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Abstract: Electricity price forecasting has been a booming field over the years, with many methods
and techniques being applied with different degrees of success. It is of great interest to the industry
sector, becoming a must-have tool for risk management. Most methods forecast the electricity price
itself; this paper gives a new perspective to the field by trying to forecast the dynamics behind the
electricity price: the supply and demand curves originating from the auction. Given the complexity
of the data involved which include many block bids/offers per hour, we propose a technique for
market curve modeling and forecasting that incorporates multiple seasonal effects and known market
variables, such as wind generation or load. It is shown that this model outperforms the benchmarked
ones and increases the performance of ensemble models, highlighting the importance of the use of
market bids in electricity price forecasting.

Keywords: electricity price forecast; electricity; market curves; electricity price; vector auto regression;
time-series
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1. Introduction

Energy markets are commodity markets that deal exclusively with the supply and
trade of energy, which can refer to electricity or any other source of energy.

Electricity stands out from other commodities because it has specific physical and
economic characteristics. You cannot see, smell or touch it, and you cannot even guarantee
its motion from one point to another in the same way as other commodities all because of
the complex physics laws that govern it. It is economically non-storable, and the power
system requires a constant balance between production and consumption. At the same
time, its demand and production are dependent on many changeable variables, such as
temperature, wind speed or solar radiation, or even the hours of the day or the days of the
week where business and everyday activities are more intense. These unique characteristics
lead to a very volatile market of high importance for governments, industry and consumers,
with price dynamics that are not observable in any other market.

In the current deregulated scenario, the forecasting of electricity price has emerged
as one of the major research fields [1]. The liberalization was intended to encourage
competition among companies to decrease the cost of electricity. Unfortunately, occurrences
that were of no concern in the regulated market, such as outages, possible blackouts and
price peaks are now subjects of increasing concern. Moreover, deregulation increases
electricity price uncertainty, giving an increased role to forecasting.

Precision in forecasting these electricity prices is very important, since a higher accu-
racy reduces the risk of under- or overestimating the revenue from the production units for
the companies and provides better risk management [2]. Forecast errors have significant
implications for profits, market shares and ultimately shareholder value [1]. In actual elec-
tricity markets, the price curve exhibits a rich structure that has the following characteristics:
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high frequency, nonconstant mean and variance, multiple seasonality, calendar effect, high
level of volatility and high percentage of unusual price movements. These characteristics
arise from the properties of the electricity and also from the fact that the market equilibrium
is influenced by both the load and the generation side uncertainties [1]. Therefore, electricity
price forecasting is essential for all market participants for their survival. In the short-term,
a producer needs to forecast electricity prices to be able to formulate its bidding strategy
and to optimally schedule its electric energy resources [3]. In a regulated environment,
traditional generation scheduling of energy resources was based on cost minimization, sat-
isfying the electricity demand and all operating constraints [4], and therefore, the key issue
was how to accurately forecast electricity demand. In a deregulated environment, since
generation scheduling of energy resources, such as hydro [5] and thermal resources [6], is
now based on profit maximization [7], it is accurate price forecasting that embodies crucial
information for any decision making.

Over the last years, different methods and approaches have been tried for electricity
price forecasts with varying degrees of success. The increasing number of studies published
has been highly motivated not only by industry sector needs, but also by the challenges
that the electricity markets present.

The electricity price is obtained from the demand and supply curves in a daily hourly
auction, being the direct result of the supply fulfilling the demand. However, most elec-
tricity price forecasting approaches tend to overlook these underlying effects, using only
market variables such as load or renewable generation forecasts. We strongly believe that
the market curves give crucial information for the price formation and therefore, should be
included in the forecasting models. In particular, the main contributions of this paper are:

• Introduction of a novel method for market offers forecasting, by modeling market
curves, and a way of predicting electricity price from them;

• Market curve forecasting through parameter analysis, including correlation with other
market variables, multiple seasonal effects derived from spectrum analysis and vector
autoregression techniques;

• Analysis of the performance of the proposed model, showing that the market curves
give information that is not captured through other variables, highlighting the impor-
tance of using market offers in future models.

2. The Day-Ahead Market

The liberalization and reorganization of the electric sector changed the way generation
and supplier companies interact, bringing about the need for regulated markets. One of the
mechanisms that was created is spot markets, know as pool markets (because it includes
all the producers and suppliers of the system), with the primary objective of achieving a
balance between production and demand. The day-ahead markets are the main object of
the spot-markets, so named because they take place the day before the scheduled power
delivery. They help optimize the system in the short term by making it easier for generation
companies to correctly schedule their units, specifically their slower-start units [8,9].

The day-ahead market is based on a sealed-bid auction, typically a uniform price
auction (UPA). The UPA is a kind of sealed-bid auction that does not discriminate the price
over the different players and incentivizes the use of marginal price as the base for the
competitive pricing. In UPA, all of the winners would be paid at a single predetermined
price, namely the market clearing price (MCP), irrespective of what they had bid, and the
last winning bidder, which is called the marginal unit, will get exactly the bid price. The
pricing rule and the whole process of clearing the market is simple and straightforward; it
is based on the equilibrium between production and demand. The independent system
operator aggregates the supply offers and demand bids and arranges them in the form of
ascending and descending curves. The intersection of these two curves will determine the
market price and the cleared quantity, as seen in Figure 1 [10].
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Figure 1. Uniform price auction clearing illustration.

