iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

Knowledge Graph Construction From MusicXML: An
Empirical Investigation With SPARQL Anything

Conference or Workshop Item

How to cite:

Ratta, Marco and Daga, Enrico Knowledge Graph Construction From MusicXML: An Empirical Investigation
With SPARQL Anything. In: Proceedings of the Musical Heritage Knowledge Graphs Workshop (Presutti, Valentina;
Buffa, Michel; Steels, Luc; Trubert, Jean-Francois; Daga, Enrico and Merofio Pefiuela, Albert eds.), CEUR-WS.

For guidance on citations see FAQs.

© |[not recorded]

L-H' https://creativecommons.org/licenses /by /4.0/

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data [policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
https://creativecommons.org/licenses/by/4.0/
http://oro.open.ac.uk/policies.html

Knowledge Graph Construction from MusicXML: an
empirical investigation with SPARQL Anything*

Marco Ratta®™, Enrico Daga’

IThe Open University, Walton Hall, Kents Hill, Milton Keynes (UK)

Abstract

Multimodal knowledge graphs are gaining momentum because of their ability to integrate multiple types of representations.
In particular, Musical Heritage Knowledge Graphs combine rich contextual information — metadata from encyclopedic KGs,
with symbolic content - the scores encoded in a music ontology. In this paper, we explore the application of SPARQL Anything
- a tool for facade-based knowledge graph construction (KGC) - for integrating musical content encoded in MusicXML.
Specifically, we investigate the hypothesis that SPARQL is flexible enough to handle relevant tasks for musical knowledge
graph construction such as (a) extracting melodic information, (b) extracting N-grams of musical information, (c) supporting
the analysis of those N-grams and (d) populate a musical note ontology. We contribute a collection of reusable queries for
extracting musical features from MusicXML files to construct Musical Knowledge Graphs. Crucially, we discuss friction points
in using the facade-based approach (either in querying the facade or transforming the data) and provide recommendations on

how to improve the usability of SPARQL for musical KGC tasks.

Keywords
SPARQL, Knoweldge Graph, Facade-X, MusicXML

1. Introduction

Multimodal knowledge graphs (KGs) are gaining momen-
tum because of their ability to incorporate multiple types
of representations, thus enabling complex feature engi-
neering tasks that support machine and/or deep learning
methods [1]. Multi-modality is recognised to be crucial
for music information processing applications [2]. A
paradigmatic case of multi-modal KGs are Musical Her-
itage Knowledge Graphs, which combine rich contextual
information — metadata from encyclopedic KGs, with
symbolic content — the scores encoded in a music on-
tology. We place our research in the context of the EU
H2020 project Polifonia, aiming at developing a portal to
support different cohorts of musical stakeholders (schol-
ars, citizens, musicians) supported by a unified, multi-
modal knowledge graph [3, 4] populated with crowd-
sourcing [5], textual documentary evidence [6, 7], and
knowledge graph construction (KGC) pipelines. Here we
focus on KGC from structured symbolic music.
However, building such KGs require complex process-

Music Heritage Knowledge Graphs (MHKG). This workshop is part of

the 21st International Semantic Web Conference, 23-27 October 2022,

Hangzhou, China

* Conceptualization, Software, Investigation and Writing, M.R. and
E.D,; Validation and Formal Analysis, M.R.; Supervision, Project
Administration and Funding Acquisition, E. D.

*Corresponding author.

Q marcol791@protonmail.com (M. Ratta);

enrico.daga@open.ac.uk (E. Daga)

& https://github.com/MarcoR1791 (M. Ratta);

http://www.enridaga.net (E. Daga)

® 000-0003-3788-6442 (M. Ratta); 0000-0002-3184-5407 (E. Daga)

Zf:éig;ﬁi‘;‘;[}:tef?;ﬂt[}::"i?%rcbg\;l: ra;l)llthors. Use permitted under Creative Commons License

===1 CEUR Workshop Proceedings (CEUR-WS.org)

ing tasks, typically performed with a combination of
libraries and intermediate formats. A recent approach to
knowledge graph construction (KGC) proposes a facade
for querying a multitude of formats through SPARQL,
allowing KG practitioners to directly use their querying
expertise for integrating non-RDF content [8, 9]. In this
paper, we therefore explore the possibility of applying
SPARQL Anything - a tool for facade-based KGC - for
querying musical content encoded in the MusicXML for-
mat. Our motivation for this work stems from the fact
that encoded music is an excellent case study because of
(a) the multiplicity of representations required to solve
computational musicology tasks, (b) the heterogeneity
of existing formats and representations, mixing musical
symbolic content and textual content (e.g. metadata),
and because (c) sequential information is important but
is typically neglected by KGC frameworks. Specifically,
we wish to investigate the hypothesis that SPARQL Any-
thing is flexible enough to handle relevant tasks for musi-
cal knowledge graph construction such as (a) extracting
melodic information, (b) extracting N-grams of musical
information, (c) supporting the analysis of those N-grams
and (d) populate a musical note ontology.

We contribute a collection of reusable queries for ex-
tracting musical features from MusicXML files to con-
struct musical KGs and to function as a basis for achieving
more complex musicology tasks. Further, we explore is-
sues in query design, investigating the hypothesis that
the extended set of functions for working with container
membership properties and sequential information of
SPARQL Anything can help in designing more compact
queries and aid overcoming specific technical challenges.
Finally, we discuss friction points in using the facade-

mailto:marco1791@protonmail.com
mailto:enrico.daga@open.ac.uk
https://github.com/MarcoR1791
http://www.enridaga.net
https://orcid.org/000-0003-3788-6442
https://orcid.org/0000-0002-3184-5407
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

based approach (either in querying the facade or trans-
forming the data) and provide recommendations on how
to improve the usability of SPARQL for KGC tasks.

The rest of the paper is structured as follows. We begin
with an exposition of the related work, followed by a
description of both the facade structure, Facade-X, at the
heart of SPARQL Anything, and the XML and MusicXML
format. Afterwards, we will continue by defining our
tasks and we will show how we have implemented them.
We then propose an evaluation of our results, comparing
them to the results of selected tasks completed via the
software Music21. After discussing what we have learnt
from our work, we will proceed to draw our conclusions
and propose further developments.

