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Abstract 10 

Microbiome analysis is quickly moving towards high-throughput methods such as metagenomic 11 

sequencing. Accurate taxonomic classification of metagenomic data relies on reference sequence 12 

databases, and their associated taxonomy. However, for understudied environments such as the 13 

rumen microbiome many sequences will be derived from novel or uncultured microbes that are not 14 

present in reference databases. As a result, taxonomic classification of metagenomic data from 15 

understudied environments may be inaccurate. To assess the accuracy of taxonomic read 16 

classification, this study classified metagenomic data that had been simulated from cultured rumen 17 

microbial genomes from the Hungate collection. To assess the impact of reference databases on the 18 

accuracy taxonomic classification, the data was classified with Kraken 2 using several reference 19 

databases. We found that the choice and composition of reference database significantly impacted 20 

on taxonomic classification results, and accuracy. In particular, NCBI RefSeq proved to be a poor 21 

choice of database. Our results indicate that inaccurate read classification is likely to be significant 22 

problem, affecting all studies that use insufficient reference databases. We observed that adding 23 

cultured reference genomes from the rumen to the reference database greatly improved 24 

classification rate and accuracy. We also demonstrated that metagenome-assembled genomes 25 

(MAGs) have the potential to further enhance classification accuracy by representing uncultivated 26 

microbes, sequences of which would otherwise be unclassified or incorrectly classified. However, 27 

classification accuracy was strongly dependent on the taxonomic labels assigned to these MAGs. We 28 

therefore highlight the importance of accurate reference taxonomic information and suggest that, 29 

with formal taxonomic lineages, MAGs have the potential to improve classification rate and 30 

accuracy, particularly in environments such as the rumen that are understudied or contain many 31 

novel genomes.  32 

 33 
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 37 

Background 38 

 39 

Ruminants are vital for global food security, providing high-quality protein to the increasing food 40 

demands of an expanding human population. The rumen is home to a complex microbial ecosystem 41 

containing bacteria, archaea, fungi, protozoa and viruses. The relationship between the host and 42 

these microbes is symbiotic, as they ferment lignocellulosic feed into volatile fatty acids, which are a 43 

key energy source for the host animal [1]. Subsequently the rumen microbiome significantly 44 

contributes to global food security and world trade. Cattle alone contribute substantially to the 45 

economy; in 2018 the global production value of beef exceeded $110 billion USD, and cow’s milk 46 

exceeded $280 billion USD (FAOSTAT). Understanding the rumen is paramount to the success of 47 

many avenues of agricultural research, including feed-conversion efficiency [2], [3], methane 48 

emissions [4–7] and investigating the impact of diet on the spread of antibiotic resistance [8].   49 

 50 

In spite of the importance of ruminants, the rumen continues to be an under-characterised 51 

environment [9] with many rumen-dwelling microbes remaining uncultured, and as such absent 52 

from public reference databases. To mitigate this issue, efforts have been made to culture rumen-53 

dwelling microbes, such as the Hungate 1000 project. This significantly improved knowledge 54 

surrounding rumen microbiome community structure as these cultured microbes are estimated to 55 

represent up to 75% of ruminal bacterial and archaeal genera [10]. However, while culturing efforts 56 

have undoubtedly improved the availability of rumen isolated genomes, culturing is laborious, and 57 

some species may prove difficult to isolate in the laboratory. As a result, it is known that many 58 

ruminant genera remain to be cultured, and are therefore without sequence information [11], 59 

meaning reference databases still have important limitations. 60 
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 61 

Metagenomics is the simultaneous study of DNA extracted from organisms within an environment 62 

or microbiome (reviewed in [12]). Metagenome-assembled genomes (MAGs) are draft genomes that 63 

have been assembled ‘de novo’, without a reference genome, from binning metagenomic 64 

sequencing data [13]. As this process does not require culturing, MAGs can considerably expand on 65 

the number of reference genomes derived from culture collections. Additionally, MAG assembly is 66 

high-throughput, hundreds or thousands of MAGs can be assembled during a single analysis. MAGs 67 

therefore have the potential to transform microbiome analysis by shedding light on the previously 68 

poorly described “uncultured majority” [14], [15], and a recent cross-study examination of over 69 

33,000 rumen MAGs concludes that there are still more rumen microbial species to discover [16]. As 70 

the rumen microbiome still remains predominantly uncultivated, the use of culture-independent 71 

techniques such as MAG assembly are therefore becoming increasingly valuable. Many novel MAGs 72 

have been recently published from ruminants [13, 17–25], and these allow the discovery of novel 73 

putative genes and functionality in the rumen [26–28].   74 

 75 

Studying the microbial composition of an environment using metagenomic data, necessitates the 76 

assignment of taxonomic labels to sequence reads, referred to as taxonomic read classification. 77 

Classification can be to varying taxonomic levels or ranks. Two of the most commonly used 78 

bioinformatics tools available for metagenomic read classification are Kraken [29], and its successor, 79 

Kraken 2 [30]. Regardless of classification tool used, reference database quality and 80 

comprehensiveness fundamentally underpin the accuracy of results, and classification results can 81 

vary dramatically depending on which reference database is used. However, reference databases are 82 

known to be highly skewed towards certain well studied species. Blackwell et al. showed that 90% of 83 

genomes in the European Nucleotide Archive (ENA), a large publicly available microbial sequence 84 

archive, originate from just 20 microbial species [31]. This is important because Meric et al. 85 

demonstrated that the number of genomes used to build the index, and the taxonomic system used 86 
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to classify genomes, can significantly impact classification rates [32]. Similarly, Nasko et al. 87 

demonstrated that classification accuracy is impacted by the version of the popular publicly available 88 

sequence database RefSeq [33] that is used [34], and Marcelino et al. showed that the reference 89 

database needs to represent all domains of life within the microbiome to minimise false positives 90 

[35]. Of note, some rumen metagenomics studies report very poor read classification rates when 91 

using RefSeq alone [13], [17]. The Hungate 1000 project provides excellent additional reference 92 

genomes for taxonomic classification [10] but, given that there are hundreds of currently uncultured 93 

and uncharacterised genera in the rumen, the Hungate collection alone may not be fully 94 

representative. Subsequently, although the Hungate genomes may improve the classification rate of 95 

metagenomic data [13], these may not be true hits, and therefore may not always improve the 96 

accuracy of classification. Stewart et al. have twice demonstrated that the addition of MAGs to 97 

reference databases improves metagenomic read classification rate by 50-70%, but the addition of 98 

