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Abstract—Wi-Fi fingerprinting is a popular technique for In-
door Positioning Systems (IPSs) thanks to its low complexity and
the ubiquity of WLAN infrastructures. However, this technique
may present scalability issues when the reference dataset (radio
map) is very large. To reduce the computational costs, k-Means
Clustering has been successfully applied in the past. However,
it is a general-purpose algorithm for unsupervised classification.
This paper introduces three variants that apply heuristics based
on radio propagation knowledge in the coarse and fine-grained
searches. Due to the heterogeneity either in the IPS side (includ-
ing radio map generation) and in the network infrastructure, we
used an evaluation framework composed of 16 datasets. In terms
of general positioning accuracy and computational costs, the best
proposed k-means variant provided better general positioning
accuracy and a significantly better computational cost –around
40% lower– than the original k-means.

Index Terms—Wi-Fi Fingerprinting; Clustering; RSS.

I. INTRODUCTION

The user’s position is key for many current applications
and services [1]. While GNSS receivers embedded in modern
smartphones enable positioning outdoors, GNSS-denied sce-
narios such as indoors –where humans spend more than 80%
of their time [2, 3] – require other technological solutions.

Wi-Fi fingerprinting is a popular technique for position
estimation due to its low deployment costs and the simplicity
of the positioning algorithm [4]. The notion behind this
technique is that a fingerprint – the Received Signal Strength
(RSS) from the nearby Access Points (APs) – is representative
of the position where it was taken. For a fingerprint taken at an
unknown position (operational fingerprint), its position can be
computed using the kNearest Neighbour (NN) algorithm and
a dataset with reference fingerprints taken at known positions.

Although this solution is widely used, the distance to all the
reference fingerprints must be calculated to get the k nearest
fingerprints and estimate the final position. Thus, it might
suffer from scalability problems if the positioning algorithm is
run in a low-profile device (e.g., a smart watch) or provided by
a server accessed by multiple concurrent users. Some authors
have applied clustering models to group similar fingerprints of
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the radio map [5, 6, 7, 8]. Later, the computation of the nearest
neighbors is split into two searches: the coarse search and the
fine-grained search. The coarse search is devoted to calculate
the similarity of the operational fingerprint to all the clusters
representatives, whereas the fine-grained search is devoted to
calculate the similarity of the operational fingerprint to respect
all the reference fingerprints belonging to the selected cluster.

Some alternative approaches to clustering use knowledge on
the radio signal propagation to filter the radio map on the fly
and reduce the computational costs. Some approaches identify
the strongest AP in the operational fingerprint and then restrict
the comparison to either the reference fingerprints where that
AP was detected [9, 10, 11] or the reference fingerprints where
that AP was also the strongest one [12]. In general, those filters
present a trade-off between the accuracy and cost dimensions.
i.e., the smaller the reduced/filtered radio map is, the worse
the positioning error is. Current IPSs require solutions that
provide better compromises between the two dimensions.

Although k-Means provides a good trade-off between the
two dimensions, we identified two main problems. First,
computing the similarity to all the clusters – coarse search – for
every positioning request is inefficient if the number of clusters
and the environment area are both too large [11]. Second,
the fingerprints might not be equally distributed among the
clusters. The fine-grained search in clusters much larger than
the rest may degrade the benefits obtained from clustering.

We introduce three new more computationally efficient
variants of k-means clustering based on knowledge about
signal propagation. The main contributions of this paper are:

• A new computationally-efficient way to reduce the clus-
ters in the coarse search.

• Two new computationally-efficient ways to further reduce
the reduced radio maps in the fine-grained search.

• A reproducible evaluation that comprises an extensive
comparison on different scenarios.

The remaining of this paper is organized as follows. Section
II briefly reviews related works on clustering and Wi-Fi
fingerprinting. Section III describes the integration of the k-
means clustering algorithm in Wi-Fi fingerprinting and our
proposed variants. Section IV introduces the experimental
setup and shows the empirical results. Section V draws the
main conclusions of this work.



