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A B S T R A C T   

Heating decarbonisation through electrification is a difficult challenge due to the considerable increase in peak 
power demand. This research proposes a novel modelling approach that utilises easily accessible national-level 
data to identify the required heat storage volume in buildings to decrease peak power demand and maximises 
carbon reductions associated with electrified heating technologies through smart demand-side response. The 
approach assesses the optimal shifting of heat pump operation to meet thermal heating demand according to 
different heat storage capacities in buildings, which are defined in relation to the time (in hours) in which the 
heating demand can be provided directly from the heat battery, without heat pump operation. Ten scenarios (S) 
are analysed: two baselines (S1–S2) and eight load shifting strategies (S3–S10) based on hourly and daily 
demand-side responses. Moreover, they are compared with a reference scenario (S0), with heating currently 
based on fossil fuels. The approach was demonstrated in two different regions, Spain and the United Kingdom. 
The optimal heat storage capacity was found on the order of 12 and 24 h of heating demand in both countries, 
reducing additional power capacity by 30–37% and 40–46%, respectively. However, the environmental benefits 
of heat storage alternatives were similar to the baseline scenario due to higher energy consumption and marginal 
power generation based on fossil fuels. It was also found that load shifting capability below 4 h presents limited 
benefits, reducing additional power capacity by 10% at the national scale. The results highlight the importance of 
integrated heat storage technologies with the electrification of heat in highly gas-dependent regions. They can 
mitigate the need for an additional fossil-based dispatchable generation to meet high peak demand. The 
modelling approach provides a high-level strategy with regional specificity that, due to common datasets, can be 
easily replicated globally. For reproducibility, the code base and datasets are found on GitHub.   

1. Introduction 

In-home thermal energy storage (TES) solutions can support the 
rapid decarbonisation of the domestic heating sector if correctly inte
grated with energy-efficient buildings and electrified heating technolo
gies. This work deals with the problem of assessing, country by country, 
the optimal thermal storage capacity to support smart demand-side 
response (DR) in heating electrification. The aim is to reduce the 
required national power capacity while mitigating carbon emissions. An 
energy modelling approach using widely available data of heating 

demand, electricity generation and associated carbon emissions is pre
sented, which evaluates thermal load shifting strategies in the context of 
a country’s electricity generation mix and heating electrification effort. 

The complete decarbonisation of the domestic space and water 
heating sector is extremely challenging but a requirement in the global 
effort to mitigate greenhouse gas (GHG) emissions [1,2]. A promising 
solution toward a future low-carbon heating sector is energy-efficient 
buildings with thermal energy storage (TES) solutions integrated with 
electrified low-carbon technologies such as heat pumps (HPs) [3,4]. 
However, in the long term, the decarbonisation of heat through elec
trification needs to be coupled with the successful decarbonisation of the 
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electricity grid [5,6], which makes it more challenging [7]. Depending 
on the heating technologies deployed and the degree of consumer 
behavioural change, a significant increase in peak power demand might 
be observed. These peaks may not align well with renewable generation 
such as solar and wind which may cause significant adverse conse
quences on carbon emissions in the short term, increasing peak power 
generation capacity from fossil fuel sources. The distributed nature of 
electrification is also likely to put low-voltage distribution networks that 
deliver power from the substations to end-users through residential 
streets, underer significant strain [8]. 

Heating electrification’s impact has been previously studied na
tionally, with important implications in highly gas-dependent regions. 
Borge-Diez et al. [9] compared HPs and natural gas boilers for heating 
and concluded that the projected cost of HPs may be cheaper. The study 
showed that 90% of Spain can be covered with this approach by 2050. 
Love et al. [10] evaluated an aggregated load profile using data from 
696 heat pumps in Great Britain. They found that peak grid demand may 
increase by 7.5 GW (14%), with 20% of households installing heat 
pumps. Watson et al. [11] predicted peak domestic heat demand in 
Great Britain ranged from 159 GW to 170 GW depending on the annual 
ambient temperature. In an updated study, they reported a potential 
peak heat demand of 157 GW [12]. 

Energy flexibility, in a variety of forms, is being widely investigated 
to help accommodate demand growth and variable renewable genera
tion on low-carbon electricity networks [13–17]. Integrated TES solu
tions and flexible buildings using smart DR may offer more efficient and 
accessible alternatives to home batteries or vehicle-to-grid (V2G) 
[18–20]. Thermal batteries are claimed to be 60–90% cheaper, being a 
much more cost-effective solution for providing energy for heat than the 
cheapest Li-ion alternative [3]. The opportunity for flexible energy 
systems based on heat storage to support heating electrification is 
moving rapidly through global energy policy discourse [3]. Lizana et al. 
[21] demonstrated how energy flexible buildings could support the 
network by efficiently shifting heat consumption to off-peak hours, 
achieving economic savings of 20% for end-users and 25% for retailer’s 
associated electricity costs due to the advantage of cheaper and 
low-carbon energy generation technologies. Several studies have iden
tified electricity system benefits from heat storage, including reduced 
wind curtailment and lower generation capacity requirements for heat 
electrification [22–24]. Moreover, to support electricity 

decarbonisation, the ElectricityMap project, built by Tomorrow [25], 
provides access to real-time data from power generation and associated 
carbon intensities around the world [26], along with the short-term 
forecasting of hourly average marginal carbon intensity values [27]. 
This data can support load shifting towards lower carbon intensity pe
riods. However, most of the previous studies on heating flexibility spe
cifically focus on specific building cases or clusters of buildings, not 
considering the implications of heat batteries for load aggregation at the 
national level [28]. The optimal thermal storage capacity in flexible 
heating to maximise carbon reductions without dramatically increasing 
power capacity is highly dependent on the heating demand volume per 
country, existing electricity demand profile and available generation 
technologies. These optimal heat storage alternatives may differ by 
country and should be promoted explicitly through future regulations 
toward efficient and low-carbon heating electrification. There is a need 
to understand the implications of heat storage on load aggregation 
following energy flexibility strategies to shape sustainable power sys
tems based on renewable energy sources. 

This work proposes a novel top-down energy modelling approach 
that utilises easily accessible national-level data to analyse the impli
cations of in-home heat batteries on heating electrification following 
energy flexibility strategies. The aim is to identify the optimal TES ca
pacity for DR in electrified heating technologies per region that mini
mises additional power capacity while maximising carbon reductions, 
which should be promoted in new residential heating technologies. The 
approach assesses the optimal shifting of heat pump operation according 
to different heat storage capacities. These TES capacities are defined in 
relation to the time (in hours) in which the heating demand can be 
provided directly from the heat battery, without heat pump operation. 
The novelty is based on top-down national energy modelling of different 
smart DR response alternatives using easily accessible national-level 
data on heating demand, power generation and associated carbon 
emissions. The approach can be easily applied to other regions making 
direct comparisons possible. 