3. Electricity Price Forecasting

Despite the increasing interest, the large amount of electricity markets and their
different complexity make it difficult to compile all the existing models in the literature
and compare them with each other. Market configuration has a high influence in the final
clearing price since different electricity markets around the world have different caps and
floors in the electricity price. Moreover, the number of available additional markets, such
as capacity, balancing or ancillary services, will change the way agents make their offers
and thus, change the electricity price in the day-ahead market. In addition, geographical
characteristics play a major role. The generation mix or grid design of each market is enough
to completely alter the performance of the models when applied to different markets.

The MCP is obtained from all demand and supply offers in an organized auction. The
main reason behind this auction is the the system operators requiring advance notice to
verify that the schedule is feasible and falls within transmission constraints. This auction
happens once a day and results in prices for all periods of the following day (typically
24 h).

This means that when forecasting or modeling the day-ahead market, one has to take
into account that all 24 prices for the next day are determined at the same time and thus,
have the same market information. There are two interesting effects that result from this:
first, the dynamics of hourly price does not behave as a univariate pure time series process,
instead, these prices may be seen as daily arrays of 24 h [11]. They only approximate a time
series because most of the underlying dynamics in the bids are in fact univariate time series
(demand, wind production, solar production, etc.). Second, the prices have no relation to
the real values observed in the electrical system load or renewable energy generation but
instead are highly dependent on what the market foresaw as expected for the next day.
This means that forecasts of these variables will work better as exogenous variables for the
models than the actual observed values.

Regarding predictive models, most of the literature refers to point forecasts, where
the target is the actual day-ahead price. The point forecast can be obtained using different
techniques by modeling the hourly price in the past and forecasting or by simulating
the supply and demand curve for the next hours and obtaining the price by intercepting
both curves. Nevertheless, models where the demand and supply curves are the object of
modeling are still to be found among the main EPF authors and journals.
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Electricity price forecasts models can be separated into four distinct families: Statistical,
Fundamental, Machine Learning and Hybrid. Statistical models are quite common in the
literature and come from the direct application of statistical techniques. They include
regression type models, autoregressive type time series models and reduced-form models
(Figure 2).

Figure 2. Diagram of electricity price forecasting method families

Fundamental models try to describe the price dynamics by modeling important
physical and economic factors and simulating the operation of a system of heterogeneous
agents interacting with each other. Although favored in the industry sector, these models
are often used for mid- or long-term forecasts, as they perform poorly in the short-term.

Machine learning are models which combine elements of learning, evolution and
fuzziness to create approaches that are capable of capturing complex dynamic systems.
There has been an increased interest in machine learning models because of their capability
to capture nonlinear behaviour.

Finally, hybrid models try to combine two or more techniques from the other families
for EPF. They have increased in popularity because of their ability to capture the pros of
different models, minimizing the cons. Since their classification is almost impossible, they
have a family of their own.

3.1. Statistical Models

Historically, the first statistical EPF techniques consisted of replicating statistical
methods of load forecasting. By a simple substitution of loads or temperatures for electricity
prices, the researchers were able to obtain EPF models. As time passed, more and more
contemporary statistical, econometric or signal processing techniques were introduced to
this area.

Statistical methods forecast the current price by using a mathematical combination of
the previous prices and exogenous factors, typically consumption and production figures,
or weather variables.

Most models in this family rely on linear regression and represent the target variable,
i.e., the price ph for time (hour) h, by a linear combination of independent variables
(the predictors):

ph = θhXh + εh (1)

where θh = [θh,0, θh,1, . . . , θh,n] is a vector of coefficients specific to hour h, Xh = [1, Xh,1, Xh,2,
. . . , Xh,n] is a vector of inputs and εh is an error term.

In most EPF papers, the author refers to a benchmark model. It is based on searching
historical data for a day with similar characteristics to the predicted day and using this
historical value as a forecast for the future. The most common application was introduced
by [12] and is called the naïve method. The procedure is so basic that it has been extensively
used in the literature for comparison purposes. If your method cannot outperform the
naïve, then it is simply not good enough. The procedure consists of taking the day of the
week from the previous week and applying it to the next one. This way a Monday will be
equal to last Monday, a Tuesday to last Tuesday, and so on.
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In addition to this approach, most statistical models consist of multiple regressions,
aiming to learn more about the relationships between several independent or predictor
variables and a dependent or criterion variable.

Regression models are so common and popular in EPF that it is almost impossible to
make a full review on all of them. Moreover, most papers use regression models combined
with some other methods, normally more sophisticated. It is also hard to separate regression
and autoregressive models since most of them use some kind of lagged electricity price
as regressors.

In the last few years, the most relevant contribution to EPF has been the appearance of
linear regression with a large number of input features that utilize some kind of regulariza-
tion technique. If the number of regressors is too large, using least absolute shrinkage and
selection operator (LASSO) or the elastic net limits them. By using a penalty factor jointly
with minimizing the residual sum of squares (RSS), one can turn some of the coefficients to
zero and effectively eliminate redundant regressors. These regularized regression models
exhibit superior performance [12–18].

Another innovation in this family is the use of different calibration windows on the
same model and combining them afterwards. It was shown that this approach outperforms
the predictions obtained for the best ex post selected calibration window [19,20].

