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Abstract

This work is devoted to the study of stochastic partial differential equations and its appli-

cations in Bayesian inference. Essentially it is composed by two essential parts: In the first

part, we study a stochastic non-linear partial differential equation from the theoretical

point of view, and in the second one we perform a Bayesian analysis based on a specific

stochastic linear partial differential equation.

The former problem to be addressed has its roots in fluid dynamics. More precisely, we

consider the equation which governs the time evolution of a third grade non-Newtonian

fluid, filling a two-dimensional non axisymmetric bounded domain, perturbed by a mul-

tiplicative white noise. We recall that the stochastic third grade fluid equation can be

considered as a generalization of the stochastic Navier-Stokes equations, so we are faced

with a strongly nonlinear stochastic partial differential equation and its analysis is not

an easy issue. Considering initial conditions in the Sobolev space H2, and a Navier slip

boundary condition, we show the existence and the uniqueness of the strong solution (in

the stochastic sense). To show the existence of the solution, we first construct a sequence

of solutions for the finite dimensional approximate problems, by using the finite dimen-

sional Galerkin approximation method. Next, we pass to the limit by using a conjugation

of compactness results and a uniqueness type argument. Let us mention that the study

of stochastic fluid dynamics equations, where the solutions correspond to stochastic pro-

cesses defined on some probability space, with sample paths on appropriate functional

spaces is crucial for the statistical description of turbulent flows. In contrast to the usual

deterministic individual solutions, in this framework each solution should correspond

to a collection of possible realizations, and a probability of certain occurrences should

be determined. As many fluids used in the industry are classified as third grade non-

Newtonian fluid, we hope that our result will have practical consequences in the analysis

of turbulence flows. As far as we know, this is the first time that the stochastic third grade

fluid equation is being studied in the literature.

The second problem to be studied consists on the application of the INLA method-

ology to perform Bayesian inference, considering a certain linear stochastic partial dif-

ferential equation, which has a solution with a Matérn covariance. We recall that the
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Matérn covariance has a central role in spatial statistics, since it successfully captures the

spatial behaviour of a wide number of phenomena. We consider a Gaussian vector field

modelling the velocity of the wind and perform a Bayesian analysis to approximate the

mean of the wind velocity field through the INLA methodology, combined with stochas-

tic partial differential equations (SPDE). We emphasize that the behaviour of the wind

velocity field is crucial in the weather forecast. We expect that this new statistical method

will improve the classical methods mainly based on the numerical analysis of complex

fluid dynamic equations.

Keywords: Bayesian inference, Gaussian Markov random field, Matérn covariance, Non-

newtonian fluid, Stochastic partial differential equation.
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Resumo

O presente trabalho é dedicado ao estudo de equações diferenciais parciais estocásticas

e à sua aplicação na inferência Bayesiana. É composto essencialmente por duas partes.

Na primeira parte estudamos uma equação diferencial parcial estocástica não-linear do

ponto de vista teórico, e na segunda parte aplicamos os princípios da inferência Bayesiana

à estimação usando uma equação diferencial parcial estocástica linear.

O primeiro problema a ser estudado tem as suas origens na dinâmica dos fluidos.

Mais precisamente, consideramos a equação que descreve a evolução de um fluido não-

Newtoniano de terceiro grau, num domínio bi-dimensional limitado e não axissimétrico,

perturbada por um ruído branco. A equação estocástica de fluidos de terceiro grau pode

ser considerada como uma generalização da equação de Navier-Stokes, estamos perante

uma equação diferencial parcial estocástica fortemente não linear, cuja análise é uma ta-

refa difícil. Considerando a condição inicial no espaço de Sobolev H2 , e uma condição de

fronteira de deslizamento do tipo Navier, mostramos a existência e unicidade de solução

forte (no sentido estocástico). Para mostrar a existência de solução, construímos primeiro

uma sucessão de soluções para o problema aproximado em dimensão finita, usando o

método de aproximação de Galerkin. A seguir é feita a passagem ao limite, através de

resultados de compacidade, e um argumento de unicidade. Referimos também que o

estudo de equações estocásticas de fluidos, cujas soluções correspondem a processos esto-

cásticos definidos num determinado espaço de probabilidade, com trajetórias em espaços

funcionais apropriados, é crucial na descrição de fluxos turbulentos. No contexto estocás-

tico, cada solução da equação corresponde a uma coleção de possíveis realizações, pelo

que a probabilidade de ocorrência de certas realizações pode ser determinada. Uma vez

que muitos fluidos usados na indústria são classificados como fluidos não-Newtonianos

de terceiro grau, esperamos que os nossos resultados venham a ter aplicação na análise

da turbulência de fluidos. Tanto quanto pudemos constatar, esta é a primeira vez que a

equação estocástica de fluidos de terceiro grau é estudada na literatura.

O segundo problema a ser estudado consiste na aplicação da metodologia INLA, que é

especialmente adequada para fazer inferência Bayesiana, combinada com a utilização de

determinada equação diferencial parcial estocástica, cuja solução apresenta covariância
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de Matérn. A covariância de Matérn tem um papel central na estatística espacial, uma vez

que descreve significativamente bem vários fenómenos de natureza espacial. Neste traba-

lho, consideramos que a velocidade do vento é modelada por um campo vetorial aleatório

Gaussiano, e aproximamos a média do campo de velocidades aplicando os princípios da

inferência Bayesiana, através da metodologia INLA combinada com SPDE. Salientamos

que a velocidade do vento é crucial na previsão do tempo, então esperamos que esta

nova abordagem estatística, venha a melhorar os métodos usuais de previsão, baseados

na análise numérica das equações de fluidos.

Palavras-chave: Campo aleatório Gaussiano de Markov, Covariância de Matérn, Equa-

ção diferencial parcial estocástica, Fluido não-Newtoniano, Inferência

Bayesiana.
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1

Introduction

The purpose of our work is twofold: to study SPDE and to do Bayesian inference in

models using SPDE as their components.

First we study the stochastic third grade fluid equation from a theoretical point of

view, proving the existence and uniqueness of strong solution (Chapter 3), then we expose

in detail the calculations that allow us to approximate a Matérn field by a Gaussian

Markov random field (GMRF): we show in detail that the solution of a certain SPDE has

Matérn covariance, widely used in geostatistic, then we apply the FEM to obtain a finite

representation of the solution with Markov properties (Chapter 4). Finally, we consider

the H. Hersbach et al. (2018) data set ([26]), and perform Bayesian inference to model

the mean of the wind velocity, via an INLA approach (Chapter 5).

We start our work with a fundamental result: the proof of existence and uniqueness of

solution for the third grade fluid equation, perturbed with a multiplicative white noise,

d(υ(Y )) =
(
−∇p+ ν∆Y − (Y · ∇)υ −

∑
j

υj∇Y j + (α1 +α2)div
(
A2

)
+ βdiv

(
|A|2A

)
+U

)
dt + σ (t,Y )dWt , (1.0.1)

where υ(y) = y−α1∆y, A = ∇y+∇yT , ν ≥ 0 is the viscosity coefficient, U represents a body

force, Wt is a Wiener process, and α1,α2,β are constants such that

β ≥ 0, α1 ≥ 0, |α1 +α2| ≤
√

24νβ ,

therefore extending the deterministic results of [10] and [8], for the stochastic case. Equa-

tion (1.0.1) is supplemented with a Navier slip boundary condition, and the initial condi-

tion is taken in the Sobolev Space H2.

Third grade fluid equation describes a special type of fluid, characterized by a non-

linear relation between the shear stress and the shear strain rate. This means that these

fluids do not satisfy the Newton’s law of viscosity, so they belong to the class of non-

Newtonian fluids.

From a theoretical point of view, equation (1.0.1) is a strongly nonlinear partial differ-

ential equation, which models complex viscoelastic fluids, so it is expected that the noise
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CHAPTER 1. INTRODUCTION

perturbations should have relevant impact in the fluid dynamic. It is well known that

increasing the typical velocity will increase the Reynolds number: the fluid develops a

turbulent behaviour and small disturbances should have strong macroscopic effects on

the dynamic.

It should be pointed out that non-Newtonian fluids are present in biology, industry,

etc. (see [21], [19], [24], [25], [32]). Moreover, the second grade fluid model does not

capture certain specific properties, for instance, the shear thinning and shear thickening

effects, so it is important to study the third grade fluid model.

We should refer the pioneer work [3] on the stochastic Navier-Stokes equations, and

[4] where the authors deduce the stochastic Navier-Stokes equations from fundamental

principles, showing that the stochastic equations are real physical models. Regarding the

stochastic description of a Newtonian fluid, see [13], [15].

We recall that the strategy to show the existence of the solution for the deterministic

fluid equation in [10] and [8], is based on appropriated estimates that allow to use com-

pactness theorems in order to pass the non linear terms to the limit, in the weak sense.

For the stochastic case, it is not possible to use such a strategy, due to lack of regularity

with respect to time, and to the stochastic variable. Instead, we apply the methods devel-

oped in [6]. Those methods have been successfully applied to the stochastic second grade

fluid equation (see [12] and [33]). We use the finite dimensional Galerkin approximation

method to construct a sequence of solutions for the finite dimensional approximate prob-

lems, and then we pass to the limit by using a conjugation of compactness results and a

unicity argument.

After establishing the existence and uniqueness of strong solution for the stochastic

third grade model, we turn our attention to a certain linear SPDE, with a very specific

objective: to estimate the solution of this particular equation, whose properties are partic-

ularly useful for modelling spatial phenomena. For instance, consider a random variable

Y , describing a spatial phenomena, such as velocity of the wind, temperature, or pressure,

to which we attribute a density probability function π(y|θ), where θ ∈Θ is an unknown

parameter or vector of unknown parameters. Since θ is unknown, Bayesian Inference

states that we should consider it as a random variable, with a suitable a priori density

function π(θ). This prior probability function incorporates all the previous knowledge

about the phenomena that is being studied.

The next step is to upgrade the a priori probabilities, using observed data, if y =

(y1, . . . , yn) is a vector of observations we obtain the posterior density probability function

π(θ|y), via Bayes’ Theorem,

π(θ|y) =
π(y|θ)π(θ)

π(y)
=

π(y|θ)π(θ)∫
Θ
π(y|θ)π(θ)dθ

, θ ∈Θ .

Observations update prior probabilities and the knowledge about theta.

The models that we are interested in this work involve a SPDE, whose solution

presents a Matérn covariance function. The Matérn covariance has a central role in

2



spatial statistics, since it successfully captures the spatial behaviour of a wide number of

phenomena: forestry, disease mapping, mining engineering, etc. We assume that the spa-

tial phenomena to be studied is modelled by a Gaussian spatial process, {x(s), s ∈ D⊂ Rd},
also known as Gausian field (GF), whose mean µ does not depend on the location s, so

x(s) is stationary, and the covariance function depends only on the Euclidean distance

between two locations, so x(s) is isotropic. The Matérn covariance function evolves from

this setting, and was developed by Bertil Matérn (1960). It is given by

Cov(x(s),x(s′)) =
σ2

2v−1Γ (v)
(k∥s − s′∥)νKv(k∥s − s′∥) , (1.0.2)

where Kv is the modified Bessel function of second kind and order v. One special feature

of this covariance function, is the relation between the parameter v and the differentia-

bility of the underlying process (see [22]). This is an important feature because differen-

tiability affects the behaviour of predictions made under the model. The interpretation

of v as a smoothness parameter of the underlying spatial process is often used to justify

its choice. A GF with Matérn covariance function is also called Matérn field.

We consider the following SPDE,

(k2 −∆)α/2τx = W . (1.0.3)

where W is the Gaussian white noise, whose stationary solution is a Matérn field (see [38]

and [39]). Lindgren et al. in [29], applying the FEM to equation (1.0.3), obtain a finite

representation x of the solution x(s), with Markov properties, and they prove convergence

of the finite representation to the solution x(s). Their approach allows to approximate the

GF by a GMRF with sparse precision matrix, which brings great computational benefits.

We present and explore the results that allow us to obtain the relation between a GF with

Matérn covariance, and a finite representation by a GMRF. Before going through the

FEM, it is important to understand fully the notion of GMRF. Following [36], a GMRF is

defined in almost a computational point a view, as a random vector that verifies certain

properties with respect to a certain labelled graph. After that, we explain the FEM and

how can we calculate the precision matrix of the GMRF approximation x.

As far as we know the calculations which leads to the Matérn covariance formula

(1.0.2) for the stationary solution, or the Laplace method for Gaussian approximations,

are not fully detailed in the literature. We have part of the calculations in [5], or [36], or

[39] for instance, but all the theory that allows us to solve equation (1.0.3) is not gathered

in one single source, mainly due to the diversity of subjects involved, ranging from the

notion of generalized functions (also known as distributions), to the generalization of

the Fourier transform to generalized functions. Also, we need to carefully introduce the

white noise, and define the convolution between a generalized random function and an

element of L2(Rd). This work fills the need to have all detailed calculations and concepts

in one single source.

We use the INLA methodology to obtain the posterior distribution of the hyperparam-

eters. INLA was developed by Rue et al. in [37], where the authors perform approximate

3



CHAPTER 1. INTRODUCTION

Bayesian inference for a special class of hierarchical models, latent Gaussian models. The

marginal distributions of the posterior distributions π(θ|y) and π(x|y), can be written as

π(xi |y) =
∫

π(xi |θ,y)π(θ|y)dθ

π(θj |y) =
∫

π(θ|y)dθ−j

so the authors in [37] use approximated distributions π̃(xi |θ,y) and π̃(θ|y), based on the

following results,

π(θ|y) ∝ π(y|x,θ)π(x|θ)π(θ)
π(x|θ,y)

≈ π(y|x,θ)π(x|θ)π(θ)
π̃G(x|θ,y)

∣∣∣∣∣
x=x∗(θ)

=: π̃(θ|y),

where π̃G(x|θ,y) is the Gaussian approximation given by the Laplace method, explained

in Section 5.3, and x∗(θ) is the mode of that distribution, for a given θ. Furthermore, they

apply once more the Laplace method to obtain a Gaussian approximation of π(xi |θ,y),

π̃(xi |θ,y) ∝ π(x,θ,y)
π̃G(x−i |xi ,θ,y)

∣∣∣∣∣
x−i=x∗i (xi ,θ)

where π̃G(x−i |xi ,θ,y) is the Laplace Gaussian approximation to π(x−i |xi ,θ,y) and x∗i (xi ,θ)

is its modal configuration. Then the integrals are calculated numerically, to obtain the

approximated posterior distributions π̃(xi |θ,y) and π̃(θ|y).

Lastly, we apply the main results to the observations of a vector field describing the

velocity of the wind, which is crucial in the weather forecast. This application illustrates

the importance of our approach, because instead of dealing directly with the solutions

of fluid dynamic equations, we model the complexity of the phenomena by fitting a

statistical spatial model to the real dataset, using Bayesian Inference.
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2

Background

This chapter presents the basic mathematical and statistical concepts and results, needed

for the work that is developed in the following chapters. In Section 2.1, we present

the functional spaces to be used throughout the work. Namely, we recall the notion of

Sobolev spaces and state some of their properties. We introduce the Schwartz space S,

the Schwartz distribution space S∗, and the definition of ∗-weak convergence in S∗. Then

we recall the definition of generalized random function, and the definition of the white

noise as a generalized random function. In Section 2.2 we introduce the principles of

Bayesian inference, how Bayes’ Theorem is used to calculate the posterior distributions

π(θ|y), and hierarchical models. Finally, in Section 2.3, we present an overview of what is

Spatial Statistics and the main subjects it addresses, specifying the kind of problem that

we are interested in this work.

2.1 Functional Spaces

Consider a measurable space (Ω,A), where Ω is a set, and A is a σ − algebra. We define

measurable function in the following way.

Definition 2.1.1. Given a measurable space (Ω,A), and (R,B(R)) where B is the Borel σ -
algebra, we say that a function f : Ω→ R is measurable if

f −1(B) := {ω ∈Ω : f (ω) ∈ B} ∈A, for any B ∈B(R).

Consider now a measure space (Ω,A,µ), where µ is a measure defined in the σ -algebra

A,

µ : A→ [0,+∞] .

We assume that the measure space is complete. The sets A ∈ A such that µ(A) = 0 are

called null sets. We say that a certain property holds almost everywhere (a.e.) if it holds

for every ω ∈Ω, except for a null measure set.
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Definition 2.1.2. A measurable function f : Ω→ R is said to be integrable if the integral of
its absolute value is finite,

∥f ∥1 =
∫
Ω

|f |dµ < +∞ .

In that case, we say that f ∈ L1(Ω).

We will use the notation L1(Ω), for the set of all integrable functions. Let us now

define the Lp spaces.

Definition 2.1.3. Consider 1 < p < +∞. We define

Lp(Ω) :=
{
f : Ω→ R | f is measurable and |f |p ∈ L1(Ω)

}
and

∥f ∥Lp = ∥f ∥p :=
(∫

Ω

|f |p dµ
) 1
p

.

Definition 2.1.4. Considering p = +∞, we define

L∞(Ω) := {f : Ω→ R | f is measurable and ∃C |f (x)| < C a.e. on Ω }

and

∥f ∥L∞ = ∥f ∥∞ := inf{C : |f (ω)| < C a.e. on Ω } .

Lp spaces provided with the norms ∥·∥p are Banach spaces, for all 1 ≤ p ≤∞ (see [1]).

We define in L2(Ω) the inner product

(f ,g) :=
∫
Ω

f g dµ (2.1.1)

for all f ,g ∈ L2(Ω). L2(Ω) provided with the inner product (·, ·) defined in (2.1.1) is an

Hilbert space.

Now we present a motivation for the definition of the weak derivative. For that, con-

sider Rd provided with the Lebesgue measure, and let O⊂ Rd be an open set. Let C∞0 (O)

denote the space of infinitely differentiable functions φ : O→ R, with compact support

in O. We call test functions to a function φ ∈ C∞0 (O).

Given f ∈ C1(O) and φ ∈ C∞0 (O), from the integration by parts formula, and since φ

has compact support, we have∫
O

f
∂φ

∂xi
dx = −

∫
O

∂f

∂xi
φdx, for i = 1, . . . ,d. (2.1.2)

Furthermore, if f ∈ Ck(O), and α = (α1, . . . ,αd) is a multiindex with |α| = α1 + · · ·+αd = k,

applying formula (2.1.2) k times, we obtain∫
O

f Dαφdx = (−1)|α|
∫
O

Dαf φdx (2.1.3)
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where

Dα =
∂|α|

∂xα1
1 · · ·∂x

αd

d

.

Let L1
loc(O) be the set of locally integrable functions f , that is,∫

K
|f |dx < +∞

for any compact set K ⊂ O. Notice that the left side of equation (2.1.3) is well defined for

any f ∈ L1
loc(O), so it motivates the following definition of weak derivative.

Definition 2.1.5. Consider f ,g ∈ L1
loc(O), and α a multiindex. We say that g is the αth-weak

derivative of f if ∫
O

f Dαφdx = (−1)|α|
∫
O

gφdx .

for all test function φ ∈ C∞0 (O). In that case, we write g = Dαf .

Proposition 2.1.6. The weak αth-partial derivative of f , if it exists, is uniquely defined, up to
a zero measure set.

For more information on weak derivatives, see [20].

Now we introduce Sobolev spaces. This spaces have an important role in the study

of partial differential equations, and were introduced by S.L. Sobolev in the 1930’s. In

this framework partial differential equations are interpreted as operators defined in some

function space, and the derivatives are interpreted in the weak sense. Generally speaking,

as the elements of a Sobolev space admit weak derivatives of several orders, that are Lp

functions, those function spaces turn out to be specially suited to solve partial differential

equation problems, in the weak sense. It is important to mention that, when a weak

solution is regular enough, it coincides with the strong solution. Roughly speaking, a

strong solution has enough regularity for the derivatives to exist in the classical sense.

Definition 2.1.7. Consider 1 ≤ p ≤ +∞. Let k be a nonnegative integer, and let O⊆ Rd be an
open set. The Sobolev space W k,p(O) is the set of all f ∈ Lp(O) such that, for each multiindex α

with |α| ≤ k, the weak derivative Dαf exists and belongs to Lp(O).

The norm ∥·∥k,p on W k,p(O) is defined in the following way.

Definition 2.1.8. Consider f ∈W k,p(O), we define the norm as

∥f ∥W k,p = ∥f ∥k,p :=



∑
|α|≤k

∫
O

|Dαf |p dx


1/p

if 1 ≤ p < +∞∑
|α|≤k
∥Dαf ∥∞ if p = +∞

(2.1.4)

Theorem 2.1.9. Consider 1 ≤ p ≤ +∞, and let k be a nonnegative integer. Then W k,p endowed
with the norm ∥·∥k,p is a Banach space.
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For more information on Sobolev spaces, we refer [1], [7], [20].

If p = 2, we write

Hk(O) = W k,2(O), for k = 0,1, . . . .

Notice that H0(O) = L2(O). Moreover, we have that Hk(O) is an Hilbert space (see [1]).

Following [23], we present an embedding theorem for Sobolev spaces, needed in

Chapter 3.

Let (U,∥·∥U) and (V,∥·∥V) be two normed spaces. We say that V is continuously

embedded in U if

(i) V is a vector subspace of U, and

(ii) The identity operator I : V→ U, defined by Ix = x is continuous.

According to [1], since I is linear, (ii) is equivalent to the following,

∥x∥U ≤ C∥x∥V

for all x ∈ V, and some constant C. We say that V is compactly embedded in U if the

embedding operator is compact.

We say that a domain O⊆ Rd has locally Lipschitz boundary Γ if, for every x ∈ Γ , there

exists a neighbourhood Vx such that Γ ∩Vx is the graph of a Lipschitz continuous function.

Theorem 2.1.10. Let O ⊆ Rd be a bounded domain with locally Lipschitz boundary Γ . Let
p ∈ R with 1 ≤ p <∞, and let m,n ∈ N with n ≤m. Then the following embedding is compact

Wm,p(O) ↪→W n,q(O)

for all q ∈ R such that 1 ≤ q < dp/(d − (m−n)p) , if d > (m−n)p

1 ≤ q <∞ , if d = (m−n)p

Recall the Schwartz space S = C∞0 (O), of all infinitely differentiable functions with

compact support, which is also known as the space of Schwartz test functions. Next we

introduce the concept of generalized function, also known as distribution, which is a linear

continuous functional defined on the Schwartz test functions space, S.

We say that a sequence of test functions (fn)n∈N, converges to f in S, if there exists a

compact K ⊂ Rd such that the support of fn is contained in K ,

supp(fn) := {x ∈ Rd : fn , 0} ⊂ K, for all n ∈ N ,

and all derivatives

∂kfn→ ∂kf

converge uniformly, where ∂k is the multi index derivative,

∂k =
∂|k|

∂k1x1 . . .∂kdxd
, k = (k1, . . . , kd), and |k| = k1 + · · ·+ kd .
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This convergence is equivalent to the convergence of all derivatives with respect to the

norm in L2(Rd) (see [34]),

∥∂kfn −∂kf ∥22 :=
∫
Rd
|∂kfn −∂kf |2dt→ 0 .

Moreover, the Hilbert space L2(Rd) with the inner product

(f ,g) =
∫
Rd

f (x)g(x)dx

is the closure of S with respect to the L2-norm, L2(Rp) = [S], (see [34]).

We say that a linear functional

T : S→ R

is continuous if

T (fn)→ T (f )

for all (fn)n∈N ⊂ S such that fn→ f in S. We consider the Borel topology in R, B(R).

Definition 2.1.11. A generalized function is a linear continuous functional T : S→ R, also
called distribution. We write the value of T evaluated at f ∈ S as T (f ) = (T ,f ).

The space of all generalized functions defined on S is also known as the Schwartz
distribution space, or the dual space of S, and is denoted by S∗. An example of a general

function in S is the Dirac delta function, which is defined by

(δ,f ) = f (0) ,

for every f ∈ S. Formally, we can write the Dirac delta function as

δ(x) =

+∞ if x = 0

0 if x , 0
.

Also, we can formally write

(δ,f ) =
∫
R
δ(x)f (x)dx .

For a given x0, we have the following

δ(x − x0) =

+∞ if x = x0

0 if x , x0

.