The model scope is limited to the residential sector and short-term 
targets since it is based on the existing performance of the electricity 
grid and residential heating demand patterns. In this study, the short- 
term electrification target was defined as 10% of existing non- 
renewable residential final energy consumption (FEC) of heating per 
country, according to Eurostat [29]. This fraction involves current FEC 

Nomenclature 

BCI hourly average baseline carbon intensity rate, gCO2eq/kWh 
cc maximum heating capacity constraint, MW 
CI hourly average carbon intensity rate, gCO2eq/kWh 
COP coefficient of performance 
DHC district heating and cooling 
DR demand-side response 
DRs hourly demand response pattern per scenario 
DSM demand-side management 
EC baseline of power consumption per hour, MW 
EF improvement in energy efficiency, % 
f fraction of annual non-renewable heating demand 
FEC final energy consumption, MW 
GHG greenhouse gas 
GHGs total carbon emissions per scenario, Mtonnes gCO2eq 
gridfactor average transmission and distribution losses 
HD thermal heating demand, GWh 
HDD heating degree days 
HP heat pump 
IPCC Intergovernmental Panel on Climate Change 
LOAD hourly electricity power demand, MW 

m multiplier to normalised heating demand 
MCI hourly average marginal carbon intensity rate, gCO2eq/ 

kWh 
S scenario 
sCOP seasonal coefficient of performance 
sf shape factor to balance heating demand below cc 
TABS thermally activated buildings systems 
Teff typical efficiencies of heating technologies 
TES thermal energy storage 
TESC thermal energy storage capacity in time per scenario, hours 
TESlosses increase in energy consumption due to thermal losses, % 
UCI hourly average updated carbon intensity rate, gCO2eq/kWh 
UK United Kingdom 
V2G vehicle-to-grid 
WIND additional wind power generation per hour, MW 

Subscript 
h hour 
i heating sector: space heating (sh) or hot water (w) 
s scenario 
sh space heating 
w hot water  
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for heating based on solid fossil fuels, natural gas and oil and petroleum 
products. 

Two baseline scenarios without heat storage were defined. One in
volves direct heating electrification (scenario S1), and another consists 
of heating electrification with demand reduction by 20% due to im
provements in energy efficiency in buildings (S2). Next, eight load 
shifting scenarios for heating electrification through different hourly 
and daily DR strategies were evaluated through a parametric analysis. 
They also involve a heating demand reduction of 20%. Moreover, they 
are compared with a reference scenario (S0), with heating currently 
based on fossil fuels. 

The top-down modelling approach is divided into five steps: (1) 
Calculation of hourly heating demand; (2) Definition of demand sce
narios with and without smart DR; (3) Definition of projected grid sce
nario related to expected renewable generation; (4) determination of 
additional electricity load per demand scenario; and (5) calculation of 
GHG emissions. The method was tested and demonstrated in two re
gions, Spain and the United Kingdom (UK). These regions were selected 
in order to compare heat storage implications for heating electrification 
in two contexts characterised by different electricity demand profiles, 
generation technologies and heating needs. The renewable power gen
eration mix in the UK’s electricity grid was responsible for 24.4% in 
2018, while it was 37.2% in Spain. The non-renewable heating sector of 
households is responsible for 19.4% of total FEC in the UK, while it only 
represents 6% in Spain [29]. 

The paper is structured as follows. Data sources and methods are 
described in section 2. The results and discussion are detailed in section 
3, divided into four subsections: analysis of input data, analysis of output 
results, policy implications, and limitations of the study. Finally, con
clusions are presented. 

2. Data and methods 

A schematic diagram of the top-down energy modelling using na
tional data to evaluate the implications of heat storage for heating 
electrification is provided in Fig. 1. It illustrates the input data and 
methods defined in the analysis. Input data per country are obtained 
from four different databases: Eurostat open dataset (A), International 
Energy Agency (B), Data Platform: When2Heat (C), and ElectricityMap 
database (D). The approach is divided into five steps: heating demand 
(1), demand scenarios (2), grid scenario (3), electricity load (4), and 
GHG emissions (5). The approach was developed using Python. The 
source code and datasets are published on GitHub (https://github. 
com/lizanafj/national-data-based-energy-modelling) together with 
additional documentation. Data and methods are described in detail in 
sections 2.1 and 2.2, respectively. 

This modelling approach can support the decision-making process 
for short-term residential electrification targets on a national scale since 
it is based on real national data regarding heating demand patterns and 
electricity generation. The method was demonstrated in two countries, 
Spain and the UK, using data for 2018 and 2019. However, the approach 
is designed to be broadly applicable to countries across Europe ac
cording to data available in selected open-access databases. 

2.1. Data per country 

This section describes the four databases and the specific input data 
required for the analysis, previously summarised in Fig. 1. 

The Eurostat open dataset [29] provides data on annual 
non-renewable FEC of heating demand for space heating and hot water 
per country. These data were also complemented with national data, 
where available, such as those reported by the government of the UK 
[30]. Two years were selected for the analysis, 2018 and 2019, before 
the COVID-19 pandemic. Extracted and reassembled data were con
trasted with existing reports [31,32] to ensure an accurate data selec
tion. Additionally, average heating degree days (HDDs) per country 

were extracted to convert the annual heating demand for space heating 
into a monthly distribution. 

Data provided by the International Energy Agency [5] regarding 
typical efficiencies (Teff) of heating technologies are used to calculate 
annual thermal heating demand using non-renewable FEC of heating per 
country. They are summarised in Table 1. 

The When2Heat dataset [33–35] is used to define hourly heat de
mand patterns to increase the resolution of monthly data into hourly 
demand. This dataset includes simulated hourly country-aggregated 
heat demand and coefficient of performance (COP) time series for 28 
European countries. Heat demand is calculated based on standard gas 
load profiles and reanalysis data of temperature and wind speed. Spatial 
heat demand is aggregated for each country using population-weighting 
and scaled to final national energy consumption for heating from the EU 
Building Database. COP values are calculated based on reanalysis data of 
temperature and wind speed and manufacturer data, then aggregated to 
national-level values based on heat demand. These data are used to 
define average annual normalised hourly residential space and water 
heating demand profiles, as shown in Fig. 2, and seasonal COP values of 
space heating and hot water cycles for each month per country, as shown 
in Fig. 3. The COP value for an air-source heat pump with radiators is 
used for space heating since this is the most common configuration in 
Spain and the UK [10,36]. It can be appreciated how normalised resi
dential demand profiles (Fig. 2) are similar (not identical), perhaps due 
to similar lifestyle habits, while the seasonal COP (Fig. 3) is affected by 
average climate conditions per region. 

ElectricityMap database [25] was used to obtain operational data for 
the electricity system, in this case for Spain and the UK. Electricity Map 
collects real-time data from power generation and imports/exports 
worldwide. Datasets for the same period, 2018 and 2019, were used 
with an hourly resolution, containing data associated with power pro
duction, power consumption, average carbon intensity and average 
marginal carbon intensity rates, among others. The input data selected 
are summarised in Table 2. 

Power consumption refers to the total hourly power consumed per 
region (in MW), involving production and imports by generation tech
nology. Power production is associated with the hourly power produc
tion per region (in MW), which differs from consumption since it doesn’t 
include imports. Also, production excludes storage or discharge. 

Hourly average carbon intensity (gCO2eq/kWh) provided by Elec
tricityMap [25] was calculated considering hourly power consumption 
by generation technology (including imports) and using carbon emission 
intensities per generation technology derived from IPCC 2014 [37,38], 
detailed in Table 3. They are based on the global warming potential unit 
(carbon dioxide equivalent, kgCO2eq) per kilowatt-hour (kWh). These 
emissions include the entire lifecycle of the generation technology, from 
material and fuel mining through construction to operation and waste 
management. Further details on country-specific values are provided in 
the GitHub repository [39]. 

