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Abstract 

In this work, we further study the moving grating technique applied to halide perovskite thin film 
materials. Firstly, we show some problems that emerge when analyzing experimental data with the 
classical formulation, which does not distinguish between free and trapped carriers and hence only gives 
average quantities for the transport parameters. We show that using a more general framework, taking 
into account the multiple trapping of carriers within a density of localized states, allows for accurate 
description. Since it includes the density of state (DOS) of the material, it enables the possibility of testing 
different DOS models proposed in the past for halide perovskite thin films. We check if these models give 
rise to the type of curves that we have measured under different experimental conditions. Finally, we 
propose a new model for the DOS in the forbidden gap, which results in the best fit found for the 
measurements performed. This allows us to give ranges of values for the parameters defining the DOS, 
that, to our knowledge, are given for the first time. 

 

I. INTRODUCTION 

The incredible success of emerging perovskite materials in the last 10 years has made them a 
candidate for low-cost high-efficiency solar cells. Despite the increasing performance of perovskite solar 
cells and the improved stability, the precise transport phenomena taking place in the absorber material 
are still under investigation. To study this type of phenomena, several techniques have been used, which 
can be separated into two large groups: transient techniques and steady-state techniques. Recently 1, it 
was suggested that steady-state techniques are better suited for materials used as absorbers in solar cells, 
since the parameters extracted from pulsed techniques may be misinterpreted. In a previous publication 
2 we have shown that the steady-state moving grating technique (MGT) can be applied to halide 
perovskites (HaPs), giving very useful information on the drift mobilities of both type of carriers and the 
recombination lifetime. The general idea of the MGT technique is to illuminate the sample with two 
coherent light beams, generating an interference pattern over a sample with coplanar geometry. 
Introducing a slight frequency difference between both beams, the pattern is not static but moves at a 
constant speed, vgr. The movement of this light pattern generates a short circuit photocurrent, jsc, even in 
the absence of an external electric field. Varying the speed of the grating and recording the short circuit 
current, generates a curve from which the transport parameters can be obtained 2.  



In this work we continue studying the MGT; in particular we focus on the mathematical treatment to 
deduce the dependence of jsc as a function of vgr. In the original publication3,4 the authors proposed a 
treatment that does not distinguish between trapped and free carriers. This simplification allowed them 
to arrive to a compact expression with three fitting parameters, both mobilities (𝜇𝜇𝑃𝑃, the hole drift mobility, 
and 𝜇𝜇𝑁𝑁, the electron drift mobility) and the common recombination lifetime, τR. We have found that this 
simplified treatment may be the reason not only for the indetermination of the minority carrier mobility 
(usually, the error of the fitted mobility is larger than the value), but also for the incorrect results obtained 
in some measurements performed at different grating periods (see figure 1). To solve these issues, we 
propose to use a more general framework that distinguishes between free carriers, n(x,t) and p(x,t), and 
trapped carriers, nt(x,t) and pt(x,t), by calculating their concentrations via the introduction of the density 
of states (DOS) of the semiconductor. After showing that our formalism solves the issues found, we 
explore how the measurements of the moving grating technique can be used to test some DOS models 
for perovskite materials found in the literature, and may help to gain insight on the transport phenomena 
in HaPs.    

II. METHODS 

A. Original treatment of the moving grating technique 

The MGT was introduced in the early 90s by Haken, Hundhausen and Ley 3,4 for the study and 
characterization of hydrogenated amorphous silicon. Starting from the total concentrations of carriers, 
free plus trapped, the authors derived an expression of the photocurrent density as function of vgr that 
can be written: 

𝑗𝑗𝑠𝑠𝑠𝑠(𝑣𝑣gr) = 𝑐𝑐1𝑣𝑣gr
𝑐𝑐2+𝑐𝑐3𝑣𝑣𝑔𝑔𝑔𝑔2 +𝑐𝑐4𝑣𝑣𝑔𝑔𝑔𝑔4
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In these equations, q is the absolute value of the electron charge, kT is the thermal energy, 𝑔𝑔𝑎𝑎𝑎𝑎 = 2�𝐺𝐺1𝐺𝐺2 