We also denote

δx0
(x) = δ(x − x0)

so δx0
is the distribution given by

(δx0
, f ) = f (x0)

9
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and formally we can write

(δx0
, f ) =

∫
R
δx0

(x)f (x)dx =
∫
R
δ(x − x0)f (x)dx .

The dual space S∗ can be endowed with a topology induced by S, called the ∗-weak
topology. The convergence in S∗ with respect to the ∗-weak topology is defined in the

following way.

Definition 2.1.12. Given a sequence (Tn)n∈N ⊂ S∗, we say that Tn converges ∗-weakly to T ∈ S∗

if

(Tn, f )→ (T ,f )

for all f ∈ S. In that case, we write Tn ⇀T ∗-weakly.

Let us consider a normed vector space (U,∥·∥U). We call the dual space of U to the

set of all linear continuous functionals T : U→ R, with respect to the topology induced

by ∥·∥U. The dual space is denoted by U∗, and induces a topology in U, called the weak
topology, defined as follows.

Definition 2.1.13. We say that a sequence (un)n∈N ⊂ U converges weakly to u ∈ U if

T (un)→ T (u) for all T ∈ U∗ .

In that case, we write un ⇀u.

Next, we recall the concept of generalized random function. This concept is important,

because our partial differential equations are stochastic. Instead of a deterministic force,

we consider a white noise process, and following [34], the white noise is defined as a

generalized random function. We also need to recall the convolution of two functions in

L2(Rd), and convolution of a generalized function with an element of L2(Rd).

Since L2(Rd) = [S], given f ∈ L2(Rd), there exists a sequence (fn)n∈N ∈ S such that f =

limfn with respect to the L2-norm. Consider T ∈ S∗. T is a linear continuous functional,

so (T ,fn) converges in R. Therefore, the equality

(T ,f ) := lim(T ,fn)

defines the value of T for any f ∈ L2(Rd). Notice that this definition does not depend on

the sequence (fn)n∈N. Next, we present the definition of generalized random function.

Definition 2.1.14. Consider a probability space (Ω,A, P ), and a vector normed vector space
(U,∥·∥U). A generalized random function ξ is is a random variable with values in U∗,

ξ : Ω→ U∗ ,

then we have that (ξ,f ) : Ω→ R is a random variable.

10
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Recall that, given f ,g ∈ L2(Rd), the convolution f ∗ g is defined in the following way,

f ∗ g(s) :=
∫
Rd

f (s − s′)g(s′)ds′ =
∫
Rd

f (s′)g(s − s′)ds′ .

Moreover, for a generalized random function ξ, and g ∈ L2(Rd), the convolution ξ ∗ g is

defined as

(ξ ∗ g,f ) := (ξ,f ∗ gs) (2.1.5)

for all f ∈ L2(Rd), where gs(s) = g(−s). Following [34], we present the definition of white
noise which corresponds to a generalized random function.

Definition 2.1.15. The white noise is a generalized random function W such that

E(W , f ) = 0 and E[(W , f , )(W , g)] = (δ,f ∗ gs)

for all f ,g ∈ L2(Rd).

Notice the following,

E[(W , f )(W , g)] = (δ,f ∗ gs) = f ∗ gs(0) =
∫
Rd

f (s′)gs(−s′)ds′ =
∫
Rd

f (s′)g(s′)ds′ = (f ,g) .

Consequently,

E[(W , f )2] = ∥f ∥22

for all f ∈ L2(Rd). Moreover, by (2.1.5),

E[(W , f )(W , g)] = (δ,f ∗ gs)

=
∫
Rd

(∫
Rd

δ(y − x)g(y)dy
)
f (x)dx

=
∫
Rd

∫
Rd

δ(y − x)f (x)g(y)dydx

where f ,g ∈ L2(Rd).

2.2 Bayesian Statistics

2.2.1 Bayes’ Theorem

According to [31], it is believed that Bernoulli (1713) was one of the first authors to define

probability as degree of credibility. De Morgan (1847) states that probability identifies

with some degree of credibility, and degrees of probability can be measured. Ramsey

(1926) believes that if an individual believes the odds of some proposition are r : s, then

the degree of credibility of such proposition is r/(r + s). The idea of probability as degree

of credibility plays an important role in Bayesian inference.

Consider a probability space (Ω,A, P ) where Ω is a non empty set called the sample
space, A is σ -algebra of measurable subsets of Ω, and P is a probability measure. Consider

11
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a partition {Ai : i ∈ I} of Ω, where I is a countable set of indexes. Consider an event

B ∈A, such that P (B) > 0. Bayesian Inference considers that the events Ai are hypothesis or

states of nature to which we attribute a priori degrees of credibility, in other words, a priori
probabilities P (Ai), for i ∈I. These prior probabilities are result of previous knowledge

about the phenomena that is being studied. After knowing that event B occurred, the

probabilities of Ai , for i ∈ I, are updated. They are provided with new a posteriori
probabilities via Bayes’ Theorem,

P (Ai |B) =
P (B|Ai)P (Ai)

P (B)
=

P (B|Ai)P (Ai)∑
i∈IP (B|Ai)P (Ai)

.

Consider that we observe a random variable Y , with a density function π(y|θ), where

θ ∈ Θ is an unknown parameter or vector of unknown parameters. Bayesian inference

states that all unknown quantities must be quantified in terms of probabilities, therefore,

θ is considered a random variable, with prior distribution π(θ) that must be specified,

and incorporates the prior knowledge about the experience. The purpose is to obtain

the posterior distribution of the parameters, π(θ|y), via Bayes’s Theorem. For simplicity,

we will use the expression density function for continuous and discrete variables. From

conditional probability,

π(y,θ) = π(y|θ)π(θ) = π(θ|y)π(y) ,

so Bayes’ Theorem for density functions can be stated as

π(θ|y) =
π(y|θ)π(θ)

π(y)
=

π(y|θ)π(θ)∫
Θ
π(y|θ)π(θ)dθ

, θ ∈Θ .

2.2.2 Hierarchical models

Hierarchical models are designed to combine different sources of information, at different

levels. For example, the observations are assumed to depend on some set of parameters,

which are treated as random variables themselves, depending on some other set of hyper-

parameters. In this work, we are interested in the following hierarchical model. Consider

the problem of modelling y = (y1, . . . , yn), where each observation yi follows some distri-

bution π(yi |µi ,θ2), depending on µi , and also a vector of parameters θ2. Moreover, the

parameter µi is considered to have a prior distribution π(µi |θ1), that depends on a vec-

tor of hyperparameters θ1, and finally, for simplicity, we call vector of all parameters to

θ = (θ1,θ2), which is considered to follow a prior distribution π(θ). The prior distribu-

tions reflect the prior knowledge about the parameters of the phenomena that is being

modelled. The model described can be formulated as

yi |µi ,θ ∼ π(yi |µi ,θ), i ∈ {1, . . . ,n}

µi |θ ∼ π(µi |θ)

θ ∼ π(θ) .

(2.2.1)
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In the context of Bayesian Inference, parameters are also random variables, so to stan-

dardize the notation, capital letters are left out. Let µi = E[yi], and assume that g(µi) = ηi
for some given link function g(·) and an additive predictor ηi . The additive predictor is

defined as

ηi = α +
L∑
l=1

zliβl +
K∑
k=1

fk(wk
i ), i ∈ {1, . . . ,n} . (2.2.2)

The scalar α stands for the intercept, coefficients β = (β1, . . . ,βL) account for the linear

effects of covariates z = (z1, . . . ,zL), and f = (f1(·), . . . ,fK(·)), are unknown functions of

covariates w = (w1, . . . ,wK ), that may represent, for instance, non-linear effects or spatial

random effects. The intercept α, the coefficients β, and the random effects f, are called

latent variables of the model, since they are not directly observed. The vector of all latent

variables is

x = (α,β,f) , (2.2.3)

that is,

x = (α,β1,β2, . . . ,βL, f1(w1
1), ..., f1(w1

n), f2(w2
1), ..., f2(w2

n), . . . , fK (wK
1 ), ..., fK (wK

n )) . (2.2.4)

2.3 Spatial Statistics

Spatial Statistics is a subject of Statistics that developed mainly due to the need of study

data collected at different locations, presenting spatial dependency. The advance of com-

putational tools and technology, allowed researchers to obtain and process spatial and

spatio-temporal data, and to develop spatial models in a wide range of subjects: climatol-

ogy, social science, epidemiology, and others (see [5] and [16]).

Spatial Statistics is composed by three branches, namely Geostatistics, areal data, and

point processes (see [16]).

Geostatistics is characterized by the study of a certain phenomena, observed at a finite

number of locations, {y(s1), . . . , y(sm)}, with si ∈ D ⊂ Rd , for i = 1, . . . ,m. It allows the loca-

tions si to vary continuously through the domain D. An example could be precipitation

measurements at a finite number of locations, in limited domain D.

Areal data deals with observations in subregions of a partition of the domain D ⊂ Rd ,

{y(A1), . . . , y(Am)}, where Ai ⊂ D ⊂ Rd , for i = 1, . . . ,m, with Ai ∩Aj = ∅, for all i , j. We

could think of y(Ai) as the observed number of patients with some disease in each region

Ai ⊂ D. Usually we choose a point within Ai to represent Ai . These points will form a

lattice, that can be regular or irregular, that is why in some literature, areal data is also

called lattice data.

Finally, point processes deal with data that are given by random locations of occur-

rence of some phenomena. For instance, we could think of the locations of pine trees in a

certain forest. The questions that arise in that case could be: is there clustering of pine

trees? Or is it totally random? Or can we detect any regularity or pattern in their loca-

tions? Also, we may attribute to each configuration of locations {s1, · · · , sm} an observation

13



CHAPTER 2. BACKGROUND

of a characteristic of the phenomena that we are observing, for instance, the diameter of

the pine tree in location si , represented by a vector {z(s1), . . . , z(sm)}. In that case, we call

the point process marked point process.
In this work we are interested in Geostatistics phenomena.
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3

Third grade non-Newtonian fluid

In this chapter we study the deterministic third grade fluid equation, perturbed by a

multiplicative white noise dWt
dt ,

d(υ(y)) =
(
−∇p+ ν∆y − (Y · ∇)υ −

∑
j

υj∇yj + (α1 +α2)div
(
A2

)
+ βdiv

(
|A|2A

)
+U

)
dt + σ (t,y)dWt , (3.0.1)

where y is the velocity field of the fluid, U is a body force and

A(y) = ∇y +∇y⊤, υ(y) = y −α1∆y . (3.0.2)

According to [19] and [21],

ν ≥ 0, α1 ≥ 0, β ≥ 0, |α1 +α2| ≤
√

24νβ (3.0.3)

in order to obtain compatibility between the motion of the fluid and thermodynamic

laws. We prove the existence and uniqueness of the solution for the stochastic third grade

fluid equation, extending the deterministic results obtained in [8] and [10]. We follow

the methods developed in [6], which have been successfully applied to the stochastic

second grade fluids in [12], and [33]. Considering an appropriate Galerkin basis, we

construct a sequence of approximate solutions, then we deduce uniform estimates in

order to get weak convergence of a subsequence. The weak limit is projected on the finite

n−dimensional space, and then we show that the difference between the projection of the

the weak limit, and the finite dimensional Galerkin approximations, converges strongly

to zero up to a certain stopping time. The results of this chapter have been published in

the article [14].

3.1 Functional setting and notations

We consider the stochastic third grade fluid equation (3.0.1) in a bounded, not axisym-

metric and simply connected domain O of R2 with a sufficiently regular boundary Γ , and
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supplemented with a Navier slip boundary condition, which reads

d(υ(Y )) =
(
−∇p+ ν∆Y − (Y · ∇)υ −

∑
j υ

j∇Y j + (α1 +α2)div
(
A2

)
+βdiv

(
|A|2A

)
+U

)
dt + σ (t,Y )dWt , in O× (0,T ),

divY = 0 in O× (0,T ),

Y ·n = 0, (n ·D(Y )) · τ = 0 on Γ × (0,T ),

Y (0) = Y0 in O,
(3.1.1)

where Y = (Y,.Y2) is the velocity field of the fluid, ∇Y is its Jacobian matrix, D(Y ) =
∇Y+(∇Y )⊤

2 , A = A(Y ) = 2D(Y ), υ(Y ) = Y −α1∆Y and the constants ν, α1, α2, β verify (3.0.3).

The stochastic perturbation is defined by

σ (t,Y )dWt =
m∑
k=1

σ k(t,Y )dWk
t ,

where the diffusion coefficient

σ (t,Y ) = (σ1(t,Y ), . . . ,σm(t,Y ))

satisfies certain growth assumptions defined below, and Wt = (W1
t , . . . , W

m
t ) is a standard

Rm-valued Wiener process defined on a complete probability space (Ω,A, P ) endowed

with a filtration {Ft}t∈[0,T ] such that Wt, t ∈ [0,T ], is adapted to F. We assume that F0

contains every P -null subset of Ω.

Let us introduce the Helmholtz projector P : L2(O) −→H , which is the linear bounded

operator characterized by the following L2−orthogonal decomposition

v = Pv +∇φ, φ ∈H1(O).

We consider the boundary conditions to define the following Hilbert spaces,

H =
{
y ∈ L2(O) | divy = 0 in O and y ·n = 0 on Γ

}
,

V =
{
y ∈H1(O) | divy = 0 in O and y ·n = 0 on Γ

}
,

W =
{
y ∈ V ∩H2(O) | (n ·D(y)) · τ = 0 on Γ

}
.

(3.1.2)

On H we consider the L2−inner product (·, ·) and the associated norm ∥ · ∥2, and we

define the following inner products

(u,z)V := (υ(u), z) = (u,z) + 2α1 (Du,Dz) , (3.1.3)

(u,z)W := (u,z)V + (Pυ(u),Pυ(z)) , (3.1.4)

We denote by ∥ · ∥V and ∥ · ∥W the norms induced by these inner product, respectively.
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Notice that V is a subspace of H1(O), so it is also endowed with the norm ∥ · ∥H1 ,

nevertheless both norms ∥ · ∥H1 and ∥ · ∥V on the space V are equivalent. Similarly W ⊂
H2(O) and the norms ∥ · ∥W and ∥ · ∥H2 are equivalent on W .

Let us define the trilinear functional

b(φ,z,y) = (φ · ∇z,y) , ∀φ,z,y ∈ V . (3.1.5)

Once φ is divergence free and (φ ·n) = 0 on Γ , applying integration by parts we obtain

b(φ,z,y) = −b(φ,y,z). (3.1.6)

We need the following inequalities. The Korn inequality states the following,

∥y∥W 1,p ≤ K1(p)
(
∥y∥p + ∥A(y)∥p

)
, ∀y ∈ V , p ≥ 2, (3.1.7)

while the Poincaré inequality establishes the following,

∥y∥2 ≤ C∥∇y∥2, ∀y ∈ V . (3.1.8)

Moreover, for non axisymmetric bounded domains, we have the following version of

the Korn inequality (see [18])

∥∇y∥2 ≤ K2(O)∥A(y)∥2, ∀y ∈ V . (3.1.9)

The Sobolev embedding H1(O) ↪→ L4(O) and (3.1.8) give

∥y∥4 ≤ K3∥∇y∥2, ∀y ∈ V .

Combining this inequality with (3.1.9), we get

∥y∥4 ≤ K3∥∇y∥2 ≤ K3K2(O)∥A(y)∥2. (3.1.10)

Due to the embedding L4(O) ↪→ L2(O), we have

∥y∥2 ≤ C∗∥y∥4. (3.1.11)

Then (3.1.10), (3.1.11) and (3.1.7) yield the following lemma:

Lemma 3.1.1. There exists a positive constant K∗ such that

∥y∥W 1,4 ≤ K∗∥A(y)∥4, ∀y ∈ V . (3.1.12)

Also recall the Young’s inequality

uz ≤ 1
r
ur +

1
s
zs, ∀u,z ≥ 0, s, r > 0 such that

1
r

+
1
s

= 1. (3.1.13)

Accordingly, for real numbers γ,a,b,x such that 0 ≤ γ < a and b,x ≥ 0, we have the

algebraic relation

∀δ > 0, bxγ ≤ C(γ,a,b,δ) + δxa, (3.1.14)

that will be used widely in this chapter.

Let us mention that through this chapter, C will represent a generic constant, whose

value can change from line to line. To explicitly write its dependence with respect of

some parameters α1, . . . ,αk , we also write C(α1, . . . ,αk) instead of C.
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3.2 Preliminary results

We consider the following auxiliary modified Stokes problem with Navier boundary con-

dition 
f̃ −α1∆f̃ = f −∇p, div f̃ = 0 in O,

f̃ ·n = 0, (n ·D(f̃ )) · τ = 0 on Γ .
(3.2.1)

We recall from [11] that assuming f ∈Hm(O), m = 0,1, the problem (3.2.1) has a solution

(f̃ ,p) ∈Hm+2(O)×Hm+1(O) verifying

∥f̃ ∥H2 ≤ C∥f ∥2. (3.2.2)

According to the definition of the inner product (3.1.3), we have

(f̃ ,h)V = (f ,h), ∀h ∈ V . (3.2.3)

In the next two lemmas, we establish properties of the nonlinear terms that will be

useful in Section 3.3 to identify the weak limits of the nonlinear terms of the equation.

Let us introduce the operators

S(y) := β
(
|A(y)|2A(y)

)
, (3.2.4)

N (y) := α1

(
y · ∇A(y) + (∇y)⊤A(y) +A(y)∇y

)
−α2(A(y))2. (3.2.5)

Here we collect important inequalities from [8] related with the nonlinear terms.

Lemma 3.2.1. For any ϵ > 0 and y ∈W , we have∣∣∣∣∣(α1 +α2)
∫
O

div(A2) · y
∣∣∣∣∣ ≤ ϵ∥A2∥22 +

(α1 +α2)2

16ϵ
∥A∥22, (3.2.6)

where A = A(y).

Proof. The integration by parts gives

(α1 +α2)
∫
O

div(A2) · y = (α1 +α2)
∫
Γ

(
n ·A2

)
· y − (α1 +α2)

∫
O

A2 · ∇y. (3.2.7)

Due to the boundary conditions y = (y · τ)τ and (n ·A) · τ = 0 on Γ , we obtain

(n ·A2) · y = (y · τ)(n ·A2) · τ = (y · τ)((n ·A) ·A) · τ

= (y · τ) [((n ·A) ·n)((n ·A) · τ) + ((n ·A) · τ)((τ ·A) · τ)] = 0.

Using the symmetry of A, we derive

(α1 +α2)
∫
O

div(A2) · y = −1
2

(α1 +α2)
∫
O

A2 ·A. (3.2.8)

Therefore, the Hölder and the Young inequalities give (3.2.6).

■

Considering a small change in estimate (35) of [8], we collect the following estimates.
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Lemma 3.2.2 (see [8], relations (33)-(36)). For each y ∈W and any ϵ, δ > 0, the following
estimates are valid(

div
(
|A|2A

)
,Pυ(y)

)
≤ −1

2
∥A∥44 −

α1

2
∥ |A| |∇A| ∥22 −

α1

4
∥∇(|A|2)∥22

+ 3ϵ∥ |A| |∇2y| ∥22 + 5ϵ∥A∥412 + 3ϵ∥y∥4H1 +C(ϵ)∥y∥2H1∥y∥2H2 , (3.2.9)

(α1 +α2)
(
div

(
A2

)
,Pυ(y)

)
≤ ϵ∥ |A| |∇2y| ∥22 +C(ϵ)∥y∥2W , (3.2.10)

−
(
(y · ∇)υ+

∑
j

υj∇yj ,Pυ(y)
)
≤ 4ϵ∥ |A| |∇2y| ∥22 +C(ϵ,δ)∥y∥2W +C(ϵ)∥y∥∞∥y∥2W + δ∥y∥4W 1,4 ,

(3.2.11)

where A = A(y) and υ = υ(y).

Lemma 3.2.3. For any y, ŷ ∈W , we have

⟨div(S(ŷ)− S(y)), ŷ − y⟩ = −
β

4

∫
O

(|Â|2 − |A|2)2 −
β

4

∫
O

(|Â|2 + |A|2)|A(ŷ − y)|2, (3.2.12)

where A = A(y) and Â = A(ŷ).

Proof. Integrating by parts, we write

⟨div(S(ŷ)− S(y)), ŷ − y⟩ = β

∫
Γ

(
n · (|Â|2Â− |A|2A)

)
· (ŷ − y)

−
β

2

∫
O

(|Â|2Â− |A|2A) ·A(ŷ − y) = I11 + I12. (3.2.13)

Using the boundary conditions, we deduce that

I11 = β

∫
Γ

((ŷ − y) · τ)
[
|Â|2(n · Â) · τ − |A|2(n ·A) · τ

]
= 0. (3.2.14)

Standard algebraic computations yield

I12 =−
β

2

∫
O

(|Â|2Â− |A|2A) ·A(ŷ − y)

= −
β

2

∫
O

(|Â|2Â− |A|2A) ·A(ŷ − y)

= −
β

4

∫
O

(|Â|2 − |A|2)2 −
β

4

∫
O

(|Â|2 + |A|2)|A(ŷ − y)|2. (3.2.15)

■

Lemma 3.2.4. For any y, ŷ ∈W , the following estimate holds

(div(N (ŷ)−N (y)) , ŷ − y) = (N (ŷ)−N (y),∇(ŷ − y))

≤ 3ϵ
∫
O

|A(ŷ − y)|2
(
|A|2 + |Â|2

)
+
C
ϵ

∫
O

|∇(ŷ − y)|2

+
C

1−λ
ϵ

λ−1
λ+3 ∥ŷ − y∥

4(λ+1)
λ+3

H1 ∥y∥
4

λ+3
H2 for any ϵ > 0, λ ∈]0,1[, (3.2.16)

where A = A(y) and Â = A(ŷ).
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Proof. The divergence theorem gives

(div(N (ŷ)−N (y)) , ŷ − y) = (N (ŷ)−N (y),∇(ŷ − y))−
∫
Γ

[(N (ŷ)−N (y))n] · (ŷ − y). (3.2.17)

The relation (3.2.16) is proved in [10] for the case O= R2 (domain without boundary), in

[8] it is verified that the boundary term vanishes.

■

Lemma 3.2.5. For any y, ŷ, φ ∈W , we have∣∣∣⟨div(S(y)− S(ŷ),φ⟩
∣∣∣ ≤ C∥y∥2W ∥y − ŷ∥V ∥φ∥W +C∥ŷ∥W

∥∥∥|A|2 − |Â|2∥∥∥
2
∥φ∥W , (3.2.18)

where A = A(y) and Â = A(ŷ).

Proof. Using the Hölder inequality, and the Sobolev injections H1(O)) ↪→ Lp(O) for

p <∞ and H2(O) ↪→ L∞(O), we derive∣∣∣⟨div(S(y)− S(ŷ)) ,φ⟩
∣∣∣ =

∣∣∣∣∣β∫
O

(|A|2A− |Â|2Â) · ∇φ
∣∣∣∣∣

=
∣∣∣∣∣β∫

O

(
|A|2(A− Â) + Â(|A|2 − |Â|2)

)
· ∇φ

∣∣∣∣∣
≤ C∥|A|2∥4∥A(y − ŷ)∥2∥∇φ∥4 +C∥Â∥4

∥∥∥|A|2 − |Â|2∥∥∥
2
∥∇φ∥4

≤ C∥y∥2H2∥y − ŷ∥H1∥φ∥H2 +C∥ŷ∥H2

∥∥∥|A|2 − |Â|2∥∥∥
2
∥φ∥H2 . (3.2.19)

■

Lemma 3.2.6. For any y, ŷ, φ ∈W , the following inequality holds

∣∣∣⟨div(N (ŷ)−N (y)) ,φ⟩
∣∣∣ ≤ Cϵ

∥∥∥∥∥A(y − ŷ)
√
|A|2 + |Â|2

∥∥∥∥∥
2
∥φ∥V

+C∥ŷ − y∥V (∥y∥W + ∥ŷ∥W )∥φ∥W . (3.2.20)

where A = A(y) and Â = A(ŷ).

Proof. Here we apply the same reasoning that is done in [10] to show the property

(3.2.16).