2. Related work

We consider related work on symbolic music encoding
efforts, the application of semantic web technologies for
treating music symbolic content, and facade-based query-
ing of XML resources in SPARQL.

Symbolic music encoding Symbolic music formats
varies according to the tasks and communities they refer
to. For example, the ABC notation is considered the de-
facto standard for traditional and folk music '. MIDI is a
protocol and standard developed for supporting the inter-
operation of electronic music devices, and it is widely
also used to automatically generate a playable encoding
of a symbolic music score. MEI [10] is designed as a
framework for encoding arbitrary musical documents,
with particular focus to the needs of academia, for ex-
ample, covering historical music notations. MusicXML
is the industrial standard for encoding and exchanging
musical sheets. Its most recent offical release (4.0) is cu-
rated by the W3C Music Notation Community Group.
The community is currently working on a new format,
MNX, which will expand MusicXML to fully support the
Common Western Musical Notation (CWMN), with a
particular focus on improving the semantics of the rep-
resentation. In this paper, we focus on MusicXML as
the common format for symbolic music, and make the
assumption that any digital music sheet can be converted
into MusicXML before applying our approach to KGC.
Music21 is a popular python library for symbolic music
processing, supporting a large variety of formats. Its in-
ternal representation is based on nested containers (called
Streams) modelling the hierarchical temporal structure
of the score in measures, voices, and parts. We note how
such internal representation nicely resembles the design
principles behind Facade-X. In this paper, we use Mu-
sic21 as a baseline method for verifying the correctness
of our SPARQL-based approach. We rely on ’AltDeu10’

!https://abenotation.com/about#research

book of the Essen Folksong Collection from the Music21
corpus, after converting it from its original ABC format
to MusicXML.

Music and the Semantic Web A survey of musical
data publishing practices on the (semantic) web can be
found in [11]. Music has been a focus of the Seman-
tic Web community from the very early stages. Music
ontologies exist to support exchanging metadata [12], se-
mantically enriching musical scores [13] and events [14],
audio features [15], and enabling the interaction with
MIDI content via RDF-based technologies [16]. Recent
efforts include the Doremus [17] and Wasabi [18] knowl-
edge graphs.

Crucially, the encoding of musical events in RDF raises
important concerns in relation to how sequential infor-
mation can be treated in RDF/SPARQL [19, 20]. Our work
contributes to evaluate the impact of adding specialised
functions for working with container membership prop-
erties, specifically.

Facade-based data access with SPARQL and XML
In [8], a method based on the notion of facade is pro-
posed to enable direct querying to an open-ended set of
formats with plain SPARQL. Facade-X is based on a sub-
set of RDF(S) and it is proposed as a generic meta-model
through which reengineer potentially any format into
RDF, including the popular CSV, JSON, and XML. The ap-
proach, implemented by the SPARQL Anything” software,
was further validated theoretically in [9], demonstrating
that it can indeed be applied to any format expressible
into a BNF grammar. In a nutshell, Facade-X data objects
are wrapped into a root container. Data is expressed us-
ing plain RDF properties for key-value structures, RDF
container membership properties (CMP) for sequences,
and RDF types for unary predicates. Values of RDF prop-
erties or CMPs can be either literals or other entities
(containers), allowing composite nesting’. MusicXML is
an application of the XML format. XML elements (also
known as tags) are expressed in Facade-X as contain-
ers. Tag attributes are considered key-value pairs and
represented as plain RDF properties and literal values.
Container membership properties are instead used for
specifying relations to child elements in the XML tree.
These may include text, which can be expressed as RDF
literals of type xsd: string. Finally, the tag name is rep-
resented as a unary attribute via the property rdf : type.
Facade-X declares two namespaces:
fx: <http://sparql.xyz/facade-x/ns/>
xyz: <http://sparql.xyz/facade-x/data/>

If present, the transformation can apply namespaces

Zhttp://sparql-anything.cc
3We refer the reader to [8] and [9] for a thorough description of
Facade-X and mappings to common file formats.

https://abcnotation.com/about#research
http://sparql-anything.cc

<items>

<item letter="A" />

<item letter="B" />

<item letter="C">Text here</item>
</items>

[a xyz:items ,

fx:root ;
rdf:_ 1 [a xyz:item ;
xyz:letter "A"] ;
rdf: 2 [a xyz:item ;
xyz:letter "B"] ;
rdf: 3 [a xyz:item ;
rdf: 1 "Text here"
xyz:letter "C"]]

Figure 1: Minimal example of XML document and related Fagade-X RDF interpretation.

declared within the XML document to name properties
and types. A minimal example of XML and related Facade-
X representation is provided in Figure 1.

3. Tasks definition

We now proceed to provide the reader with a more de-
tailed description of the tasks that we wish to implement.
We are assuming throughout that one is already familiar
with the rudiments of western music notation and related
concepts such as octave, pitch, duration, etc..

Melody extraction Melodies are a core component of
many music computing tasks. We aim to extract infor-
mation about the particular notes of a composition in an
ordered fashion. By this we mean that we wish to extract
the note data in the order that they have been encoded
within their assigned part in MusicXML, for all parts
in the encoded score or for a subset of those. By note
information we mean their pitch attribute, made of the
note’s step, alteration and octave, and its duration, both
in terms of its type (quarter, whole, etc.) and MusicXML
numerator.

N-grams extraction An N-gram is a concept from
computational linguistics that has been carried over to
computational musicology [21]. It involves the construc-
tion of contiguous sequences of N information items from
a given piece of information, usually a text or as in our
case, an encoded score. For this task we will focus only
on the extraction of 3-grams (trigrams) of pitches (the
information) from a single or a collection of MusicXML
files.

N-grams analysis The purpose of extracting N-grams
from musical scores is to be able to conduct some empiri-
cal analyses on this information, so that one may be able
to acquire further insight into a composition, composer,
or style.