(𝐺𝐺1 and 𝐺𝐺2 are the generation rates corresponding to beams 1 and 2 alone, respectively), k=2π/Λ is the 

spatial frequency, and the short-hand notations a, b and l are: 
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with 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  being the dielectric relaxation time. Therefore, there are only three free parameters, both 
mobilities 𝜇𝜇𝑁𝑁 and 𝜇𝜇𝑃𝑃 and the common recombination lifetime 𝜏𝜏𝑅𝑅. Since the carrier concentrations are 
average quantities in this formalism, the fitted mobilities correspond to the drift mobilities, and the 
recombination lifetime is the total time spent by the carriers since their creation until recombination, 
including the time spent in trap states. As it was discussed in our recent publication 2, fitting MGT curves, 
both for hydrogenated amorphous silicon and for HaPs films, with Eq. (1) has some weaknesses. On the 
one hand, trying to use the 3 parameters to achieve the fit may result in an indetermination for the values 
of the parameters, as the errors are larger than the parameters themselves. This happened in our previous 
study for several grating periods and generation rates, in both types of materials. To fix this issue, we 
proposed using the measured photoconductivity to express the minority carrier mobility in term of the 
majority carrier mobility and the recombination lifetime, hence fitting with only 2 parameters. This 
improved the fitting, giving results with an error below 5% for both fitted parameters.  

On the other hand, we have found that Eq. (1) gives incorrect results when trying to fit curves measured 
with different grating periods, as shown in Figure 1. The data presented are measurements done at room 
temperature on a HaPs (MAPI) film with a generation rate  G0 = 4.3×1021 cm-3s-1; further details of the 
sample will be given in the experimental section.    

 

Figure 1: Result of applying the fitting procedure suggested in Ref. [1] to a HaP. a) Each curve is fitted individually, giving good 
overall fit but different transport parameters for each case; b) The fitting procedure is carried on trying to find the best transport 

parameters for all the three curves, giving worse overall fit. 

As can be seen from figure 1 a), a decent fit of all the three curves can be obtained if we fit each one 
individually, but this results in three different sets of transport parameters. Since all three measurements 
were made at the same temperature and generation rate, it is expected that the drift mobilities and the 
recombination lifetime to be the same. If we force the fitting routine to fit all three curves with only one 
set of parameters, the quality of the fitting diminishes quite strongly, as seen in figure 1 b). This result 
shows that the theoretical framework used in the original publication has some limitations. In order to 
improve the analysis of the experimental data that is generated in the MGT, in the next section we 
propose a more general treatment of the equations, distinguishing between trapped and free carriers by 
means of the DOS. 
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B. Theoretical treatment based on the density of states  

In order to account for free and trapped carriers, we shall introduce the DOS in the forbidden gap for the 
material, N(E). As we have done in previous reports 5,6, we will start with a simple model consisting on 
monovalent states having all the same capture coefficients. The generalization to different species of 
states having different capture coefficients is straightforward. The generation rate for an interference 
pattern that travels at a constant speed may be written as: 

𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐺𝐺0 + ∆𝐺𝐺0 cos(𝑘𝑘 𝑥𝑥 + ∆𝜔𝜔 𝑡𝑡) = 𝐺𝐺0 + 𝑅𝑅𝑅𝑅�∆𝐺𝐺0𝑒𝑒𝑗𝑗(𝑘𝑘 𝑥𝑥 + ∆𝜔𝜔 𝑡𝑡)�,                            (2) 

where ∆𝜔𝜔 is the angular frequency difference between the interfering beams, ∆𝜔𝜔 = 2𝜋𝜋∆𝑓𝑓 (which is 
related to the grating speed by vgr=Λ∙Δf), 𝑥𝑥 is the spatial coordinate in the plane of the sample 
perpendicular to the contacts, 𝑡𝑡 is the temporal variable, 𝑅𝑅𝑅𝑅 designates the real part of a complex number, 
and j is the imaginary unit. Consequently, the generation rates in equation (2) are given by 𝐺𝐺0 = 𝐺𝐺1 + 𝐺𝐺2 
and ∆𝐺𝐺0 = 2𝛾𝛾0�𝐺𝐺1 𝐺𝐺2, 𝛾𝛾0 is the interference quality factor; its value is positive and less than one as a 
consequence of light scattering, mechanical vibrations, and the partial coherence of the beams.  

When there is a large difference between the beams’ photon generation rates, the condition ∆𝐺𝐺0 ≪
𝐺𝐺0 is fulfilled, which allows discarding the higher-order terms in the equations. In steady state, 
consequently, the harmonic generation rate produces free photocarrier densities with the same 
functional dependence on the variables, according to the continuity equations: 
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In these equations, n(x,t) and p(x,t) are the free concentrations of electrons (in the conduction 
band) and holes (in the valence band), respectively, R(x,t) denotes the recombination rate, while j(x,t) is 
the total current. As in the rest of this work, the subscript n refers to electrons and the subscript p to 
holes. Since the experiment is performed without an external electric field, the current is generated via 
an internal electric field ξint(x,t) that develops according to Poisson´s equation: 
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where ε  is the dielectric constant of the sample, 0ε  is the dielectric permittivity of vacuum, vE  is the 

