
DEPARTMENT OF
COMPUTER SCIENCE

RAFAEL RODRIGUES GAMEIRO

Bachelor of Computer Science and Engineering

TWALLET
ARM TRUSTZONE ENABLED TRUSTABLE
MOBILE WALLET:
A CASE FOR CRYPTOCURRENCY WALLETS

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
February, 2022

DEPARTMENT OF
COMPUTER SCIENCE

TWALLET
ARM TRUSTZONE ENABLED TRUSTABLE MOBILE
WALLET:
A CASE FOR CRYPTOCURRENCY WALLETS

RAFAEL RODRIGUES GAMEIRO

Bachelor of Computer Science and Engineering

Adviser: Henrique João Lopes Domingos
Associate Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
February, 2022

TWallet
ARM TrustZone Enabled Trustable Mobile Wallet:
A Case for Cryptocurrency Wallets

Copyright © Rafael Rodrigues Gameiro, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.7.0) [42].

https://github.com/joaomlourenco/novathesis

Para a minha família. Amo-vos muito.

Agradecimentos

Em primeiro lugar quero demonstrar o meu mais profundo agradecimento ao meu ori-

entador de dissertação, Professor Henrique João Lopes Domingos. Obrigado pela opor-

tunidade em poder embarcar neste grande desafio, pela contínua ajuda prestada, pela

atenção, disponibilidade, paciência e motivação demonstradas ao longo do desenvolvi-

mento desta tese.

Aos meus amigos, dentro e fora de FCT/UNL e a todos com quem me cruzei ao longo

desta grande caminhada, sinto-me imensamente grato por vos ter conhecido e espero ter

contribuído para que a vossa jornada se tenha tornado tão interessante como a minha se

tornou.

A todos os colegas da faculdade, não só pelos momentos mais exigentes de trabalho

e dedicação, mas também pelos momentos lúdicos que tornaram a minha experiência

universitária algo único. Um especial agradecimento a António Ferraz e Rafael Almeida,

pela amizade que partilhamos e pelo grande impulso que me deram e me continuam a

dar, para procurar continuar a trabalhar e tornar-me melhor do que sou.

A Pedro Paixão, Paulo Pereira e Luís Pereira, sem dúvida que sem vocês a minha vida

não seria a mesma que é hoje. Sinto-me imensamente grato por todos os momentos que

já passámos e pela grande amizade que nos une. Por nada a trocaria. Espero bem que

saibam que estas frase nunca farão jus à vossa grandeza!

A Hugo Rodrigues e Diogo Martinho, creio que este pequeno parágrafo não será

suficiente para descrever todo o respeito e afeição e que tenho por vocês, espero que

saibam disso. É verdade que já nos conhecemos há bastante tempo e sei que se fosse

preciso poderia ficar aqui, páginas e páginas, a debitar todas as aventuras que já vivemos.

No entanto, sendo breve, por todos os momentos de alegria e de tristeza já passados, o

meu mais generoso Obrigado. Espero que a nossa irmandade se possa prolongar por

muitos mais anos e possamos continuar a caminhar juntos lado a lado.

Por fim, não poderia deixar de agradecera a toda a minha família. À minha avó, tios,

padrinhos, pai, mãe e irmão, por todo o apoio e força que sempre me têm dado e que

me continuam a dar. Obrigado por não deixarem de acreditar em mim e nas minhas

capacidades. Amo-vos muito.

iv

“Today is victory over yourself of yesterday; tomorrow is your
victory over lesser men.” (Miyamoto Musashi)

Abstract

With the increasing popularity of Blockchains supporting virtual cryptocurrencies it has

become more important to have secure devices supporting operations in trustable cryp-

tocurrency wallets. These wallets, currently implemented as mobile Apps or components

of mobile Apps must be protected from possible intrusion attacks.

ARM TrustZone technology has made available an extension of the ARM processor ar-

chitecture, allowing for the isolation of trusted and non-trusted execution environments.

Critical components and their runtime support can be "booted" and loaded to run in

the isolated execution environment, backed by the ARM processor. The ARM TrustZone

solution provides the possible enforcement of security and privacy conditions for applica-

tions, ensuring the containment of sensitive software components and data-management

facilities, isolating them from OS-level intrusion attacks. The idea is that sensitive compo-

nents and managed data are executed with a trust computing base supported at hardware

and firmware levels, not affected by intrusions against non-protected OS-level runtime

components.

In this dissertation we propose TWallet: a solution designed as a generic model to sup-

port secure and trustable Mobile Client Wallets (implemented as mobile Apps), backed by

the ARM TrustZone technology. The objective is to manage local sensitive stored data and

processing components in a trust execution environment isolated from the Android OS.

We believe that the proposed TWallet framework model can also inspire other specific

solutions that can benefit from the isolation of sensitive components in mobile Android

Apps.

As a proof-of-concept, we used the TWallet framework model to implement a trusted

wallet application used as an Ethereum wallet, to operate with the Ethereum Blockchain.

To achieve our goals, we also conducted different experimental observations to analyze

and validate the solution, with the implemented wallet integrated, tested and validated

with the Rinkeby Ethereum Test Network.

Keywords: Trusted Execution Environments (TEE); Hardware-Backed Isolation; ARM

TrustZone; Trusted and Secure Wallets; Trust Computing Base (TCB); Hardware-Enabled

Isolated TCB

vi

Resumo

Com o aumento da popularidade de Blockchains e utilização de sistemas de criptomoedas,

tornou-se cada vez mais importante a utilização de dispositivos seguros para suportar

aplicações de carteiras móveis (vulgarmente conhecidas por mobile wallets ou mobile cryp-
towallets). Estas aplicações permitem aos utilizadores uma gestão local, cómoda, confiável

e segura de dados e operações integradas com sistemas de Blockchains. Estas carteiras

digitais, como aplicações móveis completas ou como componentes de outras aplicações,

têm sido desenvolvidas de forma generalizada para diferentes sistemas operativos con-

vencionais, nomeadamente para o sistema operativo Android e para diferentes sistemas

de criptomoedas.

As wallets devem permitir processar e armazenar informação sensível associada ao

controlo das operações realizadas, incluindo gestão e consulta de saldos de criptomoedas,

realização e consultas de históricos de movimentos de transações ou consolidação do

estado destas operações integradas com as Blockchains remotas. Devem também garantir

o controlo seguro e confiável do processamento criptográfico envolvido, bem como a

segurança das respetivas chaves criptográficas utilizadas.

A Tecnologia ARM TrustZone disponibiliza um conjunto de extensões para as arqui-

teturas de processadores ARM, possibilitando o isolamento e execução de código num

ambiente de execução suportado ao nível do hardware do próprio processador ARM. Isto

possibilita que componentes críticos de aplicações ou de sistemas operativos suportados

em processadores ARM, possam executar em ambientes isolados com minimização propi-

ciada pelo isolamento da sua Base de Computação Confiável (ou Trusted Computing Base).

A execução em ambiente seguro suportado pela solução TrustZone pode oferecer assim

um reforço adicional de propriedades de confiabilidade, segurança e privacidade. Isto

possibilita isolar componentes e dados críticos de possíveis ataques ou intrusões ao nível

do processamento e gestão de memória ou armazenamento suportados pelo sistema ope-

rativo ou bibliotecas middleware, como é usual no caso de aplicações móveis, executando

em ambiente Android OS ou noutros sistemas operativos de dispositivos móveis.

Nesta dissertação propomos a solução TWallet, uma aproximação genérica para su-

porte de wallets utilizadas como aplicações móveis confiáveis em ambiente Android OS

vii

e fortalecidas pela utilização da tecnologia ARM TrustZone. O objetivo é possibilitar o

isolamento de dados e componentes sensíveis deste tipo de aplicações, tornando-as mais

seguras e confiáveis. Acreditamos que o modelo de desenho e implementação da solu-

ção TWallet, visto como uma framework de referência, poderá também ser utilizada no

desenvolvimento de outras aplicações móveis em que o isolamento e segurança de com-

ponentes e dados críticos são requisitos semelhantes aos endereçados. Este pode ser o

caso de aplicações de pagamento móvel, aplicações bancárias na área de mobile banking
ou aplicações de bilhética na área vulgarmente chamada como mobile e-ticketing, entre

outras.

Como prova de conceito, utilizámos a TWallet framework para implementar um pro-

tótipo de uma wallet confiável, suportável em Android OS, para gestão de operações e

criptomoedas na Blockchain Ethereum. A implementação foi integrada, testada e validada

na rede Rinkeby Test Network - uma rede de desenvolvimento e testes utilizada como

primeiro estágio de validação de aplicações e componentes para a rede Ethereum em

operação real. Para validação da solução TWallet foi realizada uma avaliação experimen-

tal. Esta avaliação envolveu a observação de indicadores de operação com verificação

e comparação de diferentes métricas de operação e desempenho, bem como de aloca-

ção de recursos da aplicação protegida no modelo TWallet, comparando esses mesmo

indicadores com o caso da mesma aplicação sem essa proteção.

Palavras-chave: Ambiente de Execução Confiável (TEE); Isolação por Hardware; ARM

TrustZone; Carteiras Móveis Seguras e Confiáveis; Base de Computação Confiável (TCB);

TCB Isolada por Hardware.

viii

Contents

List of Figures xiii

List of Tables xiv

Listings xv

Acronyms xvi

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem . 4

1.3 Goals . 5

1.4 Contributions . 5

1.5 Report Structure . 6

2 Background and Related Work 7

2.1 Containment and Isolation . 7

2.1.1 Virtualization Alternatives . 7

2.1.2 Virtualization Security Concerns 8

2.2 Trusted Execution Environments . 9

2.2.1 Trusted Operative Systems . 9

2.2.2 Hardware-backed TEEs . 11

2.2.3 TEE-enabled Virtualization . 13

2.3 Development Platforms . 15

2.3.1 TrustZone-enabled Platforms . 15

2.4 ARM TrustZone and Development Model 16

2.4.1 Natively Supported Applications 16

2.4.2 OS-Level TEE Assisted Applications 20

2.5 Related Work . 22

2.5.1 Summary . 22

ix

2.5.2 Critical Analysis . 23

3 TWallet System Model and Architecture 25

3.1 System Model and Architecture Overview 25

3.1.1 Adversary Model Assumptions 28

3.1.2 Secure Architecture for Cryptocurrency Wallets 29

3.2 Secure Storage . 31

3.3 Authentication Service . 32

3.4 Logging Service . 32

3.5 Monitoring Service . 33

3.6 TEE Adaptation and Isolation Layer . 33

3.7 Attestation Service . 34

3.8 TWallet Framework . 36

3.8.1 TWallet Framework and Library 36

3.8.2 Supported Operations . 37

3.9 Real World Application Scenario . 42

3.10 Summary . 42

4 Implementation 45

4.1 Implementation Environment . 45

4.1.1 Trusted Execution Environment 45

4.1.2 Development Platform . 46

4.1.3 Development Platform Setup . 46

4.1.4 Implementation Metrics . 47

4.2 Secure Storage . 47

4.2.1 Implementation . 48

4.2.2 API . 49

4.3 Authentication Service . 49

4.3.1 Implementation . 49

4.3.2 API . 50

4.4 Logging Service . 51

4.4.1 Implementation . 51

4.4.2 API . 52

4.5 Monitoring Service . 52

4.5.1 Implementation . 52

4.5.2 API . 53

4.6 TEE Adaptation Layer . 53

4.6.1 Implementation . 54

4.6.2 API . 54

4.7 Attestation Service . 56

4.7.1 Implementation . 56

x

4.7.2 API . 56

4.8 TWallet Integration Support . 57

4.8.1 Implementation . 57

4.8.2 API . 57

4.9 Summary . 59

5 Experimental Evaluation 61

5.1 Testbench and Evaluation Methodology 61

5.1.1 Testbench Environment . 61

5.1.2 Evaluation Methodology . 62

5.1.3 Summary of Evaluation Metrics 63

5.2 TWallet System Performance . 64

5.2.1 Operations Performance . 65

5.2.2 Secure Components Performance 69

5.2.3 Internal components Performance 70

5.3 Profiling . 71

5.3.1 Boot Execution Time . 72

5.3.2 Application Boot . 72

5.3.3 Storage Cost . 73

5.4 System Resources . 74

5.4.1 CPU Utilization . 74

5.4.2 Memory Cost . 75

5.4.3 Network . 77

5.5 Attestation Service . 78

5.6 Summary . 82

6 Conclusion and Final Remarks 84

6.1 Results and Contributions . 84

6.2 Developed Experience and Knowledge Consolidation 85

6.3 Future Work . 87

Bibliography 88

Annexes

I Hikey960 AOSP+OP-TEE Setup 94

I.1 Prerequisites . 94

I.2 Build Instructions . 95

I.3 Flashing the Image . 96

I.3.1 Warning . 96

I.4 References . 96

I.4.1 OP-TEE Documentation . 96

xi

I.4.2 AOSP instructions . 96

xii

List of Figures

2.1 TrustZone-assisted virtualization (based from [50]) 14

2.2 TrustZone System Architecture (based on [9]) 17

2.3 TrustZone System Architecture with additional components 18

2.4 TrustZone System Architecture with OP-TEE (based on [38]) 21

3.1 Android Architecture (extracted from [7]) 26

3.2 Design model of proposed solution . 27

3.3 TWallet System Architecture . 30

3.4 Attestion Protocol . 35

4.1 Secure Storage Implementation . 48

4.2 Authentication Service Implementation . 50

4.3 Logging Service Implementation . 51

5.1 Communication between Prototype and Ethereum Blockchain 62

5.2 Wallet Operations Latency Comparison . 66

5.3 Secure Components Main Operations Latency 70

5.4 TWallet Internal Component Operations Latency 71

5.5 CPU Utilization Comparison. The light green represents the wallet with the

TWallet System, and the other green the wallet without our solution. 75

5.6 Memory Cost Comparison . 76

5.7 Network Resources Comparison . 78

5.8 Attestation Process Latency Comparison . 79

5.9 Latency of Attestation Process including key generation process 80

5.10 Key Generation Process Latency . 82

xiii

List of Tables

2.1 TrustZone-enabled Platforms. 16

5.1 Testbench Environment Characteristics . 61

5.2 Evaluation metrics . 64

5.3 Performance of Normal Wallet Operations 65

5.4 Performance of TWallet Operations . 65

5.5 History of Transaction Segment Comparison 69

5.6 Performance of Authentication Service Operations 69

5.7 Performance of Secure Storage Operations 69

5.8 Performance of Internal Operations . 71

5.9 System Boot Times . 72

5.10 Application Boot Times . 73

5.11 Storage Cost Values . 73

5.12 Attestation Process, Standard Deviation per Ciphersuite and Key Size . . . 81

xiv

Listings

3.1 Store Credentials . 37

3.2 Get Credentials . 38

3.3 Delete Credentials . 38

3.4 Read Data . 39

3.5 Write Data . 39

3.6 Delete Data . 40

3.7 Get Log . 40

3.8 Set Monitoring . 41

3.9 Attest Components . 41

xv

Acronyms

AOSP Android Open Source Project 10, 46, 47, 72, 94

API Application Programming Interface 10, 12, 20, 21, 31, 33, 37, 43, 45, 49, 50,

52, 53, 54, 56, 57, 60, 86

HCE Host-Card Emulation 4, 12, 13, 19

IoT Internet-of-Things 3, 19

JNI Java Native Integration 57, 60, 74

NS Non-Secure 17

NW Normal World 11, 17, 33, 43, 46, 49, 50, 52, 53, 54, 56, 57

OS Operating System 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23,

26, 27, 28, 29, 31, 45, 63, 71, 72, 73, 83, 94

SE Secure Element 12, 13, 23

SGX Intel Guard Extension 3, 11, 13, 23

SMC Secure Monitor Call 17, 20, 21

SoC System on Chip 3, 10, 11, 15, 16, 18

SW Secure World 11, 14, 16, 17, 18, 19, 20, 22, 46, 65, 75

TA Trusted Application 10, 20, 21, 22, 32, 33, 34, 35, 36, 43, 44, 47, 48, 49, 50, 51,

52, 53, 54, 55, 56, 57, 59, 60, 65, 67, 70, 86

TCB Trusted Computing Base 2, 3, 5, 11, 14, 15, 19, 20, 23, 24, 25, 26, 27, 29, 34

TEE Trusted Execution Environment 2, 3, 5, 9, 10, 11, 12, 13, 16, 17, 19, 20, 21, 22,

23, 27, 29, 31, 32, 33, 34, 36, 37, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 56, 59, 72,

74, 85, 86, 87

xvi

TPM Trusted Platform Module 2, 13, 24, 34

TZASC TrustZone Address Space Controller 18

TZMA TrustZone Memory Adapter 18

VM Virtual Machine 7, 8, 14, 22, 23, 31

xvii

1

Introduction

1.1 Context and Motivation

Mobile devices and apps. The proliferation and relevance of mobile devices, such as

mobile smartphones, tablets, and applications (Apps), have been increasing through-

out the years, as nowadays the great majority supporting rich functionalities, including

web-browsing, social networking, messaging, gaming, media processing and different

location-aware operations, among others. At the same time, a new variety of applications

ranging from pure entertainment, sensing-based interaction and possible coupled actua-

tion capabilities and new forms of personal mobility assistance support, are now used in

the current digital transformation. Many of these applications are used to support and

process more and more sensitive information, requiring the appropriate enforcement of

security, privacy and trustability control conditions for the provided functionality. As

examples, we use today applications for business-oriented management processes; mobile

payments, mobile banking, e-ticketing, healthcare monitoring, applications for digital

multi-factor authentication proofs, dematerialization of relevant documents such as cit-

izen identity cards, driving licenses, medical records, among others. Cryptocurrency

wallets for different types of cryptocurrencies and related blockchains is another vague

of recent applications with a notable increasing use.

Mobile apps and security issues. With the increasing popularity of mobile and ubiq-

uitous apps, the amount of critical personal data stored in these devices and related

operation control also increases, making the security and trust on mobile devices more

than ever an important requirement. This necessity is visible from different published

data, showing the huge growth of threats, attacks and incidents targeting the use of mo-

bile devices in the Internet exploiting vulnerabilities of different operating systems and a

huge amount of affected applications [64, 65, 20, 52, 16, 63].

Mobile apps and security mechanisms. Several security mechanisms and tools have

been developed for the device Operating System (OS), to improve data privacy controls

and to mitigate some security risks. However, in general, these tools and mechanisms

1

CHAPTER 1. INTRODUCTION

run on the assumption that the device OS, as well as runtime libraries supporting appli-

cations, are together part of the Trusted Computing Base (TCB). Nonetheless, attacks to

the OS components with intrusions and data exfiltrations have already happened in the

past and are nowadays a concern in addressing trusted mobile systems and applications.

Meltdown [41] and Spectre [35] are common examples of attacks on the OS, and similar

attack vectors also affected different Operating Systems, such as Android OS, Apple IOS,

Microsoft Windows Mobile OS or Linux-based OS Distributions. Unfortunately, protect-

ing data on mobile devices is far from trivial. Typically, mobile apps rely many times

on ad-hoc OS and application-level mechanisms or application-level support libraries to

protect sensitive data and prevent data leaks. Moreover, the TCB code that mobile apps

depend upon is very complex: popular mobile platforms based on Apple IOS, Android,

or Windows 8 comprise a full-blown OS, local services, and system libraries, consisting of

millions of lines of code (LOC). This exposes a large threat surface for possible intrusions

and attacks vectors to install BOTs, viruses or malware, breaking the integrity of runnable

code or having illicit access to processed and stored data. Therefore, because of the lack

of fine-grain isolation on execution conditions, it is difficult to ensure apps’ protection,

opening the door for exploits that can be used to disable security checks. This facilitates

a way to retrieve sensitive data that can occur directly (by the installation of unsecure

and malware applications and components that are, unfortunately, downloadable from

“poor scrutinized” mobile app stores). On the other hand, some of those applications (ap-

parently inoffensive at a first glance) can be used as indirect attack vectors against other

critical installed applications (called deputy escalation attacks), exploiting the isolation

deficiencies in OS runtime services or the unawareness of users when executing such

applications. As an industry answer, leveraging the research results for those problems,

laptops, smartphones, and tablets are now increasingly incorporating trusted computing

hardware. For example, Google’s Chromebooks use Trusted Platform Modules (TPMs) to

prevent firmware rollbacks and to store and attest users’ data encryption keys. Windows

8 (on tablets and phones) offers BitLocker full-disk encryption and support for the storage

of virtual smart cards, also using TPMs. Recent research leverages TPMs to build new

trusted mobile services. However, TPMs are very limited in the sense that they only pro-

vide functionality for boot attestation and possible storage of encryption keys in related

hardware chips, not providing a way to execute the code of application components.

Trusted Execution Environments. More recently, the research community has studied

the design of trusted computing systems based on small TCBs usable as Trusted Execu-

tion Environment (TEE). In this case, TCB components can be isolated and executed

with improved access and fine-grain isolation control. Such solutions allow application

developers to execute parts of the application logic in a trusted controlled environment,

isolated from the generic OS runtime. Because only a few basic services can be offered in

such trusted environment, the minimal setup for these systems addresses TCBs on the

order of thousands of lines of code. While this prior research has managed to explore

the limits in shrinking the TCB of trusted computing systems, the functionality of these

2

1.1. CONTEXT AND MOTIVATION

systems may be also too restrictive for mobile applications or easy porting of current

applications, as they are structured, designed, and implemented today. Moreover, mobile

apps are typically written in high-level languages and compiled to intermediate code

(e.g., Dalvik bytecodes in the case of Android Apps).

Hardware-Backed Trusted Execution Environments (TEEs). An interesting direction is

the possibility for structuring applications with components running on TCBs providing

a Trusted Execution Environment, isolated as extensions to hardware processor architec-

tures. This is the case of the ARM TrustZone technology provided for ARM System on

Chip (SoC) systems, covering the processor, memory, and I/O support for peripherals. In

this direction, the research on how to support applications leveraged from ARM Trust-

Zone is a current trend in the agenda of research and development communities. In the

same direction, this dissertation is particularly focused on the use of hardware-enabled

TEEs. In general, a TEE is an execution environment that runs alongside but isolated

from the main operating system (considered as the Rich OS) [26].

By using Hardware-Backed TEEs to execute sensitive components of the OS itself or crit-

ical application components, we can enforce security mechanisms by providing: (i) an

isolated and secure execution apart from the Rich OS and other applications; (ii) iso-

lation of cryptographic operations, with required primitives and management of keys

supported inside the TEE and never exposed outside (iii) cryptographic components for

data authentication, integrity and confidentiality, as well as, (iv) logging, monitoring

and firmware based attestation control mechanisms, for the verification of trustworthi-

ness conditions of components in the application critical software stack, with measured

(or attested) boots for integrity checks that can be verified when required. Because our

main focus in this thesis are the hardware-based TEEs, we highlight the most commonly

used hardware-based TEEs, the Intel Guard Extension (SGX) [13] and ARM TrustZone

[70], with a particular focus on the former, as leverage technology to build a new genera-

tion of secure and trustable applications that can be targeted to ARM-based devices that

can include laptops, smartphones, tablets, smart TVs or other candidate devices in the

Internet-of-Things (IoT) ecosystems.

ARM TrustZone. The ARM TrustZone technology [70] is used on processors that follow

an ARM architecture in current chipsets and firmware enablers. Processors with different

ARM Cortex architectures are today commonly found in laptops, smartphones, tablets,

Smart TVs, wearables, and other IoT devices [4]. The use of ARM TrustZone technology

for such devices can mitigate software intrusion attacks and the security of applications

can be interestingly enforced. Because of this technology possible applications, the scien-

tific community has started many projects related to the research of this component [50,

75, 33, 17, 36, 40, 74, 10, 31, 23, 45, 57]. Some of the projects are focused on providing

stronger security properties to our everyday applications, making them more resilient

against possible attacks [36, 31, 57]. However, not all applications are being equally

researched, and the explosion of recent mobile wallets for cryptocurrency blockchains

are an example of current research and development.

3

CHAPTER 1. INTRODUCTION

Trustable and Secure Mobile Wallets. Mobile wallets are applications where sensitive

information regarding the management of valuable assets, cryptographic keys, and state

of secure transactions based on cryptographic primitives are processed, making the user’s

device susceptible to attacks. Moreover, the usual security conditions provided to such

wallets are typically based on encryption schemes where the keys are derived from users’

passwords and cryptographic libraries running at user-space, making it more susceptible

to dictionary attacks or software attack vectors injected by malware, virus, or worms.

