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Abstract

The upcoming HyperMu experiment from the CREMA collaboration aims for a measure-

ment of the ground-state hyperfine splitting (HFS) in muonic hydrogen (µp) by means of

pulsed laser spectroscopy as a new route for probing the fine details of proton nuclear

structure. In the proposed experimental scheme, the transition from the singlet to the

triplet hyperfine state is driven by laser excitation and the excited µp atoms are afterwards

quenched back to the singlet state through inelastic collisions with H2 molecules. The

kinetic energy increase of the µp atoms after collisional de-excitation greatly increases

their probability of detection within the muon’s lifetime, and the population of collision-

ally quenched µp atoms is therefore used as a model for the probability of a successful

detection.

In this work a simulation method was developed in order to calculate the combined

probability of laser excitation followed by collisional de-excitation of a µp atom under

different sets of possible experimental conditions, such as temperature, pressure, laser

pulse fluence and time duration and cavity mirror reflectivity and diameter. The imple-

mented simulation allows the calculation of this combined probability from the optical

Bloch equations, which were derived for an electric field dependent on the laser and cav-

ity conditions, while also accounting for collisional and Doppler effects. The combined

probability was calculated for several sets of different experimental parameters, thus pro-

viding a new and alternative method for the optimization of both the temperature and

pressure of the H2 gas, where the µp atoms undergo laser excitation, as well as the laser

and cavity conditions.

Keywords: Muonic atoms, Hyperfine structure, Laser excitation, Collisional quenching,

Bloch equations, Simulation
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Resumo

O projeto HyperMu, proposto pela colaboração CREMA, tem como objetivo a medição da

separação hiperfina (HFS) do estado fundamental em átomos de hidrogénio muónico (µp)

através de espectroscopia laser como medida alternativa para a investigação dos detalhes

da estrutura nuclear do protão. De acordo com o esquema experimental proposto, a

transição entre os estados hiperfinos singleto e tripleto é obtida através de excitação

laser, sendo que os átomos de µp excitados regressam depois ao estado singleto por via de

colisões inelásticas com moleculas de H2. O acréscimo de energia cinética adquirido pelos

átomos de µp após desexcitação aumenta significativamente a probabilidade de deteção

durante o tempo de vida do muão. Como tal, a população de átomos de µp que atinge

o estado de desexcitação é utilizada como modelo para a probabilidade de deteção no

enquadramento desta experiência.

Neste trabalho foi desenvolvido um método de simulação para calcular a probabili-

dade combinada de excitação e subsequente desexcitação de um átomo de µp sob diferen-

tes condições experimentais, tais como, temperatura, pressão, fluência e duração do pulso

laser, reflectividade e distância entre espelhos da cavidade laser. A simulação desenvol-

vida permite o cálculo desta probabilidade através da resolução das equações ópticas de

Bloch, que foram derivadas para um campo elétrico dependente das condições do pulso e

da cavidade laser, incluíndo também os efeitos dos diferentes tipos de colisão e o efeito de

Doppler. A probabilidade combinada de excitação foi calculada para diferentes valores

de diversos parâmetros experimentais proporcionando um novo método de optimização

das condições de temperatura e pressão do gás de H2, onde os átomos de µp se encontram

aquando da excitação laser, assim como das condições do pulso e da cavidade laser.

Palavras-chave: Átomos muónicos, Estrutura hiperfina, Excitação laser, Equações de

Bloch, Simulação
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1

Introduction

1.1 Context and motivation

According to the Standard Model of Elementary Particles, the second generation of lep-

tons with electric charge is known as a muon. This elementary particle has the same

electric charge and spin as the electron, but has a mass 200 times greater. Muonic

atoms (a bound system of a muon and a nucleus), such as muonic hydrogen (µp), are

significantly more compact (factor of ∼ 1/200) than their respective (more common) ‘elec-

tronic’ atom [2] due to the much larger mass of the orbiting particle. Therefore, since

the volume overlap of the muon’s wavefunction with the nucleus is much higher (factor

of ∼ 2003), their atomic structure is much more sensitive to the properties of the atomic

nucleus. High-precision measurements of the muonic atomic structure can thus probe

the properties of atomic nuclei related to their charge and magnetic distribution and

polarizability [2–5].

Laser spectroscopy in µp has long been proposed as a route to probe the proton’s size

by a measurement of the frequency difference between the 2S1/2 and 2P1/2 states, known

as the Lamb shift [2]. It took one decade for this measurement to be accomplished by the

CREMA collaboration, leading to the most accurate measurement of the proton charge ra-

dius and, unexpectedly, to the proton radius puzzle [6, 7] which sparked new theoretical

and experimental efforts. Since then, several experiments, theoretical investigations and

re-analysis of previous measurements have been performed towards the measurement of

the proton radius [8–15]. Most of these recent works favor the proton radius value as ex-

tracted from µp, despite some remaining tension between a few experimental results [16,

17].

After having performed laser spectroscopy of the Lamb shift in µp [6, 7], µ2H [18]

and µ4He [19, 20], yielding the corresponding nuclear charge radii with unprecedented

precision, the CREMA collaboration is now preparing a measurement of the ground-state

hyperfine splitting (HFS) in µp with the HyperMu experiment [21]. These measurements

present a new route towards the measurement of the proton’s properties, namely the

so called two-photon-exchange contribution which can be related to the Zemach radius

1



CHAPTER 1. INTRODUCTION

(a measure of both the proton’s charge and magnetic nuclear structure) and an addi-

tional polarizability contribution. These physical quantities allow for a benchmark of

phenomenological dispersion theories [22, 23] and state-of-the-art chiral perturbation

theory [24–27], providing decisive insights about quantum chromodynamics (QCD) in

the low energy regime, which cannot currently provide reliable predictions without ex-

perimental input [28–31].

1.2 Objective

In order to guide the optimization of experimental parameters, a theoretical evaluation

of the laser excitation probability between the hyperfine sublevels at various experimen-

tal conditions is needed. Among the physical processes that influence this probability

are the broadening of spectroscopic lines due to elastic and inelastic collisions, and the

Doppler broadening caused by the velocity distribution of the µp atoms. On top of the

mentioned broadening mechanisms, another aspect to consider is the effective shape of

the electromagnetic field with which the µp atoms interact and how the parameters of

the laser cavity influence the probability of laser excitation. The purpose of this thesis is

to theoretically investigate these sources of broadening, while the µp atoms interact with

the electromagnetic field inside the laser cavity, and their influence on the probability of

laser excitation.

1.3 Layout

This thesis is organized into six chapters. The present chapter serves to provide the

context and objective for this thesis’ work and the remaining chapters are structured as

follows:

• Chapter 2 introduces the HFS in µp and outlines the upcoming HyperMu experi-

ment from the CREMA collaboration with a special focus on the proposed experi-

mental scheme to be used;

• Chapter 3 presents the developed theoretical framework, based on the optical Bloch

equations and the modeling of the laser’s electric field in the proposed setup of the

HyperMu experiment.

• Chapter 4 is dedicated to the simulation employed for the calculation of the excited

µp populations based on the developed theoretical framework;

• Chapter 5 contains the obtained results and respective discussion;

• Chapter 6 is where the final conclusions are drawn.
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2

The HyperMu Experiment

2.1 Hyperfine structure of the 1S state in muonic hydrogen

The hyperfine structure of the energy levels of an atom results from the interaction of

its nuclear magnetic dipole moment, arising from the nuclear spin (I), with the elec-

tromagnetic field produced by the spin of its orbiting particle [32]. It contrasts with

the fine structure of the energy levels, which arises from the interaction between the

orbiting particle’s spin (S) and angular momentum (L) and relativistic corrections to the

non-relativistic Schrödinger equation [32].

The ground-state (1S1/2) of a µp atom without HFS, is characterized by the quantum

numbers

n = 1 , L = 0 , J =
1
2

, (2.1)

where n is the principal quantum number and L and J are the orbital angular momentum

and total angular momentum of the muon, respectively.

The proton is a spin-1
2 particle, i.e.,

I =
1
2

, (2.2)

and the total angular momentum of the system, F, given by the coupling of the muon’s

total angular momentum and the proton’s spin, takes the possible values [32]

|I − J | ≤ F ≤ I + J , (2.3)

resulting in

F = 0,1 , (2.4)

which correspond to different alignments of the muon and the proton’s magnetic moments

and give rise to the ground-state HFS of µp represented in figure 2.1.

Each state F has a multiplicity given by 2F + 1, with substates characterized by the

quantum number MF , taking the possible integer values in the range [32]

3



CHAPTER 2. THE HYPERMU EXPERIMENT

−F ≤MF ≤ F . (2.5)

Given their multiplicity, the 1S(F = 0) and 1S(F = 1) are therefore referred to as the singlet

and triplet states of the ground-state HFS, respectively.

Figure 2.1: Representation of the ground-state HFS of µp into the singlet (F = 0) and
triplet (F = 1) states. The arrows represent the alignments of the nuclear and orbital
magnetic dipole moments. HFS energy taken from [33].

2.1.1 Magnetic dipole interaction

The HFS transition between the 1S(F = 0) and 1S(F = 1) states is forbidden under the

electric dipole (E1) selection rules, given that ∆L = 0 and both states have L = 0 [32]. It is,

however, possible under the magnetic dipole (M1) selection rules, therefore classifying

as an M1 transition [32, 34] which can be excited through the interaction of the muon’s

magnetic dipole moment with an applied electromagnetic field.

In the presence of an external magnetic field (B⃗), a bound particle of an atom acquires

a potential energy given by the Hamiltonian [32]

ĤM1 = −µ̂ · B⃗ , (2.6)

where µ̂ is the magnetic moment operator. Considering the case of the µp atom, this

operator takes the form [33, 34]

µ̂µp = − e
2mµ

(
L̂+ gµŜ + gp

mµ

mp
Î

)
, (2.7)

where mµ and mp are the muon and the proton’s masses, respectively, e is the elementary

charge, L̂ is the muon’s orbital angular momentum operator, Ŝ and Î are the spin angular

momentum operators for the muon and the proton, respectively and gµ and gp are the

g-factors for the muon (≈ 2.00) and the proton (≈ 5.58), respectively. In the transition

1S(F = 0)→ 1S(F = 1), both the initial and final states have L = 0, leading to

4



2.1. HYPERFINE STRUCTURE OF THE 1S STATE IN MUONIC HYDROGEN

µ̂µp = − e
2mµ

(
gµŜ + gp

mµ

mp
Î

)
. (2.8)

The applied magnetic field has an associated electric field, E⃗, given by [35]

E⃗ = E0 cos(ωt)ε̂ , (2.9)

and can therefore be written as

B⃗ =
E0

c
cos(ωt)(k̂ × ε̂) , (2.10)

where k̂ is the direction of propagation and ε̂ represents the electric field polarization.

With the use of equations (2.7) and (2.10), the Hamiltonian of equation (2.6) becomes

ĤM1 =
eE0

2mµc

(
gµŜ + gp

mµ

mp
Î

)
· (k̂ × ε̂)cos(ωt) (2.11)

and the corresponding matrix element for a transition between an initial state |F = 0,MF = 0⟩
and a final state |F′ = 1,M ′F⟩ is given, in m−1, by [33]

M(0,M ′F )
M1 =

1
2mµc

〈
F′ = 1,M ′F

∣∣∣∣∣∣
(
gµŜ + gp

mµ

mp
Î

)
· (k̂ × ε̂)

∣∣∣∣∣∣F = 0,MF = 0
〉

. (2.12)

In the transition between the 1S(F = 0) and 1S(F = 1) states, the exact distribution

between each possible MF substate is determined by the laser polarization ε̂. In this work

the population distribution between each of these substates and the related effects of laser

polarization are neglected. A study on the role of laser polarization in spectroscopy of

the ground-state HFS transition in µp can be found in [36]. The magnetic dipole matrix

element, MM1, is thus given by the sum over possible M ′F states [33, 34]

M2
M1 =

∑
M ′F

∣∣∣M(0,M ′F )
∣∣∣2 (2.13)

and its value is presented in table 2.1. The matrix element for the E1 transition between

the 2S1/2(F = 1) and the 2P3/2(F = 2) states of µp, used in the Lamb shift experiments, is

also presented for comparison.

Table 2.1: Matrix elements for the 2S(F = 1)→2P(F = 2) and 1S(F = 0)→1S(F = 1) transi-
tions in µp. Values taken from [33, 37].

