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Deep Learning for UAV Imagery Segmentation: The Detection of 

Elymus Athericus Spread in The Hallig Nordstrandischmoor 

 

 

Abstract 

It has been observed that Athyrics Elymus engulfs smaller species in low marsh habitats in 

different areas of Europe. To obtain automated segmentation of the Athurics Elymus in Hallig 

Nordstrandischmoor, a deep learning model based on the transfer learning technique presented 

in the VGG16 was implemented with a U-Net deep learning architecture and the data 

augmentation algorithm. In conclusion, the final results were good, and had been grouped into 

three levels of accuracy. These groups are also characterized by varying levels of diversity in their 

environments. The wildrye covers the majority of these single images, with a low percentage of 

other habitats in the first group with an accuracy greater than 96%. In the second group, the 

accuracy ranged between 91-95%, which included more elements of variation; however, wildrye 

was still included. Moreover, the third group, with an accuracy rate between 80-90%, did not 

seem to include wildrye very often, while at the same time including elements not found in the 

training dataset, such as surface water and dirt roads. Due to this, time and effort are significantly 

reduced while high accuracy is achieved.
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1- Introduction and research structure 

This chapter aims to present a general overview of this research by identifying the 

research background, research problem, research aims, research questions, and research 

structure.  

1-1 Research background 

Saltmarsh ecosystems are highly productive and act as an ecotone between terrestrial 

and marine environments, thus being highly valued as protected areas and functioning 

ecosystems (Pétillon et al., 2005). It has become increasingly apparent in Europe that native 

clonal grass Elymus athericus is replacing salt marsh plant communities (Valéry et al., 2004). 

Natural sedimentation facilitates the establishment of this species, which is characteristic of a 

high salt marsh. Additionally, this species has been observed to invade a low marsh habitat in 

central Europe by engulfing smaller species (Oldeland et al., 2021). 

An invasion of this type can affect biological diversity, ecosystem properties, and 

functions, as well as the level of the conservation value of infested areas (Pétillon et al., 2005). 

Accordingly, it is imperative that plant species that negatively affect the environment be 

monitored and managed. 

Since 1970, biotype mapping has been carried out in various locations in Germany to 

develop a landscape plan (Oldeland et al., 2021). Additionally, at the same time, a similar survey 

was initiated in the UK, under the name of the “Phase 1 Habitat Survey”.  This survey was 

conducted in all UK cities. The mapping of biotope types, which is now considered an important 

subject for every country, is becoming increasingly important, not only for urban planning but 

also for ecosystem assessments (Johnson, 2011; Qiu et al., 2010). 

Over the last decade, machine learning algorithms have been widely employed for remote 

sensing, and these have ranged from basic algorithms to more sophisticated ones, including SVM, 

decision trees, Random Forests, and artificial neural networks (Helin et al., 2022). In the field of 

artificial intelligence, machine learning contributes to the ability of software applications to make 

more accurate predictions without explicitly programming them to do so. Moreover, machine 

learning algorithms can incorporate historical data as inputs when predicting new outputs 

(Khanzode & D. Sarode, 2020). 

The application of machine learning methods (ML) to the interpretation of remote sensing 

data has enabled the use of its benefits in earth observation applications.  The topic “Elymus 
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athericus mapping” provides a fantastic example of how Machine Learning can be utilized. 

Furthermore, listing the advantages of employing machine learning in remote sensing illustrates 

how this may be a useful (Bruzzone & Persello, 2010; Maxwell et al., 2018). 

In this context, Machine Learning has several advantages. Firstly, it can handle large 

volumes of data in an efficient, precise, and robust way, as data consider the main feed for any 

Machine Learning model (Maxwell et al., 2018). Secondly, it can handle all types of data starting 

from tabular data to multidimensional ones. Thirdly, machine learning considers an effective tool 

for enhancing the decision-making process. For example, in producing detection maps, machine-

learning preprocessing techniques and how the data is handled leads to improved precision and 

accuracy in the mapping, which in turn leads to taking many right development decisions 

(Khanzode & D. Sarode, 2020). 

Finally, one of the greatest advantages of machine learning is its ability to automate any 

process. As a result, the algorithm handles most of the work, saving a considerable amount of 

time and effort. Nowadays, almost everything is automated. Consequently, allowing us to be 

more creative (Bruzzone & Persello, 2010). Additionally, the reliability of machine learning is 

determined by several factors. A key factor is that by using machine learning, large data sets can 

be processed and analyzed, which is not possible to do with standard systems (Khanzode & D. 

Sarode, 2020). 

1-2 Research problem 

The first research problem focused on the detrimental effects of Elymus's invasion on the 

ecosystems of different environments. Elymus has the key effect of causing a mass loss of species, 

which affects the biodiversity of the ecosystem. The second research challenge emerges from 

the case study of Hallig Nordstrandischmoor in Germany, where Elymus spread in the sea 

marshes and impacted the ecosystems. Thirdly, this research attempted to identify a novel 

method of detecting Elymus using deep learning and UAV imagery.  

1-3 Research aims/objectives 

The purpose of this study is to develop a Deep Learning model for segmenting Elymus spreads 

and to evaluate the model's performance and the results. 

To accomplish these goals, two objectives must be met. As a first objective, this study will identify 

the main challenges associated with developing a Deep Learning model for the automated 

segmentation of Elymus spread in UAV imagery and determine whether these challenges can be 
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overcome by using techniques such as data augmentation and transfer learning. Second, we wish 

to explain the differences in accuracy between different subgroups within the study area. Lastly, 

a comparison is needed to identify the reasons for these differences. 

