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Species competition model is coupled with climate model to describe the influence

of environmental temperature on ecosystems.  

This coupled model can be asymptotically equivalent to a special multispecies 

Lotka-Volterra system.

The model shows how ecosystems influence biome formation and fragmentation 

under critical environmental changes.

We apply the proposed model to study the warm-temperate mixed forest biome 

location in the past. 
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Abstract

Critical phenomena in the climate system can cause drastic changes in the state

of planetary ecosystems as well the entire biosphere. There also are mechanisms

through which the biosphere can make an effect on climate. In this manuscript,

we study the nonlinear dynamics of the interaction of the climate system with

the biosphere by linking an energy balance climate model to different species

competition models. We develop an asymptotic approach to these models and

investigate how migration strengthens biome stability and biodiversity. More-

over, we derive relations describing biome boundary shifts under global warm-

ing (or cooling) and check those relations against paleo data on plant biome

location. Finally, the models demonstrate that critical rates of changes in the

environmental temperature dynamics may shift biome stability.

Keywords: biosphere, climate, stability, temperature, critical, biome.

1. Introduction

We aim to propose a model describing nonlinear interaction between plan-

etary climate and a biosphere consisting of many ecosystems integrated into
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biomes where many species compete for a few of the same resources. The ex-

istence and stability of such food webs on a global scale is a key problem in

ecology [1, 2]. It becomes even more pressing to understand in the context of

extinctions and mass extinctions in such systems under climate changes [3]. Re-

source competition models link the population dynamics of competing species

with the dynamics of the resources. As it was mentioned in [4] an attractive

feature of resource competition models is that they use the biological traits of

species to predict the time evolution of competition. In fact, many rigorous

results [5–7] show that, in a general situation, a single species survives, while

to obtain the coexistence of many species one needs very special assumptions

made to the species parameters (mortalities and resource consumption rates).

Note that ecosystems present a class of dynamical systems exhibiting com-

plex dynamics, bifurcations, and strange attractors (see, for example, [8] and

[9] for an analytical proof). On the other hand, climate also presents a com-

plicated dynamical system [10]. Recent observations have shown that climate

change may be a leading factor influencing ecosystem behavior [11]. To simplify

climate modeling, Energy Balance Models (EBMs) were proposed [12–15] that

allow us to describe current climate change and paleoclimate. The stochastic

effects in such models are investigated in [16]. Other interesting phenomena in

these models arise as a result of multistability, see [17, 18].

Here, we develop a mathematical approach to investigate effects in nonlin-

ear climate-biosphere interaction by a model that takes into account spatial

heterogeneity, species migration, and self-limitation, and as well simple climate

dynamics. We describe the biosphere with the help of models like the paradig-

matical MacArthur model, and climate by the classical EBM with thermal con-

ductivity. The coupling of two systems goes through planetary albedo [19]. We

find that migration increases the growth rate function by a term that is propor-

tional to τ−1m , where τm is a time needed for a species to migrate through the

whole species habitat. Further, ecosystem multistationarity may lead to a fast

biome formation and heterogeneity under climate variations when migration

effects are weak.
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We obtain equations describing a shift of the ecosystem boundaries under

environmental temperature changes. There exist two regimes, slow and fast

climate temperature variations. For heterogeneous ecosystems, slow climate

variations (relatively uniform over habitats) can weakly change species habi-

tats. On the other hand, too great a heterogeneity in the ecosystem can cause

instability under random and periodic climate oscillations so one can envision

that there is an optimal level of biosphere heterogeneity. Finally, we confirm

the GAIA hypothesis that climate and biosphere can evolve together in a con-

vergent manner: the biosphere has become increasingly diversified and spatially

heterogeneous due to climate change that, in turn, has increased the stability

of both climate and biosphere.

The paper is organized as follows. In the next section, we describe differ-

ent classical models of ecosystems where competing species share resources and

extended models that take into account climatic factors, migration, and self-

limitation effects. In Section 3 it is shown that for large turnover rates the

long term behavior of all these models can be described by asymptotic solu-

tions. These solutions show that all these models can be reduced to a special

multispecies Lotka-Volterra (LV) model that is well studied [9, 20–22]. In addi-

tion, we restate some results on the LV system, where we show how to realize

prescribed polynomial dynamics by an LV system using a nonlinear oscillator

concept. Section 4 states an averaging method that allows us to estimate bio-

diversity for systems without migration. To obtain these estimates we need

no information on the attractor structure, they hold for any oscillating large

time dynamics. Further, in Section 5 we extend these estimates on spatially

extended systems with migration effects. It allows us to obtain the following

important result: the effects of migration can be described by adding a term to

the growth function that is proportional to the time it takes for the species to

migrate throughout the entire ecosystem. At last, in Sections 6, 7, and 7.1, we

describe how environmental temperature warming affects species habitats and

apply analytical results to interpret data on evolution of the vegetation biomes

of Europe from 16 4 million years ago (Neogene period). We show that there
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arises two cases: F and S. The case F corresponds to a fast climate variation

with respect to species adaptation rate and S a slow climate variation. In the

case of F the species have no time to adapt, and the habitat boundaries move

at the same speed as the isotherms. In the second case, the speed of habitat

boundary movement may be much less than the speed of isotherm change. The

analysis of paleodata by our approach (both cases F and S) shows that biome

evolution under cooling was rather fast than slow.

The main result is that a complicated spatially heterogeneous biosphere split

into a number of small different ecosystems shows high stability with respect to

slow climate variations but that the biosphere may be volatile with respect to

rapid climate changes. So, a rate-induced (R) tipping point [23] may appear.

2. Models

In this section, we describe some conceptual climate and biosphere models

and connections between them.