Because the private keys define the ownership of cryptocurrency data, they must be very

well protected and secured under sound trustability assumptions. Therefore, we con-

sidered that research surrounding the usage of ARM TrustZone technology can enforce

security methods for popular mobile wallets, used during the management of transac-

tions and storage of keys, an interesting topic. Furthermore, it is interesting to research

generic solutions in a stack of trustable components for such applications that could

be also used for other application types. In this we include, for example, mobile bank-

ing, mobile ticketing, and the so-called Host-Card Emulation (HCE) applications [61]

used to dematerialize the use of smart cards or memory cards for payments, ticketing or

value-vouchers, developed as HCE software apps ready to run in mobile devices.

1.2 Problem

Focusing on the use of ARM TrustZone technology as a relevant enabler for trusted exe-

cution environments, the problem of this dissertation can be defined as the research of

answers to the following research questions:

• How to design, with generic modelling concerns, a solution for Hardware-Backed

Trustable Components for more robust, secure and trustable apps, particularly sup-

porting a new generation of trusted crypto-wallets for cryptocurrency blockchains?

• Is it possible to address a generic model for such applications that can also be used

as a development Framework with reference components to develop others with

similar requirements?

• How to offer, within the framework model, components to help programmers to

design more robust and secure applications to run on rich operating systems, such

as Android or Linux OSes, but using the minimal trust computing base assumptions

in the provided hardware-backed trust computing model?

• How can we measure the advantages of such provided solutions and, how to analyse

the possible trade-offs or drawbacks in the operational performance and required

resources?

4

1.3. GOALS

1.3 Goals

To find the answers for the above questions, the main goal of this thesis is to develop

a trustable model and runtime system offering trust computing based components in a

ARM TrustZone enabling software stack, to protect sensitive applications. Our approach

is to address the goal by designing a trusted framework model and related runtime that

can be applied to a variety of applications that can benefit from the proposed solution.

However, to define a more focused proof-of-concept in our objective, we target the use

of our trusted model to develop a cryptocurrency wallet application for the Ethereum

blockchain.

Our solution, named TWallet, provides generic bootable components in the hardware-

enabled TCB for ARM devices, that can be reused by other cryptocurrency wallets, and

possibly for other apps that can also benefit from the components we provide. Moreover,

we intend to offer our solution as an extensible base to ease the development of a new

generation of more robust apps requiring isolated trustable execution guarantees and

secure processing of sensitive information.

The objectives beyond the TWallet solution are:

• TWallet-based application must have a small TCB and reduced attack surface, by

considering the TCB isolated in hardware by any ARM TrustZone chipset. With

this requirements met, the application will be able to protect the data it contains,

through isolation, against possible attacks to rich operating system kernels and

related OS libraries;

• The solution provides an easy-to-use interface for developers, allowing it to be

reused and integrated with other existent applications, with a minimal porting

effort. With that, systems can make use of the security properties we intend to offer,

avoiding the programmers to be faced with the burden and low-level programming

abstractions offered at the level of the ARM TrustZone firmware support;

• Since ARM TrustZone does not provide an OS to directly execute applications, the

usage of a bootable secure micro OS is a necessity. The TWallet model is designed

for the implementation of its runtime components on top of a standard base TEE-

API (as defined by the GlobalPlatform consortium), adopting a compliant TEE -

namely OP-TEE [39], as the base leveraged solution

1.4 Contributions

To achieve our goal and objectives, this dissertation addresses the following contributions:

• Definition of the TWallet System Model and Architecture as a generic framework

offering a software stack for the development of trusted applications enabled by

ARM devices equipped with ARM TrustZone compliant chipsets;

5

CHAPTER 1. INTRODUCTION

• Implementation of the TWallet prototype and its share as an open solution for

use to the research and development communities, supported by a reference ARM

TrustZone chip-enabled development platform, the Hikey 960 board [2];

• Development of a Ethreum Crypto Wallet App (publicly available in a distribution

repository1) as a proof of concept prototype following the TWallet design model and

integrated as a remote wallet to interact with the Rinkeby Ethereum Test Network

- an Ethereum test network that allows for blockchain development testing before

deployment on Mainnet, the main Ethereum network in production;

• Validation of the TWallet solution, with an extensive experimental evaluation that

aims to test its behaviour in a real-case scenario, with assessment metrics compar-

ing security and trustability benefits, and the inherent performance drawbacks and

resources’ utilization. The experimental evaluation was conducted in a compara-

tive analysis of the operations performed in the TWallet protected crypto wallet

and a non-protected version of the same, by measuring latency and throughput

conditions; profiling indicators, resource allocation requirements, such as storage,

memory or boot-latency observations, and analysis of developed attestation mecha-

nisms of the running components in the ARM Trust zone Trust-Computing Base.

1.5 Report Structure

The remaining document is be organized as follows: Chapter 2 presents a background on

the state-of-art and provides some related work references considering the objective of

this dissertation; Chapter 3 presents the system model and its assumptions, as the system

architecture and its implementation considerations; Chapter 4 describes the implemen-

tation and architecture realization of our solution, which includes all developed secure

components functionalities and implementation options; Chapter 5 details the experi-

mental evaluation and validation done to our developed solution and related prototypes,

as also a discussion regarding the obtained results; To conclude, Chapter 6 presents our

final remarks about the project, the faced issues and future work.

1https://github.com/rafagameiro/Thesis_TWallet

6

2

Background and Related Work

Taking into account the background and different aspects related with the expected goals

planned for this dissertation, in this chapter we present the study of related work refer-

ences we considered needed to its development. Therefore, the chapter is organized as

follows: the concept of isolated execution and containment is addressed in section 2.1;

Trusted Execution Environments, their definition and the most used ones are presented in

section 2.2; In section 2.3 we discuss development platforms and describe their features

and specifications; ARM TrustZone is explored more in detail, in section 2.4, where we

present its system model and architecture behind this component, as its limitations and

issues; Some works related to ARM TrustZone and projects done to increase the security

properties of applications and other components are mentioned at the end of this section.

Finally, we summarize the main topics discussed throughout this chapter, and explain

which of the concepts and technologies are used in our implementation.

2.1 Containment and Isolation

Virtualization refers to a technology that provides an abstraction of the computing re-

sources used by some software, which runs in a simulated environment called a Virtual

Machine (VM). There are multiple types of virtualization, however, most of them are

out of the scope of this project and our focus will only be full Virtualization. This type

consists in the simulation of physical hardware to allow the execution of multiple full

operative system instances.

In this section, we synthesize some of the principles in William Stallings’s, Computer

Security: Principle and Practice [73] by describing the principal alternatives of virtual-

ization, inside the full virtualization type, and some security concerns that must be taken

into account when making use of these alternatives.

2.1.1 Virtualization Alternatives

One or more virtual machines can be run on the same physical host machine, where

each virtual machine, executes its own programs, and runs its own OS, called guest OS,

7

CHAPTER 2. BACKGROUND AND RELATED WORK

independently from the others. While executed in the host OS, virtual machines run as

a process in an application window, similar to any other application. The separation of

resources between the different virtual machines is done by a software called hypervisor

[32].

The hypervisor sits between the hardware and the VMs and acts as a resource broker.

This means, it safely shares the physical resources of the host resources among the VMs,

allowing for its safe execution and coexistence. With this technology, two types of virtu-

alization, distinguished by whether there is an OS between the hypervisor and the host,

can be used: the native virtualization, and the hosted virtualization.

Furthermore, different from the hypervisor vision that aims to emulate the physical

resources, another type of virtualization, called container virtualization, belongs to the

full virtualization group. All these alternatives are presented below.

2.1.1.1 Native Virtualization

Native Virtualization allows for a direct control over the physical resources of the host.

Once the host OS is installed and configured, the system is capable of supporting hosted

virtualization on another guests OS. This type of virtualization is arguably more secure,

as it has fewer layers that require the appliance of security mechanisms, contrary to what

happens in the hosted approach.

2.1.1.2 Hosted Virtualization

Hosted Virtualization exploits the resources and functions of the host OS, running the

guests OS on top of it. This makes the host OS, responsible for the hardware interactions

on the hypervisor behalf. This type of virtualization is particularly beneficial to develop-

ers, who need to run multiple environments during project development, deployment,

and testing. The created VMs can be easily migrated between hypervisors, reducing the

deployment time and increasing the accuracy of what is deployed.

2.1.1.3 Container Virtualization

Container, or Application, Virtualization runs its software, known as virtualization con-

tainers, on top of the host OS kernel and provides an isolated execution environment for

applications. Different from the hypervisors approach, this type of virtualization makes

all containerized applications share a common OS kernel. This greatly reduce the over-

head needed to run separated OSes per application. However, it can potentially introduce

greater security vulnerabilities when compared with the other virtualization types.

2.1.2 Virtualization Security Concerns

Despite the benefits presented by these virtualization techniques, a number of security

concerns that result from its usage must be considered [58].

8

2.2. TRUSTED EXECUTION ENVIRONMENTS

Regarding the guest OS, to prevent invalid accesses to memory regions that belong to

other OSes or even the hypervisor itself, it should be isolated. This would ensure that the

programs executing within the OS can only access its OS resources, and nothing more

than that.

Regarding the hypervisor, since it has privileged access to the programs and data that

execute in each of the guest OSes, it must be secured from possible attacks against it that

could compromise the component and its guests. Therefore, the hypervisor should be

secure using a process similar to the ones used to secure an operative system. That is,

it should be placed inside an isolated environment, to minimize the number of vulnera-

bilities. A possible solution could be the isolation of the hypervisor, inside an hardware-

backed TEE. This solution, will be explored in further detail on section 2.2.3.

2.2 Trusted Execution Environments

To prevent security vulnerabilities that might arise in applications, the support provided

by TEEs is an option that has been taken into account by the research community. How-

ever, to fully provide all security guarantees these secure environments offer, a trustable

hardware-backed environment is a necessity. In this section, we provide an overview

over some TEEs, presenting its main features. Afterwards, we discuss some hardware-

backed technologies that offer certain security properties, beneficial to the use of TEEs.

To conclude, we present different configurations that can be used in a TEE to enforce the

security properties during the virtualization process.

2.2.1 Trusted Operative Systems

A TEE, or Trusted OS, is a tamper resistant processing environment that runs on a sep-

aration kernel. It guarantees the authenticity of the executed code, the integrity of the

runtime states, and the confidentiality of its code, data and runtime states stored on a per-

sistent memory [56]. This section is focused on presenting some TEEs used in a research

context and its capabilities.

2.2.1.1 OP-TEE

OP-TEE is a open-source Trusted OS, designed as a companion to a non-secure OS kernel,

running on ARM processors, using the TrustZone technology [67]. It was primarily de-

signed to rely on TrustZone technology as the underlying hardware isolation mechanism,

however, it has been structured to be compatible with any isolation technology as long as

it is able to enforce the TEE concepts and goals. OP-TEE is nowadays maintained by the

Linaro Consortium [37].

The main design goals for OP-TEE are :

• Portability, since this environments aims at being easily pluggable to different ar-

chitectures and hardware;

9

CHAPTER 2. BACKGROUND AND RELATED WORK

• Isolation, provided between the non-secure OS and the Trusted Application (TA),

executed on top of this OS;

• Small footprint, which is translated to its size as OP-TEE is small enough to reside

in the SoC memory only.

2.2.1.2 SierraTEE

SierraTEE is a Trusted OS that executes inside the ARM TrustZone technology [59]. It

provides a minimal secure kernel which can be run in parallel with a Rich OS on the same

core. The communication between the secure kernel and the Rich OS is achieved through

the use of Global Platforms’ Application Programming Interface (API)s [25]. This allows

for an easier development of portable applications, since these APIs are considered a

standard in TEEs development.

SierraTEE uses the ARM TrustZone security extensions to protect the secure kernel

and any secure peripherals from code running in the normal world. This means if an

attacker obtains supervisor privileges on the Rich OS side, it could not possibly inflict the

secure kernel, as it cannot gain access to the secure world.

For systems without the security extensions, an emulated version can be used to

provide a software environment fully compatible with SierraTEE on systems with the

ARM TrustZone security extensions. An multi-core implementation of this Trusted OS

is also available, in case the current system uses a separate ARM processor for security-

related matters.

2.2.1.3 Trusty OS

Trusty [8] is a Trusted OS, part of the Android Open Source Project (AOSP) [27], that

provides a secure environment for the Android OS. Trusty is presented as a reliable and

open-source alternative to other secure environments, mainly closed ones since Trusty’s

transparency level is an advantage.

Trusty OS runs in parallel with Android OS in the same processor. This means that

Trusty can have access to the full potential of the device it runs, while isolated from the

rest of the system. The system isolation is done by both hardware and software. This

Execution environment is not limited to a single processor model, as it is able to run in

both ARM and Intel processors. On ARM processors, Trusty makes use of the TrustZone

technology to create a secure Trusted Execution Environment.

The main components of Trusty are, a small kernel derived from Little Kernel [34], a

linux driver kernel, and a user-space library. The driver kernel is used to transfer data

between the secure environment and the Android OS. The user-space library is a library

that enables communication with the executed Trusted Applications through the driver

kernel.

10

2.2. TRUSTED EXECUTION ENVIRONMENTS

All Trusty applications are developed by a single party and packaged with the Trusty

kernel image. Therefore, the development of third party applications is not supported at

the moment [8]. Nonetheless, Trusty enables the development of new applications, but

explicitly states that it must be done with extreme care, as each new application causes

an increase of the TCB. That itself can increase the attack surface, leading to new threats

to the system.

2.2.2 Hardware-backed TEEs

To ensure all security properties provided by a TEE, a secure and trustable hardware-

backed environment, capable of running the TEE, is needed. This environment must be

able to provide a set of properties, including integrity, authenticity, and confidentiality.

In this section, we present multiple techniques used to guarantee these properties.

2.2.2.1 Intel SGX

Intel SGX consists in a set of extensions to the Intel architecture that aims to provide

integrity and confidentiality guarantees to programs [14]. By making use of these guar-

antees, programs can safely perform computations even if privileged software like the

OS, hypervisor, or BIOS, are compromised. Intel SGX can also provide protection against

physical attacks up to a certain degree, assuming the CPU package is not breached [13].

The principal abstraction in the SGX architecture is the enclave, an isolated execution

environment within the virtual address space of a process. The code and data contained

and executed inside the enclave are stored in a region of protected physical memory called

Enclave Page Cache (EPC) [11]. While in there, the enclave contents are guarded by CPU

access controls. When the information is moved to and from memory, the information in

the EPC must be encrypted and decrypted respectively, since the code and data that run

inside the enclave must never leave the CPU boundary unencrypted. Enclave memory

is also integrity protected, meaning that memory modifications and rollbacks can be

detected. It’s important to notice that non-enclave code cannot access enclave memory,

although the contrary can happen [13, 71].

2.2.2.2 ARM TrustZone

The ARM TrustZone technology is a set of security extensions found in many ARM pro-

cessors. This technology was developed by ARM that aims to provide sound trustability

assumptions into any platform that uses its architecture, which is nowadays widely used,

particularly in mobile devices. By taking advantage of the hardware inside the SoC along

with software components, this technology can provide a secure environment where the

confidentiality and integrity of the applications it runs are assured.

TrustZone relies on the concept of worlds separated by hardware: a non-secure Nor-

mal World (NW) and a Secure World (SW). The non-secure world is where the OS and

11

CHAPTER 2. BACKGROUND AND RELATED WORK

most applications run, while the secure world is an isolated space where secure software

is executed. Both of these worlds execute in a time-sliced fashion and the system guaran-

tees that no secure component can be accessed outside the trusted environment. A secure

monitor allows for the programs and applications to context switch between worlds. This

division in worlds is not only in the process but also in memory, software, interruptions,

and other components virtually separated so that it is possible to create a trusted platform

where applications can execute without being exposed to possible software or hardware

attacks [9]. The executed applications can be implemented using platform-independent

API, standardized by Global Platform [25].

2.2.2.3 Secure Elements

A Secure Element (SE) is a tamper-resistant platform capable of securely hosting appli-

cations and storing their confidential and cryptographic data [24]. This component is

an evolution of the traditional chip that was built for use in contactless credit cards (e.g,

smart cards) and provides the user with a level of security and identity management to

assure the safe delivery of a specified service. There are different forms of SE: embed-

ded and integrated SEs (in the case of smart cards), on the SIM or Universal Integrated

Circuit Card (UICC) or on an SD card. The different form factors exist to address the

requirements of different business implementations and market needs.

The information stored in this special chip is impossible to access by normal appli-

cations, and only through trusted applications it is possible to read and copy its data.

Also, the SE communicates directly with end-applications without passing any data to

the device operative system. Therefore, if the device was infected with malware, the SE

would be intact and no information stored in it would be intercepted by the attackers.

Despite the advantages this component can bring, it also presents some drawbacks.

One of them is the availability of this chip, as not all mobile devices have access to it.

Also, the devices that possess a SE bring an extra cost to mobile builders and their users.

Another drawback is its limited functionalities when compared with other hardware-

backed TEE solutions, like the TrustZone Technology. That’s a major reason why in our

case, the use of a SE is not an option.

2.2.2.4 Other Solutions

In addition to the previously mentioned technologies, other alternatives have been de-

vised to provide basic underlying primitives for the creation of secure and trustable

environments. Given the considerable number and variety of existing technologies, a

few of them are presented below to demonstrate each ones approach to provide security

guarantees to the applications.

HCE is a contactless technology that offers the option for the NFC controller in mobile

devices to route communications from the contactless reader to an HCE service, on the

12

2.2. TRUSTED EXECUTION ENVIRONMENTS

device host CPU, instead of the SE default option [61]. This HCE service can be part of a

mobile application with a user interface, such as a mobile wallet for payment.

When using a mobile device with a SE without HCE, the NFC controller routes all the

messages from the NFC reader to the corresponding application residing in the SE. If the

device uses an HCE service, the messages can be routed to an application running on the

host CPU. The decision is up to the operative system [55].

Sanctum[15] stems from a research initiative targeting RISC-V processors. Similar to

SGX, Sanctum enables the creation of enclaves at the user level. The isolation provided by

these enclaves provably defends against known software side-channel attacks, including

cache timing attacks and passive address translation attacks. Sanctum also shows that

a strong isolation of software modules can be achieved with low overhead. Despite the

benefits offered by this TEE, and unlike SGX, the enclave memory is not encrypted, which

can make the system vulnerable to physical attacks on DRAM [50].

TPM, is a computer chip that can securely store artefacts used to authenticate the

platform it is inserted[30]. Its primary purpose is to serve as a trustable source dur-

ing the boot of the local platform, and securely store the cryptographic keys used from

remote attestation, a process used to prove that a platform is trustworthy and has not

been breached. However, this component cannot provide the means to execute security-

sensitive code in isolation. Instead, it is used in tandem with trusted hypervisors or OSes

that will then provide confidentiality and integrity protection to the applications it runs

[50].

2.2.3 TEE-enabled Virtualization

As previously mentioned in section 2.1, to provide strong security guarantees, the hy-

pervisor could be placed in an isolated environment. Given this thesis context, we will

consider this isolated environment to be the ARM TrustZone.

The TrustZone technology, although implemented for security purposes, can be used

as a form of system virtualization. Important to highlight that this type of virtualization is

not considered either full virtualization or para-virtualization, because although the guest

OSes can execute without changes in the non-secure world, they need to communicate

between themselves to successfully manage the memory and address space usage.

Based on Sandro Pinto’s work [50], regarding the TrustZone-assisted virtualization

solutions, three configuration types are available: single-guest, dual-guest, and multi-

guest. All configurations are represented in figure 2.1 and will be explained below.

13

CHAPTER 2. BACKGROUND AND RELATED WORK

(a) single-guest (b) dual-guest

(c) multi-guest

Figure 2.1: TrustZone-assisted virtualization (based from [50])

2.2.3.1 Single-guest

As illustrated in Figure 2.1(a), the guest OS is executed under the non-secure perimeter,

while the hypervisor runs in the secure world, in the monitor mode. This way, the hyper-

visor can visualize the entire system, while the guest OS has limited access to the system

resources.

Using this configuration, the TCB becomes reduced to the code running in the SW,

in this case being the hypervisor. All the resources used by the guest OS are considered

non-secure as these are directly managed by the OS itself, while the remaining ones are

under supervision of the hypervisor.

2.2.3.2 Dual-guest

This configuration is illustrated in figure 2.1(b), and consists in running each guest OS in

its independent world, while the hypervisor, just like the single-guest, is executed in the

monitor mode.

The dual-guest OS system is the most used configuration of the existing TrustZone-

assisted virtualization options. The main motivation is because of the precise match

between the number of consolidated VMs, and the number of virtual "worlds"existing

14

2.3. DEVELOPMENT PLATFORMS

inside the processor. This configuration has been typically used for mixed-criticality

systems. In these scenarios, a Real-Time Operative System (RTOS) runs in the secure

world, while a normal OS runs in the normal world.

Since the privileged software runs in the secure world, the secure guest OS has a

full view of the entire system, which means it is part of the TCB of the system. RTOSes

typically have a reduced memory footprint, which makes them attractive candidates for

such configurations.

2.2.3.3 Multi-guest

In the multi-guest configuration, the hypervisor executes in the monitor mode, while

multiple guest OSes are encapsulated between the normal and secure worlds. During the

execution of the system, the active guest OS runs in the normal world, while the context

of the inactive guests is preserved in the secure world. Since guest OSes are able to run

only on the normal world, the system’s TCB is limited to the hypervisor size.

This configuration option is relatively new in comparison with the other two configu-

rations, as for several years the TrustZone has been perceived as a limited and ill-guided

virtualization mechanism [48]. However, recently, several works have been submitted

[60, 49], hoping to further research and explore this new topic.

2.3 Development Platforms

ARM TrustZone main capabilities have been mentioned and our intent to make use of its

functionalities were already expressed. However, this technology is not easily accessible.

Most SoC hardware vendors do not provide access to their firmware and as a result, many

developers and researchers are unable to find ways to deploy their systems or prototypes

to TrustZone. In this section, we present some development platforms that will allow

experimentation and evaluations on this technology.

2.3.1 TrustZone-enabled Platforms

To evaluate the development platforms we intend to study, table 2.1 presents a set of

available alternatives by comparing them according to five dimensions: name of the

platform, designation of the SoC, type of processor, number of cores, and the existence of

publicly available TrustZone documentation.

As we can see, most presented boards have different SoCs, mainly because most of

them belong to different manufacturers. Hikey 970 and 960 were both launched by

Huawei, in collaboration with Linaro and Google respectively, using the HiSilicon pro-

cessors, a subsidiary of Huawei, to make a board that offers their own based Kirin SoCs

for both academia and industry [19, 62]. These boards were also presented as potential

concurrence to the Raspberry PI board, one of the most used boards [76], either in a

personal or research context. ODROID N2+ also emerges as another alternative to the

15

CHAPTER 2. BACKGROUND AND RELATED WORK

previous boards. Created by HardKernel, this family of development boards are mainly

comprised of boards with ARM architecture in its SoCs, but also have some models with

Intel processors [46].

Table 2.1: TrustZone-enabled Platforms.

Platform SoC Processor Cores Documentation

Hikey 970 HiSilicon Kirin 970 Cortex-A73/A53 octa-core Yes

Hikey 960 HiSilicon Kirin 960 Cortex-A73/A53 octa-core Yes

Raspberry PI 4 Broadcom BCM2711 Cortex-A72 quad-core Yes

Raspberry PI 3 B+ Broadcom BCM2837B0 Cortex-A53 quad-core Yes

ODROID N2+ Amlogic S922X Cortex-A73/A53 hexa-core No

Raspberry PI 4 presents a Cortex-A72, a less expensive alternative in comparison to

the processors in the other manufacturer boards. Despite that, it is capable of yielding

significant performance increases over its predecessor, the Raspberry Pi 3 [22].

Both Hikey and ODROID manufacturer groups decided to go with the same proces-

sor architecture and therefore, their boards have a Cortex-A73 paired up with an A53.

However, the Hikey group seems to surpass the HardKernel board by having an A53 with

four cores, making a total of eight cores. ODROID, while possess the same processor

combination, it only has six cores, with the A53 being dual-core.

Considering the Hikey boards, the 970 model possesses a better SoC and a set of other

specifications like internal storage and I/O peripheral in comparison with its predecessor,

the Hikey 960. This is a natural occurrence, since the 970 model is a more recent board.

2.4 ARM TrustZone and Development Model

In section 2.2 we gave a brief explanation in what was the ARM TrustZone technology and

its main qualities. This section aims to provide a deeper understanding on what is this

component and what has been done to further experiment and understand its potentiali-

ties. With that in mind, we intend to present the TrustZone technology, when used to run

trusted applications, with and without the need of a TEE. The TEE used in this section is

the Linaro’s OP-TEE [39]. In both cases the system model and architecture are presented,

with an inside of each component and its contribution to the main system. Main issues

and limitations of each configuration are discussed next, and which limitations must be

taken into account during this thesis development.

