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Abstract

Unmanned Aerial Vehicles (UAVs), although hardly a new technology, have recently
gained a prominent role in many industries, being widely used not only among enthu-
siastic consumers but also in high demanding professional situations, and will have a
massive societal impact over the coming years. However, the operation of UAVs is full
of serious safety risks, such as collisions with dynamic obstacles (birds, other UAVs, or
randomly thrown objects). These collision scenarios are complex to analyze in real-time,
sometimes being computationally impossible to solve with existing State of the Art (SoA)
algorithms, making the use of UAVs an operational hazard and therefore significantly re-
ducing their commercial applicability in urban environments. In this work, a conceptual
framework for both stand-alone and swarm (networked) UAVs is introduced, focusing on
the architectural requirements of the collision avoidance subsystem to achieve acceptable
levels of safety and reliability. First, the SoA principles for collision avoidance against
stationary objects are reviewed. Afterward, a novel image processing approach that uses
deep learning and optical flow is presented. This approach is capable of detecting and
generating escape trajectories against potential collisions with dynamic objects. Finally,
novel models and algorithms combinations were tested, providing a new approach for
the collision avoidance of UAVs using Deep Neural Networks. The feasibility of the pro-
posed approach was demonstrated through experimental tests using a UAV, created from
scratch using the framework developed.

Keywords: Artificial Intelligence, Collision Avoidance, Collision Dataset, Deep Learning,
Drones, Image Processing, Machine Learning, Neural Network, Optical Flow, UAV
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Resumo

Os veículos aéreos não tripulados (VANTs), embora dificilmente considerados uma
nova tecnologia, ganharam recentemente um papel de destaque em muitas indústrias,
sendo amplamente utilizados não apenas por amadores, mas também em situações pro-
fissionais de alta exigência, sendo expectável um impacto social massivo nos próximos
anos. No entanto, a operação de VANTs está repleta de sérios riscos de segurança, como
colisões com obstáculos dinâmicos (pássaros, outros VANTs ou objetos arremessados).
Estes cenários de colisão são complexos para analisar em tempo real, às vezes sendo com-
putacionalmente impossível de resolver com os algoritmos existentes, tornando o uso de
VANTs um risco operacional e, portanto, reduzindo significativamente a sua aplicabili-
dade comercial em ambientes citadinos. Neste trabalho, uma arquitectura conceptual
para VANTs autônomos e em rede é apresentada, com foco nos requisitos arquitetônicos
do subsistema de prevenção de colisão para atingir níveis aceitáveis de segurança e con-
fiabilidade. Os estudos presentes na literatura para prevenção de colisão contra objectos
estacionários são revistos e uma nova abordagem é descrita. Esta tecnica usa técnicas
de aprendizagem profunda e processamento de imagem, para realizar a prevenção de
colisões em tempo real com objetos móveis. Por fim, novos modelos e combinações de al-
goritmos são propostos, fornecendo uma nova abordagem para evitar colisões de VANTs
usando Redes Neurais Profundas. A viabilidade da abordagem foi demonstrada atra-
vés de testes experimentais utilizando um VANT, desenvolvido a partir da arquitectura
apresentada.

Palavras-chave: VANT, Drones, Segurança, Inteligência Artificial, Máquina Inteligente,
Rede Neuronal, Conjunto de Dados de Colisão, Prevenção de Colisão.
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Glossary

Artificial Made or produced by human beings rather than occurring naturally,
especially as a copy of something natural.

Artificial Intelligence The simulation of human intelligence processes by machines, especially
computer systems.

Big Data Very large amounts of data, usually collected by companies or institu-
tions. This type of data can be useful for companies, but only if they
know how to glean information from them.

Clustering Cluster analysis, or clustering, is an unsupervised machine learning
task. It involves automatically discovering natural grouping in data.
Unlike supervised learning (like predictive modeling), clustering algo-
rithms only interpret the input data and find natural groups or clusters
in feature space.

Collision Instance of one moving object or person striking violently against an-
other.

Collision Avoidance Capability to detect and prevent a collision.

Computer Electronic device which is capable of receiving information (data) in a
particular form and of performing a sequence of operations in accor-
dance with a predetermined but variable set of procedural instructions
(program) to produce a result in the form of information or signals.

Computer Vision Interdisciplinary scientific field that deals with how computers can gain
high-level understanding from digital images or videos. From the per-
spective of engineering, it seeks to understand and automate tasks that
the human visual system can do.
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GLOSSARY

Deep Learning Type of machine learning based on artificial neural networks in which
multiple layers of processing are used to extract progressively higher
level features from data.

Detection The action or process of identifying the presence of something con-
cealed.

Distributed computing System whose components are located on di↵erent networked comput-
ers, which communicate and coordinate their actions by passing mes-
sages to one another from any system.The components interact with
one another in order to achieve a common goal.

Drone Refers to any unpiloted aircraft. Sometimes referred to as “Unmanned
Aerial Vehicles" (UAVs), these crafts can carry out an impressive range
of tasks, ranging from military operations to package delivery. Drones
can be as large as an aircraft or as small as the palm of your hand.

Drone Swarms Approach to the coordination of multiple drones as a system which
consist of large numbers of less complex drones.

Framework Abstraction in which software, providing generic functionality, can be
selectively changed by additional user-written code, thus providing
application-specific software. It provides a standard way to build and
deploy applications and is a universal, reusable software environment
that provides particular functionality as part of a larger software plat-
form to facilitate the development of software applications, products
and solutions.

Intelligence The ability to acquire and apply knowledge and skills.

Intelligent Systems Technologically advanced machines that perceive and respond to the
world around them.

Internet of Things Term that encompasses everything involved in connecting everyday
devices to the Internet, in order to collect data from them, exchange
data between devices or control them from a distance.
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GLOSSARY

Machine Learning Method of data analysis that automates analytical model building. It
is a branch of artificial intelligence based on the idea that systems can
learn from data, identify patterns and make decisions with minimal
human intervention.

Neural Network Series of algorithms that endeavors to recognize underlying relation-
ships in a set of data through a process that mimics the way the human
brain operates. In this sense, neural networks refer to systems of neu-
rons, either organic or artificial in nature.

Operating System An operating system is system software that manages computer hard-
ware, software resources, and provides common services for computer
programs.

Path Course of action, trajectory, or way of achieving a specified result.

Resilience The capacity to recover quickly from di�culties; toughness.

Resolution The solution to a problem.

Robotics Robotics is the field based on science and engineering, which focuses
on designing, creating, and building robots and the computer programs
that control them.

ROS ROS is an open-source, meta-operating system for your robot. It pro-
vides the services you would expect from an operating system, includ-
ing hardware abstraction, low-level device control, implementation of
commonly-used functionality, message-passing between processes, and
package management.
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GLOSSARY

Smart Industry 4.0 Term which is surfacing to describe the current trend of automation
and sharing of data in the manufacturing sectors.

Technology Sum of any techniques, skills, methods, and processes used in the pro-
duction of goods or services or in the accomplishment of objectives,
such as scientific investigation. Technology can be the knowledge of
techniques, processes, and the like, or it can be embedded in machines
to allow for operation without detailed knowledge of their workings.

UAS Means an unmanned aircraft and the equipment to control it remotely.

UAV Any aerial aircraft operating or designed to operate autonomously or to
be piloted remotely without a pilot on board.

Unmanned Not carrying, sta↵ed, or performed by people; not manned.
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1
Introduction

1.1 Context and Motivation

It is the ‘Era’ of Unmanned Aircraft Systems (UASs), an all-encompassing term which
includes the aircraft or the Unmanned Aerial Vehicle (UAV), the ground-based controller
(the person operating the machine), and the communication system connecting the two,
commonly known as Drones. Today, UAVs are revolutionizing the world and businesses
in a way that hardly anyone could have ever imagined. An UAV is an aircraft without a
human pilot aboard. The term UAVs includes both autonomous aircrafts and Remotely
Piloted Vehicles (RPVs).

This rapid evolution of UAVs increases the need of safer and more reliable solutions.
For reliable solutions using UAVs above cities skylines, it is necessary that the solution
is completely safe and works regardless of the world conditions and unexpected events,
being necessary to create a collision-free architecture that is agnostic of the environmental
constraints, able to rationalize and give answers to new events in realtime. The lack
of such architecture has lead to multiple disasters in the past (BBC, 2016; BBC, 2017;
Canada, 2017; Caron, 2017; Goglia, 2017; Rawlinson, 2016; Tellman and News, 2018)
that will tend to augment with the increasing number of UAVs in operation.

Most of the commercial UAVs are equipped with Red, Green and Blue (RGB) cameras,
which create the opportunity to develop new algorithms that use the data from these
cameras to create solutions that are capable of avoiding collisions. This algorithm can
either predict the incoming collision and/or generate escape trajectories. Furthermore,
it is vital to have a framework capable of integrating di↵erent modules that enable new
levels of autonomy. For example, an algorithm that handles the collision avoidance with
static objects should be easily replaced, not a↵ecting the performance of other algorithms
that are running in parallel.
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CHAPTER 1. INTRODUCTION

1.2 Research Question and Hypothesis

For autonomous vehicles to be completely reliable in a collaborative network, with both
static and dynamic obstacle avoidance, one question must be answered:

Research
Question

What could be an adequate conceptual framework for representing the
behavior of individually or networked unmanned aerial vehicles, ensuring
reliability and safety in the flight, regardless of the environmental conditions
and unexpected events?

In the seek of a good answer for the proposed research question, di↵erent hypotheses
with potential solution approaches were advocated utilizing the knowledge from fellow
researchers, being summarized in chapter 2. The considered hypotheses are:

Hypothesis
1

The proposed framework can be built utilizing di↵erent SoA blocks, that are
present in distinct fields that use concepts of autonomous vehicles, such
as aviation or autonomous cars, but are not benchmarked nor integrated
properly. Furthermore, new blocks that do not exist can be developed and
integrated into the developed framework.

Hypothesis
2

The proposed framework can be built utilizing di↵erent nodes, that are
based on SoA architectures, which handle atomic tasks alone but realize
complex tasks in collaboration . Furthermore, new complex blocks that don’t
exist can be developed utilizing AI technology and then integrated
into the developed framework.

The main goal of this research work is then to design and develop the proposed
framework and validate it with a set of UAVs and make further improvements with tests.
Not only that, but the building blocks will be deeply researched and improved, which
will also involve general improvements in machine learning architectures and models.

1.3 Goals

The purpose of this thesis is to enhance UAVs autonomy, focusing on safety and resilience.
For this, a new UAV architecture, both on software and hardware level, is presented. This
UAV can recognize and avoid multiple types of collisions. With this in mind, four goals
are planned to be achieved:

• Evaluate State-of-Art (SoA) of UAVs, their planning and collision avoidance algo-
rithms, and study the latest advances on Artificial Intelligence (AI), in order to
tailor a solution for the proposed problem;

• Propose a custom drone architecture capable of handling SoA planners with colli-
sion awareness and with the ability to handle events in realtime;
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• Develop a collision detector with spatial awareness, which will provide an escape
direction;

• Create and publish collision datasets that can be reutilized and expanded by the
opensource community to develop new and more reliable algorithms for collision
avoidance.

The algorithms and architectures proposed in this work should be generic enough so
that it is possible to adapt to other types of autonomous vehicles, such as autonomous
cars or autonomous surface vehicles. In addition, studying the problem from the drone’s
perspective provides a 3D vision of the problem, which should be practical to adapt to 2D.

1.4 Contributions

Throughout the work, it was intended that the system could cope with natural environ-
mental adversities and complete its task with precise and safe results. Having this scope
in mind, a review of the literature was conducted, highlighting the latest developments
in the field that act as the base for the proposed solution. Then, a set of contributions
were developed, such as:

1. A Framework for Fully Autonomous UAVs: a framework that allows the integra-
tion and modification of di↵erent algorithms, facilitating complex UAVs missions
on Beyond Line of Sight (BLOS) scenarios.

2. Open-sourced Datasets: data which is open for anyone and everyone for access,
modification, reuse, and sharing. Two datasets were developed and made available
to the community:

• ColANet - A dataset with a di↵erent type of collisions produced from multiple
videos from the internet. This was cataloged and labeled accordingly.

• BallANet - A dataset focusing on the collisions between thrown ball and a
UAVs, which were also cataloged and labeled accordingly.

3. Multiple dynamic collision avoidance algorithms: that can be adapted to di↵er-
ent circumstances, depending on the available dataset, and the UAV camera spec-
ifications. The collision avoidance of thrown objects (or similar) is a topic that is
not deeply explored, and therefore these were, in most cases, novel algorithms/ap-
proaches (which use Neural Networks and Optical Flow).

During the development of this work, the author published 7 journal papers regard-
ing some of the algorithms and ideas explored directly and indirectly by the thesis. The
publications can be found in journals such as Applied Sciences, Institute of Electrical
and Electronics Engineers (IEEE) Access, Multidisciplinary Digital Publishing Institute
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(MDPI) Drones, and Remote Sensing. Moreover, it were published 7 conference papers in
several symposiums, including Doctoral Conference on Computing Electrical and Indus-
trial Systems (DoCEIS), the Intelligent Systems Conference, the International Symposium
on Communication Systems, SAFECOMP, and the International Symposium on Commu-
nication Systems, Networks and Digital Signal Processing (CSNDSP). A summary of all
the articles published can be found in table 1.1.

Table 1.1: Articles published during the thesis development.

Conference Journal

1s
t
A
ut
ho

ur

(2020) Pedro, D., Mora, A., Carvalho, J.,
Azevedo, F., & Fonseca, J. ColANet: A UAV
Collision Avoidance Dataset. In: DoCEIS
2020

(2021) Pedro D., Rato R.T., Matos-Carvalho
J.P., Fonseca J.M., Mora A. Flow Empirical
Mode Decomposition. In: IntelliSys 2021.

(2021) Pedro D., Lousã P., Ramos Á., Matos-
Carvalho J.P., Azevedo F., Campos L. HEIFU
- Hexa Exterior Intelligent Flying Unit. In:
SAFECOMP 2021 Workshops.

(2019) Pedro, D., Tomic, S., Bernardo, L.,
Beko, M., Oliveira, R., Dinis, R., Pinto, P.,
& Amaral, P. Algorithms for Estimating
the Location of RemoteNodesUsing Smart-
phones. In: IEEE Access.

(2020) Pedro, D., Matos-Carvalho, J. P.,
Azevedo, F., Sacoto-Martins, R., Bernardo,
L., Campos, L., Fonseca, J. M., & Mora, A.
FFAU—Framework for Fully Autonomous
UAVs. In: Remote Sensing.

(2021) Pedro, D., Matos-Carvalho, J. P., Fon-
seca, J. M., & Mora, A. Collision avoid-
ance on unmanned aerial vehicles using
neural network pipelines and flow cluster-
ing techniques In: Remote Sensing.

C
o-
au

th
or

(2019) Matos-Carvalho J.P., Pedro D., Cam-
pos L.M., Fonseca J.M., Mora A. Ter-
rain Classification Using W-K Filter and
3D Navigation with Static Collision Avoid-
ance. In: IntelliSys 2019

(2020) Campos, L. M., Ribeiro, L., Karydis,
I., Karagiannis, S., Pedro, D., Martins, J., Mar-
ques, C., Armada, A. G., Leal, R. P., Lopez-
Morales, M. J., Velez, F. J., Sebastiao, P., &
Ramos, A. R. Reference Scenarios and Key
Performance Indicators for 5G Ultra-dense
Networks. In: 12th CSNDSP

(2020) Pino, M., Matos-Carvalho, J. P., Pedro,
D., Campos, L. M., & Costa Seco, J. UAV
Cloud Platform for Precision Farming. In:
12th CSNDSP

(2022) Matos-Carvalho, J. P. , Vong, A., Pe-
dro, D., Tomic, S., Beko, M., Azevedo, F.,
Mora, A. Open-sourcemappingmethod ap-
plied to thermal imagery. In: Computing
Conference

(2019) Matos-Carvalho, J.P.; Moutinho, F.;
Salvado, A.B.; Carrasqueira, T.; Campos-
Rebelo, R.; Pedro, D.; Campos, L.M.; Fon-
seca, J.M.; Mora, A. Static and Dynamic Al-
gorithms for Terrain Classification in UAV
Aerial Imagery. In: Remote Sensing

(2021) Nakama, J., Parada, R., Matos-
Carvalho, J. P., Azevedo, F., Pedro, D., &
Campos, L. Autonomous environment gen-
erator for uav-based simulation. In: Ap-
plied Sciences (Switzerland)

(2021) Vong, A., Matos-Carvalho, J. P., Tof-
fanin, P., Pedro, D., Azevedo, F., Moutinho,
F., Garcia, N. C., & Mora, A. How to build
a 2d and 3d aerial multispectral map?—all
steps deeply explained. In: Remote Sens-
ing.

(2021) Moreira, M., Azevedo, F., Ferreira,
A., Pedro, D., Matos-Carvalho, Ramos, A.,
Loureira, R., Campos, L. Precision Landing
for Low-Maintenance Remote Operations
with UAVs In: MDPI Drones
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Furthermore, to disseminate the work developed under the scope of this thesis, some
of the algorithms developed were applied in 6 research projects financed by P2020 and
H2020, such as: Mobilizadores 5G (M5G), Aggregate Farming in the Cloud (AFarCloud),
Security for Cross Domain Reliable Dependable Automated Systems (SECREDAS), Ar-
tificial Intelligence for Real Agriculture (AI4RealAg), Distributed Artificial Intelligent
Systems (DAIS), and Intelligent Edge of Things (IEoT) . All these projects share the desire
to push UAVs to global usage, but also the consternation of the possible risks that this
may provoke.

1.5 Dissertation Structure

This dissertation is organized in seven chapters:

• Chapter 1: Introduction presents the work and proposes the implementation ap-
proach. The motivations are outlined and the architecture is explained.

• Chapter 2: RelatedWork summarizes the technologies behind the various collision
avoidance techniques. It is presented the main characteristic of Autonomous Vehi-
cles, their planning algorithms, techniques for performing image processing with
neural networks and how to use these networks over a drone video feed.

• Chapter 3: Framework for Fully Autonomous UAVs puts forward a framework
architecture that contains all the necessary UAVs modules that allow a collision safe
flight. Each of the modules is described and their interconnections and responsibil-
ities are highlighted.

• Chapter 4: UAV Collision Avoidance Dataset presents two novel UAV collision
datasets. These datasets provide a foundation for training new Machine Learning
(ML) algorithms that are required to handle the collision avoidance problem with
high e�ciency and robustness. It is also shown that using these datasets is easy to
build new Neural Network (NN) models and test them.

• Chapter 5: Dynamic Collision Avoidance focuses the main contributions of this
work. A detailed explanation of the algorithms develop is presented, which make
use of the datasets of chapter 4.

• Chapter 6: Applications and Results explains how the proposed solutions can be
deployed in simulation or in real scenarios, showcasing some of the results obtained.
This chapter also serves as a guidance for future improvements on the algorithms
to increase their Technology Readiness Level (TRL).

• Chapter 7: Conclusion and Future Work summarizes the work developed. In this
chapter, some comments, criticisms and plans are presented for the future work to
be developed.
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2
Related Work

This chapter consolidates the core concepts that are tackled along with the dissertation,
such as Autonomous Vehicles, Collision Avoidance, and AI with a focus on Deep Neural
Networks (DNNs).

2.1 Autonomous Vehicles

An autonomous vehicle, sometimes known as a robotic or driverless vehicle, represents
any vehicle without using a human driver. Its main objective is to integrate a set of sensor
technologies, control systems, and actuators to sense the environment, determinate what
to do and perform tasks safely and reliably (Davis et al., 2014; Litman, 2014).

The autonomous vehicles can be divided into four categories, as is depicted in Figure
2.1, and described below :

• Unmanned Ground Vehicles (UGVs) - This set represents all vehicles that are capa-
ble of sensing their environment and move on the ground safely with little or no
human input. The most known type of UGV is the autonomous car, as is presented
as an example in Figure 2.1 (a).

• Autonomous Underwater Vehicles (AUVs) - Part of a large group of submarine
systems that includes vehicles, controlled and fed from the surface by an operator
(pilot) via a wire (also called "umbilical cord"), or via a remote control. On Figure
2.1 (b) is represented an A9 portable AUV (Group, 2018).

• Autonomous Surface Vehicles (ASVs) - Represent boats that operate at the water
surface level without a crew. ASVs are valuable in oceanography, as they are more
capable than moored or drifting weather buoys and far cheaper than similar ships
and research vessels. One ASV can be visualized in Figure 2.1 (c).
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• Unmanned Aerial Vehicle (UAVs) - Commonly known as drones, they are aircrafts
without a human pilot onboard. UAVs are a component of an UAS which include a
UAV, a ground-station controller, and a system of communications between the two.
The flight of UAVs may operate with various degrees of autonomy: either under
remote control by a human operator or autonomously by onboard computers. On
Figure 2.1 (d) is presented an Hexacopter UAV.

a. UGV - Waymo (Waymo, 2018) b. AUV - A9 portable (Group, 2018)

c. ASV - SAAB Halcyon (Saab, 2018) d. UAV - HEIFU (Pedro et al., 2021)

Figure 2.1: Di↵erent types of autonomous vechicles such as UGV, AUV, ASV and UAV.

Although they are all considered autonomous vehicles in general terms, they can have
di↵erent levels of autonomy. These levels of autonomy vary depending on the vehicle
control system and auxiliary systems. Systems that currently need improvement include
the main vehicle navigation system, the location system, the electronic map, the map
matching, the global path planning, the environment perception, the laser perception,
the radar perception, the visual perception, the vehicle control, the perception of vehicle
speed, and direction and the vehicle control method (Zhao et al., 2018).

2.1.1 Level of Autonomy

The purpose of the Level of Autonomy (LoA) specifies the degree of autonomy wanted,
needed, or required during operations. The term LoA refers to the degree that the sys-
tem and the operator can intervene when an operation is taking place (the extent to
which a human or machine has control in di↵erent stages of the operation) and is be-
ing developed for many years (Sheridan, 1993). Another aspect in LoA is the context of
machine-machine collaboration, which assumes that machines decide their LoA based
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on the problem. The latter case is also applicable when there are humans in the loop.
However, a significant problem is divided and solved between intelligent systems, which
also decide their roles through defining their autonomy levels. This setting has practical
applications. On automated ground vehicles, the autonomy level as defined in Society of
Automotive Engineers (SAE) J3016 (Society of Automotive, 2014) can be used to define
the autonomy level. However, the classification is not based on the overall task (e.g., a
strategic decision regarding path planning or task execution), being focused on the direct
control task and Autonomous Driving System (ADS).

The levels include not only the ground vehicle and the controlling/involved person
but also the Operational Design Domain (ODD) since the autonomy can be restricted
based on the environment (e.g., an agricultural vehicle that needs a human operator for
driving on public roads). Based on this, six levels are defined, as described in table 2.1.

Table 2.1: Automation Levels.

DDT

Level Name Narrative Definition Sustained lateral
and longitudinal
vehicle motion
control

OEDR
DDT
fallback ODD

Driver performs part or all of the DDT

0 No Driving
Automation

The performance by the driver of
the entire DDT, even when enchanced
by active safety systems.

Driver Driver Driver n/a

1 Driver

The sustained and ODD-specific
execution by a driving automation
system of either the lateral or the
longitudinal vehicle motion control
subtask of the DDT (but not both
simultaneously) with the expectation
that the driver performs the remainder
of the DDT.

Driver &
System

Driver Driver Limited

2 Partial
Driving

The sustained and ODD-specific
execution by a driving automation
system of both the lateral and
longitudinal vehicle motion control
subtasks of the DDT with the
expectation that the driver completes
the OEDR subtask and supervises the
driving automation system.

System Driver Driver Limited

ADS (’System’) performs the entire DDT (while engaged)

3 Conditional
Driving
Automation

The sustained and ODD-specific
performance by an ADS of the entire
DDT with the expectation that the DDT
fallback-ready user is receptive to
ADS-issued requests to intervene, as
well as to DDT performance-relevant
system failures in other vehicles systems,
and will respond appropriately.

System System Fallback
ready user Limited

4 High
Driving
Automation

The sustained and ODD-specific
performance by an ADS of the entire
DDT and DDT fallback without any
expectation that a user will respond to
a request to intervene.

System System System Limited

5 Full
Driving
Automation

The sustained and unconditional (i.e.,
not ODD-specific) performance by
an ADS of the entire DDT and DDT
fallback without any expection that a
user will respond to a request to
intervene.

System System System Unlimited
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Similar nomenclatures were proposed depending on the domain and application. This
thesis focus on the UAVs due to their axis freedom and movement. Typically, an UAV can
move towards any 3D trajectory, being harder or impossible for some other autonomous
vehicles. All algorithms presented in this thesis are intended to be as generic as possible,
so they can be easily adapted to other types of vehicles, but for the sake of specification
and performance optimization, all the work is around UAVs. On a UAV the LoA is still
being explored, as there is a big lack of standardization and regulation, which is mainly
being pushed by the American National Standards Institute (ANSI) on the Unmanned
Aircraft Systems Standardization Collaborative (UASSC). It is emphasized that the topic
of LoA is a top priority, and it is required to clarify that there are significant di↵erences
between “fully autonomous” and “fully automated” systems. In this work, the algorithms
will always target fully autonomous behaviors, with safety architecture in mind.

2.1.2 Types of UAVs

This section presents an analysis of di↵erent UAVs models and their mode of opera-
tion (Valavanis and Vachtsevanos, 2015). It introduces some important concepts which
will help the reader to better understand the content and use cases of this dissertation.

UAVs are growing in number and variety of potential applications. Some possible
applications are pollution and forest fire monitoring, delivery of retail products, bor-
der patrol, aerial mapping and surveillance, tra�c monitoring, precision agriculture, or
search and rescue operations (P. Valavanis, 2007).

Usually, users tend to divide UAVs into four categories (UAV, 2019) that are summa-
rized on table 2.2. It is possible to advance that the Multi-Rotor solution will be a proper
choice for the main use cases that are going to be addressed in this thesis, given that this
solution can easily maneuver in any axis and is considered to be low cost.

The vehicle shown in Figure 2.1 (d) is the solution used in this thesis, which is a
hexacopter, thus possessing all of the maneuverability enunciated previously. Moreover,
it carries a gimbal with a depth camera, which will help with the Obstacle Detection (OD)
tasks.

2.1.3 UAV typical software architecture

Most UAVs use a processor that collets information from the sensors and stabilizes the
aircraft. This is usually called the UAV flight controller (Chao et al., 2010). There are
multiple types of flight controllers, but the most common share a similar architecture to
the diagram in Figure 2.2. The indicated architecture is divided into five main blocks:

• Hardware components: there are multiple types of processors that can be used to
ran a flight controller. An open-source option is the Pixhawk, but there are several
others, such as the HEIFU board, the Bebop2 board, or the Navio2 board.
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Table 2.2: UAVs’ Categories’ Comparison.

Advantages Drawbacks

Fixed-Wing

Cover wide areas, due to the longer
flight of time;
The main function of the motors
is to move the vehicle forward
(more e�cient).

Low maneuverability;
Considerably expensive;
Take o↵/land is and may
require mechanisms such
as catapult, runway or hand
launching.

Single-Rotor
Helicopter

Possibility of vertically take-o↵
and land;
Can carry a heavy payload;
present high autonomy (time of
flight).

If the main propeller fails,
it completely loses control.
Less stable

Multi-Rotor
Cheapest solution ; high
maneuverability and control over
position.

Do not allow high speeds ; do not
present good autonomy given the
high e↵ort required from the motors
to hover. This makes this solution
unsuitable to large scale coverage.

Fixed-Wing
Hybrid

Combines the previous approaches:
contains both the hover and
forward flight modes.

Rather recent solution; higher
price due to the extra technology
requirements.

• Operating System (OS): depending on the selected hardware, a compatible OS
must be adopted.

• Flight controller code: it contains all the logic required to read data from the UAV
sensors and send commands to the actuators on the Hardware Abstraction Layer
(HAL). Furthermore, it has libraries to fuse di↵erent types of data (e.g., using Ex-
tended Kalman Filter (EKF)) and controls the UAV on the desired mode (e.g., Stabi-
lize, Loiter, Alt-hold, Return To Launch (RTL), Land).

• Communication layer: on most cases, the flight controller allows all the informa-
tion that it is acquiring and processing to be periodically listened to by another
system. In most of open-source flight controllers, this communication is done by
the Mavlink protocol (Koubaa et al., 2019).

• External integrations: multiple types of external devices can make use of the in-
formation published via Mavlink. For example, a ground station that receives this
data via a radio link, or an On-Board Computer (OBC) that can compute order type
of algorithms and provide another layer of computation (e.g., Jetson Nano running
AI algorithms).

Furthermore, additional external sensors can be integrated on the flight controller,
which usually communicates via Serial Peripheral Interface (SPI), Inter-Integrated Circuit
(I2C) or Serial.
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Figure 2.2: UAV flight controller architecture.

Examples of the most known open-source flight controllers are: ArduCopter (Ardupi-
lot, 2013), MultiWii (MultiWii, 2020), OpenPilot (Hotz, 2020), PX4 autopilot (PX4 Open
Source Autopilot, 2019), and Paparazzi (Brisset and Hattenberger, 2008).

2.2 Collision Avoidance

Path planning from location A to location B, while simultaneously avoiding obstacles and
reacting to environment changes, are simple tasks for humans but not so straightforward
for autonomous vehicles. These tasks present challenges that each mobile robot needs to
overcome to become fully autonomous. A robot uses sensors to perceive the environment
(up to some degree of uncertainty) and to build or update its environment map. To
determine appropriate motion actions that lead to the desired goal, it can use di↵erent
decision and planning algorithms. For an adequate path planning, the robot’s kinematic
and dynamic constraints should be considered.

Path planning is used to solve problems in di↵erent fields, from simple spatial route
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planning to the selection of an appropriate action sequence that is required to reach
a certain goal. Since the environment is not always known in advance, this type of
planning is often limited to the environments designed in advance and environments
that can be described accurately enough before the planning process. Path planning can
be used in fully known or partially known environments, as well as in entirely unknown
environments where sensed information defines the desired robot motion.

Path planning in known environments is an active research area (Jiang and Ma, 2020;
Zhang et al., 2018) and presents a foundation for more complex cases where the environ-
ment is not known a priori. This section presents an overview of the most common path
planning approaches applicable to UAVs.

In this thesis, the collision avoidance problems are divided into two categories:

• Static collision sc - This category includes collisions between the considered vehicle
and any obstacle that moves considerably slower than it. In this work, it is consid-
ered that using the world as a referential, an object will produce a static collision if
it is moving bellow 5% of the vehicle maximum speed vmax.

• Dynamic collision dc - This set represents collisions between the vehicle and any
obstacle that moves at a speed that is hard for the path planner to plan a safe path
avoiding the collision. It is considered that using the world as a referential, an
object will produce a dynamic collision if it is moving at speed omax faster than 5%
of the vmax.

These two categories can be formulated as:

8>><>>:
sc 2 omax 6 0.05 · vmax

dc 2 omax > 0.05 · vmax
(2.1)

It is important to note that the heuristic of 5% maximum speed is not of great impor-
tance because, in the end, the Static Collision Avoidance (SCA) algorithm should be able
to handle obstacles that are moving at a faster speed (up to 25% of its maximum speed)
without being eluded into erroneous paths by fast-moving objects. Similarly, the colli-
sion avoidance algorithm should be able to handle all sorts of collisions even if the path
planner that considers static objects do not generate a trajectory that avoids an obstacle.

2.2.1 Static Collision Avoidance

As stated by Marr in (Marr, 1980), most of the structures in the visual world are rigid
or at least nearly so. This statement is the starting point for most collision avoidance
algorithms. The core concept is that the planner should try to create a plan thatmaximizes
the distance to obstacles while heading to the way-point.

A vast number of methods have been proposed to automate air tra�c Conflict Detec-
tion and Resolution (CDR) (Kuchar and Yang, 2000). Most of the methods can be sepa-
rated by dimensions of state information (vertical, horizontal, or three-dimensional, 3-D),
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methods of dynamic state propagation (nominal, worst case, or probabilistic), conflict
resolution method (planned, optimized, force field, or manual), maneuvering dimensions
(speed change, lateral, vertical, or combined maneuverer), and management of multiple
aircraft conflicts (pairwise or global).

This section focus specifically on multi-rotor UAVs solutions using the real-time ob-
stacle avoidance algorithms with the most common sensorial configurations, namely
monocular cameras (Kovacs, 2016), Light Detection and Ranging (LiDAR) (Hrabar, 2012;
Merz and Kendoul, 2011), stereo cameras (Hrabar, 2012) or their combination (Hrabar,
2012).

LiDARs are active sensors. This means that they are insensitive to the environment
light, providing better accuracy than stereo cameras and good performance for far obsta-
cles. The low processing power required makes them e�cient for real-time applications.
However, the data collected is produced sequentially, and the maximum range is limited.
Azevedo et al. (Azevedo et al., 2017) presented a solution using a LiDAR-based real-time
collision avoidance algorithm, denoted by Escape Elliptical Search Point (EESP), with the
ability to be integrated into autonomous and manned modes of operation. Some other ex-
amples of LiDAR-based detection systems are (Merz and Kendoul, 2011) and (Ramasamy
et al., 2016).

Stereo cameras are another source of depth information. Global Shutter cameras can
provide a snapshot of the environment for a given instant and generate dense 3D depth
information, with RGB color map to each point in space, which enables the possibility of
detecting objects from a long distance (depending on the baseline between the cameras).
The main disadvantage of this solution is the dependency on the visual environment con-
ditions and the necessary processing computing power. Besides that, its range accuracy
decreases with range squared (Hrabar, 2008).

In addition to these two range sensors, there are di↵erent solutions (Kovacs, 2016; Li
and Ling, 2015; Magree et al., 2014; Yang et al., 2017) that use monocular cameras and
radars to generate 3D maps for collision avoidance with static structures.