Hungate collection genomes showed little improvement (10%) [13], [17]. However, the impact of the 99 

addition of MAGs and Hungate collection genomes to reference databases on classification accuracy, 100 

not just classification rate, is not yet known. 101 

 102 

In this study, simulated data generated from known rumen microbial genomes, was used to test the 103 

accuracy of metagenomic read classification using a range of reference databases. This work focused 104 

on the read classification tool, Kraken2, which has been shown to be highly accurate and fast [36] 105 

and allows for the easy construction of custom reference databases. We found that classification 106 

accuracy varies significantly between reference databases, and taxonomic levels. This work 107 

emphasises the importance of reference database choice, as well as highlighting the potential low 108 

accuracy of taxonomic classification using commonly-applied present approaches. Furthermore, this 109 

study demonstrates that the addition of MAGs to reference databases substantially improves read 110 

classification accuracy at some taxonomic levels. This work proposes that this improvement has the 111 
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most potential when using MAGs assembled from the same environment as the classification data, 112 

and when using reference MAGs that have a full taxonomic lineage assigned to them. 113 

 114 

Results 115 

 116 

Classification rate is heavily impacted by reference database 117 

 118 

In order to assess the impact of reference database choice on the classification of metagenomic 119 

data, a simulated metagenomic dataset was created from rumen microbial genomes. The taxonomy 120 

of the simulated metagenomic dataset was classified using Kraken2 and a variety of reference 121 

databases. Briefly, the ‘Hungate’ database contains rumen microbial genomes. The ‘RefSeq’ and 122 

‘Mini’ databases contain the complete bacterial, archaeal and viral genomes in RefSeq, the human 123 

genome, as well as a collection of known vectors (UniVec_Core), with the ‘Mini’ database built to 124 

just 8 GB in size. The ‘RUG’ database contains rumen uncultured genomes (RUGs), which are MAGs 125 

that have been assembled from rumen metagenomic data. The ‘RefHun’ database contained the 126 

same sequences as the ‘RefSeq’ database, with the addition of the cultured isolate genome 127 

sequences in the ‘Hungate’ database. Similarly, the ‘RefRUG’ database contains the same sequences 128 

as the ‘RefSeq’ database, with the addition of the MAG sequences in the ‘RUG’ database. Further 129 

information on the contents of each database and how they were made can be found in the 130 

Methods section, and in Table 1.  131 
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 132 

Figure 1 Overall classification rate of reads for the six reference databases. The classification rate of 133 

the data for each database are shown in the bars along the x-axis. Details about the databases can 134 

be found in Table 1. The y-axis denotes the percentage of reads from the simulated metagenomic 135 

dataset which were classified or unclassified by Kraken2 to any taxonomy level using each reference 136 

database. 137 

 138 

As a first test, we looked simply at how much of the simulated metagenomic data was classified 139 

(classification rate), regardless of whether or not the classification was accurate. The overall 140 

classification rate, meaning the percentage of reads classified by Kraken2 to any taxonomic level 141 
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when using that particular database, is shown in Figure 1. Also shown in Figure 1 is the percentage of 142 

reads that were unclassified by Kraken2, meaning they were not classified to any taxonomic level 143 

when using that particular database. As expected, since the simulated dataset was derived from the 144 

Hungate collection genomes, when the Hungate reference database was used Kraken2 classified 145 

almost all reads, with a classification rate of 99.95 %. The Kraken2 Mini and RefSeq reference 146 

databases resulted in the classification of 39.85 % and 50.28 % of the reads respectively. 147 

Interestingly, of the 460 Hungate genomes used to create the simulated data, 119 were present in 148 

RefSeq at the time of analysis. However, as Kraken 2 chooses which genomes to include in each 149 

Standard database, not all 119 Hungate genomes in RefSeq were necessarily included in the RefSeq 150 

or Mini databases. This indicates that the RefSeq database is not fully representative of the data, 151 

which will have impacted on the classification results. The RUG reference database alone had a 152 

classification rate of 45.66 %, which is a higher rate than the Mini Kraken 2 database but lower than 153 

the RefSeq database. Adding the RUG data to the RefSeq database (RefRUG) resulted in 70.09 % of 154 

reads being classified, which is approximately 1.4x as many reads than were classified with the 155 

RefSeq database alone. Finally, as expected, adding the Hungate database to the RefSeq database 156 

(RefHun) resulted in near complete classification of the reads. However, there was no apparent 157 

benefit to classification rate with the addition of RefSeq (RefHun), when compared to the Hungate 158 

database alone (Figure 1). 159 

 160 

After observing the overall classification rates for each reference database, the next step was to 161 

examine the classification rates at various taxonomic levels for each reference database. Figure 2 162 

separates the overall classification rate for each reference database into the classification rate at 163 

various taxonomic levels. Overall classification rates, regardless of accuracy, are also shown in 164 

Supplementary Table S1. In general, there was a decline in the classification rate for each database 165 

moving down the taxonomic levels from phylum, to family, to genus and finally species.  166 

 167 
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 168 

Figure 2 Classification rate of reads, shown at various taxonomic levels for the six reference 169 

databases. Classification rate refers to whether the reads were classified or unclassified, and are 170 

shown as a percentage at the (A) Phylum, (B) Family, (C) Genus and (D) Species levels. The y-axis 171 

shows the percentage of reads from the simulated dataset which were classified or unclassified 172 

when classified using Kraken2. The six reference databases used during classification are shown as 173 

bars plotted along the x-axis. 174 

 175 

Anomalously, with some reference databases, classification rate at the genus level was lower than at 176 

the species level. This was also observed to a lesser extent in the classification rates at the family 177 
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level. For example, the RUG database had a classification rate of 45.16% at phylum level, 42.36% at 178 

family level, 27.99% at genus level and 43.93% at species level. This is due to a feature of the data 179 

itself, as some of the Hungate and RUG genomes used to build the reference databases do not have 180 

complete taxonomic lineages. For example, the Hungate genome “Bacteroidales bacterium KHT7” 181 

(taxonomy ID: 1855373) has labels at the kingdom, phylum, class, order and species levels, but no 182 

labels at the family and genus levels. Of the 460 Hungate genomes, 8 do not have a label at the 183 

family level, and 73 do not have a label at the genus level. Another example is the RUG 184 

“Ruminococcaceae bacterium RUG10048” (taxonomy ID: 1898205), which has the label 185 

Ruminococcaceae at the family level, and the label “Ruminococcaceae bacterium” at the species 186 

level, but has no label at the genus level. Of the 4941 RUGs, 3849 have no labels at the genus level, 187 

and 1753 have no labels at the family level. 4293 of the RUGs had a non-specific species label, for 188 

example “uncultured Bifidobacterium sp.”. Therefore, as these genomes do not have a taxonomic 189 

label at these levels, reads from these genomes appear as unclassified.  190 

 191 

The addition of RefSeq to the Hungate reference database (RefHun database) did not significantly 192 

impact the classification rate at the higher taxonomic levels compared to the Hungate reference 193 

alone (Figure 2). However, at the lower taxonomic levels, the RefHun database appeared to slightly 194 

reduce the classification rate when compared to the Hungate database alone. For example, at the 195 

species level with the Hungate database 92.69% of reads were classified, whereas with the RefHun 196 

database 89.27% of reads were classified. 197 

 198 

Classification accuracy is strongly impacted by reference database 199 

 200 

Although classification rate is an important feature, it is clearly more important that data that is 201 

classified is done so accurately. The next logical step was therefore to use ground truth data to 202 

investigate the read classification accuracy of each reference database on the simulated 203 
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metagenomic data. Figure 3 shows the classification accuracy of reads when classified using each 204 

reference database, at various taxonomic levels. The same data in tabular form is shown in 205 