Hourly marginal carbon emission intensity (gCO2eq/kWh) provided 
by ElectricityMap [25] was calculated using a machine learning 
regression algorithm on historical load and generation data per country 
[40]. Flow tracing of marginal electricity sources from in-country gen
eration and cross-border imports is used to create a marginal topology 
matrix of the fractional sources of a marginal unit of electricity 
consumed in each country for every hour of historical data. Historical 
data was also used to infer the marginal generation types for each 
country, and marginal generation emissions were estimated based on 
generation types and shares. Finally, each country’s marginal emissions 
of power consumption were calculated as the average of generation 
emissions from each marginal generation country, weighted by the share 
of marginal electricity from each country. 

2.2. Methods: a top-down energy modelling using national data 

The performance of TES in buildings at a national scale to support 
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Fig. 1. Schematic diagram of workflow explaining the top-down energy modelling using national data to evaluate the implications of heat storage for heating electrification.  
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heating electrification and decarbonisation is evaluated through five 
steps, previously illustrated in Fig. 1: (1) Calculation of hourly heating 
demand; (2) definition of demand scenarios with and without smart DR; 
(3) definition of projected grid scenario related to expected renewable 

generation; (4) determination of additional electricity load per demand 
scenario; and (5) calculation of GHG emissions. Further details of the 
process are detailed below. 

2.2.1. Calculating hourly heating demand 
Thermal heating demand (HDi) for electrification per country, 

involving space heating and hot water demand, was defined as a short- 
term reference target of 10% of current annual non-renewable FEC for 
heating in households. This FEC target value was obtained from the 
Eurostat open database [29], considering heating associated with solid 
fossil fuels, natural gas and oil and petroleum products [29,30]. 

Firstly, the annual thermal heating demand per space heating and 
hot water (HDi, MWh) was calculated according to Eq. (1), considering 
typical efficiencies of heating technologies by fuel, as defined in Table 1 

Table 1 
Typical efficiencies (Teff) of heating technologies. Data source: IEA [5].  

Heating technology Efficiency (Teff) Fuels 

Conventional boilers/furnaces 0.60–0.84 Oil, natural gas 
Condensing boilers 0.85–0.97 Oil, natural gas 
Wood stoves/furnaces <0.70 Biomass 
High-efficiency fireplaces 0.70–0.80 Biomass, natural gas 
Heat pumps (electric) 2.0–6.0 Electricity  

Fig. 2. Normalised heating demand patterns for space and water heating for Spain (a) and the UK (b), based on the When2Heat dataset.  

Fig. 3. Monthly COP values for space heating with an air-source heat pump and radiator (red line); and for hot water heating with an air-source heat pump (orange 
line) for Spain (a) and the UK (b), based on the When2Heat dataset. 
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by the IEA [5] (section 2.1). 

HDi =
∑n

fuel
FECi,fuel⋅Teffi,fuel (1)  

where: 
HDi: annual thermal heating demand (GWh/year). 
i: space heating (sh) or hot water (w). 
FECi,fuel: final energy consumption per fuel in GWh according to Eurostat 

[29]. 
Teffi,fuel: Typical efficiency for heating technologies by fuel, reported in 

Table 1. 
Secondly, monthly thermal heating demand values (HDi,month, MWh) 

were obtained according to Eq. (2), which considers a constant distri
bution throughout the year for hot water demand, while monthly space 
heating demand was calculated according to the monthly fraction of 
heating degree days (HDD) reported by Eurostat [29]. In this step, the 
electrification target (f) for non-renewable heating is implemented, 
previously defined as 10%. 

HDsh, month = f ⋅1000⋅
(

HDsh
HDDmonth

HDDtotal

)

HDw,month = f ⋅1000⋅(HDw
1
12

) (2)  

where: 
HDsh: annual thermal heating demand for space heating. 
HDw: annual thermal heating demand for water heating. 
HDsh, month: monthly thermal heating demand for space heating (MWh/ 

month). 
HDw, month: monthly thermal heating demand for hot water (MWh/ 

month). 
HDDtotal: heating degree days per year. 
HDDmonth: heating degree days per month. 
f: fraction of annual non-renewable heating demand for the analysis 

(defined as 10% of current FEC for heating based on fossil fuels). 
Finally, once monthly values were determined, they were resampled 

in an hourly frequency using normalised heating demand profiles for 
space heating and hot water, separately, according to Eq. (3). Normal
ised demand patterns were explicitly obtained per country from 
When2Heat dataset [33–35]. 

HDi,h =
HDi, month

Days month
⋅Patterni,h (3)  

where: 
HDi,h: hourly thermal heating demand (MW/hour). 
i: space heating (sh) or hot water (w). 
HDi, month: monthly thermal heating demand (MWh/month). 
Days month: number of days per month. 
Patterni,h: normalised heating demand pattern. 
This approach makes the method widely applicable to other regions 

by lowering the input data required to those widely available in existing 
databases. 

2.2.2. Definition of demand scenarios 
This method evaluates heat demand for heating electrification 

through a parametric analysis of ten scenarios. The scenarios, which are 
summarised in Table 4, are obtained in the two-stage process described 
below. 

The first stage (2.1 in Fig. 1) defines the baseline for heating elec
trification with no TES. It involves two scenarios (S1 and S2). S1 consists 
of a direct electrification baseline where electricity is consumed ac
cording to heating demand, while S2 includes improvements in the 
energy efficiency of buildings in order to reduce heating demand by 
20%. This S2 demand scenario is used as a reference demand for next 
scenarios (from S3 to S10), and in section 2.3.3 to define the projected 
renewable generation capacity. 

The second stage (2.2 in Fig. 1) evaluates heating demand alterna
tives by implementing TES and DR. Scenarios are grouped into shifting 
strategies with TES for hourly DR (S3–S6) and TES for daily DR 
(S7–S10). Hourly DR scenarios (S3–S6) use a heat storage capacity 
ranging from 2 to 12 h. Daily DR scenarios (S7– S10) simulate heating 
electrification using a heat storage capacity ranging from 1 to 2.5 days of 
thermal heating needs. In these scenarios, heating demand is evaluated 
from the point of view of electricity load, not the supply of thermal 
heating to the users. Thus, HP operation is shifted per scenario according 
to implemented TES capacity to store the required heat to meet refer
ence heating demand (demand of S2), and the operation period is mainly 

Table 2 
Main indicators of ElectricityMap database used.  

Indicator Units Nomenclature in ElectricityMapa Description 

Power consumption MW power_consumption_avg Production + Discharge + Import - Export - Storage 
Power consumption by generation technology MW power_consumption_source_avg Associated with consumption, which considers imports 
Percentage of renewablesb % power_origin_percent_renewable_avg In consumption 
Power production MW power_production_avg Production excludes storage or discharge 
Power production by generation technology MW power_production_source_avg  
Percentage of renewables % power_production_percent_renewable_avg In production 
Average carbon intensity gCO2eq/kWh carbon_intensity_avg Average carbon intensity associated with total 

consumption, which considers imports 
Average marginal carbon intensity gCO2eq/kWh marginal_carbon_intensity_avg Average marginal carbon intensity associated with the 

marginal power for additional load  

a Default nomenclature used in the ElectricityMap database. 
b Renewables include hydro, wind, solar, biomass and geothermal energy. 