2.1. Energy balance climate models

The energy balance models are basic for such climate applications as tem-

perature warming and paleoclimate [15]. In the simplest case when we consider

the average temperature of the Earth’s surface, the main equation has the form

[13] :
dT

dt
= λ−1

(
−eσT 4 +

µ0I0
4

(1−A)

)
, (1)

where λ is thermal inertia, T is the averaged surface temperature, t is time,

and A is the average albedo of the earth’s surface. On the right-hand side, the

first term is the outgoing emission and the second term represents the incoming

Sun’s radiation. Generally, incoming radiation to the Earths surface is modified

by a parameter, µ0, to allow for variations in the irradiance per unit area, I0

(the solar constant), or for long-term variations of the planetary orbit. The

outgoing emission depends on the fourth power of temperature, the effective

emissivity e and a Stefan−Boltzmann constant σ.
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This model can be coupled with biosphere’s dynamics as follows. The com-

plete averaged albedo A can depend on the biosphere state. For simplicity, we

consider ecosystems in which species are competing for several resources. We

will consider a more complicated model than in [19], which is spatially extended

and takes into account species migration.

To take into account the dependence of T on latitude, we use the classical

EBM model [12–14] and following [15] we insert a term describing a heat con-

duction into (1) and extend (1) equation to a PDE adding a spatial dimension.

Let y be a latitude, y ∈ (−π/2, π/2). Then the corresponding extended equation

reads
dT

dt
= λ−1

(
− eσT 4 +

µ0I0
4

(1−A) +D∆BT
)
, (2)

where D is the thermal conductivity coefficient, and ∆B is the Laplace-Beltrami

operator, which in the one-dimensional case, where we take into account the

latitude only, has the form:

∆B = cos y−1
∂

∂y

(
cos y

∂

∂y

)
,

where y is the latitude, which ranges from −π/2 (the South Pole) via y = 0 (the

equator) to π/2 (the North Pole) (if y ∈ (0, π), where 0 is the North pole, then

sin y should stand instead of cosφ). The boundary conditions at the poles have

the form
∂T (y)

∂y
= 0, y = ±π/2. (3)

2.2. Standard ecosystem model

We consider the following system of equations that extends the known model

[8, 24], taking into account diffusion in space (species migration) along latitude

(representing species response to global temperature change):

∂ui
∂t

= di∆Bui + ui(φi(v)− µi), i = 1, . . . , N, (4)

∂vk
∂t

= Dk(Sk − vk)−
M∑

i=1

cki ui φi(v), k = 1, . . . , n, (5)
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Here u = (u1, u2, . . . , uN ) is the vector of species abundances, ui = ui(x, t),

t > 0, x ∈ Ω, v = (v1, . . . , vn) is a vector of resource amounts. The domain

Ω ⊂ Rd, where d = 1, 2 is bounded and has a smooth boundary ∂Ω. In eqs.

(4), (5) unknown vk is the resource of k-th type consumed by all ecosystem

species, µi is the species mortalities, Dk > 0 are resource turnover rates, Sk is

the supply of the resource vk, Dkvk(Sk−vk) is the supply rate for k-th resource

and cik > 0 is the content of k-th resource in the i-th species. We suppose that

resource supplies Sk are slow smooth functions of x, t:

Sk = Sk(X, τ), X = ε1x, τ = ε2t, (6)

where εj > 0 are small parameters. Such a slow dependence may describe

variations of resource supplies in time and space that can appear as a result

of climate and environmental changes. For example, one can suppose that for

plant ecosystems Sk depend on the temperature T and precipitation level P ,

mean annual values of these parameters can slowly evolve in time: T = T (τ)

and P = P (τ). So, such ecological factors can be included in our model.

We consider general φj that are bounded, non-negative and Lipshitz contin-

uous

|φj(v)− φj(ṽ)| ≤ Lj‖v − ṽ‖ (7)

and

φk(v) = 0, v ∈ ∂Rm+ , k = 1, ..., n. (8)

Conditions (7) and (8) can be interpreted as a generalization of the von

Liebig law, where

φi(v) = ai min
{ v1
bi1 + v1

, . . . ,
vn

bin + vn

}
, (9)

where ai and bij are positive coefficients, i = 1, . . . , N . The coefficient ai is the

maximal level of the resource consumption rate by i-th species and coefficients

bij , where j = 1, . . . , n, defines the sharpness of the consumption curve φi(v).

We complement system (4), (5) by non-negative initial conditions

u(0) = ū(X), v(0) = v̄(X), (10)
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where

ūi > 0, i = 1, . . . , N, and 0 ≤ v̄k ≤ Sk, k = 1, . . . , n. (11)

and the zero Neumann boundary conditions

∇ui(x, t) · n(x) = 0 x ∈ ∂Ω (12)

∇vk(x, t) · n(x) = 0 x ∈ ∂Ω, (13)

where n = n(x) denotes the normal vector with respect to ∂Ω at the point x.

Note that for a biome of relatively small area we can neglect curvature effects

and replace the operator ∆B by the usual Laplace operator ∆. Our results can

be extended to the general case in a quite straightforward way.

2.3. MacArthur consumer competition model

The MacArthur model is another paradigmatical model of ecology for sys-

tems with sharing resources, discussed recently in detail in [25]. It is similar to

the standard model but here the growth rate functions and resource turnover

coefficients are linear. In our notation the spatially extended MacArthur model

reads:

∂ui
∂t

= di∆ui + eiui
( n∑

k=1

wkcikvk − µi
)
, i = 1, . . . , N, (14)

∂vk
∂t

= Dkvk(Sk − vk)−
N∑

i=1

ckiuivk , k = 1, . . . , n, (15)

where cik is the successful encounter rate of species i searching for resource k,

ri is the maintenance cost or threshold consumption level for growth, wk is the

per capita weight or nutritional value of each resource, ei is the quantity of

nutritional value required for the reproduction of a given species.