The fundamental statistical analysis of N-grams in-
volves counting relative frequencies and estimating prob-
abilities. This is what we aim to do.

Music Note ontology population Finally, we pro-
pose to extract information via a SPARQL query from a
MusicXML file and to use that information to construct
a representation of the note datum in accordance with a
given ontology. For this task we have chosen to employ
the Music Notation Ontology [22].

4. Tasks implementation

After having defined our tasks, we now show how we
have implemented them via SPARQL Anything. Before
we do that though, a few words should be spent describ-
ing the MusicXML format.

The MusicXML format represents a score in accor-
dance with the hierarchical tree structure of a XML file.
To do this, it begins with two alternative root elements,
<score-partwise> or <score-timewise>, both of
which can represent the score as a whole. Here we
will only work with the first of these, as it is both the
advised and most commonly used root element. "Part-
wise’ describes the fact that the score is divided into
<part> elements each of which contains <measure> el-
ements. The <measure> element is what includes the
basic musical data such as the <note> elements, within
which we will find all the other elements such as <step>,
<alteration> etc. that we will be making use of in
what follows below. For further information on Mu-
sicXML, we refer the interested reader to the format’s
current specification [23].

In the queries and results that follow, please assume
the following list of namespaces:

PREFIX fx:
PREFIX Xyz:

<http://sparql.xyz/facade-x/ns/>
<http://sparql.xyz/facade-x/data/>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX mno: <http://cedric.cnam.fr/isid/ontologies/

MusicNote.owl#>

5 PREFIX alt: <http://polifonia.kmi.open.ac.uk/altdeul0/>

6 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

7 PREFIX ex: <http://example.org/>

ENTIIR

The material developed for this research is also publicly
available for reviewing and reproducibility [24].

Listing 1: SPARQL Query - getMelody.sparql

1 SELECT ?step ?alteration ?octave ?pitch ?type ?duration ?noteCount ?measureCount

2 ?partCount ?voice

3 WHERE {

4 SERVICE<x-sparql-anything:>{

5 fx:properties fx:location "./musicXMLFiles/bwv153.1.musicxml"; fx:media-type "application/xml".

6 ?score a fx:root

7 # Extracts the parts:

8 ?score ?mProperty ?part

9 ?part a xyz:part

10 # Extracts the measures:

11 ?part ?mPropPart ?measure.

12 ?measure a Xyz:measure .

13 # Extracts the notes from each measure:

14 ?measure ?mPropMeas ?note.

15 ?note a xyz:note.

16 { # Extracts the pitch from the note element:

17 ?note ?mPropNote ?pitch_.

18 ?pitch_ a xyz:pitch.

19 # Extracts the pitch’s step:

20 ?pitch_ ?mPropPitchl ?stepElmnt.

21 ?stepElmnt a xyz:step.

22 ?stepElmnt rdf:_1 ?step.

23 # Extracts the corresponding octave:

24 ?pitch_ ?mPropPitch2 ?octaveElmnt.

25 ?octaveElmnt a xyz:octave.

26 ?octaveElmnt rdf: 1 ?octave.

27 # Extracts the note’s alterations, if present:

28 OPTIONAL { ?pitch_ fx:anySlot [a xyz:alter ; rdf:_1 ?alteration]. }

29 BIND(CONCAT(?step, IF(BOUND(?alteration) && ?alteration != "0", CONCAT("[",?alteration,"]"),
AS ?pitch)

30 }

31 UNION

32 { # Extracts the rest if present instead:

33 ?note ?mPropNote ?restElmnt.

34 ?restElmnt a xyz:rest.

35 BIND(IF(BOUND(?restElmnt), "Rest", "") AS ?step)

36 BIND(IF(BOUND(?restElmnt), "Rest", "") AS ?pitch)

37 } # Extracts the corresponding type:

38 OPTIONAL { ?note fx:anySlot [a xyz:type ; rdf:_ 1 ?type] }

39 # Extracts the corresponding duration:

40 OPTIONAL { ?note fx:anySlot [a xyz:duration ; rdf:_1 ?duration] }

41 } # Generates measure and note position counters:

42 BIND(fx:cardinal (?mPropPart) AS ?measureCount)

43 BIND(fx:cardinal (?mPropMeas) AS ?noteCount)

44 BIND(fx:cardinal (?mProperty) AS ?partCount)

45 # Assigns the voice labels to the part numbers once these are known:

46 BIND(IF(?partCount = 8, "Soprano", IF(?partCount = 9, "Alto", IF(?partCount = 10, "Tenor", "Bass"))) AS ?voice)

47 3}

48 ORDER BY ?partCount ?measureCount ?noteCount

4.1. Melody extraction 4 B,,4,B4,quarter,10080,2,2,8,Soprano

5 A,,4,A4,quarter,10080,3,2,8,Soprano

With the getMelody.sparql query (Listing 1), we can ex- g 16 0 3o 285, QUENEEEF, 100EID, 1 B0 B, SOPEETD

tract from all melody parts in a MusicXML file with a 5 ¢ 1 4,6[1]4,quarter,10080,3,1,9,alto

<score-partwise> root element the ordered data that 9 A..4.A4,quarter,10080,1,2,9,Alto

. . . . 10 G,1,4,G[1]4,quarter,10080,2,2,9,Alto
we need to construct the required note information, pitch 11 A 4, a4, quarter,10080,3,2.9,alto
and duration. 12 G,1,4,G[1]4,eighth,5040,4,2,9,Alto