The obstacles can be represented on a map by a simple point cloud with the mea-
surements given by a depth sensor. However, this is computationally costly and can
compromise the real-time requirements. For reducing this cost, data can be clustered,
resulting in a sparse representation. Another disadvantage of this method is that it is hard
to distinguish between clear and unmapped spaces. Using a point cloud as input, the
memory space required for storing the map information can be reduced using techniques
like the representation using Octrees, Octomaps, or Voxel Grids (Hornung et al., 2013).
Other ways of representing occupancy maps are analyzed and summarized in (Burgard
et al., 2019).

For a better understanding of all the presented concepts, a Hexacopter drone was
simulated using Gazebo and Robot Operating System (ROS) (Joseph, 2015), which is
represented in figure 2.3. In this example, the drone is processing the environment and
generating an Octomap. Afterwards, a destination way-point was added, and the path
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planned for the drone was represented as a drone model with higher transparency.

a. Initial position on Simulator. b. Initial position on Path Planner.

c. End position on Simulator. d. End position on the Path Planner.

Figure 2.3: Hexacopter navigation on a simulated environments using Static Collision
Avoidance awareness.

Another obstacle avoidance maneuver is presented in (Hrabar, 2011). In this case, the
vehicle is considered a sphere, which simplifies the collision calculations and constructs
a safety volume around it. Whenever an obstacle enters the safety volume, it constructs
an ellipsoid area around the obstacle and searches for a point that allows a clear path
from the current position to the escape point and also ensures no collisions through a
defined distance from the escape point, on the direction to the way-point. If no clear path
is found, it extends the ellipse radius (a certain number of times) and performs another
search. If no clear path is found with the maximum ellipse radius, the aircraft will alert
the pilot and remain in the same position until the pilot takes control.

This method has the advantage of allowing an uninterrupted flight for avoiding the
obstacle while having considerable low processing without a clear necessity to recalculate
the trajectory considering arbitrary avoidance points.
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Having this line of thought, Sabatini et al. (Sabatini et al., 2014) implemented an ob-
stacle avoidance ellipsoid-shaped safety zone around obstacles. The planning algorithm
for obstacle avoidance takes into account the aircraft dynamics. For example, when the
aircraft is moving with high velocity and/or acceleration, the time to find an alternative
path and the distance to the obstacle are the major inputs of the cost function, as they are
the main parameters to be considered in critical situations.

2.2.2 Dynamic Collision Avoidance

To prevent a collision with a dynamic obstacle (such as an animal) or an incoming object
(such as a thrown ball), a UAV needs to detect it as fast as possible and execute a safe
maneuver to avoid it. The higher the relative speed between the UAV and the object, the
critical the role of perception latency becomes. This leads us to conclude that perception
latency is the time necessary to perceive the environment and process the captured data
to generate control commands (Andrew, 2001; Gallup et al., 2008; Mueggler et al., 2015).

Compared to SCA algorithms, the Dynamic Collision Avoidance (DCA) algorithms
haven’t yet been explored since the task is much harder. There are some works, such
as the one from Poiesi and Cavallaro, where multiple image processing algorithms that
estimate the time of collision of incoming object are explored (Poiesi and Cavallaro, 2017).
The detection is accurate, but the algorithm takes more than 10 seconds to process each
frame, making the solution not applicable in real-time scenarios with SoA hardware.
Also, Falanga et al. (Falanga et al., 2019) delved into the event cameras to generate a
computing e�cient sensing pipeline that was capable of avoiding a ball thrown towards
a quad-copter at speeds up to 9 m/s similar to the work done in (Mueggler et al., 2015).

2.3 Artificial Intelligence

Some people call this artificial intelligence, but the reality is this technology
will enhance us. So instead of artificial intelligence, I think we’ll augment our
intelligence. — Ginni Rometty

Technology is rapidly evolving, and engineers are seeking harder and harder tasks
to solve. In computer science, the core of the SoA is resolving complex tasks using
Artificial Intelligence, so it’s important to have a clear idea of these concepts and the
correct roadmap for evolution (Bengio et al., 2013; Schmidhuber, 2015). Detailed analysis
on SoA Artificial Intelligence is presented in appendix A, and in this chapter, it was
chosen to stress out the most relevant topics.

2.3.1 Data Sets

In the last decade, there has been an increasing number of publications of datasets that
are enabling the development of new ML models and solutions. In this section it is
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presented a review of the existing datasets, highlighting their relevance and impact in the
field. These datasets were selected using both a criterion of usefulness for the community
(novel data or utility scenarios) and relevance (amount of citations reports, usage on
benchmarks zoos, scientific quality extrapolated by top-tier conferences and journals).
As can been found in some other works (Garcia-Garcia et al., 2018), our analyses will
be split according to their data representation, 2D or RGB datasets, 2.5D or RGB-Depth
datasets, and 3D or video (volumetric) datasets.

2.3.1.1 2D image Datasets

In the last years, most of the ML algorithms were developed using 2D datasets that tried
to understand the correlation between pixels and classify images. In this section, it is
described most of the 2D datasets, whether they are RGB or greyscale.

• Adobe’s Portrait Segmentation (Shen et al., 2016b): Dataset of 1800 portrait images
gathered from Flickr, which were cropped to 800x600, and the background and face
were annotated pixel by pixel.

• CamVid (Brostow et al., 2009; Brostow et al., 2008) : Scene background under-
standing dataset with around 700 images of 960x720, manually annotated with 32
classes.

• Cityscapes (Cordts et al., 2015): Dataset of urban street scenes understanding,
which was recorded from 50 cities during multiple days and di↵erent weather con-
ditions. It has 30 di↵erent classes grouped into eight categories.

• Densely-Annotated Video Segmentation (DAVIS) (Perazzi et al., 2016): Dataset of
50 high-definition sequences of up to 4219 frames with pixel-wise annotations with
four di↵erent categories: human, animal, vehicle, and object.

• ImageNet (Jia Deng et al., 2009; Russakovsky et al., 2015): Image database orga-
nized according to the WordNet hierarchy (currently only the nouns), in which each
node of the hierarchy is depicted by hundreds and thousands of images. Currently,
there exists an average of over five hundred images per node.

• Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) (Geiger
et al., 2013): Popular dataset used in mobile robotics and autonomous vehicles. It
has a large variety of sensors, being possible to use high-resolution RGB, greyscales
camera arrays, or 3D laser scans.

• LabelMe (Russell et al., 2008): MIT dataset project that contains digital images with
annotations, which are dynamic, free to use, and open to public contribution. It’s
used in computer vision research having more than 200 000 images, with more than
1 000 000 labeled objects.
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• Materials in Context (MINC) (Bell et al., 2015) : Dataset used for material classifica-
tion with 7061 images of (on average) 800x500 that have 23 di↵erent labels. Most
of the that of this dataset is from OpenSurfaces dataset (Bell et al., 2013).

• Microsoft Common Objects in Context (COCO) (Lin et al., 2014b): One of the most
used datasets for image processing. It consists of labeled 100 000 images of 80
classes, some with a di↵erent types of annotations that are useful for di↵erent chal-
lenges such as image recognition, captioning, pose estimation, and segmentation.

• Modified National Institute of Standards and Technology (MNIST) (LeCun et al.,
1998): The MNIST database of handwritten digits has a training set of 60 000
examples and a test set of 10 000 examples. It is a subset of a larger set available
from NIST. The digits have been size-normalized and centered in a fixed-size image.
It’s one of the most used datasets in the world for introduction to those initiating in
the ML area. It was used by Yann LeCun et al. (LeCun et al., 1998), which started
the Convolutional Neural Network (CNN) revolution.

• Pascal Visual Object Classes (VOC) (Everingham et al., 2014): Some researchers
consider this the most popular dataset for semantic segmentation, so most of the
SoA methods in the literature are submitted and tested using it. It consists of 21
categorized classes for 3000 images.

• SYNTHetic Collection of Imagery and Annotations (SYNTHIA) (Ros et al., 2016):
Dataset of photo-realistic images of a virtual city, completely annotated, created
scene understanding on driving context in urban scenarios. It contains 11 classes
and over 14 000 images from rendered video.

• Youtube-Objects (Ronneberger et al., 2015): Database of Youtube videos annotated
with objects with 10 Pascal VOC classes. It does not have pixel-wise annotations,
but there are annotated frames.

2.3.1.2 RGB-Depth Datasets

In the past years, cameras with multiple sensors that capture both RGB and depth are
becoming more popular due to their decrease in price and increase of applications. Below
are shortly described a few RGB-Depth datasets:

• New York University (NYU) Depth v2 (Silberman et al., 2012): Collection of 1449
indoor images captured with a Microsoft Kinect. It contains annotations per pixel
of 40 indoor object classes.

• RGB-D Object Dataset (Lai et al., 2011): Dataset of video sequences of 300 house-
hold objects arranged using 50 WordNet categories. This dataset was also recorded
with a Microsoft Kinect having 640x480 RGB-D at 30Hz.
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• SUN3D (Xiao et al., 2013): Dataset of indoor objects with more than 400 sequences
captured over 250 spaces. It contains a lot of diversity because it was captured
multiples times at di↵erent moments of the day.

• SUNRGBD (Song et al., 2015) – Dataset captured with multiple RGB-D sensors, con-
taining more than 10 000 images. It merges data from multiple other datasets such
as NYU depth v2 (Silberman et al., 2012), Berkeley 3-D Object (B3DO) (Janoch et al.,
2011) and SUN3D (Xiao et al., 2013). It is highly annotated with polygons, bound-
ing boxes, and layout info and categories, being excellent for scene understanding
tasks.

2.3.1.3 Video Datasets

Three-dimensional databases are more unusual. They are either Point-clouds or videos,
which are costly to store and di�cult to segment and annotate.

• A Benchmark for 3D Mesh Segmentation (Chen et al., 2009): Dataset that was used
for algorithms benchmark and is composed of 380 meshes of 19 categories. All
meshes were manually segmented into functional parts.

• Large-Scale Point Cloud Classification Benchmark (Hackel et al., 2016): Manually
annotated 30 3D point clouds of multiple natural and urban environments.

• Objectnet3D (Xiang et al., 2016) : Database for 3D object recognition with 100
categories, 90 127 images, 201 888 objects in these images and 44 147 3D shapes.
The objects in the 2D images are aligned with the 3D shapes, and the alignment
provides both 3D pose annotation and the closest 3D shape annotation for each 2D
object.

• ScanNet (Dai et al., 2017): Video dataset that contains 2.5M views in 1513 scenes
annotated with 3D camera poses, surface reconstructions, and semantic segmenta-
tion. The data was collected using a scalable RGB-D capture system that includes
automated surface reconstruction and crowdsourced semantic annotation.

• Sydney Urban Objects Dataset (Quadros et al., 2012): Velodyne Point Cloud Dataset,
which has a 360-degree annotations scan of all objects. The recordings were done
on an urban road with multiple objects.

The open datasets in nowadays communities are great and highly improve the creation
of new and better AI algorithms. Nevertheless, models are data-hungry, and regardless
of the amount of data from a dataset, when applying the model to the real world, the data
used is almost never enough. For this reason, there are multiple trends that try to amplify
the amount of that available. One popular trend is the Transfer Learning (TL), which
consists of training a model in one dataset, saving the model with all the information
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learned on the training stage, and then re-train it on the final dataset. This allows the
model to have some knowledge of other sources, reducing its tendency of overfitting the
dataset. Another popular, yet more complicated approach, is Data Augmentation, which
consists of tweaking the dataset to generate new trainable inputs to the model.

2.3.2 CNNModels

The main approach for spatial perception problems nowadays is through the use of
CNN. Most of the architectures are inspired by models proposed in 1980 by Fukushima
(Fukushima, 1980; Fukushima and Miyake, 1982) and then improved by LeCun (LeCun
et al., 1989; LeCun et al., 2008). Multiple improvements were undertaken, which can
be categorized as parameter optimization, regularization, and structural reformulation.
However, it is observed that the major innovations that boosted performance came from
restructuring the processing units and designing blocks. Most of the innovations in CNNs
architectures have been made in relation to depth and spatial exploitation. Depending
upon the type of architectural modification, CNN can be broadly categorized into seven
di↵erent classes, namely: spatial exploitation, depth, multi-path, width, feature map
exploitation, channel boosting, and attention-based CNNs (Khan et al., 2020).

CNNs tend to have many parameters and hyperparameters like weights, biases, num-
ber of neurons, number of layers, filter size, stride, learning rate, activation function, or
drop out rate (Shin et al., 2016). For this reason, researchers exploit spatial filters to
improve performance. Di↵erent kernel sizes were explored to evaluate their impact on
network learning. Multiple kernel sizes encapsulate di↵erent levels of granularity, but
frequently, small size filters extract fine-grained details, and large size extracts coarse-
grained information. In this way, by adjusting the filter size, CNNs can learn simultane-
ously coarse and fine-grained details.

2.3.2.1 LeNet

LeCun proposed LeNet in 1995 (LeCun et al., 1995). By the time, it was a complete
novelty, being considered the first CNN which displayed SoA performance on hand digit
recognition tasks. The NN classifies handwritten digits without losing accuracy of rota-
tions, small distortions, and variation of position and scale. It is a simple architecture of
five convolutional layers with polling between each layer. These five layers are followed
by another two layers of fully connected neurons.

In 1995, when this paper was proposed, there were no Graphics Processing Units
(GPUs) implementations for CNNs, and the training on Central Processing Units (CPUs)
was quite slow (Potluri et al., 2011). Themain drawback of the oldest implementation that
uses multilayer fully connected NN was that it considered each pixel as separate input
and applied a transformation on it, which was a huge computational burden (Gardner
and Dorling, 1998). In that regard, LeNet was a great evolution because it exploited
the underlying basis of image, that the neighboring pixels are correlated to each other
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and are distributed across the entire image. For this reason, convolution parameters are
an e↵ective way to extract similar features at multiple locations with fewer parameters.
This updated the conventional view of training where each pixel was considered as a
separate input feature and ignored the correlation among them. LeNet was the first CNN
architecture, which not only reduced the number of parameters and computation but was
able to automatically learn feature maps.

2.3.2.2 AlexNet

LeNet was limited to hand digit recognition tasks and didn’t scale well to other classes
of images. Noting these problems, AlexNet (Krizhevsky et al., 2017) was proposed
and demonstrated groundbreaking results for image classification and recognition tasks.
Krizhevesky et al. managed to enhance the learning capacity of a CNN by making it
deeper and applying multiple new parameter optimization strategies (Krizhevsky et al.,
2017). The network architectural design is represented in figure 2.4. By the year 2000,
the hardware limitations complicated the learning process in DNNs. AlexNet was trained
in two NVIDIA GTX 580 GPUs in parallel to minimize the di�culties with hardware.

The feature extraction stages were extended to seven layers making CNNs applicable
for other categories of images. Even though depth improves generalization of di↵erent
image resolutions, the main downside with this increase of depth is the overfitting. To
solve this challenge, in a later version, Krizhevesky et al. used the idea of Hinton (Dahl
et al., 2013; Srivastava et al., 2014), where the algorithm randomly skips some neural
units during training, which enforces the model to learn di↵erent paths, learning more
combinations of features and thus making it more robust. Additionally, Rectified Linear
Unit (ReLU) was exploited as an activation function that improved the convergence rate
by minimizing the problem of vanishing gradients.

In addition to this, ReLU was employed as a non-saturating activation function to
improve the convergence rate by alleviating the problem of to some extent (Hochreiter,
1998; Nair and Hinton, 2010). Local response normalization and overlapping subsam-
pling were also utilized to improve the generalization and to reduce overfitting. More
adjustments were the use of di↵erent size filters (11x11 and 5x5) at the initial layers,
compared to previously proposed networks. Due to the e�cient learning approach of
AlexNet, it was important in the CNNs SoA as it started a new era of research in the
models’ architectures.

2.3.2.3 ZefNet

The learning mechanism before ZefNet was based on hit-and-trial, without knowing the
exact reason behind the updates. The lack of knowledge limited the performance of
DNN on complex images. Zeiler and Fergus presented a multilayer Deconvolutional NN,
namedDeconvNet, whichwas alsomentioned as ZefNet (Zeiler and Fergus, 2014). ZefNet
was developed to visualize the network performance. The core idea was to visualize the
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Figure 2.4: Layout of AlexNet Model (Fukushima and Miyake, 1982).

neuron’s activation and try to understand its outputs. One of the previous studies of
Erhan et al. also had the same idea and boosted the performance of Deep Belief Networks
(DBNs) by analyzing the hidden layers’ features (Erhan et al., 2009). In the same line of
thought, Le et al. (2011) evaluated the performance of deep unsupervised Auto Encoder
(AE) by visualizing the image classes generated by the output neurons (Le, 2013).

ZefNet execution is similar to the forward pass CNN but swaps the order of convo-
lutional and pooling operation. This reverse mapping allows the visualization of image
patterns from the projected outputs of the convolutional layers. This enables neuron-
level interpretation and visualization of the hidden layers feature maps (Grun et al.,
2016; Simonyan et al., 2014).

This network allows the monitoring of the learning scheme during training and thus
facilitates in diagnosing a potential problem associated with the NN. The idea was ex-
perimentally validated on AlexNet using ZefNet, which demonstrated that only a few
neurons were active while other neurons were inactive in the first and second layers of
the network. Also, it showed that the features extracted by the second layer exhibited
aliasing artifacts. Based on these findings, major adjustments to the CNN topology were
performed, and some parameter optimization was done. Moreover, both filter size and
stride were reduced to retain more features in the two initial convolutional layers. These
tweaks in the CNN led to major performance improvements, which proved that feature
maps visualization could be used for the identification of design redefinitions and for
precise adjustment of parameters during training.

2.3.2.4 VGG

Simonyan and Zisserman proposed a simple yet e↵ective design principle for CNN archi-
tectures. The architecture was named as Visual Geometry Group (VGG), which is a CNN
with modular layers pattern (Simonyan and Zisserman, 2015). VGG is made of nineteen
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layers deep, which is a clear depth increased when compared to AlexNet and ZefNet,
allowing it to have a better representational capacity (Krizhevsky et al., 2017; Zeiler and
Fergus, 2014), as it can be observed in figure 2.5. ZefNet, proved that small-size filters
could improve the performance of CNNs. Leveraging these findings, VGG removed the
11x11 and 5x5 filters with a stack of 3x3 filters layer and experimentally demonstrated
that concurrent placement of 3x3 filters could induce the e↵ect of larger size filter. The
3x3 filters stacks provide the additional benefit of lower computational work because
it reduces the number of operations and parameters. This NN simplifies complexity by
utilizing 1x1 convolutional filters in between convolutional layers, which also adds linear
combinations of the sets of the features maps. Max polling was also utilized after the 1x1
filters, and padding was performed to retain the spatial resolution (Ranzato et al., 2007).
VGG did not win the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) con-
test but got popularity due to its simplicity, homogeneous architecture, high depth, and
good results in both image classification and localization problems. The major drawbacks
of VGG are the computational cost. It uses small 3x3 filters, but it has so many that it
reaches over 140 million parameters, being the biggest CNN this dissertation analyzed,
being detailed in section 2.3.2.21.

Figure 2.5: Layout of VGG Model (Zhang et al., 2016).

2.3.2.5 GoogLeNet

GoogLeNet was the winner of the ILSVRC competition in 2014 and is also known as
Inception-V1. It was built to achieve the highest accuracy with low computational cost
(Szegedy et al., 2015). A new concept of the inception block was introduced, which
presented multi-scale convolutional transformations using split, transform, and merge
concepts. The inception block is represented in figure 2.6. It encapsulates a set of 1x1, 3x3,
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5x5 filters that allows to capture di↵erent spatial information (at fine and coarse levels).
On GoogLeNet architecture, conventional convolutional layers are replaced by small in a
similar fashion to the substitutions of micro NN proposed in Network in Network (NIN)
architectures (Lin et al., 2014a). The parallelism concept of splitting, transform, and then
merge addressed problems related to the learning of diverse types of variations present in
the same class of di↵erent images. Furthermore, GoogLeNet focused on parameterization
tunning e�ciency. It regulates the computation costs by placing a downsample layer
with a 1x1 convolutional filter before any large size kernel filter. The sparse connections
overcome the problem of redundant information and also reduce the cost by reducing the
feature maps that were not relevant. Additionally, the connection’s density was reduced
by using a global average pooling at the last layer instead of the usual fully connected
layer. These modifications decreased by eight times the number of parameters, resulting
in a network of 5 million parameters.

Other regulatory factors applied were batch normalization and the use of Root Mean
Square Propagation as an optimizer (Dauphin et al., 2015). GoogLeNet also introduced
the concept of middle network learners, which speeds up the convergence rate. Neverthe-
less, the main disadvantage of GoogLeNet was its heterogeneous topology that requires
to be customized from module to module. Another limitation of GoogLeNet is the rep-
resentation of the downsample layer drastically reduces the feature space passed to the
next layer and thus sometimes leads to loss of useful features.
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(b) Inception module with dimensionality reduction
Figure 2.6: Layout of the inception block (Szegedy et al., 2015).

Subsequently, depth-based CNNs started being a trend. These networks are based
on the assumption that with the increase in depth, the network approximates the target
function with several nonlinear mappings and improved feature representations (Bengio
et al., 2013). Furthermore, studies have shown that deep networks can represent certain
classes of function more e�ciently than shallow architectures (Montúfar et al., 2014).

A single hidden layer is su�cient to approximate any function, but this comes at the
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cost of exponentially many neurons. Thus, often making it computationally unpractical
(Csáji, 2001). For that reason, Bengio and Delalleau advocated that deeper networks
have the same capabilities at a reduced cost (Delalleau and Bengio, 2011; Wang and
Raj, 2017). They empirically showed that DNN are computationally more e�cient for
complex tasks (Bengio, 2013; Nguyen et al., 2018). Both Inception and VGG showed the
best performance in ILSVRC 2014 competition, further strengthen the idea that the depth
is an intrinsically correlated dimension of the learning capacity in CNNs (Simonyan and
Zisserman, 2015; Szegedy et al., 2015; Szegedy et al., 2016).

2.3.2.6 Highway Networks

Following the line of intuition that the learning capacity can be improved by going deeper,
Srivastava et al. proposed the Highway Network (HN) (Srivastava et al., 2015a). The main
problem concerned with DNNs is the slow training and convergence speed (Huang et
al., 2016). The HNs exploited depth for learning features representation by adding a
novel inter-layer connectivity. HN with 50-layers converge faster than thin but deeper
architectures on ImageNet dataset (Morar et al., 2012; Russakovsky et al., 2015). The
researchers showed that the performance of a plain CNN decreases when ten or more
hidden layers units are used (Glorot and Bengio, 2010). On the other hand, HN manage
to converge faster than the plain ones, even with depths of 900 layers.

OnHNs, as proved in equation 2.2, the uninterrupted flow of information across layers
is enabled by imparting two gating units within a layer. The idea of a gating mechanism
comes from the Long Short-Term Memory (LSTM) used in Recurrent Neural Networks
(RNN) (Mikolov et al., 2010; Sundermeyer et al., 2012). The aggregation of information
by joining the lth layer and previous l � k layers information creates a regularizing e↵ect,
making gradient descend of deep networks flow. This allows the training of networks with
depths up to 900 layers with Stochastic Gradient Descent (SGD) algorithm. Cross-layer
connectivity for HN is defined in equation 2.2 and 2.3, where Tg refers to transformation
gate (expresses the amount of the produced output), and Cg is a carry gate. The working
hidden layers and the residual implementation are represented by Hl(xi ,WHl

). Finally,
1 � Tg (xi ,WCg

) behaves as a switch in a layer, which decides the path for the flow of
information.

y =Hl(xi ,WHl
)Tg (xi ,WTg ) + xiCg (xi ,WCg

) (2.2)

Cg (xi ,WCg
) = 1�Tg (xi ,WCg

) (2.3)

2.3.2.7 ResNet

He et al. proposed ResNet was a continuation of the deep models (He et al., 2016). It was
revolutionary by presenting the concept of residual learning for CNNs and devised an
e�cient methodology for the training of models. In a similar fashion of HN, it proposes a
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152-layers deep CNNwinner of the 2015 ILSVRC competition. The layouts of the residual
block are presented in figure 2.7. It is 20 times deeper than AlexNet and eight times
deeper than VGG and manages to have less computational complexity than previously
proposed (Krizhevsky et al., 2017; Simonyan and Zisserman, 2015). ResNet has better
accuracy on image classification tasks than 34 layers plain with any of the proposed
setups (50, 101, or 152 layers). Not only that, but ResNet obtained 28% better results on
the COCO benchmark dataset (Lin et al., 2014b). This result enforces the idea that for
image recognition and localization tasks, depth is key.

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x) x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work
Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

Figure 2.7: Layout of the residual block (He et al., 2016).

2.3.2.8 Inception-V3, Inception-V4 and Inception-ResNet

The models Inception-V3, Inception-V4 and Inception-ResNet, are upgraded versions of
Inception-V1 and Inception-V2 (Szegedy et al., 2017; Szegedy et al., 2015; Szegedy et al.,
2016).

Inception-V3 reduces the computational cost of CNNs without a↵ecting the general-
ization. To do this, the 5x5 and 7x7 size filters were replaced with small and asymmetric
filters of 1x7 and 1x5 and used 1x1 convolution as downsampling prior to the large fil-
ters (Szegedy et al., 2016). This transforms the convolution operation into something
similar to cross-channel correlation. Lin et al. exploited the potential of 1x1 filters
in NIN architecture (Lin et al., 2014a). The same concept was reutilized in Inception
(Szegedy et al., 2016). On the V3 version, 1x1 convolutional operation was used to map
the input data into 3 or 4 smaller spaces than the original input space and then maps
all correlations in these smaller 3D spaces via 3x3 and 5x5 convolutions. On the ResNet
version, the residual learning and inception block were used (He et al., 2016; Szegedy
et al., 2017). This way, filter concatenation is done by the residual connection. Moreover,
it was experimentally demonstrated in the V4 version that with residual connections,
it is possible to achieve the same generalization power as plain Inception-V3 but with
increased depth and width. However, it was observed that Inception-ResNet converges
faster than Inception-V4, which shows that training with residual connections accelerates
training.
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The idea of bypassing pathways used in this version of Inception is similar to HNs. It
can be expressed by the equation:

g(xi ) = f (xi ) + xi (2.4)

On equation 2.4, f (xi) is the transformed signal and xi is an original input. Orig-
inal input x is added to f (x) through figure 2.7 bypass pathway. The key idea is that
g(xi )� xi performs residual learning. ResNet introduced a new paradigm of connections
within layers to enable cross-layer connectivity, but these gates are data-independent
and parameter-free in comparison to HNs. In HNs, when a gated shortcut is closed, the
layers represent non-residual functions. On the contrary, in ResNet, residual information
always flows and identity shortcuts are never closed.

2.3.2.9 ResNext

As an improvement of ResNet, the Aggregated Residual Transform Network, also known
as ResNext, was proposed (Xie et al., 2017). The concept of the split, transform and
merge was exploited with the addition of cardinality (Szegedy et al., 2015). It can be
seen as an added dimension, which refers to the set of transformations size (Han et al.,
2018b; Sharma and Muttoo, 2019). The group of Inception NN not only improved the
learning capability of CNNs but also proved that CNN can be resource e↵ective. On
the negative side, due to the use of diverse spatial embedding is in the transformation
branch, each layer needs to be customized separately. ResNext is sometimes described
as an aggregation of di↵erent types of NN, because it has characteristic features from
Inception, VGG, and ResNet (He et al., 2016; Simonyan and Zisserman, 2015; Szegedy et
al., 2015). It uses the deep homogeneous topology of the VGG, the simplified GoogLeNet
architecture by fixing spatial resolution to 3x3 filters within the transformations block,
and it also uses residual learning. Building block for ResNext is depicted in figure 2.8. Xie
et al. demonstrated that by increasing cardinality, the performance could be improved.
ResNext complexity is regulated by applying 1x1 filter slow embedding is before the 3x3
convolutions. Also, training was optimized by using skip connections (Han et al., 2018b).

Vanishing gradient results in both test error increase and also in higher training error
(Dauphin et al., 2017; Dong et al., 2016; Hochreiter, 1998; Pascanu et al., 2012). To
address it, the concept of multipath and cross-layer connectivity were proposed (Huang
et al., 2017; Kuen et al., 2017; Larsson et al., 2019; Srivastava et al., 2015a). The multiple
paths or shortcut connections systematically connect layers by skipping some intermedi-
ate layers, allowing the information flow across the layers (Mao et al., 2016; Tong et al.,
2017). These paths also partially solve the vanishing gradient problem by making the
gradient accessible to initial layers.
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Abstract
We present a simple, highly modularized network archi-

tecture for image classification. Our network is constructed
by repeating a building block that aggregates a set of trans-
formations with the same topology. Our simple design re-
sults in a homogeneous, multi-branch architecture that has
only a few hyper-parameters to set. This strategy exposes a
new dimension, which we call “cardinality” (the size of the
set of transformations), as an essential factor in addition to
the dimensions of depth and width. On the ImageNet-1K
dataset, we empirically show that even under the restricted
condition of maintaining complexity, increasing cardinality
is able to improve classification accuracy. Moreover, in-
creasing cardinality is more effective than going deeper or
wider when we increase the capacity. Our models, named
ResNeXt, are the foundations of our entry to the ILSVRC
2016 classification task in which we secured 2nd place.
We further investigate ResNeXt on an ImageNet-5K set and
the COCO detection set, also showing better results than
its ResNet counterpart. The code and models are publicly
available online1.

1. Introduction
Research on visual recognition is undergoing a transi-

tion from “feature engineering” to “network engineering”
[25, 24, 44, 34, 36, 38, 14]. In contrast to traditional hand-
designed features (e.g., SIFT [29] and HOG [5]), features
learned by neural networks from large-scale data [33] re-
quire minimal human involvement during training, and can
be transferred to a variety of recognition tasks [7, 10, 28].
Nevertheless, human effort has been shifted to designing
better network architectures for learning representations.

Designing architectures becomes increasingly difficult
with the growing number of hyper-parameters (width2, fil-
ter sizes, strides, etc.), especially when there are many lay-
ers. The VGG-nets [36] exhibit a simple yet effective strat-
egy of constructing very deep networks: stacking build-

1https://github.com/facebookresearch/ResNeXt
2Width refers to the number of channels in a layer.
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Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, filter size, # out channels).

ing blocks of the same shape. This strategy is inherited
by ResNets [14] which stack modules of the same topol-
ogy. This simple rule reduces the free choices of hyper-
parameters, and depth is exposed as an essential dimension
in neural networks. Moreover, we argue that the simplicity
of this rule may reduce the risk of over-adapting the hyper-
parameters to a specific dataset. The robustness of VGG-
nets and ResNets has been proven by various visual recog-
nition tasks [7, 10, 9, 28, 31, 14] and by non-visual tasks
involving speech [42, 30] and language [4, 41, 20].

Unlike VGG-nets, the family of Inception models [38,
17, 39, 37] have demonstrated that carefully designed
topologies are able to achieve compelling accuracy with low
theoretical complexity. The Inception models have evolved
over time [38, 39], but an important common property is
a split-transform-merge strategy. In an Inception module,
the input is split into a few lower-dimensional embeddings
(by 1⇥1 convolutions), transformed by a set of specialized
filters (3⇥3, 5⇥5, etc.), and merged by concatenation. It
can be shown that the solution space of this architecture is a
strict subspace of the solution space of a single large layer
(e.g., 5⇥5) operating on a high-dimensional embedding.
The split-transform-merge behavior of Inception modules
is expected to approach the representational power of large
and dense layers, but at a considerably lower computational
complexity.

Despite good accuracy, the realization of Inception mod-
els has been accompanied with a series of complicating fac-
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Figure 2.8: Layout of the ResNext residual block (Xie et al., 2017).

2.3.2.10 DenseNet

After HNs and ResNet, DenseNet was proposed, in a tentative to solve the vanishing
gradient problem (He et al., 2016; Srivastava et al., 2015a). ResNet show SoA results, but
it preserved all neurons, having some of them contributing with almost no information.
DenseNet uses a new approach of cross-layer connectivity to handle this issue. It has each
layer interconnected in, similar to a feed-forward NN, meaning that the feature maps of
all previous layers are connected to subsequent layers. These are l2+l

2 direct connections,
compared to the l connections between a layer and its preceding layer in the previously
presented models.

It reflects the notion of cross-layer depth-wise convolutions. These types of connec-
tions provide the DNN the ability to explicitly di↵erentiate between information that is
added to the network and information that is preserved. DenseNet becomes parametri-
cally expensive when the number of feature maps is increased. The direct permeability
of each layer to the gradients through the loss improves the flow throughout the DNN.
This acts as a regularizing e↵ect, which minimizes overfitting.

During the time were HN, Inceptions, and DenseNets were proposed, the focus was
mainly on exploiting the depth and minimizing depth issues with strategies such as
the multi-pass regulatory connections in the network regularization (He et al., 2016;
Srivastava et al., 2015a). Kawaguchi et al. approached the problem from a di↵erent
perspective, studying the width of NN (Kawaguchi et al., 2019). Multilayer neurons
have the capability of handling complex functions by utilizing parallel processing units
within a layer. This puts forward for consideration that width is an essential parameter
in defining principles of learning along with depth. Moreover, researchers (Hanin and
Sellke, 2017) have shown that DNN that use ReLU have to be wide enough in order to
hold universal approximation property with the increase in depth. Furthermore, some
classes of functions from a small dataset cannot be well approximated if the maximum
width of the NN is smaller than the input dimension (Lu et al., 2017; Nguyen et al.,
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2018). Nevertheless, increasing depth enables a variety of feature representations, which
may disguise false learning. To address this problem, a group of research focuses their
attention on wider but shallower models.

