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In recent decades, citizen awareness of toxic chemicals has been a topic of interest,
particularly concerning national and international policy decision makers, expert/scientific
platforms, and health protection organizations (WHO, UNEP, CDC, EFSA, IPEN, etc.).
Even in a world of quick information access, synthesizing crucial scientific knowledge
and evidence about environmental exposure and related health problems into readily
understandable concepts and statistics remains a remarkable challenge.

Throughout life, people are exposed to both naturally occurring and human-made
chemicals. These exposures are a root cause of a significant disease burden that could be
prevented by reducing or removing chemical exposure. According to the WHO: in total,
more than 2 million deaths and 53 million disability-adjusted life years (DALYs) were
attributable to environmental exposure and management of selected chemicals, a higher
estimate compared with those in 2016 and 2012 [1]. The largest contributors were cardio-
vascular diseases (42%, 848,778 deaths), chronic obstructive pulmonary disease (COPD,
26%, 517,734 deaths) and cancers (17%, 333,867 deaths). However, only a small number of
chemical exposures, among the many chemicals we are exposed to, are considered in these
analyses [1].

People are exposed to a wide range of environmental chemicals in their daily lives, in
different contexts, and via multiple routes, including indoors and outdoors (e.g., air, soil, and
water contamination; consumer products (e.g., cosmetics, cleaning agents, textiles, food, etc.);
industrial chemicals; etc.) [2–7]. From this extensive exposure by several routes, the multiple
contaminants to which we are exposed is exhausting and worrying. Some examples of the
most reported toxic chemicals are pesticides [8–11], heavy metals [12] polycyclic aromatic hy-
drocarbon (PAH) [13,14], polychlorinated biphenyls (PCB) [15], pharmaceuticals [16], plastic-
related chemicals (e.g., flame retardants, phthalates, etc.) [17,18], and microplastics [19–21].
Currently, it is impossible to escape exposure to environmental chemicals, namely those with
endocrine-altering potential (endocrine-disrupting chemicals, EDCs).

Unintended exposure to pesticides can be extremely hazardous to humans and other
living organisms as they are designed to be poisonous. Pesticide exposure is linked with
various diseases including cancer, asthma, dermatitis, endocrine disorders, reproductive
dysfunctions, immunotoxicity, neurobehavioral disorders, and congenital defects [22–24].
Data from a number of PAH occupational health studies suggest that there is an association
between lung cancer and exposure to PAH compounds [25]. Studies in human and animals
suggest a correlation between flame retardants exposure and adverse health outcomes,
namely thyroid disorders; neurobehavior and development disorders; and reproductive,
immunological, metabolic, oncological, and cardiovascular diseases [17,26]. Phthalate
exposures were associated with all-cause and cardiovascular mortality, with societal costs
approximating USD 39 billion/year or more in the USA [27]. Recently, microplastics
that may cause inflammatory lesions, originating from the potential of their surface to
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interact with the tissues, have been reported. In addition, the increasing incidence of
neurodegenerative diseases, immune disorders, and cancers may also be related to the
increased exposure microplastics and their co-contaminants [19]. The effects of exposure
in human health are influenced not only by the type and concentration of the chemicals
but also by the effects and complexity of mixtures and, more importantly, by the timing
of exposure. Indeed, there is an increased vulnerability to chemical exposure in windows
of greater susceptibility, especially during childhood and pregnancy, which may impair
lifetime health. Therefore, there is a need to biomonitor and evaluate all exposures across
lifespans and its interaction with our own unique characteristics, the ‘exposome’.

As a complex field, researchers continue to wrestle with important issues, which re-
quires an integrative and multidisciplinary research approach to this problematic, resorting
to complementary methodologies to measure human exposure to environmental chemicals
and to assess their health effects. One can define three main pillars: (1) environmental
chemical analysis and development of new detection methods, with the identification
and quantification of biomarkers of exposure and/or effect and/or susceptibility and
development of new analytical methodologies for the detection of biomarkers in several
human matrices (e.g., blood, plasma, serum, urine, and adipose tissue); (2) evaluation of
biological effects, through the assessment of exposure impact on human health (e.g., general
population, and people with obesity or diabetes) and/or resorting to experimental and
mechanistic approaches (in vitro/in vivo models); and (3) data management and statistical
analysis, namely in study design and sampling in the human population.

Biomonitoring studies are a good example of this complementarity, encompassing
the measurement of internal levels of chemicals/metabolites in easily accessible biological
fluids or tissues, and aiming to understand environmental health threats and to assist
policy measures, namely in susceptible populations such as children. It requires analytical
methods of high selectivity and high sensitivity due to low concentrations and limited
sample volumes. Toxic chemicals cover a wide range of chemical groups with different
physical–chemical properties. Therefore, scientific literature presents several analytical
methods even for the same substance groups. Depending on the chemical group, the
human biomonitoring biomarkers are either parent compounds or metabolites. A large
variety of matrices have been analyzed (blood, urine, adipose tissue, hair, nails, breast
milk, etc.). This complexity calls for the urgent need to carry out further studies on the
appropriate analytical methods for each group of compounds and matrices. Biomonitoring
studies identify new chemicals in human tissues, monitor the distribution of exposures
among the general population, and provide a measure of potential health risk.

Preventing diseases arising from chemical environments requires the development of a
consistent and rational approach to human biomonitoring as a complementary tool to assist
in providing evidence-based public health and environmental measures, confirming the
health effects of toxic chemical exposures, and validating regulatory actions and policies.
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