energy at the top of the valence band, cE  is the energy at the bottom of the conduction band, ( ), ,f E x t  

is the occupation function, ( )DONN E  is the density of donor defect states (neutral when occupied and 
positively charged when unoccupied), 𝑁𝑁𝑑𝑑 is the density of external donor dopants (assumed completely 
ionized and therefore positively charged), ( )ACCN E  is the density of acceptor defect states (neutral 
when empty and negatively charged when occupied), and 𝑁𝑁𝑎𝑎 is the density of external acceptor dopants 
(assumed completely ionized and therefore negatively charged). As can be seen, this internal electric field 



is comprised of free plus trapped charge. In amorphous materials such as hydrogenated amorphous 
silicon, the trapped charge is much higher than the free carriers, hence dominating the internal electric 
field. For HaPs we cannot make such an assumption, since the exact DOS distribution within the bandgap 
of this material is still under discussion. Taking this into account we will continue developing the general 
equations, while in the next sections we will use different DOS models already proposed in the literature, 
solving the equations using a computer code to compute the jsc(vgr) curves and comparing with 
measurements.  

The recombination terms can be written as  
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where c is the capture coefficient, e(E) is the emission rate and N(E) is the DOS. The current densities are 
the sum of the drift and diffusion components 
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where µ  is the extended-states mobility, D is the diffusion coefficient and ξ(x,t) is the electric field, which 
for this case is only comprised of the internally developed electric field (the experiment is performed in 
short-circuit conditions, but a general case would add an external power source also). In order to solve 
equations (3)-(5), we recall that in the low modulation condition (G1>>G2) it is expected that the relevant 
physical parameters vary sinusoidally as 𝐺𝐺(𝑥𝑥, 𝑡𝑡) does. In general, however, there will be variable phase 
shifts, and any quantity A can be expressed as ( )

0( , ) i kx tA x t A e A e ωδ + = + ℜ
 

, where 𝐴𝐴0 is the value 

under uniform illumination 0G , and Aδ  is a complex magnitude originating from the modulated term of 

the generation rate Gδ . Introducing these expressions for ( ),n x t , ( ),p x t  and ( ),x tξ  into the 
differential equations (3)-(9) linearizes them, giving rise to a system of linear complex equations. Once the 
quantities ( ),n x t and ( ),p x t  are known, the current density can be calculated via 

∆𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀 =
1
2
𝑅𝑅𝑅𝑅 �∆𝜎𝜎∆𝜔𝜔,𝑘𝑘  ∆ξ∆𝜔𝜔,𝑘𝑘

∗ � ,                                                         (10) 

where the photoconductivity amplitude, ∆𝜎𝜎∆𝜔𝜔,𝑘𝑘, is proportional to the amplitudes of the free photocarrier 
densities: 

∆𝜎𝜎∆𝜔𝜔,𝑘𝑘 = 𝑞𝑞�𝜇𝜇𝑛𝑛 ∆𝑛𝑛∆𝜔𝜔,𝑘𝑘 + 𝜇𝜇𝑝𝑝 ∆𝑝𝑝∆𝜔𝜔,𝑘𝑘�.                                                 (11) 



The asterisk as superscript defines the complex conjugate of the number. A more general treatment that 
solves the transport equations for a slightly more general generation rate 𝐺𝐺 = 𝐺𝐺0 + 𝑅𝑅𝑅𝑅�𝑔𝑔Ω,k 𝑒𝑒𝑗𝑗(𝑘𝑘 𝑥𝑥+Ω t)� 
with |𝑔𝑔Ω| ≪ 𝐺𝐺0, assuming valid the multiple-trapping model for the free carriers, can be found in 6. 

In section 4, we will show the results of solving these equations for different N(E) distributions by means 
of numerical simulations. 

III. EXPERIMENTAL DETAILS 

The glass substrates, purchased from Naranjo Substrates, were cleaned with soap, deionized 
water, and isopropanol under an ultrasonic bath, followed by a UV-O3 treatment. Then, the substrates 
were transferred to a vacuum chamber inside a N2-filled glovebox for the perovskite deposition. The 
perovskite composition is CH3NH3PbI3 (MAPI), and it was deposited by vacuum-deposition following a 
method previously described 7. Summarizing, methylammonium iodide (CH3NH3I, Lumtec) and lead (II) 
iodide (PbI2, Sigma Aldrich) powders are deposited separately in ceramic crucibles. The crucibles are 
heated up in high vacuum using Creaphys sources until the materials start subliming. By using quartz 
microbalance sensors one can accurately control the evaporation rate of each component. By using 
stoichiometric amounts of each component and controlling the perovskite thickness with a third sensor 
near the substrate we prepared 500-600 nm perovskite films. Then, the samples were transferred to 
another vacuum chamber to deposit gold pads for contacting. In this chamber the working principle for 
evaporation is similar but the heat is achieved by applying a high current input through a tungsten boat 
with gold beads. Finally, the samples were encapsulated with Al2O3 deposited by atomic layer deposition 
(ALD). Using this type of material, efficiencies around 18% have been obtained, as can be seen in figure 2 
of 7. 