We use Bach’s chorale BWV 153.1 as an example, ex- 12 ® i4’A4’elghth'5040’5’2'9’A1t0
tracting the parts in the encoded order. Note that line 15 E.,4,E4,quarter,10080,3,1,10, Tenor
. . 16 E,,4,E4,quarter,10080,1,2,10,Tenor
46 has been added for presenting the results and that it 1; 1 4 b4 quarter.10080.2.2.10. Tenor
does not generalise, as it relies on information that is 18 E..4.E4,quarter,10080,3,2,10, Tenor
. 19 D,,4,D4,eighth,5040,4,2,10,Tenor
particular to each document. 20 cC,.4,c4,eighth,5040.5.2,10, Tenor
The following result, as a CSV file, is obtained, where 2! -
s . . 22 E,,3,E3,quarter,10080,3,1,11,Bass
we’re only showing the first two measure of each voice: ;3 4 3,43, quarter,10080.1.2,11,Bass
24 B,,3,B3,quarter,10080,2,2,11,Bass
1 step,alteration,octave,pitch, type,duration,noteCount, 25 C,,4,C4,quarter,10080,3,2,11,Bass
measureCount,partCount,voice 26 B,,3,B3,eighth,5040,4,2,11,Bass
2 B,,4,B4,quarter,10080,3,1,8,Soprano 27 A,,3,A3,eighth,5040,5,2,11,Bass
3 ¢,,5,C5,quarter,10080,1,2,8,Soprano 28 0o

One can also make use of the ’id” attribute of the Mu-
sicXML’s <part> (partwise) element to restrict extrac-
tion to only one of the parts.

To access the tenor part of the BWV 153.1 Chorale, for
example, we write ?part xyz:id "P3". after line 9
of the getMelody.sparql query to obtain the following:

1 step,alteration,octave,pitch, type,duration,noteCount,
measureCount, partCount,voice
E,,4,E4,quarter,10080,3,1,10,Tenor
E,,4,E4,quarter,10080,1,2,10,Tenor
D, ,4,D4,quarter,10080,2,2,10,Tenor
E,,4,E4,quarter,10080,3,2,10,Tenor
D,,4,D4,eighth,5040,4,2,10,Tenor
C,,4,C4,eighth,5040,5,2,10,Tenor

N e R ST

4.2. N-grams extraction

To extract any list of N-grams from a MusicXML file, we
can use SPARQL Anything to construct a KG of those
N-grams. Subsequently, through parametrisation, the
same process can be extended to a given list of files.
Here we construct a KG of the 3-grams of the pitch
information for each of the songs in the ’Altdeu 10” book.
The process is as follows. First we obtain a list of the
URIs of the files to be queried as shown in Listing 2.

Listing 2: SPARQL Query - getXMLPaths.spargl

1 SELECT ?filePath ?fileName

2 WHERE {

3 SERVICE<x-sparql-anything:>{

4 fx:properties fx:location "./musicXMLFiles/AltDeulO".

5 [] a fx:root;

6 ?mProp ?filePath.

7 FILTER(CONTAINS (?filePath, ".musicxml"))

8 BIND (replace(replace (?filePath, ".*2\\/",""), ".
musicxml","") as ?fileName)

9

10 3

The result is outputted as the following SPARQL Result
Set XML file:

1 <?xml version="1.0"?>

2 <sparql xmlns="http://www.w3.0rg/2005/sparql-results#">
3 <head>

4 <variable name="filePath"/>

5 <variable name="fileName"/>

6 </head>

7 <results>

8 <result>

9 <binding name="filePath">

0 <literal>file:///C:/Users/Marco/Desktop/showcase-
musicxml/./musicXMLFiles/AltDeul0/AltDeul0-256.

musicxml</literal>
11 </binding>
12 <binding name="fileName">
13 <literal>AltDeul0-256</literal>
14 </binding>
15 </result>
16

We require this to use a parametrisation in order to
execute the same melody extraction query shown above
on each file of the "AltDeu10" book. To do this, we use
the above XML file, the BASIL variable *?_fileName’ and

modify the SERVICE clause of the getMelody.sparql query
as in Listing 3.

Listing 3: SPARQL Query - getMelodyParam.sparql

1 SELECT ?step ?alteration ?octave ?pitch ?type ?duration ?
noteCount ?measureCount ?partCount

2 WHERE {

3 BIND (IRI(CONCAT("x-sparql-anything:media-type=
application/xml, location=", ?_filePath)) AS ?fx)

4 SERVICE ?fx {

5 ?score a fx:root .

6 # Continues with the rest of getMelody.sparql.

The result is a separate CSV file for each input file
that follows the same pattern as our previous results in
melody extraction above. That is, for example,

1 step,alteration,octave,pitch, type,duration,noteCount,
measureCount, partCount

F,,4,F4,half,20160,2,1,6
F,,4,F4,half,20160,1,2,6
G,,4,G4,half,20160,2,2,6

A, ,4,A4,half,20160,3,2,6
C,,5,C5,half,20160,4,2,6
B,-1,4,B[-1]4,quarter,10080,1,3,6
B,-1,4,B[-1]4,quarter,10080,2,3,6
A, ,4,A4,half,20160,3,3,6
G,,4,G4,half,20160,4,3,6

—
= O VN U W N

and so on for each file in the given list.

Extracting the melodic information and representing
itin a CSV file allows us now to use SPARQL Anything to
build the required KGs of the 3-grams of pitches through
a parametrised CONSTRUCT query. Indeed, as a condi-
tion to this second parametrised query, a second query
on the file system has to be executed. As this is equal to
the previous one but only for the value of the second pa-
rameter of the CONTAINS() function in the filter, which
is "csv" in this case, we will omit it*. Thus, we have the
query in Listing 4.

Listing 4: SPARQL Query - trigKGBuildParam.sparql

1 OONSTRUCT {

2 ?entity a rdf:Seq;

3 rdf:_1 ?note ;

4 rdf:_2 ?notel ;

5 rdf:_3 ?note2 .

6 3

7 WHERE {

8 BIND (IRI(CONCAT("x-sparql-anything:media-type=text/csv,
location=", ?_filePath)) AS ?fx)

9 SERVICE ?fx {

10 fx:properties fx:csv.headers true.

11 []1 a £fx:root;

12 omProp [xyz:pitch ?note] ;

13 ?mPropl [xyz:pitch ?notel] ;

14 ?mProp2 [Xyz:pitch ?note2] ;

15 FILTER (fx:previous(?mPropl) =

16 ?mProp && fx:previous(?mProp2) = ?mPropl)

17 }

18 BIND((fx:serial("trigram")) AS ?trigram)

19 BIND(fx:entity(ex:, ?trigram) AS ?entity)

20 3}

which constructs a KG of the 3-grams for each separate
file that is given to it as an input.

