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Neuro-symbolic learning for dealing with sparsity in
cultural heritage image archives: an empirical journey
Agnese Chiatti1, Enrico Daga1

1The Open University, Milton Keynes, United Kingdom

Abstract
Deep Learning (DL) methods have proved to be very successful for many image classification tasks. In
the SPICE project, we are researching on an intelligent system that classifies artworks to support several
tasks such as metadata curation and linking across image collections. However, applying DL methods
to real-world cultural heritage collections for the task of artwork subject classification is problematic.
Objects in this domain are characterised by different levels of heterogeneity: of media and techniques,
of categories, of time-periods, just to mention a few. This heterogeneity makes the related training
features sparsely distributed. In this paper, we report on an empirical investigation where we apply
neuro-symbolic, Deep Learning techniques to a paradigmatic case of cultural heritage archive: the Tate
Gallery collection open data. We pose the question of what type of feature engineering could help in
reducing the impact of data sparsity in this domain. Crucially, we explore how neuro-symbolic learning,
combining image features, textual metadata, and Knowledge Graph embeddings, could help in mitigating
the problems derived from data sparsity in cultural heritage image archives.

Keywords
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1. Introduction

Deep Learning (DL) methods have expedited the advancement on image classification tasks [1].
However, image classification through DL is still an open challenge in domains characterised
by a high variance, for example, of data samples and labels [2, 3]. The negative impact of noisy
labels, in particular, has been sufficiently acknowledged in the literature as one unavoidable
problem in many real-world settings [4].

In the SPICE project, we are researching on an intelligent system based on DL that classifies
artworks to support several tasks in the domain such as metadata curation or knowledge
linking and discovery across cultural heritage archives. Crucially, in this domain, datasets
are characterised by different types of heterogeneity - e.g., diversity of media and techniques,
and of time-periods. Due to this variance, training features are sparsely distributed across the
categories of interest.

In this paper, we explore the application of Deep Learning (DL) techniques to a paradigmatic
case of cultural heritage archive: the Tate Gallery collection open data [5]. We interrogate on
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(a) what type of data preparation strategies could be applicable to these data and on (b) how
neuro-symbolic learning, combining image features, textual metadata, and Knowledge Graph
(KG) embeddings, could help in mitigating the problem of data sparsity.

To answer these questions, we devise a layered set of experiments. First, we aim at evidencing
the negative impact of data sparsity on standard DL approaches and start by only considering
visual features. Secondly, we look into how metadata could help in partitioning the training
space and mitigating some effects of the sparsity of image features. Third, we incrementally
introduce new features from textual metadata and background knowledge, including Knowledge
Graph embeddings, and explore how they improve the classification performance.

The paper is structured as follows. After introducing the related work (Section 2), we provide
the background context of this research (Section 3). Concurrently, we characterise the problem
of data sparsity in artwork subject classification and present our research questions. In Section 4,
we illustrate the approach and system architecture, which is based on current state of the art
methods applied to this domain. Section 5 reports on the implementation of the experiments
and results. Findings from these experiments are instrumental in deriving the lessons learnt
and future directions of this work, as further discussed in Section 6.

2. Related work

Deep Learning (DL) is applied to a wide variety of problems in the context of cultural heritage
applications [2, 3]. The tasks can range from the identification of artworks from noisy Web
pictures (NoisyArt [6]), to the classification of artistic media [2], stylistic, and genre-specific
artwork traits [7]. In this work, we focus on the problem of learning subject classifications from
an heterogeneous cultural heritage archive. The problem of classifying artwork subjects is unique
in its own respects compared to the types of image classification tasks that are typically tackled
in the Cultural Heritage literature, which are thoroughly reviewed in [8]. The most relevant state
of the art approach which we have identified to model the case of artwork subject classification
is ContextNet [3], which focuses on learning a set of tasks such as Genre, Period, and School
from an homogeneous set of paintings. A limitation of this approach is that only attributes
in the target dataset are considered in the learning, disregarding other potential sources of
artistic knowledge. To harness this potential, Castellano and Vessio proposed an extension
of ContextNet, where properties gathered from Wikidata and DBpedia are used to construct
a dedicated ArtGraph [9]. Inspired by the work in [3, 9] we propose to reuse the knowledge
which has been previously distilled from DBpedia in the form of KG embeddings, through the
RDF2Vec model [10]. Differently from prior works, we intend to explore the integration of
off-the-shelf KG embeddings, as an alternative method to curating ad-hoc artistic Knowledge
Graphs.