⟨div(N (ŷ)−N (y)) ,φ⟩ = ⟨N (ŷ)−N (y),∇φ⟩ =
1
2
⟨N (ŷ)−N (y),A(φ)⟩

=
α2

2

∫
O

(A2 − Â2) ·A(φ)− α1

2

∫
O

(y · ∇A− ŷ · ∇Â) ·A(φ)

− α1

2

∫
O

(
(∇y)⊤A+A∇y − (∇ŷ)⊤Â− Â∇ŷ

)
·A(φ) = I1 + I2 + I3.

(3.2.21)
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|I1| ≤ C

∥∥∥∥∥|A(y − ŷ)|
√
|A|2 + |Â|2

∥∥∥∥∥
2
∥A(φ)∥2. (3.2.22)

Next, we use the properties of the trilinear form, as well as the Hölder inequality, and the

Sobolev injections H1(O) ↪→ L4(O) and H2(O) ↪→ L∞(O) in order to deduce that

|I2| ≤ C
∣∣∣b(y,A,A(φ))− b(ŷ, Â,A(φ))

∣∣∣
≤ C

∣∣∣b(y,A− Â,A(φ))
∣∣∣+

∣∣∣b(y − ŷ, Â,A(φ))
∣∣∣

= C
∣∣∣b(y,A(φ),A− Â)

∣∣∣+
∣∣∣b(y − ŷ, Â,A(φ))

∣∣∣
≤ C∥y∥∞∥A(φ)∥H1∥A− Â∥2 + ∥y − ŷ∥4∥Â∥H1∥A(φ)∥4
≤ C∥y − ŷ∥H1 (∥y∥H2 + ∥ŷ∥H2)∥φ∥H2 . (3.2.23)

For I3 we have the same estimate as for I1, namely

|I3| ≤ C

∥∥∥∥∥|A(y − ŷ)|
√
|A|2 + |Â|2

∥∥∥∥∥
2
∥A(φ)∥2. (3.2.24)

■

3.3 Existence of strong solution

This section establishes the main results of the article. More precisely the solution of the

equation is constructed through the finite dimensional Galerkin approximation method.

We first deduce key uniform estimates for the finite dimensional approximations in order

to get a weakly convergent sequence. Next, with the help of a suitable stopping time,

and using the structure of the equation, we improve the convergence results. Finally,

with these new convergence results, we will be able to identify the nonlinear terms of the

equation.

Let us to introduce the notion of the solution.

Definition 3.3.1. Let U ∈ L2(Ω× (0,T ),L2(O)) and Y0 ∈ L2(Ω,W ). Then a stochastic process
Y ∈ L2(Ω,L∞(0,T ;W )) is a strong solution of (3.1.1), if the following equation holds

(υ(Y (t)),φ) =
∫ t

0

[
−2ν (D(Y ),D(φ)) + ((Y · ∇)φ,υ(Y ))−

∑
j

(
υj(Y )∇Y j ,φ

)]
ds

−
∫ t

0

(
(α1 +α2)

(
A2

)
+ β

(
|A|2A

)
,∇φ

)
ds

+ (υ(Y (0)),φ) +
∫ t

0
(U (s),φ) ds+

∫ t

0
(σ (s,Y (s)),φ) dWs (3.3.1)

for a.e. (ω,t) ∈Ω× [0,T ] and for all φ ∈ V , where the stochastic integral is defined by∫ t

0
(σ (s,Y (s)),φ) dWs =

m∑
k=1

∫ t

0

(
σ k(s,Y (s)),φ

)
dWk

s .
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Now we state the main result. Assume that the diffusion coefficient σ =
(
σ1, . . . ,σm

)
:

[0,T ]×V → (L2(O))m is Lipschitz in the second variable and verifies a growth condition,

i.e., there exist positive constants L, K and 0 ≤ γ < 2 such that∥∥∥σ (t,y)
∥∥∥2

2
≤ L(1 + ∥y∥γW 1,4), ∀y ∈W 1,4(O)∩V , (3.3.2)∥∥∥σ (t,y)− σ (t, z)

∥∥∥2
2
≤ K

∥∥∥y − z∥∥∥2
V
, ∀y,z ∈ V , t ∈ [0,T ], (3.3.3)

where ∥∥∥σ (t,y)
∥∥∥2

2
:=

m∑
i=1

∥∥∥σ i(t,y)
∥∥∥2

2
.

In addition, we define

| (σ (t,y),v) | :=

 m∑
k=1

(
σ k(t,y),v

)2
1/2

, ∀v ∈ L2(O).

Moreover, we take p ≥ 6 and suppose that the initial condition Y0 and the force U satisfy

the following,

Y0 ∈ Lp(Ω,W ), and there exists λ > 0 such that Ee
λ
(∫ T

0
∥U∥22ds+∥Y0∥2V

)
<∞. (3.3.4)

Theorem 3.3.2. Assume (3.3.2)-(3.3.4). Then there exists a unique solution Y to equation
(3.1.1) which belongs to

Lp(Ω,L∞(0,T ;W )).

In order to show the existence of the solution, we apply the Galerkin’s approximation
method for an appropriate basis. We recall that the injection operator I : W ↪→ V being

a compact operator guarantees the existence of a basis {ei} ⊂W of eigenfunctions to the

problem

(v,ei)W = λi (v,ei)V , ∀v ∈W, i ∈ N, (3.3.5)

which is an orthonormal basis in V and an orthogonal basis in W . In addition the se-

quence {λi} of the corresponding eigenvalues fulfils the properties: λi > 0, ∀i ∈ N, and

λi →∞ as i→∞. Since the ellipticity of the equation (3.3.5) increases the regularity of

their solutions (see [9]), we may consider {ei} ⊂H4.

We consider the finite dimensional space Wn = span {e1, . . . , en}, and introduce the

Faedo-Galerkin approximation of the system (3.1.1). Namely, we look for a solution to

the following stochastic differential equation
d (υn,φ) =

(
ν∆Yn − (Yn · ∇)υn −

∑
j υ

j
n∇Y

j
n + (α1 +α2)div

(
A2
n

)
+βdiv

(
|An|2An

)
+U,φ

)
dt + (σ (t,Yn),φ) dWt , ∀φ ∈Wn,

Yn(0) = Yn,0,

(3.3.6)
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where

Yn(t) =
n∑

j=1

cnj (t)ej .

Here Yn,0 denotes the projection of the initial condition Y0 onto the space Wn, υn =

Yn −α1∆Yn and An = ∇Yn + (∇Yn)⊤.

Due to the relation (3.3.5), the sequence {ẽj = 1√
λj
ej} is an orthonormal basis for W

and

Yn,0 =
n∑

j=1

(
Y0, ej

)
V
ej =

n∑
j=1

(
Y0, ẽj

)
W
ẽj ,

The Parseval’s identity yields

∥Yn(0)∥V ≤ ∥Y0∥V and ∥Yn(0)∥W ≤ ∥Y0∥W .

The equation (3.3.6) can be written as a system of stochastic ordinary differential equa-

tions in Rn with locally Lipschitz nonlinearities. From classical results there exists a local-

in-time solution Yn that is an adapted stochastic process with values in C([0,Tn],Wn).

The existence of a global-in-time solution follows from the uniform estimates on

n = 1,2, ..., that will be deduced in the next lemma (a similar reasoning can be found in

[2], [11], [33]).

Lemma 3.3.3. Let us assume (3.3.2)-(3.3.4). Then the problem (3.3.6) admits a unique
solution Yn ∈ L2(Ω,L∞(0,T ;W )), which verifies the following estimates

E sup
s∈[0,t]

∥Yn(s)∥2V + 8νE
∫ t

0
∥DYn∥22ds +

β

4
E
∫ t

0
∥An∥44ds

≤ C
(
1 +E∥Y0∥2V +E∥U∥2L2(0,t;L2(O))

)
, ∀t ∈ [0,T ], (3.3.7)

E∥Yn∥4L4(0,t;W 1,4(O)) ≤ C
(
1 +E∥Y0∥2V +E∥U∥2L2(0,t;L2(O))

)
, ∀t ∈ [0,T ], (3.3.8)

where C is a positive constant independent of n.

Proof. For each n ∈ N, we define the following sequence of stopping times

τnM = inf{t ≥ 0 : ∥Yn(t)∥V ≥M} ∧ Tn, M ∈ N.

Let us set

f (Yn) := ν∆Yn − (Yn · ∇)υn −
∑
j

υ
j
n∇Y

j
n + (α1 +α2)div

(
A2
n

)
+ βdiv

(
|An|2An

)
+U. (3.3.9)

Using (3.1.3), and considering in (3.3.6) the test functions φ = ei , i = 1, . . . ,n, we write

d (Yn, ei)V = (f (Yn), ei) dt + (σ (t,Yn), ei) dWt . (3.3.10)
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Applying the Itô formula, we deduce

d (Yn, ei)
2
V = 2(Yn, ei)V (f (Yn), ei) dt + 2(Yn, ei)V (σ (t,Yn), ei) dWt + | (σ (t,Yn) , ei) |2dt.

Summing over i = 1, . . . ,n, we derive

d ∥Yn∥2V = 2(f (Yn),Yn) dt + 2(σ (t,Yn),Yn) dWt +
n∑
i=1

| (σ (t,Yn) , ei) |2dt. (3.3.11)

We have

(f (Yn),Yn) = −2ν ∥DYn∥22 −
(
(Yn · ∇)υn +

∑
j

υ
j
n∇Y

j
n ,Yn

)
+
(
(α1 +α2)div

(
A2
n

)
,Yn

)
+
(
βdiv

(
|An|2An

)
,Yn

)
+ (U,Yn)

= I1 + I2 + I3 + I4 + I5. (3.3.12)

By the symmetry of the trilinear functional (3.1.5), we obtain

I2 = −
(
(Yn · ∇)υn +

∑
j

υ
j
n∇Y

j
n ,Yn

)
= −b(Yn,υn,Yn)− b(Yn,Yn,υn)

= −b(Yn,υn,Yn) + b(Yn,υn,Yn) = 0. (3.3.13)

Taking into account the boundary conditions Yn = (Yn · τ)τ , (n ·An) · τ = 0 on Γ and the

symmetry of ∇Yn, the divergence theorem gives

I4 =
∫
O

βdiv
(
|An|2An

)
·Yn = β

∫
Γ

|An|2(Yn · τ) (n ·An) · τ − β
∫
O

|An|2An · ∇Yn

= −
β

2
∥An∥44. (3.3.14)

Taking ϵ = β
4 in (3.2.6), we obtain

|I3| ≤
β

4
∥A2

n∥22 +
(α1 +α2)2

4β
∥An∥22. (3.3.15)

In addition, we have

|I5| = |(U,Yn)| ≤ 1
2
∥Yn∥22 +

1
2
∥U∥22. (3.3.16)

Therefore, introducing (3.3.13)-(3.3.16) in (3.3.11), we derive

d ∥Yn∥2V +
β

2
∥An∥44dt + 4ν ∥DYn∥22 dt ≤ (α1 +α2)2

2β
∥An∥22dt

+ (∥U∥22 + ∥Yn∥22)dt + 2(σ (t,Yn),Yn) dWt +
n∑
i=1

| (σ (t,Yn) , ei) |2dt. (3.3.17)

We write

d ∥Yn∥2V +
β

2
∥An∥44dt + 4ν ∥DYn∥22 dt ≤ C(β,α1,α2)∥Yn∥2V dt

+ ∥U∥22dt + 2(σ (t,Yn),Yn) dWt +
n∑
i=1

| (σ (t,Yn) , ei) |2dt. (3.3.18)

24



3.3. EXISTENCE OF STRONG SOLUTION

Denoting by σ̃n the solution of the generalized Stokes problem (3.2.1) for f = σ (t,Yn),

we have

(σ̃n, ei)V = (σ (t,Yn), ei) for i = 1, . . . ,n,

then (3.3.2), (3.1.12) and Young’s inequality give

n∑
i=1

| (σ (t,Yn) , ei) |2 = ∥σ̃n∥2V ≤ C∥σ (t,Yn)∥22 ≤ CL(1 + ∥Yn∥
γ
W 1,4)

≤ CL+CL(K∗)
γ∥An∥

γ
4 ≤ C(L,γ,β,K∗) +

β

4
∥An∥44. (3.3.19)

For any t ∈ [0,T ], integrating the inequality (3.3.18) on (0, s), s ∈ [0, τnM ∧ t] and using

(3.3.19), we derive

∥Yn(s)∥2V +
β

4

∫ s

0
∥An∥44dr + 4ν

∫ s

0
∥DYn∥22 dr ≤ ∥Yn(0)∥2V +C(L,γ,β,K∗,T )

+C(β,α1,α2)
∫ s

0
∥Yn∥2V dr +

∫ s

0
∥U∥22dr + 2

∫ s

0
(σ (r,Yn),Yn) dWr . (3.3.20)

On the other hand, the Burkholder-Davis-Gundy inequality, (3.3.2), (3.1.12) and the

Young inequality yield

E sup
s∈[0,τnM∧t]

∣∣∣∣∣∫ s

0
(σ (r,Yn) ,Yn) dWr

∣∣∣∣∣ ≤ CE
(∫ τnM∧t

0
|(σ (s,Yn) ,Yn)|2 ds

) 1
2

≤ CE
(∫ τnM∧t

0
∥σ (s,Yn)∥22∥Yn∥

2
2ds

) 1
2

≤ CE
(∫ τnM∧t

0
L(1 + ∥Yn∥

γ
W 1,4)∥Yn∥2V ds

) 1
2

≤ 1
4
E sup

s∈[0,τnM∧t]
∥Yn∥2V +C2LT +E

∫ τnM∧t

0
C2L(K∗)

γ∥An∥
γ
4 ds

≤ 1
4
E sup

s∈[0,τnM∧t]
∥Yn∥2V +C(L,γ,β,K∗,T ) +

β

16
E
∫ τnM∧t

0
∥An∥44ds. (3.3.21)

Taking the supremum on s ∈ [0, τnM ∧ t] and the expectation in (3.3.20) and incorporating

the estimate (3.3.21), we obtain

1
2
E sup

s∈[0,τnM∧t]
∥Yn(s)∥2V + 4νE

∫ τnM∧t

0
∥DYn∥22 ds+

β

8
E
∫ τnM∧t

0
∥An∥44dr

≤ C(L,γ,β,K∗,T ) +E∥Y0∥2V +E
∫ t

0
∥U∥22 ds+C(β,α1,α2)E

∫ t

0
sup

r∈[0,τnM∧s]
∥Yn(r)∥2V ds.

(3.3.22)

Then the function

f (t) =
1
2
E sup

s∈[0,τnM∧t]
∥Yn(s)∥2V + 4νE

∫ τnM∧t

0
∥DYn∥22 ds+

β

8
E
∫ τnM∧t

0
∥An∥44ds

fulfils the Gronwall’s inequality

f (t) ≤ C +E∥Y0∥2V +E
∫ t

0
∥U∥22 ds+C

∫ t

0
f (s)ds,
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which implies

E sup
s∈[0,τnM∧t]

∥Yn(s)∥2V + 8νE
∫ τnM∧t

0
∥DYn∥22ds +

β

4
E
∫ τnM∧t

0
∥An∥44ds

≤ C
(
1 +E∥Y0∥2V +E∥U∥2L2(0,t;L2(O))

)
. (3.3.23)

Then there exists a constant C independent of M and n such that

E sup
s∈[0,τnM∧t]

∥Yn(s)∥2V ≤ C, ∀t ∈ [0,T ]. (3.3.24)

Let us fix n ∈ N, writing

E sup
s∈[0,τnM∧T ]

∥Yn(s)∥2V = E

 sup
s∈[0,τnM∧T ]

1{τnM<T } ∥Yn(s)∥2V

+E

 sup
s∈[0,τnM∧T ]

1{τnM≥T } ∥Yn(s)∥2V


≥ E

 sup
s∈[0,τnM ]

1{τnM<T } ∥Yn(s)∥2V

 ≥M2P
(
τnM < T

)
, (3.3.25)

we deduce that P
(
τnM < T

)
≤ C

M2 . This means that τnM → T in probability, as M→∞. Then

there exists a subsequence {τnMk
} of {τnM} (that may depend on n) such that

τnMk
→ T a.e. as k→∞.

Since τnMk
≤ Tn ≤ T , we deduce that Tn = T , so Yn is a global-in-time solution of the

stochastic differential equation (3.3.6). In addition for fixed n, the monotonicity of the

sequence
{
τnM

}
allows to apply the monotone convergence theorem in order to pass to the

limit, as M→∞, in the inequality (3.3.23) in order to obtain (3.3.7).

E sup
s∈[0,t]

∥Yn(s)∥2V + 8νE
∫ t

0
∥DYn∥22ds +

β

4
E
∫ t

0
∥An∥44ds

≤ C
(
1 +E∥Y0∥2V +E∥U∥2L2(0,t;L2(O))

)
. (3.3.26)

This inequality gives

E
∫ t

0
∥An∥44ds ≤ C(β,α1,α2)

(
1 +E∥Y0∥2V +E∥U∥2L2(0,t;L2(O))

)
, ∀t ∈ [0,T ], (3.3.27)

that together with Lemma 3.1.1 yields

E∥Yn∥4L4(0,t;W 1,4(O)) = E
∫ t

0
∥Yn∥4W 1,4ds ≤ (K∗)

4E
∫ t

0
∥An∥44ds

≤ C(β,α1,α2)
(
1 +E∥Y0∥2V +E∥U∥2L2(0,t;L2(O))

)
, ∀t ∈ [0,T ]. (3.3.28)

The Hölder’s inequality also gives

E∥Yn∥L4(0,t;W 1,4(O)) ≤ C(β,α1,α2)
(
1 +E∥Y0∥2V +E∥U∥2L2(0,t;L2(O))

) 1
4 , ∀t ∈ [0,T ]. (3.3.29)

■
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Lemma 3.3.4. Assume (3.3.2)-(3.3.4). Then we have

Ee
λβ

16(K∗)4
∫ t

0
∥Yn∥4W1,4 ds < CEe

λ
(∫ T

0
∥U∥22ds+∥Y0∥2V

)
, ∀t ∈ [0,T ], (3.3.30)

where C is a positive constant independent of n, and K∗ is defined by (3.1.12).

Proof. Let us consider the inequality (3.3.20) and write

∥Yn(t)∥2V +
β

4

∫ t

0
∥An∥44ds+ 4ν

∫ t

0
∥DYn∥22 ds ≤ ∥Yn(0)∥2V +

∫ t

0
∥U∥22ds

+C(L,γ,β,K∗,T ) +C(β,α1,α2)
∫ t

0
∥Yn∥2V ds+ 2

∫ t

0
(σ (s,Yn),Yn) dWs. (3.3.31)

Multiplying by λ
2 and knowing that W 1,4(O) ↪→H1(O), we deduce

λ
2
∥Yn(t)∥2V +

λβ

8

∫ t

0
∥An∥44ds+ 2λν

∫ t

0
∥DYn∥22 ds ≤ λ

2

(
∥Yn(0)∥2V +

∫ t

0
∥U∥22ds

)
+C(L,γ,β,K∗,T ) +C(β,α1,α2)

∫ t

0
∥Yn∥2W 1,4 ds+λ

∫ t

0
(σ (s,Yn),Yn) dWs.

The Korn inequality (3.1.12) gives

λβ

8(K∗)4 ∥Yn∥
4
W 1,4 ≤

λβ

8
∥An∥44;

therefore we have

λβ

8(K∗)4

∫ t

0
∥Yn∥4W 1,4 ds ≤

λ
2

(
∥Yn(0)∥2V +

∫ t

0
∥U∥22ds

)
+C(L,γ,β,K∗,T )

+C(β,α1,α2)
∫ t

0
∥Yn∥2W 1,4 ds+λ

∫ t

0
(σ (s,Yn),Yn) dWs. (3.3.32)

Let us notice that with the help of (3.3.2), the Sobolev embedding W 1,4(O) ↪→H and the

Young’s inequality, for any δ > 0, we can verify that∫ t

0
λ2 (σ (s,Yn),Yn)2 ds ≤

∫ t

0
λ2∥σ (s,Yn)∥22∥Yn∥

2
2ds ≤

∫ t

0
λ2L(1 + ∥Yn∥

γ
W 1,4)∥Yn∥22ds

≤
∫ t

0
λ2L∥Yn∥2W 1,4 ds+

∫ t

0
λ2L∥Yn∥

γ+2
W 1,4 ds

≤ C(λ,L,δ,T ) +
δ
2

∫ t

0
∥Yn∥4W 1,4 ds;

which implies

−δ
2

∫ t

0
∥Yn∥4W 1,4 ds −C(λ,L,δ,T ) ≤ −

∫ t

0
λ2 (σ (s,Yn),Yn)2 ds.

Adding this relation to (3.3.32), we write

λβ

8(K∗)4

∫ t

0
∥Yn∥4W 1,4 ds −

δ
2

∫ t

0
∥Yn∥4W 1,4 ds ≤

λ
2

(
∥Yn(0)∥2V +

∫ t

0
∥U∥22ds

)
+C(L,γ,β,K∗,T ) +C(β,α1,α2)

∫ t

0
∥Yn∥2W 1,4 ds

+λ

∫ t

0
(σ (s,Yn),Yn) dWs −

∫ t

0
λ2 (σ (s,Yn),Yn)2 ds. (3.3.33)
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Once again, the Young inequality gives

C(β,α1,α2)
∫ t

0
∥Yn∥2W 1,4 ds ≤ C(β,α1,α2,δ) +

δ
2

∫ t

0
∥Yn∥4W 1,4 ds.

Introducing this estimate in (3.3.33) and next taking δ = λβ
16(K∗)4 , it follows that

λβ

16(K∗)4

∫ t

0
∥Yn∥4W 1,4 ds ≤

λ
2

(
∥Yn(0)∥2V +

∫ t

0
∥U∥22ds

)
+C(β,α1,α2,T )

+λ

∫ t

0
(σ (s,Yn),Yn) dWs −

∫ t

0
λ2 (σ (s,Yn),Yn)2 ds. (3.3.34)

Now, we take the exponential, the expectation and the Hölder inequality in order to

deduce that

Ee
λβ

16(K∗)4
∫ t

0
∥Yn∥4W1,4 ds ≤ C(β,α1,α2,T )

(
Eeλ

(
∥Y0∥2V +

∫ t

0
∥U∥22 ds

)) 1
2

(
Ee

∫ t

0
(2λσ (s,Yn),Yn)dWs− 1

2

∫ t

0
(2λσ (s,Yn),Yn)2 ds

) 1
2
.

Since the stochastic process inside the second expectation is a supermartingale its expec-

tation is less or equal to 1, hence we obtain (3.3.30).

■

Lemma 3.3.5. Assume (3.3.2)-(3.3.4). Then the unique solution Yn of the problem (3.3.6)
verifies the following uniform estimate

E sup
s∈[0,t]

∥Yn(s)∥pW ≤ C, ∀t ∈ [0,T ], (3.3.35)

where C is a positive constant independent of n.

Proof. For each n ∈ N, let us consider the sequence of stopping times defined by

τnM = inf{t ≥ 0 : ∥Yn(t)∥W ≥M}, M ∈ N.

We introduce the solutions f̃n and σ̃n of (3.2.1) for f = fn := f (Yn) (as in (3.3.9)) and

f = σn := σ (t,Yn), respectively. Then

(f̃n, ei)V = (fn, ei), (σ̃n, ei)V = (σn, ei). (3.3.36)

Therefore

d(Yn, ei)V = (f̃n, ei)V dt + (σ̃n, ei)V dWt .

Multiplying by λi and using (3.3.5), we obtain

d (Yn, ei)W = (f̃n, ei)W dt + (σ̃n, ei)W dWt .