We used a 10 mW He-Ne laser as a source of coherent light, while the short circuit current was 
measured with a Keithley 6514 system electrometer. Our setup allows measuring from 0.75 µm up to 6 
µm of grating period, but with some improvement in the setup values in the order of 20 µm are easily 
achievable. For the experimental data presented, we measured each data point 20 times to calculate the 
average value and the standard error, while the waiting time after changing the grating velocity was set 
to 3 seconds.  

 

IV. RESULTS AND DISCUSSION 

In order to solve the balance equations and compute the photogenerated current density jsc as a 
function of the grating velocity vgr, it is needed to define a density of states in the forbidden gap. Several 
authors have proposed different models for the DOS of HaPs, that have been used in simulation codes 
like AMPS-1D 8 and SCAPS 9 for instance, or to try to explain different experimental data. In this section, 
we will try some of these models to see if they give rise to a signal similar to the one observed in our 
experiments.  

A. Effective single type of capturing center:  

This model was proposed by Levine et al. 10, in order to explain the results obtained using 
photoconductivity and SSPG measurements. As expressed by these authors, the simplest model 
consistent with the measured dependence of the photoconductivity (𝜎𝜎𝑝𝑝ℎ ∝ G0𝛾𝛾) and the ambipolar 



diffusion length (𝐿𝐿𝑎𝑎𝑚𝑚𝑚𝑚 ∝ G0−𝑆𝑆) on the generation rate, is a single trap level located a few kT above the 
Fermi level. From dark conductivity measurements they found a Fermi level close to 0.4 eV above the 
valence band, therefore they assume a trap level 0.6 eV above the valance band. In this work, we 
measured a room temperature dark conductivity 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1.3 10−8 Ω−1𝑐𝑐𝑐𝑐−1. To calculate the Fermi level 
from this dark conductivity we use 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑞𝑞 𝑝𝑝 𝜇𝜇𝑝𝑝, where p is the number of holes in the valence band 
and µp the mobility of holes in the valence band. This expression is valid for a p-type semiconductor, which 
in our case is confirmed by the MGT experiment, sensitive to the doping as explained in 2. The link between 

dark conductivity and the Fermi level comes from the equation
V FE E
kT

Vp N e
− 

 
 = , which combined with the 

previous one gives 𝐸𝐸𝐹𝐹 − 𝐸𝐸𝑉𝑉 = 𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 �𝑞𝑞 𝜇𝜇𝑝𝑝 𝑁𝑁𝑉𝑉
𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�. Assuming the same values as in 10 for the hole mobility 

(𝜇𝜇𝑝𝑝 = 1 𝑐𝑐𝑚𝑚
2

𝑉𝑉 𝑠𝑠
) and for the effective density of states at the valence band (𝑁𝑁𝑉𝑉 = 2.4 × 1018 𝑐𝑐𝑚𝑚−3), we 

arrive to a Fermi level situated 0.44 eV above de valence band, in accordance with the value quoted by 
Levine et al. 10. 

In order to perform the simulation, the values of temperature, generation rate and grating period are 
fixed equal to those used during the measurements. The density of trap states, as well as the capture 
coefficients for electrons and holes, are taken as fit parameters. The trap DOS is modeled with a narrow 
Gaussian distribution of acceptor states, described by two parameters, the total concentration of traps, 
Nt, and the energetic position within the bandgap, Et. This last parameter is restricted to be between 0.45 
and 0.65 eV (i.e., a few kT above the Fermi level). The best fit is obtained for a density of acceptor traps 
Nt = 7.2x1015 cm-3, located at Et = 0.62 eV above the valence band edge, while the capture coefficients are 
cn=7.5x10-10 cm3s-1 and cp=7.5x10-9 cm3s-1. The full set of parameters is given as supplementary 
information. The fact that 𝑐𝑐𝑝𝑝 > 𝑐𝑐𝑛𝑛 is consistent with the acceptor nature of the trap. Indeed, the trap is 
neutral when it captures an electron, but it is negatively charged when it captures a hole, so in this last 
case the coulombic attraction increases the capture coefficient. As can be seen in figure 2, the fitted curves 
seem to be peaked at higher frequencies than the measured ones. We have chosen to show only the 
positive branch of the graph, displaying it in logarithmic scales in the horizontal axis, for the sake of clarity. 
Another thing to consider is if the chosen DOS is able to reproduce the measured values of dark and photo 
conductivities (σdark and σph). In our case, for the sample shown in figure 2, the experimental values of the 
conductivities are σdark=1.3x10-8 (Ωcm)-1 and σph=2x10-5 (Ωcm)-1.  