Moreover, we propose to adopt different types of embeddings to qualify different artistic
features. Specifically, we test the integration of KG embeddings produced on the artist metadata
with a linguistic model (distilBERT [11]), as a feature preparation from artwork titles. Combining
different types of features and embeddings to leverage the strengths of the various approaches is
common to recent research in neuro-symbolic learning [12]. However, no work so far explored
the data sparsity problems that emerge when DL methods are applied to cultural heritage image



collections.

3. Background and research questions

In the SPICE project [13], a team of researchers and museum professionals are developing novel
methods for citizen participation and engagement, focused on the method of slow looking. This
approach is based on designing scripts made of a set of prompts or questions about selected
artworks [14]. Prompts are designed based on properties of the artworks that are factual (e.g.
abstract, landscape, people, objects) rather then contextual (e.g. genre, period, author). A
Deep Learning system should classify artworks according to a given subject list (e.g. abstract,
landscape, people, objects) and use these metadata to link images across collections, thus helping
curators in reusing scripts across similar artworks. However, cultural heritage collections are
characterised by a heterogeneity of images and subject metadata. This characteristic hinders
the successful application of state of the art DL approaches, which are typically developed on
homogeneous samples (e.g. only on paintings), and optimised for categories that are not related
to the actual content of the artwork (e.g. "Genre", "Century" [3].

The Tate Gallery archive is a paradigmatic case of cultural heritage image collection, charac-
terised by artworks with a significant heterogeneity of factual properties. The dataset provides
metadata and image urls of collection items summarised in two CSV files with general metadata
(artworks and artists), and detailed metadata distributed in approximately 100k JSON files1. The
collection includes artworks from more than three thousand artists spanning 142 genres over
a period of approximately 500 years. Metadata was manually annotated by expert curators,
including a taxonomy of more than 16 thousands distinct subjects, organised in 11 top-level
subjects covering key concepts relevant to the slow looking application scenario: abstraction,
architecture, nature, people, etc.. The Tate Gallery collection demonstrates dimensions of hetero-
geneity that are typical of cultural heritage image archives: • Image heterogeneity: images
represent artworks produced with different mediums and techniques • Sample heterogeneity:
the data distribution is very unbalanced • Semantic heterogeneity: subject annotations are
based on the content of the assets but are produced incrementally over a large time-span by an
unspecified number of annotators. This makes the labelled data incomplete, messy, and sparsely
distributed.

In this paper, we explore how to address data sparsity from different perspectives, that we
illustrate.

Tackling data sparsity by configuring the learning space. On the one hand, real-world
subject taxonomies are overly heterogeneous both semantically and in terms of class population.
This characteristic of real-world collections significantly complicates the learning of robust
classification models. For example, learning to differentiate a collie from a spitz, is, in principle,
more difficult than learning to tell dogs and cats apart, especially in the lack of sufficient
examples representing different dog breeds. On the other hand, the few high-level subjects
that have sufficient population (e.g., macro-classes such as people, nature, society, etc.), are also

1The following summaries are produced with SPARQL Anything [15] on the original data sources from the Tate
Gallery Collection open data project on GitHub. Data and queries can be reviewed and reproduced [16]



too generic, and, therefore, difficult to abstract from heterogeneous training samples. Thanks
to the fact that subjects are organised taxonomically, we entertain the idea that we could use
such sparsity at our advantage. Specifically, we make the hypothesis that learning low-level
subjects can help the classification of high level subjects. That is, we ask: [RQ1] Can we use the
knowledge of the subject taxonomy structure to help with the categorization?