Supplementary Table S2. The percentage of correctly classified reads reduced when moving down 206 

the taxonomic levels from phylum to species, for all databases. At the phylum level, the majority of 207 

taxonomic labels assigned to classified reads were correct when using all reference databases, or 208 

were otherwise unclassified. Indeed, fewer than 4% of classified reads were classified incorrectly for 209 

any of the databases at the phylum level.  210 

 211 

Figure 3 The accuracy of taxonomic classification using each reference database and across the 212 

various taxonomic levels. Classification status of reads compared to the ground truth for the six 213 
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reference databases at various taxonomic levels. The graphs refer to the percentage of reads, shown 214 

along the y-axis, at the (A) Phylum, (B) Family, (C) Genus and (D) Species levels. Each bar represents 215 

reads classified by Kraken2, using each reference database as shown along the x-axis. The bars 216 

represent the percentage of classified reads at various classification status, as shown in the key. 217 

“Truth unknown” refers to the reads that originate from genomes that do not have an assigned 218 

family or genus. “Unclassified at any level” refers to reads that were not classified to any taxonomic 219 

level. “Unclassified at this level” refers to reads that were classified at other taxonomic levels, but 220 

not the level being examined in each graph. “Correct” and “incorrect” refer to reads that were 221 

classified correctly or incorrectly by Kraken2 using the respective database.  222 

 223 

At the family level and above, no reads were classified incorrectly by Kraken2 with the Hungate 224 

database. The addition of Hungate genomes to the RefSeq database (RefHun) also increased the 225 

percentage of correctly classified reads substantially compared with using the RefSeq database 226 

alone, from 40.93% to 97.82%. Use of some of the reference databases resulted in reads being 227 

incorrectly classified at the family level. While classification using the RefSeq database correctly 228 

classified a higher percentage of reads than the Mini database (40.93% vs 35.62%), it also incorrectly 229 

classified a higher percentage (7.07% vs 2.74%), and the ratio of correct:incorrect was better when 230 

using the Mini database. Classification using the RUG database resulted in 35.76% of reads being 231 

classified correctly, which was less accurate than the RefSeq database but comparable to the Mini 232 

database. Additionally, use of the RUG database classified 5.71% of reads incorrectly, which was 233 

lower than the RefSeq database but higher than the Mini database. Adding the RUG genomes to the 234 

RefSeq database (RefRUG) improved almost all classification metrics when compared to using 235 

RefSeq alone. However, use of the RefRUG database resulted in a higher number of reads that were 236 

classified incorrectly (Figure 3). Use of the Hungate database correctly classified 97.99% of reads, 237 

and the remaining 2.01% were either unclassified or do not have a known truth due to missing 238 

taxonomic labels in the reference sequences. These reads are assigned the “truth_unknown” status. 239 
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 240 

At the genus level, although using the RefSeq reference database resulted in more reads being 241 

classified correctly than with the Mini database, using the RefSeq database also classified more 242 

reads incorrectly, with use of the Mini database again having a better ratio of correct:incorrect 243 

assignments. Using the RUG database resulted in fewer reads being classified correctly at the genus 244 

level, and resulted in a higher percentage of unclassified reads. However, use of the RUG database 245 

again resulted in fewer reads being incorrectly classified than with the RefSeq database. Similar to 246 

the family level results, adding the RUG data to RefSeq improved on most metrics when compared 247 

to using only the RefSeq database. Use of the Hungate database correctly classified 82.56% of reads, 248 

notably caused by reads categorised into the previously mentioned “truth_unknown” status, which 249 

accounted for 16.32% of the reads at genus level. Use of the Hungate database resulted in the 250 

incorrect classification of very few reads, which was echoed in the RefHun database. Compared to 251 

the RefSeq database, classification with the RefHun database classified more reads correctly (81.90% 252 

vs 35.97%), and classified fewer reads incorrectly (0.01% vs 7.85%). 253 

 254 

At the species level, use of both of the RefSeq and the Mini databases classified a similar proportion 255 

of reads correctly (22.74% vs 20.65%). However, using the RefSeq database incorrectly classified 256 

almost the same proportion (20.53%), whereas using the Mini database incorrectly classified 257 

approximately half that amount (11.55%). As expected for a smaller database, classification with the 258 

Mini database had a higher proportion of reads that were unclassified at any level compared to 259 

RefSeq (60.15% vs 49.72%). A summary of the number of genera and species in the ground truth 260 

data, and the number that were classified using each of the reference databases, is shown in 261 

Supplementary Figure S1. Reference databases that include RefSeq (RefSeq, Mini, RefHun, RefRUG) 262 

classified thousands more false positives than databases that did not (Hungate, RUG). Including 263 

RUGs in the database (RUG) did not improve the situation, as it failed to classify many genera and 264 
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species that were in the ground truth data. Additionally, classification of the data using the RUG 265 

database failed to classify any reads for certain abundant taxa.  266 

 267 

After some investigation, it was discovered that there were marked differences in the annotated 268 

taxonomies present in the RUG and Hungate genomes, shown in Table 2. Several taxa were present 269 

in the Hungate data but were seemingly not present in the RUG data. As the Hungate collection 270 

contains highly abundant rumen microbial genomes, it is likely that these taxa are also present in the 271 

assembled RUG genomes, but that their taxonomy is not accurately annotated. Further investigation 272 

revealed that this was indeed a result of some RUGs not having an assigned taxonomy at the family 273 

and/or genus levels. Examples are the family Bacteroidaceae and genus Bacteroides, which are both 274 

present in the Hungate data but not annotated as such in the RUG data, explaining why no reads 275 

were classified for these taxa at those levels. 276 

 277 

Table 2 The frequency of families and genera in the Hungate and RUG datasets, and overlap between 278 

the two datasets.  279 

Status Family Genus 

Present in Hungate but not RUG 25 48 

Present in RUG but not Hungate 8 8 

Present in both RUG and Hungate 23 33 

 280 
Shown are the families and genera present in the Hungate and RUG datasets, including overlapping 281 
taxa. The Hungate data was used to generate the simulated data, and was included in the Hungate 282 
and RefHun reference databases. Similarly, the RUG data was included in the RefRUG and RUG 283 
reference databases. 284 
 285 