II. RELATED WORK

Given that Wi-Fi fingerprint matching and large radio map
sizes account for important computational loads [13, 14],
several authors applied approaches that solve the load issue
while also maintaining or improving the positioning accuracy.
Some authors tackled the issue using general-purpose unsuper-
vised learning models. They applied the divide and conquer
approach and, somehow, broke down the whole radio map into
smaller pieces. This is the case of clustering approaches like
k-means [5, 6] and Affinity Propagation [7, 8]. In contrast
to clustering, other authors proposed optimization heuristics
based on their knowledge on signal propagation and Wi-Fi
fingerprinting [11, 12, 15, 16]. Most of the heuristics are based
on the fact that the RSS value somehow indicate the distance
of the measurement device (e.g., smartphone or smartwatch)
to the AP.

Shin et al. [5] proposed a tracking system that automatically
builds a labeled topological map and estimates the users’
location. In their place learning stage, they applied k-means to
automatically organize the spaces in an unknown environment.
According to the authors, the clustered topological radio map
could determine the division of the operational area.

Abdullah et al. [17] slightly modified the k-means model
by applying the Bregman divergence as distance for clustering
formation, but still used the Euclidean distance for cluster
determination in the online phase. The authors tested their
proposal in terms of positioning accuracy against the original
k-means and Affinity Propagation in a medium sized area.

Cramariuc et al. [18] tested k-means using Euclidean
distance in the coordinate space and Affinity Propagation
using Log-Gaussian distance in the feature (RSS) space for
clustering formation in large multi-floor environments. They
stated that the Affinity Propagation based on Log-Gaussian
RSS distance obtained the largest time reductions while the
k-means based on Euclidean coordinates distance obtained the
best error, when compared among them and to non-clustering
weighted k-NN approach.

Park et al. [19] tested k-means using on Euclidean distance
in the feature space for clustering formation in a small
environment. The cluster determination in the online phase
used a probability distance.

Anuwatkun et al. [20] tried k-means using on Euclidean
distance in the feature space for clustering formation in a
small environment. Instead of using the RSS values directly,
the authors used the strength difference among the APs.

In contrast to the previous works, k-means has also been
used for coordinate-based clustering [18, 21], floor-wise fin-
gerprint clustering [6] and, even, to cluster the positions of the
list of nearest neighbors provided by the k-NN algorithm [22].

All the previous papers have something in common, the
knowledge on the radio signal propagation seems not to be
fully exploited to, for instance, reduce the computational load
on the selection of the best cluster.

III. k-MEANS AND PROPOSED VARIANTS TO REDUCE THE
COMPUTATIONAL LOAD IN THE ON-LINE STAGE

The k-means method [23] automatically divides the feature
space into k non-overlapping regions (clusters) represented by
their centroids (the mean of the cluster’s fingerprint vectors).
The clusters generation starts with random centroids, which are
iteratively adapted by minimizing the intra-cluster distances.
The algorithm minimizes the variances of the samples that fall
within the cluster.

In this work, we used the enhanced cluster initialization
procedure proposed in Arthur et al. [24] rather than the
completely random one. Note that the improved initialization
is also stochastic and the resulting clusters depend on the initial
cluster representatives.

The information from the clusters is integrated in Wi-Fi
fingerprinting using two phases:

• The off-line phase, which executes k-means over the
reference fingerprints, obtaining k clusters. We could say
that k-means provides a local version of the radio map
for every cluster.

• The on-line phase, which finds the reference fingerprints
most similar to the operational fingerprint in two steps.
The first step selects the cluster whose centroid is the
most similar to the operational fingerprint. The second
step performs a fine-grained search on the selected clus-
ter’s fingerprints.

Under ideal conditions (uniform distribution of samples
among the clusters) and choosing k =

√
n, the best asymptotic

computation time of cluster-based fingerprinting method is
O(
√
n), where n is the number of samples in the radio map

as shown in Figure 1.
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Fig. 1. Computational load as number of vector comparisons of Wi-Fi
fingerprinting with and without k-means clustering

Although k-means and k-NN are commonly used together,
the meaning of the variable k in both models is quite different.
It stands for the number of nearest neighbors to perform a
supervised classification/regression in k-NN, whereas it stands
for the number of clusters generated by the unsupervised
algorithm in k-means.