1-4 Research questions 

In light of the purpose and objectives of the study, the following three research questions have 

been formulated. Initially, what are the main challenges associated with the development of a 

Deep Learning model for the automated segmentation of Elymus spread in UAV imagery? The 

second question is: can these main challenges be overcome by using techniques such as data 

augmentation and transfer learning? As a final question, will the Deep Learning model develop 

improve the accuracy of the results when compared with the object-based image analysis (OBIA) 

model? 

1-5 Research structure  

This dissertation consisted of five chapters. The first chapter show the introduction and 

research workflow, where the research background, problem, aims, and questions were 

presented. The second chapter is the literature review which introduced two main points; deep 

learning uses as a detection tool in different science fields and deep learning & image 

segmentation. The third chapter discussed the materials and methods which consisted of three 

main sub-topics; study area, data collection, and research methods. The fourth chapter 

presented the results and discussions. Finally, the conclusion and main recommendations are 

presented in chapter five. 
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2- Literature review 
This chapter focus on presenting the available literature review that generally discussed 

the use of machine learning and deep learning in the dedication field. Unlike the traditional and 

standard methods of introducing and presenting literature reviews and due to the limited 

scholarly resources, using machine learning models in spatial and geographical detection of 

natural phenomena that harm the environmental ecosystems, this chapter presented the results 

of the collected literature review rather than the literature review itself, which surely will be 

presented in the context of presenting these results. 

Because of the different keywords covered by the proposed topic, the literature review 

has been divided into two phases.  Each phase covers some keywords related to one subject.  

Many databases have been used to conduct a literature review for the proposed topic (e.g., 

Scopus, IEEE Xplore, and Google Scholar). 

The first phase of the literature review focuses on highlighting the recent and most 

important uses of machine learning and deep learning in the detection of different elements in 

various science fields directions. The second phase discusses the major deep learning concepts 

that are relevant to remote sensing. Numerous publications have been reviewed and analyzed in 

this section, most of which have been published within the last four years. 

2-1 Deep learning uses as a detection tool in different science fields 

Since the appearance of machine learning/deep learning and its algorithms, it has been 

used in many fields to detect various elements, which has helped science to find solutions to 

many problems and challenges in different scientific fields. For example, in the medical field, 

different deep learning models were used in identifying and detecting many diseases. Shen et al. 

in their 2019 article explained how deep learning algorithm helped in improving the detection of 

Breast Cancer through transferring the classifier to whole images after it was small patches, as 

well as building a modern CNN using a combination of convolutional layers and fully connected 

(FC) ones (Shen et al., 2019). Additionally, Scebba et al. confirmed the importance of the deep 

learning approach in automating the wounds images segmentation (Scebba et al., 2022). 

In the spatial analysis field, machine learning and deep learning are used in different 

forms. For example, Abozeid et al. used a deep learning model to detect the Olive trees allocation 

using satellite imagery, as these trees represent significant economic values in some geographical 

areas such as KSA (Abozeid et al., 2022). Another example of using a deep learning algorithm to 
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detect spatial phenomena was using it in the detection of forest fire. Rahul et al. highlighted the 

importance of deep learning techniques in the decline of forest fire as one of the most serious 

threats to our ecosystems and environment (Rahul et al., 2020). They depend on Convolutional 

Neural Networks (CNN) to early detect these forest fires. Additionally, some researchers used 

machine and deep learning approaches to detect special elements in agricultural lands. For 

instance, Wilfried Wöber et al. used machine learning in plant science by investigating the 

explanatory factors for plant classification using Convolutional neuronal networks (CNNs) (Wöber 

et al., 2021). There are many recent uses of the machine and deep learning approaches in spatial 

analysis science such as using them in analyzing bicycle level of service (X. Liang et al., 2021), ship 

detection (Song et al., 2020), traffic congestion detection (Kamble & Kounte, 2020), urban growth 

detection (Gómez et al., 2019), flood detection (Hashi et al., 2021), etc. 

The dissertation focused in add more scholarly outputs in the use of machine learning and 

deep learning in the detection of different spatial phenomena, especially the environmental ones 

such as Saltmarsh and Elymus athericus ecosystems. 

2-2 Deep learning and image segmentation 

Deep learning algorithms have become increasingly popular over the past few years for 

analyzing remote sensing images. This section of the literature review introduces several 

commonly used DL models in remote sensing, including the supervised CNN, recurrent neural 

network (RNN) models, deep belief network (DBN) models, as well as the recently popular 

generative adversarial network (GAN) (Helin et al., 2022). An exhaustive review has been 

conducted to describe/discuss how DL has been applied to remote sensing image analysis tasks, 

for example, image classification, object detection, segmentation, and object-based image 

analysis (OBIA). From preprocessing to mapping, the review discusses a variety of applications 

and technologies related to remote sensing. 

At the beginning of the 1990s, backpropagation-based training of deep neural networks 

with multiple layers became a formal research topic, however, it was largely ignored by the 

machine-learning community (Ma et al., 2019). For quite some time, deep neural networks 

(DNNs) have not received much attention from the computer vision and remote sensing 

communities, due in part to difficulties associated with training deep neural networks (DNNs). 

DNNs have recently received wide attention, largely because they have outperformed 

competitive machine-learning algorithms in numerous application areas (LeCun et al., 2015). 

With the advent of unsupervised learning, deep learning became practical to some degree with 
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the help of deep feedforward networks. As one early breakthrough, the CNN-based AlexNet 

architecture won in 2012 by a wide margin the popular ImageNet contest.  It achieved this 

success mainly due to its efficient use of graphics processing units (GPU), rectified linear units 

(ReLUs), and a large number of training examples. Following this contest, DL received much more 

attention in different subfields of computer vision, and it was found to be effective for many 

applications in the remote sensing (Ma et al., 2019). 