The poor performance of RUGs at this level, as demonstrated in classification accuracy for the RUG 286 

database, also impacted the RefRUG database. Use of both reference databases including RUGs 287 

resulted in over 35% of reads being incorrectly classified. This can be explained by the use of generic 288 

species labels for the RUG dataset, which when compared to the formally named Hungate collection 289 

genomes in the ground truth were classified as incorrect. The addition of the RUG genomes to the 290 



 15 

RefSeq database (RefRUG) increased the percentage of correctly classified reads slightly, from 291 

22.74% to 25.87%.  292 

 293 

Once more, using the Hungate reference database resulted in the best performance, with the vast 294 

majority of reads classified correctly (92.56%), and only a small proportion of misclassifications 295 

(0.13%). There were, however, approximately 7% of reads that were not classified at the species 296 

level. The classification metrics when using the RefHun reference database were markedly closer to 297 

the results obtained when using the Hungate database than the RefSeq database. The addition of 298 

the Hungate genomes to the RefSeq database (RefHun) increased the percentage of correctly 299 

classified reads from 22.74% to 88.92%, and the decreased number of incorrectly classified reads 300 

from 20.53% to 0.35%, clearly demonstrating the huge gains in accuracy that can be obtained when 301 

closely matching sequences are present in reference databases.  302 

 303 

Composition of the reference database used impacts upon the accuracy of taxonomic read 304 

classification and taxonomic read abundance 305 

 306 

Having demonstrated that the accuracy of taxonomic read classification changes considerably 307 

depending on the reference database used, this study next examined the impact of reference 308 

database choice on the taxonomic abundance of a microbial community. This was done using the 309 

same simulated data and reference databases as before, but by examining classification results in 310 

the form of taxonomic read abundance. Figure 4 shows a selection of scatterplots that compare the 311 

taxonomic abundance of the ground truth simulated metagenomic data with that of the classified 312 

data. The closeness-of-fit of the taxonomic read abundance (Figure 4) to the linear regression was 313 

measured using the R2 statistic, and is shown in Figure 5. The R2 statistic summarises how similar the 314 

classified taxonomic abundance was to the taxonomic abundance of the ground truth simulated 315 
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data, and is therefore another indication of classification accuracy using each of the reference 316 

databases at various taxonomic levels.  317 

 318 

Figure 4 Comparing taxonomic abundance of the ground truth metagenomic data with that of the 319 

classified data. Scatterplots show the comparison between the simulated metagenomic data 320 
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(ground truth, x-axis) and classified reads (y-axis). Data is plotted as a percentage of classified reads 321 

for the classified data, and a percentage of simulated reads for the ground-truth data. The data has 322 

been transformed by log10. A y=x line (shown in red) has been added to demonstrate how data 323 

points would appear on the graph if the number of ground-truth and classified reads were the same. 324 

A linear regression has been added (shown in blue) and used to calculate the R2 statistic, see Figure 325 

6. Comparisons are shown at the Phylum, Family, Genus and Species levels, for the Hungate, Mini, 326 

RefSeq, RUG, RefRUG and RefHun reference databases. 327 

 328 

 329 

Figure 5 R2 values of the comparisons between taxonomy of the simulated metagenomic dataset and 330 

classified taxonomy at various taxonomic levels. The key denotes each reference database used to 331 

classify the data, and these are shown as individual bars at each taxonomic rank, displayed on the x-332 
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axis. The R2 value is the statistical measure of the correlation of data to the linear regression, 333 

measured using the scatterplots shown in Figure 4. 334 

 335 

A cornerstone of microbiome research is community structure, which can be observed as a sample’s 336 

taxonomic abundance. To investigate this, the most abundant taxa in the ground truth data were 337 

observed in the classified data. Barplots displaying the taxonomic read abundance of the ground 338 

truth data, as well as the read abundance once the data was classified using each of the reference 339 

databases, are shown in Figure 6. Each plot shows the taxonomic distribution of the top 10 most 340 

abundant taxa for the ground truth data and the abundance of these taxa in the classified data, at 341 

that particular taxonomic level. 342 

 343 

Figure 6 Comparing the classification of abundant taxa in the simulated metagenomic dataset for 344 

each reference database. Taxonomic distribution for the top ten most abundant taxa in the 345 

simulated metagenomic dataset, classified at the Phylum, Family, Genus and Species levels with 346 

Kraken2 using the six different reference databases. The y-axis denotes the percentage of reads 347 
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classified at each level. The bars along the x-axis each represent the classification results for each 348 

database, split by taxonomy as shown in the keys for each level. 349 

 350 

Overall, the Hungate and RefHun databases performed very well at classifying the data, as shown in 351 

Figures 4, 5 and 6. There was a slight reduction in accuracy at the species level, where the R2 value 352 

was 0.97, but this had little effect on the classification of abundant taxa (see Figure 6). To further 353 

assess the beneficial impact of including representative genomes in the reference database, 354 

additional reference databases containing the Hungate and RUG genomes were made (see 355 

Supplementary Figure S2). Specifically, we combined the Hungate and RUG databases into a new 356 

reference database (‘HunRUG’), and also added RefSeq to the Hungate and RUG genomes 357 

(‘RefHunRUG’). The results were overall very similar in accuracy to those observed previously with 358 

just the RefHun database (Supplementary Figure S2), further emphasising the particularly beneficial 359 

impact of having well characterised reference sequences with full and accurate taxonomic labelling. 360 

 361 

Using the RefSeq and Mini reference databases accurately classified the data at phylum level, but 362 

there was a distinct drop in accuracy at the class level, which continued further down the taxonomic 363 

levels. At the phylum level, the Mini and RefSeq databases over-estimated Proteobacteria and 364 

Actinobacteria, but under-estimated Firmicutes. At the family level, the Mini and RefSeq databases 365 

overestimated the Streptococcaceae and Bifidobacteriaceae, yet underestimated the 366 

Lachnospiraceae and Erysipelotrichaceae. At the genus level the Mini and RefSeq databases 367 

overestimated the Streptococcus and Bifidobacterium, and underestimated Ruminococcus and 368 

Prevotella. At the species level, the RefSeq and Mini databases did not classify any reads to four of 369 

the ten most abundant species: Clostridium clostridioforme, Lachnospira multipara, Ruminococcus 370 

flavefaciens or Kandleria vitulina.  371 

 372 
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The RUG and the RefRUG databases were similarly accurate at the phylum level, but began to 373 

diverge in classification accuracy at lower taxonomic levels. In general, the RefRUG database 374 

classified the data more accurately than the RUG database, and this was likely due to the issues 375 

surrounding taxonomic labelling of the RUGs, as described above. At the family level, the RUG 376 

database did not classify any reads as Bacteroidaceae, and at the genus level there were a lack of 377 

reads classified as Bacteroides. This was simply because these taxonomic labels do not appear in the 378 