 

Figure 2: Best fit obtained for a single acceptor trap level. The density of acceptor trap states is 7.2x1015 cm-3 located at 0.62 eV 
above the valence band edge, while the capture coefficients are cn=7.5x10-10 cm3s-1 and cp=7.5x10-9 cm3s-1. 

From the computer code, we obtained values that are one orders of magnitude higher. If we try to match 
both σdark (controlled by the energetic position of the trap) and σph (mainly controlled by the capture 
coefficients), the MGT curves move towards even higher frequencies (shown in the supplementary 
information). This can be explained since the maxima of MGT curves can be related to a specific lifetime 
of the sample, as mentioned in previous papers 2,11. If the conditions used in the simulation are close to 
the lifetime regime, the frequency at which the maxima of the curves occur give information on the 
lifetime of majority carriers 12. In order to decrease the photoconductivity, we have to increase the capture 
coefficients, meaning that the lifetime of majority carriers diminishes, which in turn increases the 
frequency at which the maxima occur.   

Therefore, we can conclude that this DOS model is able to reproduce only partially the measurements on 
this type of sample (methylammonium lead iodide sample, for further details see 2). We may consider that 
the main problem comes from not being able to reproduce the maxima of the curves at the desired 
frequency, which is an important characteristic of MGT curves. A second issue would be that the model 
cannot match exactly the values of dark and photoconductivity that were measured. 

Finally, it is interesting to see what happens when trying to fit the simulated MGT curves with the fitting 
procedure proposed by Haken et al. 11. The results of this fits are shown in figure 3.  
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Figure 3: MGT simulated curves using a single trap model (dotted curves) and the corresponding  
fit using the original method (solid lines) for the three measured grating periods. 

As it can be seen, all the curves seem to be well fitted with Eq. (1) (as was the case of figure 1a, since here 
we are also fitting each curve individually), the original formula proposed by Haken et al. What it is 
interesting to consider is that, having a defined density of states, we can calculate the fit parameters τR, 
µN and µP from their definitions. Indeed, the solution of Eqs. (3)-(9) under a continuous (dc) illumination 
gives the concentration of carriers in the bands and in gap states, which in turn can be used to calculate 
the transport parameters.  

To calculate the drift mobilities we use 0 dc
N N

dc trap

n
n n

µ µ=
+

 13, where 0
Nµ  is the extended states mobility 

(assumed as 0.4 cm2V-1s-1), dcn  is the population of electrons in the conduction band under steady state 

illumination, and trapn  is the density of trapped negative charge. A similar definition can be used to 

calculate the holes drift mobility, while the mutual recombination lifetime τR can be calculated as 

( ) 0

ph
R

N Pq G
σ

τ
µ µ

=
+

. From these definitions, the recombination lifetime resulting from the DOS chosen 

is 0.29Rτ = µs, while the drift mobilities are 𝜇𝜇𝑁𝑁 = 0.26 cm2V-1s-1 and 𝜇𝜇𝑃𝑃 = 1 cm2V-1s-1. This means that 

the holes drift mobility equals the extended states one, which can be understood taking into account that 
the acceptor trap can only be negatively charged (when occupied) or neutral (when empty), meaning that 

0trapp = . Regarding the values obtained from the fits with Eq. (1), we can see that μP takes values of 

0.13, 0.22 and 0.30 cm2V-1s-1 for increasing grating periods, while μN results in 0.005, 0.02 and 0.17 cm2V-

1s-1, respectively. Regarding the recombination lifetimes resulting from the fit, these are 2.0, 1.15 and 0.58 
µs. Therefore, even when the three curves have been simulated with the same values of mobilities and 
lifetime, the fit with Eq. (1) gives parameters that depend on the grating period. The largest grating period 
(5.6 µm) gives the parameters closest to those calculated from the DOS: 0.30 instead of 1 cm2V-1s-1 for 𝜇𝜇𝑃𝑃, 
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0.17 instead of 0.26 cm2V-1s-1 for 𝜇𝜇𝑁𝑁, and 0.58 instead of 0.29 µs for 𝜏𝜏𝑅𝑅. It is thus clear that, at least for 
the DOS model considered here, the original model proposed by Haken et al. 3,11 will not give accurate 
results for the transport parameters, although it can still be used for comparison purposes.  