2.3.2.11 WideResNet

The deep residual networks have the drawback of the feature reuse where feature trans-
formations and blocks contribute with an insignificant amount to learning (Srivastava
et al., 2015b). WideResNet proposes a solution to this issue (Zagoruyko and Komodakis,
2016). The learning of deep residual networks is due to the residual units, whereas depth
has a variety e↵ect. WideResNet exploited residual blocks by making ResNet wide rather
than deep (He et al., 2016). A new factor k is added, to regulate the width of the network.
The results show that utilizing a wider NN, the performance is improved over the same
deeper residual NN.

The core idea of wider residual network is based on the observation that most of ar-
chitectures before residual networks, including the most successful Inception and VGG,
were wider in comparison to ResNet. DNNs that use residual blocks have a better rep-
resentational capacity, but at the cost of intensive training, inactivation of many feature
maps and su↵ering from vanishing gradients and saturation issues. This problems were
partially minimized by the use of dropout in residual blocks (He et al., 2016). In a analog
way, Huang et al. utilized the concept of stochastic depth by using dropouts to solve van-
ishing gradients and slow training (Huang et al., 2016). A test based study demonstrated
that WideResNet has twice the number of parameters when compared to ResNet, but can
be trained faster than deeper networks (Zagoruyko and Komodakis, 2016).

2.3.2.12 Pyramidal Net

In the previously presented CNNs architectures such as AlexNet, VGG and Inception,
deep stacking of multiple convolutional layers increases the depth of feature maps on sub-
sequent layers. However, the spatial dimension shrinks because each convolutional layer
is followed by a downsampling layer (He et al., 2016; Krizhevsky et al., 2017; Simonyan
and Zisserman, 2015). As a consequence, Han et al. proposed that in DNNs, feature
representation is compensated by a decrease in feature map size (Han et al., 2017). As
a result, ResNet has demonstrated remarkable results for image classification. However,
the deletion of a residual block, where feature map depth increases while spatial dimen-
sion decreases, deteriorates performance. As a result, the proposed stochastic ResNet
improves performance by utilizing less information loss from the removal of the residual
unit (Huang et al., 2016). Using this concept, Han et al. proposed Pyramidal Net (Han
et al., 2017).

The main di↵erence from ResNet is that Pyramidal Net gradually increases the width
per residual unit, whereas ResNet is the complete opposite. By doing this, Pyramidal
Net obtain features from all possible locations instead of maintaining the same spatial
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dimension within each residual block until down-sampling. The gradual increase in the
depth of features map in a top-down approach gives this model the ’Pyramidal’ name.
Depth of features maps is regulated by factor l, and is computed using the equation:

Dl =

8>><>>:
16 , l = 1

Dl�1 + �
n ,2  l 6 n+1

(2.5)

In equation 2.5, Dl denotes the dimension of lth residual unit, n represents the total
number of the residual units, � is a step factor and �

n regulates the increase in depth. The
depth regulating factor manages the trade-o↵ for the increase of feature maps. Also, the
residual connections were inserted in between the layers by using zero-padded identity
mapping.

Zero-padded identity mapping needs fewer parameters as compared to the projection-
based shortcut connection, so it produces a better generalization (Wang et al., 2019).
Pyramidal Net has two di↵erent approaches for the widening of the network, includ-
ing addition and multiplication-based widening. The first approach increases linearly,
whereas the multiplicative one increases geometrically (Io↵e and Szegedy, 2015; Xu et al.,
2015). Withal, the major problem of Pyramidal Net is that by increasing width, space,
and processing time scale exponentially.

2.3.2.13 Xception

Xception is considered an extreme Inception architecture, which exploits the idea of
depthwise separable 3x3 convolutions introduced by AlexNet (Chollet, 2017; Krizhevsky
et al., 2017). It modifies the original inception block by making it wider and removing
the di↵erent spatial dimensions, utilizing 3x3 filters followed by 1x1 that regulate com-
putational complexity. The Xception block is represented in figure 2.9. Xception makes
the network computationally e�cient by decoupling spatial and feature maps correla-
tion. The convolved output is mapped to embeddings by 1x1 convolutions, which are
then spatially transformed kth times. The cardinality width represented by k determines
the number of transformations. It softens the computation of Inception by separately
convolving each feature map across spatial axes, which is followed by 1x1 convolutions,
which performs cross-channel correlation.

In Xception, the 1x1 convolution was used to regulate feature map depth. Compared
to the previously presented models, where either the convolutional operation uses only
one transformation segment or in the inception block where three transformation seg-
ments are used, the Xception number of transformation segment is equal to the number of
feature maps. Nevertheless, this does not reduce the number of parameters but augments
the learning performance per parameter, which improves performance.
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Consider a simplified version of an Inception module that
only uses one size of convolution (e.g. 3x3) and does not
include an average pooling tower (figure 2). This Incep-
tion module can be reformulated as a large 1x1 convolution
followed by spatial convolutions that would operate on non-
overlapping segments of the output channels (figure 3). This
observation naturally raises the question: what is the ef-
fect of the number of segments in the partition (and their
size)? Would it be reasonable to make a much stronger
hypothesis than the Inception hypothesis, and assume that
cross-channel correlations and spatial correlations can be
mapped completely separately?

Figure 1. A canonical Inception module (Inception V3).

Figure 2. A simplified Inception module.

1.2. The continuum between convolutions and sep-
arable convolutions

An “extreme” version of an Inception module, based on
this stronger hypothesis, would first use a 1x1 convolution to
map cross-channel correlations, and would then separately
map the spatial correlations of every output channel. This
is shown in figure 4. We remark that this extreme form of
an Inception module is almost identical to a depthwise sepa-
rable convolution, an operation that has been used in neural

lations and height-wise correlations. This is implemented by some of the
modules found in Inception V3, which alternate 7x1 and 1x7 convolutions.
The use of such spatially separable convolutions has a long history in im-
age processing and has been used in some convolutional neural network
implementations since at least 2012 (possibly earlier).

Figure 3. A strictly equivalent reformulation of the simplified In-
ception module.

Figure 4. An “extreme” version of our Inception module, with one
spatial convolution per output channel of the 1x1 convolution.

network design as early as 2014 [15] and has become more
popular since its inclusion in the TensorFlow framework [1]
in 2016.

A depthwise separable convolution, commonly called
“separable convolution” in deep learning frameworks such as
TensorFlow and Keras, consists in a depthwise convolution,
i.e. a spatial convolution performed independently over each
channel of an input, followed by a pointwise convolution,
i.e. a 1x1 convolution, projecting the channels output by the
depthwise convolution onto a new channel space. This is
not to be confused with a spatially separable convolution,
which is also commonly called “separable convolution” in
the image processing community.

Two minor differences between and “extreme” version of
an Inception module and a depthwise separable convolution
would be:

• The order of the operations: depthwise separable con-
volutions as usually implemented (e.g. in TensorFlow)
perform first channel-wise spatial convolution and then
perform 1x1 convolution, whereas Inception performs
the 1x1 convolution first.

• The presence or absence of a non-linearity after the
first operation. In Inception, both operations are fol-
lowed by a ReLU non-linearity, however depthwise

Figure 2.9: Layout of the Xception residual block (Chollet, 2017).

2.3.2.14 Squeeze and Excitation Network

Hu et al. proposed Squeeze and Excitation (SE) Network (Hu et al., 2018a), which re-
ported a new record on the ImageNet dataset. It presents a new block for the selection
of feature maps used on object discrimination. This new block, named SE block, gives
weights to the most relevant feature maps and suppresses the unusable ones. The pro-
posed block is designed generically, and therefore can be added in any CNN architecture
before the convolution layer. It consists of two operations:

1. Squeeze.

2. Excitation.

Convolution kernels capture information locally, but they ignore the contextual re-
lation of features outside of this receptive field. To obtain global information of feature
maps, the squeeze block generates feature map-wise statistics by suppressing spatial in-
formation of the convolved input. Thus, the global average pooling has the potential
to learn the extent of the target object e↵ectively. For this reason, it is employed by the
squeeze operation to generate feature map wise statistics using (Lin et al., 2014a; Zhou
et al., 2016):

Dm =
1

m ⇤n
mX

i=1

nX

j=1

xc(i, j) (2.6)

On equation 2.6, Dm is a feature map descriptor and m ⇤ n is the spatial dimension
of input. The output Dm is passed to the excitation operation, which models interdepen-
dencies by exploiting the gating mechanism. This excitation operation assigns weights to
feature maps using two-layer feed-forward NN, which is mathematically expressed:

VM = �(w2�(w1Dm)) (2.7)
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On equation 2.7, VM denotes the weight of each feature map, where � and � refer to
the ReLU and sigmoid functions. In excitation operation, w1 and w2 are used as a limit
factor to the model complexity, aiding generalization (LeCun et al., 2012; Xu et al., 2015).
After the squeeze operation, ReLU activation function is utilized to add non-linearity
in feature maps. The gating mechanism is then exploited using the sigmoid activation
function, which models interdependencies among feature maps and assigns a weight
based on feature map relevance (Zheng et al., 2017).

2.3.2.15 Competitive Squeeze and Excitation Networks

The Competitive Inner-Imaging Squeeze and Excitation (CMPE-SE) Network was pro-
posed by Hu et al. in 2018 (Hu et al., 2018b). It uses the idea of SE block to improve
the learning of deep residual networks (Hu et al., 2018a). The SE Network recalibrate
feature maps upon their contribution to class discrimination. However, the main pitfall
of SE NN is that in residual networks, it only considers the residual information for the
weight of each channel (Hu et al., 2018a). Therefore it does not use the complete abili-
ties of SE block and makes the residual information redundant. Researchers addressed
this problem by generating feature map-wise statistics from both residual and identity
mapping-based features. By doing this, the global representation of feature maps is gen-
erated using a global average pooling operation. In contrast, the relevance of feature
maps is estimated by making competition between residual and identity mapping-based
descriptors. This mechanism is named inner imaging (Hu et al., 2018b). The CMPE-SE
block not only models the correlation between residual feature maps but also maps their
correlation with identity feature maps and makes a competition between residual and
identity feature maps. The CMPE-SE block can be expressed by:

y = Fse(ur,xid )Fres(xid ,wr ) + xid (2.8)

On equation 2.8, Fse represents the squeeze operation applied on residual feature map
ur , xid is the identity mapping of input and Fres expresses the SE block on residual feature
maps. The output of the squeeze operation is multiplied with the SE block output Fres.
The backpropagation algorithm optimizes the competition between identity and residual
feature maps and the correlation between all feature maps in the residual block.

2.3.2.16 Channel Boosted CNN using Transfer Learning

The Channel Boosted Convolutional Neural Network (CB-CNN) was proposed by Khan
et al. and is build on the idea of boosting the input channels for improving the repre-
sentational capacity of the network (Khan et al., 2018). In figure 2.10 is represented
the block diagram of CB-CNN. The Channel Boosting is performed by generating aux-
iliary channels with the aid of a deep generative model, exploiting it through the deep
discriminative models. Furthermore, it utilizes the concept of TL at the generation and
discrimination stages (Hamel and Eck, 2010; Vincent et al., 2008).
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As it was demonstrated in section A.4, data representation plays a vital role in the
generalization of a classifier, as di↵erent representations may present di↵erent modalities
of information (Bengio et al., 2013). The generative learners characterize data creation
distribution during the training phase. In CB-CNN, autoencoders are used as genera-
tive learners to handle explanatory factors of variation behind the data. Inductive TL
is applied in a novel way to build a boosted input representation by augmenting the
learned distribution of the input data with the original channel space. The CB-CNN
encapsulates the channel-boosting phase into a generic block, which is inserted at the
beginning of a DNN. During training, a pre-trained CNN is used to reduce computational
cost. The main contribution of this architecture is that DNN learners are used instead of
generative learning models, enhancing the representational capacity of deep CNN based
discriminator.

Khan et al. only demonstrated the potential of the channel boosting by utilizing the
boosting block at the beginning of the NN. However, they suggest that it can be extended
to any layer in the architecture.

 

Figure 2.10: Layout of the CB-CNN residual block (Khan et al., 2018).

The di↵erent levels of abstraction play an important role in defining discrimination.
Additionally, to learn di↵erent levels of abstraction, focusing on features relevant to the
context also plays a significant role in image localization and recognition. In the human
visual system, this phenomenon is referred to as attention. Humans view the world
in a quick sequence of glimpses, always paying attention to a part of it. The attention
mechanism focuses on a selective region and deduces information more accurately for
that particular zone than the rest. A similar approach is done in RNNwith LSTM (Mikolov
et al., 2010; Sundermeyer et al., 2012). This NN exploits attention to generate sequences
of data, and the new samples are weighted based on the previous iterations. This concept
of attention was incorporated into CNNs by various researchers to improve representation
and reduce computation.
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2.3.2.17 Residual Attention Neural Network

The Residual Attention Network (RAN) was proposed to improve feature representation
(Wang et al., 2017). It utilizes attention to learn object aware features. Its genesis is a feed-
forward CNN, built with a stack of residual blocks with an attention module. The novel
attention module is a branch using a bottom-up, top-down learning strategy. Combining
these two di↵erent learning approaches in the attentionmodule allowed fast feed-forward
processing and top-down attention feedback in a single pass.

Bottom-up feed-forward produces low-resolution feature maps with semantic infor-
mation. Top-down passage produces features in order to make an inference at a pixel level.
Previously, the top-down, bottom-up learning strategy was used by Restricted Boltzmann
Machines (Salakhutdinov and Larochelle, 2010). The top-down attention mechanism
as a regularizing factor in Deep Boltzmann Machine (DBM) during the reconstruction
phase in training. Top-down learning strategy globally optimizes network in such a way
that gradually output the maps to input during the learning process (Hinton et al., 2006;
Salakhutdinov and Larochelle, 2010). The attention module can be despited by:

Ai,FM (xc) = Si,FM (xc) ⇤Ti,FM (xc) (2.9)

On equation 2.9, the attention module generates object aware soft mask Si,FM (xc) per
layer (Goh et al., 2013). Soft mask, Si,FM (xc) focus attention towards object using equation
2.9 by recalibrating trunk branch Ti,FM (xc) output and thus, behaves like a control gate.

Researchers also presented Transformation network (Jaderberg et al., 2015) which
also exploits the idea of attention by incorporating it with convolution block. However,
the attention module in the Transformation network is fixed and cannot adapt to chang-
ing circumstances. Furthermore, RAN was made e�cient towards the recognition of
cluttered, complex, and noisy images by stacking multiple attention modules. The hier-
archical organization of RAN enables the ability to adaptively weight each feature map
based on their relevance (Wang et al., 2017).

2.3.2.18 Convolutional Block Attention Module

The performance of attention mechanism and feature map exploitation is validated
through RAN and SE Network respectively (Hu et al., 2018a; Wang et al., 2017). Uti-
lizing the core concepts of both, Woo et al. proposed Convolutional Block Attention
Module (CBAM) (Woo et al., 2018). It is similar to SE Network design, but SE Network
only considers the contribution of feature maps for classification, ignoring the locality of
the object in images. The spatial location of the object is important for accurate object de-
tection. For this reason, CBAM infer attention maps sequentially by first applying feature
map attention and then spatial attention to find the refined feature maps. Usually, 1x1
convolutions precede pooling operations for spatial attention, Woo et al. demonstrated
that the pooling of features along the spatial axis generates an e�cient feature descriptor.
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It concatenates average pooling operation with max pooling, which generates a strong
spatial attention map. Similarly, feature map statistics were modeled using a combination
of max pooling and global average pooling operation. Max polling provides hints about
distinctive object features, whereas the use of global average pooling returns suboptimal
inference of feature map attention. Also, the formulation of 3D attention maps via the
serial learning process reduces parameters as well as computational cost. Also, CBAM
can be integrated with any CNN architecture.

2.3.2.19 Concurrent Spatial and Channel Excitation Mechanism

In Concurrent Spatial and Channel Excitation Mechanism, the e↵ect of spatial informa-
tion in combination with feature map information is exploited for segmentation tasks
(Hu et al., 2018a; Roy et al., 2018). It introduces three di↵erent modules:

1. Squeezing spatially and exciting feature map wise (cSE).

2. Squeezing feature map wise and exciting spatially (sSE).

3. Concurrent spatial and channel squeeze and excitation (scSE).

An autoencoder-based convolutional DNN is used for segmentation, and the proposed
modules were inserted after the encoder and decoder layer. In the cSE module, the tech-
nique presented by SE block is exploited. In this module, a scaling factor is derived based
on the combination of feature maps in object detection. In the sSE module, spatial locality
gives more importance than feature map information. For this purpose, di↵erent combi-
nations of feature maps are selected and exploited spatially to be used in segmentation.
Finally, in the scSE module, attention to each channel is assigned by deriving scaling
factors both from spatial and channel information and highlighting the object-specific
feature maps (Roy et al., 2018).

2.3.2.20 MobileNetV2

MobileNetV2 builds upon the ideas from MobileNetV1 (Howard et al., 2017; Sandler
et al., 2018a), using depthwise separable convolution as e�cient building blocks. How-
ever, the second version introduces two new features to the architecture. The first is the
linear bottlenecks between the layers, and the second is shortcut connections between the
bottlenecks. This architecture is specifically tailored for mobile and resource constrained
environments.

Its main contribution is the inverted residual with linear bottleneck layer module. It
takes a low-dimensional compressed representation as an input, which is first expanded
to high dimension and filtered with a lightweight depthwise convolution. This makes
features to be subsequently projected back to a low-dimensional representation with a
linear convolution. Instead of using a full convolutional operator, it applies a factorized
version that splits convolution into two separate layers. One layer is called a depthwise
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convolution, and it performs lightweight filtering by applying a single convolutional
kernel per channel. The other layer is a 1⇥1 convolution, which is a pointwise convolution.
This is responsible for building new features through computing linear combinations of
the input channels.

2.3.2.21 Models Comparison

Looking backward at the CNNs history, the turning point started with the success of
AlexNet (Krizhevsky et al., 2017) for ImageNet classification in 2012. Afterwards, sig-
nificant e↵orts have been made in developing CNN models that would increase perfor-
mance without compromising goal convergence, including VGG (Simonyan and Zisser-
man, 2015), GoogLeNet (Szegedy et al., 2015), and ResNet (He et al., 2016).

AlexNet CNN represented a milestone for computer vision and ML because it focuses
on generalization rather than memorization by using methods, such as dropout, which
mitigates overfitting. Not only that, but there were a lot of e↵ort in GPU implementations
for the convolution operation, which reduced the training duration.

After AlexNet, the VGG (Simonyan and Zisserman, 2015) was proposed and won the
localization and classification tasks of the ILSVRC 2014 competition. The VGG has been
widely used because of its simplicity. The core idea was to pass the complexity to the
network and figure out how to solve the presented task.

Google quickly managed to catch up and launched GoogLeNet (Szegedy et al., 2015),
which has two main advantages:

1. The utilization of filter kernels of di↵erent sizes at the same layer preserves more
spatial information.

2. The reduction of the network’s number of parameters makes it less sensitive to
overfitting and allows it to be deeper. Moreover, the 22-layer GoogLeNet has more
than 50 convolutional layers distributed inside the inception modules, but it has 12
times fewer parameters than AlexNet.

ResNet was then presented as an evolution, being one of the most successful CNNs
with Conference on Computer Vision and Pattern Recognition (CVPR) 2016 Best Paper
Award (He et al., 2016). The idea behind ResNet is that each layer should not learn the
whole feature space transformation but only a residual correction to the previous layer,
which allows training much deeper networks e�ciently. Its extremely deep representa-
tions have excellent generalization performance and led it to win first place in ImageNet
detection, ImageNet localization, COCO detection, and COCO segmentation at the 2015
ILSVRC and COCO competitions.

In Figure 2.11 is presented one-crop accuracies of the most relevant entries submitted
to the ImageNet challenge, from the AlexNet (Krizhevsky et al., 2017), on the far left, to
one of the best performing, the Inception-V4 (Szegedy et al., 2017). The models based
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on ResNet and Inception architectures obtained the other architectures by at least 7%,
presenting around 25% more accuracy than AlexNet.

In figure 2.12 it is possible to compare the trade-o↵s between Top-1 accuracy, the
number of Giga Operations (billion of Operations Per Second), and the number of param-
eters. The blobs’ size is proportional to the number of network parameters. This plot
gives an informative view of the accuracy values, representing the computational cost for
performance. It is possible to conclude that VGG are the most expensive architecture in
terms of computational requirements and number of parameters. The rest of the architec-
tures form a steep straight line that seems to start to flatten with the latest incarnations
of Inception and ResNet. This graph also suggests that models are reaching an inflection
point on this ImageNet dataset, where the costs start to outweigh gains in accuracy.

Figure 2.11: Result comparison of top-1 validation accuracies for top scoring single-model
architectures (Canziani et al., 2016).

As represented in figure 2.12, VGG is the most expensive network when performance
per accuracy is concerned. Because of its straightforward implementation and easy
demonstration of results, this dissertation will utilize VGG for sample demonstration
and then move to complex architectures combinations when hardware constraints are
present. However, for practical applications, VGG should not be considered as other
architectures achieve the same performance at a lower computational cost.
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Figure 2.12: Result trade-o↵ analyzes between top-1 validation accuracies, number oper-
ations and network size (parameters) (Canziani et al., 2016).

Some comparison summary between these models, based on (Han et al., 2018a) and
some tests developed on Keras is presented on table 2.3.

2.3.2.22 Disadvantages of Deep Neural Networks

After all the hype is tested and some scientific analysis is produced with real scenarios on
published algorithms, some downsides are revealed. In some cases, this analysis comes
from outside the field of computer science (Kamilaris and Prenafeta-Boldú, 2018).

The lack of theory surrounding some methods (Marcus, 2018) is usually the primary
concern. Deep Learning (DL) methods are often looked at as a black box, with most
confirmations done empirically, rather than theoretically (Knight, 2017).

The most generalized models are still a long way from integrating abstract knowledge,
such as details about what objects are, what they are used for, and they integrate with
others. On the other hand, commercial AI systems, such as Watson, apply multiple
algorithms combined with an ensemble of techniques to solve problems (Marcus, 2015).

In some use cases, DL classify unrecognizable images as belonging to a group of im-
ages (Nguyen et al., 2015) and misclassifies perturbations of correctly classified images.
Goertzel proposed that these behaviors arise from internal representations and that these
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Table 2.3: Comparison between various CNN architectures.

Model Name Year Major novalty Parameters Top 5 Error Rate Depth Reference

LeNet 1995 First Popular CNN architecture. 0.060 M MNIST: 0.95 7 LeCun et al., 1995

AlexNet 2012

Deeper and wider than the LeNet;
Relu;
Dropout;
Overlap Pooling;
GPUs NVIDIA GTX 580.

60 M ImageNet: 16.4 8 Krizhevsky et al.,
2017

ZefNet 2014 Intermediate layers outputs
visualization. 60 M ImageNet: 11.7 8 Zeiler and Fergus,

2014

VGG 2014
Homogenous topology;
Small kernel size;
High number of parameters.

138 M ImageNet: 7.3 19 Simonyan and Zis-
serman, 2015

GoogLeNet 2015 Split Transform Merge;
Introduces block concept. 4 M ImageNet: 6.7 22 Szegedy et al.,

2015

Inception-V3 2015

Handles the problem of a
representational bottleneck;
Replace large size filters with
small filters;
Replaces the bigger filter with
smaller filters.

23.6 M ImageNet: 3.5 48 Szegedy et al.,
2016

Highway
Networks 2015 Multi-Path Concept. 2.3 M CIFAR-10: 7.76 19 Srivastava et al.,

2015a

Inception-V4 2016

Split;
Transform;
Merge;
Asymmetric filters.

- - ImageNet: 4.01 - - Szegedy et al.,
2016

Inception-ResNet 2016 Residual Links. - - ImageNet: 3.52 - - Szegedy et al.,
2016

ResNet 2016 Residual Learning;
Skip connections. 6.8 M ImageNet: 6.7 152 He et al., 2016

DelugeNet 2016 Cross layer information inflow. 20.2 M CIFAR-10: 3.76 146 Kuen et al., 2017

FractalNet 2016
Di↵erent path lengths interacting
with each other without any residual
connection.

38.6 M CIFAR-10: 7.27 20 Larsson et al.,
2019

WideResNet 2016 Width is increased and depth is
decreased. 36.5 M CIFAR-10: 3.89 28 Zagoruyko and

Komodakis, 2016

Xception 2017 Depth wise Convolution followed by
pointwise convolution. 22.8 M ImageNet: 5.5 36 Chollet, 2017

Residual Attention
Neural Network 2017 Introduces Attention Mechanism. 8.6 M ImageNet: 4.8 452 Wang et al., 2017

ResNexT 2017
Cardinality;
Homogeneous topology;
Grouped convolution.

68.1 M ImageNet: 4.4 101 Xie et al., 2017

Squeeze &
Excitation Networks 2017 Models Interdependencies between

feature maps. 27.5 M ImageNet: 2.3 152 Hu et al., 2018a

DenseNet 2017 Cross-layer information flow. 25.6 M CIFAR-10+: 3.46 190 Huang et al., 2017

PolyNet 2017

Experimented structural diversity;
Introduces Poly Inception Module;
Generalizes residual unit using
Polynomial compositions.

92 M ImageNet: 4.25 - - Zhang et al., 2017

PyramidalNet 2017 Increases width gradually per unit. 116.4 M ImageNet: 4.7 200 Han et al., 2017
Convolutional Block
Attention Module 2018 Exploit both spatial and feature maps. 48.96 M ImageNet: 5.59 101 Woo et al., 2018

Concurrent Squeeze
& Channel Excitation 2018

Squeezing spatially followed by
exciting channel-wise;
Squeezing channel-wise followed
by exciting spatially;
Performing spatial and channel
squeeze & excitation in parallel;

- - MALC: 0.12 - - Roy et al., 2018

Competitive Squeeze
& Excitation Network 2018 Residual/identity mappings both are

responsible for rescaling the channel. 36.92 M CIFAR-10: 3.58 28 Hu et al., 2018b

MobileNetV2 2018 Tradeo↵ of performance vs accuracy 2.2 M Imagenet: 7.9 40 Sandler et al.,
2018a
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limit the integration into heterogeneous multi-component architectures (Goertzel, 2015).
These issues are addressed by architectures that have internal form states homologous
to image-grammar (Zhu and Mumford, 2006) decompositions of observed entities and
events (Goertzel, 2015). These works are still in the initial phase. However, some re-
searchers believe that from training data, it would be possible to restrict the system to
commonsense reasoning, similar to what operates on concepts in terms of grammatical
production rules, human language acquisition, and AI (Einser, 2013).

Finally, the last set of disadvantages is related to cybersecurity. As DL evolves from the
research into real applications, experiences show that Artificial Neural Networks (ANNs)
are vulnerable to hacks and deception(Gu and Rigazio, 2015; Huang et al., 2019).

By identifying patterns that these neural networks use at the core, attackers can inject
inputs in a way that the networks find a match that is not recognizable by humans. Such
a manipulation is termed an adversarial attack (Gu and Rigazio, 2015; Samangouei et
al., 2018). Researchers showed in (Gent, 2017) that printouts of doctored images then
photographed successfully tricked an image classification system.

The DNN can be further trained to detect attempts at deception, potentially leading
attackers and defenders into a similar state to what is found in the malware defense
industry.

2.3.3 Video Models

Motivated by the profound learning breakthroughs in the image domain (Canziani et al.,
2016), various CNNs models (Jia et al., 2014; Nelli and Nelli, 2018) are made available
for extracting image features. These features are transferred to the network’s last fully-
connected layers activations, which perform well on transfer learning tasks (Zhang et
al., 2014; Zhou et al., 2014). However, such image-based deep features are not directly
suitable for videos due to a lack of motion modeling. Also, when compared to image data
domains, there are only a few works on applying CNNs to video classification (Karpathy
et al., 2014).

The video models can be designed as the previous sections with an extra dimension
of complexity, the temporal dimension (time). The computer vision community has been
working on video analysis for decades and has tackled di↵erent problems such as action
recognition (Laptev and Lindeberg, 2003), abnormal event detection (Boiman and Irani,
2007), and activity understanding (Kitani et al., 2012). Considerable progress has been
made in these individual problems by employing di↵erent specific solutions. However,
there is still a growing need for a generic and transferable video descriptor that helps
solve video tasks homogeneously.

In order to achieve this, an e↵ective video descriptor should have four properties
(Tran et al., 2015):

1. Generability. To represent di↵erent types of videos well while being discriminative.
For example, Internet videos can be of sports, chats, animation, landscapes, pets,
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among others.

2. Compact. When working with millions of videos, a compact descriptor helps pro-
cess, storing, and retrieving tasks much more scalable.

3. E�ciency. It is required to be e�cient to compute thousands of videos every minute.

4. Simple. Instead of using complicated feature encoding methods and classifiers, a
good descriptor should work well even with a simple model (e.g., Support Vector
Machine (SVM)).

As illustrated in figure 2.13, there are three main approaches to video. The first one
is to handle each frame as one image and classify it at the frame level. The second option
is to consider a set of frames as input and treat them with standard 2D techniques. For
example, ten frames of an RGB video would represent 30 channels of input to the network.
Finally, as a third option, are presented the deep 3-dimensional convolutional networks
(3D ConvNets) (Tran et al., 2015). The d represents the kernel temporal depth, k is spatial
kernel size, L is the number of channels, whereas H and W are the height and width of
the frame, respectively.

2D convolution

output

3D convolution

output
output

2D convolution on multiple frames(a) (b) (c)

H

W

L

k

k
L H

W

L

k

k d < L

k

kH

W

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 ⇥ 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 ⇥ 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c⇥ l ⇥ h⇥ w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d⇥k⇥k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 ⇥ 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3⇥ 16⇥ 128⇥ 171. We also use jittering by using random
crops with a size of 3 ⇥ 16 ⇥ 112 ⇥ 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 ⇥ 2 ⇥ 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 ⇥ 2 ⇥ 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has

a. 2D convolution on a image.
2D convolution

output

3D convolution

output
output

2D convolution on multiple frames(a) (b) (c)

H

W

L

k

k
L H

W

L

k

k d < L

k

kH

W

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 ⇥ 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 ⇥ 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c⇥ l ⇥ h⇥ w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d⇥k⇥k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 ⇥ 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3⇥ 16⇥ 128⇥ 171. We also use jittering by using random
crops with a size of 3 ⇥ 16 ⇥ 112 ⇥ 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 ⇥ 2 ⇥ 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 ⇥ 2 ⇥ 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has
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Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 ⇥ 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 ⇥ 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c⇥ l ⇥ h⇥ w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d⇥k⇥k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 ⇥ 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3⇥ 16⇥ 128⇥ 171. We also use jittering by using random
crops with a size of 3 ⇥ 16 ⇥ 112 ⇥ 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 ⇥ 2 ⇥ 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 ⇥ 2 ⇥ 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has

c. 3D convolution on a video.

Figure 2.13: Comparison between 2D and 3D convolution operations (Tran et al., 2015).

a) 2D convolution on an image results in an image. b) 2D convolution on a video volume
(multiple frames as multiple channels) also results in an image. c) 3D convolution on a
video volume results in another volume, preserving temporal information of the input
signal.

A quick analysis might consider the 3D ConvNets as the best approach to most video
problems. However, the computational processing and graphical virtual memory alloca-
tion are complex, and most of the SoA GPUs will struggle (usually require over 16 GBs of
RAM) )with handling a network, such as the one proposed by the 3D ConvNets authors
(Tran et al., 2015). The proposed network (named C3D) comprises eight 3D convolutional
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Figure 2.14: Video frame features fusing over temporal dimension through the network.

Red, green and blue boxes indicate convolutional, normalization and pooling layers re-
spectively. (Karpathy et al., 2014).

layers, five max-pooling, and two fully connected layers, followed by a softmax output
layer. The 3D convolution kernels are 3⇥ 3⇥ 3 with stride 1 in both spatial and temporal
dimensions. The number of filters is denoted in each box. All pooling kernels are 2⇥2⇥2,
except for the first, which is 1⇥ 2⇥ 2. Lastly, each fully connected layer has 4096 output
units.

A lighter and more used approach is to compute each frame, use a DL model as a fea-
ture extractor, and then implement another model that handles the time dimension. Since
each video contains multiple frames in time, Karpathy et el. categorized the solutions to
extend the connectivity of the network in the time dimension to learn spatio-temporal
features into three categories (Karpathy et al., 2014). The three connectivity pattern
categories are represented in figure 2.14.

The categories visualized in figure 2.14 can be described as:

• Single Frame - The standard image processing architecture baseline serves as a
comparison. It is a stream of fully connected layers with n nodes. Pooling layers
P pool only spatially in non-overlapping 2⇥ 2 with the addition of normalization
layers. The final layer is connected to a softmax classifier with dense connections.

• Late Fusion - The Late Fusion architecture uses two separate single-frame networks
with shared parameters a distance of 15 frames and then merges the two streams in
the fully connected layers. Therefore, neither single frame tower alone can detect
any motion, but the first fully connected layer can obtain global motion characteris-
tics by comparing outputs of both towers.

• Early Fusion - It combines information across an entire time window immediately at
a pixel level. This is implemented by modifying the filters on the first convolutional
layer in the single-frame model by extending them to size 11 ⇥ 11 ⇥ 3 ⇥ T pixels,
where T is the temporal extent. The early and direct connectivity to pixel data
allows the network to detect local motion direction and speed precisely.
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• Slow Fusion - A balanced mix between early and late fusion that slowly fuses tem-
poral information throughout the network such that higher layers get access to
progressively more global information in both spatial and temporal dimensions.
This can be implemented by extending the connectivity of all convolutional layers
in time and carrying out temporal convolutions in addition to spatial convolutions
to compute activations (Baccouche et al., 2011; Ji et al., 2013).