Autoregressive models take into account the time correlations of the data we are study-
ing. The Xt is expressed linearly in terms of its p past values (autoregressive parameter),
and in terms of q values of the noise (moving average part):

φ(B)Xt = θ(B)εt (2)

where B is the backward shift operator BhXt = Xt−h, φ(B) is the notation for φ(B) =
1 − φ1B − · · · − φpBp, and θ(B) is a notation for θ(B) = 1 + θ1B + · · · + θ1Bq, where
φ1, . . . , φp and θ1, . . . , θq are the coefficients of the model. This is called the AutoRegressive
Moving Average model and it is stylized ARMA(p, q).

This model composes a family of its own because many variations can be built: ARIMA,
SARIMA or ARMAX. The first includes a differentiating term to ensure stationarity; the
second adds a seasonal component of period s, and the latter includes exogenous variables
in the model.

Autoregressive-type models represent the backbone of all time series models of elec-
tricity prices and have been widely used. The authors of [21] successfully use an AR model,
with lags of 24, 48 and 168 h, where each hour of the day is modeled separately, to account
for residual autocorrelation and seasonal dynamics, with the inclusion of load forecasts,
and use it for short-term EPF.

Similar to this approach, the authors of [22] propose a set of 24 h ARIMA models for
weekdays (which are calibrated only to weekday prices) and a set of 24 h ARIMA models
for weekends (which are calibrated to weekday and weekend prices).

Wavelet-ARIMA techniques that consist of decomposing the price series using a
discrete wavelet transform, modeling the resulting detail and approximation series using
ARIMA processes to obtain 24 hourly predicted values, and then applying the inverse
wavelet transform to yield the predicted prices for the next 24 hours have been proposed
by [23,24]. The performance of the wavelet-ARIMA technique is generally better than that
of a standard ARIMA process.

An interesting methodology which combines elements of time series and multi-agent
modeling has been described in [25]. They forecast 24 h prices for the next day using
an ARIMA model applied to the conjectural variations of the firms participating in the
Spanish power market. They find that this model performs slightly better than a pure
ARIMA model.

Most recent constructions of ARIMA models in the literature have been used as
benchmarks for more complex machine learning models.

Statistical models are attractive because some physical interpretation may be taken
from their results, thus allowing the user to understand their behavior. They are often
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criticized for their limited ability to model the nonlinear behavior of electricity prices and
related fundamental variables; nonetheless, in practical applications, their performances
are comparable to those of their nonlinear alternatives.

3.2. Fundamental Models

The next class of models, known as fundamental or structural models, tries to capture
the basic physical and economic relationships which are presented in the day-ahead mar-
ket. The functional associations between fundamental drivers (loads, weather conditions,
system and power plant parameters, etc.) are theorized, and the fundamental inputs are
modeled and predicted independently, often via statistical or machine learning techniques.
Many of the EPF approaches considered in the literature are hybrid solutions with time
series, regression and neural network models using fundamental factors, such as loads,
fuel prices, wind power or temperature, as input variables.

Many of these models are often developed as proprietary; therefore, their details
are not disclosed publicly. In fact, one can find several providers of software for long-
term EPF with parameter-rich fundamental models. At the academic level, most of the
results published relate to hydro-dominant power markets, since the functional behavior
of hydropower plants bidding is easier to emulate in these models than with statistical
ones. In particular, the authors of [26] present a supply–demand model for the Norwegian
power market from a time before the common Nordic market (Nordpool) had started. He
uses hydro-inflow, snow and temperature conditions to explain spot price formation.

The authors of [27] use a fundamental model that aims to simulate the market-clearing
process by minimizing the total system costs, which are constrained by generation unit
technical features, regulation limits, transmission limits and the demand vs. generation
balance. Thus, in this model, the estimated electricity market price can be obtained as the
dual variable of the demand balance constraint. The forecast clearing price is then used as
input to a neural network model to obtain the final electricity price forecasting.

Under the fundamental models, there is a subclass of simpler structural models that
can be built from empirical analysis of market supply and demand curves. The first
approach made consists of building the day-ahead spot price process by applying the
inverse of the Box–Cox transformation to an Ornstein–Uhlenbeck process [28].

A similar approach can be seen in [29], where the authors define a hockey-stick shaped
supply curve that matches the empirically observed curves better than the inverse of the
Box–Cox transformation. They combine this with an inelastic vertical demand curve with
horizontal stochastic variations driven from and Ornstein–Uhlbeck process.

3.3. Machine Learning Models

Machine learning is the study of computer algorithms and techniques to make deci-
sions or predictions by the use of data. Is a very diverse group that has been developed
to solve problems which traditional methods (e.g., statistical) cannot handle efficiently.
It combines elements of learning, evolution and fuzziness to create approaches that are
capable of capturing complex nonlinear dynamic systems and because of that are regarded
as ‘intelligent’.

From all the machine learning, artificial neural networks (ANN), fuzzy systems,
support vector machines (SVM) and evolutionary computation, are definitely the main
classes. These models are sophisticated and flexible enough to handle complex systems and
nonlinearity. This makes them very promising for short-term EPF, especially in complex
markets with effects from varied sources. Although artificial neural networks have probably
received the most attention, other non-parametric techniques, such as fuzzy logic, genetic
algorithms, evolutionary programming and swarm intelligence, have also been applied,
but typically in hybrid constructions.

