
 

 
 

 

 
Electronics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics 

Article 1 

Local Partial Signal Combining Schemes for Cell-Free Large- 2 

Scale MU-MIMO Systems with Limited Fronthaul Capacity 3 

and Spatial Correlation Channels 4 

Amr A. Alammari1*, Mohd Sharique 1, Athar A. Moinuddin1, and Mohammad Samar Ansari2 5 

1 Department of Electronics Engineering, Zakir Hussain College of Engineering & Technology, Aligarh Mus- 6 
lim University, Aligarh 202002, India. 7 

2 Faculty of Science and Engineering, University of Chester, Parkgate Road, Chester CH1 4BJ, United King- 8 
dom. 9 

 10 
* Correspondence: alammari.amr.rs@gmail.com;  11 

 12 

Abstract: Cell-Free Large-Scale Multi-user MIMO is a promising technology for the 5G-and-beyond 13 

mobile communication networks. Scalable signal processing is the key challenge in achieving the 14 

benefits of cell-free systems. This study investigates a distributed approach for Cell-Free deployment 15 

with user-centric configuration and finite fronthaul capacity. Moreover, the impact of scaling the 16 

pilot length, the number of access points (APs), and the number of antennas per AP on the achiev- 17 

able average spectral efficiency is investigated. Using dynamic cooperative clustering (DCC) tech- 18 

nique and large-scale fading decoding process, we derive an approximation of the signal-to-inter- 19 

ference-plus-noise ratio in the criteria of two local combining schemes: Local-Partial Regularized 20 

Zero Forcing (RZF) and Local Maximum Ratio (MR). Results indicate that distributed approaches 21 

in the Cell-Free system have advantages in terms of decreasing the fronthaul signaling and the com- 22 

puting complexity. Among all the distributed combining schemes, the results show that the Local- 23 

Partial RZF provides the highest average spectral efficiency. The reason is that the computational 24 

complexity of the Local-Partial RZF is independent of the UTs, so it does not grow as the number of 25 

user terminals (UTs) increase. 26 

Keywords: Large-Scale MIMO; User-Centric; Cell-Free, MU-MIMO; RZF; LSDF; DCC. 27 

 28 

1. Introduction 29 

Fifth-generation (5G) and beyond technology has been developed to meet the con- 30 

stant demand for reliable wireless services with higher data rates [1]. It is projected that 31 

5G-and-beyond systems will be able to connect and mange unprecedented number of de- 32 

vices and provide ubiquitous services [2]. To address the design challenges of 5G-and- 33 

byond, several key technologies are being investigated [3]-[11]. Some of the candidate 34 

technologies that proposed for the 5G-and-beyond mobile communication networks in- 35 

clude, reconfigurable intelligent surface [4], SLNR-based beamforming [6], millimeter 36 

wave [7],[8], advanced multiple access [9],[11], and Large-Scale Multi-user Multiple Input 37 

Multiple Output (MU-MIMO). Due to its ability to minimize the interference, Large-Scale 38 

MU-MIMO can provide several orders of magnitudes of improvement the system spectral 39 

efficiency. 40 

 A recently developed concept, known as Cell-Free Large-Scale MU-MIMO, pro- 41 

vides a novel network architecture based on three well-known technologies: Large-Scale 42 

MU-MIMO [12]-[18], Coordinated Multi-Point (CoMP) [19], and Distributed Antenna Sys- 43 

tem (DAS) [20], [21]. Cell-Free Large-Scale MU-MIMO has been proposed as a potential 44 

alternative to dividing up the coverage area into cells.  45 
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Compared to the conventional cellular network layout, Cell-Free network layout 70 

eliminates the cell borders and the resulting inter-cell interference [22], [23]. In the Cell- 71 

Free system, a large number of access points (AP), which distributed in the area of cover- 72 

age, provide services to a large number of users. All APs in this system deployment use 73 

fronthaul links to communicate with a central processing unit (CPU). The CPU manages 74 

and coordinates all the transmissions in the network.  75 

There are typically two implementation approaches for Cell-Free systems [24]-[27]: 76 

completely centralized, and distributed. In the centralized approach, all signal processing 77 

is performed at the CPU. All APs forward the received pilot and data signals to the CPU, 78 

which will carry out the necessary processing. Taking into account the practical con- 79 

straints of having links with limited fronthaul capacity, this approach typically leads to 80 

unmanageable fronthaul signaling.  81 

In the distributed Cell-Free implementation, the required signal processing is shared 82 

between the CPU and the APs, and depending on the amount of this sharing, different 83 

levels of distribution can be accomplished. The initial concept for Cell-Free is developed 84 

on the basis of two primary assumptions: all the active UTs in the network are served by 85 

all the APs simultaneously [28], [29], and availability of unlimited capacity for the fron- 86 

thaul links [30], [31].  87 

In Large-Scale MU-MIMO, the maximum sum spectral efficiency (SE) that can be 88 

achieved is constrained by two factors: wireless channel capacity and fronthaul link ca- 89 

pacity [32]. The distributed approach can be used to achieve reduction in the fronthaul 90 

requirements [33]. In this architecture, some baseband signal processing is done at the 91 

APs. As a result of this motivation, the system uplink performance with limited fronthaul 92 

capacity and different local distributed combining schemes is considered. The distributed 93 

implementation adopted in this paper is distinguished from the centralized implementa- 94 

tion by the following:  95 

1) channel estimation process is performed locally at each access point;  96 

2) Combiner design and data estimation are performed locally at each access point;  97 

3) APs use the fronthaul links to send the data estimates only;  98 

4) An additional stage of data estimation is performed centrally by the CPU. 99 

Figure 1: User-Centri Cell-Free system with dynamic cooperative clustering 

 CPU 

Fronthaul link  

AP  

UT  
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1.1. Related Work 100 

Recently, Cell-Free systems have attracted a great deal of interest, and many previous 101 

studies have evaluated their performance from a variety of perspectives [22],[24], [26]- 102 

[45]. For instance, in [22], the sum spectral efficiency for Maximum Ratio beamform- 103 

ing/combining has been derived. A stochastic geometry technique was employed in [34] 104 

to evaluate the system performance. Additionally, [36] studied a Cell-Free system with 105 

power optimization and precoding technique to enhance the network data rate. The fully 106 

centralized approach of Cell-Free system, in which the estimation process and combiner 107 

design are performed centrally, is investigated in [27], [37]. Distributed implementations 108 

are considered in [38] in order to reduce the fronthaul traffic.  109 

In order to make the analysis more manageable, most of the previous studies con- 110 

sider a wide variety of simplifying assumptions, including the following: 111 

• All users are served by all APs in the same time-frequency resource: For example, au- 112 

thors in [39] investigated the achievable uplink rate performance of the Cell-Free 113 

systems with perfect/imperfect CSI and Zero Forcing (ZF) processing. However, 114 

in practice and as a result of this assumption, the system will not be scalable, 115 

implying that the system will be unable to manage an increasing number of 116 

active UTs and APs. Also, this configuration is impractical since only a limited 117 

number of APs can beneficially communicate with a particular UT. To address 118 

these constraints and maintain scalability, we consider a practical system 119 

configuration which allows UTs to dynamically choose their subset of APs. Thus, 120 

a group of nearby APs are cooperatively serving each UT, as shown in Figure 1. 121 