Transition Transition type M [m] Lifetime [s]

2S(F = 1)−→2P(F = 2) E1 6.367× 10−13 8.5× 10−12

1S(F = 0)−→1S(F = 1) M1 1.228× 10−15 8.1× 104
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CHAPTER 2. THE HYPERMU EXPERIMENT

2.2 Experimental scheme

The goal of the CREMA collaboration is to measure the ground-state HFS in µp, repre-

sented in figure 2.1, by means of pulsed laser spectroscopy. From this measurement the

nuclear structure effects on the energy of the ground-state HFS will be determined with

a relative accuracy of 10−4, from which the proton’s Zemach radius can be extracted with

a relative accuracy of 0.25% [37].

The proposed experiment will consist of three main stages [38], represented in fig-

ure 2.2 and ordered as follows:

Figure 2.2: Representation of the three main stages of the µp HFS experiment. Adapted
from [38].

1. Muonic hydrogen formation - Low energy muons are stopped in a cryogenic (T =

22 K) H2 gas target at 0.5 bar pressure leading to the formation of µp atoms in

highly excited states that quickly de-excite to the singlet state, acquiring some

kinetic energy in the process (up to 100 eV). The formed µp atoms collide with the

residual H2 gas molecules and reach thermal equilibrium in about 1 µs [33].

2. Laser excitation - A laser pulse of 44.3 THz frequency induces the hyperfine transi-

tion

µp(F = 0) +γ −→ µp(F = 1) , (2.14)

where γ represents a laser photon.

To maximize the probability of excitation, the µp atoms are formed inside a high-

reflectivity multipass laser cavity in which the emitted laser pulse is successively

reflected, maximizing its intensity. The theoretical modeling of the laser’s electric

field, developed in section 3.3, takes into account the multiple reflections inside the

laser cavity.
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3. Detection -The excited µp atoms collide with the H2 gas molecules with the pos-

sibility of being quenched back to the singlet state in a process described by the

de-excitation reaction

µp(F = 1) + H2 −→ µp(F = 0) +Ekin + H2 , (2.15)

where part of the HFS transition energy is converted into kinetic energy (Ekin) ac-

quired by the µp atoms. The faster moving de-excited µp atoms are able to reach

the target walls before decaying. The walls are coated with a high-Z material so that

upon reaching the walls, the muon is transferred from the µp atom to a high-Z atom

in highly excited states. The muon transfer to a highly excited state will result in

a cascade of de-excitations with emission of X-rays. A resonance curve is retrieved

where the number of emitted X-rays is plotted against the applied laser frequency.

The focus of this work lies within the last two stages described, particularly in the

interaction of the µp atoms with the laser and the H2 gas inside the cavity represented in

figure 2.3.

Figure 2.3: Schematic of the HyperMu experimental setup. Adapted from [33].

2.3 Comparison with Lamb shift measurements

The Lamb shift is the energy difference between the 2S1/2 and 2P1/2 energy levels in an

hydrogenlike atoms [39], resulting mainly from radiative effects described by quantum

electrodynamics (QED), such as self energy and vacuum polarization [3]. One other contri-

bution for the Lamb shift is given by the finite size of the atomic nucleus [40] and it is

significantly enhanced in µp, given ts much smaller atomic Bohr radius relative to that

of a regular hydrogen atom [4]. Based on this principle, the previous measurements of

the proton radius obtained with µp, performed by the CREMA collaboration [6, 7], are
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CHAPTER 2. THE HYPERMU EXPERIMENT

based on the measurement of the 2S-2P transitions, following the energy level scheme

and experimental principle represented in figure 2.4.

Figure 2.4: Experimental principle in the measurement of the Lamb shift in µp. Adapted
from [6]. (a) - Lamb shift in µp with representation of the proton’s finite size contribu-
tion. The green arrows represent the laser excited transitions. (b) - Laser excitation and
detection principles. When the laser is on resonance with the desired transition, delayed
Kα X-rays are observed.

Even though the HyperMu experiment shares the purpose of the µp Lamb shift exper-

iments from the CREMA collaboration, which is to probe the nuclear properties via laser

spectroscopy of muonic atoms [6, 7], it contains relevant distinctions in both the atomic

transitions and detection methods, namely:

• In the Lamb shift experiments, the measurement of the 2S-2P transitions gives in-

formation on the proton charge radius [6, 7]. Differently, the HFS of µp, represented

in figure 2.1, arises from the interaction between the magnetic moments of the

muon and the nucleus and provides information about the magnetic structure of the

proton.

• While a prompt X-ray from the excited state is emitted as signature of an event in

the Lamb shift experiments (see figure 2.4), in the HyperMu experiment the excited

HFS state is metastable, with a lifetime millions of times larger than the muon de-

cay time (∼ 2 µs), given the much smaller transition matrix element (see table 2.1).

This, in turn, makes fluorescent radiation extremely difficult to observe [21]. There-

fore, an alternative method of detection (described in section 3.2) was proposed,

in which the excited µp atoms are de-excited through inelastic collisions with H2

gas molecules being afterwards detected with the use of high-Z scintillators, as

represented in figures 2.2 and 2.3.
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3

Theoretical Framework

3.1 Time evolution of the two-level system

The time evolution of a quantum system with two possible energy levels, such as the

singlet and triplet states obtained from the ground state HFS of µp, can be described by

time-dependent quantum mechanics through the optical Bloch equations [41].

In a quantum mechanical treatment, the time evolution of the system is given by the

time-dependent Schrödinger equation

iℏ
dΨ
dt

= ĤΨ , (3.1)

where Ψ and Ĥ are the total wavefunction and the Hamiltonian of the system, respec-

tively, ℏ is the reduced Planck constant and i is the imaginary unit.

When in interaction with an external field, the overall wavefunction is given by a

superposition of the two possible states, Ψ1 and Ψ2, as

Ψ (r⃗ , t) = C1(t)Ψ1(r⃗ , t) +C2(t)Ψ (r⃗ , t) . (3.2)

The Hamiltonian of the atomic system is given by

Ĥ = ĤA + Ĥ I (t) , (3.3)

where ĤA represents the time-independent Hamiltonian with the kinetic and potential

energy of the bound particles, and Ĥ I represents the time-dependent interaction of the

atom with the external field. Equations (3.1), (3.2) and (3.3) produce the following equa-

tions of motion

iℏ
dC1

dt
= ⟨1|Ĥ I |1⟩C1 + exp(−iωrt)⟨1|Ĥ I |2⟩C2 , (3.4)

iℏ
dC2

dt
= ⟨2|Ĥ I |2⟩C2 + exp(iωrt)⟨2|Ĥ I |1⟩C1 , (3.5)

where |1⟩ and |2⟩ represent the time-independent wavefunctions of each state, such that
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ĤA |1⟩ = E1 |1⟩ , ĤA |2⟩ = E2 |2⟩ , (3.6)

Ψ1(r⃗ , t) = exp
(
−i E1

ℏ

t
)
|1⟩ , Ψ2(r⃗ , t) = exp

(
−i E2

ℏ

t
)
|2⟩ , (3.7)

and ωr is the transition resonance frequency, defined as

ωr =
E2 −E1

ℏ

. (3.8)

Instead of solving equations (3.4) and (3.5) with respect to the complex coefficients

C1 and C2, a more convenient set of quantities is obtained with the density matrixρ11 ρ12

ρ21 ρ22

 =

 |C1|2 C1C
∗
2

C2C
∗
1 |C2|2

 , (3.9)

following a physical interpretation in which the diagonal terms, ρii , represent the popula-
tion of each state and the off-diagonal terms, ρij , represent the coherence of the population

states [41]. Then, for a set of N atoms,

ρ11 = |C1|2 = N1/N , ρ22 = |C2|2 = N2/N , ρ11 + ρ22 = 1 , (3.10)

where N1 and N2 represent the number of atoms in state 1 and 2, respectively.

The time evolution of the density matrix elements is given by

dρij
dt

= Ci

dC∗j
dt

+
dCi

dt
C∗j , (3.11)

which, with the use of equations (3.4) and (3.5), produces the system of equations

dρ11

dt
= −

dρ22

dt
=

i
ℏ

[
ρ12 exp(iωrt)⟨2|Ĥ I |1⟩+ ρ11 ⟨1|Ĥ I |1⟩∗

]
+ c.c ,

dρ12

dt
=

dρ∗21
dt

=
i
ℏ

[
exp(−iωrt)

(
ρ11 ⟨2|Ĥ I |1⟩∗ − ρ22 ⟨1|Ĥ I |2⟩

)
+ ρ12

(
⟨2|Ĥ I |2⟩∗ − ⟨1|Ĥ I |1⟩

)]
.

(3.12)

where c.c stands for the complex conjugate of the preceding term. These equations de-

scribe the time evolution of a two-level system governed uniquely by stimulated excita-

tion and emission. In order to solve these equations it is only required that the transition

matrix elements of the interaction Hamiltonian in the two-level basis are known.

3.1.1 Optical Bloch equations

Considering the two-level system as a model for two possible energy levels of a bound

particle in an atom, the interaction Hamiltonian terms take the form [41]

⟨2|Ĥ I |1⟩ = eE0Mcos(ωt) , (3.13)
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3.1. TIME EVOLUTION OF THE TWO-LEVEL SYSTEM

where M represents a generic transition matrix element (in m−1). For the HFS transition

in µp the matrix element is given by equations (2.12) and (2.13) as

M2 =
1

4m2
µc2

∑
M ′F

∣∣∣∣∣∣
〈
F′ = 1,M ′F

∣∣∣∣∣∣
(
gµŜ + gp

mµ

mp
Î

)
· (k̂ × ε̂)

∣∣∣∣∣∣F = 0,MF = 0
〉∣∣∣∣∣∣2 . (3.14)

The system of equations (3.12) becomes

dρ11

dt
= −

dρ22

dt
= iV cos(ωt)exp(iωrt)ρ12 + c.c ,

dρ12

dt
=

dρ∗21
dt

= iV∗ cos(ωt)exp(−iωrt) (ρ11 − ρ22) ,

(3.15)

where V is the Rabi frequency, defined as

V =
eE0

ℏ

M . (3.16)

This is the frequency at which the populations of the two-level system oscillate for a

resonant excitation, i.e when ω = ωr . It is dependent on both the amplitude of the

excitation (laser intensity), given by the electric field amplitude E0, and the response of

the atomic system to the excitation, given by the transition matrix element M.

The general system of (3.15) can be further simplified with the use of the rotating-wave
approximation [41, 42], valid when ω ∼ ωr and V ≪ ω, where the terms oscillating with

frequency ωr +ω are neglected and only those oscillating with frequency ∆ = ωr −ω are

considered to produce variations on the energy level populations. With this approxima-

tion the system takes the form

dρ11

dt
= −

dρ22

dt
=

i
2
Vρ12e

i∆t + c.c ,

dρ12

dt
=

dρ∗21
dt

=
i
2
V∗e−i∆t (ρ11 − ρ22) ,

(3.17)

where ∆ represents the laser frequency detuning.

Introducing the substitutions

ρ12e
i∆t→ ρ12 , ρ21e

−i∆t→ ρ21 , (3.18)

into the system of equations (3.17) we obtain

dρ11

dt
= −

dρ22

dt
=

i
2
Vρ12 + c.c ,

dρ12

dt
=

dρ∗21
dt

=
i
2
V∗ (ρ11 − ρ22) + i∆ρ12 ,

(3.19)
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which correspond to the optical Bloch equations for a two-level system [41, 42]. These

equations are equivalent to those of system (3.12), for an atomic two-level system with

the generic matrix element of equation (3.13)

The Bloch equations defined in (3.19) are generally solved in the matrix form

dρ
dt

= Mρ , (3.20)

with

ρ =


ρ11

ρ22

ρ12

ρ21

 , M =


0 0 i V2 −i V∗2
0 0 −i V2 i V

∗

2

i V
∗

2 −i V∗2 i∆ 0

−i V2 i V2 0 −i∆

 . (3.21)

To find the solutions of the system, the eigenvalues of M can be calculated through

det(M −λ) = 0 , (3.22)

with solutions

λ = 0,±iΩ , (3.23)

where

Ω =
√
∆2 + |V |2 , (3.24)

is the generalized Rabi frequency of the system, a generalization of the previously defined

Rabi frequency of equation (3.16) for any value of the excitation frequency ω.