2.3.3.1 Recurrent Neural Networks

Another way to interpret video is by utilizing frames features data in RNN. On this type of
network, connections between neurons form a directed graph along a temporal sequence.
This allows it to exhibit temporal dynamic behavior, and therefore use temporal video
information. As shown in equation 2.10, RNNs are suitable for capturing sequential
relationships (i.e temporal). A simple RNN has a recurrent hidden state that can be
obtained from:

ht = g(Wxt +Uht�1 + b) (2.10)

where xt is the m-dimensional input vector at time t, ht the n-dimensional hidden
state, g is the element-wise activation function, such as the logistic function, the hyper-
bolic tangent function or ReLU (Boulanger-Lewandowski et al., 2012; Caterini and Chang,
2018; Chung et al., 2014; Maas et al., 2011; Mnih et al., 2014),W , U and b are the weights
and a bias parameters. MatrixW is an n⇥m, U is an n⇥n matrix, and b is an n⇥1 matrix
(or vector). An illustration of a RNN unit is despicted on figure 2.15.
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Figure 2.15: Recurrent neural network unit representation.

Some studies have shown that it is di�cult to capture long-term dependencies using
such simple RNNs because the gradients tend to either vanish or saturate with long se-
quences (Bengio et al., 1994). Two particular models, the LSTM (Gers et al., 2003; Hochre-
iter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Chung et al., 2014) have
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been proposed to solve the vanishing or exploding gradient problems. Furthermore, they
have been successfully shown to performwell with long sequence applications (Boulanger-
Lewandowski et al., 2012; Chung et al., 2014; Maas et al., 2011).

Long Short-Term Memory A common LSTM unit is composed of a cell, an input gate,
an output gate, and a forget gate. The cell remembers values over arbitrary time intervals,
and the three gates regulate the flow of information in and out of the cell, as is presented
in figure 2.16.
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Figure 2.16: Long Short-Term Memory unit representation.

Observing figure 2.16, it is possible to retain that LSTM architectures use the compu-
tation of the simple RNN of equation 2.10 as an intermediate candidate for the internal
memory cell state,ect , and add it in a element-wise weighted-sum to the previous value of
the internal memory state ct�1, producing the current value of the memory cell state ct .
This is expressed by the following discrete dynamic equations:

ct = ft � ct�1 + it �ect (2.11)

ect = g(Wcxt +Ucht�1 + bc) (2.12)

ht = ot � g(ct) (2.13)

In equations 2.12 and 2.13, the activation nonlinear activation function g is typically
an hyperbolic tangent but more recently may be implemented as a ReLU. The weighted
sum is implemented on equation 2.11 via element-wise (Hadamard) multiplication de-
noted by � to gating signals. The gating signals it , ft and ot denote, respectively, the
input, forget, and output gating signals at t time. These gating signals are, in fact, an
analog of the basic equation 2.12, with their parameters, and replacing g by the logistic
function. The logistic function limits the gating signals to a normalized value between
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0 and 1. The specific mathematical form of the gating signals are thus expressed as the
vector equations:

it = �(Wixt +Uiht�1 + bi ) (2.14)

ft = �(Wf xt +Uf ht�1 + bf ) (2.15)

ht = ot � g(ct) (2.16)

ot = �(Woxt +Uoht�1 + bo) (2.17)

On equations 2.14, 2.15, 2.16 and 2.17 � is the logistic nonlinearity and the param-
eters for each gate consist of two matrices and a bias vector. Thus, the total number of
parameters for the 3 gates and the memory cell structure are, respectively, Wi , Ui , bi , Wf ,
Uf , bf , Wo, Uo, bo, Wc, Uc and bc. It is immediately noted that the number of param-
eters in the LSTM model is increased 4 times from the simple RNN model. Assuming
that the cell state is n-dimensional, and that the input signal is m-dimensional, the total
parameters in the LSTM cell is equal to 4(n2 +nm+n).

Gated Recurrent Unit The GRU reduces the gating signals when compared to the LSTM
RNN model. As illustrated in figure 2.17, this unit is composed of two gates, which are
known as the update gate zt and the reset gate rt .
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Figure 2.17: Gated Recurrent unit representation.

Mathematically, the GRU can be represented in the form:

ht = (1� zt)� ht�1 + zt �eht (2.18)

eht = g(Whxt +Uh(rt � ht�1) + bh) (2.19)
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The two gates of GRU can be presented as:

zt = �(Wzxt +Uzht�1 + bz) (2.20)

rt = �(Wrxt +Urht�1 + br ) (2.21)

It is possible to observe that the GRU equations are similar to LSTM equations, with
the di↵erence that have less external gating signal in the interpolation of equation 2.18.
This saves one gating signal and the associated parameters (Bengio et al., 1994). In
essence, the GRU has a 3-fold increase of parameters in comparison to the simple RNN.
The total number of parameters in the GRU is equals to 3(n2 +nm+n). It has been noted
that GRU is comparable to, or even outperforms, the LSTM in most cases (Bengio et al.,
1994). Moreover, there are other reduced gated RNNs, such as the Minimal Gated Unit
(MGU), where only one gate equation is used, and it is reported that MGU performance
is comparable to the GRU, and by inference, to the LSTM (Zhou et al., 2016),.

In sum, gated RNNs’ success is primarily due to the gating network signaling that
controls how the present input and previous memory are used to update the current
activation and produce the current state. These gates have their own sets of weights which
are adaptively updated in the learning phase. While these models empower successful
learning in RNNs, they introduce an increase in parameterization through their gated
networks. Consequently, there is an added computational expense when compared to the
simple RNN model. It is noted that the LSTM employs three distinct gate networks while
the GRU RNN reduces the gate networks to two.

In this chapter, base concepts that were explored in this work were examined, such
as the levels of autonomy across autonomous vehicles, the SoA in collision avoidance,
and AI. Additionally, some research directions explored by other authors were presented
that will later be used for comparison or integration. Out of the scope of this review
are detailed descriptions of some concepts and protocols in the areas of Robotics and
the Cloud. If required, please consult the recommended bibliography, such as MAVLink
protocol Willee, 2005, Robotic Operation System (ROS) Powering the world’s robots 2007,
Back-End La and Kim, 2010, Web Application La and Kim, 2010, docker Combe et al.,
2016, and kubernetes Acuña, 2016; Cloud Native Computing Foundation, 2019. Details
regarding ML algorithms are presented in appendix A.

The world of ML applied to video is just starting to emerge, and there are many un-
explored paths. The author wishes that with this dissertation, new ones will be unveiled.
The following chapters present a framework that accommodates di↵erent collision avoid-
ance algorithms, which were tested in novel datasets developed during this work.
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Framework for Fully Autonomous UAVs

To deploy the dynamic collision avoidance algorithm on a UAV, it was required to design
an architecture that could fully benefit from this algorithm. For this, the Framework
for Fully Autonomous UAVs (FFAU) was elaborated. The core elements are implemented
on top of ROS framework and make use of its abstractions and message passing systems
to implement all necessary features (Powering the world’s robots 2007). Moreover, ROS
provides several modules that can be adjusted or reused to fit new purposes. In this
section, we use terms intrinsic to ROS in order to explain each component represented in
Figure 3.1.
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Figure 3.1: Architecture of the proposed framework for safer UAVs, on the collision
avoidance task.

The operator can access via a desktop application or web application to the beXStream
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platform, which allows remote control and observation of the UAV in real-time. This
platform will be later detailed in this chapter.

3.1 Perception

Perception is the only component that triggers some procedure in all the remaining com-
ponents, either directly or indirectly. As such, it should be considered the core node of
the presented architecture. For the sake of simplicity, this component is represented as a
single node on the architecture’s diagram. However, in practice, the perception node is
usually broken down into several standalone nodes (usually one per each sensor). Then,
higher-level nodes gather the data from those nodes that are directly handling the sensors.

Nodes communicate with each other via messages published on the ROS network. A
message has a specific format depending on the subject. Usually, ROS messages that refer
to sensors start with the messages’ followed by the name of the sensor.

The nodes that handle sensors directly (standalone nodes) are:

• Camera Node: Receives data from the camera and publishes it in a sensor Image
message format.

This looks like a relatively simple node, but it can be extremely complex. For ex-
ample, ROS passes images in its message format, but many developers use images
bundled with di↵erent image processing libraries such as OpenCV. For example, in
this case, a CvBridge should be used as an interface between ROS and OpenCV. On
the camera node, all necessary bridges must be implemented, dynamically initial-
ized, and shutdown on run-time, taking into account the subscribers and publishers
on the ROS network at a given time.

It is also important to note that di↵erent cameras will require di↵erent extended
nodes. For example, integrating a 360-degree camera requires di↵erent interfaces
from a depth camera due to the characteristics intrinsic of each one.

• Laser Node (optional): Reads data from the laser sensor and publishes a sensor
laser scan message on the ROS network.

• Odometry Node: This node can estimate the UAVs position relative to its starting
point. This can be done by using the UAVs motion sensors data, performing esti-
mations via visual odometry, or by using any fusion algorithm that mixes any such
methods. The data from this node is published in a message format denominated
navigation odometry messages.

• IMU Node: The Inertial Measurement Unit (IMU) is responsible for handling the
IMU sensor (e.g., accelerometer, gyroscope, magnetometer) and periodically pub-
lishing sensor IMU messages to the ROS network.
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• GNSS Node: Reads data from the Global Navigation Satellite System (GNSS) and
periodically publishes navigation messages on the ROS network.

In each low-level node (the closest to the sensors), filtering algorithms can be applied
before publishing the data on the ROS network. It is crucial to filter erroneous readings
from sensors and avoid polluting the top-level nodes (and algorithms) with disposable
data. Thus, on top of the first line of perception nodes, complex nodes can be built that
use the filtered data. Some of these nodes are:

• Positioning Node: This node subscribes to all nodes that publish data related with
positioning (odom, IMU and GNSS). Then, it merges the data from the di↵er-
ent nodes (using, for example, a Kalman filter (Kalman, 1960)) and publishes the
drone’s current position with the best accuracy possible.

• Structure fromMotion Node: Since not all UAVs will have a laser sensor, and most
of the planners and collision avoidance algorithms require 3D data, it is essential to
be able to generate a point cloud from the camera data alone. The Structure from
Motion (SfM) node takes features from di↵erent frames and, hence, by calculating
the feature trajectories over time, it can reconstruct their 3D positions and the
camera’s motion.

• Depth image to Point Cloud Node: Some cameras like the Intel RealSense already
provide a 3D structure of the environment. This node is responsible for transform-
ing the 3D data from the camera into a Point Cloud and then publishing that data
on the ROS network.

• Laser and imaging data fusion node: If there are data of the type sensor laser scan
messages being published by a laser and data of image messages from a monocular
camera, it is possible to fuse the data of both and build a detailed point cloud. The
laser gives us the range of the points in space, and the monocular camera gives us
an RGB estimation of each point.

• Imaging Object Motion Node (with UAV behavior filtering): This node merges the
positioning data with the motion analysis (optical flow) in order to better under-
stand the movement of the bodies (objects) around him. This refined analysis can
then be used by other nodes such as reactive nodes that try to precept the collision
of a moving body into the UAV.

3.2 Collision Aware Planner

The Collision Aware Planner (CAL) module is responsible for establishing a safe path.
This module receives one or multiple coordinates and generates a path between those co-
ordinates, taking into account the data from the perception layer (obstacles point clouds).
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For example, on an extended autonomous mission, the CAL creates a trajectory between
the two waypoints of the global mission. Its output is the trajectories, an array of georef-
erenced trajectory waypoints.

Ground-based robots are limited to 2D navigation due to their dynamics. However,
since a UAV can adjust its vertical position, 3D navigation can be implemented. Naviga-
tion in 3D gives the UAV more maneuverability to explore its environment, the ability to
get a much more complete understanding of the environment, and navigate the environ-
ment through more complex paths. This is especially useful when it comes to obstacle
avoidance but comes with a high complexity price.

There are multiple forms to approach the planning problem, as described in Galceran
et al. survey on path planning for robotics (Galceran and Carreras, 2013). The majority of
SoA algorithms assume that the world can be modeled as a simple planar surface. Hert et
al. (Hert et al., 1996) applied some of the 2D knowledge to the 3D environment. Another
approach is to interpolate the input goal points and set a group of escape callbacks that
enter in play whenever some obstacle is detected (Azevedo et al., 2017).

In this work, two di↵erent approaches for the Static collision problem are explored.
The first closely relates to the chosen robotic framework and uses MoveIt features to solve
the path planning task. This solution has good debugging and visualization function-
alities. Also, it was built to facilitate the integration of di↵erent planners on a single
platform. It is a good solution from an academic perspective because it simplifies some
algorithms’ benchmark and results comparison. The drawback of this solution is that it
was not developed to optimize computational performance. The second solution is more
complex from the developers’ point-of-view, but it outperforms the first by exploring
GPU functionalities and optimizing and constrained solutions.

The first proposed solution integrates MoveIt (Chitta et al., 2012) since it has been
deemed a SoA software for mobile manipulation, incorporating the latest advances in
motion planning, manipulation, 3D perception, kinematics, control, and navigation. This
planner has an interface in RVIZ (Dave Hershberger, David Gossow, 2009) that can create
plans, define trajectories and execute them. The Graphical User Interface (GUI) generates
the Semantic Robotic Description Format (SRDF), the Unified Robot Description File
(URDF), as well as other necessary configuration files.

Furthermore, this module receives one or more coordinates and generates a path
between those coordinates, orchestrating the plan. The module stores the entire plan
generated by the GUI and interpolates the goal points. If the distance between goal
points is higher than a predefined threshold tPH , the module is responsible for generating
new intermediates points.

This module subscribes to all point clouds and depth images of obstacles present in
the ROS network, receiving the data from the ROS Param Server. At the core of MoveIt,
and the feature that CAL take the most advantage of is Open Motion Planning Library
(OMPL), which is an open-source motion planning library that primarily implements
motion planners. The planners in OMPL are abstract, meaning that OMPL has no concept
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of a robot. Instead, MoveIt configures OMPL and provides the back-end forOMPL to work
with problems in Robotics. It is important to notice that OMPL was initially developed for
stationary robots, usually robotic arms, and to make it work with a UAV, it was required
to implement a virtual joint to the base world.

Since OMPL has no concept of a robot, CAL requests three parameters from the ROS
Param Server, namely:

• URDF: ROS move group looks for the robot description parameter on the ROS
param server to get the URDF for the robot.

• SRDF: ROS obtains the robot description semantic parameter on the ROS param
server to get the SRDF that is typically created (once) by a user using the MoveIt
Setup Assistant.

• CAL configuration: ROS move group will look on the ROS param server for other
configuration specific including joint limits, kinematics, motion planning, percep-
tion, and other information. Configuration files for these components are automati-
cally generated by the MoveIt setup assistant and stored in the config directory of
the corresponding MoveIt config package for the robot.

The second option is to use the pipeline of a point-cloud-based collision avoidance
algorithm, illustrated in Figure 3.2.
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Data
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Figure 3.2: Collision avoidance execution flow.

The green blocks are related with the point cloud treatment, the darker blue to the obsta-
cle detection and the light blue to path trajectory calculation.

To maintain data coherence across time, data collected from sensors must be mapped
into a global reference frame before being placed into the map representation. In general,
planners require input data to be mapped into 3D space. As a result, after an octree
representation of the environment, both free and occupied voxels are mapped into 3D
Euclidean space as the input for the obstacle detection phase. Finally, the collision-free
trajectory is calculated from the obstacle list, and the commands are sent to the Plan
Handler.
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The static collision avoidance algorithm flow presented in Figure 3.2 is divided into
three stages: the insertion of the point cloud and environment representation (in green);
the search and detection of obstacles (in dark blue); and the final computation of the colli-
sion avoidance path (in light blue). All stages were implemented using ROS nodelets (Chris-
tian, 2016), linked to the same handler to decrease memory use (zero-copy between nodes)
and processing time since the data does not need to be serialized and deserialized via the
publish-subscribe method.

The leading optimization of this approach is the use of the GPU for 3D internal
representation. Instead of Octomaps, this GPU approach uses GPU-Voxels (Hermann
et al., 2014) in conjunction with the Voxel Map storage technique. The Voxel Map storage
technique was chosen despite the highmemory requirements because it allows for quicker
updates while maintaining a high collision detection throughput. It also creates a distance
map, which is updated on insertion and contains the distance to the nearest occupied
voxel at a given location.

3.3 Plan Handler

The plan handler interpolates the trajectory points with movement constraints and com-
mand actions based on the CAL output. The plan handler node receives as input the
joint state data from the UAV actuator’s encoders and an input set point. It uses a generic
control feedback loop mechanism, typically a Proportional Integral Derivative (PID) con-
troller, to control the output. Since the number of joints of a UAV is usually straight-
forward, it is possible to create a standard action controller to translate the trajectory
produced by this CAL into commands for the UAV controller.

3.4 Dynamic Collision Avoidance

The DCA node is a novelty that distinguishes the FFAU from SoA frameworks by improv-
ing safety. The core idea is that it implements the logic associated with unplanned actions
that require immediate attention, for instance, if someone throws an object at the UAV
while executing an autonomous mission. This node is responsible for forcing the UAV to
change its trajectory and avoid the obstacle.

To accomplish this, it receives the live video stream information from the perception
block, and when an oncoming collision is detected, it sends commands to the Command
Multiplexer (CM) with high priority. On the proposed DCA algorithm, a set of DNN are
combined to achieve this result.

The collision avoidance algorithms require the UAVs positioning to be coupled with
image processing since the motion drift caused by inertia can easily lead the node to
miscalculate a safe trajectory around an incoming object.
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This work introduces a novel DCA node for moving object detection and a collision
avoidance algorithm that uses data from a standard camera, fully described in chapter 5.
The node is optional to the architecture and will only handle incoming collisions.

3.5 Command Multiplexer

Prioritizing robots’ security and control topics is a mandatory precaution in nowadays’
UAVs. It is required to automatically switch from an autonomous behavior to a manual
command when pushing any remote controller button. This means that there is more
than a single control point to move the UAV. Therefore, all those input sources must
be multiplexed into a single convergence point that communicates with the hardware
controller.

This node subscribes to a list of topics publishing commands and multiplexes them
according to some priority criteria. The input that turns out to have the highest priority
is given the control of the UAV, thus becoming the active controller. The active controller
is selected according to its relevance in the control hierarchy, timeout, and input lock
topics. In practice, the node will take multiple input topics from di↵erent issuers (control
points) and output the messages of the issuer with the highest priority.

3.6 Communication Handler

In order to communicate with this framework, a communication module translates ROS
publisher/subscriber into websockets. By doing this, it is possible to control a fleet of
UAVs from any distance from the beXStream platform1. The module also handles the
handover between WiFi, 4G, and 5G. This is done by creating a stream in all available
communication channels and always using the one with the best connectivity. When the
UAV is authenticated, it receives a dedicated channel to stream video and audio data
using the Real-time Transport Protocol (RTP) (Paul, 1998).

3.7 Simulation

It is of utter importance to test the implementation of all intermediate steps and verify
whether integrating those steps builds towards the expected result. This includes running
exhaustive and extensive tests to verify if all variables and metrics previously defined fall
within an acceptable interval.

Thus, to perform these tests, Gazebo simulator was integrated (Koenig and Howard,
2004) in the framework. Gazebo o↵ers us a simulation capable of representing the real
world, and so it becomes easy to do any test without damaging the hardware. The rest of
the components are completely agnostic of the aircraft is being simulated, or the data is
coming from a real aircraft.

1The developed beXStream platform can be accessed at https://bexstream.beyond-vision.pt
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The command multiplexer is agnostic to the node he is sending commands. For
example, it might be a mavros node subscribing to the topic, translating the messages into
the UAV Controller, or a simulation node that allows to test and debug the developments.

3.8 beXStream - UAVManagment Cloud Platform

The beXStream platform is the mastermind of the solution2. It is a cloud web drone
terminal that mimics a drone Radio Command with the advantage that the pilot can
control a drone from any distance. The pilot only needs an internet connection between
him and the drone. Furthermore, it integrates di↵erent frontend applications that enable
users to monitor and execute actions with ease.

The beXStream platform can handle di↵erent types of assets, but it was developed
having the use-cases of UAVs. It integrates external Application Programming Inter-
faces (APIs) and databases and is simple for third-party developers to integrate. Figure
3.3 depicts the platform’s high-level block component architecture. In this diagram, the
backend is in charge of controlling all other modules. It manages transactions between
several components that are dockerized and instantiated as needed. Depending on the
data type, several databases, such as influxdb (Kaplan, 2021), elasticsearch, and MySQL,
are incorporated into the beXStream. Various frontend apps can use the APIs o↵ered
by the backend. Kubernetes technology was utilized to make the entire system scalable,
allowing maximum usefulness from containers and building cloud-native apps that can
operate anywhere, regardless of cloud-specific constraints.
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Figure 3.3: The beXStream platform architecture overview.

It is critical for safety reasons to be able to see the UAV’s video feed in real-time. To
solve this issue, a media-gateway based on Janus-Gateway (Amirante et al., 2014) was

2beXStream can be accessed https://bexstream.beyond-vision.pt/
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implemented on the platform, in addition to the modules necessary to address network
connections, which will be addressed in the next sub-modules.

3.8.1 Backend

The backend is the platform’s core module, where all administration and security mecha-
nisms are built. The backend manages the access of the many users who log in through
multiple frontends, as well as the UAVs. This module manages permission levels and
limits users’ access to their organization, allowing them to only control/view UAVs that
belong to them. That is, only people with the appropriate authority and organization
may change the UAV’s configurations, issue instructions, or see its stream. Multiple lo-
gins with the same account are banned for users and UAVs. The backend communicates
with all of the system’s modules. It generates the settings required for the video stream,
which is subsequently transmitted to the Media-Gateway, depending on the camera’s
specifications of the UAV.

3.8.2 Media-Gateway

To handle the video streams, a media-gateway was used, in this case, Janus-Gateway (Ami-
rante et al., 2014). This gateway can accept a stream from an UAV and broadcast it to
many clients, allowing them to see the UAV’s perspective. This module also provides
the administration of several streams from various UAVs, as well as the change of views
between them. The quality of the video stream is highly reliant on the connection quality,
whether between the UAV and the platform or between the gateway and the client. The
media-gateway can include a bu↵er for out-of-order receiving packets to decrease this
vulnerability, enhancing the stream’s dependability. To improve compatibility, the video
is transcoded in the media-gateway, (Hanhart et al., 2018). However, most UAVs are
not transcoded because of the high processing power required in the process, which is
proportional to the video resolution and framerate.

To begin the transmission of the UAV stream, the UAV must be registered in the
platform via a frontend. Each UAVmust be assigned a unique name and password. When
the registration is complete, the client receives an encrypted configuration file. This
file must be included in the UAV’s OBC. The file contains the access information for
that specific UAV, needed to communicate with the system, encrypted using AES-128.
This file must be in the home directory of the UAV. When an UAV is turned on, it
decrypts the configuration file and sends the login information to the backend module,
which replies with a token for this session. For example, if the UAV is equipped with
a camera, then a session for the stream is created in the media-gateway. The backend
will generate a configuration depending on the camera’s characteristics and send the
information to the media-gateway, which will give feedback once the session is created.
After the session setup is completed, the media-gateway will inform the backend of what
port it is expecting the stream on, informing the UAV that it can begin streaming towards
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that port. A flow chart of the process between a UAV and a client can be visualized in
Figure 3.4. This stream is transmitted using RTP or Real-time Streaming Protocol (RTSP).
In addition, Session Traversal of UDP Through NAT (STUN) and Traversal Using Relays
around NAT (TURN) may be used to resolve connections problems. The communication
between the client and the media-gateway is established by WebSocket Secure (WSS). At
the same time, the connection between the backend and the Media-Gateway is made by
Representational state transfer (REST).

Figure 3.4: Message exchanges to establish a video stream connection between the UAV
and the platform.

The dashed lines represent the possible flow the RTP/RTSP streams when using STUN
or TURN.

Communication performance is an essential factor for the remote applications the
authors are trying to address. The article (Pedro et al., 2020b) details the communication
pipelines used, which allows telemetry data for the UAV to tolerate a delay and fit the
Ultra Reliable Low Latency Communications (URLLC) requirements (Popovski et al.,
2019). The tests show that in the majority of the European countries it is possible to
achieve a Round Trip Time (RTT) of approximately 100 ms. Furthermore, if lower RTT
is required, a new national instance of the presented backend and media gateway can
be deployed, which shortens the physical traveling distances of the packages between
the UAV to the backend and the frontend application. From the multiple deployment
experiences, the average RTT is not as critical as the jitter, and the network congestion are,
which becomes more probable with the increase of the physical distance and the di↵erent
network hopping.
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3.8.3 Frontend

The frontend was developed in Angular, exposing a website for the registration of UAVs,
managing users/organizations, and visualizing streams. It allows visualizing details of
the UAV and the landing platform, allowing the user to design di↵erent types of missions
and push them to the system. The mission planning screen can be visualized in Figure 3.5.
Using this page, a user can quickly draw the region of interest and remotely push the
mission to the UAV. Furthermore, a video player is used with baseline characteristics
to comply with all browsers on the website. The stream is received over Web Real-Time
Communication (WebRTC), which uses a peer-to-peer connection. In most scenarios, the
clients will be behind a Network Address Translation (NAT), which means the platform
cannot address the client directly. In order to circumvent the NAT rules, a STUN server
may be used, which serves to inform the corresponding peer of what their public IP is.
By sharing the STUN responses, the peers can communicate even when behind NATs.
However, if the client is behind a symmetric or carrier-grade NAT, then a TURN server
must be used to establish the connection. In order to ensure connectivity, a TURN server
is deployed in the system, based on Coturn server (Janczukowicz et al., 2015).

Figure 3.5: Frontend module of the beXStream platform to generate survey mission and
transmiting it to a UAV.
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4
UAV Collision Avoidance Datasets

Images contain a high amount of information in a relatively concise way (Berg et al., 2012).
However, their processing is complex and resource-consuming due to the infinite varia-
tions that might represent the same structure. Nevertheless, by adding a time reference
and sequencing the images, it is possible to build videos. Due to the fast development of
cameras, CPUs, and image/video processing algorithms (Akyildiz et al., 2007), this kind
of data source is becoming widely used. For example, on YouTube (Stewart and Stew-
art, 2019) are uploaded approximately 72 hours of videos every minute, being expected
that, by the end of 2022, online video will be responsible for four-fifths of global internet
tra�c.

UAVs have as main objective aiding or making possible the execution of di�cult or im-
possible tasks for the human being (Amazon.com Inc., 2015; Hartmann and Giles, 2016).
Nowadays, UAVs are a trendy tool for the industry market. Despite the advantages, UAVs’
operation might be challenging when operating in complex or confined environments
(Pedro et al., 2018; Ryan et al., 2004). The presence of obstacles is dangerous and requires
the use of obstacle detection and collision avoidance algorithms. For the static obstacles,
there are already algorithms that deal relatively well with them, being capable of gener-
ating safe paths to the desired positions (Matos-Carvalho et al., 2020). However, in real
applications, it is common to find dynamic moving obstacles. The latter can be detected
by using the video stream provided by the onboard cameras. Because video processing is
computationally heavy (Waizenegger et al., 2011), collision avoidance algorithms need to
be fast enough to retrieve solutions without colliding. Therefore, a neural network trained
for this kind of situation is a plausible hypothesis that has been put to the test. The prob-
lem of the neural networks is that they are generally data-hungry, turning them extremely
hard to train with small datasets, which leads to very likely memorization of the dataset
(Zhao et al., 2017). In this chapter, two new open-source datasets are presented and made
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available to the community, in order to accelerate and facilitate the development of new
collision avoidance algorithms, increasing the safety and performance of UAVs.

In the last decade, there has been an increasing number of publications of datasets
that are enabling the development of new ML models and solutions (Wu et al., 2019).
Some of the existing datasets were presented in chapter 2, highlighting their relevance
and impact in the field. These datasets were selected using both criteria of usefulness for
the community (novel data or utility scenarios) and relevance (number of citations, usage
on benchmarks zoos, scientific quality extrapolated by top-tier conferences and journals
(Garcia-Garcia et al., 2018)).

4.1 ColANet Dataset

The ColANet can be summarized as a Collision Avoidance Video Dataset (Pedro et al.,
2020a). This dataset is an open repository of UAV collisions and intends to be an ini-
tial step towards safer UAV operations without collisions. The ColANet dataset was
developed alongside an annotation script, which simplifies the video annotation process,
therefore abridging the complexity of expanding the dataset. The process starts by up-
loading the video with collision timings ( presented in Figure 4.1), and the script will
automatically generate the frame by frame annotations with an escape vector (escape
direction for the UAV) for each image.

 
Figure 1 – File structure used on dataset annotated frames generation. 
 
As Figure 1 illustrates, each row consists of four elements: 
 

• Video name. 
• Start Time (in milliseconds). 
• End Time (in milliseconds). 
• Escape Vector (!!, !", #!, #!, $!, $"). 

 
The start time, end time and escape vector can have multiple occurrences per row, 
representing multiple potential collision situations where the escape vectors might 
differ. 
With this information, the server iterates over all videos (one per row) and generates a 
labeled set of images that are extracted from the video frames. For this purpose, the 
algorithm opens the video, retrieve the frames per second information, and then 
generates one image per frame, and a text file containing the annotations. The directions 
of the escape vector are illustrated in Figure 2, where is possible to see a UAV with the 
directions vector overlaid. 
 

 
Figure 2 – UAV with escape vector. 
 
The software written in python is open source and can be found alongside the dataset 1. 
Note that this also gives the freedom to fine-tune the working dataset, since the user 

 
1 The dataset can be downloaded at https://colanet.qa.pdmfc.com/ 
 

Figure 4.1: File structure used on dataset annotated frames generation one video per line.

As Figure 4.1 illustrates, each line consists of four elements:

• Video name;

• Start Time (in milliseconds),

• End Time (in milliseconds);

• Escape Vector (X+,X�,Y+,Y�,Z+,Z� ).

The start time, end time, and escape vector can have multiple occurrences per video,
representing multiple potential collision situations where the escape vectors might di↵er.
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Figure 4.2: UAV with an escape vector.

With this information, the script iterates over all videos (one per line) and generates a
labeled set of images extracted from the video frames. For this purpose, the algorithm
opens the video, retrieves the frames per second information, and generates one image
per frame and a text file containing the annotations. The directions of the escape vector
are illustrated in figure 4.2, where it is possible to see a UAV with the directions vector
overlaid.

The software written in python is open source and can be found alongside the dataset1.
Note that this also gives the freedom to fine-tune the working dataset. For example, the
user can run normalization and regularization when passing the data from a video to a
temporal labeled set of images.

The ColANet dataset already contains 100 videos of UAVs with fast objects collisions
that were recorded during flights of di↵erent models, with di↵erent environment condi-
tions (sunny days, cloudy days, and during the night). Some examples are represented
in figure 4.3. In most videos, UAVs are flying freely until the moment of collision. These
videos are labeled with escape vectors and represent over 2000 collision frames and 6000
free-flying frames.

Figure 4.3: Visualization of 10 frames from 4 di↵erent collision videos on ColANet.

1The dataset can be downloaded at https://colanet.qa.pdmfc.com/
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Figure 4.4: VGG16 model architecture.

Figure 4.5: VGG16 model without the classifier block.

Figure 4.6: Developed model based on the VGG16 model architecture.

To train an algorithm that classifies the current instant (frame) as collision or no
collision, all it has to do is check if all the numbers on the line are 0, and he can label it
as ‘no collision’. However, suppose the researcher intends to estimate the escape route or
free path trajectory directly. In that case, he can use the escape vector directly and, from
the algorithm output, take action to avoid the collision.

4.1.1 Experimental Neural Network using ColANet

To test the ColANet dataset, a model based on VGG16 (Simonyan and Zisserman, 2015)
was trained. The overlying structure of this module is depicted in figure 4.4. First, for
the sake of simplification, the output of the NN was translated from an escape vector to
two labels (collision or no collision). Next, the escape vector file was iterated, and the
frames whose all six escape values equaled 0 were labeled as ’no collision’; and all the
others received the label ’collision’.

As stated in figure 4.4, the output has the form of a 1x1000 probability vector, which is
not ideal (only two classes). To overcome that, the VGG16 model was adapted, removing
the classifier block (figure 4.5) and adding a new dense layer with 1024 neurons and a
SoftMax activation layer (figure 4.6). The output was reduced to a 1x2 probability vector.

The newly added layers are composed of a Flatten layer (because the input is from
a convolutional layer), a Dense layer with a ReLU activation function, a Dropout layer
with a dropout of 50% to prevent overfitting, and finally, a Dense layer with a SoftMax
activation function.

An epoch usually corresponds to the complete processing of the training set. However,
the data-generator used from TensorFlow produces batches of training data for eternity.
Therefore, it is required to define the number of steps we want to run for each epoch,
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Table 4.1: Training classifier results for ColANet.

VGG – Pre train VGG – Trained classifier VGG – Fully trained

Test Train Test Train Test
58,18% 93,89% 92,73% 96,53% 94,55%

multiplied by the batch size defined. In the illustrated model, 100 steps per epoch and
a batch size of 20 are used. So a pseudo-epoch consists of 2000 random images from the
training set and ran 20 times.

These were chosen empirically because they were enough to complete the training
with this model and dataset, taking approximately 12 hours on an Intel i7 8700 with an
Nvidia RTX 2070. The results also contain 20 data points (one for each pseudo-epoch)
which can be plotted afterward. It is also worth noting that the input frames are all
normalized to have values in the range from 0 to 1.

Using TL techniques (Pan and Yang, 2010), it is possible to check the compatibility
and interoperability of the presented dataset. For that, it was used the network weights
obtained in the ImageNet (Jia Deng et al., 2009; Russakovsky et al., 2015). For getting
most of this pre-trained network without compromising the results of the classifier block
(last layers of the model), the training was split into two phases. In the first phase, the
layers of the default VGG16 model were frozen, having only the newly added layers
released for training. After 20 pseudo-epochs, all the network model is released and
the second phase begins. The training proceeds, but now adjusting the weights of all
the layers. This technique takes advantage of the pre-trained weights of the model with
another dataset to calculate the initial weights of the new layers. Releasing all the layers
for training in the last step can be considered a fine-tuning of the weights calculated
initially.