2.4. Contemporary niche model and models with self-limitation
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The other variant of the MacArthur model is proposed in [25], where the

turnover rates do not include the factors vk:

∂ui
∂t

= di∆ui + eiui

( n∑

k=1

wkcikvk − µi
)
, i = 1, . . . , N, (16)

∂vk
∂t

= Dk(Sk − vk)−
N∑

i=1

ckiuivk, k = 1, . . . , n. (17)

We will show below that these models without migration encounter some

difficulties when we try to explain high biodiversity in some ecosystems. We

can improve the situation by incorporating self-limitation effects. For example,

the previous model can be modified as follows:

∂ui
∂t

= di∆ui + eiui
( n∑

k=1

wkcikvk − µi − γiui
)
, i = 1, . . . , N, (18)

∂vk
∂t

= Dk(Sk − vk)−
N∑

i=1

ckivkui k = 1, . . . , n. (19)

3. Reduction to special Lotka-Volterra system

Here, in the case of a large turnover Dk, we reduce all the models to special

Lotka-Volterra (LV) systems that are well-studied in [9, 20]. First, we consider

the resource competition model. Assume that Dk ∝ D, where D is a large

parameter that allows us to proceed a time-scale analysis. We set D̂k = Dk/D

and, to balance the first term on the right-hand side of eq. (5), we put in that

equation

vk = Sk −D−1ṽk + ..., (20)

where ṽk are new unknowns. We substitute the relations (20) for vk into our

system (4) and (5). Then, by matching principal terms and neglecting terms

which have the order O(D−2), one obtains

∂ui
∂t

= di∆ui + ui(φi(S −D−1ṽ)− µi), i = 1, . . . , N, (21)

D−1
∂ṽk
∂t

= −D̂kṽk +
N∑

i=1

cki ui φi(S −D−1ṽ) + Vk, k = 1, . . . , n, (22)
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where

Vk(X, τ) = −ε2
∂Sk
∂τ

.

and ε2, τ are defined by relation (6).

A given u, system of eqs. (22) for ṽk has an asymptotic solution

ṽk = D̂−1k

( M∑

i=1

cki ui φi(S) +O(D−1) +O(ε2)
)
. (23)

Removing terms << D−1 and << ε2 and substituting (20) into eq. (21) we see

that system (22) takes the form

∂ui
∂t

= di∆ui + ui(r̄i −Kijuj), (24)

where

Kij =
n∑

s=1

AisBsj , r̄i(S) = −µi + φi(S) (25)

and

Ais(S) = D−1s
∂φi(S)

∂Ss
, Bsj(S) = csjφj(S),

where 1 ≤ n ≤ N . So, the interaction matrix K with entries Kij can be

factorized

K = AB, (26)

where A,B are matrices of size N × n and n × N , respectively. Note that by

the change u = Dû we can replace the large factors Dk >> 1 by normalized

turnovers D̂k = Dk/D that gives a LV system without small parameters, where

Aik = D̂−1k
∂φi(S)

∂Sk
. (27)

Analogous results can be obtained for the MacArthur and contemporary models.

Let us consider, for example, the MacArthur model. In fact, we note that for

D >> 1 the resource vk is close to Sk, thus we can replace the coefficients

Dkvk by DkSk. In a similar way, we then obtain that this system (14)-(15)

reduces to the LV system (24), where the factorization (26) takes the place of

the parameters

Aik = eicik, Bkj = wkcjk, r̄i = ei(−µi +
n∑

k=1

wkcikSk). (28)
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So, we conclude that, in a sense, all models are asymptotically equivalent to

LV systems for large supply turnovers. If we take into account self-limitation

effects then

K = AB − Γ , Γ = diag(γ1, γ2, ..., γN ).

4. Biodiversity in models without migration

In this section, we present estimates of ecosystem biomass and biodiversity.

These estimates are based on the concept of permanency and the averaging

method. We need no precise information on the kind of dynamics, i.e., estimates

hold for chaotic, oscillating, or convergent dynamics. In fact, in Appendix 1 it

is shown that the dynamics of ecosystems can be complicated.

Recall the fundamental concept of permanency [20]. A system is permanent

(i.e., ecologically stable) if there exist positive constants δ and C such that

lim inf
t→+∞

ui(t) ≥ δ ∀i = 1, ..., N.

and

lim sup
t→+∞

ui(t) ≤ C ∀i = 1, ..., N.

This implies δ < ui(t) < C for all sufficiently large t. Let f(t) be a function

such that f(t) > 0 for all t and for some C one has f(t) < C for all t > 0. Let

us denote by

〈f〉T = T−1
∫ T

0

f(s)ds,

and

〈f〉 = lim inf
T→+∞

T−1
∫ T

0

f(s)ds.

Suppose that our ecosystem is permanent and the resources do not vanish:

vk(t) > δR > 0 ∀k, ∀t > 0 (29)

for some δR > 0. Note moreover that the equations (15) for vk imply a priori

estimate

vk(t) ≤ Sk ∀k, ∀t > 0. (30)
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We consider the MacArthur model with self-limitation coefficients γi > 0.

We divide the i-th equation (18) with di = 0 by ui and proceed averaging for

the resulting equations. Then the permanency condition implies that

〈(dui/dt)u−1i 〉T → 0 as T → +∞. Therefore, using (29) and (30) one obtains

from (18) that
n∑

k=1

wkcik〈vk〉 − µi = γi〈ui〉 ∀i. (31)

Repeating the same trick for v equations one has

Dk(SK − 〈vk〉) =
N∑

i=1

cik〈ui〉 ∀k. (32)

These averaging equations for averages of ui and vk lead to interesting con-

sequences. Let first γi = 0, i.e., there are no self-limitations. Then relations

(31) produce a linear algebraic system for means 〈vk〉:
n∑

k=1

wkcik〈vk〉 = µi ∀i. (33)

For generic wk, cik, this system has a solution only if N ≤ n, i.e., the species

number is not more than the resource number. This means that the competi-

tive exclusion principle works. However, many real ecosystems consist of many

species sharing a few resources. To avoid this paradox, we can take into account

migration (see below) or self-limitation. Let us consider the second case. Then

for γi > 0 eqs. (31) and (32) lead to the following system of nonlinear equations

for averaged resources 〈vk〉 ∈ (0, Sk):