In this user-centric configuration, a clustering technique known as Dynamic Co- 122 

operative Clustering (DCC) is used, which allows UTs to choose their preferred 123 

set of serving APs. With the DCC approach, the scalability comes from the fact 124 

that only the UT's corresponding subset of APs will be involved in the signal 125 

processing. The works in [40], [41] have investigated a user-centric configuration 126 

for Cell-Free systems with different channel estimators. However, these studies 127 

are based on simple beamforming/combining schemes with some idealized as- 128 

sumptions. 129 

• Unlimited fronthaul/backhaul link capacity: For example, the authors in [42] inves- 130 

tigate the downlink of a Cell-Free system considering power control technique 131 

and ZF process. However, each fronthaul/backhaul connection will have a finite 132 

capacity when dealing with practical systems. Moreover, to achieve scalability, 133 

it is necessary to restrict the fronthaul signaling that occurs between the APs and 134 

the CPU. The authors in [43] investigated the impact of using capacity con- 135 

strained fronthaul links on the average max-min rate per user, considering low- 136 

complexity hybrid precoders/decoders. However, the study focuses on the cen- 137 

tralized case where the baseband processing of the transmitted signals is fully 138 

performed at the CPU. We investigate the uplink of a cell-free Large-Scale MU- 139 

MIMO system with distributed implementation, limited fronthaul links, and 140 

DCC approach. 141 
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• The propagation channels are spatially uncorrelated: For example, studies in [44], [45] 142 

analysed the system performance under independent Rayleigh channels using 143 

general models such as uncorrelated Rayleigh fading. However, in practice, the 144 

correlation between the antenna elements is inherent in the implementation of 145 

the Cell-Free System due to the large number of APs. For realistic performance 146 

investigation of Cell-Free systems, a physical correlated channel model is con- 147 

sidered in this paper. 148 

 149 

1.2. Contributions 150 

By investigating the local distributed user-centric approach of a Cell-Free system 151 

with finite fronthaul links Capacity, the main contributions of our work include the fol- 152 

lowing: 153 

 154 

• Uplink System modeling:  In this paper, we consider the uplink scenario of a user-cen- 155 

tric Cell-Free system with finite capacity fronthaul links to investigate the impact of 156 

distributing the signal processing between the APs and the CPU for achieving a cer- 157 

tain level of performance. The distributed system implementation is modeled and nu- 158 

merically simulated. The goal of this research is to provide a further understanding of 159 

partial local distributed Cell-Free systems under more realistic system considerations. 160 

• Analysis of distributed implementations for user-centric Cell-Free system: Two system con- 161 

figurations, namely, local distributed, and two-stage distributed are considered to 162 

study how competitive these configurations are to a centralized-based system config- 163 

uration vis-à-vis the achieved SE. Extensive simulations have been performed to eval- 164 

uate the system’s performance from different perspectives, including the effect of in- 165 

creasing the pilot length, APs number, and APs’ antennas, for the three schemes: Par- 166 

tial RZF, Local-partial RZF, and Distributed MR. 167 

• Distributed Physical layer processing: The essential local physical layer procedures in the 168 

distributed user-centric Cell-Free uplink transmission, such as pilot signaling, channel 169 

estimation, and data detection, are identified. Using different bounding techniques, 170 

we derive an approximation for the effective SINR using the clustering concept and 171 

the large-scale fading decoding (LSFD)scheme. 172 

1.2. Paper Organization 173 

The remaining parts of this work are structured as follows: The user-centric Cell-Free 174 

Large-Scale MU-MIMO system model is described in Section 2. In Section 3, computa- 175 

tional complexity and fronthaul signaling are analyzed. In Section 4, a physical geometric- 176 

based channel model which is considered in this paper is presented. Simulation results 177 

and discussion are presented in Section 5, followed by concluding remarks in Section 6. 178 

 179 

2. System Model 180 

We consider a Cell-Free system with 𝐾 single-antenna user terminals (UTs) which are 181 

served by 𝐿 access points (APs) and all the UTs and the APs are distributed randomly in 182 

the coverage area. Let 𝑁 be the number of antennas per AP. The system satisfies the user- 183 

centric condition, where a set of APs, 𝒬𝑘 ⊂ {1,2, … … , 𝐿} cooperate to serve an arbitrary 184 

UT 𝑘. Also, we consider a block fading model, where all the channels are considered to 185 

be static and frequency flat within a single block (known as the coherence block) and vary 186 

among different blocks. 187 

 188 
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The coherence block size is determined by many factors, including carrier frequency, mo- 207 

bility, propagation environment, and so on. Further, in this block fading model, each co- 208 

herence block is divided into τp channels used for the uplink pilot training, τu for send- 209 

ing data on the uplink, and τd channels for sending the data on the downlink. Let 𝐡 de- 210 

notes the channel response between the 𝑘𝑡ℎ UT and the 𝐿𝑡ℎ AP, and the channel realiza- 211 

tion is drowned from an independent correlated Rayleigh fading distribution as 212 

𝐡𝑘𝑙~ 𝒩𝐶  (0, 𝑹𝑘𝑙)                                           (1) 213 

where R represents the spatial correlation matrix, which contains the small-scale fading 214 

as well as the large-scale fading. In the block fading model, the small-scale effect can be 215 

static in one coherence block, and it may change among different blocks. On the other 216 

hand, the effect of large-scale fading is considered to be changing more slowly and can be 217 

regarded as constant for a number of coherence blocks. 218 

We consider the distributed implementation given in Figure 1, and the operations of 219 

interest in this paper include uplink training, channel estimation, combiner design, and 220 

data detection. 221 

2.1. Uplink Training and Channel estimation 222 

In the training stage, all the UTs send their pilots to the APs throughout a pilot-based 223 

training process. The training pilots are known as the pilot sequence and the network is 224 

assumed to have τp available orthogonal pilot sequences. However, it is expected that 225 

the number of active UTs will be more than the number of available orthogonal sequences 226 

(𝐾 >  τp ). This will make several UTs to reuse the same pilot sequences in their analyses. 227 