From equation (3.23) we obtain the general solutions

ρij = Aij +Bij exp(iΩt) +Cij exp(−iΩt) with Aij ,Bij ,Cij ∈C , (3.25)

where the coefficients Aij , Bij and Cij are determined by the initial conditions of the

system. For the specific case of

ρ11(0) = 1 , ρ22(0) = 0 , ρ12(0) = ρ12(0) = 0 , (3.26)

where all atoms are assumed to be in the ground state at t = 0, we obtain the solutions

ρ22 =
(
|V |
Ω

)2

sin2
(1

2
Ωt

)
, (3.27)

ρ12 =
(
|V |
Ω2

)
sin

(1
2
Ωt

)[
−∆sin

(1
2
Ωt

)
+ iΩcos

(1
2
Ωt

)]
, (3.28)

plotted in figure 3.1 for different values of the detune ratio ∆/ |V |. The observed oscilla-

tions of frequency Ω are called Rabi oscillations and their amplitude is determined by the

detune ratio.
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Figure 3.1: Time evolution of the ρ22 population, described by equation (3.27), for differ-
ent values of the detune ratio ∆/ |V |.

3.2 Broadening sources

3.2.1 Spontaneous emission

When a bound particle of an atom occupies an excited energy level it can spontaneously

decay towards a lower energy level, emitting a photon [32]. This process of spontaneous

emission has a given probability of occurrence, extracted from the transition matrix

elements, and therefore an associated rate [41]. A diagram for an atomic two-level system

with the inclusion of spontaneous emission, in addition to the processes of laser excitation

and de-excitation, is presented in figure 3.2.

Figure 3.2: Diagram of a two-level system with spontaneous emission and identification
of the ρ11 and ρ22 populations, as modeled by the Bloch equations (3.32).

The rate of spontaneous emission, Γsp, can be included in the Bloch equations by

changing equation (3.5) to [41]
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iℏ
dC2

dt
= ⟨2|Ĥ I |2⟩C2 + exp(iωrt)⟨2|Ĥ I |1⟩C1 − iℏ

Γsp

2
C2 . (3.29)

This change is equivalent to the substitution [42]

dC2

dt
→

(
d
dt

+
Γsp

2

)
C2 , (3.30)

which takes into account that the probability of a bound particle staying in the excited

energy level should decay. With use of the definitions (3.10) and (3.11), this leads to

dρ22

dt
→

(
d
dt

+ Γsp

)
ρ22 ,

dρ12

dt
→

(
d
dt

+
Γsp

2

)
ρ12 . (3.31)

With the substitutions (3.31) the Bloch equations with spontaneous broadening are de-

rived as

dρ11

dt
= −

dρ22

dt
=

i
2
V(ρ12 − ρ21) + Γspρ22 ,

dρ12

dt
=

dρ∗21
dt

=
i
2
V∗ (ρ11 − ρ22) +

(
i∆−

Γsp

2

)
ρ12 .

(3.32)

The spontaneous decay rate in equations (3.32) acts as a damping factor to the oscilla-

tions in the time evolution of the populations, which now tend towards a steady state, as

represented in figure 3.3.

Figure 3.3: Time evolution of the ρ22 population with spontaneous emission for ∆ = 0
and different values of the broadening ratio Γsp/ |V |.

The steady-state population of the excited state can be obtained by setting the deriva-

tives of equation (3.32) equal to zero, giving

ρ22(∞) =
(|V |/2)2

∆2 +
(
Γsp/2

)2
+ |V |2/2

. (3.33)
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It is possible to see, from equation (3.33), that the steady-state population is described by

a Lorentzian curve with a full width at half maximum (FWHM) of

FWHMΓsp
=

√
Γ 2

sp + 2|V |2 , (3.34)

where the contributions of Γsp and |V | to the width of the steady-state curve are known as

radiative and power broadening, respectively.

Equation (3.33) also shows that a saturation value of 1/2 is reached in the ideal case

of |V | ≫ ∆,Γsp. Figure 3.4 shows the dependence of the steady-state population upon the

ratios ∆/ |V | and Γsp/ |V |.

Figure 3.4: Steady-state population for different values of the broadening ratio Γsp/ |V |.

3.2.2 Collision broadening

Atoms in a gas are in constant interaction with each other via collisions. Two types of

collision are possible, elastic and inelastic, with distinct effects on the time evolution of

the populations.

3.2.2.1 Elastic collisions

In the event of an elastic collision, the atoms remain in the same energy levels and the

effect of this type of collision on the energy level populations is reflected only by a phase

change in the atomic wavefunctions [41]. This change in phase is represented by a decay

rate, Γel, included in the time evolution of the coherence terms as

dρ12

dt
=

dρ∗21
dt

=
i
2
V∗ (ρ11 − ρ22) +

(
i∆−

Γsp + Γel

2

)
ρ12 , (3.35)

which acts as damping factor to the oscillations by increasing the decoherence between

the energy level populations. Figure 3.5 shows the populations obtained from the Bloch
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equations with elastic collision broadening, for the case of resonant excitation with no

spontaneous broadening, i.e. ∆ = 0 and Γsp = 0. It is possible to see that in this particular

case, the elastic collision rate simply dampens the population oscillations, with no change

in the steady-state populations.

Figure 3.5: Time evolution of the ρ22 population with elastic collisions for ∆ = 0, Γsp = 0
and different values of the broadening ratio Γel/ |V |.

With the addition of the term Γel, the steady-state population of equation (3.33) be-

comes

ρ22(∞) =
|V |2

2|V |2 + 4∆2 Γsp

Γsp+Γel
+ Γsp(Γsp + Γel)

, (3.36)

with a FWHM of

FWHMΓsp,el
=

√
2|V |2

(
Γsp + Γel

Γsp

)
+ (Γsp + Γel)2 , (3.37)

which in the limit case of Γel = 0 tends to expression (3.34), as expected.

3.2.2.2 Inelastic collisions - two-level system

When an inelastic collision occurs, there is a change in the energy levels of the atoms.

This effect is similar to that of spontaneous emission, as represented in figure 3.6, and

can be introduced in the Bloch equations by a substitution analogous to (3.31). With the

inclusion of the inelastic collision rate, Γinel, the substitution becomes

dρ22

dt
→

(
d
dt

+ Γsp + Γinel

)
ρ12 ,

dρ12

dt
→

(
d
dt

+
Γsp + Γinel

2

)
ρ22 , (3.38)

and the Bloch equations (3.32) are transformed into
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Figure 3.6: Diagram of a two-level system with spontaneous emission and inelastic colli-
sions. The identified ρ11 and ρ22 populations are modeled by the Bloch equations (3.39).

dρ11

dt
= −

dρ22

dt
=

i
2
V(ρ12 − ρ21) + (Γsp + Γinel)ρ22 ,

dρ12

dt
=

dρ∗21
dt

=
i
2
V∗ (ρ11 − ρ22) +

(
i∆− Γc

2

)
ρ12 ,

(3.39)

where Γc is the decay rate of the coherence terms, or decoherence rate [33], given by

Γc = Γsp + Γinel + Γel . (3.40)

The populations obtained from the collision-broadened Bloch equations (3.39) are

similar to those obtained from the Bloch equations with spontaneous broadening (3.32),

represented in figure 3.3, with increased damping from the contributions of the elastic

and inelastic collision rates to the decoherence rate.

Contrary to the case of elastic collisions, the inelastic collision rate does contribute

toward the steady-state population values as this rate has similar effects to those of spon-

taneous emission. The steady-state population of the excited level, obtained from the

collision-broadened Bloch equations (3.39) is given by

ρ22(∞) =
|V |2

2|V |2 + 4∆2 Γsp+Γinel

Γc
+ (Γsp + Γinel)Γc

. (3.41)

3.2.2.3 Inelastic collisions - dark state

In the case of the quenching transition of equation (2.15), even though the final state

represents the 1S(F = 0) energy level, the total energy of the atom is different from that of

the 1S(F = 0) state before laser excitation, given the increase in kinetic energy. This new

state can be represented by a third level [33], only accessible through inelastic collisions of

the µp atoms in the 1S(F = 1) level with the H2 gas molecules, as represented in figure 3.7.

The added third state, with population ρ33, is considered to be a dark state, that is, a

state that is both unaffected and unreachable by laser excitation, given its low transition
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Figure 3.7: Representation of the ground-state HFS of µp as a three-level system with
collisional de-excitation as modeled by the Bloch equations (3.42). Adapted from [33].

probability caused by the Doppler shift associated to its increased kinetic energy. The

Bloch equations for a three-level system with a collisional dark-state are written as

dρ11

dt
=

i
2
V(ρ12 − ρ21) + Γspρ22 ,

dρ12

dt
=

dρ∗21
dt

=
i
2
V∗ (ρ11 − ρ22) +

(
i∆− Γc

2

)
ρ12 ,

dρ22

dt
= −

dρ11

dt
− Γinelρ22 ,

dρ33

dt
= Γinelρ22 ,

(3.42)

A three-level system with a time evolution governed by the Bloch equations (3.42) and

a continuous electric field given by equation (2.9) will always tend towards the steady

state ρ11 = ρ22 = 0 and ρ33 = 1 as t →∞. However, different values of the decoherence

ratio Γc/ |V | will alter the rate of population transfer between ρ11 and ρ22, due to laser

excitation/de-excitation, and between ρ22 and ρ33, due to inelastic collisions. To illus-

trate the effects of the decoherence rate on the time evolution of the three-level system

figure 3.8 shows the populations obtained from the Bloch equations (3.42) for different

values of this ratio.

As can be seen in figure 3.8, the decoherence ratio greatly influences the rates of

population transfer. In particular, it is seen that for low values of this ratio, i.e when

Γc≪ |V |, the population of the laser excited level (ρ22) experiences Rabi oscillations similar

to those obtained from the unbroadened Bloch equations (3.19), represented in figure 3.1.

These oscillations, caused by a fast population transfer rate between ρ11 and ρ22, lead

to a slow and slightly oscillatory growth of the ρ33 population. In contrast, for higher

values of the decoherence ratio, when Γc ≥ |V |, it is seen that the ρ22 population no longer

oscillates but now quickly reaches a low (almost constant) value. In this regime, the

quenched level population quickly rises towards its steady state, given the fast transfer
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rate between the ρ22 and ρ33 populations. This, aligned with the low transfer rate of laser

excitation/de-excitation, when Γc > |V |, leads the system to behave as if the population

transfer happened directly from ρ11 to ρ33.

(a) Excited level population

(b) Quenched level population ()

Figure 3.8: Time evolution of the ρ22 and ρ33 populations for different values of the
decoherence ratio Γc/ |V |.

The two complementary regimes of population transfer here described are discussed

in further detail in section 3.4 for time-limited electric fields of different intensities.

3.2.2.4 Collision rates in the HyperMu experiment

In the experimental setup described in section 2.2 the thermalized µp atoms are in con-

stant collision with the H2 gas molecules. These collisions can be modeled by collisional
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rates, which can afterwards be included in the Bloch equations to obtain the collision-

broadened populations, as previously shown. In particular, we are interested in the rates

of elastic collisions for the µp atoms in the singlet and triplet states (Γel) and the inelastic

collision rate of the µp atoms in the triplet state (Γinel), which are related to the following

processes:

Γinel : µpF=1 + H2 −→ µpF=0 + H2 (3.43)

Γel :



µpF=0 + H2 −→ µpF=0 + H2

+

µpF=1 + H2 −→ µpF=1 + H2 ,

(3.44)

where the rate of elastic collisions is considered as the sum of the rates of both processes

of equation (3.44). The obtained rates of elastic and inelastic collisions for these processes

are presented in table 3.1 for the temperatures of 22 K and 50 K.

For a given process, the average collision rate of µp atoms in H2 gas is given by [33]

Γ = vrσ (vr )ρH2
, (3.45)

where vr is the relative velocity between the µp atoms and H2 molecules, σ (vr) is the

velocity- and spin-dependent cross section of the process and ρH2
is the number density

of the H2 gas in molecules per unit volume. The overline in the term vrσ (vr ) denotes an

average over the velocity and rotational level distribution of the H2 molecules.

The average rates where calculated from the collision rates already averaged over

the H2 velocity and rotational level distributions, provided by Prof. Andrzej Adamczak,

following the procedure in [43]. In this work the rates were afterwards averaged over the

velocity distribution of µp atoms. It was assumed that the µp atoms behave as ideal gas

particles, with their velocities following the Maxwell-Boltzmann distribution [44]

f (v) dv =

√
2
π

(
mµp

kBT

)3/2

v2 exp

−mµpv
2

2kBT

 dv , (3.46)

where mµp is the mass of the µp atom and kB stands for the Boltzmann constant.