Table 3 
CO2-eq intensity per generation technology.  

Origin Technology Carbon intensity (gCO2eq/kWh)a 

Renewables Solar 45 
Geothermal 38 
Wind 11 
Hydro 24 
Biomass 230 

Storage Battery discharge 301 
Hydro discharge 301 

Nuclear Nuclear 12 
Combustible fuels Gas 490 

Oil 650 
Coal 820 
Unknown 700  

a Average carbon intensity, including the whole life of the source, is derived 
from IPCC 2014 [37,38]. 
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increased according to heat losses during heat storage periods. 
All proposed scenarios were also compared with a reference scenario 

S0, representing the current GHG emissions of the heating demand 
volume evaluated based on the 10% of FEC for residential heating 
currently supplied by fossil fuels. 

TES alternatives are characterised by considering the different TES 
available technologies for buildings [41], summarised in Fig. 4. The 
shifting capacity of heating demand can be configured through different 
TES applications such as increasing building heat storage capacity 
(thermal inertial), implementing thermally activated buildings systems 
(TABS), heat storage components in ventilation systems, or heat batte
ries in the form of tanks. According to hourly or daily heating needs, 
these different TES applications can be specifically designed and com
bined to meet the timeframe in which thermal heating supply should be 
directly obtained from the heat battery without HP operation. 

To evaluate the DR scenarios through different TES alternatives, the 
following assumptions are made:  

(a1) The heat storage capacity per scenario is defined by time, 
meaning the period in hours that thermal heating supply can be 
directly obtained from the heat battery without power con
sumption for HP operation. This assumption makes the model 
results widely scalable to different building sizes.  

(a2) All scenarios have constraints associated with the maximum 
heating capacity (defined in Table 4), assuming that a similar 
heat pump size to the baseline scenario (S1) would be used. These 
constraints ensure that the shifting of HP operation never in
creases peak power demand for hourly DR strategies,limiting 

shifting capacity between 70 and 80% of HP capacity in these 
scenarios; and maximise shifting capacity for daily DR strategies 
assuming a moderate capacity increase by up to 10%.  

(a3) FEC of heating electrification using TES is increased in order to 
consider thermal losses during the thermal storage period. The 
values used are detailed in Table 4, according to data reported by 
previous studies [21,41–44]. 

Eq. (4) is proposed to evaluate the hourly heating demand per DR 
scenario with TES. It consists of an iterative rule-based process as a 
function of the heat storage capacity in time (hours), hourly average 
baseline carbon intensity rate (BCIh) as a penalty signal, maximum 
heating capacity according to baseline capacity in S1, and thermal losses 
(TESlosses). The system balances thermal heating demand per scenario 
according to the proposed TES capacity, ensuring that the maximum 
hourly heating capacity is below the defined constraint and total flexible 
heating consumption is equal to the projected heating demand. Eq. (4.1) 
defines the demand pattern according to lower BCI rates and existing 
demand patterns. Eqs. (4.2), (4.3) and (4.4) normalise the defined de
mand pattern according to existing heating demand, and increment 
heating consumption according to TES losses (TESlosses,s) during storage 
periods. Eq. (4.5) calculates total heating demand according to the 
defined demand pattern (HDs,h). Finally, after every iteration, the shape 
factor (sf) is increased by 0.001 in order to decrease the maximum 
heating capacity of the system. If max(HDs,h) is still higher than max 
(HDs1,h)⋅cc, the loop starts again, increasing sf by 0.001. 

Table 4 
Demand scenarios for heating electrification.  

Scenarios TES capacitya (demand in hours) Maximum heating capacity constraint (cc, MW) Energy consumption increaseb (%) 

S0. Fossil fuels (reference) – – – 
No DR strategies 
S1. Baseline – – – 
S2. Baseline +20% efficiency – – – 
Hourly DR strategies 
S3. Baseline +20% efficiency + TES (2 h) 2 h max(S1) ⋅ 0.70 +1.0% 
S4. Baseline +20% efficiency + TES (4 h) 4 h max(S1) ⋅ 0.75 +1.5% 
S5. Baseline +20% efficiency + TES (6 h) 6 h max(S1) ⋅ 0.80 +2.0% 
S6. Baseline +20% efficiency + TES (12 h) 12 h max(S1) ⋅ 1.00 +4.0% 
Daily DR strategies 
S7. Baseline +20% efficiency + TES (24 h) 1 day max(S1) ⋅ 1.05 +8.0% 
S8. Baseline +20% efficiency + TES (36 h) 1.5 days max(S1) ⋅ 1.05 +12.0% 
S9. Baseline +20% efficiency + TES (48 h) 2 days max(S1) ⋅ 1.10 +15.0% 
S10. Baseline +20% efficiency + TES (60 h) 2.5 days max(S1) ⋅ 1.10 +18.0%  

a TES capacity in hours represents the period when thermal heating supply can be directly obtained from the heat battery without HP operation. 
b The increase in energy consumption is related to the thermal losses during the thermal energy storage period. 

Fig. 4. Heat storage alternatives in buildings for hourly and daily DR strategies in heating electrification.  
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sf = ​ 0

while ​ max(HDs, h) ​ > ​ max(HDs1, h)⋅cc :

​ (4.1) DRs,i,h =

{
1 if BCIh < 50thpercentile every TESCs

sf ⋅Patterni,h otherwise

​ (4.2) HDs,i,h =
HDi, month⋅EF

Days month
⋅DRs,i,h

​ (4.3) m =
∑

HDs2,i,h
/∑

HDs,i,h

​ (4.4) HDs,i,h =
HDi, month⋅EF

Days month
⋅DRs,i,h⋅m⋅TESlosses,s

​ (4.5) HDs,h = HDs,sh,h + HDs,w,h

​ (4.6) sf = sf + 0.001

(4)  

where: 
sf: shape factor to balance heating demand below maximum heating 

capacity. 
HDs,h: hourly thermal heating demand per scenario (s) (MW). 
cc: Maximum heating capacity constraint as a function of baseline ca

pacity in S1, defined in Table 4. 
DRs,i,h: hourly demand response pattern. 
BCIh: hourly average baseline carbon intensity rate (gCO2eq/kWh). 
TESCs: thermal energy storage capacity in time (hours) per scenario. 
Patterni,h: hourly normalised heating demand pattern. 
HDi, month: monthly thermal heating demand (MWh/month). 
EF: improvement in energy efficiency (default value = 20%) 
Days month: number of days per month 
m: multiplier to match total heating demand according to scenario S2. 
TESlosses,s: increase in heating demand associated with TES losses during 

storage periods, defined in Table 4. 
s: scenario (from 1 to 10). 
i: space heating (sh) or hot water (w). 

2.2.3. Projected grid scenario related to expected renewable generation 
This step defines the projected generation capacity by technology to 

evaluate the impact of different heating electrification scenarios. The 
analysis can be carried out considering the electricity network’s existing 
generation and marginal capacity, or implementing expected scenarios 
for future generation technologies. 