The term "pilot contamination" refers to a problem that occurs in the Large-Scale MU- 228 

MIMO networks when multiple UTs use the same pilot sequences. The received pilot sig- 229 

nal at the AP 𝑙 can be given as 230 

𝐲𝑙
𝑝𝑖𝑙𝑜𝑡

= √𝑝𝑝 ∑ 𝒉𝑖𝑙  𝝍𝑡𝑖
𝐻𝐾

𝑖=1 + 𝑾𝑙                           (2) 231 

 232 

where 𝑝𝑝 is the transmitted pilot power,  𝑾𝑙 is the additive independent white Gauss- 233 

ian noise matrix with independent and identically distributed𝒩 (0, 𝜎2) elements, 𝝍𝑡𝑖
𝐻  is 234 

the pilot sequence sent by the 𝑘𝑡ℎ UT and 𝑡 = 1, … . . , τp. 235 

Based on the received pilot signal in (2), the AP 𝑙 performs the channel estimation 236 

process. The LMMSE estimator is employed in each AP to estimate the channel coeffi- 237 

cients to the UTs. The estimated channel between the UT 𝑘, and the AP 𝑙 is given as [46] 238 

Figure 2: Local Distributed Operations considered in this work 

LSFD 

 𝒚𝑙
𝐶𝐹 = √𝑝𝑢 ∑ 𝒉𝑖𝑙𝑥𝑖

𝐾
𝑖=1 +

𝒘  

AP 𝑙 

 

UT 𝑖 

 

𝐶hannel estimation 
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�̂�𝑖𝑙 = √𝑝𝑝𝜏𝑝𝐑𝑖𝑙𝑸𝑐𝑜𝑟𝑟  𝒚𝑡𝑙
𝑝𝑖𝑙𝑜𝑡

                                  (3) 239 

where 𝐑𝑖𝑙 denotes the spatial correlation matrix, 𝑖 ∈ 𝒬𝑘, and 𝐐corr denotes the inverse 240 

of the normalized correlation matrix. 241 

The different between the channel and its estimate is known as the estimation error, 242 

and can be termed as 𝒆𝑖𝑙 = 𝒉𝑖𝑙 − �̂�𝑖𝑙. The covariance matrices of both �̂�𝑖𝑙 and 𝒆𝑖𝑙 for the 243 

cell-Free distributed implementation can be given as follows 244 

𝐂est. = 𝑝𝑝τp𝐑𝑖𝑙𝐐𝑐𝑜𝑟𝑟  𝐲𝑡𝑙
𝑝𝑖𝑙𝑜𝑡

𝐑𝑖𝑙                                   (4) 245 

𝐂err. = 𝐑𝑖𝑙 − 𝑝𝑝τp𝐑𝑖𝑙𝐐𝑐𝑜𝑟𝑟  𝐲𝑡𝑙
𝑝𝑖𝑙𝑜𝑡

𝐑𝑖𝑙                           (5) 246 

 247 

In the distributed implementation and in contrast to the analysis for the centralized 248 

implementation, the channels statistics from UT k to its connected APs will be used locally 249 

at each AP for designing the combiner and to estimate the transmitted signal. 250 

2.2. Combiner design and signal detection 251 

After the channels are estimated locally at the APs, the UTs transmit their data sym- 252 

bols. The received signals are processed at each APs to detect the desired signal �̂�𝑘. The 253 

detection process in the distributed approach involves two stages of data estimation: 254 

First, based on (2), the transmitted signals can be estimated locally at the APs by ap- 255 

plying a linear combiner as 256 

�̂�𝑙,𝑘 = 𝒂𝑙,𝑘  𝒚𝑙
𝐶𝐹 = 𝒂𝑙,𝑘

𝐻 𝒉𝑙,𝑘𝑥𝑘+ ∑ 𝒂𝑙,𝑘
𝐻 𝒉𝑙,𝑖𝑥𝑖

𝐾
𝑖=1
𝑖≠𝑘

+ 𝒂𝑙,𝑘
𝐻 𝒘𝑙                     (6) 257 

where 𝒂𝑙,𝑘 represents the combiner that is containing vectors from all APs that communi- 258 

cate with the UT 𝑘. Note that the detection process in the user-centric approach is con- 259 

strained to a subset of APs (i.e., 𝒬𝑘 ⊂ {1,2, … … , 𝐿}) corresponding to the UT 𝑘. 260 

Then, based on (6), another stage of signal estimation is performed centrally by the 261 

CPU. This process is known as large-scale fading decoding (LSFD), which involves using 262 

LSFD weight vector {𝐯𝑙,𝑘: 𝑙 = 1, … , 𝐿} to estimate the data symbols as 263 

                                     �̂�𝑘 = ∑ 𝒗𝑙,𝑘
∗𝐿

𝑙=1 �̂�𝑙,𝑘           264 

�̂�𝑘 = ∑ 𝒗𝑙,𝑘
∗𝐿

𝑙=1 𝒂𝑙,𝑘
𝐻 𝒉𝑙,𝑘𝑥𝑘+ ∑ 𝒗𝑙,𝑘

∗𝐿
𝑙=1 𝒂𝑙,𝑘

𝐻 ∑ 𝒉𝑙,𝑖𝑥𝑖
𝐾
𝑖=1
𝑖≠𝑘

 +∑ 𝒗𝑙,𝑘
∗𝐿

𝑙=1 𝒂𝑙,𝑘
𝐻 𝒘𝑙       (7) 265 

In general, the ergodic capacity of the Large-Scale MU-MIMO system has not yet 266 

been defined. However, different bounds on the capacity are available. These bounds are 267 

also known as achievable SE and can be used to evaluate the system performance. In this 268 

paper, a lower bound technique is used to study the uplink system performance with local 269 

distributed combing schemes. Following the same argument in [33], the uplink achievable 270 

SE of UT k for user-centric Cell-Free system can be given as 271 

𝑆𝐸𝑘
𝐶𝐹 = (1 −

𝜏𝑝

𝜏𝑐
) 𝔼 {𝑙𝑜𝑔2( 1 + 𝑆𝐼𝑁𝑅𝑘

𝐶𝐹)}                       (8) 272 

                             where SINR is the effective signal to interference and noise ratio, which can be         273 

given as 274 

𝑆𝐼𝑁𝑅𝑘 =  
𝒑𝒌|𝒗𝒌

𝑯𝔼{𝒈𝒌,𝒌}|
𝟐

∑ 𝒑𝒊
𝑲
𝒊=𝟏 𝔼 {|𝒗𝒌

𝑯𝒈𝒊,𝒌|
𝟐

}−𝒑𝒌|𝒗𝒌
𝑯𝔼{𝒈𝒌,𝒌}|

𝟐
+𝝈𝟐𝒗𝒌

𝑯𝑭𝒌𝒂𝒌

                       (9) 275 

 276 

It is to be noted that the capacity bound in (8) can be used for many channel fading 277 

distributions. The expression in (9) has deterministic terms which can be calculated due 278 

to the fact that the transmitted signal can be identified as if it was transmitted via AWGN 279 

channel with gain 𝔼{𝒂𝑙,𝑘
𝐻 𝑫𝑙,𝑘𝒉𝑙,𝑘}. 280 
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By employing the DCC concept where the 𝒂𝑙,𝑘
𝐻  in (7) can be replaced with 𝒂𝑙,𝑘