2-2-1 Convolutional neural networks 

As one of the most widely used distributed learning algorithms, CNN was designed to 

process data on multiple arrays (LeCun et al., 2015; Litjens et al., 2017). Due to this characteristic, 

it is particularly ideal for processing image data derived from remote sensing of multiband signals 

in which pixels are arranged regularly. To be precise, CNNs use three different types of 

hierarchical structures: convolution layers, pooling layers, and fully connected layers. Every layer 

is altered by adding biases γ = b1, · · ·, bK and K kernels W = W 1, W 2, · · ·, W K , resulting in a 

new feature map Xk.A nonlinear transform σ(·) is performed upon these features, and this 

process is repeated with each subsequent convolutional layer l: X kl = σW kl − 1 ∗ X l − 1 + bkl − 1 

(Litjens et al., 2017). In contrast to traditional multi-layer perceptrons (MLPs), CNNs aggregate 

the values of pixels within a neighbourhood of a certain size using an invariant permutation 

function, usually the max or average operation. The network usually ends with fully connected 

layers (i.e., regular neural-network layers) at the end of the convolutional stream, but weights 

are no longer shared (Helin et al., 2022). 

2-2-1-1 Convolutional layers 

In order to understand how CNNs work, it is essential to consider how the convolutional 

layer operates. Convolutional layer parameters revolve around utilizing learnable kernels. A 

kernel of this type has relatively small dimensions, but it covers the entire depth of the input.  

Convolutional layers combine each filter across each spatial dimensionality of the input to 

generate a 2-dimensional activation map (LeCun et al., 2015; Litjens et al., 2017). Figure [1] 

illustrates this.  Scalar products are calculated for each value in the input as we progress through 

it.  Using this data, the network will learn to generate kernels that “fire” when they view a specific 

feature present at a particular spatial position.  Such kernels are commonly known as activations 

(O’Shea & Nash, 2015). 

For each kernel, an activation map will be generated, which is stacked along the depth 

dimension to create the total output volume from the convolutional layer. The problem with 
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training ANNs on inputs such as images is that the resulting models are often too large to be 

effectively trained. In order to mitigate this issue, each ANNs neuron of a convolutional layer is 

only connected to a small portion of the input space in order to mitigate this issue. Generally, 

this region’s size is referred to as the neuron’s receptive field (Litjens et al., 2017; O’Shea & Nash, 

2015). 

In plenty of cases, the connectivity is determined by the depth, which is almost always 

the same as the input depth. Assuming that the network has a size of 64 * 64 * 3 (that is, an RGB 

image with 64 * 64 dimensions) and that the receptive fields are 6 * 6, we will have 108 weights 

on each neuron in the convolution layer. As a point of comparison, a standard neuron found in 

other forms of ANNs would contain 12, 288 weights per unit. The use of convolutional layers 

reduces the complexity of the model by optimizing the model’s output.  This is performed by 

optimizing three parameters: depth, stride, and zero padding (Litjens et al., 2017; O’Shea & Nash, 

2015). 

It is possible to specify the depth of the output volume produced by the convolutional 

layers manually by selecting the number of neurons in each layer corresponding to the same 

region of the input.   Other types of ANNs resemble this in the sense that all neurons in the hidden 

layer are connected to every single neuron beforehand. Reducing this parameter can significantly 

reduce the number of neurons in the network, but it can also reduce the model’s ability to 

recognize patterns (H. Liang & Li, 2016; Ma et al., 2019). 

In order to place the receptive field, it is also possible to define the stride in which we set 

the depth surrounding the spatial dimensionality of the input.  As an example, we would 

experience extremely large activations if astride were set to 1. While a higher stride setting will 

reduce the amount of overlap and result in a lower spatial dimension (Navab et al., 2015). 

The method of zero-padding involves padding the border of the input and is an effective 

method of controlling the output volume dimensions. Using these techniques, enable us to 

change the spatial dimension of the output of convolutional layers. In order to do so, the 

following formula could be used: 

 

(V R) + 2Z S 

+ 1 
 

There are four components in this equation: “V” is the input volume size 

(height*width*depth), “R” is the receptive field size, “Z” is the amount of padding set to zero, 

and “S” corresponds to the stride. In the event that the calculated result was not a whole integer, 
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the stride would not have been set correctly, as the neurons would not be able to span the given 

input (Ma et al., 2019; Navab et al., 2015). 

The deep learning models would still be very large if we used an image input with any real 

dimensionality, even if, we have attempted our utmost to make our models more compact. 

Although, methods have been developed that greatly reduce the overall number of parameters 

within the convolutional layer (H. Liang & Li, 2016). 

In practice, parameter sharing assumes that if a region feature is useful for computing in 

one spatial region, then it will likely be useful in another region. The number of parameters 

produced by the convolutional layer will be reduced by a great deal if each activation map within 

the output volume is constrained to have the same weights and bias (Pitaloka et al., 2017). In this 

regard, as the backpropagation stage occurs, each neuron within the output will represent the 

overall gradient, which is totalized across the depth - thus we only must update one set of weights 

and not every individual one (H. Liang & Li, 2016). 

Figure (1): Convolutional layers way of work 

 

Source: (Arden Dertat, 2017) 

https://medium.com/@ardendertat?source=post_page-----584bc134c1e2-----------------------------------
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2-2-1-2 Pooling layers 

The purpose of layering is to reduce the number of dimensions in the representation, 

which further reduces the computational complexity of the model (Vives-Boix & Ruiz-Fernández, 

2021). The pooling layer is applied over each activation map in the input, allowing it to scale in 

dimensions using the “MAX” function. Generally, CNNs employ max-pooling layers that apply 

kernels of dimensionality 2*2 and a stride of 2 along the input dimensions. By doing so, we reduce 

the activation map to 25% of the original size, while maintaining the depth volume at its normal 

size (Ma et al., 2019). 