To obtain a reasonable short-term performance quantification, this 
work considers the projected renewable generation mix for a modest 
10% heating electrification scenario. For the purposes of this study, the 
additional electricity load associated with heading is met through 
additional wind generation (WINDh) equated annually, according to Eq. 
(5). This additional wind capacity decreases the average carbon in
tensity of electricity by displacing combustible fuel generation at high 
wind times. This new hourly average carbon intensity is called average 
baseline carbon intensity (BCIh). For this small change in the generation 
mix, average marginal carbon intensity remains unchanged as we as
sume the marginal generation source remains the same. This is reason
able as the additional wind generation is never observed to result in the 
elimination of the existing marginal generation source within any given 
hourly period. 

WINDh =

∑n
h=0LOADs2,h

∑n
h=0PPwind,h

⋅PPwind,h (5)  

where: 
WINDh: Additional wind power generation per hour (MW). 
LOADs2,h: Hourly electricity power demand for heating electrification in 

scenario 2 per hour (MW). 
PPwind,h: Existing power production by wind per hour (MW). 

2.2.4. Hourly electricity load profile for each scenario 
This step calculates the additional hourly electricity load profile 

(LOADs,h, MW) according to the heat demand per scenario according to 
Eq. (6). It involves the calculation of final energy consumption (FECs,h) 
associated with the electric power demand of HPs and average trans
mission and distribution losses (gridfactor) [45]. As the evaluation is 
carried out at the country level, without data associated with the 
part-load operation and environmental operating conditions, only 
power under seasonal COP conditions of HPs was considered. Average 
monthly COP for space heating and hot water per country are used. They 
were obtained from the When2Heat dataset [33–35]. Transmission and 
distribution losses (gridfactor) in the grid were assumed to be 5% [6]. 

LOADs,h =
HDs,i,h

sCOPi,month
⋅gridfactor  

LOADs,h =FECs,hour⋅ gridfactor (6)  

where: 
LOADs,h: Additional hourly electricity power demand per scenario per 

hour (MW). 
HDs,i,h: hourly thermal heating demand per scenario (MW). 
sCOPi,month: seasonal coefficient of performance. 
gridfactor: average transmission and distribution losses. 

2.2.5. Calculating GHG emissions 
Finally, GHG emissions per scenario (GHGs) were evaluated ac

cording to Eq. (7). It calculates the GHG emissions according to an 
updated average carbon intensity rate (UCIs,h) per scenario calculated 
according to Eq. (8). This updated average carbon intensity considers 
the average baseline carbon intensity rate per scenario (BCIs,h) accord
ing to the projected electricity generation defined in step 3 (section 
2.3.3), and the average marginal carbon intensity in the grid (MCIh) for 
the additional load. 

GHGs =
∑hn

0
LOADs,h⋅1000⋅UCIs,h (7)  

UCIs,h =
ECh⋅BCIh + LOADs,h⋅ MCImarginal,h

ECh + LOADs,h
(8)  

where: 
GHGs : total carbon emissions per scenario considering marginal power 

capacity for the aggregated load (gCO2eq). 
LOADs,h: additional hourly electricity power demand per scenario per 

hour (MW). 
UCIh: hourly average updated carbon intensity of grid (gCO2eq/kWh) 

according to Eq. (8). 
ECh : baseline of power consumption per hour (MW). 
BCIh: hourly average baseline carbon intensity of grid (gCO2eq/kWh) 

obtained in section 2.3.3. 
MCIh: hourly average marginal carbon intensity of grid associated with 

the marginal power capacity (gCO2eq/kWh). 

3. Results and discussion 

The results are shown and discussed in four subsections. First, input 
data are analysed in order to show the energy context of each simulated 
country. Second, the model results per country are compared and dis
cussed. Third, potential policy implications are extracted. Finally, the 
limitations of the study are clarified. 

3.1. Analysis of input data 

3.1.1. The heating sector per country 
The space heating and hot water heating sector of households, from 
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hereon simply “heating sector”, was responsible for 20.5% of the total 
FEC of Europe in 2018 [29,32]. This heating demand varies between 
countries. Using data from Eurostat, the heating sector is responsible for 
10.4% and 22.5% of total FEC in Spain and the UK, respectively [29], as 
illustrated in Fig. 5a and b. 

Both case studies represent different baselines of the heating sector in 
Europe. In the case of Spain, only 6.0% of FEC is associated with non- 
renewable energy consumption for heating, while it represents 19.4% 
in the UK. 

Fig. 5c shows the share of fossil fuels in the heating sector across 
Europe. The average share of fossil fuels in the heating sector for Europe 
as a whole was 56.5% in 2018, with Ireland (90%), Luxembourg (88%), 
Netherlands (87%), the UK (86%), Belgium (83%), Germany (72%) and 
Italy (67%) showing the highest values. In the case of Spain, it was 57%. 

In the two regions under assessment, Spain and the UK, the heating 
demand for the analysis is calculated using non-renewable residential 
FEC values for heating [29], considering typical efficiencies of heating 
technologies by fuel, as defined in section 2.2.1, using Eqs. (1) and (2). 
The obtained monthly profiles of thermal heating demand values 
(MWh/month) are shown in Fig. 6, for Spain and the UK, respectively. It 
should be noted that the heating demand target for heating electrifica
tion was defined as a reference value of 10% current residential FEC 
associated with non-renewable energy for 2018 and 2019. 

The selected thermal heating demand for heating electrification in 
Spain was 4822 GWh and 4768 GWh for 2018 and 2019. For the UK, it 
was 27,096 GWh and 26,815 GWh. These heat demand quantities sup
pose an additional electricity load considering HP efficiency and grid 
losses of 1489–1472 GWh/year in Spain and 8368–8281 GWh/year in 
the UK. This annual electricity volume represents 0.6% and 3.0% of 
existing annual electricity consumption for Spain and the UK, 
respectively. 

3.1.2. Electricity grid per country 
Fig. 7 summarises the electricity context of Spain (Fig. 7a) and the 

UK (Fig. 7b) in 2018. 
Total net electricity generation in Spain was 263.8 TWh in 2018 

(263.7 TWh in 2019), of which 37.2 was based on renewable energy 
sources (36.1% in 2019), mainly hydro (13.7%), wind (18.8%) and solar 
(4.6%). Fossil fuels represent 42.6% (natural gas, coal and oil), while 
20.2% came from nuclear power stations. In the case of the UK, total net 
electricity generation was 317.4 TWh in 2018 (310.3 TWh in 2019), of 
which 24.4% was based on renewable energy sources (27.4% in 2019), 
mainly wind (17.9%), solar (4.0%) and hydro (2.4%). More than half 
(57.0%) came from combustible fuels (natural gas, coal and oil), while 
18.6% came from nuclear. 

The overlapping of daily profiles associated with power consump
tion, hourly average carbon intensity and hourly average marginal 
carbon intensity for the period under assessment (2018–2019) in Spain 
and the UK are illustrated in Fig. 8. 

The results show high variability in power demand (Fig. 8a1-b1) and 
hourly average carbon intensity (Fig. 8a2-b2) throughout the year, with 
higher intra-day differences in the UK. The mean power demand of 
Spain and the UK, during this period, was 28,674 MW and 32,065 MW, 
respectively. These values ranged between 20,000 MW and 40,000 MW 
in Spain and between 20,000 MW and 50,000 MW in the UK. 