2.4.1 Natively Supported Applications

Natively supported applications are applications predefined in mobile devices, whose

subcomponent runs in the TrustZone secure world. Because an application in SW cannot

16

2.4. ARM TRUSTZONE AND DEVELOPMENT MODEL

be executed without a TEE, manufacturers have implemented, proprietary or open-source,

TEEs, to execute some applications subcomponents and make them safer. However, for

practical effects the TEEs used are not publicly described and therefore in this section we

consider that those TEEs do not exist.

Therefore, we intend to present the original model of ARM TrustZone and discuss its

issues and limitations regarding this configuration mode. Also, given the research area

surrounding this component, to develop applications with stronger security properties

or simply enhance the security of already existent applications, we present some projects

related to this theme.

2.4.1.1 Design Model and Architecture

The principal feature of ARM TrustZone consists in the introduction of two protection

domains designated by the name of worlds: the SW and the NW. Figure 2.2 illustrates

these concepts. The secure world consists of an isolated space where trusted software

executed and critical data is managed. The common execution environment, or Rich OS,

where the normal applications are executed, is located inside the normal world.

The processor can only operate in one of these worlds at a time, and the current world

the processor executes is determined by the value of the 33rd processor bit, known as

Non-Secure (NS) bit. The value of this bit can be read from the Secure Configuration

Register (SCR), and it is sent throughout the system.

Figure 2.2: TrustZone System Architecture (based on [9])

TrustZone introduces a new processor mode, responsible for preserving the processor

state when world transitions happens. This mode is nominated monitor mode, and acts

as a bridge for placing the processor in the secure state, independently of the NS bit value.

A new privileged instruction called Secure Monitor Call (SMC), is what allows the CPU to

17

CHAPTER 2. BACKGROUND AND RELATED WORK

enter in this new mode. Besides this instruction, it is possible to enter the monitor mode

through exceptions, interruptions, and fast interruptions handled in the secure world [9].

Figure 2.3: TrustZone System Architecture with additional components

Besides the concept of worlds and its context switch mechanisms, outside the CPU

cores additional components can exists in the SoC implementation. These components

are represented in figure 2.3, and are the TrustZone Address Space Controller (TZASC)

and the TrustZone Memory Adapter (TZMA), and they are responsible for extending

TrustZone security features to the memory infrastructure. The TZASC can be used to

configure specific memory regions as secure or non-secure, making applications running

in the secure world able to access memory regions associated with the normal world, but

not the contrary. A similar memory partitioning functionality is implemented by the

TZMA, but targeting off-chip ROM or SRAM [50].

2.4.1.2 Issues and Limitations

Although TrustZone specification describes how the processor and memory are protected

in the SW, and provides mechanisms to secure I/O devices, its remains silent to how

many resources should be protected. This unreferenced specifications can become a issue

during the development and implementation of this dissertation if not taken into account,

since some of them could alter the design of our solution.

From the studied material [51], it is possible to identify some limitations in the Trust-

Zone technology: No Trusted Storage, Lack of Secure Entropy and Persistent Counters,

Lack of Secure Clock and other Peripherals, Lack of Virtualization, and Restrictive access.

In our case we can consider these to be our main limitations:

18

2.4. ARM TRUSTZONE AND DEVELOPMENT MODEL

• Lack of Trusted Storage, as there must exist enough secure storage to securely store

all the necessary credential, keys, and data needed to secure our implementation.

• Lack of Secure Entropy and Persistent Counters, as the secure generation of keys

needed to store the cryptocurrency or other necessary data require a secure source

of entropy. Persistent counters might also be useful for cryptographic functions

requiring a counter.

• No System Environment, needed to properly run and execute calls to our appli-

cation. Therefore the usage of a Trusted OS (TEE) is needed. However, since this

component is added by the programmer, other systems that might want to make use

of our solution might also need to use the same TEE, as there is no direct translation

between different TEEs.

2.4.1.3 TrustZone Enabled Applications

Several applications have been developed with the intent to make use of the security

guarantees provided by ARM TrustZone.

Miraje Gentilal [23], just like our solution, studied how to increase the security prop-

erties of a cryptocurrency wallet by making use of TrustZone Technology. More precisely,

this work consisted in analysing mobile and hardware wallets, and determine which func-

tions should be implemented in the SW, increasing the security of its storage. Also, a

study was done in how to process sensitive information in a more safely manner, using

trustworthy and optimized cryptographic operations. The resultant wallet was more re-

sistant to a series of attacks, namely dictionary and side-channel attacks, while enabling

for a certain flexibility.

Nuno Santos et al. [57] designed and implemented a Trusted Language Runtime

(TLR), a system for security-sensitive applications developed in .NET on mobiles devices.

This system offer programming primitives that enable the execution of small application

components inside the SW, isolated from the Rich OS and other applications. Further-

more, the integrity and confidentiality of the code and data are protected inside the TEE.

Experimental evaluations done shown that this system achieved a significant reduction

in the TCB of the studied applications, within an acceptable performance cost.

Alessandro Armando et al. [10] developed Trusted Host-based Card Emulation (THCE),

an alternative to the existing card emulation solutions that relies on TEE, providing assets

to the implementation of security critical applications. THCE proved to offer the same

advantages of HCE systems, allowing developers to easily and freely implement NFC

applications through this solution.

Le Guan et al. [31] presented TrustShadow, a designed runtime system that makes use

of the TrustZone security guarantees to shield applications running on multi-programming

IoT devices. With TrustShadow, there is no need to modify existing applications, as the

security guarantees can still be granted. Moreover, security-critical applications on IoT

19

CHAPTER 2. BACKGROUND AND RELATED WORK

devices can be comprehensively protected even in the face of total OS compromise. Since

the system imposes small overhead to these devices, the protection of its applications can

be achieved in a lightweight manner.

Matthew Lentz et al. [36] developed a system called SeCloak, that uses a small TCB

kernel allowing users to control peripherals on their mobiles devices. SeCloak runs in

the SW of TrustZone and it can co-exists with the Rich OS without requiring any code

modifications. The experimental evaluation demonstrated that mobile peripherals, like

radios, cameras, and microphones, can be controlled in a secure and reliable way, with

small performance overhead.

2.4.2 OS-Level TEE Assisted Applications

As previously mentioned in section 2.4.1 the natively supported applications executed

in TrustZone secure world need the support of a TEE to properly execute. However,

the manufacturers do not publicly describe the existence of a TEE in the mobile devices

specifications. Moreover, it is not possible to run third-party applications or to reuse

TEE components and services already provided by those manufacturers. As mentioned

in section 2.2.1.1, OP-TEE is a open-source TEE, designed as a companion to non-secure

OS kernel, running on ARM processor, using the TrustZone technology. Since TrustZone

does not possess a system environment implemented to run its applications on top of

an OS, and to run non-native applications a TEE is needed, in this section we intend to

examine the TrustZone architecture behaviour, while deploying a TEE inside the secure

world. Considering our thesis context, OP-TEE was chosen as the TEE of this architecture.

2.4.2.1 Design Model and Architecture using OP-TEE

In section 2.4.1.1 the TrustZone architecture was presented, along with its components

and functionalities. In the secure world configuration, a trusted OS was needed to run any

desired trusted application. In figure 2.4, we present the same TrustZone architecture,

but with the Trusted OS component replaced by OP-TEE.

The OP-TEE Core, located inside the Trusted OS, controls the trusted OS as it allows

the trusted applications to be executed. Also, it directly communicates with the secure

monitor, sending and receiving messages between the normal and secure worlds. The

secure monitor is a component that can be internal to the OP-TEE, as exemplified in

the figure, in case the program responsible for the context switch between worlds is not

identified during OP-TEE execution.

The TEE Internal API describes services that are provided to TAs. These services

allow the applications to make use of the TEE internal libraries, as also to communicate

with the OP-TEE Client through SMC calls. When the normal world communicates with

the secure world, the normal world executes a SMC instruction. If the related service

targets the Trusted OS, the monitor will switch to OP-TEE OS world execution. When the

20

2.4. ARM TRUSTZONE AND DEVELOPMENT MODEL

Figure 2.4: TrustZone System Architecture with OP-TEE (based on [38])

execution must return to normal world, OP-TEE OS executes a SMC that is caught by the

monitor which switches back to the normal world.

Secure Storage in OP-TEE is implemented according to what has been defined in

Global Platform’s TEE Internal Core API. This specification mandates that it should be

possible to store general-purpose data and key materials that guarantee confidentiality

and integrity of the data stored and atomicity of operations. Two secure storage implemen-

tations are possible in OP-TEE, however, in this section only the default implementation

will be described.

The default configuration states that the normal world file system is used as a secure

storage space. When a TA calls a function to write data to a persistent object, a corre-

sponding System Call through the Internal API is called, which will invoke a series of

TEE file operations to store the data. The TEE file system will then encrypt the data and

send to the Rich OS, commands and the encrypted data to the TEE supplicant, by a series

of Remote Procedure Calls (RPC) messages. The TEE supplicant will receive the messages

and store the encrypted data accordingly to the Linux file system. The reading process

is handled in a similar manner. During the write and read process, the encryption and

decryption of data is handled by a component called Key Manager.

The Key manager belongs to the TEE file system, and besides encryption/decryption

of data, its also responsible for the management of sensitive key materials. There are

three types of keys used by the key manager: the Secure Storage Key (SSK), which is a

per-device key used to generate the second key; the second key is the Storage Key (TSK),

a per-TA key used to encrypt and decrypt the third key; the File Encryption Key (FEK),

which is the third and final key, is used to encrypt and decrypt the data stored in the

secure storage space.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4.2.2 Issues and Limitations

Natively supported applications, to execute its components in TrustZone SW, need the

use of a TEE. Because of that, manufacturers make use of proprietary or open-source

TEE solutions to fully deploy those components. As the deployed TEEs only need some

functionalities to run the desired applications, the manufacturers mitigate the overhead

produced by the TEE inside the secure world, by deploying only the environment needed

modules. Since OP-TEE is build as a TEE to allow execution of a wide range of different

trusted applications, the overhead it brings in comparison to the TEE used by natively

supported applications, it is bigger. Therefore, this overhead regarding resource alloca-

tion must be taken into account during performance testing.

As described in OP-TEE documentation, this TEE does not offer full support to all

existent development boards, selecting only a few of them. Therefore, this limitation must

be taken into account when setting up a development environment where OP-TEE is part

of the development stack. However, even if OP-TEE does not offer direct support to a

specific board, it might offer to its predecessor. Because of that, some minor alterations to

the development board or the TEE might succeed in deploying the execution environment

in the desired board.

OP-TEE can support virtualization. This is when OP-TEE runs a VM, using an hypervi-

sor as an intermediary, and there executes TAs. With the virtualization support enabled,

TAs are isolated and because of that, they won’t be able to affect other TAs. At the moment

of this thesis write, the virtualization support inside the OP-TEE is still experimental, and

therefore, some limitations regarding the ARM architecture, hypervisor, and the number

of VMs, should arise in case it exceeds the experimental limit.

Secure storage in OP-TEE consists, in the default configuration, in storing encrypted

data in the normal world Rich OS’s file system. The component responsible for the en-

cryption and decryption of data is the Key Manager. This component is also responsible

for the management of keys used throughout the encryption/decryption process. One of

these generated keys, the Secure Storage Key, responsible for the generation of the other

keys, requires an Hardware Unique Key (HUK) as a basis to derive this key. However,

currently no OP-TEE platform supports the retrieval of this unique key, and as a replace-

ment, a constant is being used. This results in no protection against decryption, or Secure

Storage duplication to other devices, and should be taken into account when making use

of this functionality.

2.5 Related Work

2.5.1 Summary

The main goal of this thesis is to develop an application capable of providing isolation

and protection of sensitive data, managed through the use of the properties guaranteed by

ARM TrustZone Technology. To achieve that, in this chapter we surveyed four themes we

22

2.5. RELATED WORK

considered essential to this project: Containment and Isolation methods, Trusted Execu-

tion Environments, Development platforms, and ARM TrustZone analysis and research.

We began by studying isolation and containment methods through virtualization tech-

niques, in particular, full virtualization. This type allows to simulate physical hardware,

and with that, execute multiple full operative systems at the same time. The full virtual-

ization approach levels were explained, and with that, three alternatives were presented:

native virtualization, hosted virtualization, and container virtualization. The security

guarantees regarding these alternatives was also discussed.

Next, we studied the Trusted Execution Environments, in particular, the Trusted

OS and the Hardware-backed options. The Trusted OS consists of an operative system

that provide certain security guarantees to the applications it executes. The presented

OSes were OP-TEE, SierraTEE, and Trusty TEE. This OSes can correctly enforce their

security properties when inside an isolated environment that can guarantee integrity,

authenticity, and confidentiality. Some of these environments were presented in section

2.2.2, highlighting Intel SGX, ARM TrustZone, and SEs. Furthermore, in the remainder

of the section, TEE-enabled virtualization was presented, using the TrustZone technology

as an example. It was discussed that by isolating a hypervisor and VMs it is possible

to ensure inside the isolated environment, isolation of the executed applications and

strengthen of security guarantees. With that in mind, three different configurations were

presented: single-guest, dual-guest, and multi-guest.

Since the access to TEEs in mobile devices, in particular, the ARM TrustZone tech-

nology is still limited, we decided to research and analyse some development platforms

used in industry or academic environments. This study was done with the objective to

later setup our development environment. The boards were enumerated, presented, and

its main specifications were compared among themselves to determine which could be

a better alternative, considering our thesis goals. The Hikey 960 proved to be a better

model, in terms of performance and efficiency, despite the 970 model being superior.

To conclude, the TrustZone technology was analysed in deeper detail, since this com-

ponent is crucial for the development of our project. Its system architecture, as the princi-

pal issues and limitations that must be taken into account during the development phase,

were presented. As a limitation, since the ARM TrustZone does not possess an embedded

TEE, and considering our development stack for this project, the OP-TEE was used as an

example to remove the component limitation. The architecture, main capabilities of the

TEE were described and its issues and limitations were explained and discussed.

2.5.2 Critical Analysis

After analysis of the studied material ([23, 10, 17]) in deeper detail, and comparing with

our proposed solution, some conclusions were reached.

Most of the studied solutions, [23, 17], intended to have a small TCB, mainly focused

on components present in the secure world. Also, regarding verification methods of

23

CHAPTER 2. BACKGROUND AND RELATED WORK

these components and integrity checks, the same studied solutions addressed this point.

Both these features, small TCB and code attestation, are also part of our proposed solution

features. However, our solution goes one step forward by also providing attestation proofs

measured at boot time, and scrutinised in runtime. This feature follows the measure and

boot attestation functionality on TPM specifications, presented in [51].

We intend to develop a prototype using generic design principles so that its compo-

nents could be reused by applications, like: ticketing, payment, or currency wallets. Some

of the studied solutions, in particular [23] and [10], also addressed this goal with both

solution offering its components to other applications that might request its services. De-

spite that, our solution goes further by providing more fine-grained generic components,

like a logging service, a monitoring service, and an authentication service.

Regarding experimental evaluations and validation criteria in [23] and [17], the au-

thors conducted an experimental analysis, discussing some results obtained through

performed tests, as we also intend to do. However, we want to go further and provide

a deeper analysis on our solution by measuring more parameters that we consider to be

crucial to validate the wallet prototype. While the studied solutions measured secure

storage performance and boot time, our intent is to not only observe the same criteria but

also evaluate the percentage of allocated resources through fine-grained instrumentation

and profiling observations, such as analysis of CPU workload, memory allocation, as well

as operations’ latency. For this purpose we must analyse the operation of each one of the

trusted components in our trust computing base.

To conclude, despite the set of features these applications offer, and so does our so-

lution, there is one feature in our project that stands out in comparison with the other

features as this one is unique. Our proposed solution intends to offer a virtualization op-

tion to run our trusted secure components that the studied solutions did not mentioned.

This virtualization options aims to isolate the secure components inside the secure world,

so that the security between the different components is strengthen.

In the next chapter, we give an overview of our project, the TWallet System. We

present the system architecture, adversary model considerations, and perform a deeper

analysis over the components that make up our solution.

24

3

TWallet System Model and

Architecture

In this chapter we provide a brief explanation with some guidelines and considerations

about the developed system. To start, we present the system model and its architecture

by discussing our adversary model assumptions, and explaining the system components

that must be implemented for the proposed solution. After this, we start presenting our

components in greater detail, where in section 3.2 we discuss the Secure Storage com-

ponent restrictions and requirements, as also its desired architecture. In sequence, the

next sections 3.3, 3.4, and 3.5 address the same aspects but focused on the Authentica-

tion Service, Logging Service, and Monitoring Service, respectively. Section 3.6 explains

the TEE Adaptation and Isolation Layer functionalities, section 3.7 refers the Attestation

Service, responsible for the attestation of our secure components before their usage, and

section 3.8 presents the TWallet Framework model assumption regarding our solution.

Finally we summarize our principal functionalities given a real world application context,

concluding with a brief summary of the chapter.

3.1 System Model and Architecture Overview

When designing a secure system model and developing its architecture, it is important to

take into account the adversary model assumptions, the target security properties, and

the security mechanisms capabilities that try to protect the system. Given these concerns,

we must discuss not only the advantages but also the constrains brought by the technology

options of the desired systems. These trade-offs might, directly or indirectly, influence

the design and implementation of systems, as well as its subsequent cases. In our context,

given our objective to reduce the Trusted Computing base to the hardware-level through

the execution of trusted environments, we must also consider its consequent constraints

on computation resources, like memory and processing power. These restrictions must

include not only the ones that are consequence of the use of our technology options, but

also the resources spent that are out of our TCB. Throughout this chapter and subsequent

25

CHAPTER 3. TWALLET SYSTEM MODEL AND ARCHITECTURE

explanations regarding our system, all these constraints and requirements are taken into

account.

For our design model assumption, we take as initial reference a popular OS used in

most of the mobile devices, the Android OS. Regarding its current mobile ecosystem for

Android, its stack of services and runtime libraries are layered as shown in Figure 3.1.

Figure 3.1: Android Architecture (extracted from [7])

As we can see in the figure, the application layer has its TCB provided by all the layers

below it. This means that conventional applications consider all the layers and their

components, from the Framework API layer to the Linux Kernel and Power Management

layer, to be secure and trusted. However, we already expressed our concerns regarding the

actual trust of these applications in the OS. Since attacks against it are already common

[41, 35], we should make an effort to consider and remove the Android layers from the

Application to the Kernel layer, from the TCB of all applications. Consequently, when

considering all applications we take into special account our target type applications, the

cryptocurrency wallets. This type of application might become vulnerable and insecure

to certain attacks, by lacking the appropriate security and trustabilities mechanisms

26

3.1. SYSTEM MODEL AND ARCHITECTURE OVERVIEW

needed to protect the managed data and its operations. In the referred vulnerabilities

we highlight: (i) lack of trusted storage needed for store of wallet critical information,

like access credentials and balance and transaction history information; (ii) lack of secure

mechanisms to properly generate a log of activities, protected against tampering attacks;

(iii) lack of trusted mechanisms, used to process the transactions on the client-side.

Even if we were to use cryptography to protect the managed data or to perform the

wallet operations in an encrypted way, the processing of cryptographic operations, as

well as the management of cryptographic keys, are also exposed to possible attacks, when

these functions are executed in the vulnerable execution environment. The cryptographic

keys itself are also exposed during the processed operations in memory, since these keys

are located in the storage mechanisms provided by the Linux-Kernel Drivers and I/O

functions related to storage services and storage devices.

To overcome the limitations imposed by the architecture and vulnerabilities presented

above, our proposed architecture aims to reduce the current TCB, and consequently

minimize the attack surface, to the hardware level. To effectively reduce the TCB to

hardware-level, we decide to use a Trusted Execution Environment supported by the ARM

TrustZone technology, with the security guarantees and aspects discussed in Chapter 2,

Section 2.4. The TEE provides a set of guarantees and security related properties to

the running applications, so that its operations and managed data can be protected from

attacks against them. Despite this, the performed tests over this system setup must reflect

the provided guarantees with an acceptable impact deviation in the use of resources, given

the typical and real hardware platforms and their available resources.

With that in mind, we present a simple design model of our solution, that considers

the Android OS and the TEE functions, executed by the ARM TrustZone, in Figure 3.2.

Figure 3.2: Design model of proposed solution

27

CHAPTER 3. TWALLET SYSTEM MODEL AND ARCHITECTURE

3.1.1 Adversary Model Assumptions

Based on the system model, we make the following adversary model assumptions, in-

spired by different threat models. Our defined adversarial considerations follows some

of the adversary assumptions defined in previous works, like TPM [30] and TrustShadow

[31]. Additionally, we also considered the ARM TrustZone threat model assumptions for

a better specification and description of our solution.

Execution Environment Threat Model

This execution model describes possible attacks to the Operating System and the execu-

tion environment.

Root Attacker: We consider an attacker with root privileged, capable of having full

control over the OS running in the normal world (Rich OS), to be the main source of

untrustability, and potentially malicious. These privileges would allow an attacker, the

ability to modify the system, compromising the OS and all related components, programs,

and services. Furthermore, an attacker could mount multiple attacks against the secure

world, its running programs, and consequently, our secure components. Some of those

possible attacks are, execution of arbitrary code to tamper with memory and registers

of a process, change secure world processes behaviour by hijacking system services, and

request of invalid calls to TrustZone or not respond to requests coming from secure world.

Out-of-scope Assumptions

Regarding our Threat model assumptions, we considered the following threat-vectors to

be out-of-scope:

• Physical, Side-channel attacks, or any other hardware related attack, and in partic-

ular any threat vector that tries to exploit vulnerabilities of ARM processors and its

native functions;

• Exploits on software executed with the isolation guarantees inside the ARM Trust

Zone Secure World Environment;

• Any attack vectors related to the issues and limitations present in the ARM Trust-

Zone hardware and previously indicated in Chapter 2, Section 2.4.1.2

Furthermore, we consider that the hardware of the mobile device where our appli-

cation is running, to be correct, as well as its libraries, highlighting the cryptographic

ones.

28

3.1. SYSTEM MODEL AND ARCHITECTURE OVERVIEW

3.1.2 Secure Architecture for Cryptocurrency Wallets

The proposed architecture addresses components executed under the trust guarantees

provided by the ARM TrustZone isolation functionality, allowing for: (i) trusted storage

of wallet credentials and data; (ii) secure generation and storage of a log of operations

performed by these components; (iii) attestation of services provided, maintaining its

trustability and security assumptions throughout its usage. The components intend to

offer the necessary support for sensitive data management, under sound security and

trustability assumptions.

As we previously explained, the Android OS is regarded as an untrusted Rich OS, and

while considering the ARM TrustZone architecture it would be mapped in the Normal

World, or Non-Secure World. However, our proposed solution’s secure components will be

mapped and executed inside the ARM TrustZone Secure World. Our intention regarding

these architectural considerations, is to execute the secure and trusted components in

a trustable execution environment, and with that, reduce the TCB and attack surface

to shielded-hardware foundations. Therefore we can offer security services below the

software layers for User Interaction Applications, Android Native Libraries, Hardware-

Abstraction Layer and Base Linux Drivers and I/O support. We must remind that, as

discussed in Chapter 2 Section 2.4.1, some native components on the Android System

might also execute as components in the Trusted Execution Environment, mapped in

the ARM TrustZone Secure World. However, this is not part of the dissertation scope

that aims to provide support for cryptocurrency wallets by making use of our developed

secure components in the TEE.

Summarizing our system model considerations, Figure 3.3(a) represents our final

architecture when integrating our solution into OP-TEE system. The represented architec-

ture consists of two main parts, the Normal World Component, TWallet, and the Secure

World components.

29

CHAPTER 3. TWALLET SYSTEM MODEL AND ARCHITECTURE

(a) Simple Architecture

(b) TEE-Containerized Architecture

Figure 3.3: TWallet System Architecture

30

3.2. SECURE STORAGE

The TWallet library, located in Rich OS is the base application and it allows commu-

nication with the end-user by ordering operations and displaying the application data.

The secure components, namely the Secure Storage, Authentication Service, Monitor-

ing Service, Logging Service, TEE Adaptation and Isolation Layer, and Attestation Service,

will execute inside the ARM TrustZone Secure World, running on top of OP-TEE.

The Secure Storage is responsible for the storage of data regarding the logged wallet

account. The Authentication Service provides a storage for the credentials, needed for

wallet sign in. The Logging Services generates a log of the operations executed in the

different secure components. The Monitoring Service is responsible for the monitoring

and filtering of operations requested to the other secure components. The Attestation Ser-

vice, based on [51], must provide integrity hash check regarding our secure components.