Tackling data sparsity by partitioning data by the means of key features. We observe
how metadata could provide a useful input in understanding the reasons of the visual hetero-
geneity of artwork collections. Specifically, we partition the learning task dividing the data by
technique/medium used. For example, we compare the task of learning subjects on artworks of
any medium with the results obtained when subjects are learned only on photography. Thus,
we pose the following research question: [RQ2] Does splitting the set by artwork medium (e.g.,
photography, graphite, sculpture,...) help?

Tackling data sparsity with neuro-symbolic learning. Finally, we explore the impact
of different combinations of features on the learning performance, including both visual and
non-visual features, such as the textual embeddings from the artwork title and the knowledge
graph embedding from the artist entity on DBpedia. In other words: [RQ3] Does combining text
embeddings, KG embeddings, and visual embeddings improve the categorization performance?

4. Methodology

To devise an architecture for subject classification from artwork images, we take as a reference
ContextNet [3], a state of the art architecture for neuro-symbolic learning on artwork classifica-
tion tasks. Namely, we treat the different artwork subjects - e.g., nature, people, architecture, as
tasks to learn jointly, in a Multi Task Learning (MTL) fashion. To generate visual embeddings
from the input images, we maintain the same Convolutional Neural Network (CNN) backbone
as ContextNet, i.e., a ResNet50 [17] from which the last fully-connected layer is removed.

However, differently from [3], our aim is to classify artwork subjects which can express
a variety of factual elements about the artwork - e.g, physical, social, or abstract concepts.
Therefore, we introduce a few modifications to the ContextNet framework, to accommodate
the task of subject artwork classification. The resulting pipeline is illustrated in Figure 1.

First, different annotations which concern the same task (or subject) can co-exist in an
artwork. For instance, J.M.W. Turner’s “Nant Peris, looking towards Snowdon" in Figure 1
depicts a mountain peak and a river view, both overlooked by a cloudy sky. These elements
all fall under the nature subject. Thus, we configure the Network for multi-label classification.
Specifically, in the last layer of the Network, Softmax activation is replaced by a Sigmoid
activation. Indeed, while Softmax activations, which are typically interpreted as classification
probabilities, are distributed across neurons, sigmoid outputs are computed independently on
each class node. As a result, Sigmoids can predict more than one class with high probability.
Similarly, we rely on a binary cross-entropy loss function, so that multiple subject predictions
can be generated for an artwork.
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Figure 1: The proposed architecture for artist subject classification, where visual embeddings are
combined with textual and KG embeddings, to jointly train the Network on multiple tasks - e.g.,
recognising people, places, nature, and so forth.

In ContextNet, the visual embeddings are projected to the vector representation of the
artwork context in the broader painting set [3]. This representation is derived from a KG where
paintings are grouped by author, and also annotated with attributes such as timeframe and
medium. In the pipeline of Figure 1, we adopt a similar approach to ContextNet and infuse
the Network with background knowledge through an encoder module, optimised through a
smooth ℓ1 loss function. However, we test a different combination of embeddings to represent
non-visual artwork features. In particular, we embed the title and artist metadata in the visual
representation of the artwork. For the artwork title, we capitalise on a pre-trained linguistic
model which has been shown to provide compact textual embeddings: DistilBERT [11]. To
model the authorship information, instead, we apply the off-the-shelf RDF2Vec model [10] to
the DBpedia entities which represent each artist. We can further concatenate the linguistic
and KG embeddings, to derive a unified representation for the injected background features.
Nonetheless, because the individual features are maintained as separate modules ( Figure 1), we
can also test the effects of incrementally adding new features to the learning process.

Ultimately, different components contribute to the overall training loss of the Network.
We use the same notation as [3] to characterise these contributing factors through a set of
parameters. First, the visual classification is influenced by the different learning tasks. Formally,
the contribution of the 𝑡-th task to the binary crossentropy loss (ℓ𝑐) is weighted with respect to a
𝜆𝑡 so that

∑︀𝑇
𝑡=1 𝜆𝑡 = 1. Similarly, because the classification and encoder modules are optimised

through different loss functions, the relative contribution of each function to the overall loss
is weighted through different parameters. Let these weights be 𝜆𝑐 for the classifier loss, and
𝜆𝑒, i.e., the complement to 1 of 𝜆𝑐, for the encoder loss. By proxy, these two parameters allow
us to leverage the degree to which the visual and non-visual components of the embeddings
influence the training.