The mean carbon intensity rate was 221 gCO2eq/kWh and 260 
gCO2eq/kWh for Spain and the UK (Fig. 8a2-b2), respectively, consid
ering both years (2018–2019). The curves show a notable intra-day 
difference in the case of the UK mainly due to the significant vari
ability of electricity demand between daytime and night, while in Spain, 
hourly oscillations are less significant. Hourly average marginal average 
carbon intensity profiles in Fig. 8a3-b3 illustrate the marginal power 
capacity per region in response to additional load. These values were 
lower in the case of Spain, showing a mean value of 260 gCO2eq/kWh. 
The Spanish profile also reflects lower hourly marginal carbon in
tensities during the daytime, corresponding to a higher marginal 
renewable capacity in the grid during these hours. Regarding the UK, the 
hourly average marginal carbon intensity rate presents no significant 

Fig. 5. The heating sector of households in Spain (a) and the UK (b) in 2018. Share of fossil fuels in the heating sector in Europe (c) in 2018. Data source: Euro
stat [29]. 

J. Lizana et al.                                                                                                                                                                                                                                  



Energy 262 (2023) 125298

10

intra-day difference with a mean value of 532 gCO2eq/kWh, showing 
how marginal power capacity was based on non-renewable sources most 
of the time. 

3.2. Analysis of output results: optimal heating electrification pathway per 
country 

This section shows the results of heat storage for heating electrifi
cation through smart DR, shifting consumption from hours to days ac
cording to different TES capacities. The analysis is carried out using data 
for 2018 and 2019. The load for heating electrification was defined as a 
short-term reference target of 10% of non-renewable residential FEC for 
heating per country, according to existing data in Eurostat [29]. This 
fraction involves current FEC for heating based on solid fossil fuels, 
natural gas and oil and petroleum products. This additional energy 
volume for heating only represents 0.6% and 3.0% of annual electricity 
consumption for Spain and the UK, respectively. However, the hourly 
power intensity can be considerable since it is heterogeneously distrib
uted throughout time, with maximum power capacity required during 
winter. 

3.2.1. Electricity load of different demand scenarios 
Heating electrification is evaluated through a parametric analysis 

comprising ten scenarios (S1-10). An example of the parametric analysis 
through different load shifting strategies for 15 days of January 2019 is 
illustrated in Figs. 9 and 10 for Spain and the UK, respectively. 

Figs. 9a and 10a show the hourly power consumption mix by tech
nology and its associated average carbon intensity rate (BCI, gCO2eq/ 
kWh). Average marginal carbon intensity (MCI) associated with mar
ginal power capacity is also shown in a grey dashed line. The energy 
consumption mix considers imports and the additional wind generation 
introduced in the numerical model. 

In Spain (Fig. 9a), the value of average baseline carbon intensity is 
more stable (between 200 and 300 gCO2eq/kWh) compared to the UK 
(Fig. 10a), where the value goes from 100 to 400 gCO2eq/kWh with 
sharper changes. The illustrated power consumption mix by region in 
Figs. 9a and 10a shows how nuclear generation is maintained almost 
constantly, with higher carbon emissions rates associated with higher 
power production linked to combustible fuels. Moreover, it can be 
observed how average marginal carbon intensity is always higher than 
the average value since it is mainly based on combustible fuels. 

Figs. 9b and 10b illustrate the different scenarios for heating elec
trification, where the red area represents power consumption for 

Fig. 6. Thermal heating demand profile corresponding to 10% of current heating based on fossil fuels in Spain (a) and the UK (b).  

Fig. 7. Net electricity generation in Spain (a) and the UK (b) by source in 2018.  
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heating, previously defined as LOADs,h (MW). They also include the 
average baseline carbon intensity rate (BCI, black dashed line) and the 
average updated carbon intensity rate (UCI, blue dashed line). The load 
shifting per scenario was calculated using average baseline carbon in
tensity (BCI) as a penalty signal, previously defined in Eq. (4). The UCI 
rate is lightly modified per scenario compared to BCI since it includes 
marginal power capacity for the additional electricity load for heating. 

S1 and S2 show the two baseline scenarios without heat storage, with 
and without improving energy efficiency in buildings, respectively. 
They are responsible for an additional maximum power demand of 512 
MW and 439 MW in Spain, and 2777 MW and 2337 MW in the UK. These 
values, associated with a 10% heating electrification scenario, represent 
a peak grid capacity increase by 1.2–1.1% and 4.6–3.9% in Spain and 
the UK, respectively. 

For hourly DR scenarios S3–S6, additional maximum power demands 
between 395 MW and 513 MW in Spain and between 2063 MW and 
2769 MW in the UK are observed. Finally, for daily DR scenarios S7–S10, 
additional maximum power demands between 532 MW and 552 MW in 
Spain and between 2886 MW and 3004 MW in the UK are observed. 

The different electrification alternatives of heating modify the UCI 
rate per scenario, increasing it during consumption periods. UCI is 
calculated according to the additional hourly electricity load per sce
nario and marginal generation capacity. At first glance, in Fig. 9b in 
Spain, no differences are appreciable between the baseline and the 
updated value. This is produced due to the low additional load in this 
region. Contrastingly, in the UK (Fig. 10b), it can be appreciated a shift 
in the UCI rate per scenario during consumption periods (red blocks). 
This is produced because the UK has higher heating demand and most 

marginal power capacity is mainly based on combustible fuels. 

3.2.2. The influence of additional load on required power capacity 
The influence of load shifting scenarios on required power capacity 

per region is evaluated in Fig. 11, which illustrates the load duration 
curve (baseline) and the additional power required in percentage (%) for 
Spain (Fig. 11a) and the UK (Fig. 11b). The load duration curve illus
trates the relationship between generating capacity requirements and 
capacity utilization per scenario. 

The results show how Spain’s 10% electrification pathway does not 
pose a significant challenge for the grid. Even baseline scenarios (S1 and 
S2) only increase power capacity by 1.2% (0.8% considering the 99th 
percentile). However, in the UK, the 10% electrification pathway under 
an uncoordinated scenario (S1) can increase the required power ca
pacity by more than 4.6% (4.2% considering the 99th percentile). Even 
in scenario 2, following an energy efficiency pathway of 20%, the 
required capacity is increased by 3.9% (with the 99th percentile being 
3.53%). 

In the highly gas-dependent context of the UK, the analysis of 
different load shifting strategies highlights how the implementation of 
heat storage for 2 and 4 demand hours (S3 and S4) decreases the 99th 
percentile of additional power capacity to 3.15%. Optimal shifting ca
pacities were found for 12 and 24 h (S6 and S7), reducing the 99th 
percentile of additional power capacity to 2.22% and 2.11%, respec
tively. These optimal scenarios represent a reduction of additional 
power capacity by 47% and 49% compared to S1, respectively, and by 
37% and 40% compared to S2. Finally, no additional benefits for power 
capacity were found using daily DR strategies (S7–S10), shifting 

Fig. 8. Overlapping of daily profiles generated of Spain (a) and the UK (b) in 2018–2019 for power consumption (a1-b1), hourly average carbon intensity (a2-b2), 
and hourly average marginal carbon intensity (a3-b3). 
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Fig. 9. Example of load shifting per each DR scenario in Spain during 15 days from January 01, 2019.  
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Fig. 10. Example of load shifting per DR scenario in the UK during 15 days from January 01, 2019.  
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consumption from 24 h to 60 h. 
It can be observed how simulated DR scenarios result in higher peak 

demand than the baseline scenario during a few hours per year. This 
effect has been neglected, evaluating the peak power demand using the 
99th percentile. These peak hours may be related to the use of BCI as a 
penalty signal since BCI is directly related to existing carbon emissions, 
not informing about peak consumption periods. In future scenarios, MCI 
may provide more useful information for load shifting to overcome this 
problem. However, MCI was not considered in this study due to the fact 
that it is almost constant with the current fossil-based marginal 
generation. 