The distribution over the H2 rotational levels is temperature dependent. As so, the

average rates of table 3.1 where obtained from two sets of rates, each averaged over a

different rotational level distribution. The two distributions considered are the Boltz-

mann and statistical distributions. At room temperature (∼ 300 K) both distributions are

similar with 75% ortho-hydrogen (odd rotational number) and 25% para-hydrogen (even

rotational number). At lower temperatures, however, the statistical distribution deviates

significantly from the Boltzmann distribution, e.g. at 22 K the Boltzmann distribution has
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practically all molecules in the ground rotational level while the statistical distribution

maintains 75% of the H2 molecules in the first excited rotational level, which better mod-

els the gas after a fast cooling process where the Boltzmann distribution is only reached

after a long time, given the slow transfer rate from the first excited rotational level to the

ground rotational level (about 2% per week) [33].

Table 3.1: Collisional rates in MHz for µp atoms and H2 gas molecules at different pres-
sures and temperatures for Boltzmann and statistical H2 rotational level distributions.

Collisional rates [MHz]

T = 22 K T = 50 K
P = 0.5 bar stat. Boltz. stat. Boltz.
Γel 72 49 37 27
Γinel 82 93 34 37
P = 1 bar stat. Boltz. stat. Boltz.
Γel 144 98 74 56
Γinel 164 187 68 74
P = 2 bar stat. Boltz. stat. Boltz.
Γel 287 197 148 111
Γinel 328 374 137 148

3.2.3 Doppler broadening

This type of broadening occurs from the velocity distribution of the µp atoms, which,

via the Doppler effect, leads to a shift in the frequencies at which they absorb or emit

light [41].

For an electromagnetic wave propagating with velocity c, a particle moving with non-

relativistic velocity vx, in the direction of propagation of the wave, experiences a laser

frequency in the laboratory frame of reference given by [41]

ω′ = ω
(
1 +

vx
c

)
, (3.47)

relative to the emitted laser frequency ω. The experienced frequency ω′ is then related

to the laser frequency ω by the Doppler shift

δ = ω′ −ω = ω
vx
c

. (3.48)

Assuming that the µp atoms follow an ideal gas behavior, the velocity component vx
is given by the one-dimensional Maxwell-Boltzmann velocity distribution [44]

f (vx)dvx =
(

mµp

2πkBT

)1/2

exp

−mµpv
2
x

2kBT

dvx , (3.49)

where f (vx)dvx represents the probability of a µp having a velocity component vx in the

range [vx,vx + dvx] for a gas temperature T .
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By combining equations (3.48) and (3.49) we obtain the distribution of Doppler fre-

quency shifts [41]

f (δ)dδ =

 mµpc
2

2πkBTω2

1/2

exp

− mµpc
2

2kBTω2 δ
2

dδ , (3.50)

which gives the probability of a µp atom to experience a frequency shift between δ and

δ + dδ, for a given laser frequency ω, at a temperature T . The distribution of (3.50) is

equivalent to the Gaussian distribution

f (δ)dδ =
1

ΓD
√

2π
exp

(
− δ2

2Γ 2
D

)
dδ . (3.51)

with a width ΓD given by

ΓD = ω

√
kBT

mµpc2 , (3.52)

which for the resonance frequency ωr = 44.3 THz of the ground state HFS transition in

µp simplifies to

ΓD ≈ 12.7
√
T [MHz], (3.53)

where [T ] is in K.

The standard way of applying the frequency shift distribution of equation (3.51) to

the populations obtained via the Bloch equations is through the linear convolution [41,

42]

ρDoppler(t,∆) = (ρ ∗ f ) (t,∆) =
∫ +∞

−∞
ρ(t,∆− δ)f (δ)dδ . (3.54)

This integration, here referred to as the convolution method, allows the Doppler-

broadened populations to be calculated from the time and frequency detune dependent

populations ρ(t,∆), obtained from the Bloch equations. It is particular useful when deal-

ing with constant amplitude fields, from which the expression for ρ(t,∆) can be obtained

analytically or through fast numerical integration of the Bloch equations, i.e. for the Bloch

equations defined in (3.32) with an electric field given by expression (2.9) the Doppler-

broadened steady-state population of the 1S(F = 1) state obtained with the convolution

method of equation (3.54) is given by the Voigt profile [41]

ρ22Doppler
(∞) =

1

ΓD
√

2π
ℜ

[
w

(
∆+ ih

ΓD
√

2

)]
, (3.55)

where h stands for FWHMΓsp
/2 andℜ [w] stands for the real part of the Faddeeva error

function. Figure 3.9 shows the difference between the Lorentzian profile of the steady-

state population with no Doppler broadening (ΓD / |V | = 0), given by equation (3.33), and

the Doppler-broadened Voigt profiles of equation (3.55).
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Figure 3.9: Doppler-broadened steady-state population values in function of the ratio
∆/ |V | for different values of the Doppler broadening ratio ΓD / |V |, with Γsp = Γel = Γinel = 0.

The convolution method of equation (3.54) has also been previously used to calculate

the Doppler-broadened populations of the 1S(F = 0) and 1S(F = 1) energy levels of µp

for laser pulses of constant intensity and various time durations [33]. In this present

work, however, we aim to obtain the Doppler-broadened populations of the singlet and

triplet ground state HFS energy levels of µp for a modeled electric field representing the

laser pulse reflections inside the laser cavity of figure 2.3. This electric field introduces

a random behavior into the Bloch equations and significantly complicates the process of

obtaining a numerical expression for ρ(t,∆) (see section 3.3).

3.2.4 Comparison of broadening effects in the HyperMu experiment

The Doppler width of equation (3.52) along with the decoherence, inelastic collision and

spontaneous emission rates are the main broadening mechanisms for the steady-state

populations obtained from the Bloch equations (3.42). In order to compare the relative

contribution of each of these effects table 3.2 summarizes the broadening rates obtained

for several conditions of temperature and pressure.

As can be seen from the results of table 3.2, for the considered experimental condi-

tions, the spontaneous emission rate for the ground state HFS transition in µp represents

a minor contribution to the broadening of the energy level populations, i.e. Γsp≪ Γc,ΓD .

As such, the spontaneous emission rate and it’s related effect on the Bloch equations were

neglected in all further stages of this work.
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Table 3.2: Doppler width and decoherence and spontaneous emission rates at various
conditions of temperature and pressure. The spontaneous emission rate, Γsp, refers to the
1S(F = 1) −→ 2S(F = 0) transition in µp and it’s value was taken from [33]. Collision rates
taken from table 3.1 assuming a statistical distribution for the H2 rotational levels.

T [K] P [bar] Γsp [MHz] Γc [MHz] ΓD [MHz]

22 0.5 1.96× 10−12 154 60
22 1 308 60
22 2 615 60

50 0.5 71 90
50 1 142 90
50 2 285 90

3.3 Effective Laser Field

The theoretical formalism presented so far was developed under the consideration of a

constant amplitude electric field. However, the laser field inside the cavity is expected

to suddenly increase and then decay exponentially as the laser pulse is reflected back

and forth. Therefore, to correctly model the behavior of the µp energy level populations

within the experimental setup presented in section 2.2, an accurate description of the

electromagnetic field inside the laser cavity is required.

In this section we introduce a model for the electric field based on successive reflec-

tions of the laser pulse inside the cavity of figure 2.3. In order to avoid the increased

complexity in the calculation of ρ(t,∆), caused by the random nature of the modeled

electric field, we present also an alternative method of obtaining the Doppler-broadened

populations from the Bloch equations.

3.3.1 Initial description

The laser’s electromagnetic field consists of an initial pulse at a frequency ω that is folded

within a toroidal cavity by reflecting at the mirror surface. The toroidal cavity has a

mirror surface with a given reflectivity R and a diameter D.

Upon reflection, the laser pulse is assumed to have decreased in amplitude by a factor

of R as well as being shifted by a random phase φ. This random parameter attempts

to model a very complicated behavior of the light inside the cavity in which the light

reaching the atom is not phase correlated with the light before reflection, leading to a

random interference pattern between the reflected pulses.

The electric field at the center of the cavity can be written as the incoherent sum of its

initial and reflected pulses as [45]

E(t) = E0

∞∑
n

RnGτ (t − tn)cos(ωt +φn) , (3.56)
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where Gτ (t − tn) is the Gaussian shape

Gτ (t − tn) =
(

1
τ
√
π

)1/2

exp
[
− (t − tn)2

2τ2

]
, (3.57)

of center tn = nD
c and pulse duration τ . The pulses are normalized according to

∫ ∞
−∞

G2
τ (t) dt = 1 , (3.58)

so that the fluence of the initial pulse is solely dependent on the field amplitude E0 (see

section 3.4).

Inputing the electric field of equation 3.56 into the Bloch equations would lead to

the introduction of a random behavior in the obtained populations, due to the random

phase φn attributed to each reflection. In order to deal with this behavior, the populations

would need to be calculated for a set of electric fields with the same values of τ , R, D.

Then, in order to obtain the Doppler-broadened populations through the convolution

method, described in section 3.2.3, this process would have to be repeated for a range of

frequency detuning (∆) in order to obtain the values of ρ(t,∆), which could then be used

to calculate the Doppler convolution integral of equation (3.54). The described process is

represented in the diagram of figure 3.10.

Calculate N fields
Solve the Bloch

equations
Doppler

convolution

E1(t)

E2(t)

...

EN−1(t)

EN (t)

ρ1(t,∆i)

ρ2(t,∆i)

...

ρN−1(t,∆i)

ρN (t,∆i)

ρD(t,∆)

loop over range of ∆ values
(∆i = ∆1,...,∆k)

Figure 3.10: Diagram of the necessary process for calculating the average Doppler-
broadened populations (ρD) with the convolution method and the modeled electric field
of equation (3.56). The subscripts with values of 1 through N are used for relating the
calculated populations with their relative field and should not to be confused with the
double index subscripts in ρ11, ρ22, etc. The large bracket represents the process of av-
eraging over the N calculated populations, for each ∆i , to obtain the average population
ρ(t,∆), before performing the Doppler convolution.
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The biggest disadvantage of this method lies in the fact that the convolution integral

can only be calculated when the values of ρ(t,∆) are known. Therefore, even in the

particular cases where we are only interested in determining the energy level populations

for a specific detune value ∆ = ∆0 the loop over a range of ∆ values, symbolized by the

dashed box of figure 3.10, is unavoidable.

3.3.2 Doppler-shifted field

In order to avoid part of the increased complexity attributed to the convolution method,

caused by the random nature of the modeled electric field, we present in this section

an alternative method of obtaining the Doppler-broadened populations. This method,

here referred to as the Doppler shift method, relies on the inclusion of the Doppler effect

directly in the calculation of the electric field, by taking into account the frequency shift

caused by the velocity of the µp atoms. In doing so, the obtained Doppler-shifted electric
field can be included in the Bloch equations, from which the Doppler-broadened energy

level populations can be obtained without the need of a convolution integral.

Considering that the µp atoms have a given velocity v⃗, the component (vx) of this

velocity in the direction of propagation of the electric field will cause a Doppler shift in

the perceived frequency, as explained in section 3.2.3. If the electric field propagates in

the x direction, as represented in figure 3.11, the Doppler-shifted frequency is given by

equation (3.47) and the field of equation (3.56) becomes

Figure 3.11: Representation of the first pulse and first reflection of the laser’s Doppler-
shifted electric field inside the laser cavity accounting for the velocity of the µp atoms.

E(t) = E0

∞∑
n

RnGτ (t − tn)cos
[(
ω+ω

vx
c

)
t +φn

]
, (3.59)

which can also be written as the product of a fast oscillation of amplitude E0 and fre-

quency ω and a dimensionless Doppler-shifted oscillation (E) with frequency ω vx
c

26



3.3. EFFECTIVE LASER FIELD

E(t) =
E0

2
eiωtE(t) + c.c , (3.60)

where

E(t) =
∞∑
n

RnGτ (t − tn)exp(iωD + iφn) , (3.61)

and ωD is the Doppler shift frequency, given by

ωD = ω
vx
c

. (3.62)

In order to derive the Bloch equations for the Doppler-shifted field of equation (3.59),

we first define the time-dependent Rabi frequency

V(t) =
eE0

ℏ

ME ∗(t) , (3.63)

analogous to the previously defined Rabi frequency of equation (3.16) but with a time-

dependent amplitude given by the modeled Doppler-shifted field. Then, with the use

of the rotating-wave approximation introduced in section 3.1.1, we obtain the Doppler-
shifted Bloch equations

dρ11

dt
=

[ i
2
V(t)ρ12 + c.c

]
+ Γspρ22

dρ12

dt
=

dρ∗21
dt

=
i
2
V∗(t) (ρ11 − ρ22) +

(
i∆− Γc

2

)
ρ12

dρ22

dt
= −

dρ11

dt
− Γinelρ22

dρ33

dt
= Γinelρ22 ,

(3.64)

which model the time evolution of the ground state HFS energy level populations of µp

for a Doppler-shifted electric field dependent on the laser and cavity parameters as well

as the temperature and pressure conditions of the H2 gas, which determine the velocity

of the µp atoms.