The TEE Adaptation and Isolation layer is responsible for doing the conversion of calls

displayed by OP-TEE Standard API, into calls that can be used by the secure components.

With the presented architecture in Figure 3.3(a), we can perceive that the data man-

aged by the application is safe from the non-secure world and possible attackers that gain

access to it. However, the secure components are not internally safe. This means that

there is no security mechanism design to prevent threats from one of the components.

To prevent possible threats regarding this case, and to further enhance the security and

isolation methods, Figure 3.3(b) represents an alternative architecture to our system. The

main difference of this architecture is the proposal of executing the secure components in-

side a containerized, isolated environment (e.g.VM). With the additional layer, although

the component might suffer some limitations regarding the system resource availability

(previously described in Section 2.2.3), each one will be isolated from the other compo-

nents. This strengthens the secure components by providing an additional security layer

at an internal level.

3.2 Secure Storage

The Secure Storage Component is responsible for the storage of any type of sensitive

data, in a secure and trustable manner, and represents a database model capable of

storing any type of data. Specifically in our context, the Secure Storage Component

will be responsible for the secure storage of the wallet information, like balance and

history of recent transactions. The design of this component must take into account

the requirements: (i) a generic and flexible database; (ii) storage of any data content

without following any specific schema; (iii) low memory footprint because of the TEE

memory constraints; (iv) usage of safe and reliable methods of persistently storing the

data this component manages, either by own implementation, or usage of the TEE own

mechanisms.

Considering this requirements, the Secure Storage Component was initially designed

as a simple key-value store, responsible for storing any data and having a footprint small

enough to run successfully on top of the TEE Environment.

31

CHAPTER 3. TWALLET SYSTEM MODEL AND ARCHITECTURE

This application should follow the TA approach in order to guarantee the trustability

and security of the data being processed. The TA approach can be defined as a methodol-

ogy for performing all application processing exclusively in the Secure World side.

3.3 Authentication Service

The Authentication Service Component is responsible for the secure storage of any type

of access credentials, and represents a database type model capable of storing any set of

credentials. Specifically in our context, the Authentication Service will be responsible

for the secure storage of the wallet credentials, like the wallet address and its password.

The design of this component must take into account the requirements: (i) a generic

and flexible database; (ii) storage of any type of access credentials; (iii) low memory

footprint because of the TEE memory constraints; (iv) usage of safe and reliable methods

of persistently storing the data this component manages, either by own implementation,

or usage of the TEE own mechanisms.

Considering this requirements, the Authentication Service Component was initially

designed as a component with a similar architecture as the Secure Storage Component,

where the application has a simple key-value store, responsible for storing the credentials

and having a footprint small enough to run successfully on top of the TEE.

This application should follow the TA or the Hybrid Trusted Application approach

in order to guarantee the trustability and security of the data being processed. The Hy-

brid Trusted Application (HTA) approach consists in splitting the application processing

between the Secure World and the Normal World.

3.4 Logging Service

The Logging Service Component is responsible for the secure management and storage of

a log, describing the Secure Components’ activity throughout its execution. Specifically

in our context, the Logging Service will create an event log of the commands performed

by each Secure Component, in order to produce an authentication proof of its activities.

The design of this component must take into account the requirements: (i) registry of

the activities performed by the different components; (ii) low memory footprint because

of the TEE memory constraints; (iii) usage of safe and reliable methods of persistently

storing the built log, either by own implementation, or by making use of TEE own storage

mechanisms.

Considering this requirements, the Logging Service Component was initially designed

as a simple log builder, where the application would simply insert new entries into the

in-memory log, and in case of request, return the log built so far.

This application should follow the TA approach in order to guarantee the trustability,

security, and authenticity of the generated log.

32

3.5. MONITORING SERVICE

3.5 Monitoring Service

The Monitoring Service Component is responsible for the secure filtering and execution

of the Secure Components commands, verifying which commands requested from the

Normal World can be executed. The design of this component must consider the following

constraints: (i) low memory footprint because of the TEE memory constraints; (ii) filtering

of requests, by analysis of the command, secure component, and if its content is allowed

to enter/leave the Secure World Environment.

Considering this requirements, the Monitoring Service Component was initially de-

signed as a simple firewall, where the application would analyse the incoming requests

and decide if these could be redirected and executed by the specific components, or if it

should be refused its access. Additionally to executing this functionalities correctly, the

component should have a footprint small enough to run successfully on top of the TEE

Environment.

This application should follow the TA approach in order to guarantee the trustability

and security of the filtering process.

3.6 TEE Adaptation and Isolation Layer

The TEE Adaptation and Isolation Layer is a component that serves as a middleware

between the requests that come from the Normal World and the secure components API’s

endpoints. This component also serves, although indirectly, as a communication point

between the secure components’ different commands. This means that each command of

the TEE Adaptation and Isolation Layer is in fact, a composition of different commands,

from different secure components. That’s why we mentioned that this component, besides

its primary goal as a middleware, also serves a point of contact to the secure components.

In the design of this component we must take into account the following requirements:

(i) low memory footprint because of the TEE memory constraints; (ii) interception of

requests coming from the NW, as a way to redirect this requests to their respective secure

components to be attended; (iii) point of contact between the different secure components

commands.

Considering this requirements, the TEE Adaptation Layer was initially designed as

a middleware component, where it would intercept the incoming requests, and redirect

them to the desired secure components. To execute this functionalities correctly, the

component should have a footprint small enough to run successfully on top of the TEE

Environment.

Isolation Layer. In Chapter 2, Section 2.1, we studied isolation and containment methods

through some virtualization techniques, like native virtualization, hosted virtualization,

and container virtualization. In each of this alternatives, the advantages and security

guarantees were discussed. The TEE Adaptation and Isolation Layer, aside from what

33

CHAPTER 3. TWALLET SYSTEM MODEL AND ARCHITECTURE

has already been mentioned, and as the name implies, also possesses an Isolation func-

tionality, responsible for creating an virtualization environment for each of the secure

components. The main motivation for this, is to further strengthen the security guaran-

tees these components already have.

Therefore, taking into account this extra functionality, an additional requirement

must be met: the capability of executing each of the secure components in an virtualized

environment, preventing tempering from either, our own components, and our other

running TAs.

Considering this new constraint, the TEE Adaptation and Isolation Layer must be

designed as a virtualization environment’s launcher where, when a command to a se-

cure component is attended, the secure component itself must be executed inside an

virtualization environment, and only after that, the request can served.

This application, with its full design considerations, should follow the TA approach

in order to guarantee trustability, security and isolation over the executed secure applica-

tions, as its operations.

3.7 Attestation Service

The attestation process, following the TPM model, consists in the ability of requesting a

certificate to cryptographically prove to a CA that the RSA key in the certificate request

is protected by a TPM that the CA trusts [29]. With that in mind, our Attestation Service

is responsible for performing the attestation process over our secure components, by

providing a proof in how our components are considered secure.

Given that we consider the OP-TEE to be part of our TCB, the TEE will be trustworthy.

Our objective is for OP-TEE to automatically launch our Attestation Service, making it

also trustworthy and part of the TCB, as it was executed from a trustworthy source. With

that in mind, every attestation proof generated by our service, of our secure components,

will be trustworthy as it was made by a trustworthy component.

Taking into account the functionalities of the Attestation Service, we must consider

the following design requirements: (i) low memory footprint, not only because of the TEE

memory constraints, but also with the objective to not greatly increase the possible Attack

Surface of our system; (ii) attestation of our secure components, by generation of a proof,

considered trustworthy given the service software stack; (iii) Secure and trustworthy

generation of keypairs, needed during the attestation process.

Considering this requirements, the Attestation Service was initially designed as an

OP-TEE module, that each time a Normal World application would request an attestation

proof of our secure components, the service would generate an attestation proof and send

it to the requested application. By executing this functionalities correctly, the component

should have a footprint small enough to run successfully on top of the TEE, and also to

be part of it as a trustworthy component.

34

3.7. ATTESTATION SERVICE

This application should follow the TA or the HTA approach in order to guarantee

trustability, security and authentication over the generated attestation proof.

Attestation Protocol. The Attestation Service is responsible for authenticating the com-

ponents of our solution in the OP-TEE environment, in successive stages, assuring that

each component, as it is loaded, is a version that is approved for use, with a correct hash

code for integrity purposes. As we previously mentioned, we consider the OP-TEE Boot

process itself trustable and therefore included in our model assumptions. The setup of

components during the attestation process can be illustrated in figure 3.4.

Figure 3.4: Attestion Protocol

As we can see, the process begins with the TEE Adaptation and Isolation Layer, as is

the principal point of communication between the Normal World and the other secure

components. Next, we have the Monitoring Service for the filtering functionality, needed

for intercepting and restricting the requests send to the secure components. After that the

Attestation service receives the hash of Secure Storage and Authentication Service, and

finally, from the Logging Service. The final generated authentication proof is explained

below:

35

CHAPTER 3. TWALLET SYSTEM MODEL AND ARCHITECTURE

{ cumulativeHash ∥ nonce }Kpriv

• cumulativeHash: hash generated by the concatenation of all authenticated hashes

retrieved from the secure components;

• nonce: a number sent by the Normal World application that must be appended to

the proof before encryption. Used to prevent replay attacks.

The entire proof is then signed with the Attestation service private key so that we can

prevent message forging from other TAs. After sending the proof to the Normal World,

the application must verify the message signature and confirm that the attestation proof

is deem trustworthy.

3.8 TWallet Framework

The TWallet Framework is the Normal World component, responsible for enabling com-

munication between the secure components and all its services, located in the Secure

World, and all interested apps in using our solution, in the Normal World. In this section

we elaborate on the architecture the TWallet Framework is made of.

3.8.1 TWallet Framework and Library

The TWallet Framework as we already mentioned, is the service responsible for allow-

ing applications to make use of our services. The basis of this service is the TWallet

Library which is responsible for the communication between the service and the secure

components located in the Secure World.

In the Secure world, the used TEE is responsible for the creation of operation requests

and processing of the responses, receiving requests from the Normal World by normal

applications using the TWallet Framework, and performing the requested operation on a

specific secure component. This secure component is the TEE Adaptation and Isolation

Layer, that will receive all operation requests that come from the Normal World, and

then redirect them to the other secure components, that will perform the operation. The

requests done by the Normal World should not contain any sensitive information, which

mean, it should only contains information that when exposed does not compromise the

security guarantees provided by the secure components. This also applies to their re-

spective responses, which should not contain any sensitive plain information. To enforce

this requirement, the Monitoring service is responsible for analysing the requests and

respective responses, and guarantee that no critical information is leaked to the Normal

World, and no threat against the secure components is attempted.

The normal procedure for performing and operation is: The user initiates an operation

from the client application, which will be forwarded to the TEE in order to create the

request. This request is redirected from the application to the TWallet Framework, which

36

3.8. TWALLET FRAMEWORK

by making use of the TWallet Library is able to send the request to the TEE to create it.

The TEE after creating the secure request will send it to the TEE Adaptation and Isolation

Layer, so that the Layer can forward the request to the secure component that will perform

the operation. If needed, the Layer will first send the request to the Monitoring Service

to analyse it, and only after that, redirect it to the specific secure application. The same

procedure can be applied after performing the operation. After receiving the response,

the TEE Adaptation and Isolation Layer will forward it to the client application so that

it can be processed and do the required modifications. With this, the operation is now

complete and the connection created between the Normal World application and the

Secure World is shutdown.

In order to guarantee the trustability and security assumptions provided by the secure

applications, this component should follow an Wrapper API approach, which offers those

guarantees to the applications that make use of this component.

3.8.2 Supported Operations

As we previously mentioned, the TWallet Framework is responsible for requesting the

execution of the operations that the secure components located in the Secure World have

available. Therefore this component does not implement any operation whatsoever, but

instead, it enables an API to request some operations to the secure components. Strictly

speaking, we can say that the TWallet Framework has only two true operations: the create

request operation which creates a request to be send to the TEE; and the process response

operation that receives the response from the TEE. This response, depending on the

request, must be processed and possibly demand modifications to the application state,

either on an internal level, or on an interface level. In this section, we describe the TWallet

Library functions that can be called from the Framework.

Store Credentials

Listing 3.1: Store Credentials

Pseudocode 1: Store Credentials
Input: id, address, password, id != NULL ∧ address != NULL ∧ password !=

NULL

boolean result

result← TEE_Invoke(STORE_CREDENTIALS, id, address, password)

if result then
return result

else
return ERROR

A new set of credentials is added to the Authentication Service with an address and

password. The id can be generated in a varied number of ways, but we consider that the

best method is to use an unique id, since typically only one account can be registered per

37

CHAPTER 3. TWALLET SYSTEM MODEL AND ARCHITECTURE

application. For the operation to succeed, it is important that both address and password

are not empty (null).In case the operation was successful, a true value is returned. If

the result value is false, the function returns an error since it could not conclude the

operation.

Get Credentials

Listing 3.2: Get Credentials

Pseudocode 2: Get Credentials
Input: id, id != NULL

boolean result

result← TEE_Invoke(GET_CREDENTIALS, id, address, hash_password)

if result then
return [address, hash_password]

else
return ERROR

The Get Credentials operation is listed in Listing 2. The operation retrieves the cre-

dentials from the Authentication Service storage, identified by its id. For the operation to

succeed it is important that the id is not empty (null). In case the operation was success-

ful, a set of [address, password] is returned. If the operation did not succeed, an error

regarding the not found credentials is sent back.

Delete Credentials

Listing 3.3: Delete Credentials

Pseudocode 3: Delete Credentials
Input: id, id != NULL

boolean result

result← TEE_Invoke(DELETE_CREDENTIALS, id)

if result then
return result

else
return ERROR

The Delete Credentials operation is listed in Listing 3. The operation deletes the

credentials stored in the Authentication Service, identified by its id. For the operation to

succeed it is important that the id is not empty (null). In case the operation was successful,

a true value is returned. If the result value is false, the function returns an error since it

could not conclude the operation.

38

3.8. TWALLET FRAMEWORK

Read Data

Listing 3.4: Read Data

Pseudocode 4: Read Data
Input: id, id != NULL

boolean result

string value

result← TEE_Invoke(READ_DATA, id, value)

if result then
return value

else
return ERROR

The Read Data operation is listed in Listing 4. The operation retrieves the object

from the Secure Storage’s storage, identified by its id. For the operation to succeed it is

important that the id is not empty (null). In case the operation was successful, the object

value is returned. If the operation did not succeed, an error regarding the not found entry

is forwarded.

Write Data

Listing 3.5: Write Data

Pseudocode 5: Write Data
Input: id, value, id != NULL

boolean result

result← TEE_Invoke(WRITE_DATA, id, value)

if result then
return result

else
return ERROR

A new object with data is added to the Secure Storage Component with an id and

value. The id can generated in a varied number of ways, but we consider that the best

method is to use the address of the current logged in wallet, since typically only one object

per wallet will be stored. For the operation to succeed, it is important that the id is not

empty (null). In case the operation was successful, a true value is returned. If the result

value is false, the function returns an error since it could not conclude the operation.

39

CHAPTER 3. TWALLET SYSTEM MODEL AND ARCHITECTURE

Delete Data

Listing 3.6: Delete Data

Pseudocode 6: Delete Data
Input: id, id != NULL

boolean result

result← TEE_Invoke(DELETE_DATA, id)

if result then
return result

else
return ERROR

The Delete Data operation is listed in Listing 6. The operation deletes the object

stored in the Secure Storage Component, identified by its id. For the operation to succeed

it is important that the id is not empty (null). In case the operation was successful, a true

value is returned. If the result value is false, the function returns an error since it could

not conclude the operation.

Get Log

Listing 3.7: Get Log

Pseudocode 7: Get Log
boolean result

string log

result← TEE_Invoke(GET_LOG, log)

if result then
return log

else
return ERROR

The Get Log operation is listed in Listing 7. The operation retrieves the log stored

in the Secure World, that consists in a registry of all operations performed by the secure

components. In case the operation was successful, the log object is returned. If the

operation did not succeed, an error regarding the empty log is sent back.

40

3.8. TWALLET FRAMEWORK

Set Monitoring

Listing 3.8: Set Monitoring

Pseudocode 8: Set Monitoring
Input: value

boolean result

result← TEE_Invoke(SET_MONITORING, value)

if result then
return result

else
return ERROR

The Set Monitoring operation is listed in Listing 8. The operation consists in defining

if the Monitoring Service should filter or not the incoming requests from the Normal

World. In case the operation was successful, a true value is returned. If the operation did

not succeed, an error is forwarded.

Attest Components

Listing 3.9: Attest Components

Pseudocode 9: Attest Components
Input: nonce, nonce > 0

boolean result

string proof ▷ Attestation proof received from Secure World

string pub_key

result← TEE_Invoke(ATTEST_COMPONENTS, nonce, proof, pub_key)

if result then

if VerifyProof(proof, pub_key) then
return true

else
return false

else
return false

The Attest Components operation is listed in Listing 9. The operation consists in

providing a proof that states that the secure components, currently keep their security

and trustability guarantees intact. For the operation to succeed, it is important that

the nonce value sent is bigger than 0. In case the operation that successful, the next

step would be to validate the proof received from the Secure World. If the proof is

correctly validated, the return result is true. If the proof is invalid, or the operation was

unsuccessful, the result to return is false.

41

CHAPTER 3. TWALLET SYSTEM MODEL AND ARCHITECTURE

3.9 Real World Application Scenario

We consider now a real world case scenario, in which a user manages a cryptocurrency

wallet backed by the TWallet solution. The user wants to keep track of its current balance,

monitoring operations logged locally and performing transactions. The application must

provide a set of features with security and trustability guarantees:

• The client is able to safely store its access credentials, so that they can later be reused

to access the wallet information and perform other operations.

• The client is able to store the wallet information, such as balance and transaction

history, in a secure manner. By making use of this, the client can protect this critical

information against possible threats.

• The client is able to export and see a log of the secure actions performed throughout

the application execution time.

The described scenario, can also be applied to other use cases, in which the used appli-

cation is not a cryptocurrency wallet, but an application that possess a similar adversarial

model, such as Ticketing apps, Mobile Banking, or even Mobile Payment apps.

3.10 Summary

In this chapter we discussed the system model assumptions for the proposed trusted

runtime system and related architecture, in addressing the support for cryptocurrency

wallets protected by a Trusted Execution Environment, and enabled by the ARM Trust

Zone technology. Initially we presented an overview of the system model and its main

architectural components, followed by some relevant considerations and assumptions

that must be taken into account during the development of the proposed architecture.

Then, we discussed our assumptions for the adversary model definition, explaining the

considered threats and required countermeasures present in the proposed solution. In

sequence, we addressed the design of the specific components of the architecture, namely

the Secure Storage Component, the Authentication Service, the Logging Service, the

Monitoring Service, the TEE Adaptation and Isolation Layer and the Attestation Service,

as well as the TWallet Framework, used in user device applications, present in the Normal

World.

Summarizing, the Secure Storage Component is responsible for the storage of any

type of sensitive data, in a secure and trustable manner. Because of that, the component

is designed as a simple key-value store, responsible for storing any data. The design

of this component must consider the requirements: (i) a generic and flexible database;

(ii) storage of any data content without following any specific schema; (iii) low memory

footprint because of the TEE memory constraints; (iv) usage of safe and reliable methods

of persistently storing the data this component manages, either by own implementation,

42

3.10. SUMMARY

or usage of the TEE own mechanisms. With that in mind, this application should follow

the TA approach in order to guarantee the trustability and security of the data being

processed.

The Authentication Service is responsible for the secure storage of any type of access

credentials, and represents a database type model capable of storing any type of creden-

tials. This component must follow the requirements: (i) a generic and flexible database;

(ii) storage of any type of access credentials; (iii) low memory footprint because of the

TEE memory constraints; (iv) usage of safe and reliable methods of persistently storing

the data this component manages, either by own implementation, or usage of the TEE

own mechanisms. Considering all this, the Authentication Service is designed as a simple

key-value store, with a structure similar to the Secure Storage Component. Therefore,

it should follow the TA or the HTA approach in order to guarantee the trustability and

security of the data being processed.

The Logging Service is responsible for the secure management and storage of a log,

describing the Secure Components’ activity throughout its execution. The component

must comply with the constraints: (i) registry of the activities performed by the different

components; (ii) low memory footprint because of the TEE memory constraints; (iii) usage

of safe and reliable methods of persistently storing the built log, either by own implemen-

tation, or by making use of TEE own storage mechanisms. Considering its requirements,

the Logging Service is designed as a simple log builder, where the application would

insert new entries into the log, and return it if requested. The application should follow

the TA approach, guaranteeing trustability, security, and authenticity of the generated

log.

The Monitoring Service is responsible for the filtering requests sent to the Secure Com-

ponents, verifying if the requests can be executed. The initial design of this application

is as a simple firewall, where the application analyses the incoming requests and decide

if these can be redirected and executed by the specific components, or if its access should

be refused. The design of this component must consider the following constraints: (i) low

memory footprint because of the TEE memory constraints; (ii) filtering of requests, by

analysis of the command, secure component, and if its content is allowed to enter/leave

the Secure World Environment. The application should follow the TA approach in order

to guarantee the trustability and security of the filtering process.

The TEE Adaptation and Isolation Layer serves, not only as a middleware between

the requests that come the Normal World, and the secure components API’s endpoints,

but also as a communication point between the secure components’ different commands.

Additionally, and as the name suggests, this component also possesses an Isolation func-

tionality, responsible for creating an virtualization environment, for each of the secure

components, preventing interactions between them. Considering all these functionali-

ties, the design TEE Adaptation and Isolation Layer must follow the TA approach and its

requirements are: (i) low memory footprint because of the TEE memory constraints; (ii)

interception of requests coming from the NW, as a way to redirect this requests to their

43

CHAPTER 3. TWALLET SYSTEM MODEL AND ARCHITECTURE

respective secure components to be attended; (iii) point of contact between the different

secure components commands; (iv) capability of executing each of the secure components

in an virtualized environment, preventing tempering from either, our own components,

and other running TAs.

The Attestation Service is responsible for performing the attestation process over our

secure components, by providing a proof in how our components are considered secure.

This component must perform an Attestation protocol, aiming for the authentication of

each of the secure components in successive stages, assuring that each component, as

it is loaded, is a version that is approved for use, with a correct hash code for integrity

purposes. Therefore, the Attestation Service must follow the TA or the HTA approach,

and its design constraints are: (i) low memory footprint, not only because of the TEE

memory constraints, but also with the objective to not greatly increase the possible Attack

Surface of our system; (ii) attestation of our secure components, by generation of a proof,

considered trustworthy given the service software stack; (iii) Secure and trustworthy

generation of keypairs, needed during the attestation process.

Finally we have the TWallet Framework architecture which combines the previous

components, enabling for a secure and trusted processing of some cryptocurrency wallet

operations. In the next chapter, considering the presented design requirements and

constraints, we present a prototype of our solution and discuss its system model and

architecture implementations choices.

44

4

Implementation

In this chapter, we describe the implementation and architecture realization of our pre-

sented solution. We start by defining our implementation environment in Section 4.1,

explaining the underlying TEE system used, the development platform, and the setup

required for our solution. After this, we start presenting our implementations. Section

4.2 presents the Secure Storage component, by describing the implementation choices

made and how was designed, followed by its API. Next, we present the Authentication

Service component through its implementation and API, in Section 4.3. Sections 4.4,

4.5, 4.6 and 4.7 follow the same structure as the previous sections but are directed to

the Logging Service component, the Monitoring Service, the TEE Adaptation Layer, and

the Attestation Service respectively. We finally conclude with the implementation and

specification of our wrapper API, located in the Normal World, the TWallet Framework.

4.1 Implementation Environment

To properly develop, implement and test our solution, a development environment was

needed. Based on the options displayed in the previous chapters, in this section, we

present our choices made to ensure a good developing and testing ground for our solution.

4.1.1 Trusted Execution Environment

The TEE implementation chosen is the OP-TEE, previously described in Section 2.2.1.1.

No further modifications were made to its kernel or OS code since the base version was

more than enough to deploy our solution.

As previously described, this open-source TEE, currently maintained by the Linaro

Consortium, was designed as a companion to a non-secure OS kernel running on an ARM

processor. Our main motivation for choosing the TEE over the other studied ones, was

due to its design principles, highlighting the portability feature. The portability of this

TEE allows us to easily plug into different architectures and environments, making our

proposed solution plug-gable to other architectures, different from the one used during

this thesis development.