𝐻 𝑫𝑙,𝑘 281 

and select the LSFD vector 𝐯𝑘 as 𝒗𝑘  = 𝑝𝑘(∑ 𝑝𝑖
𝐾
𝑖=1 {𝒈𝑖,𝑘𝒈𝑖,𝑘

𝐻 } + 𝜎2𝑭𝑘), the expression in (9) 282 

can be further maximized. Hence, the maximized 𝑆𝐼𝑁𝑅 can be written as 283 

𝑆𝐼𝑁𝑅𝑘
𝑚𝑎𝑥 = 𝑝𝑘{𝒈𝑘,𝑘

𝐻 } × (∑ 𝑝𝑖
𝐾
𝑖=1 {𝒈𝑖,𝑘𝒈𝑖,𝑘

𝐻 }+𝜎2𝑭𝑘 − 𝑝𝑘𝔼 {𝒈𝑘,𝑘}𝔼 {𝒈𝑘,𝑘
𝐻 })

−1
{𝒈𝑘,𝑘}          (10) 284 

 285 

where , 𝑫𝑘 = 𝑑𝑖𝑔(𝑫1,𝑘, … , 𝑫1,𝑘  ),   𝐠𝑖,𝑘 = [𝒂1,𝑘
𝐻 𝑫1,𝑘𝒉1,𝑘, … . . , 𝒂𝐿,𝑘

𝐻 𝑫𝐿,𝑘𝒉𝐿,𝑘]T , and 𝑭k = 286 

𝑑𝑖𝑔({‖𝑫1,𝑘𝒂1,𝑘
𝐻 ‖}, … . . , {‖𝑫𝐿,𝑘𝒂𝐿,𝑘

𝐻 ‖}). 287 

In the combiner design process, the vector that maximizes the effective SINR in (8) is 288 

the optimal combiner. To maximize the effective SINR, we consider two scalable combin- 289 

ing schemes: Local-Partial Zero-Forcing-based, and Local MR-based. 290 

In the presence of inter-user interference, ZF-based schemes provide better perfor- 291 

mance as compared to MR schemes. The Local-Partial RZF combining for UT 𝑘 at AP 𝑙 292 

can be expressed as  293 

         𝒂𝑙,𝑘
𝐿𝑃𝑅𝑍𝐹 = 𝑝𝑘(∑ 𝑝𝑖�̂�𝑖𝑙�̂�𝑖𝑙

𝐻
𝑖∈𝐷𝑙

+ 𝜎2𝐼𝑁𝐴𝑃
)

−1
𝑫𝑘𝑙�̂�𝑘𝑙                     (11)           294 

The Local-Partial RZF vectors from all APs that serve the UT 𝑘 can be written in a 295 

matrix form as 296 

𝑨𝑙,𝑘
𝑳𝑷𝑹𝒁𝑭 = 𝑫𝑘𝑙�̂�𝐷𝑙

 (�̂�𝐷𝑙
�̂�𝐷𝑙

𝐻 + 𝜎2𝑷𝐷𝑙
−1)

−1
                       (12) 297 

where all the vectors of �̂�𝑖𝑙, with the indices 𝑖 ∈ 𝐷𝑙 , are staked together and form the 298 

matrix �̂�𝐷𝑙
. All the transmit powers 𝑝𝑖  for 𝑖 ∈ 𝐷𝑙  are contained in a diagonal matrix 𝐏. 299 

After the Local-Partial RZF detection process, all signals are forwarded to the central 300 

unit over fronthaul links. Then, another stage of signal detection is performed by the CPU, 301 

which applies the LSFD scheme and detect the desired signal. By substituting (12) into 302 

(10), the average sum SE of UT 𝑘 is obtained by (8). 303 

The MR combining vector can be expressed as 304 

𝒂𝑙,𝑘
𝑴𝑹  = 𝑫𝑙,𝑘�̂�𝑙,𝑘                                        (13) 305 

MR combiner maximizes the receive power and neglect the inter-user interference. 306 

To suppress the inter-user interference, sophisticated combining schemes are used. 307 

3. Computational complexity and fronthaul signaling 308 

This section presents a detailed analysis of the basic tradeoffs between maintaining 309 

improvement in the performance and the increase in the computational complexity. Using 310 

the technique propounded in [17], which was proposed for cellular networks, the compu- 311 

tational complexity of different distributed schemes in Cell-Free system will be evaluated 312 

and compared with that of centralized schemes. The key advantage of using alternative 313 

combining methods than MMSE-based approaches is the reduction in the computational 314 

complexity. Local ZF-based schemes are more practical in terms of minimizing the com- 315 

putational complexity and the amount of channel statistics required to design the com- 316 

bining vector. Combining schemes that achieve higher SEs have higher computational 317 

complexity. Hence, a reduction in complexity comes with the cost of decreasing the SE. 318 

Counting the required complex multiplications and divisions is one way to quantify 319 

the computational complexity in the Large-Scale MU-MIMO. For example, for a correla- 320 

tion matrix 𝐑 ∈ ℂ𝑁𝟏×𝑁2 , the required number of complex multiplications for 𝐑 × 𝐑H is 321 

given as 322 

No. of complex multiplications =  ((𝑁1
2 + 𝑁1)/2)𝑁2                      (14) 323 

If the multiplication carried out with different matrix, for example 𝐐 ∈ ℂ𝑁𝟐×𝑁3; the    324 

                             𝐑 × 𝐐 multiplication needs 𝑁1 × 𝑁2 × 𝑁3 complex multiplications. 325 
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In the local distributed MR scheme given in (13), the required number of complex 334 

multiplications for estimating the channels can be written as 335 

(𝑁𝜏𝑝
+ 𝑁2 )|𝒬𝑘|                                        (15) 336 

Here, we are considering the case of using the MR combining along with the LSFD. 337 