With the Doppler-shifted Bloch equations (3.64) it its possible to obtain the Doppler-

broadened energy level populations without the need of the convolution integral of equa-

tion (3.54), through the process represented in figure 3.12. In particular, the populations

can know be obtained for a specific frequency detuning (∆ = ∆0) without knowledge of

the general population function ρ(t,∆).
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Calculate N Doppler-
shifted fields

Solve the Bloch
equations

E1(t)

E2(t)

...

EN−1(t)

EN (t)

ρ1(t,∆0)

ρ2(t,∆0)

...

ρN−1(t,∆0)

ρN (t,∆0)

ρD(t,∆0)

Figure 3.12: Diagram of the necessary process for calculating the average Doppler-
broadened populations (ρD) with the Doppler-shifted field of equation (3.59). The sub-
scripts with values of 1 through N are used for relating the calculated populations with
their relative field and should not to be confused with the double index subscripts in
ρ11, ρ22, etc. The large bracket represents the process of averaging over the N calculated
populations to obtain the average Doppler-broadened population ρD(t,∆0) for a specific
value of laser frequency detuning ∆ = ∆0.

3.4 Laser fluence

It is important that the electromagnetic field of the laser is defined in terms of experimen-

tally controllable variables. Here we chose to define the electric field in relation to the

laser fluence, a measure of the energy radiated per unit area, defined as the time integral

of the laser intensity I.

For a time period ∆t the fluence is given by

F∆t =
∫ ∆t/2

−∆t/2
I(t) dt = ε0c

∫ ∆t/2

−∆t/2
E2(t) dt [J/m2] , (3.65)

where ε0 is the vacuum permittivity. The total fluence (F ) of a laser pulse can then be

obtained by extending the limits of integration of equation (3.65) to infinity, as

F = ε0c

∫ ∞
−∞

E2(t) dt . (3.66)

3.4.1 Fluence of the Doppler-shifted field

For a field defined by equation (3.59) the total fluence is given by
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F = ε0c

∫ ∞
−∞

E0

∞∑
n

RnGτ (t − tn)cos(ωDt +φn)

2

dt

= ε0cE
2
0

∫ ∞
−∞

 ∞∑
n

R2nG2
τ (t − tn)cos2(ωDt +φn) +

+
∞∑
i,j

Ri+jGτ (t − ti)Gτ (t − tj )cos(ωDt +φi)cos(ωDt +φj )

 dt ,

(3.67)

where ωD is the Doppler shifted frequency, defined in (3.62).

Considering that every emitted laser pulse produces a random electric field inside

the cavity, caused by the random phases φn upon reflection, equation (3.67) states that

for each of these random fields the total fluence is given by the sum of two terms. One,

common to all fields with the same values of τ , R and D, given by

Fcom. = ε0cE
2
0

∫ ∞
−∞

∞∑
n

R2nG2
τ (t − tn)cos2(ωDt +φn) dt

= ε0cE
2
0

( 1
1−R2

)∫ ∞
−∞

G2
τ (t)cos2(ωDt +φn) dt

=
ε0cE

2
0

2

( 1
1−R2

)
,

(3.68)

under the condition ωD ≫ 2π/τ and the normalization of equation (3.58). And an inter-

ference term

Fint. = ε0cE
2
0

∫ ∞
−∞

∞∑
i,j

Ri+jGτ (t − ti)Gτ (t − tj )cos(ωDt +φi)cos(ωDt +φj ) dt , (3.69)

which depends upon the phase of each reflection and therefore cannot be further simpli-

fied. However it is possible to see that

∣∣∣∣∣∫ ∞
−∞

Gτ (t − ti)Gτ (t − tj )cos(ωDt +φi)cos(ωDt +φj ) dt
∣∣∣∣∣ ≤ ∫ ∞

−∞
G2
τ (t)cos2(ωDt) dt , (3.70)

which leads to

|Fint.| ≤ Fcom. . (3.71)

With the initial laser pulse fluence F0, defined by

F0 = ε0cE
2
0

∫ ∞
−∞

G2
τ cos2(ωDt) dt =

ε0cE
2
0

2
, (3.72)
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and equations (3.67), (3.68) and (3.71) we reach the condition

0 ≤ F ≤ 2F0

1−R2 . (3.73)

It is possible to see from equations (3.69) and (3.73) that F = 0 happens for maximum

destructive interference inside the cavity while F = 2F0/(1−R2) is the fluence obtained

for maximum constructive interference. Since all values of F in the interval between max-

imum destructive and constructive interference should follow a symmetric probability

distribution around the halfway value of F0/(1−R2), it is then expected that for several

electric fields, each generated by the same initial laser pulse of fluence F0, the average

fluence inside the cavity is given by

F =
F0

1−R2 , (3.74)

where the overline represents an average over several electric fields with the same values

of F0, τ and R.

3.4.2 Limiting regimes

With the use of equation (3.72) it is possible to obtain the time-dependent Rabi frequency

in terms of the initial laser pulse fluence as

V(t) =
eM
ℏ

√
2F0

ε0c
E(t) = V0

√
F0E(t) , (3.75)

where

V0 =
eM
ℏ

√
2
ε0c

(3.76)

is independent of time, fluence and pulse duration.

Considering the simple case of a single Gaussian pulse with no reflections, for which

E(t) = Gτ (t − t0) , (3.77)

and

F = F0 =⇒ V(t) = V0

√
FGτ (t − t0) , (3.78)

the three-level system Bloch equations (3.64) can be solved numerically in order to obtain

the energy level populations for two different oscillation regimes (analogous to those of

section 3.2.2.3), defined by the dimensionless ratio Γc/V2
0F .

When Γc ≥ V2
0F , the rate of population transfer from ρ22 to ρ33 is close to or greater

than the rate of transfer between ρ11 and ρ22. In these conditions, assuming that ρ11 = 1 at

t = 0, it is as if the population transfer happened directly from ρ11 to ρ33, preventing any

oscillations between ρ11 and ρ22 and leading the steady-state ρ33 population to quickly
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reach a saturation value with the increase of laser pulse duration, as shown in figure

3.13(a).

(a) Γc ∼ V2
0F

(b) Γc ≪ V2
0F

Figure 3.13: Steady-state ρ33 population vs. dimensionless laser pulse duration for two
limiting regimes with different values of the broadening ratio Γc/V2

0F , with Γel = Γinel and
Γsp = 0, such that Γc = 2Γinel. No Doppler broadening considered (ΓD = 0).

It is important to note that Γc contains not only the inelastic collision ratio, repre-

senting the rate of transfer from ρ22 to ρ33, but also the rate of elastic collision, which

contributes to the damping of the oscillations between the ρ11 and ρ22 populations. It

is this damping that leads to lower steady-state ρ33 populations for larger values of the

ratio Γc/V2
0F in the results of figure 3.13(a).
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In the case of Γc≪ V2
0F , however, both the rate of population transfer from ρ22 to ρ33

and the damping of the oscillations between ρ11 and ρ22 become smaller. This leads the

ρ11 and ρ22 populations to behave according to equations (3.27) and (3.28) preventing

the saturation of the ρ33 population and causing it to oscillate with the increasing values

of laser pulse duration, as shown in figure 3.13(b).

These two limiting regimes have been previously studied for rectangular laser pulses

of constant intensity [33]. The low oscillation regime represented in figure 3.13(a), charac-

terized by Γc ≥ V2
0F , produces steady-state populations that can be approximated by those

obtained from Fermi’s golden rule [41] and is therefore referred to as the Fermi golden
rule regime [33]. In contrast, the regime with highly oscillatory behavior, represented in

figure 3.13(b), is denoted as the Rabi oscillation regime.
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Simulation

A simulation method was developed using Python [46] in order to study the populations

obtained from the Bloch equations when considering the effective shape of the electric

field inside the laser cavity, as explained in section 3.3, while also accounting for the

broadening effects of section 3.2.

4.1 General structure

The simulation is divided into two main parts, represented by the left and right processes

of figure 4.1.

Generate random
path velocities

Calculate Doppler-
shifted field

E(t)

Save fields to file

field.out

v(t)

[E0, E1, . . . , En]

field.out

Solve Bloch equations
for each field

Average results

[E0, E1, . . . , En]

[
ρ330

, ρ331
, . . . , ρ33n

]

ρ33

Figure 4.1: Diagram of the general structure of the simulation. Dashed boxes indicate
processes or groups of processes which are run in a loop.
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The first part consists on calculating Doppler-shifted fields, for given sets of experimental

conditions. The Doppler-shifted fields are used in order to take advantage of the random

nature of the electric field (due to the random phase upon reflection) by including the

effects of Doppler broadening directly in the calculation of the electric fields via a Monte

Carlo approach, following the procedure explained in section 4.3. The velocities used

for the Doppler-shifted fields, explained in detail in section 4.2, are sampled from one-

dimensional Maxwell-Boltzmann distributions (3.49) and follow a random path behavior.

The simulated fields are saved into files that are afterwards read and used to solve

the Bloch equations for any given value of laser fluence. The Bloch equations are solved

numerically using an implementation of the Runge-Kutta fourth-order method, discussed

in section 4.4.

4.2 Particle motion

In order to calculate the Doppler-shifted field we first need to obtain the velocity function

of the µp atoms. These atoms are assumed to behave as an ideal gas inside the laser cavity

with their velocities following Maxwell-Boltzmann distributions.

To generate a velocity function we sample velocities from a Maxwell-Boltzmann dis-

tribution, with collisions (changes in velocity) following a Poisson distribution. The

probability of collision at each time step dt is given by

pcoll = Γel dt (4.1)

At each time step a random number (a ∈ [0,1]) is generated and compared with pcoll.

If a < pcoll a collision takes place and a new velocity is sampled from the Maxwell-

Boltzmann distribution, otherwise the velocity remains unchanged. A simple version of

this algorithm can be written in Python, as shown in listing A.3, provided that we build

a function that returns a sampled 1-dimensional velocity from a Maxwell-Boltzmann

distribution for particles of mass m at temperature T (see listing A.2). An example of

sampled one-dimensional Maxwell-Boltzmann velocities is presented in figure 4.2.

To illustrate the Poisson sampling of collision times, figure 4.3 shows the sampled

probability of observing N collisions in a time interval of 100/Γel compared with the

Poisson distribution [47]

P (X = N ) =
λN e−λ

N !
(4.2)

where λ is the expected level of occurrences. In the case of a time interval of 100/Γel it

follows that λ = 100.

An example of a 2D random path with velocities and collision times generated with

the algorithm of listing A.3 is shown in figure 4.4.
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Figure 4.2: Sampled velocities from a Maxwell-Boltzmann distribution for µH atoms.

Figure 4.3: Sampled probability of the number of collisions observed for a time interval
of 100/Γel.
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Figure 4.4: Simulated 2D random path for a µH atom in H2.

4.3 Cavity field

To simulate the electric field inside the laser cavity we use the Doppler-shifted field of

section 3.3.2 with Doppler-shifted frequencies calculated from the velocities obtained

through the algorithm of listing A.3.

In order to account for the abrupt changes in the Doppler-shifted frequency, caused

by the change in velocity at each collision, an algorithm was built to construct a continu-

ous wave with abrupt changes in frequency. The wave is built from different frequency

segments that are phase-shifted in order to avoid any possible discontinuities. Two wave

segments with frequencies ω1 and ω2 and phases φ1 and φ2 intercepting at t = t0 form a

continuous wave if

φ1 = φ0 + (ω0 −ω1)t0 , (4.3)

as exemplified in figure 4.5.

With continuous waves of Doppler shift frequencies, given by

ωD(t) = ω
v(t)
c

, (4.4)

it is possible to compute the terms

exp[iωD(t) + iφn] , (4.5)

from the Doppler-shifted field of equation (3.61). The complete field can then be obtained

by multiplying the n terms given by equation (4.5) with the reflected Gaussian pulses
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Figure 4.5: Continuous wave with different frequency segments intercepting at t = t0.