Dk(SK − 〈vk〉) =

N∑

i=1

cikγ
−1
i

( n∑

j=1

wjcij〈vj〉 − µi
)
+
, (34)

where z+ = max{0, z}.
Similar equations can be obtained for the resource competition model. For

large Dk, one has

Dk(SK − 〈vk〉) =
N∑

i=1

cikγ
−1
i

(
φi(S)− µi

)
+
. (35)
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Systems (34) and (35) allow us to estimate biodiversity Bd. For (34) this

number, Bd equals the number Ni of indices i such that

n∑

j=1

wjcij〈vj〉 > µi,

and in the case (35) the quantity Ni is the number of indices i such that

φi(S) > µi. (36)

5. Migration and biodiversity

The averaging method and results of the previous section allow us to esti-

mate the effects of migration (diffusion) species on biodiversity. Consider i-th

equation (4) under conditions that the system (4), (5) is permanently uniform

in space, i.e. there exist positive constants δ and C such that

lim inf
t→+∞

ui(x, t) ≥ δ ∀i = 1, ..., N ∀x ∈ Ω,

and

lim sup
t→+∞

ui(x, t) ≤ C ∀i = 1, ..., N, ∀x ∈ Ω.

Let us divide the both sides of this equation on ui and integrate over all

x ∈ Ω and t ∈ (0, T ). The averages over x and t we denote by

〈〈f〉〉T = |Ω|−1T−1
∫ T

0

(∫

Ω

f(x, t)dx
)
dt,

and let us set

〈〈f〉〉 = lim inf
T→∞

〈〈f〉〉T .

Then we obtain

di〈〈∆uiu−1i 〉〉+ 〈〈(φi(v)− γiui)〉〉 − µi = 0. (37)

Let us consider the first term. Using the boundary conditions (12) we observe

that ∫

Ω

∆ui(x, t)u
−1
i dx =

∫

Ω

∇ui(x, t)2u−2i dx.

12

                  



Therefore, (37) is equivalent to

di〈〈
(
∇uiu−1i

)2〉〉+ 〈〈(φi(v)− γiui)〉〉 − µi = 0. (38)

For large Dk we can replace φ(v) with φ(S). The first term admits the

following rough estimate by a scale analysis. Let us consider, say, an ecosystem

where ui(x, y) depends on latitude y, which changes from L0 to L1. Then

the average of (∇ui/ui)2 can be roughly estimated as (L1 − L0)−2 and thus

di(∇ui/ui)2 can be evaluated as a time needed for the species migration across

the entire ecosystem (along the latitude direction). So, we obtain that when we

take into account the migration effects, the main eq. (35) should be modified

as follows:

Dk(SK − 〈〈vk〉〉) =

N∑

i=1

cikγ
−1
i

(
〈〈φi(S)〉〉+ τi − µi

)
+
, (39)

where the correction τi is equal to

τi = di〈〈
(
∇uiu−1i

)2〉〉.

The quantity τi can be interpreted as a migration rate of the species across the

entire ecosystem. We observe that for systems with self-limitation the migration

always increases biodiversity and this effect can be described by an additional

term in the growth function.

6. How climate affects ecosystem boundaries

In this section, we use the results of previous sections and the niche theory

approach. Using eqs. (39) we can describe how climate affects biodiversity and

rate tipping point effects. The main idea can be outlined as follows. We consider

two modes of interaction. If climate changes at the same rate as the adaptation

of species, or more slowly, then the movement of biome boundaries is rather

slow. If the climate (for example, the average annual temperature) changes too

quickly, then even a large enough biome can disappear for several million years.

Thus, one can formulate a hypothesis that biosphere-climate interaction can

lead to an R-tipping point.
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To simplify the statement, let us consider a simple model, where the main

resource S depends on is the temperature Ta averaged over a year and over the

ecosystem, but in principle we can take into account precipitation, light, nutri-

ents, and others. Note that, temperature is usually viewed as an environmental

factor rather than a resource. We can easily extend our basic model to include

such a parameter, which is important for defining an ecological niche. In addi-

tion, in some works, temperature is considered as a resource (see, for example,

the work [26]).

We set, to simplify, S = S1 = Ta. We model the growth function by a

Gaussian approximation

φi(S) = ai exp
(
− (Ta − Topt,i)2/2σ2

i

)
, (40)

where ai, σi > 0 are parameters.

This growth function corresponds to a species for which the optimal temper-

ature equals Topt,i. Suppose that parameters Topt,i are distributed according to

a probabilistic density function (pdf), for example, a Gaussian N(ET , σT ) one

with parameters ET , σT or a log-normal density. Then Eq. (36) reduces to

exp
(
− (Ta − Topt,i)2/2σ2

i

)
> ri, (41)

where ri = c−1i µiai. By adjusting parameters Topt,i, ri, ET , σT we can obtain a

complex distribution of biodiversity in space. In the next section, we use the

obtained results to analyze paleodata of the plant biomes.

6.1. Slow movement of species habitat boundaries under climate variations.

General relations

Let us consider the ecosystem boundary motion under a climate impact.

The main idea to define the ecosystem boundary is as follows. Consider, say, a

plant ecosystem (for example, forest or tundra). In these ecosystems we have

different sets of species. Let us consider a species growing in tundra, its local

growth function at the point (x, y), where x is the longitude and y is the latitude,
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is defined by the expression

Φi(x, y, Topt,i) = ai exp
(
− (Ta(x, y, t)− Topt,i)2/2σ2

i

)
. (42)

One can expect what are the most favorable conditions for species survival

available in the species habitat center whereas at the habitat edge the growth

function vanishes.

Let us define optimal Topt,i that gives the maximal species abundance. Using

results of Sections 4 and 5 we obtain that these optimal values Topt,i are defined

by the relation

∫ ∫

Ωi

Φi(x, y, Topt,i)dxdy = Ri(Topt,i) = max . (43)

Then one has
∂Ri(Topt,i)

∂Topt,i
= 0. (44)

We insert (42) into the last equations that gives finally

〈Ta(x, y, t)〉Ωi = Topt,i(t), (45)

where we use the following notation for averages:

〈f(x, y)〉Ωi
=
(∫ ∫

Ωi

Φi(x, y, Topt,i)fdxdy
)(∫ ∫

Ωi

Φi(x, y, Topt,i)dxdy
)−1

.