RUG collection. At the species level, the RUG database classified just three of the top ten most 379 

abundant taxa in the simulated metagenome (Figure 6). This resulted in a poor correlation in Figure 380 

4 and a very low R2 value of 0.002 (Figure 5). Interestingly, however, two out of the three species 381 

(Ruminococcus flavefaciens and Kandleria vitulina) were completely missed during classification by 382 

the RefSeq database, but were classified when the RUG data was added to the RefSeq database 383 

(RefRUG database). However, the species Clostridium clostridioforme and Lachnospira multipara 384 

were not classified when using the RefRUG reference database or indeed any databases other than 385 

Hungate or RefHun.  386 

 387 

Discussion 388 

 389 

Accuracy and rate of metagenomic data classification is heavily impacted by the choice of reference 390 

database 391 

 392 

Research into microbiomes has increased substantially over the last two decades, driven by 393 

advances in DNA sequencing technologies. However, DNA-sequence based methods depend 394 

fundamentally on the quality of reference databases that are used to assign taxonomy or function to 395 

the sequence data. This study, which used a simulated metagenomic dataset, demonstrates the 396 

huge difference that choice of reference database can have on the accuracy of the results obtained. 397 

Kraken 2 was selected for this analysis as it is often reported to perform well when compared to 398 
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other data classification software [36–38], has been previously used to test reference database 399 

impact [34], and allows for the creation and use of custom reference databases. 400 

 401 

RefSeq, the open-access database from NCBI, is a popular choice of reference database when 402 

classifying metagenomic data. However, using the RefSeq database we show that less than 40% of 403 

reads at genus level, and less than 25% of reads at species level, were accurately classified (Figure 3). 404 

Although this issue impacts all taxonomic levels, classification using these databases at the species 405 

level was particularly unreliable. When the data was classified using the RefSeq database, this study 406 

observed that nearly 50% of species taxonomy assignments were incorrect. This finding indicates 407 

that such a frequency of inaccurate classification may also be occurring in the many other studies 408 

that use the RefSeq database, compromising classification results. Use of the Mini database, which is 409 

optimised for use when there are limited computational resources available, also resulted in the 410 

classification of less than 40% of reads overall. This suggests that studies relying on the RefSeq or 411 

Mini database for classification will likely have a large proportion of inaccurate taxonomy 412 

assignments, which could impact strongly on subsequent interpretations and conclusions based on 413 

those results. 414 

 415 

Genomes from cultured isolates derived from the environment of study hugely increase classification 416 

rate and accuracy 417 

 418 

Current reference databases are hugely biased towards microbes that have been isolated from well-419 

studied environments, such as the 20 microbial species contributing to 90% of the reference 420 

genomes in the ENA [31]. The rumen is an under-studied environment, which has consequently 421 

impacted the number of ruminant microbial reference genomes present in public databases such as 422 

NCBI RefSeq. At the time of writing, of the 460 Hungate genomes used to create the simulated data, 423 
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only 119 are present in NCBI RefSeq. The Kraken “Standard” database contains a subset of NCBI 424 

RefSeq, and so the RefSeq database may not contain all 119 of these Hungate genomes. 425 

 426 

The Hungate reference database used here contained all of the Hungate genomes, and so is fully 427 

representative of the data that was classified. As expected, classification with the Hungate database 428 

resulted in classification of the majority of reads, and was the most accurate out of all the databases. 429 

However, at the species level, 7.31% of reads were not classified. Interestingly, these reads were 430 

unclassified rather than incorrectly classified. This reduction in classification at the species level was 431 

likely due to the phenomenon described by Nasko et al.: the so-called “minimiser collision”. This is 432 

where two distinct k-mers are minimised to identical minimisers (l-mers). In other words, if reads are 433 

highly similar, Kraken2 may be unable to distinguish between reference genomes at the species 434 

level, and so would assign taxonomy at the lowest common ancestor, therefore assigning taxonomy 435 

to a higher level [30].  436 

 437 

In an attempt to understand the impact that including reference genomes from cultured 438 

representatives can have on classification accuracy of metagenomic data, we added the Hungate 439 

genomes to RefSeq, creating the RefHun reference database. Classification using the RefHun 440 

reference database showed significant improvements in classification rate and accuracy compared 441 

to the RefSeq database alone. This demonstrates that when classifying environmental data, 442 

classification accuracy can improve considerably by including more genomes derived from 443 

taxonomically well characterised cultured isolates in reference databases. Continued efforts to 444 

isolate, and formally taxonomically characterise, previously uncultured microbes from the rumen 445 

microbiome, and indeed any other understudied environment, is likely to have significant benefits 446 

for the accuracy of metagenomics-based studies. 447 

 448 
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MAGs have the potential to improve metagenomic data classification even further, but are currently 449 

limited by their poorly defined taxonomy 450 

 451 

While the addition of cultured isolate genomes clearly improves classification accuracy, it must be 452 

acknowledged that cultivation of microbes, and formally describing their taxonomy, are hugely time-453 

consuming and labour-intensive activities [39]. Furthermore, many microbes may prove difficult to 454 

cultivate under laboratory conditions [40]. There are therefore significant bottlenecks that preclude 455 

the required widespread cultivation and characterisation of microbes. Therefore, the incorporation 456 

of MAGs, which can be generated without having to cultivate microbes in the laboratory, and can be 457 

done at far greater scale, in reference databases is an extremely promising additional or alternative 458 

avenue to improve classification of metagenomics datasets. In support of this, the addition of RUGs 459 

(MAGs) to the RefSeq database in this study (RefRUG) improved classification rate, which confirms 460 

the observations of other studies. Stewart et al. observed poor classification rates of rumen 461 

metagenomic data when using RefSeq, and reported the addition of Hungate collection genomes led 462 

to a classification rate increase of 2-fold, and the addition of RUGs led to an increase of 5-fold [13]. 463 

In a different study, Stewart et al. noted an increase of 10% in classification rate when adding 464 

Hungate collection genomes, and a 50-70% increase when adding RUGs to the reference database 465 

[17]. Xie et al. observed improvements in taxonomic classification rate with the addition of rumen 466 

MAGs to the reference database, compared with using Genbank and RMG entries alone [22].  467 