B. Gaussian defects (a-Si like):  

The use of numerical codes, such as AMPS-1D and SCAPS, to simulate solar cells employing 
perovskite materials as the absorber layer, has become common in recent years. Worth mentioning are 
the works of Liu et al. 14 using AMPS-1D to optimize the thickness of the absorber layer, Minemoto and 
Murata 15 showing the impact of the work function of the back contact, Du et al. 16 studying the influence 
of various parameters on the solar cell performance, and Huang et al. 17 focusing on the improvement of 
electron-transport-layer free devices, to name a few. It is important to note that both simulation codes 
rely on the definition of the density of states for all the layers involved, so it is interesting to investigate if 
the DOS defined for the absorber material gives MGT curves that resemble our measured ones. We 
consider this point of crucial importance, since those DOS models are still being used in recent works 18–

20. 

 

Figure 4: Density of states chosen by Liu et al. to perform their studies. The band tails have a characteristic slope of 0.01 eV and 
a density of states at the band edges of 1x1014 cm-3eV-1, while the Gaussian distributions of defects are at 1.2 eV from their 

respective band edges, with a standard deviation of 0.1 eV and an integrated density of defects of 1x1014 cm-3. Taken from the 
supplementary information of [11]. 

Beginning with the work of Liu et al. [13, supplementary information], the chosen DOS for their work is 
shown in figure 4. 

As it can be seen, this density of states can be considered symmetric with respect to the middle of the 
gap. In order to generate the characteristic p-type nature of MAPI perovskites, which later on was 
explained from first-principle calculations 21, the authors included a fixed concentration of ionized 
acceptors, Na=2.14×1017 cm-3. This type of density of state is reminiscent of amorphous semiconductors, 
being hydrogenated amorphous silicon (a-Si:H) the most widely studied. In the case of a-Si:H, the origin 
of the band tails was related with the spread of bonding angles between Si atoms, while the Gaussian 
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distributions of defects were associated with coordination defects that result in dangling bonds. In the 
case of perovskite materials, band tails and deep defects have also been measured 22. 

Running our simulation with the parameters of Liu et al. 14, gives MGT current densities up to 5 orders of 
magnitude lower than the measured values (2x10-10 mA/cm2 compared to ∼1x10-5 mA/cm2 for several 
samples measured). Moreover, both σdark and σphoto are orders of magnitude higher compared to our case. 
Increasing the acceptor and donor defect concentrations to 3x1018 cm-3, while maintaining the symmetry 
of the DOS, we see that the dark conductivity and photoconductivity become of the order of our measured 
values. However, as long as the DOS remains symmetric the MGT curves still remain around zero, so it is 
interesting to analyze why this happens. 

In order to calculate the induced short circuit current, we should see what happens for both the internal 
electric field ξint(x,t) and the terms Δn(x,t) and Δp(x,t) that come from the modulated illumination, as 
shown in equation (10). It can be seen that, in the case of a symmetrical distributions of states in the 
forbidden gap and equal band mobilities for electrons and holes, the term Δξint (internal electric field due 
to Poisson´s equation) vanishes. This happens because the terms in Eq. (5) cancel in pairs (Δp(x,t) ≈ Δn(x,t) 
and the charge trapped in acceptor states cancels with the charge trapped in donor states), leading to no 
field (details in the supplementary information). This effect of the MGT signal can also be seen in the 
original development of Ref. 11: samples with symmetrical distributions will lead to equal drift mobilities, 
hence making c1 = 0 in Eq. (1).  

From this analysis we conclude that samples with MGT curves different from zero cannot be modelled by 
a symmetrical density of states with equal band mobilities. In this sense, this shows an exciting 
characteristic of MGT that is not shared by similar photoconductivity-based techniques such as SSPG, MPC 
or SSPC, for instance. Together with the ability of showing directly the semiconductor type (n or p type), 
a nonzero MGT curve is a clear signature that the DOS of the sample is not symmetrical.  

It is also interesting to note that many works in the literature, such as those of Minemoto and Murata 15, 
Du et al. 16 and Huang et al. 17, use a symmetrical density of states and equal band mobilities, which 
according to our measurements will not describe correctly the MAPI films. 

If we try to reproduce the experimental data with a DOS having two exponential band tails and two 
Gaussian defect states, allowing for asymmetries to achieve an internal field, the number of parameters 
growths rapidly. Indeed, in this case we have three parameters for each Gaussian and two parameters for 
each band tail, totalizing ten parameters without taking into account the capture coefficients. Proceeding 
in this manner, without any physical constraint, loses meaning since it is only a mathematical procedure. 
If we try to find good matches allowing some parameters to vary, rapidly we can find good fits, as shown 
in figure 5, but the lack of physical interpretation of the chosen DOS limits the analysis at this moment. It 
will be interesting to see if more research in this subject can provide an interpretation of deep states in 
the gap with Gaussian distributions.  