The ColANet dataset was used to train the presented model. The training and test
accuracies were measured during all the training procedures. In order to prove that the
network must be trained, the test set was evaluated before any training. Then the results
were evaluated both after training the classifier (keeping the default ImageNet weights)
and after the fine-tuning. The results are shown in table 4.1.

During the model training, in the first phase, an accuracy of 92,73% was reached with
the test data. After the fine-tuning, the final calculated weights allowed to get an accuracy
of 94,55%. Due to the similarity with the training accuracies, it can be assumed that the
model was not memorizing nor overfitting the training data. In figure 4.7 is depicted the
evolution of the accuracy and loss values over all the pseudo-epochs.

These results confirm that it is possible to train di↵erent models with this dataset.
However, it is important to note that the default TensorFlow training/validation methods
for imaging were used. Therefore, these results may lead to a false sensation of high per-
formance, which will not translate to good results in a practical application. In addition,
the videos contain many similar frames that may end up in training and validation. These
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Figure 4.7: Training results of the VGG model on the ColANet dataset.

issues will be later explored in the chapter 5.

4.2 BallNet Dataset

The ColANet dataset has the advantage of being generic and having many di↵erent types
of collisions in di↵erent scenarios provoked by multiple causes. However, it has few
samples for each example. For a fully generic algorithm, a larger dataset with millions of
entries per case would be necessary. Therefore, a second dataset was created to study one
concrete case and better understand the importance of data for the developed algorithms.
It consists of an incoming collision, where a ball was thrown at the UAV. It contains 575
videos recorded by a Parrot Bebop 2. This new dataset was entitled BallNet dataset. Some
video frames are depicted in figure 4.8.

Figure 4.8: Visualization of 10 frames from 4 di↵erent collision videos on BallNet Dataset.

The BallNet dataset uses the same principles and annotation techniques as ColANet.
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Furthermore, this dataset is also made available under the same server at https://
ballnet.qa.pdmfc.com/. This dataset has 575 videos, which represent a total of 20,000
images. If necessary, the two datasets can be used for training a given model. However, it
is helpful to have them separated for research purposes, allowing a faster comparison of
a use-case with multiple occurrences and multi use-cases with sparse instances.
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5
Dynamic Collision Avoidance

To prevent a collision with a dynamic obstacle (such as an animal) or an incoming ob-
ject (such as a thrown ball), a UAV needs to detect them and execute a safe maneuver
to avoid them. In this chapter, the DCA problem is deeply studied. Initially, a set of
evaluation metrics is presented, defining parameters and formulas used throughout the
work. Afterwards, a novel solution using DL is presented and evaluated.

5.1 Classification Evaluation metrics

This section describes the performance metrics that are used in ML classification tasks
evaluation of results presented in this chapter and on chapter 6.

5.1.1 Confusion matrix

In a classification problem, there is a true output y and a model-generated predicted out-
put ŷ for each data point. The confusion matrix is K ⇥K , where K is the number of classes.
It shows the number of correct and incorrect predictions made by the classification model
compared to the actual outcomes in the data.

In the context of binary classification problem with two possible classes (positive
and negative classes), the results for each instance point can be assigned to one of four
categories:

• True Positive (TP): the label y is positive and prediction ŷ is also positive.

• True Negative (TN) : the label y is negative and prediction ŷ is also negative.

• False Positive (FP) : the label y is negative but prediction ŷ is positive.

• False Negative (FN) : the label y is positive but prediction ŷ is negative.
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The confusion matrix has the following form:

0
BBBB@
TP FN

FP TN

1
CCCCA (5.1)

In multiclass problems, a given matrix row corresponds to a specific value for the
"truth". Moreover, it is possible to normalize the confusion matrix by dividing each value
by the sum of values in the row the value belongs. In this way, each value is between 0
and 1. This is interesting in case of class imbalance to have a more visual interpretation
of which class is being misclassified.

The following metrics are computed from the confusion matrix without normaliza-
tion.

5.1.2 Accuracy

The accuracy measures how close the prediction is to the real value, and for binary classi-
fication can be computed by:

Accuracy =
TP +TN

TP +TN +FP +FN
(5.2)

The generalization to multiclass problems is the ratio between correctly predicted
labels and the total number of predictions. A classifier usually gives a set of predicted
labels in decreasing order of probability, and the label with the highest probability is the
predicted label (for example, a softmax classifier). Thus, the ratio between the number
of cases in which correct labels are in the top k predicted labels and the total number
of predictions is the top-k accuracy. However, one should be aware that accuracy is not
always a good metric if a dataset is highly unbalanced. One can illustrate this based on
an example. Assume a highly unbalanced dataset where 95% of the data points are not
collision and 5% of the data points are collision. Then, a naive classifier that predicts
no collision, regardless of input, would quickly achieve 95% accuracy. For this reason,
balancing the dataset or considering other metrics such as precision, recall, and f1-score
is also relevant.

5.1.3 Precision, Recall and f1-score

Regarding precision, in binary classification,

Precision =
TP

TP +FP
(5.3)

The generalization to multiclass problems is to consider columns of the confusion
matrix. Given that a given row of the matrix M corresponds to a specific value for the
"truth", it can be presented as:

Precisioni =
MiiP
j Mij

(5.4)
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and this is specific for a class i. Precision is the fraction of events where we correctly
declared i out of all instances where the algorithm declared i.

For recall, in binary classification,

Recall =
TP

TP +FN
(5.5)

Here again, the generalization to multiclass problems is to consider columns of the
confusion matrix. Given that a given row of the matrix corresponds to a specific value for
the "truth", it is obtained:

Recalli =
MiiP
j Mji

(5.6)

and this is specific for a class i. Conversely to Precision, recall is the fraction of events
where we correctly declared i out of all of the cases where the true of state of the world is
i.

For f1-score we have:

f1-scorei = 2⇥ Precisioni ⇥Recalli
Precisioni +Recalli

(5.7)

which is the harmonic mean of precision and recall.

5.1.4 Conditional Average

Whenever multiple algorithms are developed with minor modifications, the conditional
average of a given metric xm is a powerful observation. This value can be calculated by:

xm[�] =
P

N xm[� == �]
N [� == �]

(5.8)

In CNNs, this is a good approach to test multiple combinations of parameters. For
example, the influence of a parameter � with the value � can be estimated when observing
all the results obtained with a given value and comparing it with all the combinations of
that specific parameter in di↵erent tests.

5.2 Deep Learning for Collision Avoidance

In this work, it is proposed a novel solution that utilizes DL to handle the DCA problem.
In order to simplify the task, a Neural Network Pipeline (NNP) with three blocks was
developed. The first block is the Feature Extraction (FE) per frame. The second block
handles the video temporal information (stream) with RNNs and the input of multiple
SEQ feature vectors. Finally, the third block receives the result of the last RNN and uses
a Feedforward Neural Network (FNN) to output a decision, which can be the collision
detection or an escape trajectory. The proposed architecture is represented in Figure 5.1.
These blocks will be further detailed in the following subsections. Implementations,
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visualization functions, and further information can be found at https://github.com/
dario-pedro/uav-collision-avoidance/tree/master/train-models.

Temporal

FE

(SEQ+1)!"

FE

(SEQ)!"

FE

(SEQ−1)!"

. . .

FE

1#!

FE

0!"

Features

!""!

!"""

!""#

Decision

. . .

FE

(SEQ+2)!"

Figure 5.1: Proposed dynamic collision avoidance neural networks architecture.

5.2.1 Feature Extraction

The process of FE can be summarized in processing each frame with a CNN, which
produces a feature vector, that can be interpreted as the frame key features that will
ultimately be used by the NNP to detect a collision. Advances in CNNs have made this
type of models ideals for FE tasks (Khan et al., 2020). Two models were tested, initially a
VGG and afterwards, looking for a resource optimized CNN, the MobileNetV2 (MNV2)
(Sandler et al., 2018a).

The VGG is an homogeneous and straightforward topology. This model is simple to
understand at the cost of an over-dimensioned number of parameters, increasing compu-
tational requirements. The MNV2 architecture is based on an inverted residual structure
where the input and output of the traditional residual block are thin bottleneck layers
opposite to residual models, which use expanded representations. The initial layers are
lightweight depth-wise convolutions to filter features for the middle expansion layer
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Listing 5.1: Dynamic Collision Avoidance—processing the latest video frame.
1 SEQ_LEN = 25
2 features_queue = deque(maxlen=SEQ_LEN) # Double-ended queue
3

4 def dcaProcessFrame(videoFrame):
5 # Resize image to cnn input size
6 img = video_frame.resize(224,224,3)
7

8 # ML libs predict functions outputs arrays
9 cnn_pred = cnn_model.predict(img)[0]

10

11 # Shift add the image features to the features queue
12 features_queue.append(cnn_pred)
13

14 # Check if enough images have been seen
15 if(len(features_queue) >= SEQ_LEN ):
16 rnn_pred = rnn_model.predict(features_queue)[0]
17 return decision_model.predict(rnn_pred)[0] # return result
18 else:
19 return 0 # return no collision

(Sandler et al., 2018b). This model was selected because it has the best trade-o↵ between
accuracy and computation for a low-power processor as the present in UAVs (Howard et
al., 2017; Ma et al., 2018; Sandler et al., 2018b). The model receives as input a 224⇥224⇥3
image and outputs 7⇥7⇥1280, whichwas converted into a 1280 feature vector by applying
a 2D Global Average Pooling (Boureau et al., 2010).

5.2.2 Temporal Correlation and Decision

The temporal correlation of data features from each frame is obtained by applying a
RNN. In this work, a 3-depth blocks LSTM architecture is proposed, which receives a
sequence ' of input vectors. By default ' = 25, representing one second of video at a 25
frames/second rate (the average video framerate of the videos recorded on the ColANet
dataset. Multiple combinations of wide and depth of LSTMs blocks are explored, always
using dropout and batch normalization. Moreover, the last RNN layer is connected into a
FNN with four neurons that are finally connected to two output neurons.

In a live scenario, the architecture is executed using a sliding window approach where
the feature queue always contains the last 25 feature vectors and is fed into the RNN.
Whenever a new video frame is available, the frame is processed by the FE, and the new
feature vector is added to the features queue by shifting the previous values. Furthermore,
the result of the RNN and FNN for a set of 25 feature vector array is the prediction for
the last frame. Algorithm 5.1 presents the necessary sequential actions to process a new
video frame, where it is assumed that all models have been previously loaded.
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The procedure is optimized when compared with solutions such as conv3d (Tran et al.,
2015), which apply convolutions to a 3D space. In the proposed architecture, only the
last frame needs to be processed by the CNN and introduced with a shift into a deque
array that is passed to the RNN. Afterwards, the RNN and FNN are triggered, which will
output a prediction.

5.2.3 Training and results

To train the proposed architecture, the ColANet dataset was used. This is a video dataset
of collisions and can output a classification target (collision or no collision) or a regres-
sion target, consisting of 6 values ranging from 0 to 1 representing directions front, back,
left, right, up, and down. To simplify, initially, the training results are oriented to the
classification problem. Afterward, the regression problem is solved by adding four ad-
ditional output neurons and target each for an avoidance axis, training each neuron to
the regression task. The ML frameworks TensorFlow and Keras were used to facilitate
the construction and training of such networks (Shanmugamani, 2018). In this section,
initially, the FE models are trained with output neurons and fine-tunned with some pa-
rameters combinations being compared. Finally, the main problems found along the
process are discussed, such as the model complexity and data selection.

5.2.3.1 Feature Extrator based on VGG Train

Initially, a version using a VGG with 16 layers (figure 4.7) was tested (Simonyan and
Zisserman, 2015). The results appear to be promising, but the model is too complex
for standard drones to compute. For this reason, a model that require less processing
was tested, the MNV2. Nevertheless, the results are presented because in the future
new hardware architectures might turn possible the fitting of such architecture of UAVs
computers.

To use the VGG model for FE, the same procedure that was explained in chapter 4.1.1
was followed, generating a model that outputs a 1x2 probability vector (collision or no
collision).

The dataset used is highly biased for no collision frames, having ⇡ 16k frames of no
collisions and only ⇡ 3k frames of collisions. In order to reduce this e↵ect (in contrast to
what was presented in the previous chapter), the exact value of collision and no collision
frames were considered. Furthermore, to have a good test set, 5% of the video was initially
left out, and the process of retaining the same amount of collision and no collision frames
was applied. Note that most of the libraries split the training and validation sets by a
percentage of the shu✏ed frames by default. This leads to highly unfair testing due to
the correlation of the frames’ data within the same video. Many frames have almost the
same information. These can be partitioned into the training and validation set, highly
increasing the accuracy of the validation set, leading to a false performance evaluation.
In chapter 4, the default training routine was used to test the validity of the dataset,
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Table 5.1: Training classifier accuracy of VGG16 on ColANet dataset.

Pre train Trained classifier Fully trained

Test Train Test Train Test
58,18% 93,89% 79,85% 94,75% 78,10%

but for the rest of the work, a pre-selection of training and validation videos was done,
preventing that frames from the same video are used both in training and validation.

In order to have a baseline, the test set was evaluated before any training (using the
pre-trained weights). Then the results were evaluated after training the classifier (keeping
the default ImageNet weights) and after the fine-tuning. The results are shown in table
5.1.

In figure 5.2 is depicted the evolution of the accuracy and loss values over all the
pseudo-epochs. During the model training, in the first phase, it can reach an accuracy
of 79,85% with the test data when training. After the fine-tuning, the final calculated
weights allowed to get an accuracy of 78,10%. The neural network quickly obtained the
final validation accuracy on the first five epochs, and the test did not evolve much more
on the rest. The training kept increasing which hints us that it has a slight overfit. The
non fine-tuned results achieve better results on validation and worse on the train, which
might conclude that fine-tuning such a model makes him memorize most of the training
data, generalizing worse the entire dataset. If we compare these results with the previous
training results of table 4.1, it is possible to observe that the results on the training data
are similar. However, the results on the test data achieve a higher percentage on the table
4.1. The most plausible reason is that the old approach of dividing the training and test
set was creating a test set that was too similar to the training set, allowing the model to
decorate.

5.2.3.2 Feature Extrator based on MNV2 Train

Moving to a lighter model, the MNV2 model was obtained with Tensorflow using a trans-
fer learning approach (Pan and Yang, 2010), with the weights pre-trained on the ImageNet
dataset. First, it was chosen which layer of MNV2 is used for FE. The very last classifi-
cation layer 1 is not very useful. Instead, it is common practice to use the very last layer
before the flatten operation. This layer is called the "bottleneck layer". The bottleneck
features retain much generality as compared to the final/top layer. This can be done
by specifying not to include the top layers, loading a network that does not include the
classification layers at the top, which is ideal for FE.

Afterwards, all the layers are frozen before compiling the model, which prevents

1on "top", as most diagrams of machine learning models go from bottom to top
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Figure 5.2: Training evolution of the FE based on VGG16 model.

On the first 20 epochs only the classification neurons are trained. Afterwards, the entire
model is fine-tuned.

weights from being updated during training. Then, a classification block is added, com-
posed of a Global Average Pooling 2D layer to convert the features to a single 1280-
element vector per image, and a Dense layer to convert these features into a single pre-
diction per image. Adding an activation function is unnecessary because this prediction
will be treated as a logit or a raw prediction value. Positive numbers predict class 1;
negative numbers predict class 0. This last classification layer was trained to give it some
knowledge of the objective goal, using a binary cross-entropy loss and an Adam opti-
mizer (Kingma and Ba, 2015) with 1x10�4 learning rate and 1x10�6 decay rate. For our
classification problem, the loss can be depicted as the equation 5.9,

J(w) = � 1
N

NX

i=1

[yi log(ŷi ) + (1� yi ) log(1� ŷi )] (5.9)

where w refer to the model parameters (weights), N are input values (images),yi is the
true label and ŷi is the predicted label. The accuracy metric is given by the equation 5.10.
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Table 5.2: Training classifier results of MNV2 on ColANet dataset.

Pre train Trained classifier Fully trained

Test Train Test Train Test

Accuracy 50,01% 68,25% 64,30% 94,34% 80,29%
Loss 0.843 0.588 0.635 0.221 0.439

accuracy(y, ŷ) =
1
N

NX

i=0

1(ŷi = yi ) (5.10)

The model was trained in two steps. On the first step, all layers except the newly
added classification block were frozen. Using this setup, the model was trained for 20
epochs. On the second step, using the previous network, the fine-tuned version of the
MNV2 base model was generated. For this, all the layers were unfrozen. It is important to
note that the first step is mandatory because, if a randomly initialized classifier is added
on top of a pre-trained model and attempt to train all layers jointly, the magnitude of
the gradient updates will be too large (due to the random weights from the classifier).
Moreover, the pre-trained model will forget what it has learned before (the transferred
knowledge).

The training results are presented in figure 5.3. At the center of the graph, a green
dashed line separates the two steps. As expected, the model starts with 50,01% validation
accuracy and finishes the first train with approximately 68.25%. When the whole model
is fine-tuned, the network manages to reach 80,29% validation accuracy. It is possible
to detect slight overfitting towards the end of the training because both accuracy and
loss start diverging when comparing training and validation lines. Not only that, but the
training accuracy is close to 100% with a significant gap to the validation accuracy. On
table 5.2 the summary of the results is presented.

The fine-tuning of the MNV2 network gives a model that is highly oriented to the
collision classification problem. On the one hand, this is good because it allows CNN to
prioritize some features, but on the other hand, it is terrible because it generalizes the
world worse. For this reason, the training of the RNN+FNN blocks will be presented in
two versions. The first with the FE with only the general knowledge transferred from
ImageNet, and the second with the FE fine-tuned in the ColANet dataset.

5.2.3.3 DCAModel Train

Initially, the RNN+FNN blocks are trained with feature data from the CNN, which has
not been fine-tuned with ColANet data. In order to prepare the data for the RNN+FNN
model, some constraints must be placed:

1. The input data must be an array of ' length (input sequences), which is the first
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Figure 5.3: Training evolution of the FE based on MNV2 model.

On the first 20 epochs only the classification neurons are trained. Afterwards, the entire
model is fine-tuned.

set of tests it was considered to be 25 (average Frames Per Second (FPS)). Any value
between 20 and 50 achieved similar results.

2. The input sequences must only contain frames belonging to the same video. Work-
ing with video data on GPUs is not a trivial task, and generating video sequences
adds an overhead. The dataset is seen by the model as a continuous stream of
data, and this constrain must be enforced, so that the model does not learn jumps
between videos (false knowledge).

3. The last frame target label is the target for the entire input sequence.

Since this data is easier to analyze using two output neurons, the Sparse Categorical
Cross Entropy Loss was selected. Nevertheless, on Tensorflow equation 5.9 applies. The
Adam optimizer (Kingma and Ba, 2015) with 1x10�4 learning rate and 1x10�6 decay rate
was used. Furthermore, in order to understand the influence of the number of LSTMs
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and dense layers, a total of 74(2401) networks were trained, using a combination of
[64,32,16,8,4,2,1] units per layer. The same number of sequences with collisions and
no collisions was pre-processed, and 5% of the videos were placed on the validation test,
which means ⇡ 6000 train feature sequences and ⇡ 300 validation feature sequences (the
value vary because each video has a di↵erent number of collision frames).

In both cases (default FE and fine-tuned FE), the networks were trained on a Nvidia
GeForce RTX 2070 with Compute Unified Device Architecture (CUDA) libraries. They
trained for 20 epochs with a batch size of 32, resulting in an average train time per model
µ = 130 s and a standard deviation � = 1 s. This represents approximately 87 h 45 m to
train the desired models variants per FE used. An Adam optimizer with a learning rate
of 1⇥ 10�3 and a decay rate of 1⇥ 10�6 was considered. Furthermore, a dropout of 40%
and batch normalization was added to the outputs of LSTMs layers.

A detailed analysis of the results is presented on the appendix B, which use the FE
directly. The same exercise was done with the FE fine-tuned, and the resulting table and
graphs were similar (as a global result). The main results are summarized bellow.

The most important metric is the validation accuracy because it represents the accu-
racy of the network on unknown data. Nevertheless, looking at the best scoring networks
on the validation accuracy metric can be misleading for multiple reasons. A network can
enter a local minima point where the value of validation accuracy is higher than the train-
ing accuracy (sometimes considered underfitting). Also, all the top-best scoring slightly
increased accuracy on the last epoch, which boosted the results.

Regarding the test with the default FE, the LSTM layers with 16 units produced
the best results on average, but having all layers with 16 units does not generate a good
model. The influence of each unit value can be observed in table 5.3. The values represent
conditional averages with the parameters. Furthermore, per each row (layer), the values
are highlighted from best to worst using green to red colors, respectively.

Table 5.3: Validation accuracy mean with variation of the number of units per layer using
Sequences from the default MNV2.

Layers
Units

64 32 16 8 4 2 1

LSTM 1 60.90% 65.91% 69.26% 70.91% 70.87% 68.02% 61.98%
LSTM 2 68.08% 66.65% 67.90% 67.29% 66.57% 66.23% 65.14%
LSTM 3 65.76% 65.62% 65.68% 67.79% 66.84% 67.31% 68.84%
Dense 66.41% 66.95% 67.29% 67.27% 66.20% 66.73% 67.01%

From the results, it is possible to conclude that the initial LSTM block requires more
units than the following layers. Regarding the last dense layer, there are no obvious
candidates, since on average, all networks returned similar validation accuracy results.
However, the training accuracy was higher with the increase of dense units, which could
mean that it started overfitting easily.
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The training evolution graph of the DCA model with parameters NL1 = 4, NL2 = 2,
NL3 = 32 and ND1 = 4 is represented on figure 5.4. This is a good example as training
and validation accuracies evolve together. This model achieves a final validation accuracy
score of 92,14 %. The average of the top 10 best scoring models on the validation accuracy
metric using the default FE is 92,29 %.

Figure 5.4: Training evolution graph of the DCA model with parameters NL1 = 4, NL2 = 2,
NL3 = 32 and ND1 = 4.

On almost all of the training evolution graphs, it is possible to observe that the models
tend to start overfitting around the 6th epoch since the accuracy validation line starts
stabilizing around 80% where the training accuracy keeps increasing to values above
95%.

At this point, some considerations can be made regarding image and temporal data.
The image data trained CNN produced a score of 80% accuracy on unseen data, whereas
the RNN managed to use temporal features from an untrained MNV2 and reached an
accuracy of above 90%. This leads us to believe that temporal information has more
importance in the collision avoidance problem or even in any video-related classification
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problem. Having this note pointed out, it is time to use the trained CNN to generate the
features for a new round of RNN trains and analyzes. For this, the same procedure was
conducted, but this time with the features arrays being generated using the fine-tuned
MNV2.

A more extended training of the algorithm would not necessarily improve perfor-
mance due to the overfitting e↵ect. This is visible in figure 5.5, where the model was left
running 1000 epochs.

Figure 5.5: Training evolution graph of the DCA model with 1000 epochs, which overfits
the network.

On table 5.4 is represented the average influence of each unit value on the validation
accuracy of the models trained with data from the fine-tuned MNV2. Comparing with
table 5.3 the results were on average 2.7 % higher. Nevertheless, when looking for the
top-scoring models, the results are similar. This suggests that the fine-tune increased the
values for the worse case by pointing a worse RNN+FNN into the right direction, but on
the top results, when the key is generalization, it did not make much di↵erence.

The dataset is relatively small and diverse, which makes training and generalization
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Table 5.4: Validation accuracy mean with variation of the number of units per layer using
Sequences from the fine-tuned MNV2.

Layers
Units

64 32 16 8 4 2 1

LSTM 1 63.99% 68.52% 72.12% 73.60% 73.17% 71.21% 64.10%
LSTM 2 70.46% 70.47% 68.94% 70.12% 70.62% 68.33% 67.77%
LSTM 3 67.48% 68.82% 69.65% 69.88% 70.24% 70.60% 70.05%
Dense 69.82% 69.74% 68.60% 69.44% 69.98% 69.32% 69.82%

tasks hard. This can be observed on the graph of figure 5.6, where it has presented
the accuracy results of all models. On the abscissa is the training accuracy, and on the
ordinate is the validation. It is possible to visualize that a fewmodels were stuck on a local
minimum and could not reach a value higher than 50% on validation. Furthermore, many
models achieved near-perfect accuracy during training but a lower value on validation,
which hints that the dataset has little data and the model is overfitting. Nevertheless,
many models achieve a performance higher than 85%, proving that this is a reasonable
solution for building models for the collision avoidance problem.
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Figure 5.6: Accuracy results of DCA model with fine-tuned FE.

It is possible to conclude that this is a valid approach for the DCA problem. The
ColANet is a relatively recent dataset and still has a low number of UAV collision videos
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(less than 100), making the training task harder due to the model’s tendency to overfit.
As the number of available videos increases, the possibility of using this algorithm on
daily UAVs will increase.

In order to have the neural network estimating the collision vector, the last two neu-
rons of the FNN need to be swapped for six neurons that perform regression for each
axis.

5.2.3.4 Repeating the process on BallNet

The ColANet is a good dataset for validating the solution and applicability for di↵erent
use-cases. However, to compare the algorithm with SoA algorithms, a concrete use-case
is better because it allows a direct comparison. For this reason, the scenario of avoiding a
thrown ball present in BallNet was considered.

Following the same steps as in the previous subsections, initially, the FE was trained
using the MNV2 model. The training results of the added classifier are seen in Figure 5.7
for the first 20 epochs (before fine-tuning). Using only single frame knowledge, the model
predicted collisions with 54,4% accuracy at the end of the 20 epochs (validation accuracy).
Following that, a refined version of the MNV2 base model was trained. To do this, all
layers were unfrozen. It is vital to emphasize that the first step is needed if a randomly
initialized classifier is applied on top of a pre-trained model. Afterwards, all layers are
jointly trained. If this was not done by this steps, the magnitude of the gradient updates
will be too high (due to the classifier’s random weights), and the pre-trained model would
forget what it has learned (the transferred knowledge).

The fine-tuned FE’s training results are the last 20 epochs of Figure 5.7 and obtained a
final validation precision of 66.8%. The disparity between training and validation began
to increase on the final epochs, indicating the beginning of over-fitting, and no further
epochs were trained as a result.

Afterwards, the temporal block was tackled. The Adam optimizer (Kingma and Ba,
2015) was used, with a learning rate of 1⇥ 10�4 and a decay rate of 1⇥ 10�6. Figure 5.8
shows the training results of the RNN with the FNN classification layer with moved FE
weights and fine-tuned FE.

Table 5.5 summarizes the outcomes of the proposed models pipelines. It is possible
to infer that it is a viable solution for detecting incoming collisions, but more research,
datasets, and testing are needed. On unseen data, the trained MNV2 achieved an ac-
curacy of 66,8 %, while the complete NNP using temporal features from an untrained
MNV2 achieved an accuracy of over 89 %. This confirms the theory that temporal infor-
mation is important in the collision detection problem (or possibly in any video-related
classification problem).

Fine-tuning the MNV2 improved the results of the NNP, but it is a slight trade-o↵
between generalization and dataset performance. The presented dataset is relatively
small and narrow, with a limited range of environments and variability. Because of the
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Figure 5.7: Training Feature Extraction based on MobileNetV2 model. On the first 20
epochs, only output neurons are trained. Afterwards, the entire model is fine tuned.

model’s proclivity to overfit, this makes preparation more di�cult. Nevertheless, the
models can be further generalized and show better results as the amount of available
UAV video datasets grows.

Table 5.5: Collision avoidance trained models’ results comparison on the BallNet dataset.

Metrics FE1 MNV2 Fine-Tuned MNV2 NNP w/ MNV2 NNP w/ Fine-Tuned MNV2

Training Accuracy 64.6% 97,4% 92,6% 93,4%
Validation Accuracy 54,4% 66,8% 89,4% 91,4%

5.2.4 Features Grad-CAM

The results of the proposed DNN composition seemed promising, but meanwhile, these
models achieved high performance. Unfortunately, their lack of decomposability into
individually intuitive components makes them di�cult to interpret (Lipton, 2018). As a
result, when today’s smart systems fail, they often fail spectacularly shamefully without
warning or explanation, leaving a user staring at an inconsistent output, wondering why
the system did what it did. This is even more worrying when evaluating algorithms
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(a.) First iteration (b.) Second iteration

Figure 5.8: Training evolution graph of the NNP models.

a) First iteration - Using FE with the default MNV2weights (ImageNet weights); b) Second
iteration - Using FE fine-tuned weights.

intended to run on autonomous vehicles.

A way to minimize this e↵ect is by enforcing Interpretability. To build trust in intelli-
gent systems and move towards their meaningful integration into UAVs, it is clear that it
is needed to build ’transparent’ models that can explain their predictions.

For this reason, the Gradient-weighted Class Activation Mapping (Grad-CAM) was
integrated (Selvaraju et al., 2019). As it can be observed in figure 5.9, this algorithm
receives an image and a class of interest as input. The image is forward propagated
through the CNN, part of the model, and then, through task-specific computations, it
obtains a raw score for the category. The gradients are set to zero for all classes except
the desired class (collision), which is set to 1. This signal is then backpropagated to
the rectified convolutional feature maps of interest, which are combined to compute
the coarse DNN localization (blue heatmap) which represents where the model has to
look to make the particular decision. Finally, a pointwise multiplication to the heatmap
with guided backpropagation to get Guided Grad-CAM visualizations which are both
high-resolution and concept-specific.

The Grad-CAM was applied to the MNV2 with its two flavors. The first, with the
pre-trained weights from ImageNet, and the second with the fine-tunned weights on the
ColANet dataset(section 5.2.3.2). This provides insights into which areas of the network’s
image are relevant for the collision classification and a visual representation of the in-
fluence of fine-tuning a network. The Grad-CAM outputs a 9x9 matrix with normalized
weights from 0 to 1, which can be rescaled to the input image size, equalized to the out-
put values, and generate a superimposed visualization. On the figure 5.10 is illustrated:
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Figure 5.9: Grad-CAM pipeline (Selvaraju et al., 2019).

throwing a ball at the drone at image a, the result of the Grad-CAM 9x9 matrix using
the MNV2 with the pre-trained weights at image b; the superimposed visualization of
the Grad-CAM result b and the input image a; the result of the Grad-CAM 9x9 matrix
using the MNV2 with the fine-tunned weights at image d; and finally the superimposed
visualization of the Grad-CAM result d and the input image a. Observing the results of
the Grad-CAM using the fine-tuned MNV2, it is possible to verify that the region where
the ball is present attracts more attention from the network, being the main reason for
its output. In contrast, the MNV2 with pre-trained weights seem to be focusing on the
person rather than the ball.

This technique was applied to the remaining ColANet dataset. A couple of exam-
ples are presented in figure 5.11. The images a, b, and c have most of the focus on the
incoming collision object, whereas image d has two attention hot-spots: the first on the
colliding snow goose and the second on the background windmill. This is a good revela-
tion that spatio-image processing alone is incapable of handling the collision detection
task, and for this sort of case, the temporal information might be relevant. For example,
the windmill will not be approaching the camera, whereas the snow goose will be at high
speed.

The use of Grad-CAM helps to pock holes in the black box of the trained CNNmodels.
Furthermore, it provides a visual and straightforward way to detect issues and possible
problems and areas where the algorithms might fail. The snow goose frame is a good
example where the CNN is not focusing on the main features, and that cannot provide a
valid output alone (on real use-cases deployment).

In the author’s opinion, a true AI system should not only be producing above SoA
outputs (decisions), but also be able to reason about its beliefs and actions, being capable
of explaining them, and of making humans trust and use it. Of course, the necessary
trust level varies per application, but everything that involves safety must have methods
to provide answers.
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a. Input frame - imminent ball collision.

1

0

b. MNV2 pre-trained - Grad-CAM result. c. Superimposed Visualization of b in a

1

0

d. MNV2 fine-tunned - Grad-CAM result. e. Superimposed Visualization of d in a

Figure 5.10: Grad-CAM results from a MobileNetV2 (pre-trained and fine-tuned) given
as input a frame with an imminent ball collision.
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a. Collision with a thrown ball (subject 1). b. Collision with a skater arm.

c. Collision with a thrown ball (subject 2). d. Collision with a snow goose.

Figure 5.11: Grad-CAM Superimposed Visualization in multiple images, using a Mo-
bileNetV2 fine-tuned.

5.3 Object Motion Estimation

The NNP presented is capable of detecting collisions or estimating escape trajectories.
Nevertheless, for practical scenarios, some federal organizations fear to deploy algorithms
that are only based on NN architectures because they lack results explanation (Schlögl
et al., 2019). Furthermore, if the task of the AI algorithm is simplified to the collision
prediction, it increases its performance. For this reason, an Object Motion Estimator
(OME) that utilizes Optical Flow (OF) and that can run on a parallel thread was developed.

The OF is defined as the change of light in the image, e.g., the retina or the camera
sensor, associated with the motion of the scene relative to the eyeball or the camera. In a
bio-inspired sense, shifts in the light captured by the retina result in a movement percep-
tion of the objects projected onto the retina. In the technical context of computer vision,
a set of video frames contain the observer’s movement and the environment combined.

There are three frames with a face in motion on figure 5.12, which are di↵erentiated by
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Figure 5.12: Bio-inspired representation of the Optical Flow (Raudies, 2013).

spatial and temporal analysis of the light source captured by the camera. Computing the
OF captures the changes to these frames via a vector field. Using the first and the second
frames, it is possible to compute the OF 1-2, capturing the pixel movements between
these frames. In principle, OF pixel algorithms in the first image look for a neighboring
pixel in the second image with the same brightness.

The OF methods calculate the motion at every pixel position between two image
frames, which are taken at times t and t + �t. These methods are called di↵erential
since they are based on local Taylor series approximations of the image values (Horn
and Schunck, 1981). The following intensity calculation can be given as follows (equa-
tion 5.11):

I(x,y, t) = I(x +�x, y +�y, t +�t) (5.11)

where �x, �y and �t are the motion vectors between the two image frames, (x,y,t) is
the pixel location at a given time and I(x,y,t) is the pixel intensity.