For the Local-Partial RZF scheme given in (11), the number of the required complex mul- 338 

tiplications can be given as  339 

(𝑁𝜏𝑝
+ 𝑁2 ) ∑ |𝐷𝑙|𝑖∈𝒬𝑘

                                        (16) 340 

 Compared to the corresponding centralized schemes, the distributed MR scheme 341 

with LSFD is equivalent to the centralized MR [33]. However, for the ZF-based schemes, 342 

the distributed Local-Partial RZF has a lower complexity as compared to the centralized 343 

Partial RZF. The reason is that the distributed operation in the Local-Partial RZF involves 344 

computing only the inverse of 𝑁 × 𝑁 matrix.  345 

  346 

  347 

  348 

  349 

  350 

  351 

  352 

  353 

  354 

  355 

  356 

  357 

  358 

  359 

  360 

  361 

  362 

  363 

  364 

 365 

 366 

4. Spatial Correlation Model 367 

In this section, the spatial correlation matrix 𝐑𝒳  is generated using a physical geo- 368 

metric-based stochastic channel model. This channel modeling accounts for several chan- 369 

nel aspects, including, antenna correlation, geometric characteristics of the antenna ele- 370 

ments and the scatterers, and the UTs’ locations. Assuming that the scattering process 371 

happens only in proximity of the UTs, a 3-D Gaussian Local Scattering scheme is assumed 372 

in this study. In this scheme, signals from different paths (𝒵) reach the APs, and the cor- 373 

relation matrix can be given as [47] 374 

Figure 3: 3-D physical channel model, where the scatterers distributed around the user 

terminal (UT). Each path characterized by two angles: the azimuth (𝜑𝑖) and elevation (𝜃𝑖). 
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𝑹𝒳 = 𝔼 {∑ 𝜶𝑖𝜶𝑖
𝐻𝒵

𝑖=1 }                                        (17) 375 

where 𝜶𝑖 denotes the array response of 𝑖𝑡ℎ path and can be redefined as a function 376 

of the azimuth (𝜑𝑖) and elevation (𝜃𝑖) angles as 377 

𝜶𝑖 = 𝜶(𝜑𝑖 , 𝜃𝑖)                                        (18) 378 

For a particular (𝑙, 𝑚) element, 𝐑𝒳  can be given as, 379 

[𝑹]𝑙,𝑚 =  𝛽 ∫ ∫ 𝑒𝑗 𝜋(𝑚−𝑙)𝑠𝑖𝑛(�̅�)𝑐𝑜𝑠 (�̅�)𝑓(�̅�, �̅�)𝑑�̅�𝑑�̅�                  (19) 380 

where 𝛽 denotes the large-scale fading coefficient for the 𝑖𝑡ℎ multipath component 381 

which arrives from a certain azimuth angle �̅�, and a certain elevation angle �̅�, while 382 

𝑓(�̅�, �̅�) is the PDF of �̅� and �̅�.  383 

In the considered scheme and similar to [48], the scatterers are distributed in a Gauss- 384 

ian distribution, and hence the 𝐑𝒳  is rewritten as 385 

[𝑹]𝑙,𝑚 =  𝛽 ∫ ∫ 𝑒𝑗 𝜋(𝑚−𝑙)𝑠𝑖𝑛(�̅�)𝑐𝑜𝑠 (�̅�) 1

2𝜋∆𝜑∆𝜃
𝑒

−
(�̅�−𝜑)𝟐

𝟐∆�̅�
2  

𝑒
−

(�̅�−𝜃)
𝟐

𝟐∆𝜃
2  

             (20) 386 

where ∆𝜑, and ∆𝜃  denote the horizontal and vertical angular standard deviations 387 

(ASD) with respect to azimuth and elevation angle, respectively. This model is shown in 388 

Figure 3, which illustrates the multipath variations in the azimuth angle.  389 

The horizontal angular ASD defined as 390 

∆𝜑= tan−1(𝑟/𝑑)                                        (21) 391 

where 𝑟 and 𝑑 denote the radius and the horizontal distance. The mean elevation angle 392 

and the vertical ASD is defined with respect to the maximum and minimum elevation 393 

angles as follows. Maximum elevation angle can be achieved by a scatterer located at a 394 

distance 𝑑 − 𝑟 and defined as 395 

 𝜃𝑚𝑎𝑥 = tan−1 ℎ

𝑑−𝑟
                                        (22) 396 

where ℎ denotes the height. Similarly, the minimum elevation angle can be achieved at a 397 

distance 𝑑 + 𝑟 as 398 

𝜃𝑚𝑖𝑛 = tan−1 ℎ

𝑑+𝑟
                                        (23) 399 

 Hence, the mean elevation angle and the vertical ASD can be computed as follows 400 

𝜃 =
𝜃𝑚𝑎𝑥+𝜃𝑚𝑖𝑛

2
                                           (24) 401 

∆𝜃=
𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛

2
                                                                             (25) 402 

5. Numerical Results and Discussion 403 

In this section, a series of Monte-Carlo simulations are carried out to evaluate the 404 

distributed implementation of the Cell-Free system. The uplink transmission is consid- 405 

ered, and the network is considered to be a suburban environment deployed in an area of 406 

2 Km2. The UTs and the APs are distributed uniformly at random in the deployed area. 407 

For this simulation setup, the key simulation parameters that have been selected are re- 408 

ported in [Table 3, [25]]. The large-scale fading coefficients are given as [46]  409 

𝛽𝑘𝑙[𝑑𝐵] = 𝛢𝑑0
− 10𝛾 𝑙𝑜𝑔10 (

𝑑𝑘𝑙

𝑑0
) + 𝐹𝑘𝑙                          (26) 410 

where 𝛢𝑑0
denotes the average channel gain at a reference distance 𝑑0, 𝛾 represents the 411 

path loss exponent, 𝑑𝑘𝑙  denotes the distance between the antenna element and the UT, 412 

𝐹𝑘𝑙 ~ 𝒩 (0, 𝜎𝑠ℎ𝑎𝑑𝑜𝑤
2 )  is random variable with zero-mean and variance 𝜎𝑠ℎ𝑎𝑑𝑜𝑤

2 , which 413 
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channel estimation and the combiner designing at the APs. Next, we consider the LSFD 418 

to study the effect of having two stages of data estimation in the Cell-Free system. Then, 419 

we investigate the effect of increasing the number of the antennas at the APs. Finally, the 420 
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uted schemes is presented. Note that for the sake of comparison, different centralized 422 

schemes are presented as a reference in all the simulations.  423 

5.1. Local Partial Distributed implementation 424 

Considering a user-centric approach, Figure 4 and Figure 5 illustrate the system per- 425 

formance and present a comparison of three different implementations: centralized; par- 426 

tial (one stage); and Local partial with LSFD (two stages). It can be seen that the highest 427 

average SE is obtained with the centralized approach at the expense of higher fronthaul 428 

requirements. However, to decrease the fronthaul requirements, the distributed approach 429 

is investigated in this section. 430 

 431 
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 435 
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 443 