 468 

Although addition of RUGs increased classification rate, using the RUG database resulted in the 469 

classification of reads with varying accuracy. In some respects, the effect was positive. For example, 470 

at the family and genus levels classification using the RUG database resulted in less reads being 471 

incorrectly classified than when using the RefSeq database. However, it is clear that there are likely 472 

to be significant issues with accuracy when using common current reference databases to classify 473 

metagenomic data. In this study, the ground truth information was available, which means we can 474 
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say with certainty that some of the data was classified incorrectly. However, in real world scenarios, 475 

the correct taxonomy of the newly-sequenced data is of course unavailable, which means that the 476 

accuracy of classification results is difficult to quantify. We term such incorrectly classified reads as 477 

false positives, because in real world studies these incorrect classifications would be considered 478 

genuine. Marcelino et al. hypothesise that false positives occur as a result of conserved regions of 479 

reference genomes and sequence contamination in databases [35]. The use of each database 480 

classified some reads as false positives, although the highest number of false positives were 481 

classified by the reference databases containing RefSeq. In particular, classification using the RefSeq, 482 

Mini and RefRUG databases resulted in the apparent detection of thousands of species that were 483 

simply not there. The occurrence of false positives in this study indicates that false positives could be 484 

a common occurrence in metagenomic read classification.  485 

 486 

More concerningly, addition of the RUG MAGs resulted in very poor overall classification accuracy, 487 

despite the addition of much more comprehensive reference material to the database. The likely 488 

explanation for this finding comes from the fact that, when the taxonomic labels in the Hungate and 489 

RUG data were compared at the family and genus levels, it was discovered that less than half of the 490 

total taxa were supposedly present in both datasets. As both data sets originate from the rumen, 491 

this is unlikely and is most probably a result of the incomplete and informal taxonomy labels used 492 

for the MAGs. This highlights the issue that reference sequences with incomplete or informal 493 

taxonomic labels may not be appropriate for classifying taxonomy. This issue can be resolved by 494 

ensuring all reference sequences, whether cultured isolate or MAG-derived, have complete, and 495 

accurate, labels across all taxonomic levels.  496 

 497 

Taxonomy currently relies on consistent nomenclature to classify all organismal names across all 498 

living domains on Earth. NCBI taxonomy contained over 280,000 informal bacterial species (as of 499 

May 2017)[41], [42] and the NCBI databases contain 3760 genomes for unclassified or candidate 500 
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bacteria at the time of writing. Issues arise when taxa are placed into a taxonomy database with 501 

informal names or incomplete lineages. For example, some of the Hungate collection genomes do 502 

not have an assigned rank at family or genus level. Additionally, assembled genomes (MAGs) often 503 

have an informal species name that does not follow traditional binomial nomenclature [43]. This 504 

issue was well demonstrated in this study, as classification using the RUG database failed to classify 505 

any reads from seven of the top 10 species in the ground truth data. This is surprising as these 506 

species are highly abundant in the rumen, and so you would expect to see them in the highly 507 

comprehensive RUG database. Of the 78 labels assigned at the species level by the RUG database, 56 508 

had informal names, for example “uncultured Lachnospiraceae bacterium RUG10034”.  509 

 510 

As MAGs are draft genomes, and can often be novel species or even novel clades, it can be difficult 511 

to correctly assign phylogeny and taxonomy. This is a significant problem, as metagenomics studies 512 

increasingly demonstrate that the rumen contains many genomes that cannot be easily placed into 513 

the current NCBI taxonomy. For example, Stewart et al. [17] found that of 4941 MAGs, 4303 could 514 

not be assigned a species, 3849 could not be assigned a genus, 1753 could not be assigned a family 515 

and 140 could not be assigned a phylum. However, this issue of uncertain phylogeny placement is 516 

not unique to MAGs, an example being the genus Clostridium, which has been demonstrated to 517 

actually consist of multiple genera [44]. While informal names may cause issues in the context of 518 

binomial nomenclature, there is still some value to providing sequences or taxa with some form of 519 

name or label. Namely, it allows for the tracing of the sequence or taxa across multiple studies. This 520 

has proved useful before, an example being the candidate TM7 phylum proposed by Rheims et al. in 521 

1996 [45], which was identified using sequence-based approaches as being widespread in numerous 522 

environments before being renamed Saccharibacteria [46]. Regardless of whether genomes are 523 

derived from cultured isolates or MAGs, mistakes or gaps in taxonomic descriptors will impact the 524 

accuracy of taxonomic classification. 525 

 526 
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It has been suggested that a change in microbial taxonomy towards a genome-based approach 527 

would improve upon the current taxonomy [47], [48]. The Genome Taxonomy Database (GTDB) uses 528 

a genome-based taxonomy, assigning the taxonomy of genomes based on their phylogeny [49]. 529 

Glendinning et al. observed many discrepancies between the phylogeny of MAGs and NCBI 530 

taxonomy, which was not found when using GTDB [24].  531 

 532 

Conclusions 533 

 534 

In this study, we compare taxonomic classification results with ground truth simulated metagenomic 535 

data. Our results show that classification rate, classification accuracy and taxonomic read 536 

classification are heavily impacted by the choice of reference database used. In particular, RefSeq 537 

alone is a poor choice for classifying ruminant metagenomic data. Notably, our results indicate the 538 

extent to which ruminant metagenomic data could be inaccurately classified, an issue that has the 539 

potential to affect all studies that use insufficient reference databases. We demonstrate that custom 540 

reference databases substantially improve classification accuracy, and that genomes derived from 541 

cultured representatives and MAGs improve classification rate in all cases, but only improve 542 

classification accuracy for levels in which they have assigned taxonomy. This highlights the 543 

opportunity of using MAGs to improve taxonomic classification results in under-characterised 544 

environments, but also emphasises the importance of complete taxonomic lineages for MAGs.  545 

 546 

Methods 547 

 548 

Simulation of known truth dataset 549 

 550 

The composition of a given environmental microbiome sample is of course unknown, and so it is 551 

difficult to measure classification accuracy on metagenomic data. Instead, data of known 552 
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composition (“ground truth data”), such as simulated datasets or mock communities [50] are 553 

typically used to assess accuracy.  554 

 555 

Here, InSilicoSeq (version 1.4.6) was used to generate simulated metagenomic data: 50 million 556 

paired-end reads using the HiSeq model with an exponential distribution [51] from known 557 

sequences. The input genomes used to create the data were 460 publicly available bacterial and 558 

archaeal reference genomes from the Hungate collection [10]. Since some of the Hungate collection 559 

are multi-contig, they were treated as draft genomes during data generation, using the --draft 560 

option. Complete genomes with a single contig were treated as such, using the --genomes option. A 561 

list of the Hungate genome files, and which are single or multi-contig, can be found in 562 

Supplementary Table S3.  563 

 564 

As the simulated reads originated from the Hungate genomes, each read had a corresponding 565 

genome and therefore corresponding taxonomy. In this study the simulated data is referred to as 566 

“ground truth”, as the true taxonomy of each read is known. The number of reads simulated from 567 

each genome, and therefore for each taxonomy, were determined (using Ete3 [52]). The number of 568 

reads produced for each genome provided the number of reads produced for each taxon at the 569 

phylum, family, genus and species levels. This “ground truth” information was used to assess the 570 

classification accuracy of each read (see Figures 3 and 4, and Supplementary Figure S1 and 571 