In the offline stage, the three variants we propose determine
the clusters (and their centroids) using k-means. In addition,
they analyse the clusters to find information that is relevant
for improving the search times in the on-line stage.



A. Proposed Variant 1: Improved coarse search

As in the traditional fingerprint model, a scalability problem
may occur if the number of clusters is large. Computing the
similarity of the operational fingerprint to all the clusters might
be too inefficient. We propose an improved coarse search.

In the off-line stage, this variant finds a function f1 that
maps an AP to the set of clusters that are relevant for it, storing
all the mappings. A cluster is said to be relevant for ith AP if
the cluster contains at least one fingerprint fp = (r1, . . . , rna)
for which |rmax − ri| ≤ ρ, 1 ≤ i ≤ na, being na the number
of detected APs, rmax the strongest RSS value of fp and ρ a
predefined threshold. The APs that do not map to empty sets
are marked as operative.

In the on-line stage, for an operational fingerprint, the oper-
ative AP that reports the strongest RSS signal is determined.
The function f1 is then used to get a cluster set for that AP
using the pre-calculated mappings. Later, the cluster selection
in the coarse search is performed on that cluster set, using
the common approach of selecting the cluster whose centroid
is the most similar to the operational fingerprint. This variant
performs the fine-grained search by applying k-NN directly
over the selected cluster’s fingerprints.

B. Proposed Variant 2: Soft-filtered fine-grained search

The k-means model does not guarantee that generated
clusters are balanced. Therefore, we improved in this variant
the fine-grained search for oversized clusters.

The second variant adds to the first variant a filtering step
in the fine-grained search. The filtering is applied to oversized
clusters whose number of fingerprints exceeds four times n

c ,
where n is the number of reference fingerprints in the entire
radio map and c is the number of clusters.

In the off-line stage, this variant determines an additional
function f2 for oversized clusters. This function maps an AP
and a cluster to the subset of the fingerprints that are relevant to
that AP and belong to that cluster. In this function, a fingerprint
is deemed relevant for an AP if it contains a valid RSS value
for the AP.

In the online-stage, the AP is determined and a cluster is
selected as explained for Variant 1. If the cluster is oversized,
f2 is then used for that cluster and AP to obtain the subset
of fingerprints where the fine-grained search is performed, i.e,
over which the k-NN is applied. Otherwise, the fine-grained
search is applied as explained for Variant 1.

C. Proposed Variant 3: Hard-filtered fine-grained search

The third variant is based on the second one, defining f2 in
a more restrictive way. For this variant, a fingerprint from a
cluster is only considered relevant for ith AP if the fingerprint
fp = (r1, . . . , rna) satisfies that |rmax − ri| ≤ ρ, 1 ≤ i ≤ na,
being na, rmax and ρ as defined for f1 in Variant 1.

In the online-stage, the coarse and fine-grained searches are
applied as explained for Variant 2.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

Clustering has been explored many times in the IPS lit-
erature. However, the diversity in implementation details,
evaluation criteria and evaluation scenarios prevents credible
comparisons using the reported results. Thus, we created an
experimental setup that includes the k-NN as core IPS, two
sets of hyperparameters for k-NN (Simple Configuration and
Best Configuration), 3 variants for k-means, 16 datasets and
10 execution runs. The clusters have been randomly generated
ensuring that k-means and the 3 variants share the same
initialization for each dataset and execution run.

The hyperparameters for k-NN are the RSS representation,
and the k value and the distance function for k-NN [25].
Simple Conf. stands for k = 1, Manhattan distance and positive
data representation. Best Conf. stands for the hyperparameter
configuration that reported the lowest positioning error for a
dataset after evaluating 144 alternatives.

The datasets were collected at the Tampere University
[6, 18, 26], University Jaume I [27, 28], University of
Mannheim [29], and University of Minho. Supplementary ma-
terials, with method implementation and dataset explanation,
are available in Zenodo [30] for research reproducibility.