Max-pooling is commonly observed in two general methods due to the destructive nature 

of the pooling layer. Pooling layers typically have a stride and filters that are set to 2*2, which 

will allow the layer to extend across the entire spatial dimension of the input.  A third option 

would be to utilize overlapping pooling, where the stride is set to 2 while the kernel size is set to 

3 (Litjens et al., 2017; Ma et al., 2019). As a result of the destructive nature of pooling, a kernel 

size greater than 3 will usually significantly decrease the model’s performance (H. Liang & Li, 

2016). 

A CNN architecture may contain general-pooling as well as max-pooling. Normally, 

general pooling layers are made up of neurons that can perform a number of common operations 

such as average pooling, and normalization (Litjens et al., 2017; Navab et al., 2015). 

2-2-1-3 Fully connected layers 

There are neurons located in the fully connected layer which are directly connected to 

those in the two adjacent layers, without being linked to any neurons within those layers. The 

way neurons are arranged in traditional ANNs is analogous to the way they are arranged in 

traditional ANNs (Montavon et al., 2012). 

2-2-2 Residual network (ResNet) 

As found in many literature articles, the use of VGG or other deep convolutional blocks 

causes two main problems (vanishing gradient problem, and over-fitting) vanishing gradient 

problem. “Meaning your weights are updated incrementally” and if that increment goes very 

small okay then your weights are not updated at all as the change in the weight is very 

insignificant. So why will it go very small, this is backpropagation as it is going from the layer to 

the one before then one before.  Stacking Convolutional layers causes overfitting and effect the 

generalization ability of the network.  which maybe will have when we apply our model to other 
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subsets in the study area. to overcome this problem many scholars used ResNet as the backbone 

of the U-Net. 

The residual network will just make a skip connection from the first layer to the last layer 

so not the whole weights in the first layer go in the Res network block but just part of it and the 

residual added at the end of the block to the last layer weight. 

Because when working with a very deep convolutional network for example VGG is a great 

architecture but if you keep increasing the number of layers, you will run to something called a 

vanishing gradient problem. “Meaning your weights are updated incrementally” and if that 

increment goes very small okay then your weights are not updated at all as the change in the 

weight is very insignificant. 

So why will it go very small, this is backpropagation as it goes from the layer to the one 

before then one before. Stacking Convolutional layers causes overfitting and effect the 

generalization ability of the network. 

2-2-3 The U-net architecture 

U-net has established itself as a gold standard for comparing the quality and accuracy of 

semantic segmentation. U-net is a convolutional autoencoder consisting of additional 

interconnections between the encoder and the decoder parts.  Such neural networks are referred 

to as hourglass architectures. In many spatial applications, U-net or neural networks utilizing the 

same approach produce highly accurate results (Ronneberger et al., 2015). 

U-net utilizes convolutional layers generally for semantic segmentation.  In comparison 

to the normal CNN U-net, it builds a very large receptive field and is considerably less expensive.  

In an asymmetric network, spatial features are extracted from the image by the encoder and 

used by the decoder to construct a segmentation map.  The typical pattern of an encoder is 

similar to that of a convolutional neural network (Ronneberger et al., 2015). 

Following two convolutions of size 3*3, a pooling operation is performed with a pooling 

size of 2*2 and a stride of 2. Similarly, the process is repeated four times, and the number of 

filters in each convolutional layer is doubled after each downsampling. In order to connect the 

encoder to the decoder, two 3*3 convolutions are performed. By comparison, the Decoder first 

increases the sample size of the feature map through a 2*2 transposed convolution operation, 

which reduces the channel size by half. Following this, two 3x3 convolutions are performed 

(Zeiler et al., 2010). 
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Similar to the Encoder, this sequence of one upsampling operation and two convolution 

operations is repeated four times, thereby halving the number of filters at each stage. It is 

necessary to perform a 1*1 convolution operation in order to generate the final segmentation 

map. All convolutional layers except the final one utilize the ReLU (Recognized Linear Unit) 

activation function; the final layer uses the Sigmoid activation function (LeCun et al., 2015). 

Figure (2): U-net architecture 

 

Source: (Ronneberger et al., 2015) 

2-2-4 Transfer Learning 

For the optimal performance of deep convolutional neural networks, large amounts of 

labelled data are typically required. Transfer learning relates to the idea of applying the 

knowledge gained from a task with many training samples to a task with relatively few, which 

increases the probability of gradient propagation during training, and reduces the limitations of 

the data on performance. As labelled data is extremely expensive, it is important to optimize the 

use of existing datasets. 

The model does not need to learn from scratch as with traditional networks because some 

low-level features, such as edges and shapes, are useful and can be shared by transferring 

parameters. It is therefore the optimization objective of the target task to extract abstract and 
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sophisticated high-level features. Transfer learning is typically accomplished by tuning a 

pretrained network model on a target dataset. Grigorick et al. pre-trained a convolutional neural 

network on ImageNet before ne-tuning all network parameters for a task (detection) where 

enough data is unavailable. In their study, Long et al. fine-tuned only the parameters of the last 

few layers and concluded that specific features from these layers tailored to a particular task 

cannot provide a successful solution to the domain discrepancy. To solve different classification 

tasks, Sharif Razavian et al. used a pre-trained model to extract features with a support vector 

machine (SVM) (Razavian et al., 2014). 