The Itô formula gives

d (Yn, ei)
2
W = 2(Yn, ei)W (f̃n, ei)W dt + 2(Yn, ei)W (σ̃n, ei)W dWt + |(σ̃n, ei)W |2dt.
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Now, multiplying by 1
λi

and summing over i = 1, . . . ,n, we derive

d ∥Yn∥2W = 2(f̃n,Yn)W dt + 2(σ̃n,Yn)W dWt +
n∑
i=1

1
λi
|(σ̃n, ei)W |2dt, (3.3.37)

which is equivalent to

d ∥Yn∥2W = 2[(fn,Yn) + (fn,Pυ(Yn))] dt + ∥σ̃n∥2W dt + 2[(σn,Yn) + (σn,Pυ(Yn))] dWt . (3.3.38)

Let us recall from (3.3.12)-(3.3.16) that

2(fn,Yn) ≤ −4ν ∥DYn∥22 −
β

2
∥An∥44 +

(α1 +α2)2

2β
∥An∥22 + ∥Yn∥22 + ∥U∥22. (3.3.39)

On the other hand, considering the Sobolev inequality

∥y∥6 ≤ C1∥y∥H1 ∀y ∈H1,

and using the estimates (3.2.9)-(3.2.11) as in [8], page 373, for ϵ = min
{

1
20(C1)2 ,

α1
40(C1)2 ,

βα1
9(3β+5)

}
we derive

2(fn,Pυ(Yn)) ≤ −
β

2
∥An∥44 −

α1β

2
∥ |An| |∇An| ∥22 −

α1β

4
∥∇(|An|2)∥22

+C(ν,β,α1,δ)∥Yn∥2W +C(β,α1)∥Yn∥∞∥Yn∥2W
+C(β,α1)∥Yn∥2V ∥Yn∥

2
W + 2δ∥Yn∥4W 1,4 + ∥U∥22. (3.3.40)

The Sobolev inequalities

∥y∥∞ ≤ C2∥y∥W 1,4 , ∥y∥V ≤ C3∥y∥W 1,4 , ∀y ∈W 1,4,

(3.1.11) and the Young’s inequality allow to verify that

C(β,α1)
(
∥Yn∥∞ + ∥Yn∥2V

)
∥Yn∥2W ≤ C(β,α1,δ)∥Yn∥2W + 2δ∥y∥4W 1,4∥Yn∥2W , ∀δ > 0.

Therefore, we have

2(fn,Pυ(Yn)) ≤ −
β

2
∥An∥44 −

α1β

2
∥ |An| |∇An| ∥22 −

α1β

4
∥∇(|An|2)∥22

+C(ν,β,α1,δ)∥Yn∥2W + 2δ∥Yn∥4W 1,4∥Yn∥2W + 2δ∥Yn∥4W 1,4 + ∥U∥22. (3.3.41)

Now, we choose δ such that 2D1 := 4δ ≤ λβ
16p(K∗)4 and introduce the function

ξ1(t) = e−2D1

∫ t

0
∥Yn∥4W1,4ds.

We apply the Itô formula to determine the differential of the product ξ1(t)∥Yn(t)∥2W ,

namely from the equation (3.3.38) we derive

d
(
ξ1(t)∥Yn∥2W

)
= ξ1(t) [2(fn,Yn) + 2(fn,Pυ(Yn))] dt + ξ1(t)∥σ̃n∥2W dt

+ ξ1(t) [2(σn,Yn) + 2(σn,Pυ(Yn))] dWt

− 2D1ξ1(t)∥Yn∥2W ∥Yn∥
4
W 1,4 dt. (3.3.42)
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Using the Itô formula once again for the function θ(x) = xp, and integrating on [0, s],

s ≤ t ∧ τnM , t ∈ [0,T ], we deduce(
ξ1(s)∥Yn∥2W

)p
= ∥Yn(0)∥2pW + p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r) [2(fn,Yn) + 2(fn,Pυ(Yn))] dr

+ p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r)∥σ̃n∥2W dr

+ p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r) [2(σn,Yn) + 2(σn,Pυ(Yn))] dWr

− 2D1p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r)∥Yn∥2W ∥Yn∥

4
W 1,4 dr

+ 2p(p − 1)
∫ s

0

(
ξ1(r)∥Yn∥2W

)p−2
(ξ1(r))2 [(σn,Yn) + (σn,Pυ(Yn))]2 dr.

(3.3.43)

Next, using (3.3.39) and (3.3.41) to estimate the right hand side, we obtain(
ξ1(s)∥Yn∥2W

)p
≤ ∥Yn(0)∥2pW + p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r)

[
C(ν,β,α1,δ)∥Yn∥2W + 2∥U∥22

]
dr

+ p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r)

[
D1∥Yn∥4W 1,4∥Yn∥2W +D1∥Yn∥4W 1,4

]
dr

+ p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r)∥σ̃n∥2W ds

+ 2p
∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r) [(σn,Yn) + (σn,Pυ(Yn))] dWr

− 2D1p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r)∥Yn∥2W ∥Yn∥

4
W 1,4 dr

+ 2p(p − 1)
∫ s

0

(
ξ1(r)∥Yn∥2W

)p−2
(ξ1(r))2 [(σn,Yn) + (σn,Pυ(Yn))]2 dr.

(3.3.44)

Since ∥Yn∥
2p−2
W ≤ 1 + ∥Yn∥

2p
W , we deduce(

ξ1(s)∥Yn∥2W
)p
≤ ∥Yn(0)∥2pW + pC(ν,β,α1,δ)

∫ s

0

(
ξ1(r)∥Yn∥2W

)p
dr

+ pD1

∫ s

0
(ξ1(r))p ∥Yn∥4W 1,4 dr

+ 2p
∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r)∥U∥22dr

+ p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r)∥σ̃n∥2W dr

+ 2p
∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r) [(σn,Yn) + (σn,Pυ(Yn))] dWs

+ 2p(p − 1)
∫ s

0

(
ξ1(r)∥Yn∥2W

)p−2
(ξ1(r))2 [(σn,Yn) + (σn,Pυ(Yn))]2 dr.

(3.3.45)
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Taking into account that ∥σ̃n∥2W ≤ C∥σ∥22, using (3.3.2), the embedding W ↪→W 1,4(O) and

the Young’s inequality, we infer that

p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r)∥σ̃n∥2W dr

+ 2p(p − 1)
∫ s

0

(
ξ1(r)∥Yn∥2W

)p−2
(ξ1(r))2 [(σn,Yn) + (σn,Pυ(Yn))]2 dr

≤ C(p,T ) +C(p)
∫ s

0

(
ξ1(r)∥Yn∥2W

)p
dr.

On the other hand, the Young’s inequality (3.1.13) with r = p
p−1 and 0 ≤ ξ1(t) ≤ 1 give

2p
∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r)∥U∥22dr ≤ 2(p − 1)

∫ s

0

(
ξ1(r)∥Yn∥2W

)p
dr + 2

∫ s

0
∥U∥2p2 dr.

Introducing these estimates in (3.3.45), we deduce(
ξ1(s)∥Yn(s)∥2W

)p
≤ ∥Y0∥

2p
W +C

(∫ s

0

(
ξ1(r)∥Yn∥2W

)p
dr +

∫ s

0
∥Yn∥4W 1,4 dr +

∫ s

0
∥U∥2p2 dr + 1

)
+ 2p

∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r) [(σ (r,Yn),Pυ(Yn) +Yn)dWr ] . (3.3.46)

The Burkholder-Davis-Gundy inequality, (3.3.2) and the Young’s inequality yield

E sup
s∈[0,τnM∧t]

∣∣∣∣∣∫ s

0

(
ξ1(r)∥Yn∥2W

)p−1
ξ1(r) ((σ (r,Yn),Pυ(Yn) +Yn)dWr )

∣∣∣∣∣
≤ CE

(∫ τnM∧t

0

((
ξ1(s)∥Yn∥2W

)p−1
ξ1(s)

)2
∥σ (s,Yn)∥22∥Yn∥

2
W ds

) 1
2

≤ C
√
LE

(∫ τnM∧t

0
(ξ1(s))2p ∥Yn∥

4p−2
W +

∫ τnM∧t

0
(ξ1(s))2p ∥Yn∥

4p−2+γ
W

) 1
2

≤ C
√

2LT +C
√

2LE
(∫ τnM∧t

0

(
ξ1(s)∥Yn∥2W

)2p
ds

) 1
2

≤ C
√

2LT +
η

2p
E

 sup
s∈[0,τnM∧t]

(
ξ1(s)∥Yn∥2W

)p
+C(L,η,p)E

∫ τnM∧t

0

(
ξ1(s)∥Yn∥2W

)p
ds, (3.3.47)

for any η > 0. Here we take η = 1
2 . Considering the supremum on s ∈ [0, τnM ∧ t] and

the expectation in (3.3.46), with the help of (3.3.47) we derive the following Gronwall’s

inequality

1
2
E sup

s∈[0,τnM∧t]

(
ξ1(s)∥Yn(s)∥2W

)p
≤ ∥Y0∥

2p
W +C

(∫ t

0
E sup

r∈[0,τnM∧s]

(
ξ1(r)∥Yn(r)∥2W

)p
ds

+E
∫ τnM∧t

0
∥Yn∥4W 1,4 dr +E

∫ τnM∧t

0
∥U∥2p2 dr + 1

)
.
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Therefore, we obtain

E sup
s∈[0,τnM∧t]

(
ξ1(s)∥Yn(s)∥2W

)p
≤ C

(
1 +E

∫ t

0
∥U∥2p2 dr +E

∫ t

0
∥Yn∥4W 1,4dr

)
. (3.3.48)

The estimates (3.3.8) and (3.3.4) yield

E sup
s∈[0,τnM∧t]

(
ξ1(s)∥Yn(s)∥2W

)p
≤ C

with C independent of n and M. We verify that for n fixed, τnM → T in probability, as

M→∞. Then, there exists a subsequence {τnMk
} of {τnM} (that may depend on n) such that

τnMk
→ T for a. e. ω ∈Ω, as k→∞. Using the monotone convergence theorem, we pass

to the limit in (3.3.48) as k→∞, deriving the estimate

E sup
s∈[0,t]

(
ξ1(s)∥Yn(s)∥2W

)p
≤ C.

The Hölder inequality gives

E sup
s∈[0,t]

∥Yn(s)∥pW ≤ E
[(

sup
s∈[0,t]

(ξ1(s))
p
2 ∥Yn(s)∥pW

)
(ξ1(t))−

p
2

]

≤
E sup

s∈[0,t]

(
ξ1(s)∥Yn(s)∥2W

)p
1
2
(
E(ξ1(t))−p

) 1
2

≤
√
C

(
Ee2pD1

∫ t

0
∥Yn∥4W1,4ds

) 1
2

.

Using Lemma 3.3.4, we deduce (3.3.35).

■

3.3.1 Proof of Theorem 3.3.2.

In order to show the existence of the solution to the system (3.1.1) it is convenient to write

the equation (3.1.1)1 in the following form (see [10], page 3)

d(υ(Y )) =
(
−∇p+ ν∆Y − (Y · ∇)Y + divN (Y ) + divS(Y ) +U

)
dt + σ (t,Y )dWt , (3.3.49)

with the operators S and N defined in (3.2.4)-(3.2.5). The corresponding finite dimen-

sional approximation reads

d(υ(Yn)) = (−∇pn + ν∆Yn − (Yn · ∇)Yn + divN (Yn) + divS(Yn) +U )dt + σ (t,Yn)dWt .(3.3.50)

The proof of Theorem 3.3.2 is splitted into five steps.

Step 1. Convergences related with the projection operator. Let Pn : W →Wn be the orthogonal

projection defined by

Pny =
n∑

j=1

c̃j ẽj with c̃j =
(
y, ẽj

)
W
, ∀y ∈W,
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where {ẽj = 1√
λj
ej}∞j=1 is the orthonormal basis of W. It is easy to check that

Pny =
n∑

j=1

cjej with cj =
(
y,ej

)
V
, ∀y ∈W.

By Parseval’s identity we have that

∥Pny∥V ≤ ∥y∥V , ∀y ∈ V ,

∥Pny∥W ≤ ∥y∥W and Pny −→ y strongly in W, ∀y ∈W.

Considering an arbitrary Z ∈ Lq(Ω× (0,T ),W ), we have

∥PnZ∥W ≤ ∥Z∥W and PnZ(ω,t)→ Z(ω,t) strongly in W,

which are valid for P -a.e. ω ∈Ω and a.e. t ∈ (0,T ). Hence Lebesgue’s dominated conver-

gence theorem and the inequality

∥Z∥V ≤ C∥Z∥W for any Z ∈W

imply

PnZ −→ Z strongly in Lq(Ω× (0,T ),W ),

PnZ −→ Z strongly in Lq(Ω× (0,T ),V ). (3.3.51)

Step 2. Passing to the limit in the weak sense. From Lemma 3.3.5, we have

E sup
t∈[0,T ]

∥Yn(t)∥qW ≤ C. (3.3.52)

Then there exists a subsequence of Yn, still denoted by Yn such that

Yn ⇀ Y *-weakly in Lq(Ω,L∞(0,T ;W )). (3.3.53)

Moreover, we have

PnY −→ Y strongly in Lq(Ω× (0,T ),W ). (3.3.54)

Let us notice

|(S(y),φ)| ≤ C∥y∥3W ∥φ∥2 for any y ∈W and φ ∈H,

which implies that S : W →H ∗ and

∥S(y)∥H ∗ ≤ C∥y∥3W , ∀y ∈W.

Therefore

∥S(Yn)∥2L2(Ω,L2(0,T ;H ∗)) = E
∫ T

0
∥S(Yn)∥2H ∗ ds ≤ CE sup

t∈[0,T ]
∥Yn(t)∥6W < C. (3.3.55)
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We also have

|(divS(y),φ)| ≤ C∥y∥3W ∥φ∥V for any y ∈W and φ ∈ V ,

then

∥divS(y)∥V ∗ ≤ C∥y∥3W , ∀y ∈W,

and

∥divS(Yn)∥2L2(Ω,L2(0,T ;W ∗)) ≤ ∥divS(Yn)∥2L2(Ω,L2(0,T ;V ∗)) < C. (3.3.56)

The operator N verifies

|(N (y),φ)| ≤ C∥y∥2W ∥φ∥2 for any y ∈W and φ ∈H,

In addition

|(divN (y),φ)| ≤ C∥y∥2W ∥φ∥W for any y,φ ∈W

which imply

∥N (Yn)∥2L2(Ω,L2(0,T ;H ∗)) < C, (3.3.57)

and

∥divN (Yn)∥2L2(Ω,L2(0,T ;W ∗)) ≤ ∥divN (Yn)∥2L2(Ω,L2(0,T ;V ∗)) < C. (3.3.58)

Let us introduce the operator B, defined by

B(y) := −(y · ∇)y.

We have

|(B(y),φ)| ≤ C∥y∥2V ∥φ∥V , (3.3.59)

then

∥B(Yn)∥2L2(Ω,L2(0,T ;V ∗)) ≤ C1 ∥Yn∥4L4(Ω,L∞(0,T ;V )) < C. (3.3.60)

The diffusion operator is bounded. Then there exist operators N ∗(t), S∗(t), B∗(t), σ ∗(t) and

a subsequence on (n), that we still denote by (n), such that as n→∞ we have

B(Yn) ⇀ B∗(t) weakly in L2(Ω× (0,T ),V ∗),

N (Yn) ⇀ N ∗(t) weakly in L2(Ω× (0,T ),H ∗),

divN (Yn) ⇀ divN ∗(t) weakly in L2(Ω× (0,T ),V ∗),

S(Yn) ⇀ S∗(t) weakly in L2(Ω× (0,T ),H ∗),

divS(Yn) ⇀ divS∗(t) weakly in L2(Ω× (0,T ),V ∗),

σ (t,Yn) ⇀ σ ∗(t) weakly in L2(Ω× (0,T ), (L2(O))m). (3.3.61)

Therefore, passing to the limit with respect to the weak topology, as n→∞, all terms in

the equation (3.3.6), we derive that the limit function Y satisfies the stochastic differential

equation

d (υ (Y ) ,φ) = [(ν∆Y +U,φ) + ⟨B∗(t),φ⟩+ ⟨divN ∗(t),φ⟩+ ⟨divS∗(t),φ⟩] dt + (σ ∗(t),φ) dWt ,

∀φ ∈ V . (3.3.62)
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Step 3. Passing to the limit in the strong sense up to a stopping time. Let us introduce the

following convenient sequence (τM ), M ∈ N, of stopping times

τM = inf{t ≥ 0 : ∥Y (t)∥W ≥M} ∧ T .

Proposition 3.3.6. Let Yn be the solution of (3.3.50) and PnY the orthogonal projection of the
weak limit Y on the space Wn. Then for M fixed we have

E
(
ξ2(t ∧ τM )∥PnY (t ∧ τM )−Yn(t ∧ τM )∥2V

)
+ 4νE

∫ t∧τM

0
ξ2(s)∥D(PnY −Yn)∥22ds

+
β

2
E
∫ t∧τM

0
ξ2(s)

∫
O

(|An|2 − |A|2)2ds+
β

4
E
∫ t∧τM

0
ξ2(s)

∫
O

(|An|2 + |A|2)|A(Yn −Y )|2ds

+E
∫ t∧τM

0
ξ2(s)∥Pnσ̃ − Pnσ̃ ∗∥2V ds→ 0, as n→∞, (3.3.63)

where
ξ2(t) = e−D3t−2D4

∫ t

0 ∥Y ∥W ds

and D3, D4 are specific constants to be defined later on.

Proof. Taking the difference between equations (3.3.6) and (3.3.62), we write

d (Yn − PnY ,ei)V = [(ν∆(Yn −Y ), ei) + ⟨B(Yn)−B∗(t), ei⟩] dt

+[⟨divN (Yn)−divN ∗(t), ei⟩+ ⟨divS(Yn)−divS∗(t), ei⟩] dt

+(σ (t,Yn)− σ ∗(t), ei) dWt , (3.3.64)

which holds for any ei ∈Wn, i = 1, ...,n.

The Itô’s formula gives

d(Yn − PnY ,ei)2
V = 2(Yn − PnY ,ei)V [(ν∆(Yn −Y ), ei) + ⟨B(Yn)−B∗(t), ei⟩] dt

+ 2(Yn − PnY ,ei)V [⟨divN (Yn)−divN ∗(t), ei⟩+ ⟨divS(Yn)−divS∗(t), ei⟩] dt

+ 2(Yn − PnY ,ei)V (σ (t,Yn)− σ ∗(t), ei) dWt + | (σ (t,Yn)− σ ∗(t), ei) |2dt.

Summing on i = 1, . . . ,n, we obtain

d
(
∥Yn − PnY ∥2V

)
+ 4ν∥D(Yn − PnY )∥22dt

= 2ν (∆(PnY −Y ),Yn − PnY ) dt + 2⟨B(Yn)−B∗(t),Yn − PnY ⟩dt

+ 2[⟨div(N (Yn)−N ∗(t)) ,Yn − PnY ⟩+ ⟨div(S(Yn)− S∗(t)) ,Yn − PnY ⟩] dt

+
n∑
i=1

| (σ (t,Yn)− σ ∗(t), ei) |2dt + 2(σ (t,Yn)− σ ∗(t),Yn − PnY ) dWt . (3.3.65)

Now, we write each term in the right hand side of this equation in a convenient form

⟨div(S(Yn)− S∗(t)) ,Yn − PnY ⟩

= ⟨div(S(Yn)− S(Y )),Yn − PnY ⟩+ ⟨div(S(Y )− S∗(t)),Yn − PnY ⟩

= ⟨div(S(Yn)− S(Y )),Yn −Y ⟩+ ⟨div(S(Yn)− S(Y )),Y − PnY ⟩

+ ⟨div(S(Y )− S∗(t)),Yn − PnY ⟩ = g1
n(t) + g2

n(t) + g3
n(t). (3.3.66)
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Due to relation (3.2.12), we have

g1
n(t) = −

β

4

∫
O

(|An|2 − |A|2)2 −
β

4

∫
O

(|An|2 + |A|2)|A(Yn −Y )|2. (3.3.67)

Using inequalities (3.3.66) and (3.3.67), equation (3.3.65) can be written as

d
(
∥Yn − PnY ∥2V

)
+ 4ν∥D(Yn − PnY )∥22dt

+
β

2

∫
O

(|An|2 − |A|2)2dt +
β

2

∫
O

(|An|2 + |A|2)|A(Yn −Y )|2dt

= 2ν (∆(PnY −Y ),Yn − PnY ) dt + 2⟨B(Yn)−B∗(t),Yn − PnY ⟩dt

+ 2⟨div(N (Yn)−N ∗(t)) ,Yn − PnY ⟩dt + 2
(
g2
n(t) + g3

n(t)
)
dt

+
n∑
i=1

| (σ (t,Yn)− σ ∗(t), ei) |2dt + 2(σ (t,Yn)− σ ∗(t),Yn − PnY ) dWt . (3.3.68)

We also have

⟨div(N (Yn)−N ∗(t)) ,Yn − PnY ⟩

= ⟨div(N (Yn)−N (Y )) ,Yn −Y ⟩+ ⟨div(N (Yn)−N (Y )) ,Y − PnY ⟩

+ ⟨div(N (Y )−N ∗(t)) ,Yn − PnY ⟩ = h1
n(t) + h2

n(t) + h3
n(t). (3.3.69)

Applying Lemma 3.2.6 with 3ϵ = β
8 , we have

h1
n(t) ≤

β

8

∫
O

|A(Yn −Y )|2
(
|A|2 + |An|2

)
+C1∥Yn −Y ∥2V

+
C

1−λ
ϵ

λ−1
λ+3 ∥Yn − PnY ∥

4(λ+1)
λ+3

H1 ∥Y ∥
4

λ+3
H2 +

C
1−λ

ϵ
λ−1
λ+3 ∥PnY −Y ∥

4(λ+1)
λ+3

H1 ∥Y ∥
4

λ+3
H2 (3.3.70)

for any λ ∈]0,1[. Let us set

h4
n(t) =

C
1−λ

ϵ
λ−1
λ+3 ∥PnY −Y ∥

4(λ+1)
λ+3

H1 ∥Y ∥
4

λ+3
H2 .

Proceeding analogously with the convective term, we deduce

⟨B(Yn)−B∗(t),Yn − PnY ⟩

= ⟨B(Yn)−B(Y ),Yn −Y ⟩+ ⟨B(Yn)−B(Y ),Y − PnY ⟩

+ ⟨B(Y )−B∗(t),Yn − PnY ⟩ = b1
n(t) + b2

n(t) + b3
n(t). (3.3.71)

In addition

|b1
n(t)| ≤ C2∥Y ∥W ∥Yn −Y ∥2V . (3.3.72)

Denoting by σ̃n, σ̃ and σ̃ ∗ the solutions of the Stokes system (3.2.1) for f = σ (t,Yn),

f = σ (t,Y ) and f = σ ∗(t), respectively, we have

(σ (t,Yn)− σ ∗(t), ei) = (σ̃n − σ̃ ∗, ei)V , i = 1,2, . . . ,n.
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Then
n∑
i=1

| (σ (t,Yn)− σ ∗(t), ei) |2 = ∥Pnσ̃n − Pnσ̃ ∗∥2V .

The standard relation x2 = (x − y)2 − y2 + 2xy allows to write

∥Pnσ̃n − Pnσ̃ ∗∥2V = ∥Pnσ̃n − Pnσ̃∥2V − ∥Pnσ̃ − Pnσ̃
∗∥2V

+ 2(Pnσ̃n − Pnσ̃ ∗, Pnσ̃ − Pnσ̃ ∗)V .

From the properties of the solutions of the Stokes system (3.2.1) and (3.3.3), we have

∥Pnσ̃n − Pnσ̃∥2V ≤ ∥σ̃n − σ̃∥
2
V ≤ ∥σ (t,Yn)− σ (t,Y )∥22 ≤ K ∥Yn −Y ∥2V ,

then

∥Pnσ̃n − Pnσ̃ ∗∥2V ≤ K ∥Yn −Y ∥2V − ∥Pnσ̃ − Pnσ̃
∗∥2V

+ 2(Pnσ̃n − Pnσ̃ ∗, Pnσ̃ − Pnσ̃ ∗)V
≤ 2K ∥Yn − PnY ∥2V +C ∥PnY −Y ∥2V − ∥Pnσ̃ − Pnσ̃

∗∥2V
+ 2(Pnσ̃n − Pnσ̃ ∗, Pnσ̃ − Pnσ̃ ∗)V . (3.3.73)

Let us set D3 := 2(K + 2C1) and D4 := 2C2. The positive constants K , C1 and C2 in (3.3.3),

(3.3.70) and (3.3.72) are independent of n.

We introduce the auxiliary function

ξ2(t) = e−D3t−2D4

∫ t

0 ∥Y ∥W ds.