Finally, the results collected for this paper are the mean
3D positioning error (ε3D) and the computational time (τDB)
resulting from processing all the operational fingerprints. Due
to the heterogeneity of the datasets, we report the normalized
values, ε̃3D and τ̃DB, against the results from a baseline method
–plain k-NN with the Simple Configuration. Due to the length
limit, we report the average of the normalized values for the 16
datasets. Table I shows in the last row how the average of the
two metrics, ε̃3D and τ̃DB, is calculated for plain k-NN. The
experiments were performed in a computer with Intel Core
i7-8700 CPU, 16 GB of RAM and Octave 4.0.3.

TABLE I
POSITIONING ERROR AND COMPUTATION TIME FOR SIMPLE AND BEST

PARAMETER CONFIGURATIONS USING PLAIN k-NN FOR EACH DATASET.

Simple Conf. Best Conf.

Database ε3D τDB ε̃3D τ̃DB ε3D τDB ε̃3D τ̃DB

DSI 1 4.95 12.23 1 1 3.79 14.11 0.77 1.15
DSI 2 4.95 5.18 1 1 3.8 15.35 0.77 2.97
LIB 1 3.02 46.25 1 1 2.48 42.79 0.82 0.93
LIB 2 4.18 46.17 1 1 2.27 139.69 0.54 3.03
MAN 1 2.82 156.01 1 1 2.06 156.4 0.73 1
MAN 2 2.47 14.37 1 1 1.86 22.3 0.75 1.55
SIM 3.24 254.25 1 1 2.41 232.13 0.74 0.91
TUT 1 9.59 18.88 1 1 4.45 58.84 0.46 3.12
TUT 2 14.37 2.76 1 1 8.09 3.21 0.56 1.16
TUT 3 9.59 79.5 1 1 8.55 93.89 0.89 1.18
TUT 4 6.36 79.87 1 1 5.4 293.25 0.85 3.67
TUT 5 6.92 11.98 1 1 5.26 39.07 0.76 3.26
TUT 6 1.94 624.81 1 1 1.91 728.08 0.98 1.17
TUT 7 2.69 511.79 1 1 2.24 599.18 0.83 1.17
UJI 1 10.81 599.87 1 1 6.56 697.81 0.61 1.16
UJI 2 8.05 2938.38 1 1 6.09 4678.64 0.76 1.59

Average - - 1 1 - - 0.739 1.814



B. Results

Table II shows the results for four models of Wi-Fi fin-
gerprinting based on k-NN: (1) plain k-NN, without any
optimization; (2) Moreira, which applies the heuristic proposed
by Moreira et al. [12], (3) Gallagher, optimized as proposed
by Gallagher et al. [11], and (4) k-means. For the later model,
we considered 3 values of k for k-means: 25, rfp1 =

√
n and

rfp2 = n
25 , where n is the number of reference samples.

TABLE II
GENERAL NORMALIZED RESULTS FOR TRADITIONAL METHODS.

Simple Conf. Best Conf.

Method ε̃3D τ̃DB ε̃3D τ̃DB

plain k-NN 1.000 1.000 0.739 1.814

Moreira 1.154 0.068 1.003 0.097
Gallagher 0.977 0.357 0.751 0.599

k-means k = 25 1.029 0.100 0.871 0.185
k-means k = rfp1 1.048 0.073 0.890 0.127
k-means k = rfp2 1.059 0.076 0.919 0.122

For all models, the Best Configuration is providing sig-
nificantly better accuracy than the Simple Configuration at
the expense of a significantly higher computational cost. The
best configuration includes computationally expensive distance
metrics, such as Log-Gaussian Distance [18], in some datasets.

As expected, k-NN model reports the largest computational
times. The Moreira model provides the lowest general com-
putational cost in the two configuration cases. However, it
provides the highest mean positioning error. In contrast, the
Gallagher model has an accuracy similar to the plain k-NN
model but the time cost is just reduced to a third at best.