45

CHAPTER 4. IMPLEMENTATION

4.1.2 Development Platform

With the choice of TEE implementation selected, our options regarding the development

platform became slimmer. As stated in the OP-TEE documentation [67], neither the Hikey

970, nor the Raspberry PI 4, both our desired development platforms, have support for

the selected TEE. Despite that, some time was spent hoping to run OP-TEE on top of

Raspberry PI 4, since at the time of this thesis writing, it has proven to be a more accessible

board in comparison to Hikey 970. Unfortunately, even though the TEE did offer support

to Raspberry PI 3, the great difference in the hardware configurations between the two

boards made the port impossible.

Fortunately, we happen to have an Hikey 960 board at our disposition, which made

us choose it as our development board for this project. The Hikey 960 board, not only

has support for the OP-TEE, but also offer support for the Android Ecosystem through

the AOSP, helping us in setting up our desired development environment: an Android

OS running in the Normal World, and a TEE in the Secure World.

4.1.3 Development Platform Setup

To setup the development environment we followed a set of steps, described in Annex I.

However, we took some additional procedures to properly execute our solution on top of

the Android Ecosystem.

The reason was due to incompatibilities between the Hikey board and the available

monitors to display the Android interface, mostly because of issues related to the con-

nectivity of the Hikey board [1]. Additionally, to allow our app in the Normal World to

communicate with the security components running in the SW, changes were issued to

the Android permissions. The objective was to allow the Androids apps to communicate

with the OP-TEE component located in the NW, the OP-TEE Client.

Therefore, to prevent those issues from happening, before compiling the build, we

must configure a set of files. The additional configurations that need to be added are:

1. While in the <aosp root>/device/linaro/hikey/hikey960/, add the following to

"BoardConfig.mk":

BOARD_KERNEL_CMDLINE += video=vfb:640x480-32@30 mode_option

=640x480-32@30 vfb.videomemorysize=3145728

BOARD_KERNEL_CMDLINE += androidboot.selinux=permissive

2. Inside the "ueventd.common.rc", located at <aosp root>/device/linaro/hikey/, set:

/dev/tee0 0666 shell shell

/dev/teepriv0 0666 shell shell

46

4.2. SECURE STORAGE

3. In the <aosp root>/kernel/linaro/hisilicon-4.14 directory, execute the following set

of commands:

$ git fetch https://android.googlesource.com/kernel/hikey-

linaro refs/changes/96/889696/2 && git cherry-pick

FETCH_HEAD

$ git fetch https://android.googlesource.com/kernel/hikey-

linaro refs/changes/97/889697/3 && git cherry-pick

FETCH_HEAD

$ curl https://github.com/vchong/linux/commit/64

c9fd1c14b1c14b5b7510f18352ef33c2431002.patch | git am

After this, you can return to the project root and continue with the normal AOSP +

OP-TEE build setup.

cd <aosp root>

rm -rf out

./build-p-hikey960.sh

4.1.4 Implementation Metrics

Regarding the development of our solution, its implementation was done using two

programming languages, C and Java. The C language was mainly used in the development

of the secure components that execute in the Secure World. The Java language was used

in the development of the TWallet Framework since most of the Android applications are

made in Java. Additionally in the Normal World, the C language was also used to make

the connectors responsible for establishing communication channels between the TWallet

Framework and the secure components themselves. Besides the TWallet Framework

development, another application was created to launch our secure components as soon

as the entire system booted. This application, called Components Init, was made using

both Java and C languages.

Presenting some metrics obtained by sloccount [72], our project has a total of 53 C files

and 3393 written lines of code. The Java language has a fewer number of lines and files,

with only 20 and 331, respectively. All these files are available on a Github repository 1,

so that other developers and researchers can make use of our implementation.

4.2 Secure Storage

The Secure Storage component follows a TA approach, having only the Trusted Applica-

tion in the TEE, since all the processing is done by the TA, with no need for support from

the Normal World.
1https://github.com/rafagameiro/TWallet_system

47

CHAPTER 4. IMPLEMENTATION

4.2.1 Implementation

Given its design requirements and characteristics, we decided to implement the Secure

Storage service as a simple key-value store, based on hashtables where each key is associ-

ated with a set of values. This provides a more generic and flexible way of storing data,

since the database does not follow a specific schema, and because of that, any type of

data can be stored. Given our thesis theme, we decided that the key used to locate its

associated data would be the wallet credentials, while the stored data would be an XML

String. The XML would contain the balance of the associated wallet, and also a set of the

most recent transactions sent and received in the wallet. Its implementation, considering

the storage of wallet information, is represented in figure 4.1.

Figure 4.1: Secure Storage Implementation

The Secure Storage also supports secure data persistence, or "on-disk"secure storage,

which is provided by OP-TEE Secure Storage [68] mechanism, that implements secure

persistent storage in the TEE.

Each time a new entry is added to the hashtable, the same entry is not immediately

stored in persistent memory. This operation only happens when the requesting caller

closes the session with the TA, because of the serialization’s data disposition, regarding

the secure storage component and how its hashtable is organized.

Whenever a new session is created in the Secure Storage TA, all its data is loaded into

memory before any request is attended. First, the TA retrieves the list of keys stored in

the hashtable data structure, and then for each key, it will retrieve from the persistent

memory its respective value. During this process, each key-value retrieval is concluded

with its insertion into the hashtable, restoring the component to the same state it was

before the TA session closure.

48

4.3. AUTHENTICATION SERVICE

4.2.2 API

In this brief section we specify the Secure Storage TA API provided to client applications

residing in the NW. All functions have its implementation logic explained.

• TEE_Result create_item(char* id, char* data) - Returns TEE_SUCCESS if the

Secure Storage successfully creates an item.

Performs a copy of the data stored in the arguments into local variables, and then

creates an entry in the secure memory.

• TEE_Result read_item(char* id, char* data) - Returns TEE_SUCCESS if the Secure

Storage successfully retrieves the data.

Performs a search over the hashtable entries. If it finds a match that has the same

id value as the one passed as an argument, copies the data to user-supplied buffer.

• TEE_Result delete_item(char* id) - Returns TEE_SUCCESS if the Secure Storage

deletes the data.

Performs a search over the hash table entries. If it finds a match that has the same

id value as the one passed as an argument, deletes its data.

• TEE_Result get_attestation_proof(void* proof) - Returns TEE_SUCCESS if the

Secure Storage successfully retrieves and sends a proof to the Attestation Service.

The function retrieves an already generated proof regarding this service and copies

it into the supplied buffer, proof.

4.3 Authentication Service

The Authentication Service component follows a TA approach, where only the Trusted

Application located in the TEE does all the processing, with no aid from the Normal

World. This approach was chosen since the implementation is rather simple and does not

require any type of support from the Normal World.

4.3.1 Implementation

Considering the specifications and constraints for this component, the Authentication

Service operates in a key-value store manner, where a key is associated with a specific

wallet credentials. This method provides a way to store multiple credentials, where each

one possesses a different key. In our case, this key is a UUID stored in the Normal World

application, and the value, which corresponds to the wallet credentials, is stored as a

string. Its implementation, considering the storage of a credential, is represented in

figure 4.2.

Similar to the Secure Storage component, this TA makes direct use of the OP-TEE

Secure Storage [68] mechanism, to store persistently the credentials of a wallet.

49

CHAPTER 4. IMPLEMENTATION

Figure 4.2: Authentication Service Implementation

Furthermore, and following the same logic as the Secure Storage TA, all new entries

added to the component data structure, are only persistently stored in memory at the end

TA session. The main motivation for this behaviour is due to the serialization’s disposition

and organization of data, inside the OP-TEE mechanism.

Regarding the data loading from persistent memory, the same procedure that happens

in the Secure Storage TA occurs in this component. When the TA is instantiated, it will

retrieve the list of keys stored persistently in memory. After this step, for each key, it

will search in the OP-TEE Secure Storage and recover the associated value. During this

process, each key-value retrieval is concluded with its insertion into the TA data structure,

restoring the component to the same state as it was before the last TA termination.

4.3.2 API

In this brief section, we specify the Authentication Service TA API provided to client

applications residing in the NW. All functions have their implementation logic explained.

• TEE_Result store_credentials(char* id, char* data) - Returns TEE_SUCCESS if

the Authentication Service stores the credentials.

Performs a copy of the credential data stored in the arguments into local variables,

and then creates an entry in the hashtable.

• TEE_Result load_credentials(char* id, char* data) - Returns TEE_SUCCESS if

the Authentication Service successfully retrieves the stored credentials.

Loads the credentials stored in the hashtable, and write them into the supplied

buffer, data. If no entry with the same id value was found, the function returns with

an error and the buffer is sent empty.

50

4.4. LOGGING SERVICE

• TEE_Result delete_credentials(char* id) - Returns TEE_SUCCESS if the Authen-

tication Service deletes the credentials.

Performs a deletion of the credential stored in the hashtable that has the same id

value. If no entry was found, the function returns an error.

• TEE_Result get_attestation_proof(void* proof) - Returns TEE_SUCCESS if the

Authentication Service successfully retrieves and sends a proof to the Attestation

Service.

The function retrieves an already generated proof regarding this service and copies

it into the supplied buffer, proof.

4.4 Logging Service

The Logging Service component follows a TA approach, in which the Trusted Application

located in the TEE does all the computation required for the component functioning.

Since no type of support is required from the Normal World, we decided to go with this

implementation strategy.

4.4.1 Implementation

Given the constraints and requirements, we decided to implement the Logging Service as

a dataset of objects called log, where each object would consist of a log entry. For possible

memory limitation issues, we decided to restrict the log to the most recent 100 operations

performed by the secure components. Each time this limit would be reached, the service

would automatically remove the 10 oldest entries to make space for the next entries that

would come. Each entry can be resumed in a set of values statically defined: the name

of the component, the operation executed, and the time the operation was requested. An

implementation regarding the representation of a log entry is presented in figure 4.3.

Figure 4.3: Logging Service Implementation

Equally to the Secure Storage and Authentication Services, the Logging service makes

use of OP-TEE Secure Storage [68] mechanism to securely store the log entries into non-

volatile memory.

51

CHAPTER 4. IMPLEMENTATION

Each time a new entry is added to the log, the same entry is not stored in persistent

memory until the requesting caller closes the session with the TA. The motive is not

only due to optimization purposes but also due to the store process, which consists in

serializing and saving the entire log dataset as a single object.

Whenever a new session is created with the Logging Service TA, the log will be loaded

into memory before the request is attended. The process consists in retrieving the entire

object from the OP-TEE’s Secure Storage and de-serializing and process each log entry

until the service successfully reconstructs the log state before the TA termination.

4.4.2 API

In this brief section, we specify the Logging Service TA API provided to client applications

residing in the NW. Note that this TA has some functions restricted to Secure World only.

In all functions, its implementation logic is explained.

• TEE_Result log_new_entry(char* service, char* command) - Returns TEE_SUCCESS

if the Logging Service successfully stores the information.

Creates a new entry in the log, and fills it with the information passed by the

arguments. If the log has reached its max entries limits, it will first remove the

oldest entries.

• TEE_Result log_read_data(char* data) - Returns TEE_SUCCESS if the Logging

Service retrieves the logging stored.

Performs conversion of the log data stored in memory into a string, and copies it

into the supplied buffer, data.

• TEE_Result get_attestation_proof(void* proof) - Returns TEE_SUCCESS if the

Logging Service successfully retrieves and sends a proof to the Attestation Service.

The function retrieves an already generated proof regarding this service and copies

it into the supplied buffer, proof.

4.5 Monitoring Service

The Monitoring Service component follows a TA approach, where all the processing is

solely done by the Trusted Application running on top of the TEE. We considered this

the best approach regarding our implementation since no aid is needed from the Normal

World.

4.5.1 Implementation

Regarding this component requirements and characteristics, the Monitoring Service was

treated as a rather simple TA. This means that the component contains a set of volatile

52

4.6. TEE ADAPTATION LAYER

data, needed to monitor the other secure components activity running in the Secure World.

Whenever a new session is created with the Monitoring Service, the TA would initialize

the dataset with the information required for a well functioning of the component.

We considered that the information needed to effectively filter and monitor any re-

quest coming from the Normal World should be summarized as the component whose

request was being directed to and the list of available requests that can be done from an

application located in the NW. This way, in case an application would request an oper-

ation, not available from the Normal World perspective, the Monitoring Service would

intercept the request and discard it.

Furthermore, in case an application wishes to completely disable the Monitoring

Service functionalities, the TA provides an operation that allows skipping any validation

done to incoming requests done to the secure components.

4.5.2 API

In this brief section, we specify the Monitoring Service TA API provided to client appli-

cations residing in the NW. Please notice that, although this API has some functions

restricted to Secure World only, all operations have their implementation logic is ex-

plained.

• TEE_Result trigger_filter(bool filter) - Returns TEE_SUCCESS if the Monitoring

Service successfully sets the filter.

Sets the value stored in the filter variable to the one stored in the argument filter.

• TEE_Result filter_op(int service, int command) - Returns TEE_SUCCESS if the

Monitoring Service allows for the operation to be performed.

Verifies if the operation in the specified service can be performed. To do it, the

function checks if the specified service and operation, both passed as arguments,

are accessible from the Normal World.

• TEE_Result get_attestation_proof(void* proof) - Returns TEE_SUCCESS if the

Monitoring Service successfully retrieves and sends a proof to the Attestation Ser-

vice.

The function retrieves an already generated proof regarding this service and copies

it into the supplied buffer, proof.

4.6 TEE Adaptation Layer

The TEE Adaptation Layer component follows a TA approach, where all its processing is

done only by the Trusted Application running on top of the TEE. Since this TEE does not

require any support from the Normal World, we considered this the best approach.

53

CHAPTER 4. IMPLEMENTATION

4.6.1 Implementation

Considering this component constraints and characteristics, the Adaptation Layer was

treated as a rather simple TA. The principal function of this component is to intercept

the requests coming from the Normal World, and properly attend to them. The correct

procedure to treat these requests consists in verifying if the request can be done by the

Normal World, calling the respective TA function, and if it is a request that must have

its activity registered, register its activity. This procedure allows separating the execu-

tion of each component, preventing the possibility of intertwining operations between

components.

To verify the correctness of a request, the TEE Adaptation Layer calls the Monitoring

Service to guarantee the requester from the NW has the authorization to call the function

associated with an incoming request. If authorization is conceded, the request can be

forwarded to the respective component, but if not, an unauthorized access error e sent to

the NW application.

To register the activity of a certain set of requests, the Adaptation Layer call for a

Logging Service function, new_log_entry(char* service, char* command), to record

the request made to the respective secure component.

4.6.2 API

In this brief section, we specify the Adaptation Layer TA API provided to client applica-

tions residing in the NW. In all functions, its implementation logic is explained.

• TEE_Result store_credentials(char* id, char* credentials) - Returns TEE_SUCCESS

if the Adaptation Layer successfully stores the credentials.

The function starts by requesting permission to execute the Authentication Ser-

vice’s store credentials, by calling the Monitoring Service’s filter operation. If The

operation is allowed, the function will execute it, otherwise, the TA sends back

an unauthorized access error. Additionally, after the operation is successfully exe-

cuted, calls the Logging Service new log entry, to register a new entry, regarding the

executed operation, into the log.

• TEE_Result load_credentials(char* id, char* credentials) - Returns TEE_SUCCESS

if the Adaptation Layer successfully loads the credentials.

The function starts by requesting permission to execute the Authentication Ser-

vice’s load credentials, by calling the Monitoring Service’s filter operation. If The

operation is allowed, the function will execute it, otherwise, the TA sends back

an unauthorized access error. Additionally, after the operation is successfully exe-

cuted, calls the Logging Service new log entry, to register a new entry, regarding the

executed operation, into the log.

54

4.6. TEE ADAPTATION LAYER

• TEE_Result delete_credentials(char* id) - Returns TEE_SUCCESS if the Adapta-

tion Layer successfully deletes the credentials.

The function starts by requesting permission to execute the Authentication Ser-

vice’s delete credentials, by calling the Monitoring Service’s filter operation. If The

operation is allowed, the function will execute it, otherwise, the TA sends back

an unauthorized access error. Additionally, after the operation is successfully exe-

cuted, calls the Logging Service new log entry, to register a new entry, regarding the

executed operation, into the log.

• TEE_Result storage_read_data(char* id, char* data) - Returns TEE_SUCCESS if

the Adaptation Layer successfully reads the data.

The function starts by requesting permission to execute the Secure Storage’s read

item, by calling the Monitoring Service’s filter operation. If The operation is allowed,

the function will execute it, otherwise, the TA sends back an unauthorized access

error. Additionally, after the operation is successfully executed, calls the Logging

Service new log entry, to register a new entry, regarding the executed operation,

into the log.

• TEE_Result storage_write_data(char* id, char* data) - Returns TEE_SUCCESS if

the Adaptation Layer successfully stores the data.

The function starts by requesting permission to execute the Secure Storage’s create

item, by calling the Monitoring Service’s filter operation. If The operation is allowed,

the function will execute it, otherwise, the TA sends back an unauthorized access

error. Additionally, after the operation is successfully executed, calls the Logging

Service new log entry, to register a new entry, regarding the executed operation,

into the log.

• TEE_Result storage_delete_data(char* id) - Returns TEE_SUCCESS if the Adap-

tation Layer successfully deletes the data.

The function starts by requesting permission to execute the Secure Storage’s delete

item, by calling the Monitoring Service’s filter operation. If The operation is allowed,

the function will execute it, otherwise, the TA sends back an unauthorized access

error. Additionally, after the operation is successfully executed, calls the Logging

Service new log entry, to register a new entry, regarding the executed operation,

into the log.

• TEE_Result log_read_data(char* data) - Returns TEE_SUCCESS if the Adaptation

Layer retrieves the logging stored.

The function starts by requesting permission to execute the Logging Service’s read

log, by calling the Monitoring Service’s filter operation. If The operation is allowed,

the function will execute it, otherwise, the TA sends back an unauthorized access

error.

55

CHAPTER 4. IMPLEMENTATION

• TEE_Result trigger_monitoring(bool filter) - Returns TEE_SUCCESS if the Adap-

tation Layer successfully sets the filter.

Sets the value stored in the filter variable to the one stored in the argument filter.

• TEE_Result get_attestation_proof(void* proof) - Returns TEE_SUCCESS if the

Adaptation Layer successfully retrieves and sends a proof to the Attestation Service.

The function retrieves an already generated proof regarding this service and copies

it into the supplied buffer, proof.

4.7 Attestation Service

The Attestation Service component follows an HTA approach, meaning some of its pro-

cessing is done by the Trusted Application that runs on top of the TEE, while the remain-

ing processing is done on the Normal World. We considered this the best approach since

this component does not require any additional support from the Normal World.

4.7.1 Implementation

Considering this component constraints and characteristics, the Attestation Service was

treated as a hybrid TA. The principal function of this component is to attest and generate

proof stating that all secure components, at boot time, are indeed secure.

The procedure the Attestation Service we considered to be ideal was already previ-

ously described in Chapter 3, Section 3.7. The procedure, given the constraints and

requirements of this component, consists in initially requesting a generated proof to each

secure component. After receiving all proofs, the service would join all proofs into a

single one and append to it the nonce initially passed as an argument, forming the digest.

Finally, the digest would need to be signed, using an RSA keypair, resulting in the attes-

tation proof. For simplicity purposes, the first time the service starts, a new RSA keypair

is generated a stored in persistent memory so that it can be later used.

The Attestation service should then send back the newly generated proof, along with

the essential parameters to reconstruct the public key in the Normal World side. These

parameters would be needed, to verify the attestation proof and validate that the service

sent valid proof, confirming that all components are secure.

4.7.2 API

In this brief section we specify the Attestation Service TA API provided to client applica-

tions residing in the NW. All functions have its implementation logic explained.

• TEE_Result get_attestation_proof(int nonce, void* digest, void* proof, void* exp,

void* mod) - Returns TEE_SUCCESS if the proof is successfully sent to the Normal

World.

56

4.8. TWALLET INTEGRATION SUPPORT

The functions start by requesting from each secure component an authentication

proof. If any of the components send an invalid proof, the function immediately

stops operating and alerts the NW of an abnormality. After retrieving all proofs,

it concatenates them, appends the nonce passed as arguments, and generates the

attestation proof. This proof is then sent to the application that requested it through

the supplied buffer, proof. Additionally, for the Normal World application to ac-

cept the attestation proof it needs to verify the proof, and to do that, the function

also sends back: (i) the cumulative hash originated from the secure components

appended with the received nonce; (ii) the exponent and modulus to generate the

public key, needed for the decryption process.

4.8 TWallet Integration Support

The TWallet Service follows a Wrapper API approach, where the available functions made

public by this service will call other functions that directly communicate with the APIs

of each developed secure component. We considered this the best approach since the

objective of this service is to create a channel that enables the communication between

applications in the Normal World, and the secure components located in the Secure

World.

4.8.1 Implementation

Given the default programming language used for Android applications development

is different from the one used in Trusted Applications development, this service makes

use of an integration library to link both languages. The integration library is called

Java Native Integration (JNI) and is used to write Java native methods and embed the

Java virtual machine into native applications [47]. This way, the android applications,

typically developed in Java, can communicate with the running TAs, developed in C

language.

4.8.2 API

In this brief section, we specify the TWallet Service API provided to Java Applications

that wish to make use of our secure components. All functions have their implementation

logic explained. Note that some functions refer to a created type called AccountInfo. This

type, as the name suggests, consists of an object that contains the information regarding

the current account in use, such as balance and set of transactions.

• boolean attestateComponents(int nonce) - Returns true if the Attestation Service

successfully attests all components.

57

CHAPTER 4. IMPLEMENTATION

The function will pass an argument to the Secure World’s Attestation Service, the

generated attestation proof, and its public key. After receiving the proof, the func-

tions must verify the proof signature and confirm if the nonce initially sent is part

of its body.

• boolean trigger(boolean filter) - Returns true if the Monitoring Service success-

fully changes the monitoring filtering approach.

Sets the Monitoring Service filter to allow access, or not, to the secure components’

methods.

• boolean writeData(String id, AccountInfo info) - Returns true if the Secure Stor-

age successfully writes a new data into memory.

The function will initially convert the information stored in the AccountInfo object

into a string, and then send it to the Secure Storage. The information will be stored,

and consequently, the function will return true. In case there is already an entry

with the same id, the function returns false.

• AccountInfo readData(String id) - Returns an object AccountInfo if the object

identified by its id is successfully retrieved.

The function will search through the objects registered in the Secure World’s Secure

Storage for an entry with the same id. In case a match is found, the stored object is

retrieved and it will be converted into an AccountInfo object. If nothing is found

regardless, the function will still return an AccountInfo object, but empty.

• boolean deleteData(String id) - Returns true if the Secure Storage successfully

deletes the object identified by its id.

The function will search through the objects registered in the Secure World’s Secure

Storage for an entry with the same id. If the object is found, it will be permanently

deleted, and it will return true. If an object is not found the function will simply

return false.

• boolean storeCredentials(String id, String cId, String cPwd) - Returns true if the

Authentication Service successfully stores a new credential into memory.

The function will create try to create a new entry in the Authentication Service,

using the id and credentials (cId, cPwd). In case an object identified by the same id

already exists, the function will cancel the operation and return false.

• String[] loadCredentials(String id) - Returns an array of strings with the creden-

tials if the Authentication Service successfully finds an object with the respective

id.

The function will search through the objects registered in the Secure World’s Au-

thentication Service for an entry with the same id. If a match is found, the object

58

4.9. SUMMARY

containing the credentials is retrieved. If nothing is found, the function returns

false.

• boolean deleteCredentials(String id) - Returns true if the Authentication Service

successfully deletes a set of credentials identified by its id.

The function will search through the objects registered in the Authentication Service

for an entry with the same id. If an object is found, it will be permanently deleted,

and the function returns true. If no match is found, the function returns false.

• String getLogging() - Returns a string that contains the event log built so far by the

Logging Service.

The functions will always retrieve the event log object, either a log with entries or

an empty one.

4.9 Summary

In this chapter, given the already discussed design requirements and constraints, we

presented a prototype of our solution and explained its system model and architecture

implementations. Initially, we presented our chosen development environment, describ-

ing the TEE platform, as well as the steps we took to set it up. In sequence, we addressed

the implementation considerations of the developed components that are part of our

architecture. These components are the Secure Storage Component, the Authentication

Service, the Logging Service, the Monitoring Service, the TEE Adaptation and Isolation

Layer, the Attestation Service, and the TWallet Framework.