With the increase of computational power available to the common user, in the last six
years there has been a growing interest in deep neural networks, a neural network with
a more complex structure with several hidden layers. However, despite this trend, most
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of the published studies are quite limited, with poor benchmarks, and they usually avoid
state-of-the-art statistical methods.

ANN models have been widely employed in EPF. One output node has been used to
forecast the next hour’s price [30,31], the price h hours ahead [32–34], the next day’s peak
price [35], the next day’s average on-peak price [36] or the next day’s average baseload
price [37]. Using models with several output nodes, it is possible to forecast a vector of
prices, typically 24 nodes for forecasting the next day’s complete price profile [38].

Multi-layer perceptron (MLP) has also been used in EPF, as it proved to be good at
capturing global data trends [34,39–41]. A model with a hybrid system has been proposed
in [42], in which a real-coded genetic algorithm (RCGA) with an enhanced stochastic search
capability is used to train an MLP. The authors show that this method can provide more
accurate results for the Spanish market than a standard ARIMA model, a wavelet-ARIMA
model or a fuzzy ANN.

More recently, recurrent neural networks (RNN) have been employed for electricity
price. The authors of [43] employ two recurrent networks, one for time-positive forward
data processing, and another for negative time-backward real prices processing. In another
study, an RNN is used, in particular an LSTM, for calculating electricity prices for each
hour [44].

In electricity price forecasting, SVMs are normally seen in hybrid models. However,
in one of the first papers on this topic, an MLP and an SVM are compared with exactly the
same inputs and conclude that the SVM has a more consistent behavior while requiring less
time for optimal training [45]. A hybrid model called SVRARIMA that combines support
vector regression to capture the nonlinear patterns and ARIMA models outperforms some
of the existing ANN approaches and traditional ARIMA models [46].

Fuzzy logic has also been applied to EPF. One of the first applications utilizes fuzzy-c-
means for classifying historical data into three distinct clusters representing peak, medium
and off-peak and then employs an ANN for forecasting [47,48]. An adaptive-network-
based fuzzy inference system (ANFIS) can be seen in [34], which combines an adaptive
mechanism with Sugenotype rules and uses a combination of the least squares method
and back-propagation for training the membership function and the linear combination
parameters. They show that the ANFIS performs better than an MLP.

However, the most recent evolution on EPF has been in deep learning. Deep learning
is a family of machine learning methods closely related to artificial neural networks, in
which several layers of neurons are used, hence the name “deep”. The existence of many
layers allows for the search of more features in the input data since each layer can identify
different signals.

The first published deep learning paper [49] proposes a deep learning network using
stacked denoising autoencoders. The new method is compared against machine learning
techniques but also against two statistical methods. Four DL models (a DNN, two recurrent
neural networks (RNNs), and a convolutional network (CNN)) were developed, and the
results between them were compared using a whole year of data against a benchmark
of 23 different models, including 7 machine learning models, 15 statistical methods and
a commercial software [15]. Moreover, among the statistical methods, the comparison
includes the fARX-Lasso and fARX-EN which are among the state-of-the-art statistical
methods. The study showed that the deep learning algorithms perform slightly better than
the others.

Deep learning became popular buzzwords, being the techniques seen as the state of
the art. However, they impose a severe computational burden, their relative performance
is not well tested and the training process is described by many hyper-parameters in which
the optimal values are unknown, thus requiring a lot of effort to tune and apply.

3.4. Hybrid

Within the field of EPF, the research area that had the biggest contribution has been
hybrid forecasting methods. They also have the most recent contributions in the literature.
In fact, most of the approaches already discussed here are actually hybrid in some sense.
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Hybrid models are very complex forecasting frameworks that are composed of several
algorithms and techniques. Usually, they comprise different models for different components
or modules of a forecasting technique, which can be data decomposition [50–55], feature
selection [52,56–60], data clustering [59,61–63], some heuristic optimization of hyperparame-
ters [50,55,57,58,64–67] or prediction ensemble [68–71].

3.5. Industry Sector Applications

There is a significant discrepancy between the recent advances in EPF at an academic
level and at an industrial level. In fact, despite all the models that have been developed and
published by the academy, most models used for industry application are much simpler.
This is understandable as the industry sector has different objectives from the academy.

Most of the models discussed are complex, hard to optimize and computation heavy.
If the companies require fast inputs for decision making, it becomes hard to use these
models on a daily basis. It also requires a specific level of expertise to be able to correctly
tune and maintain most models, especially artificial neural networks and deep learning
models, which may be hard (and expensive) to find. Moreover, because of the lack of a
common framework for studying and benchmarking EPF models, it becomes unclear for
decision makers if the time and money needed will have the expected return. Nonetheless,
EPF is of major importance in the industry sector and requires constant investment.

The most-used models in the industry sector are statistical models, in particular
autoregressive dynamic models, which are an extension of the ARIMA models where the
exogenous variable is also a time series forecast. In this case, the use of lagged values for
the exogenous variable improves the performance of the overall model. Using the notation
introduced in Section 3 we can write the model as:

φ(B)Xt = φ(B)Vt + εt (3)

A curious fact about this model (and most statistical ones) is that the number of
exogenous or explanatory variables V used can affect the model performance. A model
with fewer exogenous variables performs better than one that uses all possible explanatory
variables, mostly because of high colinearity between the variables. Because of that, there
are a significant number of different models with different exogenous variables. These have
been the motivation for the development of new hybrid methods that focus on regressor
selection already discussed and the need to develop techniques for forecast selection
or ensemble.