The solutions based on the k-means model provide a good
trade-off between the accuracy and time cost dimensions.
Although their mean accuracies are slightly worse than those
obtained for the other models, their mean computational cost is
reduced more than ten times. Figures 2–4 introduce additional
analyses on the clusters generated by k-means, considering all
evaluated operational fingerprints.
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Fig. 2. Histograms of the number of cluster’s centroid comparisons (coarse
search in k-means) for each operational sample (> 200 in red)

Figure 2 shows the clusters involved in the coarse search,
which can be fixed using the same k in all datasets. However,
the number of clusters varies when they depend on a heuristic.
For the case of k = rfp1 , the majority of coarse searches
involve more than 50 clusters, reaching almost 150 in some
cases. A similar behavior is obtained in k = rfp2 , where the
coarse search involves more than 200 clusters in 22% of cases.
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Fig. 3. Histogram of the number of fingerprint comparisons (fine-grained
search in k-means) for each operational sample (> 800 in red)

Figure 3 shows that the number of fingerprints in the coarse
search is usually low, less than 200 in the vast majority of
cases. In k = 25 , the fine-grained search involve more than
800 reference samples in 19.2% of cases. Having a heavy fine-
grained search might happen when the dataset is large and k is
too low, but also when the clusters are not equally distributed.
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. a is the number of fingerprint comparisons
(fine-grained search in k-means) and e is number of comparisons to be
performed if the clusters had the same size for a radio map (> 4 in red)

Figure 4 shows that the relative cluster size with respect the
expected size –i.e. equally distributed partition with n

c samples
per cluster– is usually around 1. However, it is 4 times higher
than expected in 20.8% (k=25), 10.8% (k=rfp1 ) and 7.8%
(k=rfp2 ) of cases. k-means provides unbalanced subsets of the
radio map, specially in complex datasets with multiple devices
and a non-regular spatial distribution of reference points



TABLE III
GENERAL NORMALIZED RESULTS FOR THE THREE PROPOSED VARIANTS UNDER DIFFERENT PARAMETRIZATION CONDITIONS.

k-means - Variant 1 k-means - Variant 2 k-means - Variant 3

Simple Conf. Best Conf. Simple Conf. Best Conf. Simple Conf. Best Conf.

ε̃3D τ̃DB ε̃3D τ̃DB ε̃3D τ̃DB ε̃3D τ̃DB ε̃3D τ̃DB ε̃3D τ̃DB

k=25 ρ=00 1.023 0.086 0.871 0.168 1.010 0.057 0.877 0.099 1.040 0.054 0.920 0.090
k=25 ρ=03 1.012 0.087 0.851 0.170 1.001 0.058 0.860 0.100 1.008 0.055 0.874 0.092
k=25 ρ=06 1.012 0.087 0.849 0.171 1.001 0.058 0.859 0.101 1.002 0.056 0.868 0.094
k=25 ρ=09 1.013 0.088 0.850 0.172 1.002 0.059 0.860 0.102 1.002 0.057 0.865 0.095
k=25 ρ=12 1.017 0.089 0.854 0.173 1.004 0.060 0.864 0.103 1.006 0.058 0.866 0.097

k = rfp1 ρ=00 1.032 0.055 0.898 0.106 1.019 0.046 0.901 0.083 1.038 0.044 0.928 0.077
k = rfp1 ρ=03 1.022 0.056 0.872 0.108 1.007 0.046 0.880 0.084 1.013 0.045 0.891 0.079
k = rfp1 ρ=06 1.020 0.057 0.870 0.110 1.007 0.047 0.878 0.085 1.009 0.046 0.887 0.081
k = rfp1 ρ=09 1.022 0.058 0.871 0.111 1.009 0.048 0.879 0.086 1.010 0.047 0.884 0.082
k = rfp1 ρ=12 1.029 0.059 0.875 0.112 1.012 0.049 0.884 0.087 1.013 0.048 0.887 0.083