Assuming the movement is minimal, the I(x,y,t) image constraint with the Taylor
series can be developed to:

I(x +�x, y +�y, t +�t) = I(x,y, t) +
@I
@x

�x +
@I
@y

�y +
@I
@t

�t (5.12)
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Equation 5.12 provides the following results:

@I
@x

�x +
@I
@y

�y +
@I
@t

�t = 0 (5.13)

@I
@x

Vx +
@I
@y

Vy +
@I
@t

= 0 (5.14)

where Vx and Vy are the x and y velocity components or OF of I(x,y, t) and @I
@x ,

@I
@y and

@I
@t are the derivatives of the image at (x,y, t) in the corresponding directions. By applying
equation 5.14 and replacing the image derivatives by Ix, Iy and It , it is possible to obtain
the equation 5.15:

IxVx + IyVy = �It (5.15)

This is an equation with two variables (Vx,Vy), therefore it cannot be solved. This
is known as the OF algorithm aperture problem (Raudies, 2013) and can be seen in
Figure 5.13.

Figure 5.13: Optical Flow Aperture issue. The observer might experience the same view
even if the object is moving in di↵erent directions.

This implies that the OF image cannot be calculated. A further collection of equations
is required to find the OF, with additional restrictions. These additional conditions are
added by all OF methods for estimating the actual flow. Several algorithms have been
further developed, expanding the optical flow capabilities. Some of these techniques are
categorized as global methods (Meinhardt-Llopis et al., 2013), local methods (Farnebäck,
2003) and regional matching (Abràmo↵ et al., 2000):

• Global methods: have the main advantage to output a smooth and regularized flow,
using global information that provides accurate time derivatives. On the other hand,
they are done by a slow iterative method and have unsharp boundaries.

• Local methods: probably the most used because they are easy and fast to calculate,
with accurate time derivatives, which provide the best tradeo↵ between accuracy
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and computational e�ciency. Nevertheless, they introduce errors in the boundaries
between regions.

• Region-based matching: the fastest of the approaches, but has inaccurate time
derivatives.

NVIDIA Turing GPUs include dedicated functions for the OF computing (CUDA
libraries to process the algorithm on GPU). It uses sophisticated algorithms to generate
highly accurate flow vectors that are robust for frame-to-frame variations in intensity and
track true object motion. Computation is significantly faster than other methods with
comparable accuracy. The NVIDIA library for the pyramidal version of the Lucas-Kanade
method, which computes the optical flow vectors for a sparse feature set, was used to
estimate the object’s movement. The result of this algorithm on two frames at t � 1 and t

is illustrated at figure 5.14. On the figure 5.14 c, it is possible to observe the magnitude
and direction of the flows matrix, each represented by a red arrow.

a. First Image at t � 1 time. b. Second Image at t time.

c. Optical Flow between images

Figure 5.14: Optical Flow result from frames t � 1 and t. The red arrows represent the
magnitude and direction of each flow.
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Calculating the OF of an image generates a matrix of flows that can be used to estimate
the object’s flow. Nevertheless, some flows are outliers, and others are tracks of the object
and parts of the background that were covered and unveiled. In literature, there are
multiple algorithms capable of clustering data. Moreover, none of them is tailored for
the concrete case of low-processing, highly variable object flows. For this reason, a novel
algorithm that filters and agglomerates flow in groups, outputting an aggregated flow
result, to obtain the closest object actual flow is proposed. This technique is entitled as
Optical Agglomerated Flow (OAF).

5.3.1 Optical Flow Clustering

In the following subsections the flow vectors representation and normalization of the
flow data (5.3.1.1), appropriate distance measures (5.3.1.2), and clustering algorithms
used for evaluation (5.3.1.3), are addressed. Finally, di↵erent techniques of Optical Flow
Clustering (OFC) are compared with the proposed OAF algorithm.

5.3.1.1 Flow Vectors

To obtain the feature space �, a four-dimensional vector space with N feature vectors
f =

⇣
x y u v

⌘T
is considered, where p =

⇣
x y

⌘T
are image pixel location coordinates

and  =
⇣
u v

⌘T
are velocity vectors.

The<(v) is the magnitude of a vector and ⇥(v) = \(vi ,vj ) is the angle between any
two vectors vi and vj , with 1  i, j < N . The N function vectors are drawn at random
from dense optical flow fields obtained for the measurement duration using a real-time
variational method recently published Zach et al., 2007. Flow vectors with the small-
est magnitude are discarded (by default 10%). Random sampling is used for statistical
purposes so that clustering can be processed in milliseconds. We omit time details from
the function vectors since the examined video sequences are comparatively small. By
subtracting the average and dividing by the standard deviation, we normalize the image
position coordinates x and y, and the velocity components u and v.

5.3.1.2 Flow Distances and Dimension reduction

Three distance measures are defined: D(i, j) :=D(fi , fj ) between any two feature vectors,
with 1  i, j < N :

• Euclidian: DE(i, j) =
qPk

K

⇣
ki � kj

⌘2

• Manhattan: DMt(i, j) =
Pk

K

���ki � kj
���

• Mahanalobis: DMh(i, j) =
Pk

K

⇣
ki � kj

⌘⌃�1 ⇣
ki � kj

⌘T
, where ⌃ is the covariance matrix

between the components of the feature vectors.
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Dimension reduction assists in data compression and reduces computation time. It
also aids in the removal of some unnecessary functions. Furthermore, it reduces the time
needed for clustering computation. For this reason, some dimension reduction techniques
were also integrated:

• Isomap is a low-dimensional embedding approach commonly used to compute a
quasi-isometric, low-dimensional embedding of a series of high-dimensional data
points. Centered on a rough approximation of each data point’s neighbors on the
manifold, the algorithm provides a straightforward procedure for estimating the
intrinsic geometry of a data manifold. Isomap is highly e�cient and can be applied
to a wide variety of data sources and dimensionalities (Tenenbaum et al., 2000).

• Multidimensional Scaling (MDS) is a technique for displaying the degree of resem-
blance between particular cases in a dataset. MDS is a method for converting the
information about the pairwise ’distances’ among a collection of vectors into a struc-
ture of points mapped into an abstract Cartesian space (Kruskal, 1964a; Kruskal,
1964b; O’Connell et al., 1999).

• T-distributed Stochastic Neighbor Embedding (t-SNE) is a mathematical method
for visualizing high-dimensional data by assigning a position to each data point on
a two or three-dimensional map. Its foundation is Stochastic Neighbor Embedding.
A nonlinear dimensionality reduction technique is well-suited for embedding high-
dimensional data for visualization in a two- or three-dimensional low-dimensional
space. It models each high-dimensional object by a two- or three-dimensional point
in such a way that identical objects are modeled by neighboring points and dissim-
ilar objects are modeled by distant points with a high probability (Maaten, 2014;
Van Der Maaten and Hinton, 2008).

5.3.1.3 Flow Clustering

In order to generate the region of interest of the incoming object, the following clustering
methods have been implemented:

• Kmeans is a vector quantization clustering technique that attempts to divide n

observations into c clusters, with each observation belonging to the cluster with
the closest mean (cluster centers or cluster centroid), which serves as the cluster’s
prototype (MacQueen, 1967). As a consequence, the data space is partitioned into
Voronoi cells (Wu et al., 2007).

• Agglomerative Ward (AW) is an Agglomerative Clustering technique that recur-
sively merges the pair of clusters that minimally increase the wards distance crite-
rion (Müllner, 2011). Ward suggested a general agglomerative hierarchical cluster-
ing procedure in which the optimal value of an objective function is used to pick
the pair of clusters to merge at each node.
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• Agglomerative Average (AA) is a clustering technique that recursively merges pairs
of clusters, ordered by the minimum average distance criterion, which is the average
of the distances between each observation (Murtagh and Legendre, 2014).

5.3.1.4 Optical Agglomerated Flow

Additionally to the SoAclustering techniques, a novel algorithm, entitled OAF was devel-
oped, which is finely tailored for collision detection. To process the OAF , initially it’s
necessary to calculate the image normalization factor (Equation 5.16), %:

% =W 2 +H2 (5.16)

where W is the image width and H is the image height. Then, the OF matrix is
obtained, by computing the flow between f ramet�1 and f ramet . The resulting flows need
to be filtered to reduce noise and ensure that only meaningful flows are considered for
agglomeration. The value should be normalized by % to compare to the flow threshold,
�T . A standard value for �T is 1%, varying mostly with the camera stabilization (which
induces noise). This filtering can be obtained by Equation 5.17.

s
x2w + y2h
%

� �T (5.17)

The next step is an iterative procedure. It starts by considering two flows f0 and f1,
from which it is obtained the current position Pr0 = (x0, y0) and Pr1 = (x1, y1), the flow
ending position (x0d ,y0d) and (x1d ,y1d) , which is (xn + fnx,yn + fny). An example of the
contemplated flows and positions is illustrated in figure 5.15.

flow0

flow1

!00

!01

! 10

!11

(x0 , y0)

(x0d , y0d)

(x1d , y1d)

(x1 , y1)

Figure 5.15: The ↵ distances obtained from flows magnitude and directions vectors.

Using this positions, it’s possible to calculate the ↵ distances:

2
66664
↵00 ↵01
↵10 ↵11

3
77775 =

2
66666664

q
(y0�y1)2+(x0�x1)2

%

q
(y0�y1d )2+(x0�x1d )2

%q
(y0d�y1)2+(x0d�x1)2

%

q
(y0d�y1d )2+(x0d�x1d )2

%

3
77777775

(5.18)
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The ↵ distances presented in equation 5.18 are used to verify if two flows can be
merged by comparing their values with ↵threshold . If the calculated value is below the
↵threshold , it is a valid flow to be merged. Whenever the values of the flows increase greatly
and share the same direction, all the ↵ distances might be larger than the ↵threshold , but
still represent a flow from the same object. For this reason, it is important to calculate the
distance of the centers of both flows Dc and the radius of the enclosing circumferences
Rf n (Equations 5.19 and 5.20):

Dc =

s⇣���y0 � y0d
����

���y1 � y1d
���
⌘2

+ (|x0 � x0d |� |x1 � x1d |)2

2
(5.19)

and

8>>><>>>:

Rf 0 =
q

(y0�y0d )2+(x0�x0d )2
2

Rf 1 =
q

(y1�y1d )2+(x1�x1d )2
2

(5.20)

On figure 5.16 is represented the intersection of the enclosing circumferences, which
can be verified by the condition Rf 0 > Dc +Rf 1orRf 1 > Dc +Rf 0.

flow0

flow1

!00

!01

!10

!11

Figure 5.16: Intersection of the enclosing circumferences generated by the obtained flows.

Whenever the ↵ distance or the intersection of the enclosing circumferences is verified,
calculate {ymin,xmin;ymax,xmax} of the considered positions andmerge Flows f0 and f1. The
merge can be obtained by the Equations 5.21 and 5.22:

Pr0(x,y) =
Pr0 · ⌫f 0 +Pr1 · ⌫f 1

⌫f 0 + ⌫f 1
(5.21)

Fr0(x,y) = ¶r1 �¶r0 (5.22)

Then, the f1 is removed from the flow list. For a given region group, this process
is iterated considering the next Pr1 the left value of the list. When no flows can be
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agglomerated, that flow is stored, and the next two flows are considered. This process is
executed through the entire list of flows and only stops whenever no flows are merged in a
full search. The final result are regions containing the group of flows and the cumulative
flow values at the center of the regions. On figure 5.17 is represented the result of the
OAF on the flows processed and previously represented on the figure 5.14.

Figure 5.17: Optical Agglomerated Flow enclosing circumferences.

The output of the OAF are regions that can be considered as moving objects. The
incoming colliding object is considered a region with the bigger area (supposedly closer to
the camera). For example, in Figure 5.18, the hand of the person throwing the ball towards
the UAV has produced a region with flows, which is smaller than the flow produced by the
ball, and that needs to be discarded. By the incoming colliding object flow is possible to
calculate an escape trajectory v, which is the perpendicular vector v?, giving preference
to rising solutions. Note that a perpendicular 2D vector v? always has two solutions,
(90� and �90�). For a UAV, it is usually safer to go up; therefore, dodging objects by
rising the UAV is considered safer. The OAF algorithm is depicted in pseudo-code in
Algorithm 5.2, and a open-source version is made available at https://github.com/
dario-pedro/uav-collision-avoidance.

5.4 Hybrid Collision Avoidance

The OFC and the collision detection network can be executed in parallel threads, being
continuously predicting if there is going to be a collision and estimating the motion of
the image objects. The combination of the two techniques is entitled hybrid collision
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Listing 5.2: Optical Agglomerated Flow Algorithm.
1 # threshold to filter the flows
2 flowThreshold = 1
3

4 # N value for normalize the flows with image width and image height
5 N = math.sqrt(pow(w, 2) + pow(h, 2))
6

7 # threshold to filter the alpha distances
8 distanceThreshold = 15
9

10 # Callback for Optical Agglomerated Flow function
11 # it should be called whenever a new frame is obtained
12 def OAF(frame1, frame2):
13 # obtain the optical flow from the 2 frames
14 flows = cv2.cuda_OpticalFlow.calc(frame1, frame2)
15

16 # filter meaningful flows
17 flows = filterFlows(flows, flowThreshold)
18

19 aggregating = True # control variable
20 regions = [] # object regions
21

22 while aggregating: # stop when there is no flows to merge
23 aggregating = False
24

25 for i in len(flows)-1:
26 for j in len(flows)-1:
27 if(i != j): # don't compare with self
28 # calculate the flows
29 alphas = calculateAlphas(flows[i], flows[j])
30

31 # radius and centers
32 rac = calculateRaC(flows[i], flows[j])
33

34 if(validAggregate(alphas, rac, distanceThreshold)):
35 # force a full scan
36 aggregating = True
37

38 # merge flows into flow[j]
39 mergeFlows(flows[j], flows[i)
40

41 if flows[j] not in regions:
42 # new region found - append it
43 regions.append(flows[j])
44

45 del flows[i] # remove the merged flow
46 break # go back to the first for cycle
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Figure 5.18: Optical Agglomerated Flow with two regions.

avoidance.

Whenever a possible collision is detected, the algorithm can use the latest available
escape trajectory to dodge the incoming object. If the processing time of the DCA is
greater then one fps, an additional thread must be added, which keeps reading the frames
in parallel and updating the frame bu↵er that is used by the DCA. This thread makes
sure that both the DCA and the OFC are using the latest frames, with no lost frames, or
variable sequencing.

A pseudo-code example is shown in the algorithm 5.3.

5.5 Challenges

Most of the challenges regarding the models’ training were left out from the previous
sections for a clear understanding of the results. Nevertheless, it is important to highlight
the most significant challenges for those who intend to reutilize and further continue this
work. This is usually not presented on papers and represents a big part of the work of a
AI engineer.

The first challenge is setting up GPU CUDA libraries and frameworks compatibility.
In this work, it was used the development docker version of TensorFlow, and which setup
with the following versions:

• Python Version 3.6.9.

• CUDA Version 10.1.243.
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Listing 5.3: Hybrid Collision Avoidance Algorithm.
1 # message publisher
2 reactiveCmdPub = ros.Publisher()
3

4 # last known escape vector
5 escapeVector = {x: 0.0, y: 0.0, z: 0.0}
6

7 # Optical Flow Clustering will run in parallel and
8 # will contantly update the escapeVector var
9 opticalFlowThread = threading.Thread(target=OFC)

10

11 # Callback for Hybrid Collision Avoidance function
12 # it should be called whenever a new frame is obtained
13 def hca(videoFrame):
14

15 # Use the DCA algorithm to detect collisions
16 if(dcaProcessFrame(videoFrame)):
17 reactiveCmdPub.pub(escapeVector)

• Tensorflow Version 2.2.0-dev20200311 (which already contains Keras build-in).

• OpenCV Version 4.4.0 (compiled with CUDA)

Another challenge is to manage the models training on GPU, which implies that the
data will be temporally on vRAM. The major problem arises when training large models
(like VGG or con3D from Facebook). Furthermore, large datasets (such as an image
or video dataset), cannot be kept in RAM while the model is training. On this point,
solutions such as the data-generators should be used to fetch data, modify it if required,
and then present it to the model.

The lack of data for a given problem is an issue transversal to multiple AI tasks. The
most commonly used solution is Data Augmentation, but it is not a trivial task on video
datasets, and there is still much to explore. For example, modifying frame by frame
produces transitions that are not natural on the standard videos, and the frameworks’
data-generators do not have a solution for video data.

Data selection and train/test splitting are tasks that a↵ect the outcomes immensely
and are typically left out of papers. For example, the ColANet dataset is highly biased for
the no collision data. This is quite natural, and most of the time, a typical UAV flies freely
without colliding with objects. Feeding this data directly to a model will make it believe
that outputting ’no collision’ is the best solution, as it will have top performance. Using
this model in the real world would be completely useless. Some solutions with sci-learn
tend to influence the loss in biased datasets, but the results are worse than a balanced
dataset.
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Choosing the proper configuration of Dropout, Learning Rate, Learning Decay, Batch
Normalization, and optimizers is still a trial and error process. For example, if the net-
work has a low dropout, for being a small dataset, the LSTM units will decorate the
dataset. On the other hand, if a high value of Dropout is considered, it will have prob-
lems memorizing, never achieving a satisfactory result.
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6
Applications and Results

The modules presented in the previous sections can be integrated and combined in dif-
ferent ways, depending on the use case. Some of the results were presented alongside
the algorithm’s description for a better comprehension of the work. Nevertheless, in
this chapter, the deployment of the architecture running the DCA for the incoming ball
scenario is explored. Initially, all the solution is validated in a simulation environment.
Afterward, two setups are tested: on an external ground station sending commands to a
Parrot Bebop 2, and directly on the OBC of a HEIFU drone (Pedro et al., 2021). For the
simulation environment, a sample dataset, with around 60 videos generated inside the
simulation environment (Gazebo), was set up to test the DCA in a controlled environment,
working inside the FFAU. Afterwards, the BallNet dataset was used to train and test the
DCA on the live scenario.

6.1 Simulation

The simulation provides an environment that allows testing the FFAU, with a focus on the
DCA, without the risk of losing an aircraft or colliding with an obstacle. The selected sim-
ulator was Gazebo due to the integration with ROS, and it is the capability to reproduce
events in similar timings as they would occur on live tests.

The object textures and the background environments on Gazebo are elementary when
compared to the real world. For this reason, the first step was to fine-tune the model with
a small dataset that was created just for the simulation tests. This dataset consists of 60
videos with incoming thrown balls. In addition, a ROS node was implemented, which
spawns objects with an oblique throw movement, which is helpful to simulate random
thrown objects to the drone.

A pre-trained model was fine-tuned with this dataset during three epochs. Training
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for longer quickly overfits the model because of the small number of videos and the lack
of pixel di↵erences between the videos and between the frames of each video.

Afterwards, a simple world was created, where the ball spawned and was thrown to
the UAV from di↵erent angles. A representation of the results outputted by the NNP and
OAF and represented on Figures 6.1 and 6.2 respectively.

a. Normal/Free flight frame (no collision label).

b. Incoming collision frame (collision label)

Figure 6.1: Neural Network Pipeline detecting an incoming ball on the Gazebo simulator.

In around 95% of the test, the UAV dodged the ball with success, and it was surprising

100



6.2. REAL APPLICATION

Figure 6.2: Optical Agglomerated Flow result, being executed after a collision was detect
by the Neural Network Pipeline.

that it was capable of dodge new objects (e.q. a thrown car) that were not present on the
training data. This setup allows validating the processing pipelines of the algorithm
and the behavior of the UAV on the request of an avoidance reaction. Furthermore, it
proved that fine-tuning the algorithm to a new set of images allows it to learn the new
environment and be executed on it.

6.2 Real Application

After the algorithm validation on the simulation, the solution was tested in a similar
situation in the real world. For this, the scenario of a human throwing a ball to the
UAV was selected because it is one of the few scenarios that other researchers are also
conducted tests on (Falanga et al., 2019).

An aspect that was perceived while integrating the algorithm on the UAV was the
frame rate variability. The DCA was trained with a constant frame rate, and for that
reason, an oscillating frame rate would bring an additional parameter. For example, a
video with half the frame rate was shown to the algorithm, and the performance dropped
approximately 30%. To solve this issue, an additional feature was implemented and
added to the training process of the RNN of the DCA. While constructing the sequences
of feature vectors, some frames were dropped with a given frequency, constructing se-
quences with variable frame rates. This presents the variability to the algorithm and
also augments the dataset. Surprisingly, this technique maintained the original dataset
frame rate performance while dealing with frame rate oscillation and achieving the same
performance on a video with half the frame rate as one of the original frame rates.
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On figure 6.3 (a) a frame processed by the algorithm is represented, where the algo-
rithm outputted ’No Collision’, and on the figure 6.3(b) detected a ’Collision’.

a. Normal/Free flight frame (no collision label).

b. Incoming collision frame (collision label)

Figure 6.3: Neural Network Pipeline detecting if there is an incoming collision.

The avoidance of a thrown ball was tested to validate the algorithm in a similar use
case to previous research works (Falanga et al., 2019). A Parrot Bebop 2 was connected to
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a Legion with a 2060 GPU, running the proposed framework.

At first, the trained NNP weights were used, but the results were worse than expected.
After some troubleshooting, the authors realized that a constant framerate of approxi-
mately 29 fps was obtained by using the recorded videos. However, when working with
the live streaming video from the UAV, a high framerate variance was experienced, os-
cillating between 5 to 30 fps. Also, the compression algorithm used by the Parrot Bebop
2 in livestream mode reduces the video quality, creating another significant di↵erence
compared to the trained NNP. Finally, the transmission delay is also an issue, and, for
simplification, it will be left out of this paper.

To solve this issue, a set of image augmentation techniques were applied to the dataset.
First, it randomly exposed the model to videos at variable framerate (dropping frames)
and compressed frames (constant within the video, variable per epoch). Then, it applied
the most traditional augmentations, such as rotation, translation, and zoom (yet again,
constant per video). After training and deploying this new model, normal behavior was
obtained. The NNP result is far from perfect, but this is because the score is measured
at the frame level. On the testing results, the NNP often detects a collision a few frames
before or after the ideal moment annotated on the dataset, lowering the score. However,
this is not critical, as long as the detection is obtained at a moment closed enough for the
dodge routine.

Some of the latest UAVs in the market (e.g., Skydio 2, HEIFU (Metz, 2016; Pedro et al.,
2021)) already have NVIDIA Single Board Computer (SBC)s, being capable of running
such algorithms directly on the aircraft, therefore being capable of running the proposed
architecture directly on the UAV. The NNP and OME were integrated with an NVIDIA
Jetson Nano used by HEIFU) to run the entire algorithm pipeline, which took an average
of 0.18 s, demonstrating that it is a viable option for SoA UAVs.

In order to study the proposed OME algorithm, eight frames from eight di↵erent
videos (a total of 64 frames) were selected. Figure 6.4 illustrates these frames, which were
manually annotated with a red mask on the ball, allowing the creation of a ground truth
mask filtering by the red color. As a result, the NNP were correctly outputting collision
for all the selected frames; therefore, it is possible to evaluate the performance of the
OME algorithm (the most critical part of the dodging trajectory estimation).

The OME is capable of calculating escape trajectories for the closest detected object.
For each frame illustrated in Figure 6.4, the previous frame and the current frame were
fed into the OME algorithm that outputted a region for the incoming object. Using this
output and the ground truth mask GT , it is possible to calculate the True Positive (TP)
and False Positive (FP) (normalized by the object size of the object

P
GTf ) areas. For a

given frame f and a di↵erent OME algorithm i, where & is the bitwise AND between
matrix, it can calculated by Equation (6.1):
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Figure 6.4: Set of 64 ground truth frames with collisions for the OME results discussion.

8>>>><>>>>:

TPf i =
GTf & OMEf iP

GTf

FPf i =
GTf & OMEf iP

GTf

. (6.1)

In Figure 6.5, it is possible to observe the TP for each frame that is under analysis.
The top-5 performing algorithms were picked for better visualization. The OAF and the
Agglomerative algorithms without dimension reduction were the ones that achieved the
higher results. Moreover, Figure 6.6 is depicted the processing time in milliseconds of the
algorithms per frame. The application of dimension reduction does not reduce processing
time, according to the results depicted in Figure 6.6. This is most likely due to the low
complexity of the applied clustering algorithms. Thus, the OFC appears as a trade-o↵
between accuracy and processing time.

Just analyzing the TP results might be misleading because an algorithm might be
detecting bigger regions, which always encapsulate the incoming object and, therefore,
outperform other algorithms. On the other hand, when analyzing the FP, some algo-
rithms detect a bigger area around the object, which intuitively is justified by the ob-
ject’s movement, which generates a flow vector between the previous and the current
frame. The analyzed metrics should not penalize these algorithms because, ultimately,
the goal is to estimate the incoming object correctly. For this reason, a newmetric entitled
FPPerf ormance is introduced. The FPPerf ormance takes into consideration the impact
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Figure 6.5: Graph analyses of the TP results in the selected video frames.

of the error in the decision. For this, after computing the GTf & OMEf i , for each point of
the resulting mask, it calculates the distance to the nearest point on the object. This new
matrix of distances is named FD. Afterward, the FPPerf ormance can be calculated by:

FPPerf ormance =
P
FDf iP

GTf & OMEf i
. (6.2)

Using Equation 6.2, it is possible to plot the results in Figure 6.7, which illustrate the
FP Performance on the multiple frames. The OAF generates very few points outside the
region of the incoming object; therefore, it is always below 0.15 FP Performance, which is
a desirable threshold. Values above this threshold might lead to agglomeration of other
objects and, therefore, a miss perception of another direction, which could lead to a wrong
escape trajectory.

All the results have been summarized in Table 6.1, which is ordered by decreasing
mean FP performance. The TP, FP, and the processing time are presented as the mean of
all frames. Furthermore, the Root Mean Square Error (RMSE), and the min/max FP per-
formance results are also presented. It is possible to conclude that for the object trajectory
estimation, the proposed solution is capable of solving the problem with approximately
2% error. When the algorithm is running live, with continuous frames being fed to the al-
gorithm, the error should statistically decrease because it was measured per frame (Huang
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Figure 6.6: Graph analyses of the processing time in the selected video frames.

et al., 1997; Kazemi et al., 2021). Further studies are required to analyze the performance
impact with the speed variability of the incoming object, the speed variability of the ob-
server, especially angular movements that might induce false trajectories (Wang and Lin,
2002). In addition, environments with multiple moving objects require some attention,
as might be the case in most crowded cities.
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Figure 6.7: Graph analyses of the FP Performance in the selected video frames.
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Table 6.1: Results comparison of the OME algorithm in the selected and annotated 64
frames.

Algorithm Distance
Metric

Dimension
Reduction Mean TP Mean FP RMSE FP Perf.

(Min / Mean / Max)
Mean Time

(ms)

OFC Agglomeration - - - - 0.76 3.40 0.50 0.00 / 0.02 / 0.06 25.99
AA (Murtagh and Legendre, 2014) Euclidian - - 0.33 0.96 0.43 0.00 / 0.06 / 0.22 11.84
AA (Murtagh and Legendre, 2014) Manhattan - - 0.33 0.96 0.43 0.00 / 0.06 / 0.22 8.69
AA (Murtagh and Legendre, 2014) Mahalanobis - - 0.33 1.29 0.46 0.00 / 0.10 / 0.37 33.67
AW (Müllner, 2011) Euclidian - - 0.37 1.82 0.47 0.00 / 0.13 / 0.27 12.23
AW (Müllner, 2011) Manhattan - - 0.37 1.82 0.47 0.00 / 0.13 / 0.27 9.11
AA (Murtagh and Legendre, 2014) Mahalanobis Isomap (Tenenbaum et al., 2000) 0.14 2.03 0.41 0.05 / 0.13 / 0.24 48.51
AA (Murtagh and Legendre, 2014) Euclidian MDS (Kruskal, 1964b) 0.10 1.43 0.37 0.02 / 0.14 / 0.28 137.63
AA (Murtagh and Legendre, 2014) Manhattan MDS (Kruskal, 1964b) 0.13 1.36 0.39 0.01 / 0.14 / 0.37 138.84
Kmeans (MacQueen, 1967) Manhattan - - 0.43 2.43 0.48 0.01 / 0.15 / 0.35 25.01
AA (Murtagh and Legendre, 2014) Euclidian Isomap (Tenenbaum et al., 2000) 0.09 2.18 0.48 0.06 / 0.16 / 0.24 26.11
AA (Murtagh and Legendre, 2014) Manhattan Isomap (Tenenbaum et al., 2000) 0.09 2.18 0.48 0.06 / 0.16 / 0.24 21.95
Kmeans (MacQueen, 1967) Euclidian - - 0.41 2.58 0.48 0.01 / 0.16 / 0.45 29.10
AA (Murtagh and Legendre, 2014) Mahalanobis MDS (Kruskal, 1964b) 0.13 1.81 0.39 0.02 / 0.17 / 0.48 159.93
AW (Müllner, 2011) Mahalanobis - - 0.33 2.49 0.46 0.00 / 0.18 / 0.48 34.07
Kmeans (MacQueen, 1967) Mahalanobis - - 0.38 3.08 0.47 0.01 / 0.19 / 0.50 49.76
Kmeans (MacQueen, 1967) Mahalanobis Isomap (Tenenbaum et al., 2000) 0.18 4.67 0.44 0.07 / 0.23 / 0.41 64.07
AW (Müllner, 2011) Mahalanobis Isomap (Tenenbaum et al., 2000) 0.18 3.91 0.46 0.07 / 0.24 / 0.40 48.91
AA (Murtagh and Legendre, 2014) Mahalanobis t-SNE (Van Der Maaten and Hinton, 2008) 0.16 2.92 0.42 0.06 / 0.24 / 0.37 1 057.79
AW (Müllner, 2011) Mahalanobis t-SNE (Van Der Maaten and Hinton, 2008) 0.17 3.15 0.43 0.06 / 0.25 / 0.39 1 058.15
Kmeans (MacQueen, 1967) Mahalanobis t-SNE (Van Der Maaten and Hinton, 2008) 0.19 3.51 0.43 0.06 / 0.26 / 0.36 1 075.77
AA (Murtagh and Legendre, 2014) Euclidian t-SNE (Van Der Maaten and Hinton, 2008) 0.13 2.97 0.45 0.12 / 0.29 / 0.43 1 017.39
AA (Murtagh and Legendre, 2014) Manhattan t-SNE (Van Der Maaten and Hinton, 2008) 0.13 2.97 0.45 0.12 / 0.29 / 0.43 1 039.02
Kmeans (MacQueen, 1967) Euclidian Isomap (Tenenbaum et al., 2000) 0.10 4.37 0.49 0.07 / 0.29 / 0.44 41.11
Kmeans (MacQueen, 1967) Euclidian t-SNE (Van Der Maaten and Hinton, 2008) 0.13 3.43 0.45 0.10 / 0.30 / 0.47 1 034.63
Kmeans (MacQueen, 1967) Manhattan Isomap (Tenenbaum et al., 2000) 0.08 4.70 0.47 0.07 / 0.31 / 0.49 36.56
Kmeans (MacQueen, 1967) Manhattan t-SNE (Van Der Maaten and Hinton, 2008) 0.13 3.43 0.46 0.10 / 0.31 / 0.47 1 056.44
AW (Müllner, 2011) Euclidian t-SNE (Van Der Maaten and Hinton, 2008) 0.11 3.31 0.47 0.09 / 0.32 / 0.50 1 017.83
AW (Müllner, 2011) Manhattan t-SNE (Van Der Maaten and Hinton, 2008) 0.11 3.31 0.47 0.09 / 0.32 / 0.50 1 039.30
AW (Müllner, 2011) Euclidian Isomap (Tenenbaum et al., 2000) 0.11 4.97 0.49 0.08 / 0.33 / 0.52 26.52
AW (Müllner, 2011) Manhattan Isomap (Tenenbaum et al., 2000) 0.11 4.97 0.49 0.08 / 0.33 / 0.52 22.40
AW (Müllner, 2011) Manhattan MDS (Kruskal, 1964b) 0.06 4.15 0.44 0.20 / 0.42 / 0.63 139.31
AW (Müllner, 2011) Euclidian MDS (Kruskal, 1964b) 0.07 4.77 0.45 0.21 / 0.45 / 0.90 138.09
AW (Müllner, 2011) Mahalanobis MDS (Kruskal, 1964b) 0.08 4.92 0.50 0.17 / 0.52 / 0.99 160.31
Kmeans (MacQueen, 1967) Manhattan MDS (Kruskal, 1964b) 0.03 6.08 0.42 0.36 / 0.54 / 0.78 158.46
Kmeans (MacQueen, 1967) Mahalanobis MDS (Kruskal, 1964b) 0.04 5.84 0.44 0.24 / 0.54 / 0.82 179.07
Kmeans (MacQueen, 1967) Euclidian MDS (Kruskal, 1964b) 0.03 6.33 0.42 0.30 / 0.58 / 1,00 158.76
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7
Conclusions and Future Work

This chapter summarizes the main contributions of this thesis. It also proposes some
guidelines for future research on the theme, highlighting the points where the developed
application can be improved.

7.1 Conclusions

This thesis focused on a framework for handling the behavior of individually or net-
worked unmanned aerial vehicles, ensuring reliability and safety in the flight, regardless
of the environmental conditions and unexpected events. In addition, the work explored
in-depth the collision avoidance task with deep learning techniques.

In an initial phase, a research process was carried out related to autonomous vehicles,
the di↵erent types of collision avoidance, and the most well-known Artificial Intelligence
algorithms in the literature. A comparative analysis was always carried out regarding the
performance of the presented deep learning algorithms. For the training of the envisioned
algorithms, two datasets were proposed, namely the ColANet and the BallNet. These
datasets were made available as open-source datasets to accelerate and facilitate the
development of new collision avoidance algorithms.