2-3 Deep learning mechanism 

In machine learning and deep learning algorithms, data preprocessing plays a critical role, 

and proper data preprocessing is essential for improving the detection performance (Vives-Boix 

& Ruiz-Fernández, 2021). According to (Maxwell et al., 2018), data preprocessing includes data 

cleansing, normalization, transformation, feature extraction, and selection. There are some well-

known algorithms that are presented in their study for each step of data preprocessing.  In order 

to perform detection tasks utilizing data obtained from UAV images, a segmentation operation 

is essential, since raw data vary greatly over time (Maxwell et al., 2018; Pitaloka et al., 2017). 

2-3-1 Data augmentation 

Having too few samples to learn from results in overfitting, as you cannot train a model 

that can generalize to new data.  In the case of infinite data, your model would be exposed to 

every possible aspect of the data distribution: you would never overfit the model. It is possible 

to generate more training data from existing training samples by randomly transforming the 

samples in order to generate believable-looking images by augmentation. We want to ensure 

that your model will never see the same picture twice during training.  As a result, the model is 

exposed to more data aspects and can generalize more effectively. 

2-4 Deep learning conceptual kernel 

In the hope of identifying potential areas for improvement, [Ibtehaz and Rahman, 2020] 

analyzed the U-Net architecture carefully. They observed some discrepancies between the 

features propagating through the encoder network and the features propagating through the 

decoder network. Their solution involves adding additional processing to make the two feature 

maps more homogeneous, to reconcile these two sets of incompatible features. As a result, they 

have proposed MultiRes blocks to enhance U-Net by enabling multi-resolution analysis. Based on 
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the Inception building blocks, they developed a compact analogous structure, which is relatively 

lightweight and requires less memory. The MultiResUNet architecture incorporates these 

modifications. 

Based on their research, U-Net can perform segmentation with remarkable accuracy 

when dealing with perfect or near-perfect images. In these instances, their proposed architecture 

performs only slightly better than U-Net. Nevertheless, for intricate images suffering from noise, 

perturbations, unclear boundary lines, etc., MultiResUNet increases performance significantly. 

MultiResUNet has resulted in a relative improvement of 10.15%, 5.07%, 2.63%, 1.41%, and 0.62% 

for the five datasets they used. As well as achieving a higher evaluation metric score, the 

segmentations produced by MultiResUNet also correspond visually to the ground truth. 

Furthermore, on the very challenging images, U-Net tends to over segment, under-segment, 

make false predictions and even miss the objects completely. The experiments conducted by 

these researchers have shown that MultiResUNet is more reliable and robust. Despite its subtlety 

and sensitivity in detecting boundaries, MultiResUNet has been resilient in segmenting images 

with a lot of perturbations and has been able to reject outliers as well. Moreover, MultiResUNet 

is able to capture fine details even in segmenting the majority class, where the U-Net tends to 

over-segment. Furthermore, MultiResUNet’s simple 3D adaptation has performed better than 

the 3D U-Net, which has not simply been a 3-dimensional adaptation of the U-Net but has been 

enhanced and improved. Even though the segmentations generated by MultiResUNet are not 

perfect, they outperform the classical U-Net by a moderate margin in most cases (Ibtehaz & 

Rahman, 2020). 
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3- Material and methods 

This chapter is divided into three main sub-sections, namely: study area, data collection, 

and research method. These sub-sections will be presented as follows: 

3-1 Study area/Case study 

Hallig Nordstrandischmoor is the subject of the study. In the Wadden Sea National Park, 

the Hallig is located at the northern tip of Germany's North Sea coast. In 2019, UAV imagery was 

collected on 18 ha of the western tip of the Hallig. Figure [3] presented the location of the 

research study area “Hallig Nordstrandischmoor”.  

Figure (3): The study area of Hallig Nordstrandischmoor 

 

Source: (Oldeland et al., 2021) 

It is important to note that Hallig Nordstrandischmoor is one of the places under close 

monitoring for the growth of wildrye. This species has been observed as an invasive species. 

Mapping these types of biotopes is very important especially if it is such an invasive species in 

order to assess and monitor ecosystems. It is not feasible to collect the required parameters from 

the field in an extensive manner, so remote sensing (primarily high-resolution RGB and NIR data) 

is usually used. 
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3-2 Data collection 

These data are usually analyzed manually by a trained analyst. As the objective of this 

project is to develop deep learning models for automated segmentation of wildrye, a high-

resolution RGB image of the area was required. 

This database is composed of high-resolution remote sensing images 10 cm, in RGB 

colour. From the research conducted by (Oldeland et al., 2021), a comprehensive dataset of 

manually digitized biotope types is available as a guide for creating masks for training and 

validation. Moreover, the author has created a complementary dataset of visually digitized 

wildrye or non-wildrye in order to ensure that the minimum number of points required to 

calculate accuracy is 30 per single image. 

3-3 Research method 

This section of the methodology is based on a tutorial written by (Christian Knoth, 

2020). Six steps constitute the research methodology used in this thesis. Data preparation is the 

first step. The second step focuses on building the model using U-Net. The third step involves 

training the model. The fourth step involves predicting using the model. The fifth step transfers 

the model from subsets to single images.  The last step is to develop the Confusion Matrix for 

each single image. These steps will be discussed in more detail in the following paragraphs. 

3-3-1 Step I: Preparing the data 

The deep learning model expects very small images as an example some models require 

images of 128x128 pixels or 448x448 pixels. Nevertheless, in remote sensing, it is common to 

make predictions based on larger images and expect maps rather than subsets of maps as the 

end result. In order to feed larger images into a CNN, we need to split the larger images into 

smaller subsets. (Christian Knoth, 2020) 

3-3-1-1 Transfer from single images to subsets 

In this step, I used a function to convert the RGB UAV imagery acquired into single images 

and then to convert the single images into subsets for use in training, validation, and prediction. 