RnGτ (t − tn) , (4.6)

and summing all the resulting terms according to equation (3.61).

The summations presented in the model of section 3.3 have an infinite number of

reflections (i.e. n ranges from 0 to ∞), in a simulation, however, a maximum value for

n must be defined. In the developed simulation this value is calculated from an input

minimum amplitude (minAmp, see listing A.5) as

nmax =
ln(minAmp)

ln(R)
. (4.7)

In all the simulations performed in this work the value of 0.01 was chosen for minAmp, such

that the last reflection considered represents 1% of the initial laser pulse amplitude.

From the value of nmax we also define the time interval to consider, since it is directly

related to the last simulated reflection. However, since the time interval is also used for

solving the Bloch equations, it is important that we take into account the possibility of

population transfer due to inelastic collisions when no electric field is present. The time

interval must therefore always be greater than the time of the last reflection tnmax
.

A diagram of the simulation process for the cavity field is represented in figure 4.6,

and corresponds to a detailed view of the dashed box on the left side of figure 4.1. The

process is ran in a loop, as represented by the dashed box of figure 4.1, in order for the

Bloch equations to be solved for an array of electric fields to then calculate the average

populations for each set of experimental conditions. To illustrate the random nature of

the electric field inside the laser cavity, figure 4.7(a) shows two Doppler-shifted fields

generated for the same set of experimental conditions.
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Generate v(t)

Continuous wave with
Doppler shift frequencies

Multiply with
Gaussian pulse

Sum field terms

Doppler-shifted field E(t)

v(t)

exp(iωD + iφk)

RkGτ (t − tk)exp(iωD + iφk)

while k < nmax

∑nmax
k=0 RkGτ (t − tk)exp(iωD + iφk)

Figure 4.6: Diagram of the simulation process for the Doppler-shifted field. nmax repre-
sents the maximum number of reflections to consider and is given by equation (4.7).

4.4 Solving the Bloch equations

The populations after laser excitation from the simulated Doppler-shifted fields were

obtained as numerical solutions of the Bloch equations (3.64) through an implementation

of the Runge-Kutta fourth-order method.

The system of equations (3.64) can be written using the matrix notation of equation

(3.20) as

dρ
dt

= f (t,ρ) , ρ(t0) = ρ0 , (4.8)

with
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ρ =



ρ11

ρ22

ρ12

ρ21

ρ33


, f (t,ρ) =



0 Γsp
i
2V(t) − i

2V
∗(t) 0

0 −Γsp − Γinel − i
2V(t) i

2V
∗(t) 0

i
2V
∗(t) − i

2V
∗(t) i∆− Γc

2 0 0

− i
2V(t) i

2V(t) 0 −i∆− Γc
2 0

0 Γinel 0 0 0





ρ11

ρ22

ρ12

ρ21

ρ33


, (4.9)

and

ρ0 =



ρ11(t0)

ρ22(t0)

ρ12(t0)

ρ21(t0)

ρ33(t0)


=



1

0

0 + 0i

0 + 0i

0


, (4.10)

as the initial value of the populations.

With the Runge-Kutta fourth-order method [48], the populations at a future time,

tn+1, can be calculated from the populations at t = tn as

ρ(tn+1) = ρ(tn) +
1
6

dt(k1 + 2k2 + 2k3 +k4) ,

tn+1 = tn + dt ,

(4.11)

with

k1 = f (tn,ρ(tn)) ,

k2 = f (tn +
dt
2
,ρ(tn) + dt

k1

2
) ,

k3 = f (tn +
dt
2
,ρ(tn) + dt

k2

2
) ,

k4 = f (tn + dt,ρ(tn) + dtk3) ,

(4.12)

where dt is a chosen time interval corresponding to the step-size between iterations.

Applying this method to calculate the populations obtained for the simulated fields

of figure 4.7(a) it is possible to visualize (see figure 4.7(b)) that the obtained populations

have an inherent variance arising from the random nature of the generated electric fields.

In order to reduce the variance obtained when calculating the average population (ρ33)

it is necessary to increase the number of simulated fields such that the resulting average

population corresponds to that obtained for a field of fluence F , given by expression
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(a) Generated fields

(b) Populations obtained from the generated fields.

Figure 4.7: Two fields and corresponding populations simulated for the same set of ex-
perimental conditions. The difference in the obtained results highlights the randomness
introduced in the simulation by the random phases of the electric field pulses upon re-
flection.
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(3.74). Figure 4.8 shows how the variance of ρ33 depends upon the number of simulated

fields (nsim) for a specific set of experimental conditions.

Figure 4.8: Left - Average population ρ33 for different number of simulated fields. Right -
Percentage variance of ρ33 vs. number of simulated fields.

It is possible to see, in figure 4.8, that the percentage variance of ρ33 decreases dras-

tically with the increase in number of simulations. In particular, from nsim = 10 to

nsim = 1000 the observed variance drops from ∼ 30% to ∼ 3%, while no significant differ-

ence is observed between the results obtained for 1000 and 2000 simulations.

Two factors contribute to the variance of the energy level populations obtained through

the Doppler shift method. These are:

• The random phase upon reflection, which leads to a decoherent interference;

• The sampled velocities and collision times used in the construction of the velocity

function v(t).

Each of these factor varies differently under a change of the laser pulse and cavity param-

eters (τ , D, R), leading to different effects on the obtained population variance.

As it can be seen from the results presented in table 4.1, an increase of the laser pulse

duration leads to a decrease of the population variance. This effect is the result of an in-

crease in sample size for the sampled velocities and collision times, given that longer laser

pulses allow for a larger number of collisions (velocity changes) during the laser pulse

duration. As a larger sample size leads to a smaller statistical variance and the number

of random phase shifts is independent of τ , the observed effect is expected. It can also

be seen that higher cavity reflectivity values lead to smaller population variances. This

effect is also caused by an increase of the sample size, given that higher reflectivity leads

to an increase in the number of simulated reflections, as can be seen from equation (4.7).

When the number of simulated reflections increases, both the velocity and phase shift

sample sizes increase, leading to the smaller percentage variances observed.
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Table 4.1: Population variance for various experimental conditions and nsim = 1000.

τ [ns] D [cm] R σ (ρ33)%

10 10 0.900 8.9
10 10 0.995 2.9
10 20 0.900 10.3
10 20 0.995 2.8

100 10 0.900 2.1
100 10 0.995 0.4
100 20 0.900 3.8
100 20 0.995 0.9

4.5 Performance and optimization

The simulation built for this work was entirely written in Python [46], which, being a

high-level interpreted language, often leads to slow execution times. In order to optimize

the simulation’s runtime, two decorators from the library Numba [49], a Just-In-Time

(JIT) compiler that converts Python-written functions into optimized machine code, were

used. These decorators are:

• @njit - compiles the decorated function to run without accessing the Python inter-

preter leading to higher performance;

• @vectorize - transforms a regular Python function with scalar input arguments into

a NumPy [50] universal function (ufunc) with equal performance as a traditional

ufunc written in C.

For the functions where several cavity fields or populations are calculated in a loop,

the decorator @njit was used with the keyword argument (parallel=True) such that these

fields and populations can be calculated in parallel inside these loops (see listing A.11).

In table 4.2 several runtimes are presented for the generation of 1000 cavity fields and

calculation of their associated populations at different experimental conditions, using an

Intel® Core i5-3570 (3.4 GHz, 4 cores, 4 threads) CPU [51]. From the results of this table

we see that an increase in the value of R leads to a significant increase of the runtime

for generating the cavity electric fields. This is expected since a higher reflectivity leads

to more reflections being calculated before reaching a defined minimum amplitude, as

can be seen from equation (4.7). When compared to the field generation runtimes, no

significant runtime increase is observed in the calculation of the associated populations.
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Table 4.2: Runtime for generating the cavity electric fields and calculating the associated
populations for different experimental conditions and nsim = 1000. Simulations ran on
an Intel® Core i5-3570 (3.4 GHz, 4 cores, 4 threads) CPU.

τ [ns] D [cm] R field runtime [s] population runtime [s]

10 10 0.900 0.6 0.8
10 10 0.995 19.2 1.4
10 20 0.900 0.6 0.9
10 20 0.995 29.5 2.0

100 10 0.900 1.3 1.7
100 10 0.995 32.8 2.3
100 20 0.900 1.2 1.7
100 20 0.995 41.3 2.8

4.6 Comparison with the convolution method

It is expected that the Doppler-shifted method produces the same Doppler-broadened

energy level populations as the (most commonly used) convolution method. In order

to ensure the validity of this new alternative method we compared the values of the

µp resonance lineshape widths and steady-state energy level populations obtained with

both methods, considering constant amplitude fields of different fluences at the tempera-

tures of 22 K and 50 K. The obtained results are presented in table 4.3 and an example

resonance lineshape obtained through the Doppler shift method is shown in figure 4.9.

Table 4.3: Comparison of the µp resonance lineshape widths and steady-state energy level
populations obtained with the convolution and Doppler shift methods for constant am-
plitude electric fields. Γconv and ρconv

33 represent the lineshape widths and resonant (∆ = 0)
steady-state populations obtained through the convolution method of section 3.2.3 while
ΓDS and ρ33 represent the average lineshape widths and resonant steady-state populations
obtained through the Doppler shift method with nsim = 1000. A laser pulse duration of
100 ns and a pressure of 0.5 bar where considered. All collisional rates where obtained
from table 3.1 considering a statistical distribution for the H2 rotational levels.

T [K] F [J/cm2] Γconv [MHz] ΓDS [MHz] ρconv
33 ρ33

10 241 249 0.18 0.18
22 20 242 258 0.32 0.32

50 243 285 0.60 0.62

10 253 259 0.18 0.19
50 20 254 268 0.31 0.33

50 258 292 0.53 0.59

From the data presented in table 4.3 it is possible to see that both methods produce

agreeing results for lower values of laser fluence (10 J/cm2 and 20 J/cm2), with some

deviation occurring for larger fluences (F = 50 J/cm2). For the steady-sate populations,
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Figure 4.9: Resonance lineshapes obtained through the Doppler shift method for a con-
stant amplitude laser field of 10 J/cm2 fluence and 100 ns duration at the temperatures
of 22 K and 50 K and 0.5 bar pressure. Both lineshapes were calculated with nsim = 1000
and all collision rates were obtained from table 3.1 considering a statistical distribution
for the H2 rotational levels.

an average relative error of 4% was obtained with the largest contribution coming from

the values calculated for T = 50 K and F = 50 J/cm2 which presented a 12% error relative

to the populations obtained through the convolution method. A larger relative error was

observed for the resonance lineshape widths (8%), with the largest contribution coming

also from the higher values of laser fluence.

The Doppler shift method was therefore demonstrated to be accurate for calculating

the resonant (∆ = 0) steady-state energy level populations, especially for lower values of

laser fluence, with a larger inaccuracy observed in the calculation of the lineshape widths.

The results presented in chapter 5 are therefore focused on the simulation of these steady-

state populations at different experimental conditions, considering the modeled electric

field inside the laser cavity. A more extensive study on the µp energy level populations

and resonance lineshapes for constant amplitude fields can be found in [33].
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Results and Discussion

In order to study the dependence of the µp energy level populations upon certain ex-

perimental conditions, the simulation described in chapter 4 was used to obtain these

populations for several sets of:

• Temperature and pressure of the H2 gas inside the laser cavity

• Laser cavity diameter and pulse duration

• Laser fluence and effective cavity reflectivity.

Through all the simulations performed in this work, the laser is assumed to be on

resonance (ω = ωr ) and have a negligible bandwidth. The rate of spontaneous emission is

neglected (Γsp = 0) since Γel≪ Γc for the considered experimental conditions (see table 3.2).

5.1 Temperature and pressure conditions

To understand the effect of the H2 gas temperature (T ) on the average steady state pop-

ulation of the quenched level (ρ33), a simulation was performed for the temperatures of

22 K and 50 K at a constant value of pressure and three different values of laser fluence.

The results of this simulation, plotted in figure 5.1 and written in table 5.1, show that

a change of temperature from 22 K to 50 K leads to a slight increase in the obtained

steady-state populations.