The relation (45) defines the center of the Hutchinson box (see [27]). If an

interval of evolution goes on for sufficiently long enough and the dependency

Ta(x, y, t) on time t is slow, one could expect that almost all the species in the

ecosystem have growth functions with optimal parameters defined by (45). We

will see below that this conclusion is consistent with certain paleodata.

One can think that the boundary is located at the points (x, y) where

Φi(x, y) = ri. Then we obtain the following equation for the habitat bound-

ary:

Ta(x, y, t)− 〈Ta〉Ωi
= bi, (46)

where bi are constants which can be found by empiric data. If we suppose

that only the temperature plays a role in the system, and there is no species
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adaptation, we obtain the simplest equation

Ta(x, y, t) = b̃i, (47)

i.e. the habitat boundaries coincide with isotherms. This result permits us to

check a hypothesis that cooling or warming are the main factors determining

the evolution of the species habitats.

Note that there are two different cases: (F), when we have a fast climate

variation with respect to species adaptation rate and the case (S) corresponds

to a slow climate change. In the case F the constants b̃i do not change because

the species have no time to adapt, and then the motions of habitat boundaries

go with the same speed that the isotherm moves. In the second case, the speed

of habitat boundary motion may be less than the isotherm speed.

6.2. Fast and slow climate changes: a comparison

First, we consider an approximation of the temperature profile on the lati-

tude y.

6.2.1. Temperature profile

We follow the manuscript [15] (see Chapter 5 in there). By linearization

of the term with T 4, we can reduce eq. (2) to a linear equation. This can be

resolved by the Legendre polynomials that give an approximation

T (y) ≈ T0 + T1 sin2(y), (48)

where T0 > 0 and T1 are constants. When climate changes these constants very

slowly evolve. We assume that they depend on the slow time τ . Further, we

consider a more general approximation

T (y, τ) = T0 + ατ + T1ψ(y), (49)

where α > 0 corresponds to a globally uniform warming and α < 0 describes a

globally uniform cooling. In the coming subsection we apply the relation (49)

to compare the cases F and S.
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6.2.2. Rapid climate variations

Suppose the species area occupies the domain, where the latitude y ranges

in the interval (y−(τ), y+(τ)) and Ta depends on y, t only: Ta = Ta(y, t). Then

for the right habitat boundary y+(τ) one has

∂Ta(y+, t)

∂t
+ Vb

∂Ta(y+, t)

∂y
= 0, (50)

where Vb = dy+/dτ is the velocity of the boundary. Using (49) we see that eq.

(50) reduces to

Vb = α
(
T1ψ

′(y+)
)−1

, (51)

where ψ′(y) = dψ
dy . This quantity may not be small for a small habitat size

L = y+ − y−. From the last equation we obtain a rough estimate for the biome

boundary shift ∆y under the temperature change:

∆y ≈ const∆Tclim∆T−1biome, (52)

where ∆Tclim is a change of temperature under the climate variation and the

constant const ≈ 2, ∆Tbiome is a change of the local temperature along the

latitude within the entire biome (from the biome center to boundaries).

6.2.3. Slow climate variations

Let us consider the case S, where the analysis is more sophisticated. Then

instead of eq. (47) we have

Ta(y, τ)− 〈Ta(τ)〉i = b̄i, (53)

where according to (45)

〈Ta(τ)〉i =
(∫ y+

y−

Ta(y, τ)Φi(y, τ)dy
)(∫ y+

y−

Φi(y, τ)dy
)−1

. (54)

In the general case for Vb one obtains a complicated equation, but if we consider

an approximation (49) and suppose that σi is large enough, then the boundary

shift velocity Vb does not depend on the climate change rate α:

Vb = O(σ−1i ). (55)

So, one can expect that in the case S the biome is stable under climate change

impact and biodiversity increases the stability.
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7. Handling real data

In this section, we use real data to apply the approach stated in previous

subsections. As an example, we use the vegetation biomes of Europe from

16 4 million years ago (Neogene period). This time interval is characterised

by warmer-than-present climate conditions, but with a general cooling trend

towards present day [28, 29]. Against this background global cooling trend,

the type of vegetation biome across the majority of Europe remains relatively

unchanged with a dominance of the warm-temperate mixed forest [29–33]. Pro-

gressive loss of species over this time interval is known, especially amongst plants

requiring permanently humid and warm conditions [34].

Paleo-biome data was reconstructed from paleobotanical sites from across

Europe covering the Langhian Zanclean stages (16 3.6 million years ago).

These come from [29–32] and references cited in these. Details of individual site

dating, fossil content and biome reconstruction techniques are presented in the

aforementioned manuscripts. Reconstructions of mean annual temperature and

mean annual precipitation used nearing living relative techniques. These are

based upon the simple overlapping range concept applied by the widely used

Co-existence Approach [35], although some use probability density functions

[36]. The nearest living relative techniques use the climate tolerance of a fossil

plants extant relatives to reconstruct past climates. The overlapping envelope

of all fossil taxas climate tolerance is then taken as the reconstruction for a

paleobotanical assemblage [35, 36].

In Section 6, we obtained a method to compute the complex distribution of

biodiversity in space. Here, we use the obtained data to find the biodiversity

distribution of warm-temperate mixed forests (wtf), which is shown in Fig. 1.

7.1. Likelihood approach

Let us consider a set of species with random parameters Ti distributed ac-

cording to a probability density function (pdf) ρ(T ). For example, we can

take the normal ρ, where Ti are distributed according to Norm(ET, sT ), where
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Figure 1: The latitudinal distribution of the wtf biome within the period 16− 10 mya

(A) and 104 mya (B). In the Neogene period, this wtf biome occupied a broad region

across Europe and Asia with minimal and maximal latitudes 33◦ and 56◦, respectively.