 



 

Figure 5: Best fit obtained using a DOS model containing two wide gaussian distributions and wide band tails. The mount of 
parameters is so large that good fitting can be found, but extracting physical meaning of the DOS found may be challenging (full 

set of parameters in the SI)  

 

C. Our best proposal:  

By studying the different models discussed in the previous sections, it is clear that a combination 
of both would be a good alternative. On the one hand, the model proposed by Levine et al., having a well-
defined physical interpretation, is very limited in the number of parameters that can be explored to 
reproduce the measured MGT curves. On the other hand, the second model analyzed has the opposite 
problem, the number of parameters without any physical support was too large to be considered, turning 
the problem into a mathematical procedure that may not have a valid physical counterpart.  

Recently, a possible origin for bandtail states in organic semiconductors was suggested 23. In his work, 
Novikov argues that the origin of tail states in the bandgap may be due to electrostatic disorder originating 
from randomly located and oriented permanent dipoles and quadrupoles.  

With this in mind, we propose a model with a single acceptor trap, located a few kT above the Fermi level 
(Levine´s model), with band tails defined as 𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸) = 𝑁𝑁𝑣𝑣𝑣𝑣  𝑒𝑒(−𝐸𝐸/𝐸𝐸𝑣𝑣𝑣𝑣 ) for the valence band tail (considered 
as made of donor states) and C𝑏𝑏𝑏𝑏(𝐸𝐸) = 𝑁𝑁𝑐𝑐𝑐𝑐  𝑒𝑒(−(𝐸𝐸𝑐𝑐−𝐸𝐸)/𝐸𝐸𝑐𝑐𝑐𝑐 ) for the conduction band tail (acceptor states). 
Here, Nvt and Nct are the densities of band tail states at the band edges, and Evt, Ect are the characteristic 
energies. We start by proposing band tails that merge continuously with the valence and conduction 
bands. Regarding the characteristic energies, we start with values smaller than those accepted for 
hydrogenated amorphous silicon (values of ~ 0.05 eV for the conduction band tail and ~ 0.03 eV for the 
valence band tail 24), and for the sake of simplicity we will use equal values for both tails. Therefore, the 
densities of donor and acceptor states that appear in Eq. (5) of the model are given by 
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𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷(𝐸𝐸) = 𝑁𝑁𝑣𝑣𝑣𝑣  𝑒𝑒− 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣  , 

𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸) = 𝑁𝑁𝑐𝑐𝑐𝑐  𝑒𝑒− (𝐸𝐸𝐶𝐶−𝐸𝐸)
𝐸𝐸𝑐𝑐𝑐𝑐 +

𝑁𝑁𝑡𝑡
∆√2𝜋𝜋

 𝑒𝑒− (𝐸𝐸−𝐸𝐸𝑡𝑡)2
2 ∆2  , 

where the width of the Gaussian function has been taken as ∆= 0,01 meV. In turn, the total density of 
states that appears in Eqs. (6-7) is given by 

𝑁𝑁(𝐸𝐸) = 𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷(𝐸𝐸) + 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸) . 

In figure 6 we show the fit obtained when varying 6 parameters from this model: both slopes defining the 
band tails (Ect and Evt), the energy and density of acceptor defects (Et and Nt) and it capture coefficients. 
Regarding the density of tail states, they were set at  Nvt = Nct = 9.35x1019 cm-3eV-1, which coincides with 
the band edges (assuming 𝑁𝑁𝑣𝑣𝑣𝑣 = 𝑁𝑁𝑉𝑉

𝑘𝑘𝑘𝑘
 and 𝑁𝑁𝑐𝑐𝑐𝑐 = 𝑁𝑁𝐶𝐶

𝑘𝑘𝑘𝑘
, with the values of 𝑁𝑁𝑉𝑉  and 𝑁𝑁𝐶𝐶  taken from 10). 

 

 

Figure 6: Best fit obtained for a single acceptor trap level and band tail states. The density of acceptor trap states is 5x1015 cm-3 
located at 0.6 eV above the valence band edge, while the capture coefficients are cn=5x10-10 cm3s-1 and cp=2x10-9 cm3s-1. The 

band tails are both described by a characteristic energy of 0.006eV and a density of state at the band edges of 2.5x1018 cm-3eV-1. 