Table 1
Statistics of the top-level subjects in the Tate collection.

Top subject Artworks Subjects
Nature 36’477 24
Architecture 29’787 19
Places 23’842 12
People 20’798 14
Society 13’991 6
Objects 12’381 10
Abstraction 8’503 8
Emotions, Concepts, Ideas 8’248 4
Work and Occupations 5’133 3
Symbols and Personifications 5’022 3
Leisure and Pastimes 3’129 2

5. Experiments

5.1. Data preparation

In our experiments, we focus on the Tate Gallery Open Data as our reference cultural heritage
archive. The published data includes two summaries CSVs and more then 10k JSON files with
detailed metadata on artworks and artists. The SPARQL Anything framework [15] provides a
means to filter and integrate the required features from the broader CSVs and JSON documents
provided in this collection [16]. In addition to retrieving the JPEG image files that are available
from the Tate website, we extracted the following data fields: (i) the unique artwork identifier,
(ii) the title, (iii) the subject annotations, as well as (iv) the medium, or material, of each artwork.
We also queried DBpedia to retrieve the entities, marked through a Uniform Resource Identifier
(URI), which match a certain artist name. Because a string can match multiple DBpedia entities
and to account for homonyms, we manually validated the collected artist entities.

We start by considering the 11 top-level concepts that provide abundant training examples
(i.e., at least 3’000 examples per class), for the purpose of supervised Deep Learning. These are
listed in Table 1.

Moreover, we want to reduce the sparsity of the example distribution across the sub-categories
of a subject. With the term sub-category, we refer to the children of a subject, in the Tate
taxonomy - e.g., “female figure" is a sub-category of “people". Thus, we focus on the six subjects
which provide the highest number of sub-concepts. As highlighted in blue in Table 1, these are:
nature, architecture, places, people, objects, and abstraction.

With this premise, we further prune the space of sub-concepts with a two-fold objective. First,
because samples should ideally overlap across the top-level subjects that are learned jointly, we
select sub-categories which are worth at least 700 examples. Second, for each subject, we want
to select non-overlapping sub-categories which identify distinct concept groups. Thus, if two
children categories of the same node are selected at the previous step, only the more specific
one is retained. For instance, we prioritise annotations of male and female portraits over the
more generic portrait label.



After retaining only records which are annotated with respect to the target categories and
sub-categories, we are left with 54’494 records2, 99.6% of which (54’293 records) have a non-
corrupted image file associated.

Ultimately, we want to ensure that examples are balanced across categories when forming our
training, validation, and test splits. Therefore, we resort to the multi-label stratified sampling
strategy proposed in [18, 19], which is conveniently provided with the scikit-multilearn package3.
At this stage, we apply a 80/10/10 ratio to split the data into training, validation, and test sets.

Additionally, because we are also interested in grouping artworks by artistic medium (RQ2),
we prepared a dedicated subset for each medium. The metadata which describe the different
artistic media are sparsely annotated. Thus, we ought to apply a series of basic Natural Language
Processing (NLP) steps to converge towards coherent groups. Specifically, we reduced the raw
text to lowercase, and derived a set of tokens which excludes the standard English stopwords,
and which is free from alphanumeric characters and spurious white spaces. After deriving word
stems through the Snowball method, we also filtered out any duplicated tokens - e.g., “paper
graphite, on paper".

Thanks to the availability of a reference glossary of art terms on the Tate website4, we could
derive a set of keywords to canonicalise heterogeneous medium annotations. Specifically, we
merged semantically-related keywords (e.g., ink and pen) to gather a sufficient number of
data points per medium. In sum, we converged towards ten subsets that are representative of
different materials. These are: painting, sculpture, graphite, etching, screenprint, watercolour &
gouache, ink & pen, lithograph, engraving & intaglio, and photography.