While a higher temperature leads to a wider Doppler width (ΓD) and therefore to a

smaller steady-state population, from table 3.1 we see that an increase in temperature at

constant pressure implies a decrease in density, leading to smaller collision rates, which

in turn lead to a higher steady-state population, as shown in figure 3.13(a). The trade-off
between these two opposite effects leads to the small variations observed for these two

values of temperature [33].

For the study of the effect of the H2 gas pressure (P ) on the steady-state population,

a second simulation was performed for the pressures of 0.5 bar, 1.0 bar and 2.0 bar at

a fixed temperature of 50 K and the same three values of laser fluence. The results of
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Figure 5.1: Average population for different values of fluence and temperature. Each
plotted point is the result of a simulation with nsim = 1000. Collisional rates obtained
from table 3.1 assuming a statistical distribution for the H2 rotational levels.

Table 5.1: Populations obtained for different values of pulse duration, fluence and temper-
ature with P = 0.5 bar, D = 10 cm, R = 0.995 and nsim = 1000. . Collisional rates obtained
from table 3.1 assuming a statistical distribution for the H2 rotational levels.

τ [ns] F [J/cm2] T [K] ρ33

10 100 22 0.82
10 100 50 0.82

10 50 22 0.60
10 50 50 0.61

10 10 22 0.17
10 10 50 0.19

100 100 22 0.85
100 100 50 0.86

100 50 22 0.62
100 50 50 0.63

100 10 22 0.18
100 10 50 0.19

46



5.2. CAVITY GEOMETRY

this simulation are plotted in figure 5.2 and show that an increase in pressure leads to a

decrease in the obtained steady-state populations. This effect is expected since table 3.1

shows that an increase in pressure leads to higher collisional rates.

Figure 5.2: Average population for different values of fluence and pressure. Each plotted
point is the result of a simulation with nsim = 1000. Collisional rates obtained from
table 3.1 assuming a statistical distribution for the H2 rotational levels.

Higher values of laser fluence, for the same temperature and pressure conditions, lead

to a smaller value of the ratio Γc/V2
0F0. This, in turn, leads the behavior of the steady-state

population towards the Rabi oscillation regime, discussed in section 3.4.2, which explains

the increase in oscillations observed for the higher values of laser fluence in figures 5.1

and 5.2.

5.2 Cavity geometry

The novelty in this work, relative to previous studies [33] on the population of the HFS

energy levels of µp, is the possibility for a better understanding of the effects of the

cavity’s diameter (D) and reflectivity (R) on these populations, through the use of the

modeled Doppler-shifted field, defined in section 3.3.

Figure 5.3 shows the results of two simulations where the steady-state populations

were obtained in function of the cavity’s diameter, D, for different values of laser flu-

ence and pulse duration. These results show that for higher fluences and shorter pulse

durations, a decrease in cavity diameter leads to lower average steady-state populations.

The observed effect is expected and can be better understood through the data listed
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(a) T = 22 K

(b) T = 50 K

Figure 5.3: Average population vs. cavity diameter for different values of fluence and pulse
duration. Each plotted point is the result of a simulation with nsim = 1000. Collisional
rates obtained from table 3.1 assuming a statistical distribution for the H2 rotational
levels
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in table 5.2, where the quantity ∆t represents the travel time between two subsequent

reflections for a given cavity diameter, for a laser pulse traveling with speed c. It is

possible to see that the percentage change in the quantity ∆t/τ , relating the travel time

and the laser pulse duration, is much greater for lower values of τ . Therefore, the change

in the superposition of subsequent reflections, caused by a decrease of the cavity diameter,

is much greater for short duration pulses, leading to the smaller steady-state populations

obtained for these pulses.

Table 5.2: Populations obtained for different values of pulse duration and cavity diameter,
with F0 = 1.0 J/cm2, T = 50 K, P = 0.5 bar, R = 0.995 and nsim = 1000. Collisional rates
obtained from table 3.1 assuming a statistical distribution for the H2 rotational levels.

τ [ns] D [cm] ∆t [ns] ∆t/τ (%) ρ33

5 1 0.03 0.67 0.64
10 1 0.03 0.33 0.70
50 1 0.03 0.07 0.83

100 1 0.03 0.03 0.85

5 5 0.17 3.34 0.77
10 5 0.17 1.67 0.77
50 5 0.17 0.33 0.83

100 5 0.17 0.17 0.86

5 10 0.33 6.67 0.81
10 10 0.33 3.34 0.82
50 10 0.33 0.67 0.84

100 10 0.33 0.33 0.85

5 20 0.67 13.34 0.84
10 20 0.67 6.67 0.84
50 20 0.67 1.33 0.85

100 20 0.67 0.67 0.86

5.3 Cavity reflectivity and laser fluence

The relation between the laser’s initial fluence (F0), the pulse duration (τ) and the cav-

ity’s reflectivity (R) is given by equations (3.74) and (3.72), with an effect on the Rabi

frequency given by equation (3.75). As can be seen from those equations, it is possible to

achieve a given value of the average fluence inside the laser cavity (F ) with many different

combinations of F0 and R. However, the steady-state populations are determined not by

the value of F but by the time-dependent Rabi frequency, which also depends upon the

laser pulse duration, given the normalization constant of equation (3.58).

To visualize how the steady-state population behaves under different combinations

of F0 and R, two simulations where performed for the temperatures of 22 K and 50 K,

where three values of F are obtained through four combinations of F0 and R for a range

of laser pulse durations. The results of these simulations are plotted in figure 5.4.
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(a) T = 22 K

(b) T = 50 K

Figure 5.4: Average population vs. pulse duration for different values of fluence obtained
with several combinations of initial pulse fluence and cavity reflectivity. Each plotted
point is the result of a simulation with nsim = 1000. Collisional rates obtained from table
3.1 assuming a statistical distribution for the H2 rotational levels
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From the results of figure 5.4 we see that for a low average total fluence (10 J/cm2,

20 J/cm2), all the chosen combinations of initial pulse fluence and reflectivity tend to

produce the same steady-state populations for the same values of laser pulse duration,

with a common decrease observed for the values of τ < 3 ns. However, for higher flu-

ences (100 J/cm2) the steady-state populations obtained for high initial pulse fluence and

low cavity reflectivity tend to deviate from those obtained for lower initial pulse fluence

and high reflectivity as the pulse duration decreases. This effect is explained by equa-

tion (3.75), from where it is possible to see that increasing values of F0 lead to higher Rabi

frequencies which in turn lead the system towards the Rabi oscillation regime, causing

the steady state population to oscillate with the value of τ , as shown in figure 3.13(b). The

observed oscillations are greater for a temperature of 50 K compared to those obtained

for 22 K which can be explained by the decrease in the collision rates, Γel and Γinel, with

increasing temperature. Smaller collision rates result in a smaller decoherence rate, Γc,

which leads the system towards greater amplitude oscillations, given the smaller value of

the ratio Γc/V0F0.
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Conclusions

In light of the upcoming HyperMu experiment of the CREMA collaboration, a simulation

method was developed in order to obtain the probability of laser excitation and following

collisional de-excitation of a µp atom in an H2 gas mixture. The implemented simulation

allows for the calculation of this probability to account for collisional and Doppler effects

while the µp atoms are under the influence of a modeled electric field that depends

upon the laser properties and cavity conditions, such as pulse duration, fluence, mirror

reflectivity and cavity diameter. The collisional effects are directly introduced into the

three-level Bloch equations through the use of broadening ratios while the Doppler, laser

and cavity geometry effects are included in the Bloch equations via a time-dependent Rabi

frequency defined by a simulated Doppler-shifted electric field. In addition, the use of

a simulated Doppler-shifted field provided faster calculations of the Doppler broadened

energy level populations obtained from the Bloch equations by allowing the calculation

of these populations at specific values of the laser frequency detune, without the need of

a convolution integral.

The probability of collisional quenching after laser excitation was simulated for sev-

eral sets of experimental conditions, with results that provide both visualization and

quantification of how this probability varies under different conditions of pressure, tem-

perature, cavity geometry, reflectivity and laser pulse fluence and duration. In particular,

the results obtained for different values of the cavity diameter show that, for a fluence of

100 J/cm2, a decrease of the cavity diameter from 10 cm to 1 cm leads to a decrease as

high as 21% for the probability of a µp atom to reach the desired quenched state, reveal-

ing the importance of the laser cavity conditions included in the model of the effective

shape of the electric field. A difference of only 5% was observed when considering the

same variation of diameter with the more expected experimental condition of 10 J/cm2

for the HyperMu experiment.

All the obtained results where interpreted under the study of the Bloch equations for

different dimensionless broadening ratios, providing a theoretical framework that may

be useful for future studies on the probability of excitation of similar atomic systems.
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A

Code

The written code is divided into five scripts:

• constants.py - definition of physical constants and unit conversions;

• maxwell.py - Maxwell-Boltzmann statistics and random paths;

• field.py - functions for simulating the electric field inside the laser cavity;

• blochRK4.py - defining and solving the Bloch equations for the generated electric

fields through the Runge-Kutta fourth-order method;

• fileIO.py - functions for reading/writting the simulated results into .out files.

The main functions from each of these scripts are listed in this appendix. Most of these

functions rely on the Numpy [50] and Numba [49] libraries.

A.1 constants.py

1 ’’’

2 A list of:

3 -Physical constants

4 -Important constant values (masses, matrix elements, etc.)

5 -Conversions

6 ’’’

7

8 e = 1.60217662E-19 # electron charge (C)

9 eps0 = 8.8541878128E-12 # vaccuum permittivity (F/m)

10

11 kB = 1.3806E-23 # boltzmann constant (J/K)

12 kB_eV = kB/e # boltzmann constant (eV/K)

13

14 u = 1.66054E-27 # 1 Dalton (kg)

15 m_mu = 0.1134289*u # muon mass (kg)

16 m_p = 1.00726467*u # proton mass (kg)

17 m_muH = m_mu + m_p #muH mass - no binding energy (kg)
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18 m_H2 = 1.00784*u # H2 mass (kg)

19

20 c = 299792458 # speed of light (m/s)

21 hbar = 1.054571800E-34 #reduced Planck constant (SI)

22

23 LHD = 4.25E22 # liquid hydrogen density (at/cm^3)

24

25 MM1 = 1.228E-15 # magnetic dipole matrix element for muH HFS (m)

26

27 #conversions

28

29 bar2Pa = 1.0E5 # bar to Pa conversion

Listing A.1: Python script with declared physicasl constants and unit conversions.

A.2 maxwell.py

1 @njit

2 def MB_velocity(m, T, size=None):

3 ’’’

4 Maxwell-Boltzmann velocity generator

5 Samples an array of velocities from a MB distribution

6 for given mass and temperature

7

8 Input

9

10 m - mass of the particles in kg

11 T - temperature in K

12 size - size of the array (number of velocities to generate)

13

14 Return

15

16 numpy array with the generated velocities

17 ’’’

18

19 sigma = np.sqrt(ct.kB*T/m) #standard deviation of the 1D MB dist

20

21 return np.random.normal(loc=0, scale=sigma, size=size)

Listing A.2: Implemented function for sampling velocities components from a one-

dimensional Maxwell-Boltzmann velocity distribution.

1 @njit

2 def random_velocities(t, m, T, collision_rate):

3 ’’’

4 Generates MB velocities for Poisson sampled collisions

5

6 Input

7
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8 t - time array to calculate the velocties for

9 m - mass of the particles in kg

10 T - temperature in K

11 collision_rate - collision rate of the particles at given temperature

12

13 Return

14

15 v_arr - numpy array with v values for all values of t

16 t_ind - indicies of t where a collision happened

17 ’’’

18

19 dt = t[1]-t[0]

20 v_arr = np.zeros(shape=len(t)) #empty v(t)

21 t_ind = [0] #array with the time indices where collisions happened (also

includes the indices 0 and len(t))

22

23 v = MB_velocity(m, T, size=1)[0]

24 p = dt*collision_rate

25

26 v_arr[0] = v # first 2 instances of velocity

27 v_arr[1] = v

28

29 for i in range(2, len(t)-2):

30

31 n = np.random.random()

32

33 if n<p and i>t_ind[-1]+1: #imediate successive collisions are not

allowed

34 v = MB_velocity(m, T, size=1)[0]

35 t_ind.append(i)

36

37 v_arr[i] = v

38

39 v_arr[-2] = v

40 v_arr[-1] = v

41

42 t_ind.append(len(t))

43

44 return v_arr, t_ind

Listing A.3: Algorithm for generating random path velocities with collision times

following a Poisson distribution.
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A.3 field.py

1 @vectorize

2 def gauss(t, t0, tau):

3 ’’’

4 Gausian pulse

5

6 Input

7

8 t - time value

9 t0 - center of the Gaussian pulse

10 tau - width (standard deviation) of the Gaussian pulse

11

12 Return

13

14 Gaussian pulse value at t

15

16 ’’’

17

18 if np.abs(t-t0) > 5*tau:

19 return 0.0

20 else:

21 x = (t - t0)/tau

22 return np.exp(-(1/2)*x**2)

Listing A.4: Function for generating a Gaussian pulse using the decorator @vectorize from

the Numba library.