In comparison with previous studies on heat electrification in the UK, 
the results show conservative baseline projections. Love et al. [10] found 

that peak grid demand may increase by 3.75 GW (7%) with 10% of 
households installing heat pumps. Our model shows how 10% of 
households may increase peak grid demand by approximately 2.5 GW 
(4.60%). The different results are likely explained through the differ
ences in the analytical methods: the study of Love et al. [10] is based on 
accurate consumption data with peak consumption events; and the 
proposed numerical model does not consider peak consumption events 
since it was calculated using a normalised average heating demand 
profile (see Fig. 2). 

3.2.3. GHG emissions per scenario 
The environmental performance of different heating electrification 

scenarios per region is summarised in Fig. 12. Fig. 12a1-b1 shows the 

Fig. 11. Modification of power duration curve per scenario in Spain (a) and the UK (b).  

Fig. 12. GHG emissions and increase in power demand per load shifting scenario (1), and electricity consumption for the additional load in comparison with S2 (2). 
a, Spain. b, the UK. 
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impact of GHG emissions reduction considering marginal power ca
pacity per scenario (left y-axis), with a black dashed line showing the 
99th percentile of the increase in power capacity per scenario (right y- 
axis). S0 represents the reference GHG emissions scenario associated 
with evaluated heating demand based on fossil fuels. Moreover, 
Fig. 12a2-b2 provides the reference final electricity consumption asso
ciated with each scenario in comparison with S2. 

The results show how heating electrification under direct electrifi
cation scenarios without TES for DR (S1 and S2) can reduce GHG impact 
by 79.0–81.3% and 65.3–70.5% for Spain and the UK, respectively. 
However, these electrification scenarios can negatively affect the elec
tricity grid due to the increased power capacity required, as illustrated in 
Fig. 12a1-b1 (dashed line). Considering the environmental performance 
of S2 as a reference, the evaluated DR strategies for effective load 
shifting show limited, and even negative, benefits. This effect is mainly 
associated with increased energy consumption by scenario and current 
marginal power capacity based mainly on fossil fuels. 

In the case of Spain, there is not much difference in carbon emissions 
by scenario. The lowest GHG emissions value was found to be S6, with a 
TES capacity of 12 demand hours (Fig. 12a1), and very similar to both S4 
and S3. However, even this lowest value was found to be higher than 
reference scenario S2 by 0.21% due to increased energy consumption 
and marginal power availability. 

In the case of the UK, the lowest GHG emission scenario was also 
found to be S6. This optimal DR was able to reduce carbon emissions by 
1.8% in comparison with reference scenario S2 (Fig. 12b1), equivalent 
to an additional saving potential of 2.6 ktonnes CO2eq per year. Higher 
GHG emissions were found through shorter DR strategies (S3–S5). 
Moreover, it should be noted that in both countries, higher shifting ca
pacities than 12 h (from S7 to S10) did not provide additional GHG 
reductions. Despite higher energy consumption during lower carbon 
intensity hours, the increase in electricity demand associated with 
thermal losses worsens environmental performance. 

3.3. Policy implications 

The results demonstrate the importance of exploring the imple
mentation of DR strategies beyond the shifting capacity of 4 h in highly 
gas-dependent countries, such as the UK. In the case of the UK, 12 h of 
heat storage capacity for DR was able to reduce additional peak power 
capacity by 37% and mitigate GHG emissions by 1.8% in comparison 
with the baseline scenario S2. In the future, with the increase in the 
contribution of renewables to marginal generation, benefits will be 
greater and even higher shifting capacities may be of interest. 

These findings highlight the added benefits that can come from the 
coupling of two heat decarbonisation measures: demand reduction and 
heat storage. Practical considerations that should be considered from 
these findings include addressing incumbent heating electrical systems, 
mainly driven by existing heating configurations and capital cost. For 
example, the most common efficient electrical heating system in the UK 
is an air-source heat pump (ASHP) using radiators, responsible for more 
than 82% of cases [10,36]. Supporting policies need to be designed to 
reduce capital costs to ensure the broad deployment of synergies be
tween demand reduction and heating electrification with the required 
energy flexibility capability. 

3.4. Limitations of the study 

The scope of this work is limited to the residential sector and short- 
term targets since it is based on the existing performance of the energy 
grid and residential heating demand patterns. The method used to 
achieve hourly heating demand patterns is based on annual national 
data and monthly HDD to scale normalised national demand patterns. 
Thus, this method will likely involve a slight underestimate of instan
taneous peak power demand. These assumptions were defined to ensure 
greater replicability of the modelling approach across other regions 

where higher resolution data are unavailable. Additionally, the perfor
mance of TES technology associated with each load shifting scenario was 
defined according to the results provided by previous studies. It should 
be considered that more efficient TES alternatives with reduced heat 
losses could provide additional benefits to those reported in this study, 
particularly in the most prolonged shifting capacity scenarios. Such ef
ficiency improvements could further mitigate carbon emissions and 
peak power demand but may require higher investment costs. With 
regards to marginal emissions, this study only considers a small devia
tion away from the existing generation mix, which is not expected to 
have a significant impact, if any, on the marginal emissions of the sys
tem. As renewable energy generation increases to the point where 
marginal emissions are changed, the environmental benefits of DR with 
TES should become even more apparent. Finally, reported findings are 
derived for two specific countries, Spain and the UK, based on existing 
generation technologies. Additional studies should be carried out to 
extend these conclusions to other regions and future scenarios. 

4. Conclusions 

This research proposes an energy modelling approach using national 
data to identify, country by country, the optimal heat storage capacity 
that should be promoted to support residential heating electrification 
through demand-side response (DR) to decrease additional peak power 
capacity and maximise carbon reductions. The model assesses the 
optimal shifting of heat pump operation according to different heat 
storage capacities in buildings, which are defined in relation to the time 
(in hours) in which the heating demand can be provided directly from 
the heat battery, without heat pump operation. Two baseline scenarios 
without heat storage were defined. The first involves direct electrifica
tion only (scenario S1), while the second considers electrification 
alongside a demand reduction of 20% due to improvements in energy 
efficiency in buildings (S2). Eight load shifting scenarios for heating 
electrification through different thermal energy storage (TES) capacities 
were evaluated, all considering the 20% demand reduction similar to S2. 
These load shifting scenarios are also compared with a reference sce
nario (S0), with heating currently based on fossil fuels. The method was 
applied to two countries, Spain and the UK, characterised by different 
existing non-renewable heating demands, power demand profiles and 
generation mix. A short-term electrification target of 10% of existing 
non-renewable residential final energy consumption (FEC) for heating 
per country was considered. Based on the results, the following con
clusions are drawn: 

The results show how heating electrification under scenarios without 
DR (S1 and S2) can reduce associated greenhouse gas (GHG) emissions 
by 79.0–81.3% and 65.3–70.5% for Spain and the UK, respectively. 
However, these electrification scenarios negatively affect the electricity 
grid due to the increase in peak power demand: up to 1.2% in Spain 
(0.8% considering the 99th percentile) and up to 4.6% in the UK (4.2% 
considering the 99th percentile). 