The Secure Storage Component is designed as a simple key-value store where each

key is associated with a single value. The underlying data structure is used as a hashtable,

in which the key would immediately point to the assigned value. To persistently store

the information managed by this component, the TA made use of the OP-TEE’s Secure

Storage mechanism.

Next, we have the Authentication Service, and exactly like the Secure Storage, this

component is designed as a key-value store. The main difference between these compo-

nents consists in the underlying information stored. Whereas the Secure Storage regis-

tered in our scenario the wallet’s information, the Authentication Service is focused on

storing the access credentials of registered wallets.

Then we present the Logging Service, which was designed to generate an event log

of all operations used by the secure components throughout its execution time. The

underlying structure consisted of a simple list of fixed entries, wherein in case the limit

was reached, the oldest entries would be removed. To persist the log throughout the TA

sessions, the Logging Service used the OP-TEE Secure Storage mechanism to store the log

information "in-disk".

59

CHAPTER 4. IMPLEMENTATION

The Monitoring Service is the next to be explained. This component principal function

is to intercept the incoming requests from NW and validate if those requests could be

called without posing any threat to the secure components. The Monitoring Service

underlying structure consisted is a simple fixed-size list, where each entry would describe

the information of each secure component. This information would then be used during

the operation filtering.

Next, we present the TEE Adaptation Layer, which implemented a simple middle-

ware between the NW applications and the secure components. This application would

intercept the requests, verify if they could be executed, and if needed register its activity

in the event log. To correctly execute its functions the Adaptation Layer made use of the

Monitoring Service and Logging Service API functions.

Then we have the Attestation service, whose design consisted in generating an authen-

tication proof that would confirm that the secure components, at attestation time, would

be secure. The component implementation consisted in requesting a proof from each of

the secure components, joining them, appending a nonce obtained from the NW appli-

cation, and signing everything. By sending back this proof, along with the verification

key, the requested application can determine if the components at the moment can be

considered secure or not.

Finally, the TWallet provides the implementation of a Wrapper API architecture. This

application would be responsible to make the services provided by the secure components

available to any application that desires to use it. The implementation made use of the JNI

integration library to intertwine the java language with the C language. In our context,

this was essential because, typically, android applications are developed in Java, while

the applications developed to communicate with TAs, are written in C.

The next chapter is directed to the experimental evaluation phase, where we describe

the performed tests and our analysis, given the obtained results.

60

5

Experimental Evaluation

To validate the designed solution and related prototype, and to study the performance of

supported operations and implemented components, we performed a series of different

experiments using an experimental test bench environment, while considering the devel-

opment environment described in Chapter 4. We also observed some practical indicators

for software engineering metrics, related to resource allocation throughout the execution

of prototype components. In this chapter, we intend to present the conducted experi-

ments and their respective results. In Section 5.1 we explain the evaluation environment

and all considered evaluations. In the following sections, we present the experimental

evaluations done to analyze our developed solution and discuss the obtained results and

related conclusions. Section 5.2 discusses the TWallet System overall performance, Sec-

tion 5.3 discusses Profiling metrics, such as storage cost, system and application boot

times. Section 5.4 discusses the spent system resource to operate on an app without

our version vs. one with our solution, and finally, Section 5.5 evaluates the Attestation

Process performance. To conclude, in Section 5.6 we summarize the main observation of

all evaluations and the more relevant validation arguments of our work.

5.1 Testbench and Evaluation Methodology

5.1.1 Testbench Environment

For the Evaluation testbench, we used the same environment that was used during the

development phase. The environment is summarized in the following table, describing

the complete set of characteristics of all components, either from a software and hardware

perspective.

Table 5.1: Testbench Environment Characteristics

Tested board [3] Hikey 960, Kirin 960, Cortex-A72 2.3GHz &
Cortex-A53 1.8GHz (ARMv8) 64-bit SoC

OP-TEE [69] 3.12.0
Android Version [18] 9.0

61

CHAPTER 5. EXPERIMENTAL EVALUATION

Furthermore, some of the operations we intend to evaluate require some communi-

cation with an Ethereum Blockchain. To enable this desired communication, we make

use of Hikey WiFi adapter, with support for 2.4 and 5GHz dual-band with two antennas,

and a network with 50 Mbps of bandwidth. The process between our prototype and the

blockchain can be illustrated in figure 5.1.

Figure 5.1: Communication between Prototype and Ethereum Blockchain

Since in this thesis we are not able to use the real Ethereum Blockchain to manage

Ether cryptocurrencies, we decided to use the Rinkeby testnet [53] to fully perform the

operations that demanded communication with the Blockchain. Rinkeby is an Ethereum

test network that allows for blockchain development testing before deployment on the

main Ethereum network [77]. To connect to this testnet we used a node service provider

called Infura [12] that managed the node we used to perform our requests to the network.

These requests were done using a remote procedure call protocol over HTTPS, named

JSON-RPC [28].

5.1.2 Evaluation Methodology

For the validation of the proposed solution, we conducted a sequence of experimental

evaluations covering the issues: (i) solution performance and overhead, including com-

parative evaluation of operations performed on a normal cryptocurrency wallet and on

a wallet that uses our solution, as also performance measurement of our components

operations; (ii) profiling of runtime components, including the analysis of storage cost

and observation of the setup latency; (iii) resource allocation analysis, and (iv) perfor-

mance of the attestation Protocol and its impact when using different ciphersuites and

cyptographic key sizes. This allows us to gather the required data to perform our planned

experimental evaluation of our prototype as described in Chapter 1.

The comparative evaluation of operations between a normal cryptocurrency wallet

and a wallet backed by the TWallet was performed using a benchmark android applica-

tion we developed that performs the normal operations and the operations that include

62

5.1. TESTBENCH AND EVALUATION METHODOLOGY

the calls to our secure components. To measure the time spent to do a complete operation

we used the Java function System.getTimeMillis(), however, some of these tests aimed

to measure the performance of the secure components commands and therefore to regis-

ter their times we instead used the OP-TEE function TEE_GetREETime(). Each performed

test was executed 70 times since we considered this value to be large enough to reduce

the standard deviation of the analyzed operations to an acceptable margin of error.

The evaluations regarding profiling of runtime components were done by measuring

the System and Application Boot times, as registering the additional storage cost. For the

time registration tests, we decided to analyze the output of the Boot process through a

UART component, and register its presented value when the boot reached its finish state.

To obtain the storage cost we measured the storage space required by developed Apps

and TWallet Trusted Components, as well as, the storage required by OP-TEE. For tests

that measure time, we used 10 a sample size for repetitions, while for the storage cost

tests we used the obtained results as these values would not change.

Regarding the calculation of extra allocated resources, we used the same developed

android app during the comparative analysis to run the tests but, the measurement of

the resources was done through the Android Studio Profiler tool [6]. For each of the

performed tests, we did 10 repetitions.

In the last experiments about the attestation protocol performance, we used the devel-

oped benchmark to perform the tests. Due to the nature of some tests, our objective was

to register the time the attestation protocol spent only inside the Secure World and be-

cause of that, we used the OP-TEE function TEE_GetREETime() to provide a more precise

value aligned with the Rich OS time system. Each test was executed 70 times following

the same principles that were described before on the comparative analysis tests.

5.1.3 Summary of Evaluation Metrics

Based on the above evaluation methodology aspects and experimental observations to

assess and validate the developed TWallet prototype, the following table 5.2 summarizes

the metrics observed in each experiment.

63

CHAPTER 5. EXPERIMENTAL EVALUATION

Table 5.2: Evaluation metrics

TWallet Comparative Performance
Observation Observation Criteria

Wallet Operations Performance
Latency (ms)

Throughput (ops/s)

Secure Components’ Operations
Latency (ms)

Throughput (ops/s)

Components Internal Operations
Latency (ms)

Throughput (ops/s)
TWallet Profilling

Observation Observation Criteria
Solution Required Space Space (KBytes)

System Boot Time (s)
Application Boot with TWallet Time (s)

TWallet Allocated Resources
Observation Observation Criteria
CPU usage CPU load (%)

Memory usage Space (MBytes)
Network usage Latency (ms)

Attestation Protocol Performance
Observation Observation Criteria

Attestation Protocol (different
ciphersuites)

Latency (ms)

Attestation Protocol (different
ciphersuites) incl. Key

Generation
Latency (ms)

Key Generation Process Latency (ms)

In the following sections, our experimental observations are reported and discussed.

5.2 TWallet System Performance

We conducted the Twallet System evaluation by starting with measuring the operations

that can be performed in the user device by the end-user, where some of them need to

communicate with an entity external to the user device. The measurement considered an

application without our solution, and the same application but with our solution included.

After that, we decided to isolate the functions called by our secure components that are

part of the end-user available operations and evaluate its performance.

Regarding the operations that demand some communication with an external entity,

which given this thesis context the referred entity is the Ethereum Blockchain, we con-

sider that all communication establishment procedures were already done before the

operations performance measurement.

64

5.2. TWALLET SYSTEM PERFORMANCE

5.2.1 Operations Performance

To measure the overall performance we decided to evaluate the operations that can be

performed on the user device by the end-user. The objective is to obtain a first general

analysis of the impact on the user device by making use of our solution. The following

plots, illustrated in figure 5.2 presents a comparison of some cryptocurrency wallet op-

erations, performed by trusted and untrusted applications. Considering the registered

results in figure 5.2(a) and 5.2(d), we think that a presentation regarding those operations’

throughput would not add any particular information to this evaluation, since most of

the measured operations have an execution time larger than 1 second, and therefore the

produced throughput would be inferior to 1. However, the remaining operation had their

throughput calculated and can be observed in tables table 5.3 and 5.4.

Table 5.3: Performance of Normal Wallet Operations

Operation Throughput (ops/s)
Balance 7
Delete Credentials 621
History of Transactions 4

Table 5.4: Performance of TWallet Operations

Operation Throughput (ops/s)
Balance 2
Delete Credentials 2
History of Transactions 1

Interpreting the observed results, we can easily deduce that the additional instructions

done by our solution are not expensive enough to dominate the operation execution time.

However, and as expected, there is an inherent overhead caused by the extra security

provided to each of the evaluated operations. The origin of this overhead is mainly due

to:

• Context Switch - The Context Switching mechanism of ARM TrustZone provides

isolation guarantees between the trusted and untrusted execution environments,

and the operations implemented on the TA itself when compared to the untrusted

application.

• Trusted Application Switching - Most of our solution operations are subdivided

into other distinct applications - Monitoring Service, Logging Service and Com-

ponent itself, each with their respective Trusted Applications in the SW. This is

because the Normal World does not communicate directly with the TA it intends

to communicate, but with the TEE Adaptation Layer, as explained in Chapter 3

Section 3.6. After the TEE Adaptation Layer receives the incoming request, it will

sequentially send a request to each of the involved Trusted Applications so that

65

CHAPTER 5. EXPERIMENTAL EVALUATION

(a) Operations: Create Wallet, Load Wallet (b) Operations: Delete Wallet

(c) Operations: Balance, History of Transactions (d) Operations: Send Transaction

Figure 5.2: Wallet Operations Latency Comparison

66

5.2. TWALLET SYSTEM PERFORMANCE

the request can be attended. When a TA calls another function from another TA,

the OP-TEE changes its execution context from one application to another, similar

to when a user application performs a system call that triggers an interrupt. The

interruption consequently changes the current context of execution between the

user-space and the privileged kernel-space, which handles the interruption. All

this process involves an additional cost of switching between Trusted Applications

that must be taken into account when measuring its overall performance.

Without the existence of these factors, we consider that the execution time of the

operations of the Trusted Application would be identical to its untrusted counterpart.

An analysis of each operation’s performance is detailed below:

• The Delete operation is the fastest of them all. The operation consists in deleting a

wallet file and all its associated information stored in the secure world. The wallet

file deletion, considering the app without our solution, simply deletes the wallet

file, and by observing the results we can see the operation itself is almost ignored.

When taking into account an app with our solution we can see that there is an

increase in the execution time due to the 2 delete operations that must be done in

the Secure World. This is a significant decrease in the operation cost considering the

other operations since all others perform write operations over the Authentication

Service or Secure Storage, which have a bigger impact than a deletion command in

comparison to the total operation cost.

• The Balance operation is the second fastest of them all. The operation requests

to the Ethereum Blockchain the balance associated with the wallet that performed

the request, and then stores the result into the secure world. The operation normal

process consists in retrieving the value from the Blockchain, which made the oper-

ation the second fastest. By adding our solution, the operation must additionally

perform a write operation to the Secure Storage, increasing by more than 2 times

the operation normal execution time.

• The Send Transaction is the most expensive operation. This operation consists in

sending a transaction to the Ethereum Blockchain (testnet), and until the Blockchain

confirms that the transaction was concluded and will be properly processed in the

future, the operation is interrupted while awaiting a response. After receiving

confirmation the operation was concluded, the transaction information is written

into the Secure Storage. Since the time spent to confirm that the transaction was

processed can greatly vary due to the time needed to successfully close a block in the

Blockchain, the operation completion time is directly influenced which is expressed

in the standard deviation values we can see in the plot.

• We consider that the Balance and History of Transactions operations could be

similar regarding its execution time. However, due to the already explained History

67

CHAPTER 5. EXPERIMENTAL EVALUATION

of Transactions communication segment, the values ended up being unstable. The

History of Transactions performs a request to the Ethereum Blockchain to obtain

the history of past transactions done by the requested wallet, and after receiving

the response stores its results in the Secure World. Similar to the Balance operation,

the retrieved response is stored in the Secure Storage, which causes the operation

to take more than 2 times a normal execution would take.

• The Create Credentials, Load Credentials and Send Transaction are the most

expensive operations even without the use of our solution. All of them require

expensive computations to properly perform their functions, and by adding our

solution to the function processing, its execution time is slightly increased due to

the write operations requested to the Authentication and Secure Storage Services.

Standard Deviation Analysis. Observing the registered standard deviation values

we can notice that the operation Send Transaction presents an abnormal high standard

deviation value. The Send Transaction is a call done to the library Web3J [43] and consists

in sending a transaction synchronously to the Ethereum Blockchain.

The operation sends the transaction with the specified information to the Blockchain

environment (e.g., rinkeby test network), with the confirmation that it was inserted in a

block. Observing the parameters in the Blockchain operation [21] it is expectable that

the mean completion time of the Proof of Stake to close the blocks is around 13 to 14

seconds. However, there are cases that given the number of transactions to close, as also

the current gas value, the completion time can largely increase to 30 or even 40 seconds.

This explains a considerable variation as observed in the evaluated standard deviation

illustrated in the plot.

Besides the operation Send Transaction, we can see that the History of Transactions

also displays a high standard deviation value. The History of Transactions consists in

retrieving from the Ethereum Blockchain a list with the history of past transactions the

requested account already did. This operation can be divided into two segments, the

communication segment, responsible for sending the request and retrieving the response,

and the processing segment, which processes the response information and stores it in a

data structure so that, in case the operation was to be done in a real application, it could

be presented to the user.

To further understand the standard deviation abnormal values, we decided to per-

form an evaluation in which we re-run the operation, but this time considering only the

communication segment. The obtained results, as also the previously registered values,

are all presented in table 5.5.

As we can see by the data presented in the table, the abnormal standard deviation

value seems to persist while only considering the communication segment. The reason

why this happens might be due to the endpoint where the request is being done since

this is the only operation we tested that sends a request to a different endpoint. Some of

the other operations, although they also possess a communication segment, they seem to

68

5.2. TWALLET SYSTEM PERFORMANCE

Table 5.5: History of Transaction Segment Comparison

Segment Latency (ms) Throughput
(ops/s)

Standard
Deviation (%)

Complete Operation 220.96 4.5 32.20
Communication Segment

Only
198.86 5.0 38.75

present a standard deviation significantly lower. These operations are Balance and Send

Transaction.

With the data obtained by performing these two evaluations, we can conclude that

the communication segment is the dominant part of the complete operation since the

registered standard deviation value seems to pass on to the entire operation. Therefore,

the presented standard deviation value of the History of Transaction is caused by the

communication segment, which is out of this thesis scope, and because of that, we decided

to ignore it.

5.2.2 Secure Components Performance

After evaluating the available operations performed by the end-user, we decided to mea-

sure the overall performance of some operations executed by our secure components.

These sub-operations are called when the operations measured in Section 5.2.1 are called.

The sub-operations belong to the Authentication Service and Secure Storage. The Authen-

tication Service manages the creation, load and deletion of user credentials needed for

the wallet app, while the Secure Storage manages some information regarding the wallet

account, such as balance and log of transactions.

Figures 5.3(a) and 5.3(b) illustrate a chart that presents the latency of sub-operations,

performed by Authentication Service and Secure Storage, respectively. Tables 5.6 and 5.7

represent the operations per second performed by the same Trusted Applications.

Table 5.6: Performance of Authentication Service Operations

Operations Throughput (ops/s)
Store Credentials 3
Load Credentials 6
Delete Credentials 3

Table 5.7: Performance of Secure Storage Operations

Operation Throughput (ops/s)
Write Data 2
Read Data 5
Delete Data 3

69

CHAPTER 5. EXPERIMENTAL EVALUATION

(a) (b)

Figure 5.3: Secure Components Main Operations Latency

As observed in the figure, the execution time of these operations is significantly small,

producing a good throughput of operations performed per second. Despite the listed

execution time, we can state that a certain percentage does not belong to the processing

of the request itself. In these operations, a part of the execution belongs to the Context

Switch and Trusted Application Switching, which is responsible for switching executions

between the Normal World and the Secure World, and switching execution context be-

tween TAs, respectively.

5.2.3 Internal components Performance

Despite the time presented by the execution of the operations of the secure components,

as we mentioned in Chapter 3 Section 3.1, these operations are a composite of operations

performed by different secure components, all connected through the TEE Adaptation

Layer. The TEE Adaptation Layer is responsible for intercepting the incoming requests

from the Normal World, and if needed, performing a set of auxiliary operations before

redirecting the request to the secure component that will attend it. The auxiliary op-

erations consist in: verifying if the operation can be performed from a Normal World

perspective, by the Monitoring Service; and registering the operation activity in a log that

contains all operations performed by the secure components, in the Logging Service.

Both these operations performed by these Secure components were measured and its

latency and number of operations per second are respectively presented in figure 5.4, and

table 5.8.

As we previously mentioned, the measured run time is divided across different secure

70

5.3. PROFILING

Table 5.8: Performance of Internal Operations

Operation Throughput (ops/s)
Log new Entry 13
Filter Operation 34

Figure 5.4: TWallet Internal Component Operations Latency

components, with these operations being part of them. However, as we can observe the

registered times we can deduce that, as expected, these operations are dominated by the

main secure component that is responsible for attending the request.

With all observations registered, we can conclude that as expected, there is an over-

head caused by the provided extra security from our solution to the operations performed

in a cryptocurrency wallet. However, this overhead seems to not dominate the entire ex-

ecution of the operation and taking into account its percentage considering the entire

execution time, and the additional security properties, we think of this to be beneficial to

our solution.

5.3 Profiling

To successfully monitor and evaluate the profiling indicators regarding our system solu-

tion, we decided to measure two essential aspects: first, we measure the boot time of the

system and the tested applications, to determine the relationship between the usage of

our solution, and the overhead time spent to fully boot the user device OS and a normal

application; second, we intend to determine the cost of using our solution, by analyzing

71

CHAPTER 5. EXPERIMENTAL EVALUATION

the allocated space and comparing it with a base solution, without our system additional

security guarantees.

5.3.1 Boot Execution Time

To analyze the time our solution’s system setup takes to boot, in an incremental way, we

decided to measure the system boot times. To achieve it, we examined the logs produced

by OP-TEE and computed the timestamp between the moment the Operating System

starts booting up and the moment all background processes are concluded, and both

Trusted OS and Rich OS are ready to execute their applications. Our thought process

consisted of: firstly, registering the TEE Boot time, followed by the TEE + Rich OS Boot

time; and then measuring the entire Boot process from the TEE boot, until the boot of our

secure components. For this evaluation the number of repetitions was significantly small,

being only 10. The table 5.9 describes each of the processes registered times.

Table 5.9: System Boot Times

System Time (s)
OP-TEE (TEE) 3.66
OP-TEE + AOSP (TEE + Rich OS) 17.25
OP-TEE + AOSP + Secure Components 18.26

By observing the results, we can conclude that the boot process time spent is mainly

due to the Rich OS boot. Seeing the boot full process (OP-TEE + AOSP + Secure Com-

ponent) and comparing it with the OP-TEE + AOSP times, the secure components boot

time is not large enough to dominate the system setup, which results in the fact that the

OP-TEE + AOSP boot time is the part that takes more time to boot, whereas the Secure

Components boot time is the smallest. Additionally, since knowing the OP-TEE boot

times and comparing with the OP-TEE + AOSP times, we see that the percentage corre-

sponding to the OP-TEE boot is smaller than 30% of the total OSes boot time, meaning

that the AOSP boot is the big dominant during the entire boot process.

Because the Rich OS is the main process that defines the system boot time, we can

conclude that our solution overall boot would not largely affect the normal boot process

of a mobile device. Since the trade-off between the boot process additional time and, the

enforcement of security properties that can be used by some applications is beneficial, we

think of this as a point in favour of our solution.

5.3.2 Application Boot

Now aiming to evaluate the boot of our tested applications, we decided to analyze their

boot times (or boot latency). To measure the boot time, we decided to inspect the logs

produced by OP-TEE and computed the timestamp between the moment the user starts

the application, and the moment the application finishes executing all its background

processes and displays a window requesting for user input to proceed. In this experiment,

72

5.3. PROFILING

the number of repetitions was only 10, and the obtained results can be consulted in table

5.10.

Table 5.10: Application Boot Times

System Time (s)
Base Application 0.716
Application + TWallet 0.881

Analyzing these results, we can see that the boot time of a normal application is

naturally faster than an application that uses our solution. The overhead cost considering

the tested applications is slightly more than 20% boot time of the normal application. The

differences between using or not our solution during the application boot process can be

summarized in checking if the Authentication Service contains some stored credentials,

which will determine if the application must or not request a new set of credentials from

the user. Additional to the Authentication Service request, another command is issued

while using our solution during the boot: the attestation process execution. Although the

cost for executing this process is not included in these recorded times, the performance

analysis of the attestation process will be done in section 4.7.

5.3.3 Storage Cost

To evaluate the cost of a normal cryptocurrency wallet against a wallet incorporated with

our solution, we decided to consider the storage cost, as the allocated space measured as

soon as the apps were installed as system apps in a user device. With that in mind, table

5.11 presents the registered values.

Besides comparing between the occupied space of a wallet with and without our

solution, from the Normal World, we desire to measure the allocated space of our solution.

This includes not only the app installed in the Rich OS in the Normal World but also the

space needed for our secure components present in the Secure World, to properly execute

its functions.

Table 5.11: Storage Cost Values

System Cost (kB)
Base Application 4.13
TWallet 360
Secure Components 350
OP-TEE 938
Total 1652

Analyzing the table we can observe that as expected, our solution, either with or

without considering only the TWallet system storage cost, is bigger than the base solution.

In the case where we included the OP-TEE occupied space, our solution overall prove to be

largely superior in storage cost terms, when compared to the base application. However,

73

CHAPTER 5. EXPERIMENTAL EVALUATION

our decision to include the TEE in our allocated space measure calculation is not because

it is part of our solution, but because without the TEE our solution would not execute.

Regarding the remaining cases, we considered the major cause for the storage increase

to be the JNI library. The JNI library intertwines the processing of the Android base app,

developed in Java, and the C functions used to communicate with the secure components

in the Secure World.

There is an increased allocated storage space when comparing the TWallet-protected

App with the Non-Protected App. However, we can conclude that we can have gains

in security, with a reasonable aggravation on the required resources, regarding typical

mobile Apps and the resources of mobile devices.

5.4 System Resources

To properly observe the resource allocation behaviour when a system uses our solution,

we conducted the same performance operations evaluated in Section 5.2.1, since these

operations are directly used by the end-user. The resource allocation tests were performed

considering the CPU utilization, Memory Cost, and Network. The number of repetitions

done in these observations was only 10.

5.4.1 CPU Utilization

To measure the CPU utilization occupied by the operations previously observed, we

decided to re-run those operations, while using an app without our solution, and compare

its obtained results with the same application, but now using the TWallet System. The

registered values can be visualized in figure 5.5.

By observing the obtained results, we can see that Create Credentials, Load Creden-

tials and Balance registered a clear increase of the CPU resources, on the horizontal plane.

This means the operations did not require more CPU resources than the already used but

did spend more time with the resources allocated. Such behaviour is due to the additional

execution of the requests to our solution components, as they demand the use of CPU

utilization because of write and read operations.