The difficulty found in choosing the right model for the right situation raised the need
for methods that combined forecasts with the most-used approach being the ensemble
averaging. Although ensemble averaging had the advantages of minimizing the risk of
having a poor forecast (it is never as bad as the worst available single forecast), it also
makes it impossible to have the best forecast possible (it is always worse than the best single
forecast available). The pursuit of a method that could lead to the best average possible
while minimizing the risk of making a poor forecast led to new techniques, in particular the
use of random forests and XGBOOST algorithms to “correct” the forecast errors obtained
from statistical methods. In these approaches, the statistical models predictions are used
as inputs for the random forests or gradient boosting models which in turn outputs new
forecasts that are slightly better than the simple average.

In addition to these methods, it is also common to see simple artificial neural network
machine learning models employed in the companies, such as single-layer perceptrons or
support vector machines. However, the performance of these models when compared to
statistical ones is not clear. Statistical models are usually preferred over machine learning
because they are easier to interpret and help in fundamental market analysis.

There is still a relevant gap in the companies needs that today’s models still fail to meet.
To optimize the bidding strategy for some production units, such as hydro-reservoirs, the
price forecast might not be enough. We also need to know the price sensitivity with over-
or undersupply. Despite its importance to the companies, this approach is disregarded by
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academia, mainly because of the lack of visibility over company assets and its valuation.
The method and methodology described in this paper aims to fulfill that gap by introducing
a new market curve forecast model.

4. Methodology

Apart from a small family of models (fundamental/structural), most of the EPF
approaches focus on studying the electricity price as a vector of single hourly observations.
These observations can then be studied as a time series, and all the known techniques are
available for analysis and forecasting. The prediction methods tend to disregard that there
is an actual physical structure behind the price, i.e., the price is a consequent construction
of a series of offers that the agents make in an organized market. This means that the
electricity price is not the unknown; the real unknowns are the bids/asks (or the market
curves) by themselves. If you knew all the bids for the future, we could accurately infer the
electricity prices.

From an industry sector point of view, the forecast of the supply and demand curves
brings many advantages when compared to simple price forecasts. You can derive different
measures by looking at the curves and obtaining information impossible to get otherwise,
such as: (i) price sensitivity—how will the price change when small changes occur in the
curves; (ii) asset optimization—with the market curves predictions we can optimize our
bidding; (iii) risk management—how risky it is to operate my power plant in a given time.

For the first point, price sensitivity is important to understand how easily a price can
drop (or rise) if small changes happen in the curve, e.g., the uncertainty of the demand
or renewable energy sources production. For the second point, knowing the curve for the
next hours or even days lets generation companies optimize their assets in term of start-up
costs, available power and correct bidding. If we combine the first two points, one can
even correctly manage technologies that suffer from cannibalization, such as a hydropower
plant, by knowing exactly how to bid and the impact that new generation might have on
the price, helping in the computation of the water value. For the third and last point, you
can easily derive possible losses from the operation and potential gains from day-ahead
trading by comparing the curves to future prices.

In this work, we formulate a new method to model the demand and supply curves
and try to forecast these curves for the future. We then calculate the prices from these
curves and compare this method to others used in the industry sector for EPF.

4.1. Market Curve Parametrization

To use any mathematical model, we face the first obstacle: the definition of the object
“market curves”. The easiest way to approach this problem is by imagining that the market
curve is in fact a function defined in the space (energy, price), and although we do not
know this function explicitly, we can approximate it to a simpler known function or family
of functions. The goal of this approach is to define:

sh(x) = f (θh, x) (4)

where f is a known function and θh a vector of parameters of f for time period h. What
defines the curves for each time period is the parameter θ making it the main target
to predict.

Since the market curves are offers that consist of pairings (energy, price), the actual
spatial representation of them does not define a continuous function, but a discrete function
defined by different blocks as seen in Figure 3. This representation make it hard for curve
fitting; the existence of very small (low amount of energy offered) with very big (high
amount of energy offered) blocks makes the space non-uniform, and the points might be
irregularly spaced. Moreover, the blocks form a monotonic function but are not entirely
increasing/decreasing, having many uniform levels over the curve.
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Figure 3. Aggregated market curves for a given hour. The resulting function is not continuous.

To address this issue, the curve fitting will be made over the midpoint of each block:
Consider any offer block i in the market curve as:

bi,h = (Vi,h, pi,h) (5)

where V is the volume offered and p its price at time period h. The coordinates of the block
in the curve are:

bi,h = ((v1,i,h, pi,h), (v2,i,h, pi,h)) (6)

where:

v1,i,h =
i−1

∑
j=1

Vj,h with pj+1,h >= pj,hv2,i,h = v1,i,h + Vi,h (7)

The interpolation points are then

xi =

{
max(v2,i,h) i f pih <= 0
v1,i,h +

v2,i,h−v1,i,h
2 otherwise

yi = pi,h (8)

Another point to bear in mind is that these points are not evenly spaced, and since
curve fitting is performed with the least squares method, the concentration of points in
a given part of the curve can affect the results. A simple way to avoid the problem is
to linearly interpolate the points in (8) and then take a new set of evenly spaced points
(xi,h, yi,h) from the interpolation results.