“The complete resources are available as supplemental material [24]

The following example illustrates the content of each
of these graphs.

Listing 5: SPARQL Result - trigKG-AltDeu10-241.ttl

1 ex:32 rdf:type rdf:Seq ;
2 rdf: 1 "F4" ;

3 rdf:_2 "F4" ;

4 rdf:_3 "Rest" .

5

6 ex:13 rdf:type rdf:Seq ;
7 rdf:_1 "G4" ;

8 rdf:_2 "G4" ;

9 rdf: 3 "G4" .

10

11 ex:19 rdf:type rdf:Seq ;
12 rdf:_1 "Rest" ;

13 rdf:_2 "G4" ;

14 rdf:_3 "G4" .

15

16 ex:22 rdf:type rdf:Seq ;
17 rdf:_1 "C5" ;

18 rdf: 2 "F4" ;

19 rdf:_3 "C5" .

20

21 ex:28 rdf:type rdf:Seq ;
22 rdf:_1 "F4" ;

23 rdf:_2 "Rest" ;

24 rdf:_3 "G4" .

25

4.3. N-grams analysis

After constructing the KGs of 3-grams, one can begin to
analyse them, still only using SPARQL Anything.

The query in Listing 6 combines the whole set of KGs
of 3-grams of pitches produced above, counts their fre-
quencies and estimates their probabilities.

Listing 6: SPARQL Query - trigramAnalysis.sparql

1 SELECT ?trigram ?frequency ((?frequency / ?total) AS ?

probability)

2 WHERE {

3 {# Subquery 1, extracts trigrams and their frequency.

4 SELECT ?trigram (COUNT(?trigram) AS ?frequency)

5 WHERE {

6 GRAPH ?g { ?s a rdf:Seq;

7 ?mPropl ?notel;

8 ?mProp2 ?note2;

9 ?mProp3 °?note3.}

10 FILTER(fx:previous(?mProp2) = ?mPropl && fx:
previous(?mProp3) = ?mProp2)

11 BIND(CONCAT (?notel, "-", ?note2, "-", ?note3) AS ?
trigram)

12 }

13 GROUP BY ?trigram

14 }

15 {#Subquery 2, counts the total number of resources.

16 SELECT (COUNT(?r) AS ?total)

17 WHERE { GRAPH ?gl {?r a rdf:Seq.} }

18 }

19 3

The results of this analysis are as in the following CSV
example:

trigram, frequency,probability
D5-G5-F5,4,0.000249719066050692970408
G3-C4-C4,4,0.000249719066050692970408
A3-G3-D4,2,0.000124859533025346485204
Rest-Rest-C4,1,0.000062429766512673242602
E4-B4-C5,3,0.000187289299538019727806
C4-B3-B3,3,0.000187289299538019727806

I N N

8 F5-E5-Rest,2,0.000124859533025346485204

9 C5-E5-F5,3,0.000187289299538019727806

10 C4-D4-C4,20,0.001248595330253464852041

11 F[1]4-D4-E4,5,0.00031214883256336621301

12 A4-G4-E4,20,0.001248595330253464852041

13 A4-C5-F4,8,0.000499438132101385940817

14 E5-C[1]5-C[1]5,2,0.000124859533025346485204

4.4. Score ontology population

Using our above work in melody extraction and query
parametrisation as a basis, we have implemented our final
task by means of a SPARQL CONSTRUCT query (List-
ing 7, populateOntology.sparql), obtaining a collection of
KGs describing each note of each song:

1 <http://polifonia.kmi.open.ac.uk/altdeu/altdeu-003/event/1>
2 rdf:type
3 mno:hasDuration "20160" ;
4 mno:hasMeasure <http://polifonia.kmi.open.ac.uk/
altdeu/altdeu-003/measure/1> ;

mno:Note ;

5 mno:hasOctave "5" ;

6 mno:hasPitch "D5" .

7

8 <http://polifonia.kmi.open.ac.uk/altdeu/altdeu-003/event/7>

9 rdf:type mno:Note ;

10 mno:hasDuration "10080" ;

11 mno:hasMeasure <http://polifonia.kmi.open.ac.uk/
altdeu/altdeu-003/measure/3> ;

12 mno:hasOctave "5" ;

13 mno:hasPitch "D5" .

14

15 <http://polifonia.kmi.open.ac.uk/altdeu/altdeu-003/measure

/5>

16 rdf:type mno:Measure ;

17 mno:hasCount 5 ;

18 mno:hasPart <http://polifonia.kmi.open.ac.uk/altdeu/
altdeu-003/part/6> .

19

5. Evaluation and discussion

We now proceed to the evaluation of our implementations
and to discussing some query design issues that were
encountered and possible solutions.

5.1. Correctness of the data

To evaluate correctness, we have completed the melody
extraction (with both a single and a collection of files), N-
gram extraction and N-gram statistics tasks via Music21.
The complete details of this can be found on the related
GitHub page [24]. Here we summarise the results.

pitchCompare.py compares the 'pitches’ columns of
two CSV files in their order of appearance in each docu-
ment. If the two lists are equal *True’ is returned.

When bwvi53.1.csv and bwv153.1-Tenor.csv are com-
pared with their Music21 equivalents, we obtain the re-
sults as shown in Listings 8 and 9.

Listing 8: Comparing bwv153.1.csv and bwv153.1Py.csv

1 directory =
2 filel = directory + ’bwv153.1.csv’

’C:/Users/Marco/Desktop/showcase-musicxml/”’
SPARQL Anything

Listing 7: SPARQL Query - populateOntology.sparql

1 CONSTRUCT {

2 ?scoreEntity a mno:Score .

3 ?scoreEntity mno:contains ?partEntity .

4 ?partEntity a mno:Part

5 ?measureEntity a mno:Measure .