The delete operation displayed the greatest increase in the CPU spent resources. This

operation originally did not require any CPU resources, since it only consisted in deleting

the wallet information stored in a local file. However, by using our solution, the oper-

ation did a request to our secure components, namely a delete request, which requires

allocating some CPU utilization to delete the information from memory.

The Send Transaction and History of Transactions, as we already mentioned in Section

5.2.1, expressed large variations over the registered values, mainly due to the communi-

cation segment. This segment influence seems to also be expressed on the CPU resources

as the registered values do not seem to have the same pattern, as the one observed in

the Create Credentials, for example. Despite the disparity between registered values,

74

5.4. SYSTEM RESOURCES

(a) Create Credentials (b) Load Credentials

(c) Delete Credentials (d) Balance

(e) Send Transaction (f) History of Transactions

Figure 5.5: CPU Utilization Comparison. The light green represents the wallet with the
TWallet System, and the other green the wallet without our solution.

we can see a point in common in both operations, which is the extent of the operation

execution time and an increase of the CPU allocated resources at its end. This is due to

the requests done to our secure components located in SW, as both commands request

write operations to the Secure Storage component.

5.4.2 Memory Cost

While aiming to evaluate the memory cost of the performed operations, on a cryptocur-

rency wallet without our solution, and on a similar application but with our solution

incorporated, we analyzed the same operations observed in the previous Section. The

registered results are expressed in figure 5.6.

Through the registered results, we can notice that both operations, Create Credentials

and Load Credentials seem to greatly increase their memory cost. This is due to the

75

CHAPTER 5. EXPERIMENTAL EVALUATION

(a)

(b)

Figure 5.6: Memory Cost Comparison

76

5.4. SYSTEM RESOURCES

library used by the tested application, Web3J [43]. The operations when called will use

the respective functions from this library to create a new wallet or load existing wallet

information into memory, which requires generating and loading a significant amount

of information, producing a large increase in memory cost, which we can observe in the

plots. As we can see, using our solution does not invoke an increase greater than the

one caused by the library functions, therefore the memory used by the operations of our

solution are mitigated by a large amount of memory spent on the library functions.

Regarding the other evaluated operations, the amount of memory spent is uniform

and unaltered. As we already explained, a large amount of memory used is due to the

Web3J functions and this reason goes across operations like Balance, Send Transaction,

and History of Transactions because these operations are operations that can only be done

when wallet information is loaded on memory.

Considering our statement regarding the large increase in memory cost being caused

by the library functions, the Delete Credentials would technically perform the inverse

phenomenon. However, the reason why this is not expressed in the plot is since Web3J

does not have a function responsible for deleting wallet information, and therefore the

library cannot free the information loaded on memory.

With these observations, we can deduce that our solution does not cause a significant

increase over the memory cost, since the dominant segment belongs to the library Web3J

allocated variables. Therefore, considering the tested applications, we can argument in

favour of our solution, since it provides a relevant security enforcement to critical opera-

tions with an acceptable increase in the memory requirements, particularly considering

the typical memory resources we find in commonly used mobile devices.

5.4.3 Network

To analyze the network connectivity, we observed the performance of the previously

mentioned operations, namely Balance, Send Transaction and History of Transactions.

For this observation we used the Android Studio Profiler tool to obtain the latency of

each operation and related data exchange between the local device and the blockchain,

comparing the values for the application with and without the support of the TWallet

protection. The obtained results are expressed in figure 5.7.

77

CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.7: Network Resources Comparison

In this plot we must notice that for the case of the Send Transaction, the observed

latency doesn’t include the finalization of the transaction in the Blockchain e.g., the

latency in the Blockchain side to achieve the finality of the block in which the transaction

will be included, leading to the registered values.

As we can observe, the obtained values are very similar, even when considering the

two different scenarios. This is due to the fact that our solution does not enforce any

additional security properties over the communications with any external entity. With

all results considered, we conclude that the communication segment of each operation,

as its performance, is out-of-scope of our solution and does not suffer any change.

5.5 Attestation Service

To evaluate the Attestation Service performance, we decided to benchmark its attestation

protocol when used in a client application context. Regarding the attestation process

itself, we considered it to be out-of-scope, the generation of the hash proof by each secure

component as that process is performed during the system boot, and the key generation

process since it only happens the first time the protocol is executed.

To measure the attestation process performance, we did variations to the ciphersuites

used during the signing process, used to authenticate the proof sent to the client ap-

plication in the Normal World. The ciphersuite variations take into account different

algorithms, RSA and ECDSA, different padding strategies, PKCS and PSS, different hash

functions related to the signing process, and different key sizes. All these permutations

were properly measured and evaluated, and their results can be presented in figure 5.8.

An initial observation is that some ciphersuites, namely the SHA512 with RSA and

78

5.5. ATTESTATION SERVICE

(a) RSA Signature with PKCS1.5 Padding
with 1024, 2048 and 4096 bit key length

(b) RSA Signature with PSS Padding with 1024, 2048
and 4096 bit key length

(c) ECDSA Signature with 256 bit key length, using
NIST curve P-256

Figure 5.8: Attestation Process Latency Comparison

79

CHAPTER 5. EXPERIMENTAL EVALUATION

padding PSS, have only two registered times because of the used key size. The reason for

this phenomenon results from a condition of PSS padding that states that the key/modu-

lus size must be at least the sum of the salt and hash sizes plus 9 bits [66, 44]. This causes

the RSA ciphersuites that use PSS padding to have a minimum key size of 1024, 1024,

and 2048 for SHA256, 384 and 512 respectively. The other studied hash functions must

even use smaller key sizes, but since we didn’t consider them during this evaluation they

were not analyzed.

Visualizing the obtained results, we notice that despite using different ciphersuites,

the presented results are in the same interval. We can deduce that the attestation process

is independent of any ciphersuite, if and only if, the key generation or any other additional

procedure related to the used ciphersuite are not executed during the protocol.

We can however see that by using different key sizes, we obtain different time intervals.

This is mostly due to the signing process itself, as by using bigger key sizes the sign process

time gradually increases. Another reason for the time increase between the used key sizes

can be due to the key load operation from storage. All used keys are stored on disk and

to use them the protocol needs to load them into memory. Since the object needs to load,

the bigger the object the more time will consume to completely retrieve it and load in

memory, therefore the load key process does also influence the protocol execution time.

During these measurements, we considered out-of-scope the key generation process.

However, as previously mentioned, this process also occurs during the attestation proto-

col only once, on the first time the protocol is executed. Considering that first time, we

re-executed the tests and included the key generation process in the protocol procedure.

The obtained results can be visualized in figure 5.9.

Figure 5.9: Latency of Attestation Process including key generation process

As a first analysis, we can observe that there is a direct relationship between the time

80

5.5. ATTESTATION SERVICE

spent to generate and send the proof to the Normal World, and the generated key size

used to sign the proof. This is because a larger key size needs more time to be generated

so that it can produce a stronger key pair than another pair that has a smaller key size.

Despite the presented values, we noticed that throughout this experimental evalua-

tion, the standard deviation percentage was steadily increasing as we increased the key

size. The registered standard deviation values are presented below, in table 5.12.

Table 5.12: Attestation Process, Standard Deviation per Ciphersuite and Key Size

Ciphersuites 256 bits 1024 bits 2048 bits 4096 bits
RSA-PKCS1.5 SHA1 - 7.32 % 24.36 % 52.61 %
RSA-PKCS1.5 SHA224 - 7.75 % 30.92 % 45.23 %
RSA-PKCS1.5 SHA256 - 6.88 % 28.42 % 45.47 %
RSA-PKCS1.5 SHA384 - 8.89 % 31.58 % 43.67 %
RSA-PKCS1.5 SHA512 - 7.16 % 28.37 % 50.39 %
RSA-PSS SHA1 - 8.00 % 30.33 % 45.11 %
RSA-PSS SHA224 - 7.66 % 31.82 % 45.41 %
RSA-PSS SHA256 - 8.45 % 30.35 % 56.02 %
RSA-PSS SHA384 - 8.20 % 28.12 % 47.46 %
RSA-PSS SHA512 - - 26.1 %5 55.51 %
ECDSAp256 5.92 % - - -

A clear observation we can make is the fact that all ciphersuites that used a RSA key

pair registered a high standard deviation percentage. Because of this common point, we

decided to measure the time spent to solely generate a RSA key pair, varying the key size

used. The obtained values are presented in figure 5.10. In this plot, we decided to set the

key side for ECDSA and RSA to 256 and 2048 respectively.

With the acquired results we can deduce that the high standard deviation registered

during the attestation process comes from the key pair generation function. To generate

a strong RSA key pair, the function needs two very large pseudo-random prime num-

bers that will be later used to form the private and public keys [54]. Therefore, due to

the randomness associated with the prime numbers choice process, the time it takes to

effectively generate a key can vary, producing the presented standard deviation.

Despite the variation caused by the RSA key generation, the same phenomenon did

not happen during the ECDSA key generation. This is mostly since the generated key

pair has a very small size (256-bit length) in comparison with the other generated keys.

Nonetheless, ECDSA is increasing its popularity as being a more secure and faster cryp-

tographic function [5] and that is the reason why we decided to evaluate its performance

in our solution.

During this experimental evaluation, our objective was to measure the time spent to

generate an attestation proof, capable of authenticating our components and ensure that

those same components are considered safe during the system boot. With the obtained

results and analysis we concluded that the process can obtain similar results, even if

used with different ciphersuites and different key sizes. If we consider the key generation

81

CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.10: Key Generation Process Latency

function to be part of the attestation process, significant variations in the measured times

are bound to occur due to the used key size.

5.6 Summary

To validate and analyze the developed solution, we conducted a set of experimental evalu-

ations that: (i) examinated the solution performance and overhead, including comparative

evaluation of operations, as also performance measurement of operations executed by

the components; (ii) analyzed profiling indicators of Runtime components; (iii) recorded

resource allocation activity spent during the execution of operations between a normal

wallet vs. a wallet with our solution; and (iv) assessment of the attestation Protocol

performance latency.

TWallet System Performance. Considering the experiments to observe the perfor-

mance of the TWallet System in our prototype, the obtained results show that Delete

and Balance operations are faster than the other operations. We must notice that these

operations were originally the fastest ones. The History of Transaction could be as fast

as the Balance operation, however, due to the great standard deviation values caused by

the communication between the application and the Ethereum Blockchain, its execution

time is greater. The Create Credentials, Load Credentials and Send Transaction proved to

be the slowest operations since they originally required a lot of resources to operate, with

the Send Transaction being the slowest of them all, since it must wait until the blockchain

82

5.6. SUMMARY

confirms that the sent transaction was concluded and will be confirmed in the future.

The operations, despite adding calls to our solution functions seemed to not suffer a sig-

nificant increase in their execution time, since our solution is not part of the dominant

percentage.

Profiling. Regarding the profiling evaluations, we analyzed the storage cost of our

solution and measured its system and application boot time. The Storage Cost results

showed us that despite the increase in the application size, it was in the order of kB, not

being significant to increase the application storage requirements. With the registered

boot times, we concluded that our solution, even considering the OP-TEE System Boot,

was not the dominant part of the boot process, with that role belonging to the Rich

OS boot. Regarding the application boot and considering our tested applications, our

solution proved to be slower than the normal application boot time by more than 100%.

System Resources. Considering the CPU utilization operations such as Create Cre-

dentials, Load Credentials and Balance it was possible to observe an increase in the

allocated time of the CPU resources, but not an increase of the CPU spent percentage.

The Delete Credentials was the operation that expressed the greatest change since this

operation normally would not require any allocation of resources from the CPU, and with

our solution, the allocation was needed. The Send Transaction and History of the transac-

tion, despite its irregular values we saw a point in common in both operations, which is

the extension and increase of the CPU allocated resources due to the write requests done

to our secure components.

Attestation Service. Concerning the Attestation Process performance measurement,

we decided to vary the used ciphersuite and key size during the key generation process.

We observed that despite using different ciphersuites and key sizes, the presented results

were in the same interval, mostly because the key generation process was excluded from

the attestation protocol, which we consider to be a great entropy factor. We then decided

to include the key generation function and were able to deduce that the larger the key

size the larger the time spent to generate the key. Furthermore, we noticed an increase in

the standard deviation values, caused by the randomness of the key generation process.

With the observed results, we concluded that considering the key generation process part

of the protocol, the Attestation Process can vary depending on the used key size.

In the end, we are satisfied with our solution since it was able to provide more security

over a set of operations of an existing crypto wallet, where some of those operations con-

nected to a real Ethereum network, in this case, the Rinkeby testnet. From a performance

perspective, the solution proved to be slightly slower in comparison with the “unpro-

tected application”, wherein in some cases, the operation took more than 2 times the

initial time to finish its execution. In this case, we can verify that security and trustability

always come with some performance drawbacks. However, the application backed by the

TWallet, compared with a base application, did not cause an overhead significant enough

to diminish the overall user experience.

83

6

Conclusion and Final Remarks

The main objective and goal of the work developed in this dissertation was to design,

develop and validate a trustable model and runtime system that offers trust computing-

based components in an ARM TrustZone enabling software stack, to protect sensitive

applications. Our main focus was to make use of this solution to strengthen the func-

tionalities of cryptocurrency wallets. However, this same solution can be used for a

specific family of applications, namely mobile banking, mobile payment, and mobile

ticketing, where sensitive operations and data management, and processing capabilities

are involved. To address the problem, we designed a generic architecture for cryptocur-

rency wallet applications leveraged by the ARM TrustZone Technology capabilities. The

solution consisted of a set of secure components executed inside an isolated and trustable

execution environment where each component would be responsible for reinforcing a

specific functionality. Our developed components allowed for the secure storage and

access of wallet credentials, secure storage of wallet information regarding its balance

and recent transaction history, and generation of a log relative to the operations requested

to these same secure components. Comparatively, with pre-existent solutions, we tried to

provide additional functionalities, like an attestation service of our secure components

and a monitoring service responsible for filtering incoming requests, that would make

us a better option when trying to reinforce the referred family of applications with some

security guarantees. For this purpose, we implemented our solution under shielded hard-

ware trust assumptions, provided by the ARM TrustZone trusted execution environment.

6.1 Results and Contributions

Considering our planned objective, the dissertation proposes the design of a trusted

framework model and related runtime system that offers a set of trusted computing-

based components, executed in an ARM TrustZone enabling software stack to protect

sensitive applications. In our journey throughout this document we achieved the expected

contributions, around the following aspects in the proposed solution:

84

6.2. DEVELOPED EXPERIENCE AND KNOWLEDGE CONSOLIDATION

• Definition of the TWallet System Model and Architecture as a generic framework

offering a software stack for the development of trusted applications enabled by

ARM devices equipped with ARM TrustZone compliant chipsets.

• Implementation of the TWallet framework, by providing a set of functionalities,

all backed by a shielded hardware trusted execution environment, guaranteeing

authentication, confidentiality, and integrity to the performed operations. This set

of functionalities are executed through a group of trusted applications, where each

application is responsible for a specific set of tasks. The TWallet framework can

provide support to a family of applications, namely Mobile Banking, Ticketing apps,

and Mobile Payment, and highlighting given our thesis objective, cryptocurrency

wallets.

• Development of an Ethereum Crypto Wallet App as a proof-of-concept prototype of

the designed solution. This prototype following the TWallet model was integrated

as a remote wallet to interact with the Rinkeby Ethereum Test Network - a test net-

work used for blockchain development testing before deployment on the Ethereum

main network.

• With the developed prototype, we conducted a set of experimental evaluations and

validations. In this test bench, we analyzed: (i) comparative evaluation of operations

performed on a cryptocurrency wallet, using or not our solution by measuring the

latency and throughput; (ii) profiling of Runtime components, such as analysis of

space occupancy, and the boot time of solution system setup; (iii) observation of

System Resources spent while performing wallet operation, with and without our

solution; (iv) analysis of Attestation Protocol performance latency.

With all points considered, we were able to provide a solution capable of enforcing

relevant security properties for android applications managing sensitive data and op-

erations, in a TEE backed by the ARM TrustZone isolation guarantees. Our developed

solution runs on top of OP-TEE, a TEE that offers a set of functionalities that allowed our

project to run in the ARM TrustZone Technology Secure World. Without disregarding

the many functionalities our developed components have, these components are addi-

tionally protected by an attestation process that runs before they start attending requests

so that we can ensure that the components are indeed secure and trustable. The TWallet

System is therefore a trustable and safe solution, available to all interested researchers

and developers, not only for study purposes but also for possible future enhancements.

6.2 Developed Experience and Knowledge Consolidation

Following the planned objective and expected contribution, we were able to achieve in-

teresting results in the validation of the proposed solution. Furthermore, the experience

85

CHAPTER 6. CONCLUSION AND FINAL REMARKS

acquired throughout the design of our solution allowed for consolidation on the knowl-

edge and hands-on experience in designing trusted mobile applications, supported in

the trusted execution environments enabled by ARM TrustZone Technology. We believe

that both these theoretical and practical developed skills will be a valuable knowledge

base for future initiatives in the relevant challenging fields of trusted computing, mobile

security systems, and related emerging technology.

We present some highlights from the acquired experience in the dissertation topics:

• Experience in the use of real-world Software/Firmware stack on the development

of trusted computing systems, namely on ARM-enabled hardware platforms. This

includes the learning and challenging parts of using TEEs and TrustZone Technol-

ogy.

• Knowledge of low-level abstraction mechanisms, such as Context Switch, hardware,

and software data structures relationships, and a deeper understanding of operating

systems.

• Experience in developing Android apps for Android 9.0 and above, and a better

understanding of methods used to intertwine different programming languages,

namely given our thesis development, Java and C.

The approach used while designing TAs to be executed in the OP-TEE, and conse-

quently the TrustZone environment, posed many challenges. With focus, perseverance,

and help from the community, it was possible to overcome the many obstacles and con-

clude our solution. The express the required dedication we emphasize the following

topics:

• Plenty of online information, but with no stable methodology while designing ap-

plications.

• The documentation online properly specifies the operations and functions provided

by OP-TEE. However, most of the acquired knowledge and how to make use of those

functions was through community forums and contact with people that faced the

same problems or had a higher level of expertise regarding the matter.

• OP-TEE is currently an ongoing project and it is used as a trusted execution en-

vironment to develop trusted applications, with the aid of Global Platform’s API.

Because of the constant changes this execution environment suffers, it can hinder

development. One must take this factor into account when trying to develop trusted

applications.

• Some of the difficulties were encountered while trying to set up the OP-TEE in dif-

ferent development boards. Given our objectives and constraints, and considering

someone not familiar with the firmware, kernel, and hardware-level experience, the

process of setting up an environment to properly develop and the test was slowed.

86

6.3. FUTURE WORK

Despite all these presented issues, we consider they have enriched our background

and will be relevant in future technologies with trustability requirements since these

technologies are dependent on the TEE’s own capabilities and architectures, as also on

the supported platforms.

6.3 Future Work

Given our final solution and characteristics, there are interesting remarks that can be

taken while thinking about future improvements. We summarize those remarks:

• Our principal remark would be to conclude our initial design and architectural

considerations given our solution. For that, the isolation capability, provided by the

TEE Adaptation and Isolation Layer should be properly implemented and tested,

so that each of the secure components could have an extra security layer over the

ones already guaranteed.

• A second direction would be the overall upgrade of our development environment.

Despite the Hikey 960 board being a fairly recent model with good specifications

in comparison with other boards, it is clearly different when compared with mobile

devices, in particular mobile phones. To shorten the specification difference, we pro-

pose an upgrade to the more recent Hikey board currently available in the market,

which at the moment of this thesis writing would be the Hikey 970. Furthermore,

we consider that a software update would be advisable. In our case, the Android

version we used could be updated to a more recent one, namely Android 11, and

the OP-TEE version could also be upgraded to 3.14.

• An interesting goal could be to reuse our design model and develop solutions in the

context of developing trustable real-world usable applications, such as Mobile Tick-

eting, Mobile Banking, Mobile Payment Apps, or Cryptocurrency Wallets. However,

due to the difficulty of having open-based ARM TrustZone solutions on commer-

cially available mobile smartphones in the market, it would be necessary to target a

development kit, in a collaboration or partnership with some specific vendor.

• Finally, we believe that our work effort could be relevant for future developers and

researchers in this field, and would be interesting to create a guide for a method-

ology development process for trusted applications running on OP-TEE and ARM

TrustZone. However, this objective seems fairly difficult to achieve as it would be

needed to have a main procedure, responsible to adapt the development process

according to the used hardware platform.

87

Bibliography

[1] 96Boards. Hikey960 Screen Problem. 2019. url: https://discuss.96boards.org/

t/hikey960-screen-problem/7136 (cit. on p. 46).

[2] 96Boards. HiKey970. 2021. url: https://www.96boards.org/product/hikey97

0/ (cit. on p. 6).

[3] 96boards. HiKey960 Development Board User Manual. 2021. url: https://www.9

6boards.org/documentation/consumer/hikey/hikey960/hardware- docs/

hardware-user-manual.md.html (cit. on p. 61).

[4] T. Alsop. Arm - statistics & facts. Oct. 2020. url: https://www.statista.com/

topics/7087/arm/ (cit. on p. 3).

[5] M. Amara and A. Siad. “Elliptic Curve Cryptography and its applications”. In:

International Workshop on Systems, Signal Processing and their Applications, WOSSPA.

2011, pp. 247–250. doi: 10.1109/WOSSPA.2011.5931464 (cit. on p. 81).

[6] Android. Android Profiler. 2021. url: https://developer.android.com/studio/

profile/android-profiler (cit. on p. 63).

[7] Android. Platform Architecture. 2021. url: https://developer.android.com/

guide/platform/ (cit. on p. 26).

[8] Android. Trusty TEE. 2020. url: https://source.android.com/security/

trusty (cit. on pp. 10, 11).

[9] ARM. ARM security technology. Building a secure system using trustzone technology.

Tech. rep. ARM Ltd., 2009. url: https://documentation-service.arm.com/

static/5f1ffa25bb903e39c84d7e98?token= (cit. on pp. 12, 17, 18).

[10] A. Armando, A. Merlo, and L. Verderame. “Trusted host-based card emulation”. In:

2015 International Conference on High Performance Computing & Simulation (HPCS).
IEEE, July 2015. doi: 10.1109/hpcsim.2015.7237043 (cit. on pp. 3, 19, 23, 24).

[11] S. Arnautov et al. “SCONE: Secure Linux Containers with Intel SGX”. In: OSDI.
2016 (cit. on p. 11).

88

https://discuss.96boards.org/t/hikey960-screen-problem/7136
https://discuss.96boards.org/t/hikey960-screen-problem/7136
https://www.96boards.org/product/hikey970/
https://www.96boards.org/product/hikey970/
https://www.96boards.org/documentation/consumer/hikey/hikey960/hardware-docs/hardware-user-manual.md.html
https://www.96boards.org/documentation/consumer/hikey/hikey960/hardware-docs/hardware-user-manual.md.html
https://www.96boards.org/documentation/consumer/hikey/hikey960/hardware-docs/hardware-user-manual.md.html
https://www.statista.com/topics/7087/arm/
https://www.statista.com/topics/7087/arm/
https://doi.org/10.1109/WOSSPA.2011.5931464
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/
https://source.android.com/security/trusty
https://source.android.com/security/trusty
https://documentation-service.arm.com/static/5f1ffa25bb903e39c84d7e98?token=
https://documentation-service.arm.com/static/5f1ffa25bb903e39c84d7e98?token=
https://doi.org/10.1109/hpcsim.2015.7237043

BIBLIOGRAPHY

[12] Consensys. Infura: Ethereum API, IPFS API & Gateway, ETH Nodes as a Service.

2022. url: https://infura.io/ (cit. on p. 62).

[13] I. Corporation. Software Guard Extensions Programming Reference. Tech. rep. Intel

Corporation, 2014. url: https://software.intel.com/sites/default/files/

managed/48/88/329298-002.pdf (cit. on pp. 3, 11).

[14] V. Costan and S. Devadas. “Intel SGX Explained”. In: IACR Cryptol. ePrint Arch.
2016 (2016), p. 86 (cit. on p. 11).

[15] V. Costan, I. Lebedev, and S. Devadas. “Sanctum: Minimal Hardware Extensions

for Strong Software Isolation”. In: USENIX Security Symposium. 2016 (cit. on p. 13).

[16] Cybertalk.org. Mobile Security Report 2021. Research rep. Cybertalk.org, 2021.

url: https://www.cybertalk.org/wp-content/uploads/2021/04/mobile-

security-report-2021.pdf (cit. on p. 1).

[17] W. Dai et al. “SBLWT: A Secure Blockchain Lightweight Wallet Based on Trustzone”.