Supplementary Tables S1 and S2).  572 

 573 

Design, choice and creation of reference databases 574 

 575 

Six reference databases were used to classify the simulated metagenome, the details of which can 576 

be seen in Table 1. Each database was built using NCBI taxonomy downloaded on 07/03/2020. NCBI 577 

libraries for the RefSeq database were downloaded on 24/03/2020. 578 
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 579 

{Location of Table 1} 580 

 581 

The Hungate reference database contains genomes from 460 rumen-dwelling microbes cultured in 582 

the Hungate 1000 project. These were the same genomes that were used to create the simulated 583 

metagenome; therefore, this database was fully representative of the data being classified. The 584 

Hungate database therefore acted as the ‘best case’ scenario for database choice, and can be seen 585 

as a positive control, as each read from the simulated metagenome should be represented in the 586 

Hungate database.  587 

 588 

The RefSeq database is the standard Kraken2 [30] reference database (see [53]) widely used for 589 

taxonomy classification. It contains the complete collection of genomes in RefSeq for bacterial, 590 

archaeal and viral domains, the human genome and a collection of vectors (UniVec_core). 591 

 592 

The Mini reference database is also a popular database for Kraken2 users, designed for users with 593 

low-memory computing environments. Both the Standard and Mini databases contain the same 594 

RefSeq reference genomes, but the Mini database was built using a hash function to down-sample 595 

minimisers, as described in the Kraken 2 manual and shown in Table 1 (--max-db-size function). The 596 

hash file for the Standard Kraken 2 database is 43 GB, whereas it is only 7.5 GB for the Mini Kraken 2 597 

database. As this database is significantly smaller than the Standard reference database, read 598 

classification requires less memory. As the Mini reference database may be the first choice for users 599 

with limited computational resources, it was included in this study.  600 

 601 

The RUG reference database contains 4,941 rumen MAGs assembled by Stewart et al. [17]. Whilst 602 

different from the cultured Hungate genomes, these assembled genomes were assembled from 603 

metagenomes also originating in the rumen. This custom database was included in the study to 604 
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investigate the impact of a reference database containing assembled genomes on taxonomic 605 

classification.  606 

 607 

The RefRUG and RefHun reference databases contain the complete collection of genomes in RefSeq 608 

(bacterial, viral and archaeal domains, the human genome and UniVec_Core vectors) in addition to 609 

the RUGs and Hungate genomes, respectively. These were included to investigate whether adding 610 

genomes or draft genomes from the same type of environmental microbiota as the data being 611 

classified improves taxonomic classification.  612 

 613 

Read classification using Kraken2 614 

 615 

The simulated metagenome was classified using Kraken2 (version 2.0.8_beta) with the six reference 616 

databases described above. Default settings were used with the --paired option to accommodate the 617 

paired-end reads of the simulated metagenome.  618 

Classification status was extracted from the Kraken output files and used to assign reads to one of 619 

two classes: classified or unclassified. The taxonomic ID for each read was extracted from the Kraken 620 

output files, and classified reads were compared to their known ground truth at the species, genus, 621 

family and phylum level (using Ete3). The reads were firstly grouped into “correct” or “incorrect” and 622 

then subsequently into “correct”, “incorrect”, “unclassified at this level”, “unclassified at any level” 623 

and “truth unknown”. 624 

 625 

Finally, the Kraken 2 report files were used to compare read classification counts for each taxonomic 626 

level against the ground truth, and R2 calculated as the sum-of-squares of absolute deviation from 627 

the ground-truth. 628 

 629 
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Table 1 The contents of each reference database and instructions on how they were built 804 

 805 
Database Contents Construction 

Hungate Custom database 
containing 460 rumen 
microbial reference 
genomes from the Hungate 
collection (see 
Supplementary Table S3) 

for file in /hungate_genomes/*.fasta 
do 
         kraken2-build --add-to-library $file --db                          
hungate_only_db_k2 
done 
 
kraken2-build --build --threads 16 --db 
hungate_only_db_k2 

 

Mini The complete collection of 
genomes in RefSeq for 
bacterial, viral and archaeal 
domains, the human 
genome and UniVec_Core 
vectors. The database was 
built to 8 GB in size to 
replicate the “MiniKraken” 
functionality of Kraken1  

kraken2-build --download-library bacteria --db 
mini_standard_db_k2 --use-ftp 
 
kraken2-build --download-library archaea --db 
mini_standard_db_k2 --use-ftp 
 
kraken2-build --download-library viral --db 
mini_standard_db_k2 --use-ftp 
 
kraken2-build --download-library human --db 
mini_standard_db_k2 --use-ftp 
 
kraken2-build --download-library UniVec_Core --db 
mini_standard_db_k2 --use-ftp 
 
kraken2-build --db mini_standard_db_k2 --build --
max-db-size 8000000000 --threads 4 

RefSeq The complete collection of 
genomes in RefSeq for 
bacterial, viral and archaeal 
domains, the human 
genome and UniVec_Core 
vectors 

kraken2-build --download-library bacteria --db 
standard_db_k2 --use-ftp 
 
kraken2-build --download-library archaea --db 
standard_db_k2 --use-ftp 
 
kraken2-build --download-library viral --db 
standard_db_k2 --use-ftp 
 
kraken2-build --download-library human --db 
standard_db_k2 --use-ftp 
 
kraken2-build --download-library UniVec_Core --db 
standard_db_k2 --use-ftp 
 
kraken2-build --build --threads 16 --db 
standard_db_k2 

RUG Custom database 
containing 4,941 rumen 
metagenome-assembled 

for file in /rug_drafts/*.fna 
do 
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genomes (named “RUGs” - 

see Stewart et al. [17])  
         kraken2-build --add-to-library $file --db                          
rug2_only_db_k2 
done 
 
kraken2-build --build --threads 8 --db 
rug2_only_db_k2 

RefRUG The complete collection of 
genomes in RefSeq for 
bacterial, viral and archaeal 
domains, the human 
genome and UniVec_Core 
vectors with the addition of 
4,941 rumen metagenome-
assembled genomes 
(named “RUGs” - see 
Stewart et al. [17] and the 

RUG database) 

kraken2-build --download-library bacteria --db 
standard_rug2_db_k2 --use-ftp 
 
kraken2-build --download-library archaea --db 
standard_rug2_db_k2 --use-ftp 
 
kraken2-build --download-library viral --db 
standard_rug2_db_k2 --use-ftp 
 
kraken2-build --download-library human --db 
standard_rug2_db_k2 --use-ftp 
 
kraken2-build --download-library UniVec_Core --db 
standard_rug2_db_k2 --use-ftp 
 
for file in /rug_drafts/*.fna 
do 
         kraken2-build --add-to-library $file --db                          
standard_rug2_db_k2 
done 
 
kraken2-build --build --threads 16 --db 
standard_rug2_db_k2 

 