Since there are two distinct market curves, supply and demand, we have in fact two
sets of coordinate pairs (x, y) and will need two functions f (θs, x) and g(θd, x) to correctly
simulate the market, which implies two distinct parameter vector θs and θd, bringing
some complexity to the system under study. However, as a turnaround to this complexity
and recalling the advantages of the curves—price sensitivity to demand volume changes,
confidence intervals over price forecasts and portfolio optimization—we can achieve the
same results looking at the difference:

η(x) = d(x)− s(x) (9)

where d(x) is the demand curve, and s(x) is the supply curve.
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This leads to only one single function and only one set of parameters. Let us call this
function the “price sensitivity curve”, since it is a direct measure of the price changes over
volume. The electricity price can be found in the root of this function, more precisely:

ph = {s(x) : η = 0 ⇐⇒ d(x) = s(x)} (10)

On a practical point of view, since the price is the image of the supply (or demand)
curve on the root η, we can simplify the electricity price calculation by taking its inverse:

ζ = η−1(x) (11)

This way the market clearing price will be the root of ζ.
The curve fitting was evaluated using different functions: polynomials of different

orders, sigmoid functions and stepwise linear functions. The purpose of the method is to
have the curve shape around the MCP, meaning that the curve fitting has to be weighted to
points near the root of ζ. To understand how the curve behaves near its root, we calculated
the MCP as the root of the fitted function and calculated the error to the real price observed.
The best fit was found using a sixth degree polynomial ζ(x) = ax6 + bx5 + cx4 + dx3 +
ex2 + f x + g, where the parameters θ = (a, b, c, d, e, f , g) are estimated using the weighted
least squares method.

The parameters θ can be seen as the representation of the market curve ζ. Our main
objective is to find patterns and relationships between these variables so that we can, with
a given set of exogenous variables, find the respective market curve.

4.2. Parameter Analysis

By observing Figure 4, where every parameter is plotted, it is possible to perceive their
time series behaviour as well as some level of seasonality.

To include seasonality in the model, we first studied the periodicity of the data series
by computing its power spectrum and analyzing the periodogram (Figure 5). For low
frequencies, the spectrum shows a peak at frequency f = 0.005952, representing a cycle of
168 h, i.e., weekly seasonality. For low frequencies, the highest peak is shown at frequency
f = 0.04167, representing a cycle of 24 h, i.e., daily seasonality. In both cases, the spectrum
shows lower peaks at frequencies that are multiples of the ones already identified.
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Figure 4. From top to bottom, the observed data for all 7 standardized parameters a, b, c, d, e, f and g.



Mathematics 2022, 10, 2012 13 of 20

Figure 5. Calculated power spectrum for the market curve parameters.

4.3. Curve Forecast Model

The model proposed consists of a combination of a vector autoregressive (VAR) model
with a seasonal harmonic component of periods 24 and 168 and dynamic exogenous
variables. This model captures the autoregressive behavior of the time series as well as
the autocorrelations between the parameters. The harmonic component helps to correctly
model the seasonality of the parameters, and since electricity prices are highly dependent
on external variables such as electricity demand or wind and solar production, which are
time series per se, the dynamic external variables are essential to capture the dynamics of
the market curves.

The autoregressive models were lightly described in Section 3. Recalling the notation,
we can write our model:

φ(B)pYt =
l

∑
i=0

βiXt−i +
K1

∑
k=0

(
a1 cos

(
2π

P1
kt
)
+ a2 sin

(
2π

P1
kt
))

+

K2

∑
k=0

(
a1 cos

(
2π

P2
kt
)
+ a2 sin

(
2π

P2
kt
))

+ c + εt

(12)

where Yt = (y1,t, y2,t, . . . , ym,t) are the m endogenous market curve parameters, B is the
backward shift operator BhXt = Xt−h, φ(B) is the notation for φ(B) = 1− φ1B− · · · −
φpBp, φ are coefficient m× m matrixes for the autoregressive terms, βi are l coefficient
(m × n) matrixes for the n dynamic exogenous variables for each lag l, a1 and a2 the
coefficient vectors (m× 1) for the harmonics, (K1, K2) are the number of harmonic terms for
each period (P1 = 24, P2 = 168) and εt a white noise process with mean 0 and covariance
matrix Σ.

The parameters can be estimated with an ordinary least squares method and the hyper-
parameters p, l and K can be obtained by performing a search on the hyperparameter space.

Summarizing, all the process consists of: (1) supply and demand curve interpolation;
(2) price sensitivity estimation through the difference of the demand and the supply inter-
polated curves and its inversion to obtain the market curve in the study; (3) market-curve
fitting to known parametric function; (4) parameter forecast with the model in (12); and
(5) electricity price forecasting by finding the root of the forecast curve (Figure 6).
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Figure 6. Flowchart of the proposed method for electricity price estimation with market curves
forecasting.

5. Empirical Results
5.1. Market Data

For the construction and evaluation of this model, we used market curves data from
2017 to 2020 from the Iberian Market OMIE. These data include all the offers (energy, price)
from market agents for each hour of the period.