Furthermore, a safer architecture for UAVs’ navigation was presented. The core ele-
ments are implemented on top of ROS framework and make use of its communication
mechanism to implement all the framework connections. Additionally, there were several
modules developed that can be adjusted and reused to fit new purposes.

The main innovation added to this architecture features a block responsible for col-
lision avoidance with dynamic objects (such as a thrown ball). This block uses a NNP
composed of a CNN for feature extraction, a RNN for temporal analyses, and a FNN
for outputting the detection. Di↵erent models of CNN were explored, and from that
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inspection, the best trade-o↵ between performance and computation resources lead to
the selection of the MobileNetV2 as the ideal model used in practical tests. A similar
process was conducted for the RNN, testing multiple combinations of LSTMs in deep and
width.

Whenever this NNP outputs an incoming collision, an escape vector is calculated
by a OME algorithm running in parallel. The OME uses the optical flow between the
previous and the current frame and a clustering algorithm to estimate the trajectory of
the incoming object. A novel OF clustering algorithm for this use-case was introduced,
which was named OFC, that outperforms the state-of-art techniques.

The NNP can be thought of as a combination of di↵erent NN from a theoretical point
of view. But in practice, it’s a black box that receives input images and outputs data
regarding collisions. To understand a little bit more what’s going on inside the NNP, the
Grad-CAM was adapted to be executed on this model. This allowed the perception of
which areas of the network’s are relevant for the collision classification. Also, a visual
representation of the influence of fine-tuning a network was obtained. The Grad-CAM
output 9x9 matrixes with normalized weights from 0 to 1, which were rescaled to the
input image size, equalized to the output values, and produced a superimposed visual-
ization.

All the modules presented in the framework for remote and fully autonomous UAVs
were developed and integrated, connected to a cloud-based platform, named beXStream.
The proposed architecture enabled remote control of UAVs via Internet, in a portable,
extensible, open-source platform that manages containerized workloads and services,
which facilitated scalability, configuration, and automation. Furthermore, the actions
were sent through the platform. At the same time, safety was enforced by the FFAU,
providing constant feedback and telemetry to the pilot, which could take control of the
autonomous UAVs when desired.

To train the NNP, the BallNet dataset with videos of subjects throwing balls at a
UAV was used. The videos were annotated and converted into several images. The NNP
demonstrated an on-time detection, which allows the UAV to estimate a trajectory and
to dodge the incoming ball. Both the results on the NNP and the OME demonstrated
promising results, achieving 9% error on frame collision detection (multiple consecutive
frames drop this percentage) by the NNP, and approximately 2% error on the trajectory
estimation by the OME. The tackled use case is just an introduction to the capabilities of
the proposed technique, as it is only a scenario that consists of a thrown ball and presents
a dataset for that purpose. The NNP knowledge can also be transferred to other scenarios
with the enlargement of the dataset.

Furthermore, this solution only requires a simple monocular camera, which can be
found in most commercial UAVs. The benefits of using these cameras are their small
size, reduced weight, lower power consumption, flexibility, and mounting simplicity. On
the other hand, they depend highly on weather conditions and might lack image clarity
depending on the background color contrast.
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Regarding the proposed algorithms, the drawbacks identified are the processing re-
quirements of the NNP, which are still not available in most out-of-shelf UAVs. On the
professional categories, it is still a significant amount of computational processing and
power consumption. In addition, the OME might be accurate in processing the object tra-
jectory, but anyminor error can compromise the dodgingmaneuver. Finally, fast reactions
might be dangerous if flying in cluttered environments or if the UAV has considerable
dimensions.

The proposed approach can be applied to standard UAVs using regular video sensors
compared with the current state-of-art. Even though in this work, only the collision of an
incoming thrown ball was deeply put to the test, the author believes that the algorithm can
be easily adapted to multiple use-cases (with static or dynamic obstacles) by increasing
the dataset scenarios. The solutions in the literature are, in comparison, harder to apply
or unable to handle fast-moving objects.

7.2 Future Work

During this thesis, multiple dead ends were encountered. For these, possible paths to
be explored were envisioned. For this reason, this work can be further improved with
updates on the modules presented, possibly even entering new areas of research. The list
below summarizes some of the key innovative ideas that will drive future work:

• Optimized DCA. The DCA module can be explored in greater depth, as this area
still has many unsolved problems. The dataset must be enlarged, and the proposed
algorithm needs to be optimized to run faster. The concept can be optimized by
exploring di↵erent feature extractors, variations on the sequence size with which
the RNN runs and di↵erent types of RNN;

• Testing the DCA algorithm on real UAVs in autonomous missions;

• Framework modules variants. Di↵erent implementations of the proposed frame-
work should be developed, allowing a performance evaluation and comparison.

• Spatio-temporal Grad-CAM. How would it be a good temporal thermal feature
visualization?

• Optical Flow with depth estimation (using a depth camera), allowing the estimation
of the distance to the object, therefore adjusting the escape speed and facilitating
the selection of the nearest object.

• CUDA implementation of the OFC algorithm to speed up computation time.

• Live tests on HEIFU hexacopters with the algorithms taking advantage of the on-
board GPU.
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• Edge multi-tenant computing. Whenever a UAV is flying in a di↵erent country,
the server should be instantiated in the vicinities, minimizing the communication
delay;
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Machine Learning

This appendix contains a detailed analyses on SoA Machine Learning that are the pillars
for this thesis. This thesis will focus mainly on DL, but it’s important to understand
the di↵erent fields inside AI and organize them in such a way that it’s possible to find
parallelism between subsets and extract advantages from their di↵erences (Domingos,
2012).

AI is a field of computer science that aims to make computers achieve human-style
intelligence. As represented in figure A.1, ML is a subset of AI, which contains a subset
that try to replicate the human-brain called NN. NN contains large neural models which
finally get us to the field of DL.

Artificial Intelligence

Machine Learning

Deep Learning

Figure A.1: Artificial Intelligence

ML is a set of related techniques in which computers are trained to perform a particu-
lar task rather than by explicitly programming them. ML algorithms can be used to infer
relationships and extract knowledge from gathered data.

A NN is a construction type in ML inspired by the network of neurons (nerve cells) in
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the biological brain. NN are a fundamental part of DL, and will be covered in this thesis.
Finally there is DL, which is a subfield of ML, that uses multi-layered neural networks.

Often, ML and DL are used interchangeably.
This thesis will first go through the three main ways of learning, and then try to

cluster the ML techniques into five clusters (Domingos, 2015). There are main approaches
for learning algorithms are Supervised Learning (SL), Unsupervised Learning (UL) and
Reinforcement Learning (RL) (Ayodele, 2010).

• SL consist in obtaining outcome variables (or dependent variables) which are pre-
dicted from a given set of predictor variables (data features). Using these set of
variables, a function that maps inputs to desired outputs is generated in what is
called the training process. The process finishes when the model achieves a desired
level of accuracy on the training data. Examples of SL algorithms are: K-Nearest
Neighbor (KNN), Random Forest, Decision Tree and Logistic Regression. A sample
representation of a SL workflow is illustrated on figure A.2.

On figure the dataset is divided by colors. After training the algorithm correctly
classifies each object by it’s characteristic color.

Input Raw Data

Training Data set

Output

Desired output

Algorithm Processing

Supervision

Red

Green

Purple

Figure A.2: Supervised Learning.

• UL is a data-driven knowledge discovery approach that can automatically infer a
function that describes the structure of the analyzed data or can highlight corre-
lations in the data forming di↵erent clusters of related data. A UL workflow is
depicted at figure A.3. Examples of algorithms include: K-Means, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) and Apriori.

On figure A.3 no information is given to the algorithm, and it has to discover that
the input contains objects of di↵erent shapes and colors. Afterwards, he will group
the di↵erent objects according to it’s similarities. At the end, the output should be
3 clusters, with the di↵erent colors. Notice that in the case of SL the algorithm was
able to recognize that a given object belong to the color class, whereas on the UL it
just as the concept of the object belonging to a di↵erent category.
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Figure A.3: Unsupervised Learning.

• Reinforcement Learning algorithms are trained to make specific decisions. The goal
is to discover which actions lead to an optimal policy. This is done by learning
from past experiences, as represented at figure A.4. As an example, a target policy
is set, for instance the delay of a set of flows in an Software Defined Networking
(SDN). Then an algorithm results in actions on the SDN controller that change the
configuration and for each action a reward is received, which increases as the in-
place policy gets closer to the target policy. Ultimately, the algorithm will learn the
set of configuration updates (actions) that result in such target policy (e.g. Markov
Decision Process).

Compared to SL and UL, RL is slightly di↵erent, in the sense he does not intend
to map the input to the output. For example, he can try to take actions towards
the region area that contains the maximum number of red objects, but he does it
undefinability, until he reaches an end function.

Figure A.4: Reinforcement Learning.

As described in (Domingos, 2012), there are 12 important key points that should be
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kept in mind when working with ML:

1. Learning = Representation + Evaluation + Optimization.

a) Representation - A classifier must be represented in a formal language that
the computer can handle. Creating a set of classifiers the learner can learn is
crucial.

b) Evaluation - An Evaluation function is needed to distinguish good classifiers
from bad ones.

c) Optimization - A method to search among the classifiers in the language for
the highest scoring one. The choice of optimization technique is key to the
e�ciency of the algorithm.

2. It is generalization that matters.

3. Data alone is not enough.

4. Overfitting has many faces.

5. Intuition fails in high dimensions.

6. Theoretical guarantees are not what they seem.

7. Feature engineering is the key.

8. More data beats a cleverer algorithm.

9. Learn many models not just one.

10. Simplicity does not imply accuracy.

11. Representable does not imply learnable.

12. Correlation does not imply Causation .

A.1 Machine Learning Fields

ML has many subfields, branches, and special techniques. To over simplify — in SL you
know what you want to teach the computer, while UL is about letting the computer figure
out what can be learned. SL is the most common type of ML and will be the focus of our
work.

The majority of ML algorithms can be clustered into five clusters (Domingos, 2015),
as summarized on table A.1 :

The symbolist cluster represent algorithms who believe in discovering new knowledge
by filling in the gaps in the knowledge that you already have. They are the ones that most
relate to computer science in the five clusters. Theirmaster algorithm is inverse deduction.
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Table A.1: Di↵erent types of Machine Learning.

Cluster Origins Strength Main Algorithm

Symbolist Logic & philosophy Structure Inference Inverse deduction
Connectionists Neuroscience Estimating Parameters Neural Networks
Evolutionaries Evolutionary biology Weighing Evidence Genetic programming
Bayesians Statistics Structure Learning Probabilistic Inference
Analogizers Psychology Mapping to Novelty Kernel Machines

For the symbolist, learning is the inverse of deduction, which means that learning is the
induction of knowledge. In practical terms, they try to create general rules from specific
facts. On figure A.5, is a simplistic representation of a typical symbolist algorithm, a
decision tree. On this example, a character classifier is presented, where the output are
4 di↵erent possible groups. A decision tree has multiple types of nodes (Kamifiski et
al., 2018). On figure A.5, decision nodes are represented in green and end nodes are
represented in blue. The green arrows represent a true evaluation at the node, while the
red arrows represent a false evaluation. A decision tree is a flowchart-like structure in
which each internal node represents a "test"on an attribute (e.g. whether a coin flip comes
up heads or tails), each branch represents the outcome of the test, and each leaf node
represents a class label (decision taken after computing all attributes). The paths from
root to leaf represent classification rules.

Is number?

Has holes? Is vowel?

0 4 6 8 9 1 2 3 5 7 a e i o u q w r t p s d f g h 
j k l z x c v b n m

Figure A.5: Symbolist Representation

In decision analysis, a decision tree and the closely related influence diagram are used
as a visual and analytical decision support tool, where the expected values (or expected
utility) of competing alternatives are calculated.

Among decision support tools, decision trees (and influence diagrams) have several
advantages, such as:

• Are simple to understand and interpret. People are able to understand decision tree
models after a brief explanation.

143



APPENDIX A. MACHINE LEARNING

• Have value even with small datasets. Important insights can be generated based
on experts describing a situation (its alternatives, probabilities, or costs) and their
preferences for outcomes.

• Help determine worst, best and expected values for di↵erent scenarios.

• Use a white box model. If a given result is provided by a model.

• Can be combined with other decision techniques.

On the other hand, decision trees have some disadvantages:

• They are unstable, meaning that a small change in the data can lead to a large
change in the structure of the optimal decision tree.

• They are often relatively inaccurate. Many other predictors perform better with
similar data. This can be remedied by replacing a single decision tree with a random
forest of decision trees, but a random forest is not as easy to interpret as a single
decision tree.

• For data that include categorical variables with di↵erent number of levels, infor-
mation gain in decision trees is biased in favor of those attributes with more levels
(Deng et al., 2011).

• Calculations can get very complex, particularly if many values are uncertain and/or
if many outcomes are linked.

The evolutionaries, have origins in the evolutionary biology. The main algorithm of
this school, is the genetic programming and consist on replicating the process of genetic
evolution.

As it is illustrated in figure A.6, it starts from a population of unfit (usually random)
elements, and they are iteratively fit for a particular task by applying operations analo-
gous to natural genetic processes to the population. It is essentially a heuristic search
technique that searches for an optimal or at least suitable element.

The typical operations of a Genetic algorithm are:

1. Selection: the fittest elements for reproduction (crossover) and mutation are se-
lected according to a predefined fitness measure, usually proficiency at the desired
task.

2. Crossover: involves swapping random parts of selected pairs (parents) to produce
new and di↵erent o↵spring that become part of the new generation of elements.

3. Mutation: consists involves substitution of some random part of a element with
some other random part of another element.
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Evaluation Selection

Mutation Crossover

Figure A.6: Genetic Algorithm Representation.

Some combinations, usually the best ones, are directly copied from the current gener-
ation to the new generation, which is usually called elitism. Then the selection and other
operations are recursively applied to the new generation of elements.

Typically, members of each new generation are on average more fit than the members
of the previous generation, and the best-of-generation element is often better than the
best-of-generation elements from previous generations. Termination of the recursion is
when some individual element reaches a predefined proficiency or fitness level. A branch
of Genetic algorithms are considered to be evolutionary bio-inspired, such as Genetic
Bee Colony Algorithm (GBCA), Fish Swarm Algorithm (FSA), Cat Swarm Optimization
(CSO), Whale Optimization Algorithm (WOA), Artificial Algae Algorithm (AAA), Ele-
phant Search Algorithm (ESA), Chicken Swarm Optimization Algorithm (CSOA), Moth
Flame Optimization (MFO) and Grey Wolf Optimization (GWO) (Darwish, 2018).

It can be considered that the main advantages of genetic algorithms are:

• It can find fit solutions in less time. (fit solutions are solutions which are good
according to the defined heuristic).

• The random mutation guarantees to some extent that a wide range of solutions is
generated.

• Coding them is really easy compared to other algorithms.

On the other hand, the drawbacks of genetic algorithms are:
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• It is really hard for people to come up with a good heuristic which actually reflects
what the algorithm should do.

• It might not find the most optimal solution to the defined problem in all cases.

• Its also hard to choose parameters like number of generations, population size or
stopping condition. When the model is being worked, even though the heuristic
was right, it might be hard to realize it because it’s running for a few generations.

The bayesians come from statistics and most of their algorithms are extensions and
reformulations of the equation A.1. In probability theory and statistics, Bayes’ theorem
describes the probability of an event, based on a priori knowledge that may be related
to the event. The theorem shows how to change a priori probabilities in view of new
evidence to obtain a posteriori probabilities.

The core stone is the equation A.1 (Kemp et al., 1994), on which A and B are events,
P(A|B) is a conditional probability of the likelihood of event A occurring given that B is
true, P(B|A) is the conditional probability of the likelihood of event B occurring given
that A is true and finally P(A) and P(B) are the probabilities of observing A and B inde-
pendently of each other. This is known as the marginal probability.

8>><>>:
P(A|B) = P(A)P(B|A)P(B)

P(B) , 0
, (A.1)

Some advantages to using Bayesian analysis include the following:

• It provides a natural and principled way of combining prior information with data,
within a solid decision theoretical framework. You can incorporate past information
about a parameter and form a prior distribution for future analysis. When new
observations become available, the previous posterior distribution can be used as a
prior. All inferences logically follow from Bayes’ theorem.

• It provides inferences that are conditional on the data and are exact, without re-
liance on asymptotic approximation. Small sample inference proceeds in the same
manner as of a larger dataset. Bayesian analysis also can estimate any functions of
parameters directly, without using the "plug-in"method (a way to estimate function-
als by plugging the estimated parameters in the functionals).

• It obeys the likelihood principle. If two distinct sampling designs yield proportional
likelihood functions for, then all inferences about should be identical from these
two designs. Classical inference does not in general obey the likelihood principle.

• It provides a convenient setting for a wide range of models, such as hierarchical
models and missing data problems. Markov Chain Monte Carlo (MCMC), along
with other numerical methods, makes computations tractable for virtually all para-
metric models.
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There are also disadvantages to using Bayesian analysis:

• It does not tell you how to select a prior. There is no correct way to choose a
prior. Bayesian inferences require skills to translate subjective prior beliefs into
a mathematically formulated prior. If you do not proceed with caution, you can
generate misleading results.

• It can produce posterior distributions that are heavily influenced by the priors.
From a practical point of view, it might sometimes be di�cult to convince subject
matter experts who do not agree with the validity of the chosen prior.

• It often comes with a high computational cost, especially in models with a large
number of parameters. In addition, simulations provide slightly di↵erent answers
unless the same random seed is used. Note that slight variations in simulation
results do not contradict the early claim that Bayesian inferences are exact. The
posterior distribution of a parameter is exact, given the likelihood function and the
priors, while simulation-based estimates of posterior quantities can vary due to the
random number generator used in the procedures.

The analogizers actually have influences from a lot of di↵erent fields, being psychol-
ogy probably the most important to them. The core algorithm for the analogizers is the
kernel machines as known as SVM (Cortes and Vapnik, 1995), as is exemplified at figure
A.7.

Input space Feature space

Figure A.7: Support Vector Machine Representation.

Given a set of training examples, each marked as belonging to one or the other of
two categories, an SVM training algorithm builds a model that assigns new examples to
one category or the other, making it a non-probabilistic binary linear classifier (although
methods such as Platt scaling exist to use SVM in a probabilistic classification setting).
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An SVM model is a representation of the examples as points in space, mapped so that
the examples of the separate categories are divided by a clear gap that is as wide as
possible. New examples are then mapped into that same space and predicted to belong
to a category based on the side of the gap on which they fall.

In addition to performing linear classification, SVMs can e�ciently perform a non-
linear classification using what is called the kernel trick, implicitly mapping their inputs
into high-dimensional feature spaces.

When data is unlabeled, SL is not possible, and an UL approach is required, which
attempts to find natural clustering of the data to groups, and then map new data to these
formed groups (Statnikov et al., 2011).

In general terms, the main advantages of SVMs can be described as:

• SVMs are very good when there’s not much information about the working data.

• Works well with even unstructured and semi structured data like text, images and
trees.

• The kernel trick is the major advantage of SVM. With an appropriate kernel func-
tion, it’s possible to solve any complex problem, with few parameters.

• Unlike in neural networks, SVM is not solved for local optima.

• It scales relatively well to high dimensional data.

• SVM models have generalization in practice, the risk of over-fitting is less in SVM.

The main SVM disadvantages are (Cawley and Talbot, 2010):

• Choosing a “good” kernel function is not easy.

• Long training time for large datasets.

• Di�cult to understand and interpret the final model, variable weights and individ-
ual impact.

• Since the final model is not so easy to see, small calibrations cannot be done to the
model hence its tough to incorporate our business logic.

Finally, the last group of the ML cluster are the connectionists, which have origins in
neuroscience, because they’re trying to take inspiration from how the brain works. This
is the cluster that will be further analyzed, and will give additional details in the next
section. On figure A.8 a brief representation of the connectionists algorithm, a neural
network.

In the seek for knowledge in SL (in particular on DL), it’s explored ways to intercon-
nect di↵erent types of DL architectures in order to solve yet unsolved problems, such as
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Input

Figure A.8: Connectionists Representation.

video context awareness classifiers in collision detectors, data fusion and correlation, or
even clinical future estimation.

Computer vision has become ubiquitous in our society, with applications in search,
image understanding, apps, mapping, medicine, drones, and self-driving cars. Core
to many of these applications are visual recognition tasks such as image classification,
localization and detection. Recent developments in NN approaches have greatly advanced
the performance of these SoA visual recognition systems. This next subsection is a deep
dive into details of the DL architectures with a focus on learning end-to-end models and
datasets for these tasks, particularly image classification. This part of the work, will give
detailed resume about neural networks and gain a detailed understanding of cutting-
edge research in computer vision that is later reused and applied to create our collision
avoidance algorithm.

A.2 Deep Learning

ANNs were inspired by information processing and distributed communication nodes
in biological systems. ANNs have several di↵erences from biological brains. Specifically,
neural networks tend to be static and symbolic, while the biological brain of most living
organisms is dynamic (plastic) and analog (Marblestone et al., 2016; Olshausen and Field,
1996; Scellier and Bengio, 2016).

The term DL was introduced to the ML community by Rina Dechter in 1986, (Dechter,
1986; Schmidhuber, 2015) and to artificial NN by Igor Aizenberg et. al in 2000, in the
context of Boolean threshold neurons (Aizenberg et al., 2001; Gomez and Schmidhuber,
2005).

DL is part of a broader family of ML methods based on artificial NN (Lecun et al.,
2015a; Schmidhuber, 2015).
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The first general, working learning algorithm for supervised, deep, feedforward, mul-
tilayer perceptrons was published by Alexey Ivakhnenko and Lapa in 1965 (Ivakhnenko
and Lapa, 1965). A 1971 paper described a deep network with 8 layers trained by the
group method of data handling algorithm (Ivakhnenko, 1971).

The work on DL in computer vision was slightly hibernated, until in 1989, Yann
LeCun et al. applied the standard backpropagation algorithm, which had been around as
the reverse mode of automatic di↵erentiation since 1970. The impact of DL in industry
began in the early 2000s, when CNNs already processed an estimated 10% to 20% of all
the checks written in the US (Lecun et al., 2015a).

DL architectures such as deep neural networks, deep belief networks, recurrent neu-
ral networks and convolutional neural networks have been applied to fields including
computer vision, speech recognition, natural language processing, audio recognition, so-
cial network filtering, machine translation, bioinformatics, drug design, medical image
analysis, material inspection and board game programs, where they have produced re-
sults comparable to and in some cases superior to human experts (Ahmad et al., 2019;
Arel et al., 2010; Guo et al., 2016; Mousavi et al., 2018; Schmidhuber, 2015).

Modern CNNs are considered as one of the best techniques for learning image and
video content showing SoA results on image recognition, segmentation, detection, and
retrieval related tasks (CireÊan et al., 2012; Liu et al., 2019). The success of CNN has
captured attention beyond academia. In industry, companies such as Google, Microsoft,
AT&T, Facebook and PDM have developed active research groups for exploring new ar-
chitectures of CNN (Deng and Yu, 2013).

In DL, each level learns to transform its input data into a slightly more abstract and
composite representation. In an image recognition application, the raw input is a matrix
of pixels, where the first representational layer may abstract the pixels and encode edges,
the second layer may compose and encode arrangements of edges, the third layer may
encode a nose and eyes and the fourth layer may recognize that the image contains a face.
Moreover, a DL process can learn which features to optimally place in which level on its
own (Bengio et al., 2013; Lecun et al., 2015b).

The deep in deep learning refers to the number of layers through which the data is
transformed. More precisely, DL systems have a substantial Credit Assignment Path
(CAP) depth. The CAP is the chain of transformations from input to output. CAPs
describe potentially causal connections between input and output. For a feedforward
neural network, the depth of the CAPs is that of the network and is the number of hidden
layers plus one (as the output layer is also parameterized). For recurrent neural networks,
in which a signal may propagate through a layer more than once, the depth is potentially
unlimited (Schmidhuber, 2015). No universally agreed upon threshold of depth divides
shallow learning from DL, but most researchers agree that DL involves depth > 2. CAP of
depth 2 has been shown to be a universal approximator in the sense that it can emulate
any function (Hinton et al., 2006). Beyond that more layers do not add to the function
approximator ability of the network. Deep models are able to extract better features than
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shallow models and hence, extra layers help in learning features.

The DL architectures are often constructed with more layers then the necessary, which
helps to disentangle these abstractions and pick out which features improve performance.

CNN topology is divided into multiple learning stages composed of a combination
of the convolutional layer, non-linear processing units, and subsampling layers (Jarrett
et al., 2009). As shown in Figure A.9, the architecture of a typical CNN model is struc-
tured as a series of layers. Each layer performs multiple transformations using a bank of
convolutional kernels (filters) (LeCun et al., 2010). All the components involved in such
architecture will be later described in section A.3. Convolution operation extracts locally
correlated features by dividing the image into small slices (similar to the retina of the
human eye), making it capable of learning suitable features. Output of the convolutional
kernels is assigned to non-linear processing units, which not only helps in learning ab-
straction but also embeds non-linearity in the feature space. The non-linearity outputs
di↵erent patterns of activations for di↵erent responses, which facilitates the learning of
semantic in di↵erent images. This is usually followed by subsampling, which helps in
compressing the results and also makes the input invariant to geometrical distortions
(LeCun et al., 2010; Scherer et al., 2010).

L1
.
.
.

L2
.
.
.

L3

Input Image

Convolutional 
Kerner

Feature Maps

Convolutional 
Layer

Pooling 
Layer

Fully Connected 
LayerFeature Maps

Figure A.9: The architecture of a standard Convolutional Neural Network model.

The work conducted by Hubel and Wiesel’s (Hubel and Wiesel, 1962; Hubel and
Wiesel, 1968) inspired the initial architectural designs of CNNs, following the basic
structure of primate’s visual cortex. As illustrated in figure A.10, the first steps can
be considered in 1980, with the initial work in Neocognition like networks (Fukushima,
1980). Using this knowledge, Yann LeCun (LeCun et al., 1989) proposed a grid-like
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topological data, which displayed the hierarchical feature extraction ability of CNNs.

CNNs 
Evolution

1980
Neocognition

1998
CNN LeNet

2010
Imagenet

2012
Using techniques that 
evolve from 1998 like GPU 
programming, Max Pooling 
and emerging dataset, 
AlexNet was developed2014

The  Inception Block was 
publisher alongside the 

CNNs GoogLeNet,
Inception and VGG

2015
Multiple approach were 
proposed for deeper 
networks. The most
popular was the CNN 
ResNet2016

CNN DenseNet

2017
CNN FractalNet, 
WideResNet, Pyramidal 
Net and SE Net

2018
Some new techniques 

were proposed such as 
Attention and Channel 
Boosting which lead to 

CNNs CBAm, CBCNN and 
Residual Attenteion 2019

Quantum CNN1980
2020

Figure A.10: Convolutional Neural Networks evolution over the years.

This hierarchical organization emulates the deep and layered learning process of the
Neocortex in the human brain, which extract features from the underlying world (Bengio,
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2009). The engineered process in CNN resemblance with V1-V2-V4-IT/VTC primate’s
ventral pathway of visual cortex (Laskar et al., 2018). The retinotopic area provide input
to primates visual cortex, where contrast normalization andmulti-scale highpass filtering
is performed by the lateral geniculate nucleus. Afterwards, di↵erent regions of the visual
cortex categorized as V1, V2, V3, and V4 classify and detect information. The V1 and V2
areas of the visual cortex can be imagined as the convolutional, and subsampling layers,
whereas inferior temporal region are similar to the final layers of CNN, which makes
inference about the image (Grill-Spector et al., 2018).

CNN training is similar to standard NN, where the weights are regulated with back-
propagation algorithm, iterating over multiple input images. In backpropagation, the
objective is to minimize a cost function, similar to the response based learning of human
brain(Najafabadi et al., 2015).

The revolution of the use of CNNs for image understating and segmentation occurred
when it was discover that the results could be improved by tweaking with layers depth
(Krizhevsky et al., 2017). Deep CNN architectures have advantage over shallow archi-
tectures when dealing complex learning problems. Using multiple linear and non-linear
neurons in a layer wise mode, enhances this deep networks with the ability to learn repre-
sentations at di↵erent levels of abstraction. Additionally, advances in hardware enabled
the renewed the interest. In 2009, Nvidia was involved in what was called the big bang of
deep learning, as DNN were trained with Nvidia GPUs (Dixon, 2016). That year, Google
Brain used Nvidia GPUs to create capable DNNs. While there, Andrew Ng determined
that GPUs could increase the speed of DL systems by about 100 times (The Economist,
2010). In particular, GPUs are well-suited for the matrix/vector math involved in ML
(Darmatasia and Fanany, 2017; Oh and Jung, 2004). GPUs speed up training algorithms
by orders of magnitude, reducing running times from weeks to days (CireÊan et al., 2010;
Raina et al., 2009). Specialized hardware and algorithm optimizations can be used for
e�cient processing (Sze et al., 2017).

Significant additional impacts in image or object recognition were noticed from 2011
to 2012. Although CNNs trained by backpropagation had been around for decades, and
GPU implementations of NNs for years, including CNNs, fast implementations of CNNs
with max-pooling on GPUs in the style of Ciresan and colleagues were needed to progress
on computer vision (CireÊan et al., 2011; LeCun et al., 2008; Oh and Jung, 2004).

Image classification was then extended to the more challenging task of generating
descriptions (captions) for images, often as a combination of CNNs and LSTMs (Fang
et al., 2015; Vinyals et al., 2015; Zhong et al., 2011).

Some researchers assess that the October 2012 ImageNet victory anchored the start of
a deep learning revolution that has transformed the AI industry (Metz, 2016).

Multiple improvements in CNNs learning strategy and architectures have been pre-
sented to make CNNs scalable to large and complex problems. These innovations can
be divided as regularization, structural reformulation, parameter optimization and com-
putation e�ciency. Major innovations in CNN have been proposed since 2012 and were
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mainly due to restructuring of processing units and designing of new blocks. Zeiler and
Fergus (Zeiler and Fergus, 2014) presented the concept of layer-wise visualization of fea-
tures, which shifted the trend towards features extraction at low spatial resolution in
deep architecture such as VGG (Simonyan and Zisserman, 2015). Currently, most of the
new architectures are built upon the principle of simple and homogeneous topology as
it was presented by VGG. However, Google group introduced an interesting idea of split,
transform, and merge, which is known as an inception block. The inception block gave the
concept of branching within a layer, which allows features abstraction at di↵erent spatial
scales (Szegedy et al., 2015). In 2015, the concept connections skips was introduced by
ResNet (He et al., 2016). Afterwards, this concept was used by most of the succeeding
NN, such as Inception-ResNet, WideResNet and ResNext (Szegedy et al., 2017; Xie et al.,
2017; Zagoruyko and Komodakis, 2016).

Towards the improvement of learning capacities of CNNs, di↵erent design such as
WideResNet, Pyramidal Net, Xception have been proposed, exploring the e↵ect of trans-
formations of additional cardinality and increase in width (Han et al., 2017; Xie et al.,
2017; Zagoruyko and Komodakis, 2016). The focus of research moved from parameter
optimization and connections optimization towards improved architectural design (layer
structure) of the network. This change resulted in many new architectural blocks such as
channel boosting, spatial and channel wise exploitation and attention based information
processing (Khan et al., 2018; Wang et al., 2017; Woo et al., 2018).

The overfitting problems are raised by the added layers of abstraction, which allow
them to model rare dependencies in the training data. Regularization methods such as
Ivakhnenko’s unit pruning or weight decay or sparsity can be applied during training to
combat overfitting (Bengio et al., 2013). Alternatively dropout regularization technique
randomly omits neurons from the hidden layers during training. This helps to exclude
rare dependencies (Dahl et al., 2013). Finally, data can be augmented via methods such
as cropping and rotating such that smaller training sets can be increased in size to reduce
the chances of overfitting, which will be detailed in A.4.

The learning computation time comes from the many training parameters of the stan-
dard DNNs, such as the size (number of layers and number of neurons per layer), the
learning rate, and initial weights. Sweeping through the parameter space for optimal
parameters may not be feasible due to the cost in time and computational resources. Vari-
ous tricks, such as batching (computing the gradient on several training examples at once
rather than individual examples) (Hinton, 2012) speed up computation. Large processing
capabilities of many-core architectures (such as GPUs or the specialized CPUs such as
Intel Xeon Phi) have produced significant speedups in training, because of the suitability
of such processing architectures for the matrix and vector computations (Viebke et al.,
2019; You et al., 2017).

In the recent years, many di↵erent surveys were conducted on CNNs that depicted
and compared their basic components. The survey reported by Gu (Gu et al., 2018) has
reviewed the famous models from 2012-2015 along with their core blocks. There are also
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other similar surveys in literature that discuss di↵erent algorithms of CNN and focus on
applications for demonstration of results (Guo et al., 2016; LeCun et al., 2010; Liu et al.,
2017; Najafabadi et al., 2015; Srinivas et al., 2016). The following subsections of A.3
tried to aggregate this information in a concise, yet vast and wide explanation of the field,
detailing building blocks, data sets and models.

A.3 Basic CNNs Building Blocks

For most of the perception applications, CNN is considered as the most widely used ML
technique. A typical block diagram of an ML system was shown in Figure A.9. Since, SoA
CNNs possesses both good feature extraction and strong discrimination ability, the most
common task are feature extraction and classification.

The most common CNN architecture is composed of alternated layers of convolution
and pooling followed by one or two fully connected layers at the end. In some cases,
the fully connected layers are swapped with global average pooling layer. In addition
to the various learning stages, di↵erent regulatory units, such as batch normalization
and dropout are also incorporated to optimize CNN performance (Bouvrie, 2006). The
structure of CNNs components play a fundamental role in new architectures designs and
thus achieving enhanced performance. This subsection briefly describes and discusses
the role of these components in CNN architecture.