We decompose this interval [33◦, 56◦] of the latitudes into 13 small subintervals. The

bars show the percentage of data points occupied by the wtf biome within each lati-

tudinal subinterval (x-axis).

Norm(a, s) denotes the normal law with the mean a and the standard deviation

s (another variant is log-normal distribution, where log Ti ∈ Norm(a, s)).

We define niche optimal parameters by the maximal likelihood principle [37]

(this standard procedure is outlined in Appendix 3).

7.2. Data analysis and comparison with the theory

The first result is that the theoretical relation (45), that defines the Hutchin-

son niche center, is confirmed by the likelihood estimate described above. It can

be illustrated by Fig. 2. The likelihood estimate gets worse when the normalized

value Topt is shifted far away from the origin 0.

Let us consider shifts of the warm temperate mixed forest (wtf) biome under

climate cooling within the period 16− 4 million years ago (mya). Palaeobotani-

cal data are difficult to obtain and quite scarce. We have only about 200 points

in Eurasia where we have data on average annual temperature and precipita-

tion. Accordingly, the estimates of the dynamics of biome boundaries are rather

rough.

Our analysis proceeds as follows: we divide the entire time interval into two
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equal intervals (i) and (ii). We select several points corresponding to time points

from the first interval with the highest latitudes (say, 10 points) and find the

average latitude. We consider the average of these latitudes as the boundary

of the biome in the first time interval. We do the same for the second time

interval. Calculating the difference between these averages, and dividing that

difference by the time lag between the points, we get a rough estimate of the

speed of movement of the biome boundaries.

As mentioned at beginning of Section 7, paleo-biome data are taken from

[29–32] see also references cited in these works. We split that time period 16−4

mya into two intervals: (i) 16 − 10 mya and (ii) 10 − 4 mya. This division

roughly corresponds to the major shift in cooling associated with a decrease in

marine tectonic activity [38]. Within period (i), the mean annual temperature

was 16.18◦C, the maximal temperature across all biomes in Europe was 19.5◦C

and the minimal temperature was 9.5◦C. For mean annual precipitation, one has

1135 mm, 1434 mm, and 659 mm, respectively. Within the period (ii) one has

mean annual temperatures of 15.8◦C, 24.2◦C, and 9.5◦C and for mean annual

precipitation: 1080 mm, 1630 mm, and 400 mm. We see that there is a light

cooling but deviations in temperature and precipitation across the biomes are

essentially higher for the second period (ii). The shifts ∆yt and ∆y defined by

10 edge biome points at the northern and southern boundaries are −2 and −6

degrees of latitude, respectively, i.e., the south boundary is shifted further. The

theoretical values computed by relation (52) is −1.6.

The main conclusions of these computations are as follows:

i. slow climate variations are not so dangerous for the biosphere;

ii. the biodiversity and heterogeneity help survival because small areas are

warmed up more evenly.

So, biosphere heterogeneity can help mitigate uniform temperature warm-

ing. However, too strong heterogeneity makes ecosystems unstable against fast

periodical and random fluctuations [39]. In the next section, we show describe

a possible mechanism for heterogeneity formation, which can be emerged via a

fragmentation process. This mechanism is a result of the existence of competing
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Figure 2: This plot shows the dependence of the likelihood L on the parameters Topt.

The real values of T are normalized in such a way that the normalized range T coincides

with interval [−1, 1] (it can be done by the linear transformation, Tnorm = k(T − T̄ )

with k = ∆T−1, ∆T = (Tmax − Tmin)/2 and T̄ = (Tmax + Tmin)/2, where Tmax and

Tmin are maximal and minimal values of T , respectively). Then, in these normalized

coordinates, the relation (45) means that the optimal values Topt are centered at 0.

We see that the most probable values obtained by experimental data via the maximum

likelihood estimate are close to zero that is consistent with estimate (45).
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ecodynamical attractors.

8. A dynamical mechanism of biosphere fragmentation.

In the previous section, a mechanism of ecosystem extension (shrinking)

under a climate effect was investigated. This mechanism describes slow non-

catastrophic changes that reduce the evolution of biome boundaries. There is

another mechanism connected with bifurcations producing fast changes. This

second mechanism leads to a relatively fast biome formation.

We use an asymptotical theory developed in [40] assuming that migration

effects are weak: di << 1. This approach works for all reaction-diffusion sys-

tems with small diffusion coefficients if the global attractor of the corresponding

shorted system (without diffusion terms) consists of a few local attractors, i.e.,

there is a multistationarity. We have seen above that multistationarity is pos-

sible even for a single resource (see remark (iii) to Theorem 9.1).

Let us consider the system (24). Let first di = 0, i.e., diffusion is absent.

Suppose that this shortened LV system has local attractors Al, l = 1, ...,mA,

mA > 1. Then one expects that there exists separatrice sets Slk that separate

attraction basins Bl of attractors Al. We suppose that these sets (which are

attractor basin boundaries) are unions of N−1 dimensional submanifolds in the

u-phase space RN (but here it is necessary to note that in the case of competing

chaotic attractors there is a possibility that our assumption is violated, see

[41, 42]).

Now we consider the map Ū : x → ū(x) defined on the domain Ω by the

initial data for system (24). Let us define the set Ωlk as preimages of Slk under

the map Ū :

Ωlk = {x ∈ Ω : ū(x) ∈ Slk}.

Basic theorems of differential topology assert (see [43]) that if this map is, in a

sense, generic, and Slk is a manifold having codimension 1 in RN then the set

Ωlk also is a manifold of codimension 1 in the domain Ω. This means that for

dimΩ = 1 that set is a point and for dimΩ = 2 it is a curve separating two

subdomains Ωk and Ωl, which are preimages of attraction basins for competing
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local attractors Ak and Al, respectively. As a simple example, we can consider

the well studied scalar Ginzburg-Landau equation [44]

ut = d∆u+ u− u3,

with d = ε2 << 1. Then local attractors are A± = {±1} and the saddle set

is S+,− = {0}. Correspondingly, the points with initial data ū(x) > 0 go to

A+ and the points such that ū(x) < 0 tends to A− while the preimage Ω+,−

of the saddle set S+,− under the map x → ū(x) is a set in the x-space. In

general, according to the celebrated Whitney theorem, the set Ω+,− may be

very complex, but for ”generic” ū(x) this set is locally a smooth manifold of

codimension 1, i.e. for d = 1 it is a union of points and for d = 2 this set is a

union of curves. These curves can slowly move and change their forms [44].