We also include in the analysis different market data available, such as wind produc-
tion forecasts, solar production forecasts, load forecasts, availability forecasts for different
technologies, interconnection capacity and forecasts and French and German market data.
These data will be used as exogenous variables in the model and will help explain the curve
shape for the future.

5.2. Forecasting Evaluation

Most literature agrees on the forecasting evaluation methods and metrics and some-
times even provide different metrics for their forecasts. Measuring point forecasting
accuracy is based on absolute errors AEh =

∣∣Ph − P̂h
∣∣, where Ph is the actual and P̂h is the

predicted price for the period h. Obviously, the accuracy will increase with lower AEh. For
hourly forecasts, it is quite commons to see a Mean Average Error (MAE) as the mean of
the absolute errors over the forecast period T:

MAE =
1
T

T

∑
h=1

∣∣Ph − P̂h
∣∣ (13)

Since electricity prices can change significantly from market to market, absolute errors
are quite hard to compare between different datasets. Many authors use measures based
on absolute percentage errors: APEh = AEh/Ph. By far the most popular is the Mean
Average Percentage Error (MAPE), which is computed as the mean of absolute percentage
errors over T:

MAPE =
1
T

T

∑
h=1

∣∣∣∣Ph − P̂h
Ph

∣∣∣∣ (14)

The MAPE measure is suitable for markets where prices are significantly higher than
zero, but it can be misleading when applied to most electricity prices. In particular, when
electricity prices are close to zero, MAPE values become very large, regardless of the actual
absolute errors. On the other hand, when electricity prices spike, the resulting MAPE
values are small, irrespective of the absolute differences. In a balance sheet impact point of
view, this is inaccurate since a badly forecast price spike might have a much bigger financial
impact than a poorly forecast price close to zero.

The most common approach to tackle the comparison issues between different models
and different price scales is to normalize the absolute error by the average price obtained in
the evaluation interval T. This yields the Weighted Mean Average Error (WMAE):

WMAE =
1
T

T

∑
h=1

∣∣Ph − P̂h
∣∣

P̄T
(15)

where P̄T = 1
T ∑T

h=1 Ph is the mean price in the time interval T.
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For this reason, the metric used for the model evaluation are the MAE and WMAE.

5.3. Model Hyperparameter Selection

Since the basis of the model proposed is a VAR model for forecasting the market curves
parameters, it is important to guarantee that all of the variables are stationary. To check the
stationarity of the time series, we used the Augmented Dickey–Fuller (ADF) test, which
tests the null hypothesis that a unit root is present in the sample. The p-value obtained for
all the parameters was p < 0.005, rejecting the null hypothesis and demonstrating that the
time series are indeed stationary.

The hyperparameters of the model, the number of lags p for the VAR model, the
number of lags l for the exogenous variables and the max iteration K for Fourier Series
were estimated by performing a grid search. We ran a range of values for each parameter:
p between 1 and 168, l between 1 and 24 and K between 1 and 12 and evaluated the model
performance in three distinct ways: computing information criterion AIC, BIC e HQIC,
calculating the MAE of each parameter and calculating the MAE of the resulting electricity
price. Since the main target is to predict the market curves, the combination of parameters
with a lower combined MAE for the seven parameters was chosen.

The criteria were evaluated for one year of in-sample data, and the errors for the
parameters and price were calculated for 1 month of out-sample predictions. The results
can be summarized in:

1. The AIC shows a descending trend until p = 72 and an ascending trend for higher
values. This shows that for this criterion the model should be complex enough, having
a high number of lags in the autoregressive term;

2. On the other hand, the BIC and HQIC seem to be lower with lower parameters (low
p, l and K) and start rising rapidly, suggesting a more simple model. However, the
out-sample residuals of parameters and price for the models with lower BIC/HQIC,
are higher than what is expected in the industry sector;

3. For the parameters error, the higher order parameters MAE was lower with p = 24, but
for the lower order parameters, the lowest MAE was found for p = 72. Since we are
in the presence of seven distinct parameters, it is not possible to find a scenario where
all the parameters MAE are lower. However, when comparing the two hypothesis
just mentioned, the average of the MAE is lower for p = 72;

4. The price MAE is lower when p = 48 or p = 72, showing some relationship with the
parameters MAE;

5. For every measure, the best models for the remaining hyperparameter were found for
l = 24 and K = (K1, K2) = (10, 1).

After observing these results, the model chosen consisted of the hyperparameters
p = 72, l = 24 and K = (10, 1). We ran the model for 2019 and 2020 and calculated the
out-sample predictions for each hour and then compared to some of the best models used
in the industry, both statistical and machine learning.

5.4. Model Benchmark

The model was benchmarked against other models used in the sector, both statistical
and machine learning, and the results obtained can be seen in Table 1.
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Table 1. Model results and benchmark against industry sector models.

Model MAE WMAE

Market Curves 3.0 8.8%
Statistical1 3.6 10.6%
Statistical2 3.7 10.9%
Statistical3 3.4 10.0%
Statistical3 3.7 10.8%
ELM1 3.5 10.2%
ELM2 3.5 10.3%
XGBOOST1 2.8 8.3%
XGBOOST2 2.7 7.9%

The statistical models are dynamic regression models with different combinations of
the exogenous variables already discussed in this work and used in the market curves VAR
model. The ELM models have a 500 sample random runs, and their average is considered
as the final forecast. They use different exogenous variables between them but the same
hyperparameters. The XGBOOST have a significant difference to the other models; they
use the results from the other models, statistical and machine learning, as inputs, working
as an ensemble algorithm for the other forecasts, being able to fine tune them.