The function used requires the input image (as a raster) and a target subset size parameters. 

Consequently, it crops the input image to a size that is exactly a multiple of the desired subset 

size, so that all subsets are of the same size. After this, the image is divided into subsets, and the 

subsets are written to disk. 
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The files are numbered and enumerated, so that they can be read in the correct order 

during prediction and can later be reassembled according to their order. Additionally, the 

function returns a cropped input raster, which serves as a reference when reassembling the 

prediction results. (Christian Knoth, 2020) 

3-3-1-2 Generating Image Segmentation Masks 

QGIS was used to create the training data, creating masks for the subsets (448x448 pixels). 

To start with, 28 subsets were to be used as a training sample. Figure (4) presented some samples 

of the training data used. Which represents 0.1 % of the total subsets. while 80 images were the 

number of subsets used to get the final results, which represented 0.3% of the total number of 

the subsets. The purpose of this increase was to represent other elements not included in the 

first training dataset and to enhance the diversity of the training dataset. 

 

Figure (4): Samples of the used subsets and their segmentation masks 

(a) Subsets samples (b) Segmentation masks 
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Source: author, 2022 
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3-3-1-3: Data augmentation 

Utilizing data augmentation is one of the most common methods of increasing the 

amount of training data. In this case, image transformations and manipulations are applied to 

the training data to produce new synthetic images for learning. In my methodology, the 

TensorFlow module was utilized, which contains functions that can be used for data 

augmentation. Geometric manipulations had been performed such as flipping and rotating 

images in addition to spectral manipulations to simulate different lighting conditions. (Christian 

Knoth, 2020) 

Three different augmentations are applied to the input data to prepare the training data 

in the function used: Flip the images (and masks) left to right, and up and down Combine left-

right flip and up-down flip on images (and masks). The function also applies spectral 

augmentation to the images during each of these augmentations (not the masks) to increase the 

differences between the original images and simulate different lighting conditions. 

3-3-2 Step II: Building the model using U-net 

Essentially, the model consists of a series of layers sequentially transforming the input 

data into a number of representations informative of that data. In this chain, the prediction result 

comes from the layer at the end. To build such a model I used the model architecture of a U-net, 

adopted by (Christian Knoth, 2020), and proposed by (Ma et al., 2019; Navab et al., 2015; 

Ronneberger et al., 2015). 

Figure (5): Building the model using U-net 

 

Source: (Christian Knoth, 2020) 
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This network begins with a series of convolutional layers and a maximum pooling layer. 

The following sequence identifies features and spatial patterns that increase complexity 

(increasing the number of convolutions/maximum pooling blocks). It is also known as the 

contraction path of the network. A loss of accurate location information occurs when increasingly 

complex and abstract features are extracted at the expense of reduced resolution.  

Adding one or two flat and dense layers after the last max-pooling layer is sufficient for 

CNN to perform image classification. Unlike a normal convolutional network, a U-net architecture 

adds another part (the second half of the letter "U"), also known as the extended path. In this 

extended path, the feature map is resampled to the same resolution as the input image. A series 

of upsampling and convolution layers are used to accomplish this. An important point to note 

here is that the feature map is not simply unsampled but combined with the output of the 

corresponding layer (in terms of resolution) in the shrinking path. 

This contains the high-resolution features extracted there (gray arrows). This is achieved 

by concatenating the layers. Thus, the continuous convolutional layer incorporates not only the 

information about complex spatial patterns aggregated throughout the contraction path but also 

the high-resolution features extracted from the middle layer of the contraction path. As a result, 

you can find the target in the image subset with greater accuracy. 

3-3-2-1 Using pre-trained networks in the U-net 

Deep learning has the advantage of being portable. For the DL model, the first layers of a 

CNN are responsible for extracting generic features and patterns (edges of various forms and 

directions, patterns of pixel values). Despite being trained on a different dataset, these feature 

extractors may still prove useful for our purpose. Here, I used a CNN that was trained on the 

"ImageNet" dataset called "VGG16" (Simonyan & Zisserman, 2015). 

There are animals and objects such as cats, bicycles, balloons, and so on in this set of data. 

It is important to note, however, that we can also extract features from our images using the first 

layers, which allows us to distinguish between targets and non-targets. To conduct the actual 

classification, we used the first 15 layers as a basis and then add "our own" dense layers. 

(Christian Knoth, 2020) 

3-3-3 Step III: Training the model 

As a first step, the model must be configured or prepared for training. The compile 

function is used to accomplish this. It is possible to specify some parameters for the training of 
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the model using the function that is used to train the model. There is the optimizer (including the 

learning rate lr), the loss function, and one or more accuracy metrics for measuring/visualizing 

the model’s performance (metrics are not used for training). 

On a randomly selected batch of training data, the neural network calculates the outputs 

and predictions. Using the defined loss function, the output is compared to the corresponding 

label and the loss (how far off our predictions are) is calculated. Using the optimizer and the 

learning rate lr, the parameters of the layers are then adjusted a little bit to reduce the loss on 

the current batch. 

Upon completion of this step, the network will process the next batch of data with the 

new parameters. Depending on the fit method, this step is repeated as many times as necessary. 

This process is known as (mini-batch) stochastic gradient descent (mini-batch SGD) and 

there are a number of variants. The optimizer decides which one to use. In this section, we will 

briefly look at the arguments that we specify when we call compile function: 

- Loss function: Measure the differences between prediction and label using a loss 

function that specifies how the loss of the network will be computed. The binary cross-

entropy is a commonly used loss function in binary classification problems and that is why 

I used it in my model. 