5.2. Experimental setup

To address our main research questions (Section 3), we configure three distinct experiments.
Across all experiments, the performance on each task (i.e., subject, or macro-class) is evaluated
in binary terms. Specifically, in addition to the overall classification accuracy on a task, we
also track the Precision (P), Recall (R), and F1 achieved on the positive examples of a task. For
instance, the recognition of any individuals depicted in an artwork increases the P, R, and
F1 on the people task. As such, these metrics are computed (i) irrespective of the system’s
ability to classify negative examples (e.g., the absence of people from an artwork), and (ii) at the
macro-class level (e.g., on the task of classifying people as opposed to discriminating children
from adults).

ExperimentA. The objective of the first experiment is to assess whether or not configuring the
learning space on the basis of the Tate subject taxonomy improves the classification performance
(RQ1). Thus, we start by considering a simplified version of the architecture presented in Section
4, where only the visual embeddings extracted from a CNN are considered. In this context,
we compare two training configurations. The first configuration only relies on the macro-
categories which represent each task, whereas the second configuration considers finer-grained

2This number is lower than the sum of the figures in Table 1, as the same artwork can be annotated with more than
one subject.

3http://scikit.ml/
4https://www.tate.org.uk/art/art-terms/

http://scikit.ml/
https://www.tate.org.uk/art/art-terms/


annotations for each task. In the former case, the Network is optimised to generically classify
people, places, objects, natural, abstract elements, and architectural components. In the latter
configuration, the goal is to learn sub-classes of each subject - e.g., to recognise mountains,
rivers, and beaches, as opposed to classifying “nature" generically - as in the example of Figure
1.

Experiment B. The second experiment is conceived to test the effects of splitting training ex-
amples by artwork medium - e.g., watercolour, sculpture, intaglio, to further reduce the sparsity
of the learning space (RQ2). Therefore, in this setup, we start by evaluating the performance
results obtained when the complete image collection is considered, without discriminating by
artistic medium. We then repeat the performance assessment across the ten sub-samples which
we have prepared for different artistic media, as described in Section 5.1.

Experiment C. The last experiment is a study of the impact of visual, textual, and KG
embeddings when learning artwork subjects (RQ3). In particular, we explore the integration of
numeric features representing the title and artist of an artwork. Therefore, at this stage, we
contrast the performance of the following pipelines, or ablations:

(img) The first method considers only visual embeddings to classify artworks, thus following
the same methodology of Experiments A and B.

(img + text) In this pipeline, the visual embeddings are also optimised with respect to the
linguistic embeddings extracted from a pre-trained DistilBERT model. Specifically, the
linguistic model is fed with the title of each artwork. To derive a single vector for each input
sentence, we follow a series of transformations which are standard practice in NLP. First,
the hidden states produced by the last four layers are summed together, to derive a word
vector for each input token. Then, we average the second to last hidden layers of each token
to form the sentence embedding.

(img + KG) We also test a neuro-symbolic variation of the “img" pipeline, where the visual
embeddings are projected onto the 200-dimensional embeddings returned by a RDF2Vec
model [10] which was pre-trained on DBpedia entities. Specifically, if the DBpedia URI
associated with an author is found in the RDF2Vec feature space, the related KG embedding
is retrieved to guide the optimisation of the visual embedding, through the encoder module
(Section 4).

(img + text + KG) Lastly, we consider the scenario where the textual embedding and the KG
embedding are concatenated, to contribute to the learning routine. In other words, this
ablation models the methodology of Section 4 (Figure 1).

5.3. Results

Experiment A. The results obtained on the test set when training the model only on macro-
subject labels are reported in Table 2a. With the exception of the nature task, the model is
incapable of detecting the presence of any artwork elements. The non-zero accuracies indicate



Table 2
Performance comparison when we change the hierarchical level (granularity) of the subject labels used
for training.