 444 

 445 
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 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

Figure 4 shows the CDF distribution as a function of the achieved average SE. Under 456 

the fronthaul constraints, the simulations are carried out for the different system imple- 457 

mentations with total active UTs 𝐾 =  32, serving single antenna APs 𝐿 =  256, pilot 458 

length 𝜏𝑝  =  8. It can be seen that there exists a significant gap in the performance be- 459 

tween the ZF-based and MR-based combining schemes. The is because the MR schemes 460 

are unable to suppress the inter-user interference. For instance, Local-Partial RZF scheme 461 

gives 43% higher improvement in the average SE. Moreover, it can be observed that the 462 

system performance with Local-Partial RZF and MR can be enhanced by adding LSFD 463 

scheme as a second detection stage. 464 

 465 

 466 

Figure 4: Cumulative Distribution Function (CDF) distribution of for an arbitrary UT as a 

function of the average achievable SE, with L=256 , K=32, and τ_p=8. 
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 491 

Figure 5 illustrates the impact of using higher pilot scalers on the system achievable 492 

SE with local distributed detection. Here, we employ a single antenna APs with 𝐾 = 128, 493 

and 𝐿 =  1024. In the Cell-Free systems, each AP is allowed to serve up to UTs=𝜏𝑝. Let ζ be the 494 
scaling factor controlling the pilot length (𝜏𝑝), and 𝜏𝑝 given as 495 

𝜏𝑝 =  𝜁 × 𝜏0                                       (27) 496 

 where, 𝜏0 = 𝐿/𝐾 is the initial pilot length. 497 

It can be observed that increasing the pilot scalers will improve the system perfor- 498 

mance due the reduction in the pilot reuse, which in turn reduces the pilot contamination. 499 

Thus, the average SE continues to increase up to a specific point. Also, different schemes 500 

saturated at different points. After these saturated points, any increase in the scaling factor 501 

will result in a decrease in the system average achievable SE. Its clear from Figure 5 that 502 

‘8’ and ‘2’ are the saturation points for Partial RZF and MR distributed combining, respec- 503 

tively, while ‘2’ is the same saturation point for Local-Partial RZF and MR-Dist. This is the 504 

case when LSFD scheme is employed. However, the two schemes without LSFD are satu- 505 

rated at ‘2’ and ‘1’, respectively. 506 

 507 

5.2. Multiple Antennas APs 508 

    Considering the achievable SE, Figure 6 and Figure 7 depict the average SE of Partial 509 

RZF, Local-Partial RZF, and MR as a function of 𝐿. We consider 𝐾 =  8, 𝐿 increases 510 

with a constant rate, and the number of antennas per APs either one (Figure 6) or four 511 

(Figure 7).  512 

 As can be seen in Figure 6 and Figure 7, a significant improvement in the achievable 513 

SE can be obtained for all schemes when 𝐿 grows higher. This is due to the increase in 514 

the diversity gain which increased with L. Also, one can observe that Partial RZF, Local- 515 

Partial RZF and Local-Partial RZF with LSFD benefit more as compared to the MR when 516 

𝐿 grows higher. This is because the ability of ZF-based schemes to minimize the inter- 517 

user interference.  518 

Figure 5: Average achived SE as a function of pilot scaling factor, with K=128, L=1024, 

and 𝜏0=8. 
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 542 

Among different local combining schemes in the distributed approach, Local-Partial 543 

RZF with LSFD scheme offers the highest achievable SE. Figure 7 shows that deploying 544 

each AP with more than one antenna is significantly improve the average achievable SE. 545 

The reason is that increasing the number of antennas per AP increases the ability to sup- 546 

press the different users’ interference; and hence the average achievable SE is increased. 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

  558 

 559 

 560 

 561 

 562 
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 564 

 565 
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 567 

 568 

 569 

 570 

 571 

 572 

Figure 6: Average achievable SE as a function of L, with K=8, and 𝜏0 = 8. Each AP is 

equiped by a single antenna. 

Figure 7: Average achievable SE as a function of L, with K=8, and 𝜏0 = 8. Each AP 

equiped by four antennas. 
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5.3. Computational Complexity 573 

Unlike the centralized-based schemes, the distributed combining schemes have the 574 

ability to reduce the amount of interference caused between users in a distributed manner, 575 

which implies that the APs perform the estimation, and design the combining vectors lo- 576 

cally. Furthermore, the computations of local distributed-based combining schemes have 577 

lower complexity than the centralized schemes. This is because the matrix inversion in the 578 

local distributed-based schemes has a much smaller dimension.   579 
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 604 

 605 

Figure 8 shows the complexity in terms of number of complex multiplications as a 606 

function of UTs. Among all the five schemes, two of the centralized schemes, namely, 607 

Partial MMSE and Partial RZF, have the highest computational complexity. In the case of 608 

Partial MMSE using the dynamic cooperative clustering for centralized scheme, the com- 609 

putational complexity decreases as the number of UTs increases [33]. In addition, the par- 610 

tial MMSE is a scalable combining scheme that can be employed with a slight loss in SE; 611 

as a benefit of this, a reduction in complexity is observed in figure 8. The Partial RZF has 612 

achieved less complexity than Partial MMSE. However, as the number of UTs increases, 613 

the computational complexity increases, and the gap between the two schemes decreases. 614 

The reason is that in the partial RZF, on average, the number of UTs served by the same 615 

group of APS increases as 𝐾 increases. 616 

For the Local-Partial RZF distributed scheme, it can be observed that the computa- 617 

tional complexity is independent of the UTs, so it does not grow as 𝐾 → ∞. Despite the 618 

fact it has the lowest complexity, MR schemes in both implementations (centralized and 619 

distributed) are known to be suboptimal schemes due to its neglecting the existing inter- 620 

user interference.  621 

5.4. Discussion 622 

 Considering that the proposed scheme entails sharing of the computational load be- 623 

tween the CPU and the APs, the Local-Partial RZF distributed scheme would be very suit- 624 

able for modern ‘edge computing’, wherein more and more processing is being delegated 625 

to the edge devices and being off-loaded from the central processing node (or the cloud) 626 

Figure 8: The number of computational complexities as a function of UTs. The total number 

of ASs in the network L=100, and each AP is equipped with 4 antennas. We consider τ0=8 



Electronics 2022, 11, x FOR PEER REVIEW 14 of 16 
 

 

[49]. There has been facilitated by a rapid increase in the computational capabilities of the 627 

edge nodes over the recent past, and the availability of high-performance mobile GPUs 628 