- Optimizer: An optimizer is an algorithm used to adjust the parameters during each 

iteration of training in order to reduce the loss. An optimizer specifies how the parameters 

will be adjusted in order to reduce the loss. In the model, we used a rmsprop optimizer.  

- Learning rate: The learning rate specifies the extent to which parameters are adapted 

during each iteration, and in other words how strongly the weights are being varied. 

When the learning rate is greater, training can be completed more quickly, but if the rate 

is too high, training can become unstable. 

- Metric: Our model's accuracy on the validation data is indicated by this metric after each 

epoch. Using the accuracy method, we calculate the fraction of samples that are correctly 

classified into 0 or 1 (by applying a threshold of 0.5 for a classification of 0 or 1 which is 

used in our model). 
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3-3-4 Step IV: Predicting using the model 

After completing the training process, the trained model was ready to be used to predict 

new data. The predict function had been utilized for this purpose. This function requires as 

arguments the model to use for prediction and the dataset on which it is to be applied. 

3-3-5 Step V: Transfer back from subsets to single images 

This step consisted of transferring the prediction from multiple subsets to individual 

images using a function. As inputs to this function, prediction subsets, the desired output path, 

and the cropped reference raster that was a result of the transferring step are required. Below is 

a sample from the prediction subsets and the single images resulting from the function. 

Figure (6): The result of transferring back the subsets to a single image 

 

Source: author, 2022 

3-3-6 Step VI: Confusion Matrix for the single images 

Using (Oldeland et al., 2021) comprehensive dataset and the complementary dataset, a 

confusion matrix was applied on the model to every single image. while the final step was 

classifying the results into three groups to allow more analysis. It is worth noting that the spiral 

nature of the methodology allowed for a degree of accuracy to be attained by moving back and 

forth until the required level of accuracy was achieved.
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4- Results and discussion 

This chapter will present the results of conducting the deep learning model for detection 

of Elymus spread in Hallig Nordstrandischmoor, Germany. The chapter is divided into three 

sections: the preliminary results will be presented at the beginning, followed by a summary of 

the final results. Finally, the discussion and interpretation of the results will be presented. 

4-1 Preliminary results 

As can be seen from the following plot, the preliminary results for the first trained model 

were good. This plot shows the training curves which were stored as a variable during 

compilation. However, it should be noted that the curve is not flattened and is prone to ups and 

downs. 

Figure (7): The training curve for the first main model 

 

Source: author, 2022. 

On the basis of that and in order to comprehend the various aspects of the results, a visual 

interpretation of the predictions combined with an analysis of its accuracy proved to be one of 

the best tools. The following are examples of the preliminary results maps organized into three 
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groups according to their accuracy. In each group are two or three single images as a 

representative sample of variations in the environment of the individual images. 

The average accuracy of the first group was 86.5%. The first two single images (see Fig.8) 

demonstrate a sample from the first group while the accuracy ranged between 85-88%. 

Figure (8): figures (UAV imagery followed with its segmented results) illustrating samples of the prediction of the 

wildrye from the first group with accuracy ranging between 85-88% 
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Source: author, 2022. 

Furthermore, in the second group demonstrated in the following two single images (Fig.9) 

the accuracy decreased by 5% but the results are still satisfactory while the accuracy does not fall 

below 76%. Additionally, results from the third group of single images indicate a significant drop 

in accuracy, reaching up to 55%, while this can be interpreted visually in the last two single images 

(Fig.10). 
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Figure (9): figures (UAV imagery followed with its segmented results) illustrating samples of the prediction of the 

wildrye from the second group with accuracy ranging between 76-84% 

 

 

Source: author, 2022. 
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Figure (10): figures (UAV imagery followed with its segmented results) illustrating samples of the prediction of the 

wildrye from the second group with accuracy ranging between 55-75% 

 

 

Source: author, 2022. 
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4-2 Final results 

Here we illustrate the training curves that were stored as variables during the compilation 

of the final model. We can observe that the curve has become more flatten especially after the 

5th epoch which means that the model is more stable. Furthermore, the accuracy percentage is 

10% higher. 

Figure (11): The training curve for the final model 

 

Source: author, 2022. 

Furthermore, the same methodology applied to the preliminary results was applied on to 

the final results. Below you can view some examples of single images from the final results 

organized into three groups based on the same criteria as before. 

The final results indicate that the average accuracy of the first group is not less than 96%. 

This is illustrated in the first two single images (Fig.12). However, when considering the second 

group as shown in the two single images (Fig.13), the accuracy between single images decreased 

by 5%, yet the results are still excellent as the accuracy falls between 91-95%. 
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Figure (12): figures (UAV imagery followed with its segmented results) illustrating samples of the prediction of the 
wildrye from the third group with accuracy not less than 96% 

 

 

 

Source: author, 2022. 
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Figure (13): figures (UAV imagery followed with its segmented results) illustrating samples of the prediction of the 
wildrye from the third group with accuracy ranged between 91-95% 

 

 

 

Source: author, 2022. 
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However, the results of the third group of the following three single images (fig.14) 

indicate a high decrease in accuracy with 10% reaching 80% and still can be interpreted visually. 

Figure (14): figures illustrating samples of the prediction of the wildrye from the third group with accuracy ranged 
between 80-90% 

 

 

 

Source: author, 2022. 
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4-3 Discussion 

The results of the analysis, as can be seen, were highly positive; however, there was some 

variation in accuracy depending on the environment of the single images. Upon analyzing the 

different groups of results, one major factor was identified as the primary reason for this. 