(a) Training on subject level one

Task Acc Pre Rec F1
nature 0.64 0.64 1 0.78
people 0.65 0 0 0
architecture 0.47 0 0 0
objects 0.8 0 0 0
places 0.58 0 0 0
abstraction 0.86 0 0 0

(b) Training on subject level two

Task Acc Pre Rec F1
nature 0.39 0.45 0.01 0.02
people 0.65 0.29 0 0.01
architecture 0.52 0.37 0.01 0.01
objects 0.84 0.14 0 0
places 0.63 0.21 0 0
abstraction 0.86 0.75 0.01 0.02

that the model has learned to produce only negative predictions for the tasks (except for
nature). In fact, for the nature class, which contributes the highest number of training examples,
the model outputs mostly positive predictions. Hence, it has simply learned to replicate the
imbalanced distributions of the training data.

However, when finer-grained subject annotations are introduced, the performance improves,
particularly in terms of Precision (Table 2b). Nevertheless, the overall performance remains
dramatically low across all tasks. Indeed, while introducing finer-grained categories may help
discriminating different subjects, it also makes the distribution of training examples for each
specialised category more sparse.

Experiment B. Based on findings from the previous experiment, here we consider finer-
grained subject categories for training our models. However, in this experiment, data points
are further sampled by artistic medium. As shown in Figure 2, in the majority of cases where
the model is trained only on a specific medium, the F1 score is higher than in the baseline
scenario, where all materials are considered. A marginal performance decay was instead
recorded when classifying places from sculptures, where the already low F1 dropped to zero. In
the scenario where only graphites were considered, all results are equivalent or only marginally
higher than the baseline curve, except for the abstraction task, were the improvement was most
pronounced. In the remaining scenarios, splitting examples by artistic medium significantly
benefited the performance. In particular, the highest F1 scores were achieved by training only
on: • photographies to classify nature and people • engraving & intaglio examples to classify
people and places • ink & pen works on the architecture task • sculptures to classify objects
• screenprints to classify abstraction.

ExperimentC. Figures 3 and 4 illustrate the results obtained with the top-performing methods
of Experiment B (i.e., those trained solely on photography, engraving & intaglio, sculpture, ink &
pen, and screenprint), through different combinations of features. Crucially, the integration of
non-visual features enhanced the baseline DL performance across the majority of tasks and
media. However, different performance trends can be observed that are medium-specific and
task-specific.

To classify photography, linguistic embeddings were relatively more beneficial, in terms
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Figure 2: Comparison of F1 scores before (black curve) and after (coloured curves) splitting the dataset
by artwork media.

of performance increase, than KG embeddings (Figure 3a). However, combining different
embedding types led to highest F1 on the classification of nature, people, and objects. Similarly,
on the ink & pen sample, the integration of all tested features produced the highest performance
when classifying nature, people, places, and abstraction (Figure 3d).

In the case of sculptures, the largest margin of improvement is associated with the introduction
of linguistic embeddings, for the majority of tasks (Figure 3c). Screenprints, instead, exhibit an
opposite trend: overall, integrating KG embeddings was preferable, in terms of performance,
than only relying on linguistic features (Figure 3e). Interestingly, the top performance achieved
through the baseline on the abstraction task was unmatched, even after integrating both the title
and the artist features (Figure 4a). Indeed, the abstraction subjects explored in this evaluation
mostly encode colour and geometric traits, which are best learned through visual features.

On the engraving & intaglio set, the effects of applying neuro-symbolic learning differs
from task to task (Figure 3b). On the nature, architecture, places, and abstraction tasks, the
introduction of text and KG embeddings ensured a significant performance increase. By contrast,
the improvement is only marginal when classifying objects. The case of the people task is
interesting because the integration of the linguistic embeddings led to a performance degrade,
and the introduction of KG embeddings only matched the baseline F1. However, leveraging
both types of embeddings improved the performance by 5%.

Overall, different tasks are learned most efficiently through a different combination of features,
on different mediums. Specifically, the highest F1 scores are observed: • for nature: img+text on
engraving (Figure 4b) • for people: img+text+KG on photography (Figure 4d), • for architecture:
img+text and img+KG on engraving & intaglio (Figures 4b,4c) • for objects: img+text+KG on
photography (Figure 4d), img+text on sculpture (Figure 4b) • for places: img+text on engraving
& intaglio (Figure 4b) • for abstraction: img on screenprint (Figure 4a).