(and specialized toolkits such as CUDA1 from Nvidia) which can be very effectively uti- 629 

lized for fast matrix inversion operations and complex multiplications.  630 

 Furthermore, the observation that the computational complexity for LP-RZF is inde- 631 

pendent of the number of UTs would imply that the APs (serving as the edge node) need 632 

not be upgraded and/or re-configured with an increase in the user count. 633 

 634 

6. Conclusion 635 

In Cell-Free Large-Scale MU-MIMO, it is assumed that all the UTs are being served 636 

by all the APs in the same time-frequency resource. The signal processing is then per- 637 

formed and administered by the CPU with unlimited fronthaul capacity. These character- 638 

istics make a system more complex, unscalable, and impractical. In order to reduce the 639 

load on the fronthaul connections, local distributed detection schemes are considered in 640 

this paper with realistic and practical system considerations. The results demonstrate that 641 

for various distributed configurations, Local-Partial RZF provides the highest achieved 642 

average SE while the distributed MR offers the lowest performance. Further, the perfor- 643 

mance of the distributed schemes can be substantially enhanced by deploying LSFD as a 644 

second stage of data detection at the CPU. Moreover, in terms of computational complex- 645 

ity, the Local-Partial RZF distributed scheme can achieve less complexity than the central- 646 

ized schemes since that the computational complexity in the Local-Partial RZF is inde- 647 

pendent of the UTs, so it does not grow as 𝐾 → ∞. The distributed combining scheme has 648 

the potential to reduce the interference from other UTs in a distributed manner. 649 

 650 

 651 

 652 

References 653 

 654 
1. E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis and T. L. Marzetta, "Massive MIMO is a reality—What is next? Five prom- 655 

ising research directions for antenna arrays" Digital Signal Processing. 2019 Nov. 1;94:3-20. 656 
2. M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE J. Sel. Areas Commun., 657 

vol. 35, no. 6,pp. 1201–1221, 2017 658 
3. C. Wang, J. Bian, J. Sun, W. Zhang and M. Zhang. A Survey of 5G Channel Measurements and Models. IEEE Communications 659 

Surveys & Tutorials, 2018; 20(4):3142-3168. 660 
4. Z. Lin et al., "Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization," 661 

in IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 4, pp. 3717-3724, Aug. 2022. 662 
5. Silva, Mário Marques da, and João Guerreiro. 2020. "On the 5G and Beyond" Applied Sciences 10, no. 20: 7091. 663 

https://doi.org/10.3390/app10207091. 664 
6. Z. Lin et al., "SLNR-based Secure Energy Efficient Beamforming in Multibeam Satellite Systems," in IEEE Transactions on Aer- 665 

ospace and Electronic Systems, 2022. 666 
7. Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter 667 

Wave Mobile Communications for 5G Cellular: It Will Work!, IEEE Access 2013, 1, 335–349. 668 
8. S. Han, C. I, Z. Xu and C. Rowell, "Large-scale antenna systems with hybrid analog and digital beamforming for millimeter 669 

wave 5G," in IEEE Communications Magazine, vol. 53, no. 1, pp. 186-194, January 2015. 670 
9. Z. Lin, M. Lin, J. -B. Wang, T. de Cola and J. Wang, "Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated 671 

Networks With Non-Orthogonal Multiple Access," in IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 3, pp. 672 
657-670, June 2019. 673 

10. L. Dai, B. Wang, Y. Yuan, S. Han, C. I and Z. Wang, "Non-orthogonal multiple access for 5G: Solutions challenges opportunities 674 
and future research trends", IEEE Commun. Mag., vol. 53, no. 9, pp. 74-81, Sep. 2015. 675 

11. Z. Lin, M. Lin, T. de Cola, J. -B. Wang, W. -P. Zhu and J. Cheng, "Supporting IoT With Rate-Splitting Multiple Access in Satellite 676 
and Aerial-Integrated Networks," in IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11123-11134, 15 July15, 2021. 677 

                                                           
1 https://developer.nvidia.com/cuda-toolkit 

https://doi.org/10.3390/app10207091


Electronics 2022, 11, x FOR PEER REVIEW 15 of 16 
 

 

12. T. L. Marzetta. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on 678 
Wireless Communications. 2010;9(11):3590-3600. 679 

13. F. Rusek et al., "Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays," in IEEE Signal Processing Magazine, 680 
vol. 30, no. 1, pp. 40-60, Jan. 2013. 681 

14. H. Q. Ngo, E. G. Larsson and T. L. Marzetta. Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems. IEEE 682 
Transactions on Communications. 2013; 61(4):1436-1449. 683 

15. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next-generation wireless systems," in IEEE 684 
Communications Magazine. 2014; 52(2):186-195. 685 

16.  J. Hoydis, S. ten Brink and M. Debbah, "Massive MIMO in the UL/DL of cellular networks: How many antennas do we 686 
need?", IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 160-171, Feb. 2013. 687 

17. Emil Björnson; Jakob Hoydis; Luca Sanguinetti, Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Foun- 688 
dations and Trends in Signal Processing. 2017;11(3-4):154-655. 689 

18. A. Alammari, A, Sharique, M. Spatial channel correlation for local scattering with linear MMSE-based estimator and detector 690 
in multi-cell large scale MU-MIMO networks. Trans Emerging Tel Tech. 2021; 32( 12):e4366. https://doi.org/10.1002/ett.4366 691 

19. R. Irmer et al., "Coordinated multipoint: Concepts performance and field trial results", IEEE Commun. Mag., vol. 49, no. 2, pp. 692 
102-111, Feb. 2011. 693 

20. D. Wang, J. Wang, X. You, Y. Wang, M. Chen and X. Hou, "Spectral efficiency of distributed MIMO systems", IEEE J. Sel. Areas 694 
Commun., vol. 31, no. 10, pp. 2112-2127, Oct. 2013. 695 

21. G. N. Kamga, M. Xia and S. Assa, "Spectral-efficiency analysis of massive MIMO systems in centralized and distributed 696 
schemes", IEEE Trans. Commun., vol. 64, no. 5, pp. 1930-1941, May 2016. 697 

22. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson and T. L. Marzetta, "Cell-free massive MIMO versus small cells", IEEE Trans. 698 
Wireless Commun., vol. 16, no. 3, pp. 1834-1850, Mar. 2017. 699 

23. W. Liu, S. Han, C. Yang, and C. Sun, “Massive MIMO or small cell network: Who is more energy efficient?,” in Proc. of IEEE 700 
Wireless Communications and Networking Conference Workshops (WCNCW), 2013, pp. 24–29. 701 