Now, applying the Itô formula and using the equality (3.3.68), we get

d
(
ξ2(t)∥Yn − PnY ∥2V

)
+ 4νξ2(t)∥D(Yn − PnY )∥22dt

+
β

2
ξ2(t)∥ |An|2 − |A|2∥22dt +

β

2
ξ2(t)∥

√
|An|2 + |A|2 |A(Yn −Y )| ∥22dt

= 2νξ2(t)(∆(PnY −Y ),Yn − PnY )dt

+ 2ξ2(t)⟨B(Yn)−B∗(t),Yn − PnY ⟩dt

+ 2ξ2(t)⟨divN (Yn)−divN ∗(t),Yn − PnY ⟩dt + 2ξ2(t)
(
g2
n(t) + g3

n(t)
)
dt

+ ξ2(t)
n∑
i=1

| (σ (t,Yn)− σ ∗(t), ei) |2dt

+ 2ξ2(t) (σ (t,Yn)− σ ∗(t),Yn − PnY ) dWt

−D3ξ2(t)∥PnY −Yn∥2V dt − 2D4ξ2(t)∥Y ∥W ∥Yn − PnY ∥2V dt.
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Incorporate in this equation the relations (3.3.69), (3.3.70), (3.3.71), (3.3.72) and (3.3.73),

we deduce

d
(
ξ2(t)∥Yn − PnY ∥2V

)
+ 4νξ2(t)∥D(Yn − PnY )∥22dt +

β

2
ξ2(t)∥ |An|2 − |A|2∥22dt

+
β

4
ξ2(t)∥

√
|An|2 + |A|2 |A(Yn −Y )| ∥22dt + ξ2(t)∥Pnσ̃ − Pnσ̃ ∗∥2V dt

≤ 2νξ2(t)(∆(PnY −Y ),Yn − PnY )dt + ξ2(t)
2C

1−λ
ϵ

λ−1
λ+3 ∥PnY −Yn∥

4(λ+1)
λ+3

H1 ∥Y ∥
4

λ+3
H2 dt

+ 2ξ2(t)
[
b2
n(t) + b3

n(t) + h2
n(t) + h3

n(t) + h4
n(t) + g2

n(t) + g3
n(t)

]
dt

+ ξ2(t)
[
C(1 + ∥Y ∥W )∥PnY −Y ∥2V + 2(Pnσ̃n − Pnσ̃ ∗, Pnσ̃ − Pnσ̃ ∗)V

]
dt

+ 2ξ2(t) (σ (t,Yn)− σ ∗(t),Yn − PnY ) dWt .

Integrating over the time interval (0, t ∧ τM), t ∈ [0,T ], and taking the expectation, we

derive

E
(
ξ2(t ∧ τM )∥PnY (t ∧ τM )−Yn(t ∧ τM )∥2V

)
+ 4νE

∫ t∧τM

0
ξ2(s)∥D(PnY −Yn)∥22ds

+
β

2
E
∫ t∧τM

0
ξ2(s)∥ |An|2 − |A|2∥22ds+

β

4
E
∫ t∧τM

0
ξ2(s)∥

√
|An|2 + |A|2 |A(Yn −Y )| ∥22ds

+E
∫ t∧τM

0
ξ2(s)∥Pnσ̃ − Pnσ̃ ∗∥2V ds (3.3.74)

≤ 2νE
∫ t∧τM

0
ξ2(s)(∆(Y − PnY ), PnY −Yn)ds

+ 2E
∫ t∧τM

0
ξ2(s)

[
b2
n(s) + b3

n(s) + h2
n(s) + h3

n(s) + h4
n(s) + g2

n(s) + g3
n(s)

]
ds

+E
∫ t∧τM

0
ξ2(s)

[
C(1 +M)∥PnY −Y ∥2V + 2(Pnσ̃n − Pnσ̃ ∗, Pnσ̃ − Pnσ̃ ∗)V

]
ds

+E
∫ t∧τM

0
ξ2(s)

2C
1−λ

ϵ
λ−1
λ+3 ∥PnY −Yn∥

4(λ+1)
λ+3

H1 ∥Y ∥
4

λ+3
H2 ds

= J1
n + J2

n + J3
n + J4

n . (3.3.75)

Here, we assume that

rn(t) = J1
n + J2

n + J3
n → 0. (3.3.76)

This result will be proved in a lemma at the end of this proposition.

Let us define

an(t) =E
(
ξ2(t ∧ τM )∥PnY (t ∧ τM )−Yn(t ∧ τM )∥2V

)
+ 4νE

∫ t

0
1[0,τM ](s)ξ2(s)∥D(PnY −Yn)∥22ds

+
β

2
E
∫ t

0
1[0,τM ](s)ξ2(s)∥ |An|2 − |A|2∥22ds

+
β

4
E
∫ t

0
1[0,τM ](s)ξ2(s)∥

√
|An|2 + |A|2 |A(Yn −Y )| ∥22ds

+E
∫ t

0
1[0,τM ](s)ξ2(s)∥Pnσ̃ − Pnσ̃ ∗∥2V ds. (3.3.77)

38



3.3. EXISTENCE OF STRONG SOLUTION

Taking into account (3.3.74), (3.3.76) and the concavity of the function x → x
2(λ+1)
λ+3 , λ ∈

[0,1], we derive

an(t) ≤ rn(t) +
2C

1−λ
E
∫ t

0
1[0,τM ](s)ξ2(s)ϵ

λ−1
λ+3 ∥PnY −Yn∥

4(λ+1)
λ+3

H1 ∥Y ∥
4

λ+3
H2 ds

≤ rn(t) +M
4

λ+3
2C

1−λ
ϵ

λ−1
λ+3E

∫ t

0
ξ2(s∧ τM )∥PnY (s∧ τM )−Yn(s∧ τM )∥

4(λ+1)
λ+3

H1 ds

≤ rn(t) +M
4

λ+3
2C

1−λ
ϵ

λ−1
λ+3E

∫ t

0

(
ξ2(s∧ τM )∥PnY (s∧ τM )−Yn(s∧ τM )∥2V

) 2(λ+1)
λ+3 ds

≤ rn(t) +M
4

λ+3
2C

1−λ
ϵ

λ−1
λ+3

(∫ t

0
Eξ2(s∧ τM )∥PnY (s∧ τM )−Yn(s∧ τM )∥2V ds

) 2(λ+1)
λ+3

≤ rn(t) +M
4

λ+3
2C

1−λ
ϵ

λ−1
λ+3

(∫ t

0
an(s)ds

) 2(λ+1)
λ+3

, (3.3.78)

which yields

limsup
n→∞

an(t) ≤ limsup
n→∞

rn(t) +M
4

λ+3
2C

1−λ
ϵ

λ−1
λ+3

(∫ t

0
limsup
n→∞

an(s)ds
) 2(λ+1)

λ+3

. (3.3.79)

Denoting

f (t) :=
∫ t

0
limsup
n→∞

an(s)ds,

and knowing that limn→∞ rn(t) = 0, (3.3.79) can be written as

f ′(t) ≤M
4

λ+3
2C

1−λ
ϵ

λ−1
λ+3 (f (t))

4(λ+1)
λ+3 . (3.3.80)

Here, we can proceed as in [10] in order to verify that f ≡ 0. Since f (0) = 0 and(
(f (t))

1−λ
λ+3

)′
≤ 2C

λ+ 3
M

4
λ+3 ϵ

λ+1
λ+3 ,

we have

f (t) ≤
( 2C
λ+ 3

M
4

λ+3 ϵ
λ+1
λ+3 t

) λ+3
1−λ

.

Considering T0 = 3

4CM
4
3 ϵ

, we have 2C
λ+3M

4
λ+3 ϵ

λ+1
λ+3 t ≤ 1

2 . Taking λ→ 1, we get f (t) = 0, ∀t ∈
[0,T0]. By an extension argument, we obtain f (t) = 0, ∀t ∈ [0,T ].

E
(
ξ2(t ∧ τM )∥PnY (t ∧ τM )−Yn(t ∧ τM )∥2V

)
+ 4νE

∫ t∧τM

0
ξ2(s)∥D(PnY −Yn)∥22ds

+
β

2
E
∫ t∧τM

0
ξ2(s)

∫
O

(|An|2 − |A|2)2ds+
β

4
E
∫ t∧τM

0
ξ2(s)

∫
O

(|An|2 + |A|2)|A(Yn −Y )|2ds

+E
∫ t∧τM

0
ξ2(s)∥Pnσ̃ − Pnσ̃∥2V ds→ 0, as n→∞.

■
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Lemma 3.3.7. Let J1
n (t), J2

n (t), J3
n (t) be the terms introduced in (3.3.74). Then for all t ∈ [0,T ],

J in(t)→ 0, for i = 1,2,3.

Proof. Using (3.3.52)-(3.3.53) and the properties of the projection Pn, we have

|J1
n (t)| =

∣∣∣2νE∫ t

0
ξ2(s)(1[0,τM ](s)∆(Y − PnY ), PnY −Yn)ds

∣∣∣
≤ C∥PnY −Y ∥L2(Ω×(0,t),H2)∥PnY −Yn∥L2(Ω×(0,t),W )

≤ C∥PnY −Y ∥L2(Ω×(0,T ),W )

(
∥Y ∥L2(Ω×(0,T ),W ) + ∥Yn∥L2(Ω×(0,T ),H2)

)
≤ C∥PnY −Y ∥L2(Ω×(0,T ),H2)

which goes to zero, as n→∞, by (3.3.54).

J2
n (t) = 2E

∫ t∧τM

0
ξ2(s)

[
b2
n(s) + b3

n(s) + h2
n(s) + h3

n(s) + h4
n(s) + g2

n(s) + g3
n(s)

]
ds

From (3.3.59), (3.3.35) and (3.3.54), we deduce∣∣∣∣∣∣2E
∫ t∧τM

0
ξ2(s)b2

n(s)

∣∣∣∣∣∣ ds =

∣∣∣∣∣∣2E
∫ t∧τM

0
ξ2(s)⟨B(Yn)−B(Y ), PnY −Y ⟩

∣∣∣∣∣∣
≤ CE sup

t∈[0,T ]
∥Yn∥4V E∥PnY −Y ∥2L2(0,T ;V )→ 0, as n→∞.

Convergences (3.3.53) and (3.3.54) give that

PnY −Yn→ 0 weakly in L2(Ω× (0,T ),W ),

then for any operator R ∈ L2(Ω× (0,T ),W ∗) we have

E
∫ T

0
⟨R,PnY −Yn⟩ds→ 0, as n→∞.

The function 1[0,τM ](s)ξ2(s) is bounded, then

∥1[0,τM ](s)ξ2(s) (B(Y )−B∗)∥2L2(Ω×(0,T ),W ∗)

≤ C
(
∥B(Y )∥2L2(Ω×(0,T ),W ∗) + ∥B∗∥2L2(Ω×(0,T ),W ∗)

)
≤ C,

by (3.3.52), (3.3.60) and (3.3.61). Therefore, as n→∞, we have

2E
∫ t∧τM

0
ξ2(s)b3

n(s) = 2E
∫ t

0
⟨1[0,τM ](s)ξ2(s) (B(Y )−B∗(s)) , PnY −Yn⟩ds→ 0.

Using the same reasoning, we show that

2E
∫ t∧τM

0
ξ2(s)h2

n(s)→ 0, 2E
∫ t∧τM

0
ξ2(s)h3

n(s)→ 0.
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By the definition of the stopping time τM , we have 1[0,τM ](s)ξ2(s)∥Y ∥
4

λ+3
W ≤M

4
λ+3 , so∣∣∣∣∣∣2E

∫ t∧τM

0
ξ2(s)h4

n(s)

∣∣∣∣∣∣ ≤ C
1−λ

ϵ
λ−1
λ+3

∣∣∣∣∣∣2E
∫ T

0
1[0,τM ](s)ξ2(s)∥PnY −Y ∥

4(λ+1)
λ+3

V ∥Y ∥
4

λ+3
W

∣∣∣∣∣∣
≤ C

1−λ
ϵ

λ−1
λ+3M

4
λ+3

∣∣∣∣∣∣2E
∫ T

0
∥PnY −Y ∥

4(λ+1)
λ+3

V

∣∣∣∣∣∣
≤ C(M,λ)∥PnY −Y ∥

2(λ+1)
λ+3

L2(Ω×(0,T ),V )→ 0

Similarly we verify that the remaining terms in J2
n (t) converges to 0, as well as J3

n (t)

converges to 0, as n→∞.

■

From (3.3.63), the following strong convergences hold

lim
n→∞

E
(
ξ2(τM )∥PnY (τM )−Yn(τM )∥2V

)
= 0, (3.3.81)

lim
n→∞

E
∫ τM

0
ξ2(s)∥D(PnY −Yn)∥22ds = 0, (3.3.82)

lim
n→∞

E
∫ τM

0
ξ2(s)∥ |An|2 − |A|2∥22ds = 0, (3.3.83)

lim
n→∞

E
∫ τM

0
ξ2(s)∥

√
|An|2 + |A|2 |A(Yn −Y )| ∥22ds = 0, (3.3.84)

lim
n→∞

E
∫ τM

0
ξ2(s)∥Pnσ̃ − Pnσ̃ ∗∥2V ds = 0, (3.3.85)

for eachM ∈ N. Since there exists a strictly positive constant µ, such that µ ≤ 1[0,τM ](s)ξ2(s) ≤
1, it follows from the Korn inequality (3.1.9) and (3.3.54) that

lim
n→∞

E
∫ τM

0
ξ2(s)∥D(PnY −Yn)∥22ds = 0 implies lim

n→∞
E
∫ τM

0
∥Y −Yn∥2V ds = 0. (3.3.86)

In addition, we have

lim
n→∞

E
∫ τM

0
∥ |An|2 − |A|2∥22ds = 0, (3.3.87)

lim
n→∞

E
∫ τM

0
∥
√
|An|2 + |A|2 |A(Yn −Y )| ∥22ds = 0. (3.3.88)

Considering (3.3.51), we also derive

E
∫ τM

0
∥σ̃ − σ̃ ∗∥2V ds = 0. (3.3.89)

Step 4. Identification of B∗(t) with B(Y ), divN ∗(t) with divN (Y ), divS∗(t) with divS(Y )

and σ ∗(t) with σ (t,Y ) on [0, τM ] for each M.
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Now, we are able to show that the limit function Y satisfies equation (3.3.1). Integrat-

ing equation (3.3.62) on the time interval (0, τM ∧ t), we derive

(υ (Y (τM ∧ t)) ,φ)− (υ (Y0) ,φ) =
∫ τM∧t

0

[
(ν∆Y +U,φ) + ⟨B∗(s),φ⟩+ ⟨divN ∗(s),φ⟩

+⟨divS∗(s),φ⟩
]
ds+

∫ τM∧t

0
(σ ∗(s),φ) dWs (3.3.90)

for any φ ∈ V . From (3.3.89) it follows that

1[0,τM ](t)σ̃ = 1[0,τM ](t)σ̃
∗ a.e. in Ω× (0,T ),

which implies

1[0,τM ](t)σ (t,Y ) = 1[0,τM ](t)σ
∗(t) a. e. in Ω× (0,T ) (3.3.91)

by (3.2.1). Since B(Yn)−B(Y ) = (Yn · ∇)(Yn −Y ) + (Yn −Y ) · ∇Y , we verify that

∥B(Yn)−B(Y )∥V ∗ ≤ C (∥Yn∥V + ∥Y ∥V )∥Yn −Y ∥V .

Then for any ϕ ∈ L∞(Ω× (0,T ),V ), using (3.3.52), (3.3.53)

∣∣∣E∫ T

0
1[0,τM ](s)⟨B(Yn)−B(Y ), ϕ⟩ds

∣∣∣
≤ CE

∫ T

0
1[0,τM ](s) (∥Yn∥V + ∥Y ∥V )∥Yn −Y ∥V ∥ϕ∥V ds

≤ C∥ϕ∥L∞(Ω×(0,T ),V )E
∫ τM

0
(∥Yn∥V + ∥Y ∥V )∥Yn −Y ∥V ds

≤ C∥ϕ∥L∞(Ω×(0,T ),V )

(
E
∫ τM

0
∥Yn −Y ∥2V ds

) 1
2

→ 0, as n→∞.

Taking into account (3.3.61)1 and that the space L∞(Ω × (0,T ),V ) is dense in L2(Ω ×
(0,T ),V ), we obtain

1[0,τM ](s)B
∗(s) = 1[0,τM ](s)B(Y ) a. e. in Ω× (0,T ). (3.3.92)

From (3.2.20), we have

∣∣∣⟨div(N (Yn)−N (Y )),φ⟩
∣∣∣ ≤ Cϵ

∥∥∥∥A(Yn −Y )
√
|An|2 + |A|2

∥∥∥∥
2
∥φ∥V

+C∥Yn −Y ∥V (∥Yn∥W + ∥Y ∥W )∥φ∥W . (3.3.93)
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Then for any φ ∈ L∞(Ω× (0,T ),W ), using (3.3.86) and (3.3.88), we deduce∣∣∣∣∣∣E
∫ T

0
1[0,τM ](s)⟨div(N (Yn)−N (Y )),φ⟩ds

∣∣∣∣∣∣
≤ CE

∫ T

0
1[0,τM ](s)

∥∥∥∥A(Yn −Y )
√
|An|2 + |A|2

∥∥∥∥
2
∥φ∥V ds

+CE
∫ T

0
1[0,τM ](s)∥Yn −Y ∥V (∥Yn∥W + ∥Y ∥W )∥φ∥W ds

≤ C∥φ∥L∞(Ω×(0,T ),W )E
∫ τM

0

∥∥∥∥A(Yn −Y )
√
|An|2 + |A|2

∥∥∥∥
2
ds

+C∥φ∥L∞(Ω×(0,T ),W )E
∫ τM

0
(∥Yn∥W + ∥Y ∥W )∥Yn −Y ∥V ds

≤ C∥φ∥L∞(Ω×(0,T ),W )E
∫ τM

0

∥∥∥∥A(Yn −Y )
√
|An|2 + |A|2

∥∥∥∥2

2
ds

+C∥φ∥L∞(Ω×(0,T ),W )

(
E
∫ τM

0
∥Yn −Y ∥2V ds

) 1
2

→ 0, as n→∞.

Therefore

1[0,τM ](s)div(N ∗(s)) = 1[0,τM ](s)div(N (Y )) a.e. in Ω× (0,T ). (3.3.94)

Using the same reasoning, we show

1[0,τM ](s)div(S∗(s)) = 1[0,τM ](s)div(S(Y )) a.e. in Ω× (0,T ). (3.3.95)

Namely, from (3.2.12), we have∣∣∣⟨div(S(Y )− S(Yn)),φ⟩
∣∣∣ ≤ C∥Y ∥2W ∥Y −Yn∥V ∥φ∥W +C∥Yn∥W

∥∥∥|A|2 − |An|2
∥∥∥

2
∥φ∥W , (3.3.96)

and (3.3.86) and (3.3.87) gives∣∣∣∣∣∣E
∫ T

0
1[0,τM ](s)⟨div(S(Y )− S(Yn),φ⟩ds

∣∣∣∣∣∣
≤ CE

∫ T

0
1[0,τM ](s)∥Y ∥2W ∥Y −Yn∥V ∥φ∥W ds

+CE
∫ T

0
1[0,τM ](s)∥Yn∥W

∥∥∥|A|2 − |An|2
∥∥∥

2
∥φ∥W ds

≤ C∥φ∥L∞(Ω×(0,T ),W )E
∫ τM

0
∥Y ∥2W ∥Yn −Y ∥V ds

+C∥φ∥L∞(Ω×(0,T ),W )E
∫ τM

0
∥Yn∥W

∥∥∥|A|2 − |An|2
∥∥∥

2

≤ C(M)∥φ∥L∞(Ω×(0,T ),W )E
∫ τM

0
∥Yn −Y ∥V ds

+C(M)∥φ∥L∞(Ω×(0,T ),W )E
∫ τM

0

∥∥∥|A|2 − |An|2
∥∥∥

2
→ 0, as n→∞.
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By introducing identities (3.3.91), (3.3.92), (3.3.94) and (3.3.95) in equation (3.3.90),

it follows that

(υ (Y (τM ∧ t)) ,φ)− (υ (Y0) ,φ) =
∫ τM∧t

0

[
(ν∆Y +U,φ) + ⟨B(Y )

+ div(N (Y )) + div(S(Y )),φ⟩
]
ds+

∫ τM∧t

0
(σ (s,Y ),φ) dWs. (3.3.97)

Reasoning as in (3.3.25) we have τM → T a.e. in Ω, as M→∞. We can pass to the limit

in each term of equation (3.3.97) in L1(Ω× (0,T )), as M→∞, by applying the Lebesgue

dominated convergence theorem and the Burkholder-Davis-Gundy inequality for the last

(stochastic) term, deriving an equivalent formulation of equation (3.3.1) a.e. in Ω× (0,T ).

Step 5. Uniqueness. In order to prove uniqueness, we take two solutions Y1 and Y2,

and consider the difference Y = Y1 −Y2. Using similar arguments as in the previous steps,

introducing the function

ξ3(t) = e−
1
2D3t−D4

∫ t

0 ∥Y1∥W ds,

we show that

E
(
ξ3(t)∥Y (t)∥2V

)
+ 4νE

∫ t

0
ξ3(s)∥D(Y )∥22ds

+
β

2
E
∫ t

0
ξ3(s)

∫
O

(|A(Y1)|2 − |A(Y2)|2)2ds

+
β

4
E
∫ t

0
ξ3(s)

∫
O

(|A(Y1)|2 + |A(Y2)|2)|A(Y )|2ds

= 0 for a.e. t ∈ [0,T ].

Therefore, for a.e. t ∈ [0,T ], we have

E
(
ξ3(t)∥Y (t)∥2V

)
= 0.

Since ξ3 is a positive function, we deduce that for a.e. t ∈ [0,T ]

Y1(t) = Y2(t), P − a.s..

■
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4

Gaussian fields and approximation by

Gaussian Markov random fields

In this chapter we consider the SPDE

(k2 −∆)α/2τx = W ,

where W is a Gaussian white noise. The solution can be deduced by applying the Fourier

methods. In addition, it can be verified that the solution is a Gaussian field with Matérn

covariance. In spatial statistics, Matérn covariance plays an important role, since it de-

scribes quite well the behaviour of several spatial phenomena, such as epidemics, rainfall,

social sciences, etc. To present a self-contained text we first solve SPDE and then we use

the FEM to obtain a finite representation x̃ of the solution of the SPDE,

x̃(s) =
m∑
i=1

xiϕi(s) ,

where x = (x1, · · · ,xm) is a Gaussian random vector of weights, and {ϕi : i = 1, . . .m} is a set

of finite element basis functions. We will verify that x is a Gaussian Markov random field,

and explicitly calculate matrices C and G, needed to obtain the precision matrix Q of x.

These results will used in Chapter 5.

Definition 4.0.1. Consider D ⊂ Rd and s ∈ D. We say that {x(s) : s ∈ D ⊂ Rd}, x(s) for short,
is a continuously indexed Gaussian field if all finite collections {x(si) : i = 1, . . . ,n} are jointly
Gaussian distributed.

It should be mentioned that a Gaussian field is perfectly defined by its mean and

covariance functions.

Next we present the Fourier Transform for f ∈ L1(Rd) ∩ L2(Rd). In order to apply

the Fourier transform techniques to solve our stochastic partial differential equation, we

extend the definition to generalized functions and to generalized random functions.

Definition 4.0.2. Consider f ∈ L1(Rd)∩L2(Rd). The Fourier transform of f is defined as

f̂ (λ) ≡F{f (s)}(λ) =
∫
Rd

f (s)e−isλds
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and the inverse Fourier Transform is defined as

f̌ (s) ≡F−1{f (λ)}(s) =
1

(2π)d

∫
Rd

f (λ)eisλdλ.

Theorem 4.0.3 (Plancherel’s Theorem). Consider f ∈ L1(Rd)
⋂

L2(Rd). Then f̂ ∈ L2(Rd)

and

∥f̂ ∥2 = (2π)d/2∥f ∥2 .

Proof. See [20].

Since L1(Rd) ∩ L2(Rd) is dense in L2(Rd), it is possible to extend the definition of

Fourier transform to f ∈ L2(Rd). Moreover, the Fourier transform is an automorphism in

L2(Rd) (see [20], [34], [35]).