Then we obtain that for large t u(x, t) approaches to Al if the initial data

ū(x) ∈ Bl and u(x, t) approaches to Ak if ū(x) ∈ Bk. Therefore, the sets

Ωlk can be interpreted as boundaries between different ecosystems, which can

emerge within a short time period τb, which, when species migration is weak

and coefficients di are small, can be estimated as follows:

τb = max
i
O(ln di)) (56)

This logarithmic estimate is obtained in [45], see also Appendix 2. The dy-

namics within ecosystems can be quite different. This mechanism of biosphere

fragmentation into biomes is illustrated by Fig 3.

9. Conclusions

In this paper, we find a possibility of chaos and oscillations as a result of

global climate warming. We study biome formation and fragmentation. We

conclude that small biomes are disadvantageous because they are too unstable

under fluctuations. For the ecosystems, we find that the rate of reversal occurs

due to climate change.

In summary, the main results are:

1. It is shown that three main models of ecosystems where species compete
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Figure 3: The model presented is capable of creating a complicated ecological pattern

consisting of different biomes with different dynamics. The domains shown on this

image are located in the geographical plane (the horizontal axis x is longitude, and

the vertical axis y is latitude). These domains are preimages of the corresponding

domains in the phase space under the map (x, y) → ū(x, y), which defines the initial

data for species concentrations. For example, if ecological dynamics generates two

local attractors, for example, one is a rest point and another is a limit cycle, then

the formation of two neighboring biomes is possible, where we observe stationary and

periodic dynamics, respectively.
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for a few resources are asymptotically equivalent to a special multispecies

Lotka-Volterra system.

2. The estimates of biodiversity are obtained for systems with migration

and without migrations; they show that migration increases the growth

function by a term which is proportional to τ−1m , where τm is a time needed

for a species to migrate through the whole species habitat.

3. The ecosystem multistationarity can lead to a fast biome formation and

heterogeneity under climate variations when migration effects are weak.

4. We derive simple equations describing motions of the boundaries of the

climate habitat; it is shown that there exist two regimes, slow and fast

climate variations. For heterogeneous ecosystems, slow climate variations

(relatively uniform over habitats) can weakly change species habitats. On

the other hand, too big a heterogeneity can cause instability under random

and periodic climate oscillations [39] so one can envision that there is an

optimal level of biosphere heterogeneity.

Finally, we can formulate a hypothesis that climate and the biosphere evolved

together in a convergent manner: the biosphere has become increasingly diver-

sified and spatially heterogeneous due to climate change, which increased the

stability of both climate and the biosphere.

Understanding biome fragmentation is important in the research of paleo-

data. To further complicate our understanding, the majority of terrestrial fossil

sites have a high degree of uncertainty in their dating resolution (e.g. [46]).

Attempts have been made to get around this via likely biomes in warm-wet and

cold-arid orbital phases [31] and through high-resolution studies [47]. These are

not feasible for all paleobotanical sites and therefore restrict our geographical

understanding of the response of biomes to climate change. We expect that the

proposed approach can help to reconstruct paleobiomes.
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Appendix 1. Dynamics of reduced LV systems without migration

In Section 3, it is shown that all the models can be reduced to a special

Lotka-Volterra (LV) system. This system has interesting properties.

9.1. Lotka-Volterra system with many resources

We remove diffusion and self-limitation terms, and ignore the dependence

on slow variables X, τ . Then LV system (24) takes the form

dui
dt

= ui(r̄i −
N∑

j=1

Kijuj), (57)

in which we have N species with populations ui for i = 1 to N .

We consider this system in the positive cone RN> = {u = (u1, ..., uN ) : ui >

0}. Notice that this cone is invariant under dynamics (57). Below we assume

that initial data for (57) always lie in this cone:

u(0) = ū ∈ RN> . (58)

We also assume

r̄i(S) =

n∑

k=1

µk(S)Aik(S) (59)

for certain µk(S), k = 1, . . . , n. This condition is necessary to provide coexis-

tence of many species. For a biological interpretation of this assumption see [9].

Note that this condition holds if φi are linear functions of Sk.

26

                  



Under the above assumptions, eqs. (57) can be represented as a model with

n resources:
dui
dt

= uiYi(u), i = 1, ..., N, (60)

where

Yi(u) =

n∑

k=1

AikRk(u), Rk(u) = µk −
N∑

j=1

Bkjuj . (61)

This means that all the growth coefficients Si depend on resources Rj(u) that

are linear functions of u. The coupling with climate energy balance models can

go via dependence of A and B on temperature.

9.2. Dynamical complexity

In [9] the following Theorem is proved:

Theorem 9.1. Let F (l), l = 1, ..., p, be C1-vector fields on Bn directed inward

on ∂Bn and having compact invariant hyperbolic sets I(l). Then there exist a

positive integer N , µ ∈ Rn, matrices A,B of sizes N ×n and n×N respectively

and C(l) ∈ RN> such that system (60) has compact invariant sets K(C(l)) ⊂
Qn(C(l)), which are homeomorphic to I(l). These sets are hyperbolic for the

flow StLV |K(C(l)) and, moreover, the flows StLV |K(C(l)) and St
F (l) |I(l) are orbitally

topologically equivalent.

In other words, if a finite family of hyperbolic dynamics is given, a sufficiently

large Lotka-Volterra model with appropriate parameters can generate this family

by a variation of initial data. These hyperbolic dynamics may be chaotic.

Remarks.