These models forecast the electricity hourly price itself; so, to benchmark the model pro-
posed in this thesis, the metric used for comparison is the electricity price MAE and WMAE
although the model actually forecast the market curves for each hour of the day ahead.

It is shown that the market curve model outperforms the non-ensemble models, i.e.,
the different statistical models already employed in the sector and the ELM models, falling
just short of the XGBOOST models. However, as already stated, the XGBOOST models
work as an ensemble for the forecasts obtained with the other methods, using them as an
input. All the known market variables exogenous to the other models work are also used
in XGBOOST as dependent variables.

Since the proposed model outperforms the pure electricity price forecasting ones—
statistical and ELM—it is reasonable to conclude that it captures some information that
the others cannot find, leading to lower errors. On the other hand, the comparison with
XGBOOST is proof of what is seen in the literature: ensemble models have better perfor-
mance than individual forecasting model, being able to capture the advantages of each
model while evading the disadvantages.

Since this is an ensemble model, it is possible to include the new market curve results
in the pool of forecasts already used. By doing this, the MAE of the XGBOOST can decrease
to €2.2/MWh as seen in Table 2.

Table 2. Using the market curve forecasts in the XGBOOST clearly improves the forecasts.

Model MAE WMAE

Market Curves 3.0 8.8%
XGBOOST2 2.7 7.9%
XGBOOST with Market Curves 2.2 6.6%

This means that, not only does the market curve model outperform all the other pure
price forecasting models, but it also adds relevant information to the ensemble, significantly
improving its results. This shows the the proposed model is useful for capturing market
dynamics that the other models cannot, dynamics that are only obtainable with the ask/bid
offers information.

Moreover, the model has shown a good adaptability when there are significant price
changes, being able to capture regime changes better than any other model. By calculating
the MAE of the models in the days, where the average daily price changes by more than
three standard deviations, we can see a lower error than in the XGBOOST that can be
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improved even further by including the market curve price forecasts, as shown in Table 3.
The market curves can actually capture the nonlinearity of the electricity prices, indicating
that most of it might come from the bid and ask offer in the market.

Table 3. MAE of the models when evaluated on the days where the average daily price changes by
more than 3 standard deviations

Model MAE WMAE

Market Curves 3.5 9.8%
XGBOOST2 4.1 11.5%
XGBOOST with Market Curves 3.1 8.7%

6. Discussion and Conclusions

The challenge of predicting electricity prices in a complex market with high volatility
makes EPF a very interesting field. In the industry sector point of view, EPF is a must-have
for energy management, since it is impossible to correctly dispatch energy or manage risk
without accurate electricity price predictions.

In the actual context, accurate predictions become more than just a management tool,
they are a differentiating factor from the competition. Researching and investing in new
EPF models is needed to remain competitive. This thesis presents not only a new method
for EPF, but a new framework for researchers to work with. Looking at the market curves
instead of the electricity price has proven more efficient than the traditional point forecasts
for electricity prices.

A new market curve model was developed for forecasting electricity prices. This new
approach is not only useful for electricity price forecasting, but also brings clear advantages
for risk management in the industry sector. There is no other model that uses this approach
to electricity price forecasting, as models and methods proposed often disregard the market
curves structures that are behind the market clearing price.

The electricity price forecasts made by the market curve model outperformed tradi-
tional statistical models and some machine learning models and also showed a capacity to
adapt to extreme price changes. Regime changes in time series are always hard to forecast
without a complete knowledge of the underlying processes. In the electricity price fore-
cast, the underlying process are the market curves. Incorporating them into the forecasts
increases the adaptability of the model in scenarios where there are abrupt changes to the
price. In addition, it gives an actual forecast for the market curves, in particular to the
price sensitivity curve, given by the difference between the demand and the supply. This
is an extra measure of this model and thus is not comparable to the other models in the
industry sector.

Although the model proposed in this work is classic in the sense of the techniques
used—vector autoregression with exogenous variables and an harmonic factor for
seasonality—it is able to obtain better results than the models that are actually used by
the industry sector in its everyday operations. This shows that the method of using and
forecasting the market curves/offers, which is a novel method built for this model, is
essential for EPF and must be studied.

This approach is innovative in the sense that the models described in the literature
do not incorporate the information about the bids/asks in their price forecasts, and this
is, most probably, the first model with a practical application to be designed with the
market curves.

There are two important points to take from this work: First, modelling, identifying
and forecasting market curves is complex, and there is still much room to improve. The
second point is that incorporating this knowledge in electricity price forecasting gives
better results than traditional models and gives additional information that is not usually
captured by the other models.
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This work suggested a parameterization of the curves by fitting them to a known easier
to work function and then analyzing these parameters. However, more complex methods
with a higher number of parameters can be used and will probably lead to better overall
forecasts. Comparison and similarity analysis between curves can also be performed to
add extra information to a market curve forecast model. Other forecasting techniques can
also be applied, such as applying feature selection techniques to the exogenous variables,
the state-of-art statistical models, or machine learning techniques for curve forecasting.
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