Proposition 4.0.4 (Parseval Identity). Consider f ,g ∈ L2(Rd). Then∫
Rd

f (s)g(s)ds = (2π)−d
∫
Rd

f̂ (λ)ĝ(λ)dλ .

For a proof, see [20].

We should observe that the Fourier transform can be extended to generalized func-

tions. Consider f ,g ∈ L2(Rd), then

(f , ĝ) =
∫
Rd

f ĝ dλ =
∫
Rd

ˆ̌f ĝ dλ = (2π)d
1

(2π)d

∫
Rd

ˆ̌f ĝ dλ = (2π)d
∫
Rd

f̌ g ds = (2π)dd(f̌ , g) ,

where we use the Parseval Identity. So, following [17], we generalize the Fourier transform

for generalized functions T ∈ S∗ in the following way

(T̂ , f ) := (2π)d(T , f̌ ), for all f ∈ L2(Rd) .

In a similar way, we define the inverse Fourier transform as

(Ť , f ) = (2π)−d(T , f̂ ) .

For instance, the Fourier transform of the Dirac delta function δ, is given by

(δ̂, f ) := (2π)d(δ, f̌ , ) = f̌ (0) =
∫
Rd

f (s)ds = (1, f )

for all f ∈ L2(Rd). We conclude that δ̂(λ) = 1.

The Fourier transform for a generalized random function ξ follows the same definition

as for generalized functions,

(ξ̂, f ) = (2π)d(ξ, f̌ ) and (ξ̌, f ) = (2π)−d(ξ, f̂ ) .
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4.1. SOLVING A STOCHASTIC PARTIAL DIFFERENTIAL EQUATION

4.1 Solving a stochastic partial differential equation

Consider the linear SPDE

(k2 −∆)α/2τx = W (4.1.1)

where s ∈ Rd , α = v + d/2, k > 0, τ > 0, v > 0, and W is a Gaussian white noise. To solve

equation (4.1.1), we define the Fourier transform of a fractional Laplacian. In order to do

that, consider the following,

F{(k2 −∆)τx}(λ) = τk2F{x}(λ)− τ((iλ1)2 + · · ·+ (iλd)2)F{x}(λ)

= τ(k2 + ∥λ∥2)F{x}(λ)
(4.1.2)

where we use Proposition 4.0.4. We use (4.1.2) to define the Fourier transform of the

fractional differential operator,

F{(k2 −∆)α/2τx}(λ) = τ(k2 + ∥λ∥2)α/2F{x}(λ) . (4.1.3)

Applying (4.1.3) to the SPDE (4.1.1), we obtain

F{(k2 −∆)α/2τx} = F{W}

⇔ τ(k2 + ∥λ∥2)α/2x̂(λ) = Ŵ

⇔ x(s) = F−1
{

1
τ(k2 + ||λ||2)α/2

Ŵ
}

(s) . (4.1.4)

If we define G = F−1
{

1
τ(k2+||λ||2)α/2

}
, the solution of equation (4.1.1) can be written as a

convolution,

x(s) = (W ∗G)(s) . (4.1.5)

Notice the following,

∫
Rd

(
1

τ(k2 + ||λ||2)α/2

)2

dλ =
∫
Rd

1
τ2(k2 + ||λ||2)α

dλ <∞

for all α > 1. We are interested in dimension d ≥ 2, so in our setting α > 1. We conclude

that
1

τ(k2 + ||λ||2)α/2
∈ L2(Rd)

therefore G ∈ L2(Rd) as well as G(s− ·) := G ◦hs(·) for every s ∈ R, where hs(s′) = (s− s′) is a

translation. For each s ∈ Rd ,

x(s) = (W ,G(s − ·))

and by the Definition 2.1.15 of the white noise, (W ,G(s − .)) is a Gaussian variable for all

s ∈ R, with zero mean and variance given by ∥G(s − .)∥22 = ∥G∥22.
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4.2 Covariance function of x(s)

A very important aspect of the solution x(s) is its covariance function. Consider f ,g ∈
L2(Rd). From (4.1.5),

E[(x,f )(x,g)] = E[(W ∗G,f )(W ∗G,g)] = E[(W , f ∗Gs)(W , g ∗Gs)]

= E[(W , f ∗G)(W , g ∗G)] = (δ, (f ∗G) ∗ (g ∗G)s)

=
(2π)d

(2π)d
(
δ,F−1 {F(f ∗G) ·F(gs ∗G)}

)
=

1
(2π)d

(
δ̂,F(f ∗G) ·F(gs ∗G)

)
=

1
(2π)d

(
1, f̂ ĝs

1
τ2(k2 + ||λ||2)α

)
=

1
(2π)d

(
1

τ2(k2 + ||λ||2)α
, f̂ ĝs

)

=
1

(2π)d

(
1

τ2(k2 + ||λ||2)α
,F{f ∗ gs}

)
=

(
F−1

{
1

τ2(k2 + ||λ||2)α

}
, f ∗ gs

)

Let

H(s) = F−1
{

1
τ2(k2 + ||λ||2)α

}
(s) .

We have the following,

E[(x,f )(x,g)] = (H,f ∗ gs) =
∫
Rd

H(s)f ∗ gs(s)ds

=
∫
Rd

H(s)
(∫

Rd
f (s′)gs(s − s′)ds′

)
ds =

"
R2d

H(s)f (s′)g(s′ − s)ds′ ds

=
"

R2d
H(s′ − s)f (s′)g(s)dsds′ =

"
R2d

H(s − s′)f (s)g(s′)dsds′

therefore, Cov(x(s),x(s’)) = H(s − s′). Following [38] and [39] the covariance function of

the Gaussian field x(s) is given by

Cov(x(s),x(s′)) = F−1
{

1
τ2(k2 + ∥λ∥2)α

}
(s − s′)

=
1

(2π)d

∫
Rd

eiλ(s−s′)

τ2(k2 + ∥λ∥2)α
dλ

=
∥s − s′∥vKv(k∥s − s′∥)

2v−1+d/2 kv Γ (v + d/2)τ2
, (4.2.1)

where Kv is the modified Bessel function of the second kind and order v, and Γ is the

Gamma function.

We have the following,

H(s) =
1

(2π)d

∫
Rd

eiλs

τ2(k2 + ∥λ∥2)α
dλ .
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The function H(s) is positive definite. We call spectral density function of H(s) to the

function

f (λ) =
1

(2π)dτ2(k2 + ∥λ∥2)α
.

This function is also called the wave number spectrum of the stationary solution x(s).

Rearranging (4.2.1) and following [29], we obtain the Matérn covariance

Cov(x(s),x(s′)) =
σ2

2v−1Γ (v)
(k∥s − s′∥)vKv(k∥s − s′∥),

where

σ2 =
Γ (v)

Γ
(
v + d

2

)
(4π)d/2k2vτ2

is the marginal variance of the underlying process x(s). We conclude that the solution

x(s) of the SPDE (4.1.1) is a GF with zero mean and Matérn covariance, also called Matérn
field.

Gaussian fields with Matérn covariance are very important in spatial statistics because

they describe a very large range of applications (see [5], [36]).

The parameter v is linked to the smoothness of the solution x(s), The higher the

value, the greater the smoothness (see [28]). The parameter k is a scaling parameter that

determines the spatial correlation range. The empirically derived formula

ρ =

√
8v
k

,

called pratical range, defines ρ as the distance at which the correlation is around 0.1. For

fixed v, the higher the k, the lower the distance ρ (see [28]).

4.3 Gaussian Markov random fields

In this subsection we follow [36], for the definition of Gaussian Markov random field

(GMRF). First, we need to define labelled graph.

Definition 4.3.1. A labelled graph is a tuple G= (V,E), where V= {1, ...,m} is an index
label of m nodes {si ∈ Rd : 1, ...,m} ⊂ D, and E is a set of edges {i, j}, with i , j, such that
{i, j} ∈ E if and only if nodes si and sj are connected by an edge.

Definition 4.3.2. A random vector x = (x1, . . . ,xm) is called a Gaussian Markov random field

with respect to a labelled graph G, with mean (µ) and precision matrix Q > 0, if and only if its
density has the form

π(x) = (2π)m/2|Q|1/2 exp
(
−1

2
(x−µ)T Q(x−µ)

)
(4.3.1)

and
Qij = 0 ⇔ {i, j} < E .

for i , j.
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Observe the following, given a Gaussian random vector x = (x1, . . . ,xm) with density

given by (4.3.1), we can define a labelled graph G̃= (V,E) such that Ṽ= {1, . . . ,m}, and

Qij = 0 if and only if {i, j} < Ẽ. We conclude that any Gaussian random vector x is a GMRF

(with respect to some graph G̃).

Figure 4.1: Top: pairwise Markov property. Middle: local Markov property. Bottom:
global Markov property. See [36].

Figure 4.1 illustrates pairwise, local, and global Markov properties. If the nodes i and

j are conditional independent given all the other nodes, we say that we have pairwise

Markov property. If node i and the set of white nodes, are conditional independent

given the neighbouring nodes N(i), in grey, we say that we have local Markov property.

Finally, if set A (stripes) and set B (black) are conditional independent given the common

neighbours, C (grey nodes), we say that we have global Markov property.

Theorem 4.3.3. Let x = (x1, . . . ,xm) be a Gaussian random vector with mean µ and precision
matrix Q. Then, for i , j,

xi ⊥ xj | x−ij ⇔ Qij = 0.

where x−ij stands for the vector obtained from x, removing entries i and j.
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We can find the proof of Theorem 4.3.3 in [36]. The proof relies on the following

Theorem 4.3.4, which is not proved in [36]. Because of the lack of that proof, we present

one here.

Theorem 4.3.4. Consider variables x, y and z, with π(z) > 0. We have the following,

x ⊥ y | z ⇔ π(x,y,z) = f (x,z)g(y,z)

for some functions f and g.

Proof. (⇒) We have the following,

x ⊥ y | z ⇔ π(x,y|z) = π(x|z)π(y|z)

π(x,y,z)
π(z)

= π(x|z)π(y|z)

π(x,y,z) = π(x|z)π(y|z)π(z) .

Consider f (x,z) = π(x|z) and g(y,z) = π(y|z)π(z). Therefore, π(x,y,z) = f (x,z)g(y,z).

(⇐) We have the following,

π(x|z) =
∫

π(x,y,z)
π(z)

dy =
f (x,z)
π(z)

∫
g(y,z)dy

and

π(y|z) =
∫

π(x,y,z)
π(z)

dx =
g(y,z)
π(z)

∫
f (x,z)dx

so we obtain

π(x|z)π(y|z) =
f (x,z)g(y,z)

π(z)2

"
f (x,z)g(y,z)dxdy =

f (x,z)g(y,z)
π(z)2 π(z) = π(x,y|z) .

Therefore, x and y are conditionally independent given z.

Theorem 4.3.3 states that the precision matrix Q of a Gaussian random vector x indi-

cates whether xi and xj are conditionally independent. Moreover, the zero entries of Q

determine Gand vice-versa.

To understand the Markov properties of a GMRF, let us define neighbouring nodes.
Given a labelled graph G= (V,E), define the neighbouring nodes of i as

N(i) = {l ∈ V : {i, l} ∈ E} .

Given a set of nodes A ⊂ V, we define

N(A) =

⋃
i∈A

N(i)

 \A .

Consider A,B,C ⊂ V subsets of nodes. We say that C separates A and B if and only if A

and B are disjoint non-empty sets such that

N(A)∩B = A∩N(B) = ∅ (4.3.2)
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and C is given by

C = N(A)∩N(B) .

This means the following, from (4.3.2) there is no edge between the nodes of A and the

nodes of B, and C is the set of common neighbours to both A and B.

Theorem 4.3.5. Let x a GMRF with respect to a labelled graph G= (V,E). Then the following
Markov properties are equivalent.

1. Pairwise Markov property: if i , j such that {i, j} < E, then xi ⊥ xj | x−ij .

2. Local Markov property: for every i ∈ Ewe have xi ⊥ x−{i,N(i)} | xN(i) .

3. Global Markov property: for every A,B,C ⊂ V such that C separates A and B, we have
xA ⊥ xB | xC .

We can find in [36] the illustration of the Markov properties, presented in Figure 1.

4.4 Finite Element Method

The Finite Element Method is designed to solve numerically differential equations, and

obtain an approximation of the solution. Consider a domain D ⊂ Rd . We are interested

in a finite representation x̃ of the solution of SPDE (4.1.1), of the form

x̃(s) =
m∑
i=1

xiϕi(s)

where x = (x1, · · · ,xm) is a Gaussian random vector of weights, and {ϕi : i = 1, . . .m} is a set

of finite element basis functions, defined by a chosen triangulation of the domain D, that

is, a mesh. We present an example of a mesh in Figure 2a.

We call mesh to a labelled graph that divides the domain in (small) triangles. The

basic idea of mesh is a set of nodes {si : i = 1, . . . ,m} ⊂ D, connected by edges, such that

the domain D is divided in triangles.

Given a mesh G= (V,E) of the domain D ⊂ Rd , the Finite Element Method (FEM)

defines a basis of finite element functions {ϕ1(s), . . . ,ϕm(s)} in the following way: for each

mesh node ni , the base element ϕi is a piece-wise linear function with ϕi(ni) = 1, linearly

decreasing to zero in each triangle with a vertex in ni , as shown in Figure 2b.

In this work we consider the case where α = 2. SPDE (4.1.1) will be solved in the weak

sense, that is

((k2 −∆)τx,g) = (W , g), (4.4.1)

for all g ∈ S. The left hand side can be written as

((k2 −∆)τx,g) = k2τ

∫
D
xg ds − τ

∫
D
∆xg ds . (4.4.2)
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Figure 4.2: Two base element function. See [28].

Theorem 4.4.1 (Green’s first identity).∫
D
∆xg ds+

∫
D
∇x∇g ds =

∫
∂D

g(∇x ·n)ds

For a proof, see [20]. Applying Green’s Theorem 4.4.1 to (4.4.2), we obtain

((k2 −∆)τx,g) = k2τ

∫
D
xg ds+ τ

∫
D
∇x∇g ds − τ

∫
∂D

g(∇x ·n)ds (4.4.3)

Also, SPDE (4.1.1) will be solved on a limited domain D, so a proper boundary condition

will be needed. Usually it is considered the Neumann condition, which states that

∂x(s)
∂n
|∂D = ∇x ·n = 0 (4.4.4)

where n is the normal vector on the boundary ∂D. Therefore, equation (4.4.1) can be

written in the following way,

k2τ

∫
D
xg ds+ τ

∫
D
∇x∇g ds = (W , g) (4.4.5)

Now consider the finite representation

x̃(s) =
m∑
i=1

xiϕi(s) (4.4.6)

where x = (x1, · · · ,xm) is a Gaussian random vector of weights, to be determined. Notice

that x̃ is an element of the Hilbert space H generated by the basis functions {ϕ1, . . . ,ϕm},
for it is a linear combination of the basis-functions ϕi . Consider ϕj , and let

bj := (W ,ϕj ) . (4.4.7)

By Definition 2.1.15 of white noise, bj is a zero-mean Gaussian random variable such that

Cov(bi ,bj ) = E[(W ,ϕi)(W ,ϕj )] = (ϕi ,ϕj ) . (4.4.8)
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Applying SPDE (4.1.1) to x̃(s) in the weak sense, we obtain

((k2 −∆)τx̃,ϕj ) = (W ,ϕj ), for all j = 1, . . . ,n. (4.4.9)

From (4.4.5) and (4.4.9) we obtain

m∑
i=1

xik
2τ

∫
D
ϕi(s)ϕj(s)ds+

m∑
i=1

xiτ

∫
D
∇ϕi(s)∇ϕj(s)ds = bj for all j = 1, . . . ,m. (4.4.10)

We define the matrix K as

Kij = k2
∫
D
∇ϕi(s)∇ϕj(s)ds+

∫
D
ϕi(s)ϕj(s)ds .

and also we define the following matrices C and G, as

Cij =
∫
D

ϕi(s)ϕj(s)ds and Gij =
∫
D

∇ϕi(s)∇ϕj(s)ds ,

so K = k2C + G. Notice that C, G, and K are symmetric matrices. In this way, we can

rewrite (4.4.10) in matricial form,

τ(k2C + G)x = b (4.4.11)

where x = (xi , . . . ,xm) is the random vector of weights in (4.4.6), and b = (b1, . . . , bm) is the

random vector with entries defined in (4.4.7). We can now calculate the precision matrix

for the Gaussian random vector x. From (4.4.8) and (4.4.11),

τ(k2C + G)x = b ⇒ Cov(τ(k2C + G)x) = C

so

τ(k2C + G)Cov(x)τ(k2C + G) = C

⇔ τ−1(k2C + G)−1Qτ−1(k2C + G)−1 = C−1

where Q = Cov−1(x) is the precision matrix of x. Therefore

Q = τ(k2C + G)C−1τ(k2C + G)

= τ2KC−1K

= τ2(k4C + 2k2G + GC−1G) .

In order to obtain computational gains, we substitute matrix C by the diagonal matrix C̃,

defined by

C̃ii =
∫
D
ϕi(s)ds = (ϕi(s),1) .

For error estimates, see [29]). Then, the precision matrix will be given by

Q̃ = τ2K̃C̃−1K̃
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where

K̃ = k2C̃ + G .

Consider i , j. By construction of the basis element functions,

{i, j} < E⇒ Gij = 0 . (4.4.12)

Moreover, C̃ is a diagonal matrix, so, for i , j, we have K̃ij = Gij , and

{i, j} < E⇒ K̃ij = 0 .

The reason for (4.4.12) is the following: first observe that suppϕi is a finite union of

triangle of the mesh, and suppϕi ∩ suppϕi , ∅ if and only if nodes si and sj share an

edge of a triangle, which is equivalent to {i, j} ∈ E (observe Figure 2a, for instance nodes

26 and 39). However, in the case where {i, j} ∈ E, we have the following,

suppϕi ∩ suppϕj =
⋃
γ

Tγ

is also a union of triangles of the mesh (actually, two at most, because a mesh is a trian-

gulation of the domain, but for now we only need to realize that it is a finite number of

triangles). Then,

Gij =
∫
D

∇ϕi(s)∇ϕj(s)dsds =
∑
γ

∫
Tγ

∇ϕi(s)∇ϕj(s)ds .

The basis elements are (non-constant) piecewise linear functions in each triangle Tγ ⊂
suppϕi∩suppϕj . Depending on the geometry of the mesh, we may have ∇ϕi(s)∇ϕj(s) < 0,

as well as ∇ϕi(s)∇ϕj(s) > 0, so Gij might be zero for neighbouring nodes i and j, such that

i , j.

Let kij := K̃ij and ci := diag(C̃)i > 0. Then

Q̃ij =
(
K̃C̃−1K̃

)
ij

= (ki1, . . . , kil , . . . , kim) · (c−1
1 k1j , . . . , c

−1
l klj , . . . , c

−1
j kmj ) .

(4.4.13)

Again, for i , l, if {i, l} < E, then kil = 0. Therefore,

N(i)∩ {j,N(j)} = ∅ ⇒ kil kjl = 0

for all l ∈ {1, ...m}. So,

N(i)∩ {j,N(j)} = ∅ ⇒ Q̃ij = 0 . (4.4.14)

According to [5], this is a formulation of a GMRF, where we (re)define the neighbouring

nodes as

Ñ(i) = {j ∈ V : N(i)∩ {j,N(j)} ,∅} .

Notice that Ñ(i) will contain all previously defined neighbours N(i), called first order
neighbours, but also nodes that are connected by an edge with at least one element of N(i),

55



CHAPTER 4. GAUSSIAN FIELDS AND APPROXIMATION BY GAUSSIAN

MARKOV RANDOM FIELDS

the second order neighbours. Consider the labelled graph G̃= ({1, . . . ,m}, Ẽ), where the set

of edges Ẽ is defined by the condition

{i, j} ∈ Ẽ ⇔ j ∈ Ñ(i)

for all i , j. So, if {i, j} < E, then N(i)∩ {j,N(j)} = ∅. Therefore, condition (4.4.14) reads

{i, j} < Ẽ ⇒ xi ⊥ xj | x−ij ,

and we conclude that the pairwise Markov property is verified by x.

4.5 Matrices C and G

In this section we explicitly calculate the matrices C and G, needed to obtain the precision

matrix Q od the GMRF x.

Consider a bounded domain D ∈ R2, where we define a a triangulation of the domain

called mesh. To create a mesh, we use the R-INLA package available in R, specially devel-

oped to perform approximate Bayesian inference (INLA approach), proposed by Rue et

al. ([37]).

It should be mentioned that the calculations presented in this section were used to im-

plement an algorithm in R for the construction of the matrices C, G, and Q, independently

of R-INLA. The use of R-INLA was restricted to creation of the mesh, and as motivated

by the possibility to define several parameters like thickness of the mesh, the maximum

length of the sides of each triangle in the mesh, etc., and most important, to get a matrix

with the information of neighbouring points. Meshes may easily have thousands of nodes,

so it made sense to use the R-INLA instruction for the mesh.

We call node to each vertex in the mesh, and two nodes are said to be neighbours

if and only if they define a side of a triangle in the mesh. As said before, R-INLA can

construct several types of meshes through the instruction inla.mesh.2d, and we can get

the matrix of neighbouring nodes by V <- meshname$graph$vv. If node i is neighbour

of node j, Vij = 1, and it is zero otherwise. Given a matrix of neighbours V, we can set

a routine to define a three column matrix, where each row has the indexes of the three

vertices of each triangle of the mesh, with one column per vertex.

To set some notation, let’s say the mesh defines a finite set of triangles {Tα : α ∈ I},
where I is a set of indexes. The FEM defines a piece-wise linear element base function ϕi ,

for each mesh node pi , with ϕi(pi) = 1, linearly decreasing to zero in each triangle with a

vertex in pi , as shown in Figure 4.2. Define the support of ϕi as Di = {Tα : ϕi|Tα , 0}. We

have that Di is the union of a small set of non overlapping triangles, Di = {Tα : α ∈ Ii},
where Ii ⊂I is a subset of indexes.

The next step is to create a data.frame in R, such that for each base element ϕi , we

have the information of all triangles Tα ∈ Di , the analytical expression of ϕi for each of

those Tα, as well as ∇ϕi|Tα , and the area of Tα. All these quantities are needed to calculate

matrices C and G, in (5.4.7) and (5.4.8), respectively.
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Figure 4.3: Node 45 and neighbours.

For instance, consider Figure 4.3, where we have node p45, surrounded by its neigh-

bouring nodes, p26, p28, p32, p39, p42, and p43. The domain D45 were ϕ45 , 0 is the union

of six non overlapping triangles Tα, with α ∈ {1, . . . ,6}, defined by p45 and its neighbours.

Therefore, we need to calculate C45,45, but also G45,j = Gj,45 for j ∈ {26,28,32,39,42,43,45}.
Consider first of all, the problem of calculating Cii ,

Cii =
"

Di

ϕi(x,y) dxdy =
∑
α∈Ii

"
Tα

ϕi|Tα (x,y) dxdy .

We need to compute the analytical expression of each restriction ϕi|Tα , which is a linear

polynomial such that ϕi(pi) = 1 and ϕi(pk) = ϕi(pl) = 0, where pk and pl are the remain

vertices of Tα. Let pi = (ai ,bi) be the R2 coordinates of node pi . Then, the graphic of ϕi|Tα
is a triangle in R3, with vertices given by (ai ,bi ,1), (ak ,bk ,0), and (al ,bl ,0). Given a normal

vector to that graphic, for instance, ni = (nix,n
i
y ,1), we have the following,

nix(ai − x) +niy(bi − y) + (1− z) = 0

for any point (x,y,z) belonging to the graphic of ϕi|Tα . Therefore,

ϕi|Tα (x,y) = nix(ai − x) +niy(bi − y) + 1 . (4.5.1)

So, we need to calculate the a normal vector ni . Since, without loss of generality, we are

assuming niz = 1, we just need two equations to define n,ni · (pk − pi) = 0

ni · (pl − pi) = 0
⇔

nix(ak − ai) +niy(bk − bi)− 1 = 0

nix(al − ai) +niy(bl − bi)− 1 = 0
.

