architecture for the Australian

market

Layer # Layer type Neurons Dropout Activation function Output shape

1 Input – – – (20,4)

2 Flatten – – – (80)

3 Dense 32 – ReLU (32)

4 Dropout – 0.3 – (32)

5 Dense 32 – ReLU (32)

6 Dropout – 0.3 – (32)

7 Dense 2 – Softmax (2)

Neural Computing and Applications

123



Table 3 The validated CNN

architecture for the Australian

market

Layer # Layer type Neurons Dropout Activation function Kernel size Output shape

1 Input – – – – (20,4,1)

2 Conv2D 8 – ReLU (1,4) (20,4,8)

3 Flatten – – – – (640)

4 Dense 16 – ReLU – (16)

5 Dropout – 0.3 – – (16)

6 Dense 8 – ReLU – (8)

7 Dropout – 0.3 – – (8)

8 Dense 2 – Softmax – (2)

Table 4 The validated LSTM/

GRU architecture for the

Australian market

Layer # Layer type Neurons Dropout Activation function Output shape

1 Input – – – (20,4)

2 LSTM/GRU 8 – Tanh (8)

3 Dense 16 – ReLU (16)

4 Dropout – 0.3 – (16)

5 Dense 8 – ReLU (8)

6 Dropout – 0.3 – (8)

7 Dense 2 – Softmax (2)

Table 5 Summary of Ghoshal

and Roberts’ model results
Model Precision Recall F-Score AUC P Value Z-Score Test accuracy (%)

MLP (US) 0.497 0.496 0.496 0.511 \0.0001 23.766 50.60

MLP (AU) 0.515 0.945 0.666 0.503 0.1246 1.152 51.46

1-Day CNN (US) 0.509 0.512 0.51 0.518 \0.0001 36.546 51.3

1-Day CNN (AU) 0.519 0.741 0.611 0.509 0.0003 3.405 51.50

2-Day CNN (US) 0.510 0.510 0.510 0.515 \0.0001 31.291 51.20

2-Day CNN (AU) 0.524 0.596 0.558 0.513 2.87E-07 5.000 51.52

3-Day CNN (US) 0.508 0.510 0.509 0.515 \0.0001 31.423 51.20

3-Day CNN (AU) 0.525 0.550 0.537 0.513 4.45E-07 4.915 51.37

LSTM (US) 0.506 0.510 0.508 0.510 \0.0001 19.616 50.80

LSTM (AU) 0.523 0.658 0.583 0.513 1.43E-07 5.132 51.71

GRU (US) 0.503 0.508 0.506 0.512 \0.0001 24.880 50.90

GRU (AU) 0.529 0.434 0.477 0.514 6.69E-08 5.274 51.16

Table 6 Summary of model results on Australian data

Model Precision Recall F-score AUC P value Z-Score Test accuracy (%) Model parameters

G &R MLP 0.515 0.945 0.666 0.503 0.1246 1.152 51.46 9,474

AU MLP 0.531 0.525 0.528 0.518 1.73E-12 6.958 51.82 3,714

G &R 1-Day CNN 0.519 0.741 0.611 0.509 0.0003 3.405 51.50 45,354

AU 1-Day CNN 0.524 0.756 0.619 0.516 3.77E-10 6.154 52.23 10,450

G &R LSTM 0.523 0.658 0.583 0.513 1.43E-07 5.132 51.71 5,282

AU LSTM 0.535 0.542 0.538 0.523 0 8.789 52.33 714

G &R GRU 0.529 0.434 0.477 0.514 6.69E-08 5.274 51.16 5,202

AU GRU 0.535 0.504 0.519 0.521 1.11E-16 8.165 52.07 634

Bold indicates new results produced in this study
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The weight-space visualisations shown in Fig. 1 and 2

are known as Hinton diagrams. White and black squares

indicate positive and negative values, respectively, while

the size of the square indicates the magnitude of the value.

Ghoshal and Roberts [17] experimented with a variety of

filter sizes, 1, 2 and 3 day, and generated the associated

Hinton diagrams. Figure 1 presents the Hinton diagrams

from the 1-day CNN of the current study, which is notably

different to the diagrams in Ghoshal and Roberts [17]) (see

Fig. 2), and consequently demonstrates the difference in

features extracted for each market. While an exact inter-

pretation is known to contain a subjective element, there

can be no doubt about the markedly different patterns

produced. This represents further evidence that the models

themselves have extracted inherently different features.

4 Conclusion and future research

This paper has extended an important recent US study on

Australian data. Upon retraining the original US-validated

architectures on Australian data, the results underper-

formed their earlier performance, suggesting that the US

models could not exploit the regional specifics of an

Australian market. In comparison, the newly validated

Australian models significantly outperformed these original

architectures. These results are attributable to the differ-

ence in microstructure factors across markets, which

impact upon the selection of the final network architecture.

Specifically, we find that the Australian-validated LSTM

and CNN obtain the most significant results, although the

LSTM achieves slightly superior results with 15 times

fewer parameters. Given the outperformance of the Aus-

tralian-validated models over those validated in the US, we

propose that regional-specific models are required, that is,

the model architectures need to be optimised for each

market of interest. As such, a machine learning expert is

still required to develop the network architecture as models

developed on other markets cannot be effectively applied

to a new market. This has implications for both practi-

tioners and researchers in computational finance.

In addition, this study is part of an effort to overcome

the lack of generalisability of results, which was an issue

identified in a published survey and analysis of the relevant

financial modelling literature. This is a notable contribution

since many existing studies do not consider the effect that

market-specific factors have upon model performance, that

is, the transferability of results between markets. A simple

trading strategy is developed, which produced above-

market returns on the holdout test data. It is suggested that

further work be completed to investigate the effect of

slippage and other real-world considerations such as the

validity of assessing returns close-to-close.

Future research should be conducted on additional

regional markets to confirm the findings of this work.

Additionally, an open research question is whether a model

can be developed and trained across several regional

markets with comparable accuracy to the models already

developed. Such a model would undoubtedly require a very

deep neural network to enable it to infer regional factors.

Necessarily this would require additional independent

variables, over and above the candlestick data, to be

included in the training data for any proposed global

model.
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Table 7 Comparison of cumulative profits (as a multiple of the

starting balance) and compound annual growth rates (%)

Transaction costs G &R US results Australian Results

Profit CAGR (%) Profit CAGR (%)

Frictionless 48.2 42.50 8.47 70.58

0.1% per transaction 34.1 38.20 3.73 38.94

0.25% per transaction 13 27.13 1.08 2.05

Fig. 1 Weight-space visualisation of convolutional layer (Hinton

Diagrams) for the current study

Fig. 2 Hinton diagrams for Ghoshal and Roberts’ study
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