A.3.1 Convolutional Layer

A convolutional layer (sometimes denominated conv layer) is composed of a set of con-
volutional kernels (where each neuron act as a kernel). These kernels are linked with a
small area of the image known as a receptive field. The image is divided into small blocks
(receptive fields) and convoluted with a specific set of weights (multiplying elements of
the filter with the corresponding receptive field elements) (Bouvrie, 2006). This operation
have similarities of a convolutional, but they are mathematically di↵erent. Convolution
layer operation can expressed as follows:

Ck
l = Pk

x,y ⇤Kk
l (A.2)

On equation A.2, the input pixel of the image is represented by Px,y , x, y shows spatial
locality and Kk

l represents the lth convolutional kernel of the kth layer. Dividing the image
into small blocks helps extracting local pixel correlations. Di↵erent set of features within
the image are extracted by sliding convolutional kernel on the whole image with the same
set of weights. This weight sharing on the kernels of convolution operation makes CNN
parameters e�cient when compared to fully connected NN. The convolution operation
may further be categorized into di↵erent types based on the type and size of filters, type of
padding, and the direction of convolution (Lecun et al., 2015a). If the kernel is symmetric,
the convolution operation becomes a correlation operation (Goodfellow et al., 2016).
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Source Pixel

Convolutional Kernel

Destination Feature Value

Figure A.11: Convolutional layer destination feature value calculation example.

On figure A.11 is represented an example of the kernel sliding over a source pixel.
Initially, the center element of the kernel is placed over the source pixel. Afterwards, the
destination pixel, Ck

l is then calculated with the weighted sum of itself and nearby pixels.
On this example, the resulting destination feature value can be calculated as :

Ck
l = 0 ⇤ 3+0 ⇤ 2+0 ⇤ 1+0 ⇤ 4+3 ⇤ 1+1 ⇤ 2+0 ⇤ 2+2 ⇤ 3+1 ⇤ 5 = 16 (A.3)

A.3.2 Pooling Layer

The convolution operation outputs feature maps. Once features values are calculated,
its exact location becomes less important as long as its approximate position relative to
others is preserved. Pooling or downsampling like convolution, is a local operation. It
sums up similar information in the neighborhood of the receptive field and outputs the
dominant response within this local region (Lee et al., 2018; Lee et al., 2016).

On equation A.4 is represented the pooling operation in which Zl represents the lth

output feature map, Cl
x,y represents the lth input feature map, whereas fp(x) defines the

type of pooling operation.

Zl = fp(Cl
x,y) (A.4)

The use of pooling operation extracts a combination of features, which are invariant to
translational shifts and distortions (Ranzato et al., 2007; Scherer et al., 2010). Reduction
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in the size of feature map to invariant feature set not only reduces network complexity
and also increases generalization by reducing overfitting. The most common types of
pooling formulations are (He et al., 2015; Wang et al., 2012):

• Max pooling.

• Average pooling.

• L2 pooling.

• Overlapping pooling.

• Spatial pyramid pooling

A.3.3 Activation Function

On classification problems, activation functions are used as a decision function, helping to
di↵erentiate complex classes. The selection of the activation function can also accelerate
the learning process. For CNNs, activation functions of the convolved feature map is
defined in equation can be defined as:

T k
l = fA(Ck

l ) (A.5)

On equation A.5, Ck
l is the output of a convolution operation, which is mapped to

an activation function fA(x). This activation function adds non-linearity and returns the
resulting output T k

l for kth layer. In academia, di↵erent activation functions such as sig-
moid, tanh, maxout, ReLU, and variants of ReLU such as leaky ReLU, Exponential Linear
Unit (ELU), and Parametric ReLU (PReLU) (LeCun et al., 2012; Wang et al., 2017; Wang
et al., 2012; Xu et al., 2015), are used to inculcate nonlinear combination of features. How-
ever, ReLU and its variants are preferred over others activations as it helps in overcoming
the vanishing gradient problem (Hochreiter, 1998; Nwankpa et al., 2020).

Many improvements to the learning progress were only possible due to the research
of new activation functions. The backpropagation this functions derivatives, so it’s also
important to have a clear idea of the activation functions derivatives, because backprop-
agation is a leaky abstraction (it might use a credit assignment scheme with non-trivial
consequences).

A.3.4 Linear

The linear activation function, as described in table A.2, is the most basic activation
function. It can be seen as a straight line function where activation is proportional to
input (which is the weighted sum from neuron). For the derivative graph, a value ofm = 1
was considered.
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Table A.2: Activation Function Linear resume.

Function Derivative

Formula R(z,m) = z ⇤m R0(z,m) =m

Graph

Python code
1 def linear(z,m):
2 return m*z

1 def linear_der(z,m):
2 return (m * z ) / z

158



A.3. BASIC CNNS BUILDING BLOCKS

The main advantages of using a linear activation function can be described as:

• It gives a linear value, for range of activations, which can be used in both regression
and classification.

• It’s possible to utilize multiple neurons together, and do simple classifications after-
wards, such as considering the max value fired.

On the other hand, the linear activation function as some disadvantages, such as:

• The derivative is a constant. This has a negative impact on the backpropagation,
because the gradient has no relationship with x.

• It’s not possible to utilize gradient descent for leaning, because it’s going to be on
constant gradient.

A.3.5 ReLU

ReLU is the most used activation function in nowadays applications, mainly because the
formula is deceptively simple: max(0, z). Despite its name and appearance, it’s not linear
and provides the same benefits as the traditional Sigmoid but with better performance
due to it’s computational simplicity. This activation function has been summarized in
table A.3.

The advantages of using ReLU are quite trivial to understand, but it was a big breakout
on the CNNs (Wang et al., 2017; Wang et al., 2012; Xu et al., 2015). The main ones can be
considered as:

Table A.3: Activation Function ReLU resume.

Function Derivative

Formula R(z) =
(
z z > 0
0 z <= 0

)
R0(z) =

(
1 z > 0
0 z < 0

)

Graph

Python code
1 def relu(z):
2 return np.where(z >= 0, z, -

,! 0)

1 def relu_der(z):
2 return np.where(z >= 0, 1, -

,! 0)
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• It avoids and rectifies vanishing gradient problem that were present on the an-
tecedent activation functions.

• It is less computationally expensive than the tanh and sigmoid because it involves
simpler mathematical operations.

Due to its popularity, several researchers have detected some disadvantages in this
technique, and have proposed alternative versions (Wang et al., 2017; Wang et al., 2012;
Xu et al., 2015). Some of these disadvantages are:

• The range of ReLU is [0,1]. This means it has no positive boundary, which makes
the classification problem harder, and can force the CNN to overshot.

• It should only be used within Hidden layers of a Neural Network Model. There’s no
advantage of cropping the negative values in the output layer.

• Some gradients can be fragile during training and get discarded. Usually, when this
happens, the neuron will update the weights to values which produce negative x

results. When this values are passed to the ReLU it will always returns 0, and due to
it’s derivative, it is never again updated, which can be considered a ’dead neuron’.

• In another words, f activations in the region (x < 0) of ReLU, gradient will be 0
because of which the weights will not get adjusted during descent. That means,
those neurons which go into that state will stop responding to variations in error/
input ( simply because gradient is 0, nothing changes ). This is called dying ReLU
problem. Some studies conducted to SoA CNN realized that in many architectures,
more then 90% of the network is composed of ’dead neuron’ (Han et al., 2015).

A.3.6 ELU

The activation function ELU usually converges to zero in a few epoch, which generate fast
training and produce more accurate results. Di↵erent to other activation functions, ELU
uses an ↵ constant which needs to be positive number. As analyzed in section A.3.5, ELU
is similar to ReLU, except on the negative inputs region. Both functions are a identity
function for positive inputs. On the other hand, ELU becomes smooth slowly until its
output equal to �↵ whereas ReLU swaps to 0 instantaneously, as presented in table A.4.

Some of the benefits of ELU are (Xu et al., 2015):

• ELU becomes smooth slowly until its output equal to �↵ whereas ReLU sharply
smoothes.

• ELU is a strong alternative to ReLU.

• Unlike to ReLU, ELU can produce negative outputs.

Nonetheless, for x > 0, the ELU activation function can also start overshot with the
output range of [0,1] (Xu et al., 2015).

160



A.3. BASIC CNNS BUILDING BLOCKS

A.3.7 LeakyReLU

LeakyRelu is yet another variant of ReLU. Instead of being 0 when z < 0, a leaky ReLU
allows a narrow, non-zero, constant gradient ↵ (usually the value ↵ = 0.01 is considered).
However, the consistency of the benefit across tasks is presently unclear. This activation
function has been summarized in table A.5. Even thought that usually the value ↵ = 0.01
is considered, for a better graphical representation of the ’leaking’ property, a value of
↵ = 0.1 has been considered.

Leaky ReLUs are a clear attempt to fix the dead neurons problems of ReLU. By having
a narrow negative slope, it allow the gradient to always have an opportunity to train
the network, and the possibility to tweak the weights to place it in the positive x region.
Nevertheless, it possess linearity, so it shouldn’t be used for the classification tasks (Wang
et al., 2017; Wang et al., 2012).

A.3.8 Sigmoid

The Sigmoid activation function receives as input a real value and outputs a value between
0 and 1, as can extrapolated from table A.6. This makes it easy to apply because it contains
the most desired proprieties for an activation function. It’s non-linear, continuously
di↵erentiable, monotonic, and has a well defined output range (LeCun et al., 2012).

The main advantages of the sigmoid function can be described as (LeCun et al., 2012):

• It is nonlinear function, which if combined multiple times, represents a complex
output space easier then a linear function.

Table A.4: Activation Function ELU resume.

Function Derivative

Formula R(z) =
(

z z > 0
↵ ⇤ (ez � 1) z <= 0

)
R(z) =

(
z z > 0

↵ ⇤ ez z <= 0

)

Graph

Python code
1 def elu(z,alpha):
2 return np.where(z >= 0, z, -

,! alpha*(np.exp(z) -1))

1 def elu_der(z,alpha):
2 return np.where(z >= 0, 1, -

,! alpha*np.exp(z))
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Table A.5: Activation Function LeakyReLU resume.

Function Derivative

Formula R(z) =
(

z z > 0
↵ ⇤ z z <= 0

)
R0(z) =

(
1 z > 0
↵ z < 0

)

Graph

Python code
1 def leakyrelu(z, alpha):
2 return np.where(z >= 0, z, -

,! alpha * z)

1 def leakyrelu_der(z, alpha -
,! ):

2 return np.where(z>=0, 1,  -
,! alpha)

Table A.6: Activation Function Sigmoid resume.

Function Derivative

Formula S(z) = 1
1+e�z S 0(z) = S(z) · (1� S(z))

Graph

Python code
1 def sigmoid(z):
2 return 1.0 / (1 + np.exp(- -

,! z))

1 def sigmoid_der(z):
2 return sigmoid(z)*(1- -

,! sigmoid(z))
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• Produces an analog activation with step function reassembly.

• It has a smooth gradient.

• The step like shape, gives good results in classification applications.

• The output of the activation function is always going to be in range [0,1] compared
to [�1,1] of linear like function. This prevents the output from overshooting.

On the other hand, some disadvantages have been identified by researchers (LeCun
et al., 2012), in concrete:

• At the extremes of the sigmoid function, the y values fluctuations are ignored in the
X response.

• Also, on the extremes, the gradient tend to 0, which generates the problem of
vanishing gradients (Hochreiter, 1998).

• Optimization is not trivial, because the output is not zero centered. On the zero
region, the gradient is higher which make the updates flow in di↵erent directions.

• Random weight initialization, can make the network to refuse to learn drastically
slow.

A.3.9 Tanh

Tanh activation function is similar to sigmoid, but with the output zero centered, as it is
presented in table A.7. Usually tanh is prefered over sigmoid, due to it’s center (Kalman
and Kwasny, 1992; Xu et al., 2016).

Kalman calculated a function based on tanh (Kalman and Kwasny, 1992). On his
study, he concluded that for deep networks, the gradient is stronger for tanh than sigmoid
(due to the derivatives being steeper), which leads to a faster inference. Nonetheless, both
sigmoids and tanh don’t address the vanishing gradient problem.

A.3.10 Softmax

Finally, the last activation function this dissertation will look into is the Softmax. It cal-
culates the probabilities distribution of the event over N di↵erent events, where the N is
the size of the output array. This function is a quite di↵erent from the previous presented
in it’s conception. The probabilities of each target class over all possible target classes
is calculated utilizing an N dimensional vector of arbitrary real values and producing
another N dimensional vector with real values in the range [0,1] that add up to 1.0. This
is demonstrated in equation A.6.
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S(z) :

2
66666666666666664

z1
z2
...

zN

3
77777777777777775

!

2
66666666666666664

S1
S2
...

SN

3
77777777777777775

(A.6)

Since these output are already a probabilities from [0,1], the results can be directly
mapped to target classes, and the training not only maximize a value, but also maximize
the disparity of triggers.

From a mathematical point of view, where the rest of the functions could be analyzed
from a escalar view, softmax is fundamentally a vector function. It takes a vector as input
and produces a vector as output. In other words, it has multiple inputs and multiple
outputs. Therefore, it’s not possible to represent ’the derivative of softmax’. For this
reason, in this activation function is presented more detail.

Since softmax has multiple inputs, with respect to which input element the partial
derivative should be computed. Thus, it’s necessary to find the partial derivatives:

@Si
@zj

(A.7)

This is the partial derivative of the ith output with respect to the jth input. A shorter
way to write the partial derivative that will be used going forward isDjSi . Since softmax is
a RN ! RN function, the most general derivative computed for it is the Jacobian matrix:

Table A.7: Activation Function Tanh resume.

Function Derivative

Formula T (z) = ez�e�z
ez+e�z T 0(z) = 1�T (z)2

Graph

Python code

1 def tanh(z):
2 return (np.exp(z) - np.exp -

,! (-z)) / (np.exp(z) + np -
,! .exp(-z))

1 def tanh_der(z):
2 return 1 - np.power(tanh(z -

,! ), 2)
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DS =

2
66666666664

D1S1 · · · DNS1
...

. . .
...

D1SN · · · DNSN

3
77777777775

(A.8)

Computing for arbitrary i and j:

DjSi =
@Si
@zj

=
@ eziPN

k=1 e
zk

@zj
(A.9)

Note that no matter which zj is yielded, the derivative of the denominator
PN

k=1 e
zk ,

will always yell ezj . This is not the case for numerator ezi . The derivative of ezi with
respect to zj is e

zj only if i = j , because only then ezi has zj anywhere in it. Otherwise, the
derivative is 0.

In result, it’s obtained that DjSi can be calculated by:

DjSi =

8>><>>:
Si(1� Sj ) i = j

�SiSj i , j

9>>=>>; (A.10)

In ML literature, the term gradient is commonly used to stand in for the derivative.
Gradients are only defined for scalar functions (such as the functions described in the
previous sections). For vector functions like softmax it’s imprecise to present it as a
gradient. The Jacobian is the fully general derivate of a vector function. Nevertheless,
for the sake of coherence, a resume table A.8 is presented. Keep in mind that both the
graphical representation and direct code derivative in Python, the results don’t express
much importance. For being a vectorial function, the resulting value S(z) for a given z

will be highly depend of the number N of the the z array, that for this representation
60 points from [�6,6] were considered. In practical applications the Jacobian Matrix is
calculated, and for graphical representation, the probability of the target class is usually
preferred.

The basic practical di↵erence between Sigmoid and Softmax is that while both give
output in [0,1] range, softmax ensures that the sum of outputs along channels (as per
specified dimension) is always 1, which enables them to be directly mapped to classes
probabilities estimation. Sigmoid just makes outputs between [0,1].

Hence, if a one hot encoding scheme is being used, where one channel has probabili-
ties of one class and other channel has probabilities of another, then Softmax activation
is preferred.

A.3.11 Batch Normalization

Batch normalization is used to address the issues related to internal covariance shift
within feature maps. The internal covariance shift is a change in the distribution of
hidden units’ values, which slow down the convergence (by forcing learning rate to
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small value) and requires careful initialization of parameters. Batch normalization for a
transformed feature map T k

l can be represented as:

Nk
l =

Ck
l �µBq
�2
B + "

(A.11)

In equation A.11, Nk
l represents normalized feature map, Ck

l is the input feature
map, µB is the mean and sigma2B depict the variance of a feature map for a mini batch
respectively. Batch normalization unifies the distribution of feature map values by bring-
ing them to zero mean and unitary variance (Io↵e and Szegedy, 2015). Furthermore, it
smooths the flow of gradient and acts as a regulating factor, which thus helps in improv-
ing generalization of the network.

A.3.12 Dropout

The Dropout technique introduces regularization in the network, which ultimately re-
duces overfitting by randomly skipping some units or connections with a certain prob-
ability. In DNNs, multiple connections that learn a non-linear relation are sometimes
co-adapted, which reduces generalization (Hinton et al., 2012). This random dropping of
some connections or units force all neurons to be utilized, by making thinned network ar-
chitectures trains, and finally one representative network with all weights. This selected
architecture is then considered as an approximation of all of the proposed networks
(Srivastava et al., 2014).

Table A.8: Activation Function Softmax resume.

Function Derivative

Formula S(zi ) = ezi
Pj

1 e
zj

S 0(zi ) =
(
Si ⇤ (1� Sj ) i = j
�Si ⇤ Sj i , j

)

Graph

Python code
1 def softmax(x):
2 return np.exp(x) / np.sum( -

,! np.exp(x), axis=0)

1 def softmax_der(x):
2 sm = softmax(x)
3 return sm * (1 - sm)
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A.3.13 Fully Connected Layer

Fully connected layers are used at the end of the networks for classification or regression
purposes. It takes input from the previous layer and globally analyses output of all the
preceding layers (Lin et al., 2014a). This makes a non-linear combination of selected
features, which are used for the classification of data (Rawat and Wang, 2017). For being
a process that crosses all values, the number of operations and weights involved usually
surpasses the rest of the entire network.

A.4 Data Augmentation

Data augmentation is an e↵ective technique for improving the accuracy of CNNs (Shorten
and Khoshgoftaar, 2019). Usually Data Augmentations uses transformations such as flip-
ping, color space augmentations, and random cropping. These transformations encode
many of the invariance that present challenges to image recognition tasks. Some more
advance data augmentations techniques are GAN-based augmentation, neural style trans-
fer, and meta-learning schemes (DeVries and Taylor, 2019; Konno and Iwazume, 2018).
This section will explain how the common augmentation algorithms works, illustrate
experimental results, and discuss disadvantages of the augmentation technique.

Some frameworks such as Keras (Keras, 2019) provide ways to perform Data Augmen-
tation on the fly, rather than performing the operations on your entire image dataset in
memory. The API is designed to be iterated by the deep learning model training process,
creating augmented image data for the algorithm on run-time. This reduces memory
overhead, but adds some additional computation during model training, which result in
a longer training time.

In Keras, the Image Data Generator (IDG) calculate the statistics required to actually
perform the transforms to the image data. The data generator itself is in fact an iterator,
returning batches of image samples when requested. In the most used ML frameworks,
when data augmentation is applied, instead of calling the fit function on the model, it’s
necessary to call the fit generator function and pass in a IDG with the desired length of
an epoch, as well as the total number of epochs on which to train.

The MNIST dataset (LeCun et al., 1998) was used in order to have a common set of
example images. On figure A.12 a set of nine images is represented to have a base of
comparison for Image Augmentation algorithms.

A.4.1 Feature Standardization

Standardization typically means data rescaling, in order to have a mean of µ = 0 and a
standard deviation of � = 1 (unit variance). Feature Standardization allows to normalize
pixel values across an entire dataset. It mirrors the type of standardization often per-
formed for each column in tabular dataset (Shen et al., 2016a). Usually this is done by
performing the equation A.12:
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Figure A.12: Point Of Comparison.

x0 =
x � x̄
�

(A.12)

On Keras framework, this is achieved by setting the feature-wise center and feature-
wise standard normalization arguments on the IDG class. Applying feature standardiza-
tion on the images of figure A.12, it’s possible to achieve the result represented on figure
A.13, which result in images seemingly darkening and lightning di↵erent digits.

A.4.2 ZCAWhitening

A whitening transform of an image is a linear algebra operation that reduces the redun-
dancy in the matrix of pixel images. Less redundancy in the image is intended to better
highlight the structures and features in the image to the learning algorithm (Li et al.,
2015).

Considering N data point in Rn, the covariance matrix is ⌃ 2 Rn⇥n estimated to be:

⌃̂jk =
1

N � 1
NX

i=1

(xij � x̄j ) · (xik � x̄k) (A.13)

In equation A.13, x̄j denotes the jth component of the estimated mean of the samples
x. Any matrix W 2 Rn⇥n which satisfies the condition WTW = C�1 whitens the data.
Typically, image whitening is performed using the Principal Component Analysis (PCA)
technique. More recently, an alternative called Zero-phase Component Analysis (ZCA)
shows better results and results in transformed images that keeps all of the original
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Figure A.13: Feature Standardization.

dimensions and unlike PCA, resulting transformed images still look like their originals.
To execute a ZCA W =M�

1
2 .

Using a ZCA Whitening transform on the sample images, the same general structure
is maintained and how the outline of each digit is highlighted, as illustrated on A.14.

A.4.3 Random Shifts

Objects in images may not be centered in the frame. They may be o↵-center in a variety
of di↵erent ways. To solve this problem during training, a common technique is to
train the deep learning networks to expect and handle o↵-center objects by artificially
creating shifted versions of the training data. For example, Keras and Tensorflow supports
separate horizontal and vertical random shifting of training data by the width shift range
and height shift range arguments.

Running this example creates shifted versions of the digits, as represented on A.15.
Again, this is not required for MNIST as the handwritten digits are already centered, but
it is useful on more complex problem domains.

A.4.4 Random Flips

Another image data augmentation technique that improves the performance is to ran-
domly flip the training images. On figure A.16 it can be seen it’s result over the sample
images. On this example (MNIST dataset), flipping digits is not useful as they require the
correct left and right orientation, but this may be useful for images of objects in a scene
that can have di↵erent orientation.
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Figure A.14: ZCA Whitening.

Figure A.15: Random Shifts.
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Figure A.16: Random Flips.

A.4.5 Random Rotations

Sometimes images in the dataset may have di↵erent rotations in the scene. In those cases,
it’s helpful to train the model capable of handling images rotations by artificially and
randomly rotating images from the dataset during training.

As seen on figure A.17 the images have been rotated left and right up to a limit of 180
degrees. This is not helpful on this problem because the MNIST digits have a normalized
orientation, but this transform might be of help when learning from photographs where
the objects may have di↵erent orientations. Not only that but it might to some incorrect
labeling. For example, the digit 9 at the top right corner is transformed into a 6 but will
remain labeled as a 9 possibly leading to a worse model.

A.4.6 Additional Augmentations

When doing runtime data augmentations it’s important not to use multiple techniques
without a clear idea of the augmented results. As an example of this, it can be observed in
figure A.18 where it was applied random shifts, ZCA whitening, standard normalization,
random flips and zoom (between

h
1
2 ,2

i
). It’s questionable if the data represented after

augmentation is valid, or if require the model to learn that the number 2 is a black square
(bottom right image).

Additionally, some common data augmentations techniques are the rescaling and
filling mode. Both this methods are usually applied after the rest of data augmentations
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Figure A.17: Random Rotations.

Figure A.18: Data Augmentation done wrong.
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techniques. Filling mode can have di↵erent flavors points outside the boundaries of the
input are filled according to the given mode:

• Constant: The outside is filled with a predefined value.

h
kkkk |abcd |kkkk

i
(pval = k) (A.14)

• Nearest: The outside is filled with the nearest value of the last pixel.

h
aaaa |abcd |dddd

i
(A.15)

• Reflect: The outside is filled with a reflection of the values, sometimes called mirror
filling.

h
dcba |abcd |dcba

i
(A.16)

• Wrap: The outside is filled with the opposite values, like the image was a cylinder
and the content is wraping around.

h
abcd |abcd |abcd

i
(A.17)

Image data is unique in the way that is possible to review the data, create transformed
copies and quickly get an idea of how the dataset may be perceive it by the working model.
Training DNNs comes with experience, and the quality of the results are interlinked with
the tweaks done to the data. For that reason, in conclusion of this section, it’s summarized
some tips for getting the most from image data preparation and augmentation for DL.

• Review the dataset and do some work with it before starting to train models. In
most cases, only a few images actually benefit the training process of your model
when augmented, such as the need to handle di↵erent shifts, rotations or flips of
objects in the scene.

• Inspect augmentations. It is one thing to intellectually know what image trans-
forms to use, but in practical cases, it is very di↵erent to look at examples results.
Reviewing images both with individual augmentations as well as the full set of aug-
mentations planned may unveil ways to simplify or further enhance your model
training process.

• Lastly, it’s important to evaluate a suite of transforms. Trying more than one image
data preparation and augmentation scheme. Often it’s possible that the results of
a data preparation scheme are di↵erent that what was initially envisioned and the
data augmentations are not beneficial.
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Dynamic Collision Avoidance Training

Results

This appendix contains the results of training the 3-depth LSTM model varying the units
per layer. The inputs are feature vectors from the ColANet dataset that were produced
using a untrained MobileNetV2 with ImageNet weights. In order to fully study the influ-
ence of di↵erent units on each layer of the RNN, di↵erent numbers of neuron units on
each layer was tested with values ranging from 20(1) to 26(64), resulting in 74(2401) com-
binations of networks. The same number of sequences with collisions and no collisions
was pre-processed and 5% of the videos were placed on the validation test, which means
⇡ 6000 train feature sequences and ⇡ 300 validation feature sequences (the value vary
because each video have a di↵erent number of collision frames).

The networks were trained on a Nvidia GeForce RTX 2070 with CUDA libraries. They
trained for 20 epoch with a batch size of 32 having an average train time per model
µ = 130,01 s and a standard deviation � = 1,2 s. This gives us a total of approximately
87 h 45 m to train the desired models variants. A Adam optimizer with learning rate of
1⇥10�3 and a decay rate of 1⇥10�6 were considered. Furthermore a dropout of 40% and
batch normalization was added to the outputs of LSTMs layers.

The most important metric is the validation accuracy, because it represents the accu-
racy of the network on unknown data. Nevertheless, looking at the best scoring networks
on the validation accuracy metric can be misleading by multiple reasons. A network can
enter a local minima point where the value of validation accuracy is higher the training
accuracy (sometimes considered under fitting). Also, all the top best scoring had a slight
increase of accuracy on the last epoch, which boost the results. For this reason, it is illus-
trated the average of the best 5, 10, 20, 50, and 100 networks on table B.1. The loss is also
an important metric, which should float inversely proportional with accuracy.
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Table B.1: Average of the best scoring models regarding validation accuracy on training
and validation results for accuracy and loss.

Averages Training accuracy Validation accuracy Training loss Validation loss

Top 1 89.83% 94.43% 0.286 0.201
Top 5 79.81% 93.12% 0.398 0.283
Top 10 82.60% 92.29% 0.364 0.287
Top 20 85.14% 90.99% 0.320 0.289
Top 50 88.07% 88.41% 0.269 0.370
Top 100 88.14% 86.15% 0.266 0.446

The figures on B.1 illustrate the 8 best scoring networks ordered by validation accu-
racy. The dataset is small, with high variance in the data, which make the accuracy results
on the validation set to oscillate during training. On the best model training scenarios,
both the training and validation accuracy grow organically with a small increase on the
last epoch. Good examples of this types of training flows are the graphs of the models
Top7 LSTM1=4 LSTM2=2 LSTM3=32 Dense=4 and Top8 LSTM1=4 LSTM2=4 LSTM3=8
Dense=8 .

a. Top1 - LSTM1=2 LSTM2=8 LSTM3=32 Dense=4 b. Top2 LSTM1=2 LSTM2=8 LSTM3=32 Dense=4
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c. Top3 LSTM1=1 LSTM2=8 LSTM3=1 Dense=2 d. Top4 LSTM1=1 LSTM2=1 LSTM3=2 Dense=1

e. Top5 LSTM1=8 LSTM2=64 LSTM3=1
Dense=32 f. Top6 LSTM1=4 LSTM2=8 LSTM3=1 Dense=1

g. Top7 LSTM1=4 LSTM2=2 LSTM3=32 Dense=4 h. Top8 LSTM1=4 LSTM2=4 LSTM3=8 Dense=8

Figure B.1: Top 8 of the best scoring models regarding validation accuracy.
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For each model, is presented the training results evolution in terms of accuracy and loss.

In pursuance of a better understanding of amount of units per layer, it was calculated
the average of results when a given layer L has a given number of units U . In case of
LSTM layers, the units are LSTM neurons and on the dense layer the units are a matrix
vector multiplication. The results of this are presented in tables B.2, B.3 B.4 and B.5. On
each layer, it was highlighted from green to red, the best results to worse. Keep in mind
that on the loss tables a lower value represents a better result, and for this reason the
lower values appear in green.

There are multiple conclusions that can be taken from these tables. First it’s clear
that with a low number of units the model as di�culties learning, and tends to present
bad results during training, which are then passed to the validation tests. On the other
hand, when the model has a higher amount of units per layer, the training results are
better, but tend to overfit, which leads to bad validation results and be seen by the gap
between the training results and validation results. Given this, the best models seen to be
a combination of 4 to 16 in the first two LSTM layers and from 1 to 8 on the last LSTM
layer. The number of neurons in the dense layer seen indi↵erent, but the models that
achieved better results were the models with 8 or 16 neurons on the dense layer.

Table B.2: Training accuracy mean with variation of the number of units per layer.

Layers
Units

64 32 16 8 4 2 1

LSTM 1 89.23% 88.99% 90.03% 90.02% 88.88% 85.82% 74.46%
LSTM 2 88.30% 87.55% 86.60% 87.68% 86.10% 85.75% 85.45%
LSTM 3 90.51% 89.70% 89.93% 90.47% 87.71% 83.28% 75.89%
Dense 90.71% 89.48% 90.12% 88.73% 87.39% 82.14% 78.89%

Table B.3: Validation accuracy mean with variation of the number of units per layer.

Layers
Units

64 32 16 8 4 2 1

LSTM 1 60.90% 65.91% 69.26% 70.91% 70.87% 68.02% 61.98%
LSTM 2 68.08% 66.65% 67.90% 67.29% 66.57% 66.23% 65.14%
LSTM 3 65.76% 65.62% 65.68% 67.79% 66.84% 67.31% 68.84%
Dense 66.41% 66.95% 67.29% 67.27% 66.20% 66.73% 67.01%

On figure B.2 it’s presented the accuracy results of all models. On the abscissa is the
training accuracy and on the ordinate the validation. It’s possible to visualize that a few
models were stuck on a local minima and couldn’t reach a value higher then 50% on
validation. Furthermore, many models achieved near perfect accuracy during training,
but a lower value on validation, which hint us that the dataset as few data, and the model
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Table B.4: Training loss mean with variation of the number of units per layer.

Layers
Units

64 32 16 8 4 2 1

LSTM 1 0.234 0.237 0.220 0.223 0.242 0.282 0.412
LSTM 2 0.241 0.251 0.263 0.251 0.273 0.280 0.289
LSTM 3 0.201 0.211 0.212 0.217 0.260 0.326 0.420
Dense 0.189 0.206 0.201 0.226 0.256 0.336 0.433

Table B.5: Validation loss mean with variation of the number of units per layer.

Layers
Units

64 32 16 8 4 2 1

LSTM 1 1.233 1.101 1.020 0.928 0.898 0.929 0.876
LSTM 2 1.015 1.047 0.976 0.983 0.989 0.997 0.980
LSTM 3 1.158 1.118 1.119 1.082 1.017 0.836 0.660
Dense 1.102 1.059 1.103 1.052 1.066 0.876 0.730

is overfitting. Nevertheless, many models achieve a performance higher than 85%, which
proves that this is a valid solution to build models for the collision avoidance problem.
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APPENDIX B. DYNAMIC COLLISION AVOIDANCE TRAINING RESULTS

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

Tr
ai
nn

g

Validation

Figure B.2: Training and Validation accuracy results mapped into a xy plane.

180



 



 

  


	Introduction
	Context and Motivation
	Research Question and Hypothesis
	Goals
	Contributions
	Dissertation Structure

	Related Work
	Autonomous Vehicles
	Level of Autonomy
	Types of UAVs
	UAV typical software architecture

	Collision Avoidance
	Static Collision Avoidance
	Dynamic Collision Avoidance

	Artificial Intelligence
	Data Sets
	CNN Models
	Video Models


	Framework for Fully Autonomous UAVs
	Perception
	Collision Aware Planner
	Plan Handler
	Dynamic Collision Avoidance
	Command Multiplexer
	Communication Handler
	Simulation
	beXStream - UAV Managment Cloud Platform
	Backend
	Media-Gateway
	Frontend


	UAV Collision Avoidance Datasets
	ColANet Dataset
	Experimental Neural Network using ColANet

	BallNet Dataset

	Dynamic Collision Avoidance
	Classification Evaluation metrics
	Confusion matrix
	Accuracy
	Precision, Recall and f1-score
	Conditional Average

	Deep Learning for Collision Avoidance
	Feature Extraction
	Temporal Correlation and Decision
	Training and results
	Features Grad-CAM

	Object Motion Estimation
	Optical Flow Clustering

	Hybrid Collision Avoidance
	Challenges

	Applications and Results
	Simulation
	Real Application

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix
	Machine Learning
	Machine Learning Fields
	Deep Learning
	Basic CNNs Building Blocks
	Convolutional Layer
	Pooling Layer
	Activation Function
	Linear
	ReLU
	ELU
	LeakyReLU
	Sigmoid
	Tanh
	Softmax
	Batch Normalization
	Dropout
	Fully Connected Layer

	Data Augmentation
	Feature Standardization
	ZCA Whitening
	Random Shifts
	Random Flips
	Random Rotations
	Additional Augmentations


	Dynamic Collision Avoidance Training Results