 

As it can be seen, by adding the exponential band tails we get a much better fit, compared to the one 
shown in figure 2. The frequencies at which the maxima of the curves occur, coincide perfectly well with 
the measured ones, while their intensities are very close to the ones measured in the range from 105 to 
2x106 Hz. However, the fit is not perfect, as for lower frequencies the experimental data are always higher 
than the simulated ones. As explained, we fitted both slopes, reaching a value of 7.4x10-3 meV for the 
valence band tail, and 2,7x10-3 meV for the conduction one. In this case, we found a density of acceptor 
trap states of 4.53x1015 cm-3 located at 0.6 eV above the valence band edge, while the capture coefficients 
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are cn=4.97x10-10 cm3s-1 and cp=2x10-9 cm3s-1. As explained before, the energy location of the trap affects 
the Fermi level, and therefore the dark conductivity, but has little influence on the shape of the MGT 
curves. The value of 0.6 eV yields a Fermi level situated at 0.35 eV above the valence band edge, and 
σdark=1.3x10-7 (Ωcm)-1, which is 1 order of magnitude higher than the experimental result. In order to 
decrease this value, the trap should be located at 0.72 eV, which leads to a Fermi level at 0.4 eV and the 
correct value for σdark. Regarding σph, it continues to be rather high, almost 1 order of magnitude higher 
than the experimental value. Adding the band tails does not fix this problem, since increasing the values 
of the capture coefficients shifts the MGT curves towards higher frequencies. 

Regarding the values obtained from the fit, which are represented in the final DOS shown in figure 7, we 
could set boundaries to the characteristic energies, meaning that, even if the best fit was achieved with 
the values listed, if we constrain the fit to higher values for both slopes, the range (1x10-3 – 1x10-2) eV for 
both characteristic energies still give good fits. However, for higher values, the curve simulated for a 
grating period of 5.6 µm (green curve in figure 6) starts to have higher values than the other two, while 
for lower values we have an intensity shift between 3.6 µm (blue curve) and 1.5 µm (red curve) (the red 
curve goes over the blue curve). Regarding the values of the Nvt and Nct, we have seen that in the works 
cited in section 3.2 the authors use very low values for both, in the order of 1014 cm-3eV-1. If we try to use 
lower values, we find that for Nvt = Nct = 2.5x1016 cm-3eV-1 the red curve (1.5 microns) goes over the blue 
curve (3.6 microns), and for lower values the results are even worst. This result can be taken as evidence 
towards higher values of Nvt and Nct (closer to the DOS of the bands at the band edges).  

 

Figure 7: Final density of states obtained with our model after fitting 6 parameters, both slopes of the exponential band tails, the 
energy and density of the acceptor trap and it capture coefficients. 

Finally, regarding the difference between the measured photoconductivities and those obtained from the 
fit, we attribute this issue to the interface between the perovskite film and the gold contacts, since it is 
known that gold can penetrate the perovskite film and degrade it 25. Since the contacts and interface 
states are not taken into account in the designed numerical code, we estimate that part of the 
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photogenerated carriers are lost in recombination processes at the interfaces with the gold contacts, 
which is not taken into account in the simulations. This will be investigated in future experiments, for 
instance trying different passivating layers between the metal and the MAPI film.  

 

V. CONCLUSION 

In the present work, we have continued exploring how the moving grating technique, a proposal 
done in the 90s for estimating both drift mobilities and the mutual recombination time of amorphous 
semiconductors, can be successfully applied to perovskite films. We have shown that the original 
methodology for obtaining these parameters may lead to incorrect results. In particular, we have shown 
that the original formula used to fit MGT curves, gives different parameters when the grating period is 
varied, even when they are not expected to change as long as the temperature and generation rate are 
kept constant. We attribute this problem to the fact that the original methodology relies on the 
simplification of not distinguishing between free and trapped carriers. In order to correct this issue, we 
have presented a more general formalism that distinguishes free and trapped carriers via the definition 
of a density of states in the forbidden gap. This treatment allowed us to test different models available in 
the literature, by means of numerical simulations. An important discovery has been that a density of states 
symmetrical with respect to midgap, and having equal band mobilities for electrons and holes, cannot 
reproduce our measurements since it gives a vanishing MGT current density. Finally, we have shown that 
a DOS composed of a single acceptor level located above the Fermi level, and exponential band tails that 
start at the band edges, gives curves that resemble the measured ones. According to our simulations, the 
slope of the tail states should be in the range of 0.001 - 0.01 eV, while the density of band tail states should 
be higher than 1018 cm-3eV-1 at the band edges. To our knowledge these are the first measurements based 
on steady-state techniques that give ranges for these parameters on MAPI films.  
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