(i) For C sufficiently close to C(l) the manifold Qn(C) also contains a com-

pact hyperbolic invariant set K(C) homeomorphic to I(l).
(ii) Since the matrix D̄ can be chosen uniformly bounded, the entries of

the matrices A,B (and hence the coefficients Kij) are also uniformly bounded

with respect to N . From the biological point of view this means that one can

generate complicated dynamics within a large population with restricted species

interactions.
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(iii) Even for a single resource, n = 1, there is possible a multistationarity.

Dynamics defined by this equation produces either non-bounded trajectories or

convergent ones, when the trajectory tends to an equilibrium. Multistationarity,

i.e., the coexistence of many stable equilibria can occur if coefficients al = Al1

have different signs.

Note that chaos and oscillations can emerge only for models (4), (5) with

a complicated non-monotone dependence of the growth functions on resource

v and if the number of resources > 2. For the MacArthur model, the chaotic

or periodic dynamics are impossible because this model is gradient-like [25].

Moreover, the chaos and time oscillations vanish under strong self-limitation.

(iv) The main idea of the proof of Theorem 9.1 is to use the Volterra variables

ql(t) =

∫ t

0

( N∑

j=1

Bljuj(s)− µl
)
ds,

that gives

dql
dt

= −µl +
N∑

j=1

Bljuj(0) exp(−
n∑

k=1

Ajkqk). (62)

The sums of exponents in the right hand side can approximate any smooth func-

tions in compact domain and moreover by (62) we can reproduce all polynomial

systems.

Let us consider an example of how to realize a prescribed polynomial dy-

namics by an LV system. The case of the Lorenz system is considered in [9]

where N = 11 species are used to represent the Lorenz equations. We consider

another fundamental system

dx1
dt

= x2,
dx2
dt

= −x1 + x31. (63)

We consider this system in the domains DC = {x : |x1| < C1, |x2| < C2},
where C1, C2 > 0 are constants. This system describes a nonlinear oscilla-

tor, so, we observe here periodical oscillations and also homoclinic solutions

x1 = ± tanh
(
α(t− t0)

)
, where α = 1/

√
2, which correspond to oscillations with

infinite period. Existence of such homoclinic solutions shows that small per-

turbations of system (63) can exhibit a chaotic behaviour (heteroclinic chaos)
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[48]. The most natural way is to make a variable change in eqs. (63) by

xi = exp(biqi)−Ci that immediately leads to a vector field of the form (62). In

fact, then we obtain that eqs. (63) take the form

b1
dq1
dt

= exp(b2q2 − b1q1)− C2, (64)

b2
dq2
dt

= (C3
1 − C1) exp(−b2q2) + (1− 3C2

1 ) exp(b1q2 − b2q2)+

+3C1 exp(2b1q2 − b2q2)− exp(3b1q2 − b2q2).

(65)

It is clear that we can adjust such N , Ail, µl and Blj that system (63) with

n = 2 coincides with (64) and (65). The minimal possible species number is

N = 5, and entries Ajl take values −b2,−b1, b2, 2b1, 3b1.

Appendix 2.

Following [45], let us outline the derivation of the estimate (56). For sim-

plicity let us consider a single reaction diffusion equation

ut = d∆u+ f(u), u(x, 0) = ū(x) (66)

where x ∈ Ω, d << 1, ū is a smooth function and we set the zero Neumann

condition at the boundary of Ω. we assume that the pure reaction dynamics,

defined by the Cauchy problem for v = v(x, t) (where space variable x is a

parameter)

vt = f(v), v(x, 0) = ū(x) (67)

generates different competing local attractors, say, rest points veq = u±. We

note that if we have at least two local attractors for (67) and initial data ū(x)

lie in different attraction basins for different value x, then |vx(x, t)| increases as

exp(a0t), where a0 > 0 is a constant corresponding to the maximal positive Lya-

punov exponent for a saddle set S corresponding to two competing attractors

(an escape rate). Therefore, the term d∆v grows as d exp(2a0t). This term be-

comes essential for times t of the order τb ∝ ln d. In fact, for t > τb we must take
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into account in (66) not only the reaction part but also the diffusion part. The

quantity τb is a characteristic time needed to create a spatially heterogeneous

structure or a traveling wave connecting states v = u+ and v = u−.

To justify these estimates, we put u = v + ũ in (66) and by (66), (67) one

obtains the following estimate for a unknown correction ũ:

U(t) = sup
x∈Ω
|ũ(x, t)| < dC|u0|C2(Ω) exp(at),

where C, a are positive constants depending on f [45]. From this last inequality

we see that the norm of perturbation U(t) remains small on the interval O(ln d).

Note that if there are no competing attractors for (67), then we can take

a = 0 and under some conditions we obtain uniform in t estimate for U(t).

Moreover, these arguments can be extended on the case of reaction-diffusion

systems [45].

Appendix 3. MLE

Given observed data the maximum likelihood estimation (MLE) finds the

parameters of an assumed probability distribution. To obtain those parameters

we maximize the likelihood function L so that, under our statistical model, the

observed data is most probable. Our list of parameters is P = {φc, ET, sT }.
We define the likelihood L(P) by

L(P) =
∏

(x,y)∈D
ψ(x, y,P). (68)

Here ψ(x, y) is the probability that a species located at (x, y) survives in the

Hutchinson box (niche) with the parameters P (see about the Hutchinson box

concept in [27]). For the points (x, y) belonging to warm temperate forest biome

this probability is

ψ(x, y,P) =

∫

H(x,y,P)

ρ(T )dT, (69)

where the Hutchinson box H(x, y) at the point (x, y) is defined by

H(x, y,P) = {T : |T − T (x, y)| < φc}. (70)

30

                  



For the points (x, y), which are not belong to warm temperate forest biome, this

probability is

ψ(x, y,P) = 1−
∫

H(x,y,P)

ρ(T )dT. (71)

Practically we can compute the integrals (69) and (71) by the Monte-Carlo

method sampling Ti by the pdf ρ.
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