In: IEEE Access 6 (2018), pp. 40638–40648. issn: 2169-3536. doi: 10.1109/

ACCESS.2018.2856864 (cit. on pp. 3, 23, 24).

[18] A. Developers. Android 9 Pie. Jan. 2022. url: https://developer.android.com/

about/versions/pie (cit. on p. 61).

[19] X. Developers. “Huawei and Linaro launch the HiKey 970 development board with

the Kirin 970 SoC”. In: (2018). url: https://www.xda-developers.com/huawei-

linaro-hikey-970-development-board-kirin-970-soc/ (cit. on p. 15).

[20] ENISA. ENISA Threat Landscape 2021 Report. Tech. rep. ENISA, Oct. 2021. url:

https://www.enisa.europa.eu/ (cit. on p. 1).

[21] Ethestats. Ethereum Blockchain Statistics. 2021. url: https://ethstats.net/

(cit. on p. 68).

[22] R. P. Foundation. “Raspberry Pi Blog”. In: (2019). url: https://www.raspberrypi.

org/blog/raspberry-pi-4-on-sale-now-from-35/ (cit. on p. 16).

[23] M. Gentilal, P. Martins, and L. Sousa. “TrustZone-backed bitcoin wallet”. In: Pro-
ceedings of the Fourth Workshop on Cryptography and Security in Computing Systems -
CS2 ’17. ACM Press, 2017. doi: 10.1145/3031836.3031841 (cit. on pp. 3, 19, 23,

24).

[24] GlobalPlatform. Introduction to Secure Elements. Tech. rep. 2018. url: https:

//globalplatform.org/wp- content/uploads/2018/05/Introduction- to-

Secure-Element-15May2018.pdf (cit. on p. 12).

[25] I. GlobalPlatform. TEE Internal Core API Specification Version 1.2. Tech. rep.

GlobalPlatform Technology, 2019. url: https://globalplatform.org/specs-

library/tee-internal-core-api-specification-v1-2/ (cit. on pp. 10, 12).

89

https://infura.io/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.cybertalk.org/wp-content/uploads/2021/04/mobile-security-report-2021.pdf
https://www.cybertalk.org/wp-content/uploads/2021/04/mobile-security-report-2021.pdf
https://doi.org/10.1109/ACCESS.2018.2856864
https://doi.org/10.1109/ACCESS.2018.2856864
https://developer.android.com/about/versions/pie
https://developer.android.com/about/versions/pie
https://www.xda-developers.com/huawei-linaro-hikey-970-development-board-kirin-970-soc/
https://www.xda-developers.com/huawei-linaro-hikey-970-development-board-kirin-970-soc/
https://www.enisa.europa.eu/
https://ethstats.net/
https://www.raspberrypi.org/blog/raspberry-pi-4-on-sale-now-from-35/
https://www.raspberrypi.org/blog/raspberry-pi-4-on-sale-now-from-35/
https://doi.org/10.1145/3031836.3031841
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/specs-library/tee-internal-core-api-specification-v1-2/
https://globalplatform.org/specs-library/tee-internal-core-api-specification-v1-2/

BIBLIOGRAPHY

[26] I. GlobalPlatform. TEE System Architecture v1.2. Tech. rep. GlobalPlatform Tech-

nology, 2018. url: https://globalplatform.org/specs-library/tee-system-

architecture-v1-2/ (cit. on p. 3).

[27] Google. “Android Open Source Project”. In: (2017). url: https://source.

android.com/ (cit. on p. 10).

[28] J.-R. W. Group. JSON-RPC 2.0 Specification. 2010. url: https://www.jsonrpc.

org/specification (cit. on p. 62).

[29] T. C. Group. TPM 2.0 Architecture. Tech. rep. 2019. url: https://trustedcomputinggroup.

org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf (cit.

on p. 34).

[30] T. C. Group. TPM Main: Part 1 Design Principles, Version 1.2. Tech. rep. TCG, 2011.

url: https://trustedcomputinggroup.org/wp-content/uploads/Trusted-

Platform-Module-Summary_04292008.pdf (cit. on pp. 13, 28).

[31] L. Guan et al. “TrustShadow: Secure Execution of Unmodified Applications with

ARM TrustZone”. In: Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services. ACM, June 2017. doi: 10.1145/308133

3.3081349 (cit. on pp. 3, 19, 28).

[32] R. Hat. “Virtualization: What is a virtual machine (VM)?” In: (). url: https:

//www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine

(cit. on p. 8).

[33] W. Huzaini et al. “Mobile Ticketing System Employing TrustZone Technology”. In:

International Conference on Mobile Business (ICMB’05). IEEE. doi: 10.1109/icmb.2

005.71 (cit. on p. 3).

[34] L. Kernel. “Little Kernel”. In: (2016). url: https://github.com/littlekernel/

lk (cit. on p. 10).

[35] P. Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: 40th IEEE
Symposium on Security and Privacy (S&P’19). 2019 (cit. on pp. 2, 26).

[36] M. Lentz et al. “SeCloak”. In: Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, June 2018. doi: 10.1145/3210

240.3210334 (cit. on pp. 3, 20).

[37] L. Limited. “Linaro”. In: 2020. url: https://www.linaro.org/ (cit. on p. 9).

[38] Linaro. “HKG15-311: OP-TEE for Beginners and Porting Review”. In: (2015). url:

https://pt.slideshare.net/linaroorg/hkg15311-optee-for-beginners-

and-porting-review (cit. on p. 21).

[39] Linaro. OP-TEE: Open Portable Trusted Execution Environment. 2020. url: https:

//www.op-tee.org/ (cit. on pp. 5, 16).

90

https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://source.android.com/
https://source.android.com/
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Trusted-Platform-Module-Summary_04292008.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Trusted-Platform-Module-Summary_04292008.pdf
https://doi.org/10.1145/3081333.3081349
https://doi.org/10.1145/3081333.3081349
https://www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine
https://www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine
https://doi.org/10.1109/icmb.2005.71
https://doi.org/10.1109/icmb.2005.71
https://github.com/littlekernel/lk
https://github.com/littlekernel/lk
https://doi.org/10.1145/3210240.3210334
https://doi.org/10.1145/3210240.3210334
https://www.linaro.org/
https://pt.slideshare.net/linaroorg/hkg15311-optee-for-beginners-and-porting-review
https://pt.slideshare.net/linaroorg/hkg15311-optee-for-beginners-and-porting-review
https://www.op-tee.org/
https://www.op-tee.org/

BIBLIOGRAPHY

[40] J. Lind et al. “Teechain”. In: Proceedings of the 27th ACM Symposium on Operating
Systems Principles. ACM, Oct. 2019. doi: 10.1145/3341301.3359627 (cit. on p. 3).

[41] M. Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: 27th
USENIX Security Symposium (USENIX Security 18). 2018 (cit. on pp. 2, 26).

[42] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/

master/template.pdf (cit. on p. ii).

[43] W. L. Ltd. Web3j. 2019. url: https://docs.web3j.io (cit. on pp. 68, 77).

[44] e. a. Moriarty. “RFC 8017”. In: IETF (2016). url: https://datatracker.ietf.

org/doc/html/rfc8017#section-9.1.1 (cit. on p. 80).

[45] C. Müller et al. “TZ4Fabric: Executing Smart Contracts with ARM TrustZone”. In:

ArXiv abs/2008.11601 (2020) (cit. on p. 3).

[46] ODROID. “ODROID Wiki”. In: (2020). url: https://wiki.odroid.com/ (cit. on

p. 16).

[47] Oracle. “Java Native Interface (JNI)”. In: (2021). url: https://docs.oracle.

com/javase/8/docs/technotes/guides/jni/ (cit. on p. 57).

[48] S. Pinto et al. “LTZVisor: TrustZone is the Key”. In: ECRTS. 2017 (cit. on p. 15).

[49] S. Pinto et al. “Towards a TrustZone-Assisted Hypervisor for Real-Time Embedded

Systems”. In: IEEE Computer Architecture Letters 16 (2017), pp. 158–161 (cit. on

p. 15).

[50] S. Pinto and N. Santos. “Demystifying Arm TrustZone”. In: ACM Computing
Surveys 51.6 (Feb. 2019), pp. 1–36. doi: 10.1145/3291047 (cit. on pp. 3, 13, 14,

18).

[51] H. Raj et al. “fTPM: A Software-Only Implementation of a TPM Chip”. In: USENIX
Security Symposium. 2016 (cit. on pp. 18, 24, 31).

[52] C. Report. Mobile Security Report 2021: Insights on Emerging Mobile Threats. Tech.

rep. Checkpoint Report, 2021. url: https://pages.checkpoint.com/mobile-

security-report-2021.html (cit. on p. 1).

[53] Rinkeby. Rinkeby testnet. 2021. url: https://www.rinkeby.io/#stats (cit. on

p. 62).

[54] R. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital signatures

and public-key cryptosystems”. In: Commun. ACM 21 (1978), pp. 120–126 (cit. on

p. 81).

[55] I. Rocha. “A Mobile Secure Bluetooth-Enabled Cryptographic Provider”. MA thesis.

Faculdade de Ciencias e Tecnologias, NOVA University, 2019 (cit. on p. 13).

[56] M. Sabt, M. Achemlal, and A. Bouabdallah. “Trusted Execution Environment: What

It is, and What It is Not”. In: TrustCom 2015. 2015 (cit. on p. 9).

91

https://doi.org/10.1145/3341301.3359627
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://docs.web3j.io
https://datatracker.ietf.org/doc/html/rfc8017#section-9.1.1
https://datatracker.ietf.org/doc/html/rfc8017#section-9.1.1
https://wiki.odroid.com/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://doi.org/10.1145/3291047
https://pages.checkpoint.com/mobile-security-report-2021.html
https://pages.checkpoint.com/mobile-security-report-2021.html
https://www.rinkeby.io/#stats

BIBLIOGRAPHY

[57] N. Santos et al. “Using ARM trustzone to build a trusted language runtime for

mobile applications”. In: Proceedings of the 19th international conference on Architec-
tural support for programming languages and operating systems - ASPLOS ’14. ACM

Press, 2014. doi: 10.1145/2541940.2541949 (cit. on pp. 3, 19).

[58] K. Scarfone, M. P. Souppaya, and P. Hoffman. “Guide to Security for Full Virtual-

ization Technologies”. In: 2011 (cit. on p. 8).

[59] Sierraware. “SierraTEE for ARM® TrustZone® and MIPS”. In: (2016). url: https:

//www.sierraware.com/open-source-ARM-TrustZone.html (cit. on p. 10).

[60] Sierraware. “SierraVisor: Embedded Virtualization”. In: (2012). url: https:

//www.sierraware.com/SierraVisor_Embedded_Hypervisor_Datasheet.pdf

(cit. on p. 15).

[61] M.

bibinitperiod N. C. Smart Card Alliance. Host Card Emulation (HCE) 101. Tech. rep.

2014. url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5

68.6523&rep=rep1&type=pdf (cit. on pp. 4, 13).

[62] G. 3. Staff. Huawei Launches HiKey 960, a Super-Powered Raspberry Pi-Style De-
velopment Board. Apr. 2017. url: https : / / gadgets . ndtv . com / laptops /

news/huawei-launches-hikey-960-a-super-powered-raspberry-pi-style-

development-board-1687262 (cit. on p. 15).

[63] Statista.com. “Statista Statistics: Number of detected malicious installation pack-

ages on mobile devicesworldwide (2015-2021)”. In: (2021). url: https://www.

statista.com/statistics/653680/volume-of-detected-mobile-malware-

packages/ (cit. on p. 1).

[64] Symantec/Broadcom. Internet Security Threat Report. Tech. rep. 24. Syman-

tec/Broadcom, Feb. 2019. url: https://docs.broadcom.com/doc/istr-24-

2019-en (cit. on p. 1).

[65] Symantec/Broadcom. Internet Security Threat Report. Tech. rep. 23. Syman-

tec/Broadcom, Feb. 2028. url: https://docs.broadcom.com/doc/istr-23-

executive-summary-en (cit. on p. 1).

[66] Topaco. Signing data is throwing exception for RSA SHA512 algo with key size as 512
and 1024. Mar. 2018. url: https://stackoverflow.com/questions/6667342

8/signing-data-is-throwing-exception-for-rsa-sha512-algo-with-key-

size-as-512-and (cit. on p. 80).

[67] TrustedFirmware. “OP-TEE documentation”. In: 2020. url: https://optee.

readthedocs.io/en/latest/ (cit. on pp. 9, 46).

[68] TrustedFirmware. “OP-TEE Secure Storage”. In: 2020. url: https://optee.

readthedocs . io / en / latest / architecture / secure _ storage . html (cit. on

pp. 48, 49, 51).

92

https://doi.org/10.1145/2541940.2541949
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.sierraware.com/SierraVisor_Embedded_Hypervisor_Datasheet.pdf
https://www.sierraware.com/SierraVisor_Embedded_Hypervisor_Datasheet.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.568.6523&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.568.6523&rep=rep1&type=pdf
https://gadgets.ndtv.com/laptops/news/huawei-launches-hikey-960-a-super-powered-raspberry-pi-style-development-board-1687262
https://gadgets.ndtv.com/laptops/news/huawei-launches-hikey-960-a-super-powered-raspberry-pi-style-development-board-1687262
https://gadgets.ndtv.com/laptops/news/huawei-launches-hikey-960-a-super-powered-raspberry-pi-style-development-board-1687262
https://www.statista.com/statistics/653680/volume-of-detected-mobile-malware-packages/
https://www.statista.com/statistics/653680/volume-of-detected-mobile-malware-packages/
https://www.statista.com/statistics/653680/volume-of-detected-mobile-malware-packages/
https://docs.broadcom.com/doc/istr-24-2019-en
https://docs.broadcom.com/doc/istr-24-2019-en
https://docs.broadcom.com/doc/istr-23-executive-summary-en
https://docs.broadcom.com/doc/istr-23-executive-summary-en
https://stackoverflow.com/questions/66673428/signing-data-is-throwing-exception-for-rsa-sha512-algo-with-key-size-as-512-and
https://stackoverflow.com/questions/66673428/signing-data-is-throwing-exception-for-rsa-sha512-algo-with-key-size-as-512-and
https://stackoverflow.com/questions/66673428/signing-data-is-throwing-exception-for-rsa-sha512-algo-with-key-size-as-512-and
https://optee.readthedocs.io/en/latest/
https://optee.readthedocs.io/en/latest/
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html

BIBLIOGRAPHY

[69] TrustedFirmware.org. OP-TEE 3.12.0 Documentation. Jan. 2021. url: https:

//optee.readthedocs.io/%5C_/downloads/en/3.12.0/pdf/ (cit. on p. 61).

[70] TrustZone. ARM TrustZone. Tech. rep. ARM Ltd., 2017. url: https://www.arm.

com/products/silicon-ip-security (cit. on p. 3).

[71] C.-c. Tsai, D. Porter, and M. Vij. “Graphene-SGX: A Practical Library OS for

Unmodified Applications on SGX”. In: USENIX Annual Technical Conference. 2017

(cit. on p. 11).

[72] D. A. Wheeler. “SLOCCount”. In: (2017). url: https : / / dwheeler . com /

sloccount/ (cit. on p. 47).

[73] L. B. William Stallings. Computer Security: Principles and Practice, Global Edition.

Pearson, 2018. 800 pp. isbn: 1292220619. url: https://www.ebook.de/de/

product/31543227/william_stallings_lawrie_brown_computer_security_

principles_and_practice_global_edition.html (cit. on p. 7).

[74] J. Winter. “Trusted computing building blocks for embedded linux-based ARM

trustzone platforms”. In: Proceedings of the 3rd ACM workshop on Scalable trusted
computing - STC ’08. ACM Press, 2008. doi: 10.1145/1456455.1456460 (cit. on

p. 3).

[75] S. D. Yalew. “Mobile Device Security with ARM TrustZone”. In: 2018 (cit. on p. 3).

[76] ZDnet. “Raspberry Pi has now sold 30 million tiny single-board computers”. In:

(2019). url: https://www.zdnet.com/article/raspberry-pi-now-weve-sold-

30-million/ (cit. on p. 15).

[77] F. Zwanzger. Rinkeby: Main Ethereum Proof-of-Authority Testnet. 2021. url: https:

//www.anyblockanalytics.com/networks/ethereum/rinkeby/ (cit. on p. 62).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.7.0) [1].

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 93).

93

https://optee.readthedocs.io/%5C_/downloads/en/3.12.0/pdf/
https://optee.readthedocs.io/%5C_/downloads/en/3.12.0/pdf/
https://www.arm.com/products/silicon-ip-security
https://www.arm.com/products/silicon-ip-security
https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/
https://www.ebook.de/de/product/31543227/william_stallings_lawrie_brown_computer_security_principles_and_practice_global_edition.html
https://www.ebook.de/de/product/31543227/william_stallings_lawrie_brown_computer_security_principles_and_practice_global_edition.html
https://www.ebook.de/de/product/31543227/william_stallings_lawrie_brown_computer_security_principles_and_practice_global_edition.html
https://doi.org/10.1145/1456455.1456460
https://www.zdnet.com/article/raspberry-pi-now-weve-sold-30-million/
https://www.zdnet.com/article/raspberry-pi-now-weve-sold-30-million/
https://www.anyblockanalytics.com/networks/ethereum/rinkeby/
https://www.anyblockanalytics.com/networks/ethereum/rinkeby/
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

I

Hikey960 AOSP+OP-TEE Setup

The following instructions directly were taken from the official OP-TEE documentation

(I.4.1) and adapted to our setup.

I.1 Prerequisites

Before proceeding to the build phase, the user must met a set of prerequisites, needed for

a correct build process. Those are:

1. The computer OS where you are going to build the system must be a Linux Ubuntu

18.08 LTS. At the time of writing this thesis, the most recent supported Ubuntu

version for the build process is this only.

2. You should be able to build AOSP for Hikey according to the official instructions

(I.4.2). Please note that the AOSP build and this build are COMPLETELY SEPA-

RATED from one another. This prerequisite is only used to verify and make sure

that your system has everything needed to build AOSP without any issue.

Additionally, a set of packages, needed for the OP-TEE and AOSP build have to be

installed. In order to correctly install the desired packages, the user must enable the

installation of i386 architecture packages and update the package managers database.

$ sudo dpkg --add-architecture i386

$ sudo apt-get update

After that, you can proceed to the installation of the needed packages:

$ sudo apt-get install android-tools-adb android-tools-fastboot \

autoconf automake bc bison build-essential ccache cscope curl \

device-tree-compiler expect flex ftp-upload gdisk iasl \

libattr1-dev libcap-dev libfdt-dev libftdi-dev libglib2.0-dev \

libgmp-dev libhidapi-dev libmpc-dev libncurses5-dev libpixman-1-dev \

libssl-dev libtool make mtools netcat ninja-build python-crypto \

94

I .2. BUILD INSTRUCTIONS

python3-crypto python-pyelftools python3-pycryptodome \

python3-pyelftools python-serial python3-serial rsync unzip \

uuid-dev xdg-utils xterm xz-utils zlib1g-dev default-jre \

Besides the presented packages, the Repo tool must be installed in your computer. The

steps to achieve it are:

1. Make sure you have a bin/directory in your home directory and that it is included

in your path:

$ mkdir ~/bin

$ PATH=~/bin:$PATH

2. Download the Repo tool and ensure that it is executable:

$ curl https://storage.googleapis.com/git-repo-downloads/repo \

> ~/bin/repo

$ chmod a+x ~/bin/repo

I.2 Build Instructions

The build process is fairly simple. First, clone the repository containing the files needed

for the build process.

$ git clone https://github.com/linaro-swg/optee_android_manifest [-b <release_tag>]

release tags come in the form of X.Y.Z, e.g. 3.8.0

$ cd optee_android_manifest

and then run the following commands:

$./sync-p-hikey960.sh

$./build-p-hikey960.sh

Both steps MUST finish with no errors. For sync*.sh scripts, that means there must

be no errors prior to the Sync done! console output. For build*.sh scripts, that means

there must be a build completed successfully (MM:SS (mm:ss)) console output! If

there are errors, then there is no point in trying to flash the device.

95

ANNEX I. HIKEY960 AOSP+OP-TEE SETUP

I.3 Flashing the Image

For the flash process to succeed, in the Hikey board, the switches 1 and 2 must be up,

while the 3rd switch is down. This corresponds to the board Recovery mode. More details

related to this and other modes can be found in device/linaro/hikey/installer/hikey960/README.

After that, invoke:

$ cp -a out/target/product/hikey960/*.img device/linaro/hikey/installer/hikey960/

$ sudo ./device/linaro/hikey/installer/hikey960/flash-all.sh /dev/ttyUSBn

where the n in /dev/ttyUSBn corresponds to a number. Note that the device only

remains in this mode for about 90 seconds. If you take too long to run the flash commands,

it will need to be reconnected again.

I.3.1 Warning

There might be some cases that, while running the flash-all.sh script, the progress

gets stuck in <Waiting for any device>. In this case, the user must turn off the board,

disconnect it from the pc and power supply, and change the switches to the fastboot mode

(switches 1 and 3 up, 2 down). After that, reconnect the board, turn it on and execute the

fastboot commands present at the end of the flash-all.sh script.

I.4 References

I.4.1 OP-TEE Documentation

https://optee.readthedocs.io/en/latest/index.html

I.4.2 AOSP instructions

https://source.android.com/setup/build/devices#960userspace

96

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Agradecimentos
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Context and Motivation
	1.2 Problem
	1.3 Goals
	1.4 Contributions
	1.5 Report Structure

	2 Background and Related Work
	2.1 Containment and Isolation
	2.1.1 Virtualization Alternatives
	2.1.2 Virtualization Security Concerns

	2.2 Trusted Execution Environments
	2.2.1 Trusted Operative Systems
	2.2.2 Hardware-backed TEEs
	2.2.3 TEE-enabled Virtualization

	2.3 Development Platforms
	2.3.1 TrustZone-enabled Platforms

	2.4 ARM TrustZone and Development Model
	2.4.1 Natively Supported Applications
	2.4.2 OS-Level TEE Assisted Applications

	2.5 Related Work
	2.5.1 Summary
	2.5.2 Critical Analysis

	3 TWallet System Model and Architecture
	3.1 System Model and Architecture Overview
	3.1.1 Adversary Model Assumptions
	3.1.2 Secure Architecture for Cryptocurrency Wallets

	3.2 Secure Storage
	3.3 Authentication Service
	3.4 Logging Service
	3.5 Monitoring Service
	3.6 TEE Adaptation and Isolation Layer
	3.7 Attestation Service
	3.8 TWallet Framework
	3.8.1 TWallet Framework and Library
	3.8.2 Supported Operations

	3.9 Real World Application Scenario
	3.10 Summary

	4 Implementation
	4.1 Implementation Environment
	4.1.1 Trusted Execution Environment
	4.1.2 Development Platform
	4.1.3 Development Platform Setup
	4.1.4 Implementation Metrics

	4.2 Secure Storage
	4.2.1 Implementation
	4.2.2 API

	4.3 Authentication Service
	4.3.1 Implementation
	4.3.2 API

	4.4 Logging Service
	4.4.1 Implementation
	4.4.2 API

	4.5 Monitoring Service
	4.5.1 Implementation
	4.5.2 API

	4.6 TEE Adaptation Layer
	4.6.1 Implementation
	4.6.2 API

	4.7 Attestation Service
	4.7.1 Implementation
	4.7.2 API

	4.8 TWallet Integration Support
	4.8.1 Implementation
	4.8.2 API

	4.9 Summary

	5 Experimental Evaluation
	5.1 Testbench and Evaluation Methodology
	5.1.1 Testbench Environment
	5.1.2 Evaluation Methodology
	5.1.3 Summary of Evaluation Metrics

	5.2 TWallet System Performance
	5.2.1 Operations Performance
	5.2.2 Secure Components Performance
	5.2.3 Internal components Performance

	5.3 Profiling
	5.3.1 Boot Execution Time
	5.3.2 Application Boot
	5.3.3 Storage Cost

	5.4 System Resources
	5.4.1 CPU Utilization
	5.4.2 Memory Cost
	5.4.3 Network

	5.5 Attestation Service
	5.6 Summary

	6 Conclusion and Final Remarks
	6.1 Results and Contributions
	6.2 Developed Experience and Knowledge Consolidation
	6.3 Future Work

	Bibliography
	I Hikey960 AOSP+OP-TEE Setup
	I.1 Prerequisites
	I.2 Build Instructions
	I.3 Flashing the Image
	I.3.1 Warning

	I.4 References
	I.4.1 OP-TEE Documentation
	I.4.2 AOSP instructions

	Back Matter
	Back Matter
	Back Cover