For simplicity, as we assume the third entry of the normal vector equals to 1, from now

on ni := (nix,n
i
y). So, ni is the solution of the following linear system

Ai
α ni = 1
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where 1 is a vector of 1’s and

Ai
α =

ak − ai bk − bi
al − ai bl − bi

 .

We conclude that nixniy
 =

1

det(Ai
α)

 bl − bk−al + ak

 (4.5.2)

Notice that even though we swap pk and pl , the determinant in (4.5.2) will change sign,

also does the vector it multiplies, so we get the same ni , as we should. From (4.5.1) and

(4.5.2),

ϕi|Tα (x,y) =
1

det(Ai
α)

((bl − bk)(ai − x) + (−al + ak)(bi − y)) + 1 .

so

∇ϕi|Tα (x,y) =
−1

det(Ai
α)

[
bl − bk −al + ak

]
=

[
−nix −niy

]
= −(ni)T

where the superscript T denotes the transpose. Consider now the triangle T defined by

vertices (0,0), (1,0), and (0,1), and let f : T → Tα be a linear transformation such that

f (0,0) = pi , f (1,0) = pk , f (0,1) = pl .

We have the following

(x,y) = f (u,v) =

ak − ai al − ai
bk − bi bl − bi

 uv
 +

aibi
 . (4.5.3)

Let Bα be the 2× 2 matrix in (4.5.3). We have that Bα = (Ai
α)T . Observe that

|det(Jf (u,v))| = |det(Bα)| = |det(Jf̃ (u,v))|

where f̃ : T → Tα is any linear transformation such that

f̃ (0,0) = f (pσ (i)), f̃ (1,0) = f (pσ (k)), f̃ (0,1) = f (pσ (l))

where σ : {i,k, l} → {i,k, l} is any permutation of {i,k, l}. This is important to observe

because it simplifies the calculations.

Applying change of variables in the integration, we have"
Tα

ϕi(x,y) dxdy =
"

T
ϕi(f (u,v))|det(Bα)| dudv

=
"

T
(−u − v + 1)|det(Bα)| dudv

=
|det(Bα)|

6

(4.5.4)

therefore,

Cii =
∑
Tα∈Di

"
Tα

ϕi(x,y) dxdy =
∑
Tα∈Di

|det(Bα)|
6

. (4.5.5)
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Also, we have "
Tα

∥∇ϕi(x,y)∥2 dxdy =
"

Tα

∥ni∥2 dxdy

=
"

T
∥ni∥2|det(Bα)| dudv

=
∥ni∥2|det(Bα)|

2

so

Gii =
∑
Tα∈Di

"
Tα

∥∇ϕi(x,y)∥2 dxdy =
∑
Tα∈Di

∥ni∥2|det(Bα)|
2

. (4.5.6)

Moreover, consider now two base element functions ϕi and ϕj such that Dij = Di∩Dj ,∅.

In this case, Dij is the union of one or two non overlapping triangles. Consider Tα ⊂Dij ,

defined by vertices pi , pj , and pl . Observe that

∇ϕi|Tα (x,y) =
−1

det(Ai
α)

[
bl − bj −al + aj

]
= −(ni)T

and

∇ϕj |Tα (x,y) =
−1

det(Aj
α)

[
bl − bi −al + ai

]
= −(nj )T .

Therefore, "
Tα

∇ϕi · ∇ϕj dxdy =
"

T
ni ·nj |det(Bα)|dudv

=
|det(Bα)|

2
ni ·nj

Notice that, the therefore,

Gij =
∑

Tα⊂Dij

|det(Bα)|
2

ni ·nj . (4.5.7)
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5

Integrated nested Laplace

approximation methodology applied

to wind velocity data

The main goal of this chapter is to predict the wind velocity, using Bayesian inference. We

present all theoretical results and calculations, not explicitly presented in the literature,

that supports INLA methodology, central for doing approximate Bayesian inference, and

apply that methodology to estimate a spatial model for our wind data set ([26]).The results

are encouraging, and open new lines of investigation, such as applying statistical methods

to study the solution of stochastic partial differential equations.

We start by defining a specific class of hierarchical models, called latent Gaussian

models. An hierarchical model combines different levels of information, for instance the

observations are assumed to follow some distribution which depends on some set of latent

random variables µ, following a distribution depending on a set of hyperparameters θ.

Hierarchical models are defined in Subsection 2.2.2. In this work, we are interested in

the special case of latent Gaussian models with one spatial effect, defined in Section 5.1,

which are formulated as follows,

yi |µi ,θ ∼ π(yi |µi ,θ) , i = 1, . . . ,n

g(µi) = ηi := α +
L∑
l=1

zliβl + x(si)

x|θ ∼ GF(0,Q−1(θ))

θ ∼ π(θ)

were the observations y = (y1, ..., yn) of some spatial fenomena at locations (s1, . . . , sn), are

assumed to follow a distribution π(yi |µi ,θ). The parameter µi , usually taken as E[yi], is

linked to a so called predictor ηi , defined above. Moreover, the vector of all latent variables

x = (α,β1, . . . ,βL,x(s1), . . . ,x(sn)), conditional to a set of parameters θ, is assumed to be a

Gaussian field with 0 mean and precision matrix Q(θ). Here, we consider one spatial effect,

x(s). Moreover, π(θ) is the prior distribution of the hyperparameters.

61



CHAPTER 5. INTEGRATED NESTED LAPLACE APPROXIMATION

METHODOLOGY APPLIED TO WIND VELOCITY DATA

The main goal is to obtain the posterior distributions π(θ|y) and π(x|y,θ), first theo-

retically, then computationally for the examples in Sections 5.4 and 5.5, and to estimate

the mean and standard deviation of the spatial effect, x(s), and consequently, the mean

µi = E[yi].

5.1 Latent Gaussian model with one spatial effect

Consider a domain D ⊂ Rd , and a vector y = (y1, . . . , yn) of observed data at locations s =

(s1, . . . , sn), with si ∈ D, for all i = 1, . . . ,n. Consider a model with the following predictor,

with one spatial random effect,

ηi = α +
L∑
l=1

zliβl + x(si) ,

where the spatial dependence of the observations is modelled by the Gaussian field x(s).

In this case, the vector of latent variables is

x = (α,β1, . . . ,βL,x(s1), . . . ,x(sn)) ,

where dim(x) = m. We assign a Gaussian prior distribution to the vector of all latent vari-

ables, x, therefore, this model is called a latent Gaussian model. The distribution π(x|θ)

of the latent variables x, is assumed to be Gaussian with zero mean and precision matrix

Q(θ). The observations y = (y1, . . . , yn) are assumed to be conditionally independent given

x and the parameters θ, and belonging to the same distribution family. The vector of all

parameters, θ, may not be Gaussian distributed. Hence, our model can be written in the

following way,

yi |µi ,θ ∼ π(yi |µi ,θ) , i = 1, . . . ,n

g(µi) = ηi := α +
L∑
l=1

zliβl + x(si)

x|θ ∼ GF(0,Q−1(θ))

θ ∼ π(θ) .

(5.1.1)

The conditional distribution of the observations y is given by

π(y|x,θ) =
n∏
i=1

π(yi |ηi ,θ) =
n∏
i=1

π(yi |xi ,θ) , (5.1.2)

where xi = (α,β,x(si)), and the conditional distribution of x is given by

π(x|θ) = (2π)−m/2|Q(θ)|1/2 exp
{
−1

2
xT Q(θ)x

}
(5.1.3)

where dim(x) = m. The number of parameters has to be small, say dim(θ) = q ≤ 6, for

computational efficiency (see [37]).
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Applying Bayes’ Theorem,

π(x,θ|y) =
π(x,θ,y)
π(y)

=
π(y|x,θ)π(x,θ)

π(y)

=
π(y|x,θ)π(x|θ)π(θ)

π(y)

∝ π(y|x,θ)π(x|θ)π(θ)

and considering (5.1.2) and (5.1.3), we obtain

π(x,θ|y) ∝ π(θ)π(x|θ)
n∏
i=1

π(yi |xi ,θ)

∝ π(θ)|Q(θ)|1/2 exp
{
−1

2
xT Q(θ)x

} n∏
i=1

π(yi |xi ,θ)

∝ π(θ)|Q(θ)|1/2 exp

−1
2

xT Q(θ)x +
n∑
i=1

log{π(yi |xi ,θ)}

 . (5.1.4)

Given the distribution π(y|x,θ) and the priors π(x|θ) and π(θ), we use Bayesian infer-

ence and Laplace approximations to obtain the posterior distributions π(x|y) and π(θ|y),

and their marginals π(xi |y) and π(θj |y), where xi is the ith entry of x, for i ∈ {1, . . . ,m}, and

θj is the jth entry of θ, for j ∈ {1, . . . , q}.

We can write the posterior distributions in the following way,

π(xi |y) =
∫

π(xi |θ,y)π(θ|y)dθ

π(θj |y) =
∫

π(θ|y)dθ−j .

5.2 The INLA methodology

In order to approximate π(xi |y) and π(θj |y) we will use approximations for the distribu-

tions π(xi |θ,y) and π(θ|y), and the integrals in (5.1) will be approximated using numerical

integration. The INLA methodology calculates numerical approximations to the poste-

rior distributions π(θ|y) and π(x|θ,y), based on the Gaussian approximation given by the

Laplace method. The first step is to calculate an approximation for the distribution of the
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hyperparameters, π̃(θ|y). We have the following

π(θ|y) =
π(x,θ|y)
π(x|θ,y)

=
π(x,θ|y)π(y)
π(x|θ,y)π(y)

=
π(x,θ,y)

π(x|θ,y)π(y)

=
π(y|x,θ)π(x|θ)π(θ)

π(x|θ,y)π(y)

∝ π(y|x,θ)π(x|θ)π(θ)
π(x|θ,y)

≈ π(y|x,θ)π(x|θ)π(θ)
π̃G(x|θ,y)

∣∣∣∣∣
x=x∗(θ)

=: π̃(θ|y). (5.2.1)

where π̃G(x|θ,y) is the Gaussian approximation given by the Laplace method, explained

in Section 5.3, and x∗(θ) is the mode of that distribution, for a given θ. Observe that

the left hand-side of (5.2.1) is a kernel of a certain density function, and π̃(θ|y) is by

definition that density function.

The second step is to approximate π(xi |θ,y). In this case, a possible approach would be

to approximate it using the marginal distributions from π̃G(x|θ,y), but the approximation

in such a way is not a good one (see [37]). A second strategy would be to consider x =

(xi ,x−i), and use again the Laplace approximation to obtain

π̃(xi |θ,y) ∝ π(x,θ,y)
π̃G(x−i |xi ,θ,y)

∣∣∣∣∣
x−i=x∗−i (xi ,θ)

(5.2.2)

where π̃G(x−i |xi ,θ,y) is the Laplace Gaussian approximation to π(x−i |xi ,θ,y) and x∗−i(xi ,θ)

is its modal configuration. According to [37], is computationally expensive to compute

the Laplace Gaussian approximation π̃G(x−i |xi ,θ,y), as it must be calculated for each xi
and θ, so the authors explore two modifications to (5.2.2) to reduce computational costs.

A third option presented by the authors is a simplified Laplace approximation based on a

Taylor’s series expansion of π̃(xi |θ,y) in equation (5.2.2), and includes a mixing term, for

instance a cubic spline, to increase the fit. For further details, see [37].

5.3 Laplace method for Gaussian approximations

The Laplace method uses second order Taylor expansion to provide the Gaussian approx-

imation π̃G(x|θ,y) in equation (5.2.1). Consider the case with no fixed effects, where yi is

an observation with error of x(si), i = 1, . . . ,n. In this case, x = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)).

Notice that

π(x|θ,y) =
π(x,θ|y)
π(θ|y)

∝ π(x,θ|y)

and from (5.1.4),

π(x,θ|y) ∝ π(θ)|Q(θ)|1/2 exp

−1
2

xT Q(θ)x +
n∑
i=1

log{π(yi |xi ,θ)}

 ,
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therefore

π(x|θ,y) ∝ π(θ)|Q(θ)|1/2 exp

−1
2

xT Q(θ)x +
n∑
i=1

log{π(yi |xi ,θ)}


∝ exp

−1
2

xT Q(θ)x +
n∑
i=1

log{π(yi |xi ,θ)}


= exp

{
−1

2
xT Q(θ)x + g(x)

}
, (5.3.1)

where g(x) :=
∑n

i=1 gi(xi), and gi(xi) = log{π(yi |xi ,θ)} is a function that does not depend of

xj for j , i. We have the following,

∇g(x) =
[
∂ log{π(y1|x1,θ)}

∂x1

∣∣∣∣∣
x1

· · ·
∂ log{π(yn|xn,θ)}

∂xn

∣∣∣∣∣
xn

]
and the Hessian matrix H of g(x) is diagonal,

H(x) = diag

 ∂2 log{π(y1|x1,θ)}
∂x2

1

∣∣∣∣∣∣
x1

, · · · ,
∂2 log{π(yn|xn,θ)}

∂x2
n

∣∣∣∣∣∣
xn

 .
Let x∗ = x∗(θ) be the mode of π(x|θ,y). The second order Taylor approximation for g(x)

around the mode is

g(x) ≈ g(x∗) +∇g(x∗)(x− x∗) +
1
2

(x− x∗)T H(x∗)(x− x∗). (5.3.2)

Considering (5.3.1) and (5.3.2),

π(x|θ,y) ≈ exp
{
−1

2
xT Q(θ)x + g(x∗) +∇g(x∗)(x− x∗) +

1
2

(x− x∗)T H(x∗)(x− x∗)
}

= exp{g(x∗)}exp
{
−1

2
xT Q(θ)x +∇g(x∗)(x− x∗) +

1
2

(x− x∗)T H(x∗)(x− x∗)
}

∝ exp
{
−1

2
xT Q(θ)x +∇g(x∗)x +

1
2

(x− x∗)T H(x∗)(x− x∗)
}
. (5.3.3)

In one hand, we have,

(x− x∗)T Q(x− x∗) = xT Q(x− x∗)− (x∗)T Q(x− x∗)

= xT Qx− 2(x∗)T Qx + (x∗)T Qx∗ (5.3.4)

where Q = Q(θ) for simplicity of notation. In the other hand, the mode is the maximum

of the density probability function (for a differentiable density function), which implies1

∇x

(
−1

2
xT Qx +∇g(x∗)x +

1
2

(x− x∗)T H(x∗)(x− x∗)
)∣∣∣∣∣

x=x∗
= 0

⇔
(
−xT Q +∇g(x∗) + (x− x∗)T H(x∗)

)∣∣∣∣
x=x∗

= 0

⇔ (x∗)T Q = ∇g(x∗) (5.3.5)

1Alternatively, we could have calculated the gradient of (5.3.3).
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From (5.3.4) and (5.3.5) we obtain

(x− x∗)T Q(x− x∗) = xT Qx− 2∇g(x∗)x +∇g(x∗)x∗ , (5.3.6)

therefore, from (5.3.3) and (5.3.6), and taking D = −H, we conclude that

π(x|θ,y) ∝ exp
{
−1

2
(x− x∗)T (Q + D)(x− x∗)

}
, (5.3.7)

which is the kernel of a multivariate Normal distribution with mode x∗ = x∗(θ) and co-

variance matrix (Q(θ) + D)−1.

The iterative process to approximate the mode x∗(θ) and the covariance (Q(θ)+D)−1 is

the following: consider an initial guess for the mode, x(0) = (x(0)
1 , . . . ,x

(0)
n ), and approximate

each gi(xi) around x
(0)
i using the second order Taylor approximation for each gi(xi),

gi(xi) ≈ g(x(0)
i ) + (xi − x

(0)
i )

∂gi
∂xi

∣∣∣∣∣
xi=x

(0)
i

− 1
2

(xi − x
(0)
i )2 ∂2gi

∂x2
i

∣∣∣∣∣∣
xi=x

(0)
i

= ai + bixi −
1
2
cix

2
i (5.3.8)

where

ai = g(x(0)
i )− x(0)

i

∂ log{π(yi |xi ,θ)}
∂xi

∣∣∣∣∣
xi=x

(0)
i

− 1
2

(x(0)
i )2 ∂2 log{π(yi |xi ,θ)}

∂x2
i

∣∣∣∣∣∣
xi=x

(0)
i

bi =
∂ log{π(yi |xi ,θ)}

∂xi

∣∣∣∣∣
xi=x

(0)
i

+ x
(0)
i

∂2 log{π(yi |xi ,θ)}
∂x2

i

∣∣∣∣∣∣
xi=x

(0)
i

ci =
∂2 log{π(yi |xi ,θ)}

∂x2
i

∣∣∣∣∣∣
xi=x

(0)
i

Let

a0 =
n∑
i=1

ai , b0 = (b1, . . . , bn) , and C0 = diag(c1, . . . , cn) ,

where diag(c1, . . . , cn) denotes the diagonal matrix with diagonal entries given by (c1, . . . , cn).

From (5.3.1),

π(x|θ,y) ∝ exp
{
−1

2
xT Q(θ)x + g(x)

}
≈ exp

{
−1

2
xT Q(θ)x + a0 + (b0)T x− 1

2
cix

2
i

}
∝ exp

{
−1

2
xT (Q(θ) + C0)x + (b0)T x

}
. (5.3.9)

We obtain in equation (5.3.9) the kernel of a Gaussian density function with precision

matrix Q(θ) + C0, and mode x(1) given by the solution of

(Q(θ) + C0)x(1) = b0 . (5.3.10)

Next, we approximate each g(xi) around x
(1)
i , where x

(1)
i is the ith entry of x(1), and

obtain a new kernel of a Gaussian distribution, with precision matrix Q(θ)+C1 and mode

given by the solution of

(Q(θ) + C1)x(2) = b1 . (5.3.11)
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5.4 One-dimensional example

In Chapter 4 we have discussed that the solution of the SPDE

(k2 −∆)α/2τ x = W (5.4.1)

is a Gaussian field with Matérn covariance

Cov(x(s),x(s′)) =
σ2

2ν−1Γ (ν)
(k∥s − s′∥)νKν(k∥s − s′∥) (5.4.2)

where 
ν = α − d/2

σ2 =
Γ (ν)

Γ (α)(4π)d/2k2ντ2

. (5.4.3)

We have that ν is a smoothness parameter, k is a scale parameter, and τ controls the

variance. Moreover, W is a Gaussian white noise process, and σ2 is the marginal variance

of the process.

The default value for α in R-INLA is α = 2, and for this example, d = 1, so we have


ν =

3
2

σ2 =
1

4k3τ2

. (5.4.4)

Suppose that we observe data yi = y(si) at location si = −2 + 0.05(i − 1) ∈ [−2,3], for

i ∈ {1, . . . ,n}, with n = 101, that was generated by some underlying Gaussian field x(s) that

cannot be directly observed. Then,

yi = x(si) + ei ,

with ei independent of ej , for all i , j, identically distributed, and with zero mean. As-

sume that x(s) is the solution of the SPDE (5.4.1), for some τ and k. Furthermore, assume

that the solution x(s) is approximated using the FEM through a basis function represen-

tation, defined on the partition {−2,−1,−0.5,0,1,1.5,2,3} of the domain. Each node of

the partition defines a piece-wise linear function, with value equal to one at the nodes,

linearly decreasing to zero until the neighbouring nodes, and zero elsewhere. Figure 5.1

is a representation of the basis functions, we can find a similar one in [28].

Then

x(s) ≈
8∑

i=1

xiϕi(s)
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Figure 5.1: Basis Functions

where {ϕ1, . . . ,ϕ8} is the set of basis functions and {x1, . . . ,x8} are Gaussian distributed

weights, with zero mean. The basis functions for our example are the following,

ϕ1(x) =

−x − 1 , x ∈ [−2,−1]

0 , otherwise.
ϕ2(x) =


x+ 2 , x ∈ [−2,−1[

−2x − 1 ,x ∈ [−1,−0.5]

0 , otherwise.

ϕ3(x) =


2x+ 2 , x ∈ [−1,−0.5[

−2x , x ∈ [−0.5,0]

0 , otherwise.

ϕ4(x) =


2x+ 1 , x ∈ [−0.5,0[

−x+ 1 ,x ∈ [0,1]

0 , otherwise.

(5.4.5)

ϕ5(x) =


x , x ∈ [0,1[

−2x+ 3 ,x ∈ [1,1.5]

0 , otherwise.

ϕ6(x) =


2x − 2 , x ∈ [1,1.5[

−2x+ 4 ,x ∈ [1.5,2]

0 , otherwise.

ϕ7(x) =


2x − 3 ,x ∈ [1.5,2[

−x+ 3 ,x ∈ [2,3]

0 , otherwise.

ϕ8(x) =

x − 2 ,x ∈ [2,3]

0 , otherwise.

Considering α = 2 and using Neumann boundary conditions, the vector of weights

x = (x1, ...,x7) has precision matrix given by

Q = τ2(k4C + 2k2G + GC−1G) (5.4.6)

where C is the diagonal matrix given by

Cii =
∫

ϕi(s)ds (5.4.7)

and G is the matrix given by

Gij =
∫
∇ϕi(s)∇ϕj(s)ds (5.4.8)

with i, j ∈ {1, . . . ,8}. According to [36], the vector of weights x is a Gaussian Markov

random field. We provide a detailed explanation in Chapter 4, as well as the proof of
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equation (5.4.6). We can find in Section 4.5 an explanation on how to calculate the

matrices C and G for D ⊂ R2. The case of D ⊂ R is similar and simpler.

We consider the following model,

yi |µi ,σe ∼N (yi |µi ,σe)

µi = xi

x|τ,k ∼ GF(0,Q−1) .

(5.4.9)

where the predictor η is the GF,

ηi = xi

and the link function g(·) is the identity. However, in our example, the mesh nodes and

the locations of the observations are different, so we need to define a predictor η for all

observations. In order to do so, we define a matrix A, called the projector matrix, such that

each entry ij is the value of the basis function ϕj at the location si ,

Aij = ϕj(si) .

For example, according to (5.4.5), the row of A with index i = 58 will have the values

ϕj(s58), where s58 = 0.85. So

rowA
58 = [ϕ1(0.85) ϕ2(0.85) ϕ3(0.85) ϕ4(0.85) ϕ5(0.85) ϕ6(0.85) ϕ7(0.85) ϕ8(0.85)]

= [0 0 0 0.15 0.85 0 0 0]

In this case, the predictor is defined as

η = Ax ,

therefore µ = Ax, where µ = (µ1, . . . ,µn). Let τe = 1
σ2
e

,

π(y|η, τe, τ,k) =
n∏
i=1

π(yi |ηi , τe, τ,k) ∝
n∏
i=1

exp
{
−τe

2
(yi − ηi)2

}
. (5.4.10)

On the other hand,

x|τ,k ∼N(0,Q−1) (5.4.11)

so

π(x|τ,k) ∝ |Q|
1
2 exp

{
−1

2
xT Qx

}
.

The default internal representation of the parameters by R-INLA is θ = (θ0,θ1,θ2) where

θ0 = log(τe) , θ1 = log(τ) and θ2 = log(k) (5.4.12)

with independent prior distributions given by

θ0 ∼ LogGamma(1,10−5) ,

θ1 ∼N(0,1) ,

and θ2 ∼N(0,1) .

(5.4.13)
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In this example, the observations are generated artificially to test the model, as y(s) =

cos(s). To approximate the cosine function, we need to obtain the posterior conditional

distribution π(x|y,θ). We have the following,

π(x|y,θ) ∝ π(y|x,θ)π(x|θ)π(θ)

∝ exp
{
−1

2
xT Qx− eθ0

2
(y−Ax)T (y−Ax)

}
= exp

{
−1

2
xT Qx− eθ0

2
yT y + eθ0yT Ax− eθ0

2
(Ax)T Ax

}
∝ exp

{
−1

2
xT (Q + eθ0AT A)x + eθ0yT Ax

}
. (5.4.14)

To obtain the mode x0 of π(x|y,θ), we maximize log(π(x|y,θ)). Let

Q̃ := Q + eθ0AT A . (5.4.15)

The mode x0 is the solution of

∂
∂x

(
−1

2
xT Q̃x + eθ0yT Ax

)
= 0

⇔ −xT Q̃ + eθ0yT A = 0T

⇔ xT Q̃ = eθ0yT A

⇔ Q̃x = eθ0AT y (5.4.16)

⇔ x0 = eθ0Q̃−1AT y (5.4.17)

Consider (5.4.16) and observe the following,

−1
2

(x− x0)T Q̃(x− x0) = −1
2

xT Q̃x + xT0 Q̃x− 1
2

xT0 Q̃x0

= −1
2

xT Q̃x + eθ0AT y− 1
2

xT0 Q̃x0

and notice that the last term xT0 Q̃x0 depends on y and θ, it does not depend on x. So,

from (5.4.14),

π(x|y,θ) ∝ exp
{
−1

2
xT Q̃x + eθ0yT Ax

}
∝ exp

{
−1

2
xT Q̃x + eθ0yT Ax− 1

2
xT0 Q̃x0

}
= exp

{
−1

2
(x− x0)T Q̃(x− x0)

}
which is the kernel of a Gaussian distribution with precision matrix

Qx|y,θ = Q + eθ0AT A (5.4.18)

and mode given by

x0 = eθ0Q−1
x|y,θAT y ,
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therefore,

π(x|y,θ) ∼N(x0,Qx|y,θ) .