1 @njit

2 def t_maxn_dopp(tau, t0, D, R, minAmp):

3 ’’’

4 Calculates the max number of reflections and time needed

5 for a Doppler-shifted cavity field

6

7 Input

8

9 tau - duration of the initial Gaussian pulse

10 t0 - center of the initial Gaussian pulse

11 D - cavity diameter

12 R - cavity reflectance

13 minAmp - minimum amplitude to consider (between 0.0 and 1.0)

14

15 Return

16

17 t - numpy array with the time values

18 maxN - maximum reflection to calculate according to minAmp

19 ’’’

20

21 maxN = int(np.log(minAmp)/np.log(R)) #max reflections
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22

23 #these values were determined by analyzing several results

24 if tau < 15E-9:

25 t_cushion = 300E-9

26 else:

27 t_cushion = 0.0

28

29 # the values 10*tau and 5*tau where determined by analyzing several

results

30 if tau <= 100.0E-9:

31 tmax = t0 + maxN*(D/ct.c) + 10*tau + t_cushion

32 else:

33 tmax = t0 + maxN*(D/ct.c) + 5*tau + t_cushion

34

35 dt = 1.0E-9 #limit for sampling of Doppler frequency f*v/c (assuming v <=

1000 m/s)

36

37 t = np.arange(0.0, tmax, dt)

38

39 return t, maxN

Listing A.5: Function for calculating the maximum number of reflections and the time

interval to consider when generating a Doppler-shifted field.

1 @njit

2 def doppler_wave(t, m, T, collision_rate, freq, phase):

3 ’’’

4 Generates a continuous wave that changes frequency

5 according to collision times sampled from

6 a Poisson distribution (from maxwell.random_velocities)

7

8 The frequencies considered are Doppler-shifted

9 according to particle velocity

10

11 Input

12

13 t - numpy array with time values

14 m - mass of the particle (for random_velocities)

15 T - temperature (for random_velocities)

16 collision_rate - collision rate (for random_velocities)

17 freq - frequency of the laser (not shifted)

18 phase - initial phase of the wave

19

20 Return

21

22 wave - numpy aray with the wave function for all times t

23 ’’’

24

25 v_arr, t_ind = mx.random_velocities(t, m, T, collision_rate) #velocities

and collision times
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26 freq_arr = freq*v_arr/ct.c #Doppler-shifted frequencies

27

28 phi = phase #initial phase

29 wave = np.zeros(shape=len(t), dtype=np.csingle)

30 wave[t_ind[0]:t_ind[1]] = np.exp(1j*freq_arr[t_ind[0]]*t[t_ind[0]:t_ind[1]

] + 1j*phi)

31

32 for i in range(1, len(t_ind)-1):

33

34 ind_0 = t_ind[i]

35 ind_1 = t_ind[i+1]

36

37 prev_freq = freq_arr[ind_0-1]

38 new_freq = freq_arr[ind_0]

39

40 phi = (prev_freq-new_freq)*t[ind_0] + phi

41 wave[ind_0:ind_1] = np.exp(1j*new_freq*t[ind_0:ind_1] + 1j*phi)

42

43 return wave

Listing A.6: Function for generating a continuous wave with Doppler-shifted frequencies

changing according to collision times obtained from the algorithm of listing A.3.

1 @njit

2 def cavityField_dopp(tau, t0, D, R, minAmp, m, T, collision_rate, carrier_freq

):

3 ’’’

4 Simulates the Doppler-shifted electric field inside the laser cavity

5

6 Input

7

8 tau - duration of the initial Gaussian pulse

9 t0 - center of the initial Gaussian pulse

10 D - cavity diameter

11 R - cavity reflectance

12 minAmp - minimum amplitude to consider (between 0.0 and 1.0)

13 m - mass of the particle

14 T - temperature in K

15 collision_rate - collision rate

16 carrier_freq - frequency of the laser

17

18 Return

19

20 field - numpy array with the complex valued Doppler shifted cavity field

amplitude

21 t - numpy array with the time values (from t_maxn function)

22 maxN - max reflection calculated (from t_maxn function)

23 ’’’

24

25 t, maxN = t_maxn_dopp(tau, t0, D, R, minAmp)
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26

27 phi = np.random.uniform(0.0, 2*np.pi, size=maxN) #random phases

28

29 field = np.zeros(shape=len(t), dtype=np.csingle)

30

31 for i in range(maxN):

32

33 wave_dopp = doppler_wave(t, m, T, collision_rate, carrier_freq, phi[i]

)

34 field += (R**i)*gauss(t, t0+i*(D/ct.c), tau)*wave_dopp

35

36 field = normConst_gaussSq(tau)*field #normalization

37

38 return field, t, maxN

Listing A.7: Algorithm for simulating a Doppler-shifted cavity field.

A.4 blochRK4.py

1 @njit

2 def rabiFreq(field, F, M):

3 ’’’

4 Calculates the rabi frequency for a given

5 complex field amplitude, fluence and matrix element

6

7 Input

8

9 field - complex valued field amplitude

10 F - laser fluence

11 M - transition matrix element

12

13 Return

14

15 rabi frequency

16 ’’’

17

18 return M*(ct.e/ct.hbar)*np.sqrt(2*F/(ct.eps0*ct.c))*np.conjugate(field)

Listing A.8: Function for calculating the Rabi frequency given a dimensionless Doppler-

shifted field E .

1 @njit

2 def blochField_3lvl(t, rho, rabi, params):

3 ’’’

4 Defines the Bloch equations for the 3-level system of muH HFS

5 1S(F=0), 1S(F=0) + Kinetic energy, 1S(F=1)

6

7 Input

8
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9 t - time values

10 rho - array with all populations and coherences to calculate (rho11, rho12

, rho22, rho33)

11 rabi - rabi frequency

12 params - paramaters (detune, spont. emission, el. collision, inel.

collision)

13

14 Return

15

16 array with Bloch equations (eq11, eq12, eq22, eq33)

17 ’’’

18

19 detune = params[0]

20 gamma_sp = params[1]

21 gamma_el = params[2]

22 gamma_inel = params[3]

23

24 gamma_p = gamma_sp #population broadening

25 gamma_c = gamma_sp + gamma_el + gamma_inel #coherence broadening

26

27 #rho = np.array([rho11, rho12, rho22, rho33])

28

29 eq11 = -np.imag(rabi*rho[1]*np.exp(1j*detune*t)) + gamma_p*rho[2]

30 eq12 = (1j/2)*np.conjugate(rabi)*(rho[0]-rho[2])*np.exp(-1j*detune*t)-(

gamma_c/2)*rho[1]

31 eq22 = -eq11 - gamma_inel*rho[2]

32 eq33 = gamma_inel*rho[2]

33

34 rho_dot = np.array([eq11, eq12, eq22, eq33])

35

36 return rho_dot

Listing A.9: Function for defining the three-level Bloch equations (3.42) with a given

Doppler-shifted field.

1 @njit

2 def solveBlochRK4_field_3lvl(t, rabi, params, bound):

3 ’’’

4 Solves the Bloch equations numerically with Runge-Kutta (4th order) method

5

6 Input

7

8 t - time values

9 rabi - rabi frequency

10 params - parameters (detune, spont. emission, el. collision, inel.

collision)

11 bound - initial conditions for all populations and coherences

12

13 Return

14
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15 numpy array with values of all populations and coherences for all times t

16 ’’’

17

18 nt = len(t)

19 t0 = t[0]

20 dt = t[1]-t0

21

22 nx = len(bound)

23 x = np.zeros(shape=(nx, nt), dtype=bound.dtype)

24 x[:,0] = bound

25

26 for i in range(nt-1):

27

28 k1 = dt*blochField_3lvl(t[i], x[:,i], rabi[i], params)

29 k2 = dt*blochField_3lvl(t[i] + dt/2, x[:,i] + k1/2, rabi[i], params)

30 k3 = dt*blochField_3lvl(t[i] + dt/2, x[:,i] + k2/2, rabi[i], params)

31 k4 = dt*blochField_3lvl(t[i] + dt, x[:,i] + k3, rabi[i], params)

32

33 dx = (k1 + 2*k2 + 2*k3 + k4)/6

34

35 x[:,i+1] = x[:,i] + dx

36

37 return x

Listing A.10: Algorithm for solving the three-level Bloch equations (3.42) with the Runge-

Kutta fourth-order method.

1 @njit(parallel = True)

2 def solveAverage_field_3lvl(t, rabi, params, bound, nsim):

3 ’’’

4 Solves the Bloch equations numerically with Runge-Kutta (4th order) method

5 The equations are solved several times in a cycle (in parallel)

6 for an array of different time-dependent rabi frequencies

7 to obtain an average population

8

9 Input

10

11 t - time values

12 rabi - rabi frequency

13 params - parameters (detune, spont. emission, el. collision, inel.

collision)

14 bound - initial conditions for all populations and coherences

15 nsim - number of cycles (must be <= len(rabi))

16

17 Return

18

19 average populations and coherences for all times t

20 ’’’

21

22 rho = np.zeros(shape=(nsim, len(bound), len(t)), dtype=bound.dtype)
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23

24 for i in prange(nsim):

25 rho[i] = solveBlochRK4_field_3lvl(t, rabi[i], params, bound)

26

27 return np.sum(rho, axis=0)/nsim

Listing A.11: Algorithm for calculating the average populations and coherences from

the three-level Bloch equations (3.42) with the Runge-Kutta fourth-order method. The

decorator @njit(parallel=True) causes the for-loop with prange to be run in parallel.

A.5 fileIO.py

1 def write_fields_dopp(path, fields, T, P, tau, D, R):

2 ’’’

3 Function for writing an array of Doppler-shifted

4 cavity fields to an .out file

5

6 Input

7

8 path - path of the file to write on

9 fields - numpy array with complex valued doppler-shifted cavity field

amplitudes

10 T - temperature for which the field was calculated

11 P - temperature for which the field was calculated

12 tau - pulse duration

13 D - cavity diameter

14 R - cavity reflectance

15

16 The file is named as fields_dopp_T_P_tau_D_R.out

17 where T is in K, P is in bar/10, tau is in ns, D in cm

18 and R is a value between 0 and 1000

19

20 e.g.

21 T = 50.0 K

22 P = 0.5 bar

23 tau = 10.0 ns

24 D = 10.0 cm

25 R = 0.995

26

27 fields_dopp_50_5_10_10_995.out

28 ’’’

29

30 name_f = f’fields_dopp_{int(T)}_{int(P*10/ct.bar2Pa)}_{int(tau*1E9)}_{int(

D*1E2)}_{int(R*1000)}.out’

31

32 with open(os.path.join(path, name_f), ’w’) as f:

33 np.savetxt(f, fields)

34
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35

36 def read_fields_dopp(path, T, P, tau, D, R):

37 ’’’

38 Function for reading an array of Doppler-shifted

39 cavity fields from an .out file

40

41 Input

42

43 path - path of the file to write on

44 T - temperature for which the field was calculated

45 P - temperature for which the field was calculated

46 tau - pulse duration

47 D - cavity diameter

48 R - cavity reflectance

49

50 Return

51

52 Efield_arr - numpy array with complex valued doppler-shifted

53 cavity field amplitudes

54 ’’’

55

56 name_f = f’fields_dopp_{int(T)}_{int(P*10/ct.bar2Pa)}_{int(tau*1E9)}_{int(

D*1E2)}_{int(R*1000)}.out’

57

58 with open(os.path.join(path, name_f), ’r’) as f:

59 Efield_arr_str = np.loadtxt(f, dtype=str)

60 Efield_arr = np.zeros(shape=Efield_arr_str.shape, dtype=np.csingle)

61 for i in range(len(Efield_arr)):

62 Efield_arr[i] = np.array([np.complex(x) for x in Efield_arr_str[i]

])

63

64 return Efield_arr

Listing A.12: Functions for reading/writing the generated Doppler-shifted fields

from/into .out files.
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