5.4. Implementation details

The experiments discussed in this section were conducted on Google Colaboratory. In our train-
ing configuration, we initialised the ResNet50 module with weights pre-trained on ImageNet.



Weights of the classification heads were instead initialised through the Xavier method [20].
Consistently with [3], parameters were updated via stochastic gradient descent. In particular,
we set the learning rate to 0.0001, with a weight decay of 0.00001 and a momentum of 0.9.
Through preliminary experiments to this paper, we found that updating parameters across the
entire model is preferable than fine-tuning only the last classification layer, likely due to the
marked differences between the ImageNet benchmark and the Tate collection. All tested models
were trained for up to 150 epochs, with an early stopping condition whenever the validation
loss did not decrease for 30 successive epochs.

Each task contributed equally to the classification loss, i.e., for the six tasks explored in this
paper, 𝜆𝑡 was set to 0.165. After testing different weight configurations for the loss, we set
𝜆𝑐 = 0.9 and 𝜆𝑒 = 0.1 across all experiments. That is, we observed empirically that giving
higher importance to the visual embeddings at training time ensures a higher performance, on
average.

Input images were resized to 224×224 and normalised with respect to the ImageNet mean and
standard deviation. We relied on the Pytorch and transformers Python libraries to implement
the proposed architecture. The RDF2Vec embeddings, which we downloaded locally to speed
up the processing time, are conveniently exposed through the KGVec2Go resource [21].

The code, data, and pre-trained models which reproduce these experiments are available at:
https://bit.ly/3p3WV3M.

6. Discussion and Conclusions

We conducted experiments with the purpose of exploring strategies for handling the data
sparsity that characterises cultural heritage collections. We asked whether the taxonomical
structure of the labels can help in learning top level categories (RQ1). Indeed, organising the
training space according to the semantic hierarchy of objects helped improving the classification
performance. However it is not sufficient, alone, to handle sparsity. Next, we explored the idea
that image features may vary depending on the artistic medium (RQ2) and therefore learning
should be performed separately for each medium. We demonstrated how splitting by artistic
medium helped significantly improving the performance across the majority of tasks (with
only one caveat: places on sculptures). Finally, we conducted extensive experiments to study
the impact of different feature sets on the various subjects, learnt on the different media (RQ3).
Here, we observe that different features are helpful for learning different tasks on different
media, and that there is no feature set that performs systematically better on all media and
subjects.

On the basis of these findings, we elaborate on possible future work. First, learning what
combinations are performing well was a costly operation. This evidence poses the question of
how to autonomously learn the feature set that is most representative for each subject. Hence,
these results spark an important meta-learning task: to what extent can we automatically
devise the appropriate learning strategy depending on the three dimensions of feature
modality, artistic medium, and subject?

Second, we found that certain tasks are better learned on certain media. Could we use this
behaviour as an opportunity for transfer learning? In other words, could we use a model trained

https://bit.ly/3p3WV3M


on a specific medium to recognise the same subject on another medium? Even further, could
we use the learned model on a different image collection, to compensate for the imbalance (or
even scarcity) of training examples? In the context of the SPICE project, we are particularly
interested in characterising subjects on citizen-curated collections such as the Irish Museum of
Modern Arts (IMMA) archive5.

Finally, in this work, we have attacked the classification problem as a Multi Task Learning
(MLT) setting, following relevant priors in the state of the art. Future work includes exploring
the correlation between different tasks, i.e., studying which tasks are best learned jointly and
which ones should be learned separately.
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Figure 3: Experiment results by medium: comparison of F1 scores after incrementally combining visual
embeddings (img) with textual embeddings on the artwork title (text) and Knowledge Graph embeddings
on the artist feature (KG).
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Figure 4: F1 results for the experiments with different features (img, text, KG), grouped by medium.
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