k = rfp2 ρ=00 1.035 0.048 0.930 0.091 1.023 0.042 0.930 0.076 1.034 0.041 0.948 0.073
k = rfp2 ρ=03 1.021 0.049 0.898 0.093 1.005 0.043 0.904 0.078 1.008 0.042 0.911 0.074
k = rfp2 ρ=06 1.020 0.050 0.896 0.095 1.007 0.045 0.900 0.080 1.008 0.044 0.906 0.076
k = rfp2 ρ=09 1.022 0.052 0.899 0.097 1.009 0.046 0.903 0.081 1.009 0.045 0.908 0.078
k = rfp2 ρ=12 1.026 0.053 0.902 0.099 1.012 0.047 0.907 0.082 1.013 0.047 0.908 0.080
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Fig. 5. Visual representation of the results. • stands for the k-means algorithm, 4 stands for variant 1 of the k-means algorithm, C stands for variant 2 of
the k-means algorithm, B stands for variant 3 of the k-means algorithm. The filled triangles stand for the case where ρ = 0 in the proposed variants. The
symbols printed in blue are for the single configuration, whereas the symbols printed in red are for the best configuration.

Table III and Figure 5 show the general results for the three
proposed variants under different parametrization conditions,
namely k for k-means and ρ for the relevance calculation.

According to the general results shown in the table, the
Variant 3 is always providing the lowest general computational
cost. This makes sense as it applies the improved coarse search
introduced in Variant 1 and a more restrictive filtering in fine-
grained search than Variant 2. However, Variant 1 is reporting
the best general results for the IPS with the Best Configuration,
whereas Variant 2 is better for the Simple configuration. For
the three values of k, the variants improve the original k-means
in both dimensions, as shown in Figure 5.

Regarding the value of k for k-means, there is still a trade-
off between the value of k and the results. However, the im-
proved coarse and fine-grained searches make the differences
between k = rfp1 and k = rfp2 insignificant in terms of
positioning accuracy for the Simple Configuration. In general,
the lowest computational load is provided when k = rfp2 .

The threshold value ρ of the proposed variants has a
significant impact on the results. The time cost increases as
ρ increases. The ρ value indicates how restrictive or permis-
sive the relevance function is for the coarse-search filtering.
Furthermore, large and low ρ values are not suitable. The
lowest threshold (ρ = 0, solid triangles in Figure 5) is too
restrictive and relevant fingerprints are discarded for the fine-
grained search, whereas the highest threshold (ρ = 12) is
too permissive so that outliers are included in the position
computation.

If we balance the results of all the proposed alternatives,
including the different parameters and base IPS configurations,
it seems that the proposed Variant 2 with ρ = 3 is a good
choice. This particular variant with that threshold value signif-
icantly improves the traditional k-means in both dimensions
(positioning error and computational time) independently of
the value of k (for k-means).



V. CONCLUSIONS

This paper introduced three new variants to improve the
coarse and fine-grained search in Wi-Fi fingerprinting when
k-means clustering is used to partition the full radio map. The
proposed Variant 2, with an improved coarse search and a
soft-filtered fine-grained search, seems to be a good choice in
terms of positioning accuracy and computational costs.

The optimization of the coarse grained search makes it more
computationally efficient, especially when the number of clus-
ters is large. As a side effect, removing non-relevant clusters
reduces the presence of outlier centroids and, therefore, the
position accuracy is slightly improved. The proposed filtering
at coarse search based on relevant clusters works when it is
neither so restrictive nor so permissive (i.e. ρ = 3).

The generated clusters may significantly differ in size. The
time cost of the fine-grained search depends on the cluster
where the operational fingerprint falls into. Some clustering
benefits might be lost if the cluster is oversized. Variants 2 and
3 successfully deal with this issue, reducing the computational
cost of the traditional k-means to almost a half.

Finally, we consider that this work is just the first step
to improve the accuracy of k-means in Wi-Fi fingerprinting
problems. The machine learning models, such as k-means
and k-NN, were designed for general-purpose problems and,
therefore, might not totally fit Wi-Fi fingerprinting. The indoor
positioning community should try to have a better understand-
ing of the machine learning models in order to introduce some
specific knowledge about, for instance, the signal propagation.
Including this knowledge about the strongest AP has improved
the accuracy of k-means in both dimensions in our work. As
future work, we envision the definition of more refined vari-
ants, a comprehensive dataset-wise analysis and the inclusion
of other well-known clustering models.
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