In all groups, an apparent increase in accuracy was evident between the preliminary and 

final results. The increase was made by increasing the training sample from 0.1% to 0.3% of the 

total number of subsets. While this represents an increase of 33%, 0.3% of the total number of 

subsets is still considered a low percentage.  

Upon reading the differences between the preliminary and final results of the three 

experimental groups, it could be concluded that when the subset contains the same 

environmental elements that were contained in the training dataset, the accuracy was on the 

maximum side, while it was on the minimum side when the environment contained elements 

that were not contained in the training dataset.  

In order to test this hypothesis, we applied the confusion matrix to the individual images 

of the different groups and compared it with the training dataset. In the first group, wildrye 

covers most of these single images with the appearance of other habitats that most of it included 

in the training datasets. While the second includes more variation of elements, it still includes 

wildrye, but some of the environment elements of this group were not included in the training 

dataset. Furthermore, the third group appeared to only occasionally include wildrye, but at the 

same time it included elements that were not largely present in the training dataset, such as 

surface water and dirt roads. 

In the non-trained environment, such as surface water bodies and physical structures, 

accuracy was at its lowest. However, the accuracy reached a maximum of 75% with few wildrye 

areas appearing in such datasets in the preliminary results, whereas with the inclusion of more 

of these elements in the training sample the accuracy reached a maximum of 90%. 

As the diversity of the elements in the training dataset was increased, the accuracy (first 

group) increased by 10%, while the accuracy (second group) increased approximately by 15% 

when the variation of the environmental elements was increased and an increase in the not 

wildrye areas was introduced. 

Therefore, the identification of most, if not all, the elements of the study area's distinct 

environment and its representation in the training dataset is considered one of the main 
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challenges involved with developing a Deep Learning model for the automated segmentation of 

Elymus spread in UAV imagery. 

As a result of combining the transfer learning technique and Data Augmentation, the 

training dataset we have been using has been enhanced and the results were optimized and 

optimized with only 0.3% as a percentage of the training dataset used. However, the diversity of 

the training dataset and the inclusion of the elements was still required to ensure the maximum 

level of accuracy of the model in different environments. 

The other major challenge was the issue of computational power, as the process of 

implementing Deep Learning was computationally very expensive, requiring large amounts of 

memory and computational resources, and it is not easily transferred to other problems as deep 

learning requires expensive graphics cards. Thus, the first two research questions have been 

answered. 

In order to answer the third and final research question, even with imagery that included 

only RGB data, the final results were also compared to the object-based image analysis (OBIA) 

model results, which used imagery with more multispectral information from (Oldeland et al., 

2021) good accuracy (kappa = 0.937). In general, the results of both models were close to one 

another. However, as explained previously, the average accuracy of the deep learning model 

varies with the type of environment in which it is used, and therefore further analysis is 

warranted to compare the two results using the same method used in our study between single 

images.
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5- Conclusion, recommendations, and future work 

In this chapter two distinct sections are presented, the first section represents the 

conclusion of the study, and the second section is intended to provide some recommendations 

and potential future directions. 

5-1 Conclusion 

In different areas of Europe, Athyrics Elymus has been observed engulfing smaller species 

in low marsh habitats. Machine learning/deep learning and its algorithms have been used to 

detect various elements in many fields, which has helped scientists find solutions for many 

problems and challenges in various scientific fields. In the study area of Hallig 

Nordstrandischmoor, a deep learning model has been applied to RGB 10 cm UAV imagery for the 

automated segmentation of Athurics Elymus. 

The final results were good and can be classified among three levels of accuracy. 

Furthermore, these groups are also characterized by different levels of diversity in their 

environments. In the first group with an accuracy greater than 96%, the wildrye covers the 

majority of these single images with a low percentage of other habitats. The second group with 

the highest accuracy ranged between 91-95%, which includes more elements of variation, but 

still included wildrye. Further, the third group, with an accuracy range between 80-90%, did not 

appear to include wildrye very often, but at the same time included elements that were not 

largely present in the training dataset, such as surface water and dirt roads. 

The use of the transfer learning technique shown in the VG16 as the backbone for U-net 

deep learning architecture, coupled with the use of the data augmentation algorithm, was one 

of the primary advantages of using deep learning. While features are automatically derived and 

optimally tuned to achieve desired results. As a result, time and effort are significantly reduced 

and high accuracy is achieved. However, it was not enough to ensure high accuracy in all areas 

of the study area as it was necessary to include most or all of the different elements within the 

study area in the training dataset. Another limitation was the fact that deep learning required a 

large amount of memory and computational resources, as deep learning requires expensive 

GPUs. This resulted in an extremely high computational cost. 
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5-2 Recommendations and future work 

The diversity of the training data is more important than the amount of the training data 

set, and therefore, it is recommended to train the same deep learning model again by including 

the missing elements from the study area to the training dataset in order to optimize the model 

and achieve the highest level of accuracy. 

Further analysis is needed in the comparison between the OBIA model and the final 

results of the deep learning model, in order to have a more detailed answer to the third research 

question. However, it is evident that the deep learning model is still capable of achieving greater 

results. 

In the future, it may be possible to use the same trained model to segment Athyrics 

Elymus in the same study area by using newer imagery. The deep learning model integrating with 

its associated techniques gives the advantage of being able to use the same model to predict in 

different Imageries if it includes the same environments. This increases the probability of 

obtaining good results, particularly during bad weather conditions. Moreover, the integration of 

freely available medium resolution satellite data such as Sentinel is also possible. The benefit of 

this technique is that it will allow for the monitoring of habitats in near-real-time, which will also 

save a tremendous amount of money and time. 
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