6 ?measureEntity mno:hasPart ?partEntity .
7 ?measureEntity mno:hasCount ?measureCount
8 ?measureEntity mno:hasUnit ?2unit

9 ?eventEntity a ?eventType .

10 ?eventEntity mno:hasMeasure ?measureEntity .

11 ?eventEntity mno:hasPitch ?pitch .

12 ?eventEntity mno:hasDuration ?duration .

13 ?eventEntity mno:hasOctave ?octave .

14 3}

15 #SELECT ?location ?fileName ?scoreEntity

16 WHERE {

17 {{ # Melody Extraction Sub-query.

18 SELECT ?step ?alteration ?octave ?pitch ?type ?duration ?noteCount ?measureCount ?partCount ?voice ?fileName ?unit
19 #SELECT ?measure ?note ?step ?octave ?pitch

20 WHERE {

21 SERVICE <x-sparql-anything:> {

22 fx:properties fx:location ?_filePath ; fx:media-type "application/xml".
23 ?score a fx:root

24 # Part

25 ?score ?mProperty ?part .

26 ?part a xyz:part .

27 # Extracts the measures:

28 ?part ?mPropPart ?measure.

29 #Extracts the notes from each measure:

30 # Measure

31 ?measure a Xyz:measure .

32 OPTIONAL {

33 # Measure attributes

34 ?measure fx:anySlot [

35 a xyz:attributes ;

36 fx:anySlot [

37 a xyz:time ;

38 fx:anySlot [a xyz:beats ; rdf:_1 ?beats] ;

39 fx:anySlot [a xyz:beat-type ; rdf:_ 1 ?beatType]

40 1

41]

42 BIND (CONCAT (?beats , "/", ?beatType) AS ?unit)

43 }

44 # Continues with the rest of getMelody.sparql.

45 3

46 ORDER BY ?partCount ?measureCount ?noteCount

47 13

48 BIND (fx:serial("event") AS ?eventOrder)

49 # Mint entity IRIs

50 BIND (fx:entity(alt:, fx:String.toLowerCase(?_fileName)) AS ?scoreEntity)
51 BIND (fx:entity(?scoreEntity, "/part/", ?partCount) AS ?partEntity)

52 BIND (fx:entity(?scoreEntity, "/measure/", ?measureCount) AS ?measureEntity)
53 BIND (fx:entity(?scoreEntity, "/event/", ?eventOrder) AS ?eventEntity)
54 BIND (IF (?step = "Rest" , mno:RestEvent , mno:Note) AS ?eventType)
55 BIND (xsd:int(?octave) AS 2octavevValue)

56 3}

3 file2 = directory + ’pythonM21/bwv153.1Py.csv’ # Music21
4 pitchCompare(filel, file2)
5 True

Listing 9: Comparing bwv153.1-Tenor.csv and bwv153.1-
TenorPy.csv

directory = ’C:/Users/Marco/Desktop/showcase-musicxml/’
filel = directory + ’bwv153.1-Tenor.csv’ # SPARQL Anything
file2 = directory + ’pythonM21/bwv153.1-TenorPy.csv’ #M21
pitchCompare(filel, file2)

True

G W

The filesCompare.py script uses the function
pitchCompare(filel, file2) tocompare the pitch’

column of each CSV file that was produced by getMelody-
Param.spargl to the same column of the CSV file produced
with Music21 (see getMelodyParam.py in the GitHub
repository).

Executing the script prints the following to the termi-
nal:

1 0 mismatches have been found between the files.
2 List of mismatches =

310

Similarly, trigAnalysisComparare.py compares the two
statistical analyses of the 3-grams extracted from this
collection, trigramAnalysis.csv and trigramAnalysisPy.csv,

in terms of differences in the constructed 3-grams, their
individual frequencies and the total frequencies.
When executing the script we obtain the following.

Listing 10: Terminal output of trigAnalysisCompare.py

Different 3-Grams and frequency pairs found: 0
List of differences =

[1

Sum of frequencies:

SPARQL-Anything: 16018

Music21: 16018

NS TR RN

As the 3-grams, their individual appearances and total
frequencies are the same, we deduce that the two analyses
are essentially identical and that the minor discrepancies
that can be observed in the probability estimates are due
to rounding and/or truncation errors introduced by the
respective systems.

5.2. SPARQL Anything sequence
functions help make queries more
compact

Throughout the implementation of our tasks, we have
had to overcome some specific technical problems related
to how a SPARQL engine operates and the necessity of
manipulating and presenting musical data in a way that
is musically meaningful.

A musical composition is an ordered sequence of
events. However, such information is not explicitly de-
clared in the MusicXML format (for example, as an index
XML attribute). Therefore, preserving the order of the
XML elements is crucial in order to capture the notes’
order.

Working with Facade-X helps providing solutions to
this problem, as the container membership properties
(rdf:_1, rdf:_2, etc.) are assigned to each XML element
(in this use-case) according to their order of appearance,
even when this order is not explicitly given in the origi-
nal document. This gives us then the capacity of easily
ordering the data through the use of a variable, bound
to the integer of the membership property with which
we can ORDER BY. Further, SPARQL Anything also of-
fers specific functions which make such a task easier and
more compact to program.

This can be seen in action in our getMelody.sparql
query. With the original SPARQL syntax, constructing
the variables required to order the data would look like
the following.

Listing 11: ?measureCount in SPARQL syntax

1 BIND(xsd:int(REPLACE(STR(?mPropPart),
AS ?measureCount)

STR(rdf:_), ""))

The SPARQL Anything function fx:cardinal (?a),
which takes a container membership property as its in-
put and returns its associated number cast as an integer,
allows us to re-write this in the below simpler fashion.

Listing 12: ?measureCount in SPARQL Anything syn-
tax

1 BIND(fx:cardinal(?mPropPart) AS ?measureCount)

Container membership properties have also enabled us
to easily construct a knowledge graph representation of
all the possible trigrams of pitch information of a single
composition.

The SPARQL Anything function fx:previous(?a)
returns the container membership property immediately
preceding ?a, enabling us to filter through the n™ (n
being the number of information, IV the order of the
N-gram) Cartesian products that the SPARQL engine
generates when creating all the possible combinations of
N information.