24. S. Buzzi, C. D'Andrea and C. D'Elia, "User-Centric Cell-Free Massive MIMO with Interference Cancellation and Local ZF Down- 702 
link Precoding," 2018 15th International Symposium on Wireless Communication Systems (ISWCS), 2018, pp.1-5. 703 

25. A. A. Alammari, M. Sharique and A. A. Moinuddin, "User-Centric Cell-Free and Co-Located Cellular Large Scale MU-MIMO 704 
Systems: A Comparative Performance Study With Spatial Channel Correlation in Dense Urban Scenario," in IEEE Access, vol. 705 
10, pp. 48792-48809, 2022, doi: 10.1109/ACCESS.2022.3172290. 706 

26. E. Björnson and L. Sanguinetti, "Making Cell-Free Massive MIMO Competitive With MMSE Processing and Centralized Imple- 707 
mentation," in IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 77-90, Jan. 2020. 708 

27. G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger and E. G. Larsson, "Ubiquitous cell-free massive MIMO communica- 709 
tions", EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, pp. 197, Dec. 2019. 710 

28. Z. Chen and E. Björnson, "Channel Hardening and Favorable Propagation in Cell-Free Massive MIMO With Stochastic Geom- 711 
etry," in IEEE Transactions on Communications, vol. 66, no. 11, pp. 5205-5219, Nov. 2018. 712 

29. E. Nayebi, A. Ashikhmin, T. L. Marzetta and H. Yang, "Cell-free massive MIMO systems", Proc. 49th Asilomar Conf. Signals Syst. 713 
Comput., pp. 695-699, Nov. 2015. 714 

30. E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang and B. D. Rao, "Precoding and Power Optimization in Cell-Free Massive 715 
MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 16, no. 7, pp. 4445-4459, July 2017. 716 

31. M. Bashar, K. Cumanan, A. G. Burr, M. Debbah and H. Q. Ngo, "Enhanced max-min SINR for uplink cell-free massive MIMO 717 
systems", Proc. IEEE ICC, pp. 1-7, May 2018. 718 

32. M. Bashar, K. Cumanan, A. G. Burr, H. Q. Ngo and M. Debbah, "Cell-free massive MIMO with limited backhaul", Proc. IEEE 719 
Int. Conf. Commun., May 2018. 720 

33. Ö . T. Demir, E. Björnson and L. Sanguinetti, "Foundations of user-centric cell-free massive MIMO", Found. Trends Signal Process., 721 
vol. 14, no. 3, pp. 162-472, 2021. 722 

34. A. Papazafeiropoulos, P. Kourtessis, M. D. Renzo, S. Chatzinotas and J. M. Senior, "Performance analysis of cell-free massive 723 
MIMO systems: A stochastic geometry approach", IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 3523-3537, Apr. 2020. 724 

35. M. Bashar, K. Cumanan, A. G. Burr, , M. Debbah, and H. Q. Ngo, “Enhanced max-min SINR for uplink cell-free Massive MIMO 725 
systems,” in Proc. IEEE ICC, May 2018, pp. 1–6. 726 

36. T. H. Nguyen, T. K. Nguyen, H. D. Han and V. D. Nguyen, "Optimal Power Control and Load Balancing for Uplink Cell-Free 727 
Multi-User Massive MIMO," in IEEE Access, vol. 6, pp. 14462-14473, 2018. 728 

37. Z. H. Shaik, E. Björnson and E. G. Larsson, "MMSE-Optimal Sequential Processing for Cell-Free Massive MIMO With Radio 729 
Stripes," in IEEE Transactions on Communications, vol. 69, no. 11, pp. 7775-7789, Nov. 2021. 730 

38. J. Zhang, J. Zhang, D. W. K. Ng, S. Jin and B. Ai, "Improving Sum-Rate of Cell-Free Massive MIMO With Expanded Compute- 731 
and-Forward," in IEEE Transactions on Signal Processing, vol. 70, pp. 202-215, 2022. 732 

39. P. Liu, K. Luo, D. Chen, and T. Jiang, “Spectral efficiency analysis of cell-free massive MIMO systems with zero-forcing detec- 733 
tor,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 795–807, Feb. 2020. 734 

40. S. Buzzi and C. D’Andrea, "Cell-Free Massive MIMO: User-Centric Approach," in IEEE Wireless Communications Letters, vol. 6, 735 
no. 6, pp. 706-709, Dec. 2017. 736 



Electronics 2022, 11, x FOR PEER REVIEW 16 of 16 
 

 

41. G. Interdonato, P. Frenger and E. G. Larsson, "Scalability Aspects of Cell-Free Massive MIMO," ICC 2019 - 2019 IEEE Interna- 737 
tional Conference on Commun. (ICC), pp. 1-6, 2019. 738 

42. L. D. Nguyen, T. Q. Duong, H. Q. Ngo and K. Tourki, "Energy efficiency in cell-free massive MIMO with zero-forcing precoding 739 
design", IEEE Commun. Lett., vol. 21, no. 8, pp. 1871-1874, Aug. 2017. 740 

43. G. Femenias and F. Riera-Palou, "Cell-Free Millimeter-Wave Massive MIMO Systems With Limited Fronthaul Capacity," 741 
in IEEE Access, vol. 7, pp. 44596-44612, 2019. 742 

44. G. Interdonato, M. Karlsson, E. Björnson and E. G. Larsson, "Local Partial Zero-Forcing Precoding for Cell-Free Massive MIMO," 743 
in IEEE Transactions on Wireless Communications, vol. 19, no. 7, pp. 4758-4774, July 2020. 744 

45. J. Zhang, J. Zhang, E. Björnson and B. Ai, "Local partial zero-forcing combining for cell-free massive MIMO systems", IEEE 745 
Trans. Commun., vol. 69, no. 12, pp. 8459-8472, Sep. 2021. 746 

46. E. Björnson, J. Hoydis and L. Sanguinetti, "Massive MIMO networks: Spectral energy and hardware efficiency", Found. Trends 747 
Signal Process., vol. 11, no. 3, pp. 154-655, 2017. 748 

47. E. Björnson, E. G. Larsson and M. Debbah, "Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should 749 
Be Allocated?" in  IEEE Transactions on Wireless Communications, vol. 15, no. 2, pp. 1293-1308, Feb. 2016. 750 

48. S. -N. Jin, D. -W. Yue and H. H. Nguyen, "Spectral and Energy Efficiency in Cell-Free Massive MIMO Systems Over Correlated 751 
Rician Fading," in IEEE Systems Journal, vol. 15, no. 2, pp. 2822-2833, June 2021. 752 

49. M.S. Ansari, et al. "Security of distributed intelligence in edge computing: Threats and countermeasures." The Cloud-to-Thing 753 
Continuum. Palgrave Macmillan, Cham, 2020. 95-122. 754 
 755 