The optimal TES capacity for smart DR is found on the order of 12 
and 24 h of heating demand in both countries (S6 and S7). These sce
narios reduce additional power capacity by 30–46% and 37–40% for 
Spain and the UK, respectively, in comparison with scenario S2 without 
DR. 

The best environmental performance with lower peak capacity is 
found in scenario S6, with a TES capacity of 12 h of heating demand. In 
this scenario, GHG emissions increase by 0.21% in Spain and decrease 
by 1.78% in the UK in comparison with scenario S2. In comparison with 
the non-renewable heating scenario S0, this scenario S6 reduced asso
ciated carbon emissions by 81% and 71% for both countries, respec
tively. These low environmental benefits are associated with higher 
energy consumption in DR scenarios and marginal generation mainly 
based on fossil fuels. 

It is also found that load shifting capability below 4 h presents 
limited benefits, reducing additional peak power capacity by 
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approximately 10%. Moreover, a higher shifting capacity than 24 h does 
not provide any additional benefits. Despite higher energy consumption 
during lower carbon intensity hours, the increase in electricity demand 
associated with thermal losses worsens environmental performance 
overall. 

It should be highlighted that this evaluation is associated with 
marginal power capacity mainly based on fossil fuels. In the future, 
average marginal carbon intensity will decrease, involving additional 
implications to promote heat storage. 

The findings highlight the importance of heat storage integration 
with heating decarbonisation targets, particularly in highly gas- 
dependent regions. Future regulations should promote these energy 
flexibility requirements in future heating technologies to help transform 
the power system, accommodate more renewable energy, and eliminate 
network reinforcement. This top-down energy modelling approach, 
available on GitHub (https://github.com/lizanafj/national-data-based- 
energy-modelling), is open and adaptable to different contexts and re
quirements using easily accessible data from the reported data sources. 

Declaration of competing interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The authors gratefully acknowledge the financial support via a Juan 
de la Cierva Postdoctoral Fellowship granted to J. L. (FJC2019-039480- 
I) from the Spanish Ministry of Science and Innovation; and a PhD 
Fellowship granted to N. A. (PRE2018-085866) from the Spanish Min
istry of Education, Culture and Sport. The research was also supported 
by the European Union’s Horizon 2020 research and innovation pro
gramme under the Marie Skłodowska-Curie grant agreement No 
101023241. We are thankful for Tomorrow (www.tmrow.com), who has 
provided the data used in this study.  

Appendix A 

Table 1a summarises the results obtained per region and scenario involving the electrification of 10% heating currently based on fossil fuels.  

Table 1a 
Summary of results per region and scenario.   

S0 
Fossil 
fuels 

S1 
No TES 

S2 
20% EE 
No TES 

S3 
20% EE 
TES = 2 h 

S4 
20% EE 
TES = 4 h 

S5 
20% EE 
TES = 6 h 

S6 
20% EE 
TES = 12 h 

S7 
20% EE 
TES = 24 h 

S8 
20% EE 
TES = 36 h 

S9 
20% EE 
TES = 48 h 

S10 
20% EE 
TES = 60 h 

a.Spain 
GHG emissions 
GHG emissions 

(Mtonnes CO2eq) 
2.961 0.621 0.552 0.554 0.554 0.554 0.554 0.566 0.582 0.591 0.605 

GHG emissions in 
comparison with S0 
(%) 

100% 20.96% 18.66% 18.73% 18.72% 18.71% 18.70% 19.12% 19.66% 19.97% 20.42% 

Marginal GHG 
emissions 
(considering only 
marginal power) 
(Mtonnes CO2eq) 

2.961 0.752 0.668 0.685 0.690 0.693 0.706 0.729 0.753 0.770 0.789 

Power demand 
Maximum power 

demand of the 
additional heating 
load (MW)  

512 439 395 414 434 513 532 533 552 552 

Maximum power 
demand of total 
consumption (MW)  

41,082 41,028 41,105 41,125 41,123 41,202 40,890 41,221 40,910 41,241 

99th percentile of the 
power demand of 
total consumption 
(99th percentile, 
MW)  

38,387 38,337 38,329 38,317 38,348 38,265 38,222 38,325 38,256 38,309 

Increase in maximum 
power demand 
(99th percentile, 
MW)  

304 253 245 233 220 181 138 160 172 225 

Increase in maximum 
power demand 
(99th percentile, %)  

0.80% 0.67% 0.64% 0.61% 0.57% 0.47% 0.36% 0.42% 0.45% 0.59% 

Electricity consumption 
Additional electricity 

consumption for 
heating (GWh)  

2953 2621 2647 2660 2673 2726 2831 2936 3014 3093  

(continued on next page) 
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Table 1a (continued )  

S0 
Fossil 
fuels 

S1 
No TES 

S2 
20% EE 
No TES 

S3 
20% EE 
TES = 2 h 

S4 
20% EE 
TES = 4 h 

S5 
20% EE 
TES = 6 h 

S6 
20% EE 
TES = 12 h 

S7 
20% EE 
TES = 24 h 

S8 
20% EE 
TES = 36 h 

S9 
20% EE 
TES = 48 h 

S10 
20% EE 
TES = 60 h 

b. the United Kingdom 

GHG emissions 
GHG emissions 

(Mtonnes CO2eq) 
12.935 4.490 3.818 3.801 3.794 3.791 3.750 3.831 3.966 4.028 4.145 

GHG emissions in 
comparison with S0 
(%) 

100% 34.71% 29.52% 29.39% 29.33% 29.31% 28.99% 29.62% 30.66% 31.14% 32.04% 

Marginal GHG 
emissions 
(considering only 
marginal power) 
(Mtonnes CO2eq) 

12.935 8.912 7.634 7.711 7.754 7.797 7.959 8.270 8.569 8.798 9.025 

Power demand 
Maximum power 

demand of the 
additional heating 
load (MW)  

2777 2337 2063 2181 2298 2769 2886 2886 3003 3004 

Maximum power 
demand of total 
consumption (MW)  

59,834 59,788 59,597 59,561 59,936 59,424 60,104 60,104 59,457 60,137 

99th percentile of the 
power demand of 
total consumption 
(99th percentile, 
MW)  

48,167 47,857 47,680 47,677 47,586 47,251 47,197 47,262 47,338 47,320 

Increase in maximum 
power demand 
(99th percentile, 
MW)  

1943 1634 1457 1454 1362 1027 973 1038 1114 1096 

Increase in maximum 
power demand 
(99th percentile, %)  

4.20% 3.53% 3.15% 3.15% 2.95% 2.22% 2.11% 2.25% 2.41% 2.37% 

Electricity consumption 
Additional electricity 

consumption for 
heating (GWh)  

16,614 14,237 14,380 14,451 14,520 14,809 15,379 15,947 16,376 16,803  
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