RefHun The complete collection of 
genomes in RefSeq for 
bacterial, viral and archaeal 
domains, the human 
genome and UniVec_Core 
vectors with the addition of 
460 reference genomes 
from the Hungate 
collection (see Hungate 
database section of this 
table and Supplementary 
Table S3) 

kraken2-build --download-library bacteria --db 
standard_hungate_db_k2 --use-ftp 
 
kraken2-build --download-library archaea --db 
standard_hungate_db_k2 --use-ftp 
 
kraken2-build --download-library viral --db 
standard_hungate_db_k2 --use-ftp 
 
kraken2-build --download-library human --db 
standard_hungate_db_k2 --use-ftp 
 
kraken2-build --download-library UniVec_Core --db 
standard_hungate_db_k2 --use-ftp 
 
for file in /hungate_genomes/*.fasta 
do 
         kraken2-build --add-to-library $file --db                          
standard_hungate_db_k2 
done 
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kraken2-build --build --threads 16 --db 
standard_hungate_db_k2 

HunRUG The 460 reference 
genomes from the Hungate 
collection (see Hungate 
database section of this 
table and Supplementary 
Table S3), and 4,941 rumen 
metagenome-assembled 
genomes (named “RUGs” - 
see Stewart et al. [17] and 
the RUG and RefRUG 

databases). 

for file in /hungate_genomes/*.fasta 
do 
         kraken2-build --add-to-library $file --db                          
hungate_rug2_db_k2 
done 
 
for file in /rug_drafts/*.fna 
do 
         kraken2-build --add-to-library $file --db                          
hungate_rug2_db_k2 
done 
 
kraken2-build --build --threads 16 –db 
hungate_rug2_db_k2 
 

RefHunRUG The complete collection of 
genomes in RefSeq for 
bacterial, viral and archaeal 
domains, the human 
genome and UniVec_Core 
vectors with the addition of 
460 reference genomes 
from the Hungate 
collection (see Hungate 
database section of this 
table and Supplementary 
Table S3), and 4,941 rumen 
metagenome-assembled 
genomes (named “RUGs” - 
see Stewart et al. [17] and 
the RUG and RefRUG 

databases). 

kraken2-build --download-library bacteria --db 
standard_hungate_rug2_db_k2 --use-ftp 
 
kraken2-build --download-library archaea --db 
standard_hungate_rug2_db_k2 --use-ftp 
 
kraken2-build --download-library viral --db 
standard_hungate_rug2_db_k2 --use-ftp 
 
kraken2-build --download-library human --db 
standard_hungate_rug2_db_k2 --use-ftp 
 
kraken2-build --download-library UniVec_Core --db 
standard_hungate_rug2_db_k2 --use-ftp 
 
for file in /hungate_genomes/*.fasta 
do 
         kraken2-build --add-to-library $file --db                          
standard_hungate_rug2_db_k2 
done 
 
for file in /rug_drafts/*.fna 
do 
         kraken2-build --add-to-library $file --db                          
standard_hungate_rug2_db_k2 
done 
 
kraken2-build --build --threads 16 --db 
standard_hungate_rug2_db_k2 
 

 806 
The eight reference databases each contain different reference sequences, as described in the Table. 807 
*The additional HunRUG and RefHunRUG reference databases, showed very similar results to the 808 
Hungate and RefHun reference databases, and so are only included in the Supplementary Figure S2. 809 
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Also shown are the commands used to download and/or add to the library for each database, and 810 
build each database using Kraken 2.   811 
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Additional files 812 

 813 

{see Additional_file_1.pdf for Supplementary Table S1, Supplementary Table S2, Supplementary 814 

Figure S1, Supplementary Figure S2} 815 

 816 

Supplementary Table S1 Classification rate of reads for the six reference databases at various 817 

taxonomic levels. 818 

 819 

Classification rate refers to whether the read was classified, or unclassified, regardless of accuracy. 820 

Each row denotes the six databases used to classify reads with Kraken2. The “Overall” column refers 821 

to the percentage of reads which were classified or unclassified by Kraken2 regardless of taxonomic 822 

level. Subsequent columns refer to the percentage of reads which were classified or unclassified by 823 

Kraken2 at various taxonomic levels as shown in the column headers. 824 

 825 

Supplementary Table S2 Classification status of reads compared to the ground truth for the six 826 

reference databases at various taxonomic levels. 827 

 828 

The databases and detailed classification status are shown in the first column. Subsequent columns 829 

contain the percentage of reads at that taxonomic level, which had been classified by the database 830 

and had the particular classification status outlined in the first column. “Correct” and “incorrect” 831 

refer to reads which were classified correctly or incorrectly by Kraken2 using the respective 832 

database. “Truth unknown” refers to the reads that originate from genomes that do not have an 833 

assigned family or genus. “Unclassified at any level” refers to reads that were not classified to any 834 

taxonomic level. “Unclassified at this level” refers to reads which were classified at other taxonomic 835 

levels, but not the level being examined in a given column. 836 

 837 
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Supplementary Figure S1 The frequency of genera and species in the ground truth data, and in the 838 

classification results for each reference database. The total frequency is shown in the top two 839 

graphs, the middle graphs show the frequency of false positives occurring, and the bottom two 840 

graphs show the frequency of false negatives. 841 

 842 

Supplementary Figure S2 Scatterplots show the comparison between the simulated metagenomic 843 

data (ground truth, x-axis) and classified reads (y-axis) when classified using the HunRUG (A) and 844 

RefHunRUG (B) reference databases. Data is plotted as a percentage of classified reads for the 845 

classified data, and a percentage of simulated reads for the ground-truth data. The data has been 846 

transformed by log10. A y=x line (shown in red) has been added to demonstrate how data points 847 

would appear on the graph if the number of ground-truth and classified reads were the same. A 848 

linear regression has been added (shown in blue) and used to calculate the R2 statistic. The R2 849 

statistic is shown (C) for each reference database at the Phylum, Family, Genus and Species levels. 850 

 851 

{see Additional_file_2_Supplementary_Table_S3.xls for Supplementary Table S3} 852 

 853 

Supplementary Table S3 A list of the Hungate genome files used to create the simulated data.  854 

 855 

Shown in the table are the Hungate genome files used to create the simulated data. They are 856 

separated into the complete (single-contig) and draft (multi-contig) genomes, as this meant they 857 

were treated differently. The tool InSilicoSeq was used to create the simulated data, and has the 858 

capability to handle draft genomes. The draft, multi-contig genomes were used with the --draft 859 

option, and the complete, single-contig genomes were used with the --genomes option. These are 860 

the same files added to the custom databases containing Hungate genome sequences (Hungate and 861 

RefHun). 862 