This can be seen in action in the following snippet of
the trigKGBuildParam.sparql query as follows.

Listing 13: trigKGBuild.spargl

[] a fx:root;
?mProp [xyz:pitch ?note] ;
?mPropl [xyz:pitch ?notel] ;
?mProp2 [xyz:pitch ?note2] ;
FILTER (fx:previous(?mPropl) =
?mProp && fx:previous(?mProp2) = ?mPropl)

N Ul A W =

Facade-X is a nested RDF container data structure that
correlates with a tree-like graph structure. As it converts
every concrete data format to this tree-like structure, ac-
cessing the original data via a query can be viewed as a
problem of successfully walking through this tree graph.
While this process has its upside in the fact that it is
essentially an iteration and variation of the same query
pattern, it can also, because of this same reason, prove to
be quiet lengthy and time consuming. The SPARQL Any-
thing magic property fx:anySlot provides an initial
solution to this problem.

In the getMelody.sparql query for example, the follow-
ing code fragment is needed to extract the duration type
(quarter, half, etc.) of a MusicXML note element:

1 ?note ?mPropNotel ?typeElmnt.
2 ?typeElmnt a xyz:type.
3 ?typeElmnt rdf: 1 ?type.

Using £x:anySlot this can be reduced to the following
single line of code:

1 ?note fx:anySlot [a xyz:type ; rdf:_1 ?type].

5.3. Discussion

Our goal was to explore the flexibility and robustness
of the Facade-X model at the foundation of the SPARQL
Anything technology, by querying encoded musical con-
tent in the form of MusicXML files and to proceed to see if
there were the basis for employing the SPARQL Anything
software to support tasks associated with computational
musicology.

For this we have employed an exploratory-based ap-
proach, beginning with exploring the ‘raw’ data as it
is presented by the corresponding facade and selecting
the simplest features first. Then, incrementally, we have
begun to extract more data and to use it to construct
further information (e.g. pitches) and to re-use queries
through sub-querying and/or parametrisation as a basis
for implementing further more complex tasks.

Through our work, we have shown that it is possible
to rely on Facade-X’s representations of an XML and
CSV document to extract the information from a Mu-
sicXML file, which was required for the completion of
our proposed tasks. In fact, all of our queries have been
constructed simply with having in mind the XML and
CSV facades together with the MusicXML specification.

Indeed it is this foundation that enables the potential
‘universal’ character of our queries, as it relies on what
the tree graph corresponding to the facade must have,
while allowing us, via the OPTIONAL keyword, to in-
clude what that graph may have, with very few ad hoc
goal based modifications.

Given this, some of the problems of having to work
with a facade model follow. While at first this may prove
to be a difficulty, as the facade for a specific data format is
not actually ’in front us’ if not for its general features, and
because each data format (but also the same data format
if it has slight variations, e.g. CSV files with or without
headers) has a slightly different representation, the func-
tionalities that SPARQL Anything offers help mitigating
this process until the mental exercise of seeing the origi-
nal file as a Facade-X graph has been mastered. SPARQL
allows us to explore a dataset via queries, and because
the facade is a tree structure, ’exploring the dataset’ and
"walking through the graph’ become equivalent opera-
tions. As such, SELECT queries that extract data can be
built simply via this trial-and-error process of iterating
the same basic ’atomic’ query type that takes us from
one node to its sub-nodes.

In terms of query design, this leads to two problems,
the issue of having to work with container membership
properties and the issue of possibly rather long and wordy
queries emerging from graph walking. As discussed
above, SPARQL Anything has tried to address both these
issues through the implementation of specific functions
such as fx:cardinal (?a) and the magic property
fx:anySlot.

A second design issue can be identified when moving
from a simple SELECT query to using the same as the ba-
sis of further SELECT or CONSTRUCT queries to achieve
more complex tasks. For this two solutions have been
implemented. We have either created ’pipelines’ that
via a process of extraction-conversion have taken us to
where we wanted, or we have made use of the technique
of sub-querying. In terms of development, this will likely
be one of the issues to be addressed going forward, as

the more complex the tasks that we will want to achieve
become, the longer the number of intermediate steps are
likely to become when processing the given encoded mu-
sical data. While sub-querying is likely to be a better
usage pattern for this problem, the issue of query length
and ease of design that may come with it will also need
to be addressed. In this sense, new SPARQL Anything
features such as query modularisation, for example, may
prove to be fruitful to address query compactness.

6. Conclusions

In this paper we have explored the possibility of apply-
ing SPARQL Anything to musical content encoded in the
MusicXML format and to execute a number of compu-
tational musicology related tasks through KG and KG
related methods and possibilities.

As shown in the implementation and evaluation above,
we have been able to construct a number of queries for
the extraction of musical information that have shown
themselves to be general and reusable enough to aid
with the construction of knowledge graphs (N-grams
and ontology representation) related to musical content
that may be of interest to computational musicologists.

We have also provided further testing grounds for the
SPARQL Anything technology and shown how a number
of features that are specific to it, functions, magic prop-
erties, etc., aid query design and implementation when
executing tasks that move away from the usual SPARQL
use-cases.

If we can say that we have achieved positive results
in terms of a proof of concept, we must also admit that
we have just scratched the surface of what is required
to successfully provide technical support to computa-
tional musicology and of the possibilities that the use
of semantic technology can offer. Fundamental musical
concepts such as that of the melodic or harmonic interval,
for example, have not made an appearance here.

Despite this, what we have learnt from this research
suggests to us that the first basic steps have been made
in the right direction, and that it is possible to keep de-
veloping the SPARQL Anything technology to further
support the construction of musical knowledge graph
and to provide further technological support to compu-
tational musicologists for their undertakings.

Acknowledgments

This research was supported by the UK EPSRC intern-
ship Training Grant DTP 2020-2021 Open University
and by the EU-funded project Polifonia: a digital har-
moniser of musical cultural heritage (Grant Agreement
N. 101004746), https://polifonia-project.eu.

https://polifonia-project.eu

References

(1]

(6]

(7]

(8]

(9]

X. Zhu, Z. Li, X. Wang, X. Jiang, P. Sun, X. Wang,
Y. Xiao, N. J. Yuan, Multi-modal knowledge graph
construction and application: A survey, arXiv
preprint arXiv:2202.05786 (2022).

F. Simonetta, S. Ntalampiras, F. Avanzini, Multi-
modal music information processing and retrieval:
Survey and future challenges, in: 2019 international
workshop on multilayer music representation and
processing (MMRP), IEEE, 2019, pp. 10-18.

A. Scharnhorst, P. Van Kranenburg, F. Admiraal,
P. Mulholland, C. Guillotel-Nothmann, The poli-
fonia portal: a confluence of user stories, research
pilots, data management and knowledge graph tech-
nology, in: DARIAH Annual event 2021, Interfaces,
2021.

V. A. Carriero, F. Ciroku, J. de Berardinis, D. S. M.
Pandiani, A. Merofo-Pefiuela, A. Poltronieri, V. Pre-
sutti, Semantic integration of mir datasets with the
polifonia ontology network, in: Proc. of the Inter-
national Society for Music Information Retrieval
Conference, ISMIR, 2021.

M. Daquino, M. Wigham, E. Daga, L. Giagnolini,
F. Tomasi, Clef. a linked open data native system
for crowdsourcing, arXiv preprint arXiv:2206.08259
(2022).

E. Daga, E. Motta, Capturing themed evidence,
a hybrid approach, in: Proceedings of the 10th
International Conference on Knowledge Capture,
2019, pp. 93-100.

E. Daga, E. Motta, Challenging knowledge extrac-
tion to support the curation of documentary evi-
dence in the humanities (2019).

E. Daga, L. Asprino, P. Mulholland, A. Gangemi,
Facade-x: an opinionated approach to spargl any-
thing, Studies on the Semantic Web 53 (2021) 58-73.
L. Asprino, E. Daga, P. Mulholland, A. Gangemi,
Knowledge graph construction with a facade: a uni-
fied method to access heterogeneous data sources
on the web, ACM Transactions on Internet Tech-
nology (TOIT) (2022) 58-65.

A. Hankinson, P. Roland, I. Fujinaga, The music
encoding initiative as a document-encoding frame-
work., in: ISMIR, 2011, pp. 293-298.

M. Daquino, E. Daga, M. d’Aquin, A. Gangemi,
S. Holland, R. Laney, A. M. Penuela, P. Mulholland,
Characterizing the landscape of musical data on the
web: State of the art and challenges (2017).

Y. Raimond, S. A. Abdallah, M. B. Sandler, F. Gias-
son, The music ontology., in: ISMIR, volume 2007,
Citeseer, 2007, p. 8th.

S. S.-s. Cherfi, C. Guillotel, F. Hamdi, P. Rigaux,
N. Travers, Ontology-based annotation of music
scores, in: Proceedings of the Knowledge Capture

(18]

Conference, 2017, pp. 1-4.

A. Poltronieri, A. Gangemi, The music note ontol-
ogy, Workshop on Ontology Patterns (2021). URL:
http://ceur-ws.org/Vol-3011/pattern2.pdf.

A. Allik, G. Fazekas, M. B. Sandler, An ontology for
audio features., in: ISMIR, 2016, pp. 73-79.

A. Merofo-Pefiuela, M. Daquino, E. Daga, A large-
scale semantic library of midi linked data, in: 5th
International Conference on Digital Libraries for
Musicology (DLfM), Paris, France, 2018.

M. Achichi, P. Lisena, K. Todorov, R. Troncy, J. De-
lahousse, Doremus: A graph of linked musical
works, in: International Semantic Web Conference,
Springer, 2018, pp. 3-19.

M. Fell, E. Cabrio, M. Tikat, F. Michel, M. Buffa,
F. Gandon, The wasabi song corpus and knowl-
edge graph for music lyrics analysis, Language
Resources and Evaluation (2022) 1-31.

A. Merofio-Pefiuela, E. Daga, List.MID: A MIDI-
based benchmark for evaluating RDF lists, in: Inter-
national Semantic Web Conference, Springer, 2019,
pp. 246-260.

E. Daga, A. Merono-Pefiuela, E. Motta, Sequential
linked data: The state of affairs, Semantic Web
(2021) 1-36.

S. Downie, M. Nelson, Evaluation of a simple and
effective music information retrieval method, in:
Proceedings of the 23rd annual international ACM
SIGIR conference on Research and development in
information retrieval, 2000, pp. 73-80.

F. Hamdji, S. S.-s. Cherfi, Music Notation Ontology,
2016. URL: http://cedric.cnam.fr/isid/ontologies/
MusicNote.owl#, [Online; accessed 8-September-
2022].

MusicXML Specification Contributors, Mu-
sicXML, 2021. URL: https://www.w3.0rg/2021/06/
musicxml40/, [Online; accessed 8-September-2022].
M. Ratta, E. Daga, Spargl-anything/showcase-
musicxml:, 2022. URL: https://doi.org/10.5281/
2en0do0.6966559. doi:10.5281/zenodo.6966559.

http://ceur-ws.org/Vol-3011/pattern2.pdf
http://cedric.cnam.fr/isid/ontologies/MusicNote.owl#
http://cedric.cnam.fr/isid/ontologies/MusicNote.owl#
https://www.w3.org/2021/06/musicxml40/
https://www.w3.org/2021/06/musicxml40/
https://doi.org/10.5281/zenodo.6966559
https://doi.org/10.5281/zenodo.6966559
http://dx.doi.org/10.5281/zenodo.6966559

	1 Introduction
	2 Related work
	3 Tasks definition
	4 Tasks implementation
	4.1 Melody extraction
	4.2 N-grams extraction
	4.3 N-grams analysis
	4.4 Score ontology population

	5 Evaluation and discussion
	5.1 Correctness of the data
	5.2 SPARQL Anything sequence functions help make queries more compact
	5.3 Discussion

	6 Conclusions