To obtain an estimate for θ, first notice that from the property of conditional distribu-

tions, we have

π(y|x,θ)π(x|θ) = π(y,x|θ) = π(x|y,θ)π(y|θ)

so

π(y|θ) =
π(y|x,θ)π(x|θ)

π(x|y,θ)
(5.4.19)

therefore, considering (5.4.19) and conditional distributions property,

π(θ|y) ∝ π(y|θ)π(θ) =
π(y|x,θ)π(x|θ)

π(x|y,θ)
π(θ) . (5.4.20)

The left side of (5.4.20) does not depend on x, so the right side also does not depend on x.

This means that we can choose any value for x to get a proportional expression for π(θ|y).

In the case of non-Gaussian observations, the distribution π(x|y,θ) is substituted

for a Gaussian approximation π̃G(x|y,θ), obtained by the Laplace method, explained

previously. Then, the posterior distribution π(θ|y) is approximated in the following way,

π̃(θ|y) ∝ π(y|x0,θ)π(x0|θ)
π̃G(x0|y,θ)

π(θ)

where x0 is the mode of π(x|y,θ).

In our example, the observations are considered to be Gaussian, so π(x|y,θ) is also

Gaussian, and instead of an approximation, we have the proportionality given by (5.4.20),

where we can choose any value for x. Considering (5.4.13) and (5.4.20), we obtain

π(θ|y) ∝ (eθ0)
n
2 exp

{
−e

θ0

2
(y−Ax)T (y−Ax)

}
|Q|

1
2 exp

{
−1

2
xT Qx

}
·

· |Qx|y,θ |−
1
2 exp

{1
2

(x− x0)T Qx|y,θ(x− x0)
}
·

· 10−5eθ0 exp
{
−10−5eθ0

}
exp

{
−
θ2

1
2

}
exp

{
−
θ2

2
2

}
.

Considering that the mode x0 verifies (5.4.16), and choosing x = 0,

π(θ|y) ∝ e
nθ0

2 exp
{
−e

θ0

2
yT y

}
|Q|

1
2 |Qx|y,θ |−

1
2 exp

{
eθ0

2
xT0 AT y

}
·

· eθ0 exp
{
−10−5eθ0

}
exp

{
−
θ2

1
2

}
exp

{
−
θ2

2
2

}
(5.4.21)

Applying the logarithm,

log(π(θ|y)) ∝ nθ0

2
+

1
2

log |Q| − 1
2

log |Qx|y,θ |+
eθ0

2
(Ax0 − y)T y +θ0 − 10−5eθ0 −

θ2
1

2
−
θ2

2
2

=
1
2

log |Q| − 1
2

log |Qx|y,θ |+
eθ0

2
(Ax0 − y)T y +

(n
2

+ 1
)
θ0 − 10−5eθ0 −

θ2
1

2
−
θ2

2
2

∝ log |Q| − log |Qx|y,θ |+ eθ0(Ax0 − y)T y + (n+ 2)θ0 − 2× 10−5eθ0 −θ2
1 −θ

2
2 .

(5.4.22)
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The approximate maximum likelihood estimate for θ is given by

θ∗ ≈ argmaxθ π(θ|y) . (5.4.23)

The expression in equation (5.4.22) was implemented in R, and optimized using the

instruction optim, independently of the INLA package. The purpose was to get a deep

knowledge of the procedure, so we can apply it to different situations, namely, to a

different SPDE, with a possibly different precision matrix.

The summary statistics of the posterior distributions of the parameters (τe,θ1,θ2) can

be consulted in Table 5.1.

Table 5.1: Summary statistics for (τe,θ1,θ2), one dimensional example.

mean st dev 2.5%quantile 50%quantile 97.5% quantile mode

τe 1472.15 213.71 1087.21 1461.01 1924.89 1442.58
θ1 -0.22 0.34 -0.90 -0.22 0.43 -0.19
θ2 -0.07 0.38 -0.80 -0.07 0.69 -0.09

We consider the estimates

θ∗0 = log(1472.15) = 7.29, θ∗1 = −0.22 and θ∗2 = −0.07

in (5.4.17) and (5.4.18), and we conclude that the posterior distribution π(x|y,θ) of the

GMRF x, is a Gaussian distribution with mode given by

x0 = (−0.42,0.56,0.88,1.06,0.59,0.07,−0.46,−1.06)

and precision matrix Qx|y,θ given by



10573.66 4891.97 2.22 0 0 0 0 0

4891.97 14789.92 2408.39 6.66 0 0 0 0

2.22 2408.39 9910.08 2408.39 2.22 0 0 0

0 6.66 2408.39 14789.37 4890.30 2.22 0 0

0 0 2.22 4890.30 14789.37 2408.39 6.66 0

0 0 0 2.22 2408.39 9910.08 2408.39 2.22

0 0 0 0 6.66 2408.39 14789.92 4891.97

0 0 0 0 0 2.22 4891.97 10573.66



.

The fitted values for the observations are given by ŷ = Ax0, where A is the projector

matrix. Figure 5.2 presents the plot of fitted values ŷ (in dashed blue), against observed

values y (in black). The red circled dots are the mode values x0, located on the mesh

nodes, {−2,−1,−0.5,0,1,1.5,2,3}.
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Figure 5.2: Approximation of cos(s), using the FEM.

5.5 Two dimensional example

Let y = (y1, . . . , yn) be a vector of n observations at locations si ∈ D ⊂ R2. Consider the

following model, now with intercept β,

y|β,x,σ2
e ∼N (µ,σ2

e I )

µ = 1β + Ax

x ∼ GF(0,Q−1)

(5.5.1)

where A is the projector matrix, x is a GMRF, and 1 is a vector of ones. In this case, the

predictor is

η = 1β + Ax .

Let τe = 1
σ2
e

be the precision of the observations, and m be the number of nodes in the

mesh, meaning that dim(x) = m.

It is common to have several zero columns in the projector matrix A. Those columns

are related to triangles with no observations: columnA
j is a zero column if and only

if there is no observation yi in supp(ϕj). Those columns can be dropped, as well as the

corresponding xj entry of the GMRF x. This may improve the computational calculations.

First we implement formulas (4.5.5), (4.5.6), and (4.5.7), to calculate the matrices C

and G, needed to obtain the Matérn covariance matrix Q of the GMRF x, which is given

by formula (5.4.6).
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We have the following,

π(y|η,τe, τ,k) =
n∏
i=1

π(yi |ηi , τe, τ,k)

∝
n∏
i=1

exp
{
−τe

2
(yi − ηi)2

}

=
n∏
i=1

exp

−τe2
yi − β − m∑

j=1

Aijxj


2 .

where xj = x(sj ). On the other hand,

x|τ,k ∼N(0,Q)

where Q = τ2(k4C + 2k2G + GC−1G), so

π(x|τ,k) ∝ |Q|1/2 exp
{
−1

2
xT Qx

}
.

Again, recall the default internal representation of the parameters by R-INLA,

θ = (θ0,θ1,θ2) = (log(τe), log(τ), log(k))

with independent a priori distributions given by (5.4.13). Moreover, we attribute to the

intercept β an a priori uniform distribution, π(β) ∝ 1. For simplicity of notation, let

θ = (θ0,θ1,θ2,β) .

We have the following,

π(x|y,θ) ∝ π(y|x,θ)π(x|θ)π(θ)

∝ exp
{
−1

2
xT Qx− eθ0

2
(y− (1β + Ax))T (y− (1β + Ax))

}
= exp

{
−1

2
xT Qx− eθ0

2
yT y + eθ0yT (1β + Ax)− eθ0

2
(1β + Ax)T (1β + Ax)

}
∝ exp

{
−1

2
xT Qx + eθ0yT (1β + Ax)− eθ0(1β)T Ax− eθ0

2
(Ax)T (Ax)

}
∝ exp

{
−1

2
xT

(
Q + eθ0AT A

)
x + eθ0(y− 1β)T Ax

}
.

Let Q̃ = Q+eθ0AT A. In order to obtain the mode x0 of π(x|y,θ), we maximize, for instance,

log(π(x|y,θ)),

∂
∂x

(
−1

2
xT Q̃x + βeθ01T y + eθ0(y− 1α)T Ax

)
= 0

⇔−xT Q̃ + eθ0(y− 1β)T A = 0T

⇔ xT Q̃ = eθ0(y− 1α)T A (5.5.2)

⇔ x0 = eθ0Q̃−1(y− 1β)T A (5.5.3)
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Notice the similarity between formulas (5.4.17) and (5.5.3). Considering (5.5.2), observe

the following,

−1
2

(x− x0)T Q̃(x− x0) = xT Q̃x + xT0 Q̃x + xT0 Q̃x0

= xT Q̃x + eθ0(y− 1β)T Ax + xT0 Q̃x0

and notice that xT0 Q̃x0 does not depend on x. Therefore,

π(x|y,θ) ∝ exp
{
−1

2
(x− x0)T Q̃(x− x0)

}
(5.5.4)

which is (again) the kernel of a Gaussian distribution with precision matrix

Qx|y,θ = Q + eθ0AT A (5.5.5)

and mode given by

x0 = eθ0Qx|y,θ(y− 1β)T A , (5.5.6)

that is

π(x|y,θ) ∼N(x0,Qx|y,θ) .

To obtain an estimate for θ, we need to maximize π(θ|y). Applying (5.4.20),

π(θ|y) ∝ π(y|θ)π(θ) =
π(y|x,θ)
π(x|y,θ)

π(θ) (5.5.7)

so we have

π(θ|y) ∝ (eθ0)
n
2 exp

{
−e

θ0

2
(y−Ax)T (y−Ax)

}
|Q|

1
2 exp

{
−1

2
xT Qx

}
·

· |Qx|y,θ |−
1
2 exp

{1
2

(x− x0)T Qx|y,θ(x− x0)
}
·

· 10−5eθ0 exp
{
−10−5eθ0

}
exp

{
−
θ2

1
2

}
exp

{
−
θ2

2
2

}
As said previously, the left hand side of (5.5.7) does not depend on x, so the right hand

side also does not depend on x. This means we can choose any suitable value for x.

Considering that the mode x0 satisfies equation (5.5.2), and choosing x = 0, we obtain

π(θ|y) ∝ (eθ0)
n
2 exp

{
−e

θ0

2
(y− 1β)T (y− 1β)

}
|Q|

1
2 |Qx|y,θ |

eθ0
2 exp

{
eθ0

2
(y− 1β)T Ax0

}
·

· eθ0 exp
{
−10−5eθ0

}
exp

{
−
θ2

1
2

}
exp

{
−
θ2

2
2

}
Applying the logarithm,

log(π(θ|y)) ∝ nθ0

2
+
eθ0

2
(Ax0 + 1β − y)T (y− 1α) +

1
2

log |Q| − 1
2

log |Qx|y,θ |+

+θ0 − 10−5eθ0 −
θ2

1
2
−
θ2

2
2

∝ log |Q| − log |Qx|y,θ |+ eθ0(Ax0 + 1β − y)T (y− 1β)+

+ (n+ 2)θ0 − 2× 10−5eθ0 −θ2
1 −θ

2
2 . (5.5.8)
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The approximate maximum likelihood estimate for θ is

θ∗ ≈ argmaxθ π(θ|y) . (5.5.9)

In the next section, we consider model (5.5.1), and apply the results of this section to

a wind data set describing the velocity of the wind.

5.6 Application of the INLA methodology to the prediction of

the wind velocity.

This section contains generated, and also modified, Copernicus Climate Change Service

information data set (2021). The H. Hersbach et al. (2018) was downloaded from the

Copernicus Climate Change Service (C3S) Climate Data Store. The results contain modi-

fied Copernicus Climate Change Service information 2021. It should be mentioned that

the European Commission and the European Centre for Medium-Range Weather Fore-

casts is responsible for any use that may be made of the Copernicus information or data

it contains.

We consider the data set H. Hersbach et al. (2018) (see [26]), namely the wind direc-

tion components vx and vy , at the 1st of January, 2021, at UTC+0. We consider 500 observa-

tions chosen randomly from a total of 4015 from that data set, located at {si : i = 1, . . . ,500},
with longitude and latitude in the interval [−15◦,5◦] and [30◦,45◦], respectively.

Figure 5.3: Location of the observations (red dots), and mesh.

We use a mesh with 1572 nodes, created by inla.mesh.2d, and calculate the matrices

C and G defined by (4.5.5), (4.5.6) and (4.5.7). This matrices allow us to calculate the

precision matrix Q of the GMRF, x. The mesh nodes are different from the locations of the
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observations, so we need the projector matrix A, given by inla.spde.make.A, to calculate

(5.5.5) and (5.5.6), precision and mode of the posterior distribution of the GMRF, π(x|y,θ).

We can see in Figure 5.3 the locations of the observations (red dots) and the mesh. We

consider model (5.5.1), and apply INLA for both wind components vx and vy , and wind

intesity v =
√
v2
x + v2

y . We can find in Tables 5.2, 5.3, and 5.4, the summary statistics of

the posterior distributions of the hyperparameters of the model. In this case, we have

estimates for the intercept β, the precision of observations τe, the practical range ρ, and

the standard deviation σ . For d = 2 and α = 2, we have
ρ =

√
8
k

σ2 =
1

4πk2τ2

so


k =

√
8
ρ

τ =
ρ

4
√

2πσ

. (5.6.1)

Recall that

θ∗ = (θ∗0,θ
∗
1,θ
∗
2,β
∗) (5.6.2)

where

θ0 = log(τe), θ1 = log(τ), θ2 = log(k) .

Table 5.2: Summary statistics for the wind component vx.

mean st dev 2.5%quantile 50%quantile 97.5% quantile mode

τe 2.28 0.33 1.72 2.25 3.00 2.18
ρ 4.45 0.56 3.43 4.43 5.64 4.38
σ 3.33 0.33 2.73 3.31 4.01 3.29
β 2.18 0.97 0.24 2.18 4.12 2.19

Table 5.3: Summary statistics for the wind component vy .

mean st dev 2.5%quantile 50%quantile 97.5% quantile mode

τe 2.93 0.46 2.13 2.90 3.94 2.83
ρ 6.69 0.96 5.02 6.62 8.79 6.46
σ 3.67 0.42 2.92 3.64 4.57 3.58
β -2.85 1.61 -6.08 -2.85 0.39 -2.85

Table 5.4: Summary statistics for the wind intensity v.

mean st dev 2.5%quantile 50%quantile 97.5% quantile mode

τe 2.43 0.33 1.83 2.41 3.14 2.37
ρ 4.41 0.55 3.47 4.35 5.63 4.23
σ 3.30 0.31 2.75 3.28 3.98 3.22
β 5.99 0.94 4.12 5.99 7.86 5.99
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Considering the mean values of (5.6.2), then we calculate fitted values ŷ which are

given by

ŷ = Ax0 + 1β̂

where x0 is the mode of the distribution π(x|y,θ) (5.4.17), 1 is a vector of ones, and β̂ is

the mean value estimate for β.

The next step is to consider the problem of predicting the expected value of the out-

come, on a finer grid of the domain, given by the 4015 localizations from the data set H.

Hersbach et al. (2018). We first calculate the projector matrix Ag from the initial mesh

to the new grid executing the instruction inla.mesh.projector. Then, the mean of the

Gaussian field and predicted values are given by

x̂g = Agx0 and ŷg = Agx0 + 1β̂ ,

respectively. Moreover,

Var(ŷg ) = Ag Var(x)AT
g = Ag Q−1

x|y,θ AT
g

so the standard deviation of both Gaussian field and predicted values, are calculated as

σx̂g
= Ag sqrt(diag(Q−1

x|y,θ) ) and σŷg
= sqrt(diag(Ag Q−1

x|y,θ AT
g ) ) .

(a) Wind intensity from data set. (b) Predicted wind intensity.

Figure 5.4: Wind intensity v: H. Hersbach et al. (2018) data set versus prediction on a
finer grid.

We can find in Figure 5.4 the predicted mean of the outcome ŷg (left) versus the “ob-

served values” from the data set (right), on the finer grid, for the wind intensity. The

model approximates well the values of the data set, although we can point out that pre-

dicted values present a smoother behaviour, resulting of the neighbouring dependence

introduced by the Matérn covariance. The model could be improved allowing for an-

other sources of disturbance. We could add fixed effects, for instance, considering pres-

sure and/or temperature as a covariate. The standard deviation values for the predicted

Gaussian field and predicted values are represented in Figure 5.5(a) and Figure 5.5(b),

respectively.
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(a) Standard deviation of the predicted Gaussian field.(b) Standard deviation of the predicted wind intensity.

Figure 5.5: Standard deviation of the predicted Gaussian field and predicted wind inten-
sity.

We can find in Figures 5.6 and 5.7 the predicted wind velocity components, vx and vy ,

versus the H. Hersbach et al. (2018) data set. Again, we notice the smoother behaviour of

the predicted values.

(a) vx from data set. (b) Predicted vx.

Figure 5.6: vx component: H. Hersbach et al. (2018) data set versus prediction on a finer
grid.

(a) vy from data set. (b) Predicted vy .

Figure 5.7: vy component: H. Hersbach et al. (2018) data set versus prediction on a finer
grid.
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Regarding the wind velocity, we can find in Figure 5.8 a plot with predicted values

for the wind velocity, versus the corresponding quantities from theH. Hersbach et al.

(2018) data set. For instance, the region with (lon, lat) ∈ [−10◦,−1◦] × [30◦,37◦], and

(lon, lat) ∈ [−8◦,4◦]× [39◦,43◦], present some turbulence that was not captured. This may

be due to the geographic features of the land, or other meteorological characteristics, and

it is worthy to concentrate our observations on such regions.

(a) Wind velocity from data set. (b) Predicted values for the wind velocity.

Figure 5.8: Wind velocity: H. Hersbach et al. (2018) data set versus prediction on a finer
grid.

Figure 5.9: Location of the observations (red dots), and mesh.

Therefore we consider 400 observations chosen randomly from a total of 1020 from

the data set H. Hersbach et al. (2018), located at {si : i = 1, . . . ,400}, with longitude and
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latitude in the interval [−10◦,1◦] and [30◦,37◦], respectively. We use a mesh with 707

nodes (see Figure 5.9). The results are presented in Tables 5.5, 5.6, and 5.7.

Table 5.5: Summary statistics for the wind component vx, for the turbulence zone.

mean st dev 2.5%quantile 50%quantile 97.5% quantile mode

τe 5.21 0.70 3.96 5.17 6.70 5.10
ρ 3.83 0.65 2.83 3.73 5.37 3.50
σ 4.18 0.59 3.25 4.09 5.54 3.89
β 1.71 1.73 -1.80 1.71 5.19 1.71

Table 5.6: Summary statistics for the wind component vy , for the turbulence zone.

mean st dev 2.5%quantile 50%quantile 97.5% quantile mode

τe 3.89 0.59 2.87 3.84 5.19 3.73
ρ 3.51 0.62 2.52 3.42 4.93 3.25
σ 3.08 0.42 2.38 3.03 4.02 2.93
β -1.83 1.23 -4.33 -1.82 0.63 -1.81

Table 5.7: Summary statistics for the wind intensity v, for the turbulence zone.

mean st dev 2.5%quantile 50%quantile 97.5% quantile mode

τe 4.25 0.56 3.25 4.22 5.45 4.16
ρ 3.86 0.73 2.72 3.75 5.58 3.52
σ 3.96 0.62 2.97 3.88 5.38 3.70
β 4.71 1.73 1.20 4.71 8.25 4.70

We can see in Figure 5.10 the predicted mean for the wind intensity versus the wind

intensity from the data set. We conclude that the predicted values capture much better

the turbulence of the “observed values”.

(a) Wind intensity from data set. (b) Predicted wind intensity.

Figure 5.10: Wind intensity v: H. Hersbach et al. (2018) data set versus prediction on a
finer grid.
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METHODOLOGY APPLIED TO WIND VELOCITY DATA

In Figure 5.11, we present the predicted wind velocity (left) versus the wind velocity

from the data set. Comparing Figures 5.8 and 5.11, we can see that, after concentrating

observations in zones with more turbulence, we improve our prediction: the predicted

values approximate better the “observed values”.

(a) Wind velocity from data set. (b) Predicted values for the wind velocity.

Figure 5.11: Wind velocity: H. Hersbach et al. (2018) data set versus prediction on a finer
grid, for the turbulence zone.

In fact, regarding the estimated practical range ρ for the second data set considered,

we can see in Table 5.8 that it decreases for both components vx, vy , and also for the

wind intensity v, as we should expect, since the zones with more turbulence are regions

with a higher heterogeneity of the data, and so we should expect the correlation between

neighbouring locations to decrease faster. Therefore, it is useful to concentrate the ob-

servations at regions where it is known to exist more turbulence, as the predicted values

better approximate the data.

Table 5.8: Pratical range ρ: estimates for the wind velocity components, and intensity.

vx vy v

First data set 4.45 6.69 4.41
Second data set 3.83 3.51 3.86

This approach is of great importance, not only because is computationally less expen-

sive than to model complex phenomena numerically, but also because this new statistical

approach is supported by a very simple idea, that is, the complexity of the phenomena

can be well described by models estimated and updated by data. This is the principle of

Bayesian inference, and we can see that it proves to be a quite suitable approach.

82



6

Final Considerations

In this work we study SPDE, and perform Bayesian inference considering a specific

stochastic linear partial differential equation. Then, we apply inference Bayesian, through

the INLA methodology, to estimate wind intensity and velocity using a wind data set, H.

Hersbach et al. (2018) ([26]).

First we prove the existence and uniqueness of the solution of the stochastic third

grade fluid equation,

d(υ(Y )) =
(
−∇p+ ν∆Y − (Y · ∇)υ −

∑
j

υj∇Y j + (α1 +α2)div
(
A2

)
+ βdiv

(
|A|2A

)
+U

)
dt + σ (t,Y )dWt ,

with initial conditions in the Sobolev space H2, and a Navier slip boundary condition.

This result was published in [14].

Following [29], the study of spatial data led us to the study of the stochastic linear

partial differential equation

(k2 −∆)α/2τx = W

where W is a Gaussian white noise. We present the mathematical concepts and results

that allow us to verify that the solution x(s) is a Matérn field.

Applying the FEM, we are able to construct a finite representation of x(s) of the form

x̃(s) =
m∑
i=1

xiϕi(s)

where x = (x1, · · · ,xm) is a Gaussian random vector of weights, and {ϕi : i = 1, . . .m} is a

set of finite element basis functions. Furthermore, the vector x presents Markov prop-

erties, so it is a Gaussian Markov random field. In [29] the authors prove that the finite

representation x̃(s) approximates indeed the Gaussian field x(s).

Then we perform Bayesian inference to specific hierarchical models, and apply the

INLA methodology, to obtain an approximated posterior distribution of the parameters

of the model.

Finally, we consider that a certain phenomena has a spatial structure, for instance, the

wind velocity components, as well as the wind intensity. Under a Bayesian framework, we
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assume that the spatial structure x(s) is a GF, and collect observations of that phenomena,

y = {yi ∈ D ∈ Rd : i = 1, . . . ,n}. The collected data is assumed to be observations of the

spatial effect x(s) with an error. Then we use hierarchical Bayesian models for inference,

mainly following [37], to update our knowledge of the spatial structure, and get a poste-

rior distribution of the GMRF x. We emphasize that the complexity of the phenomena is

captured by the model fed, or informed, by the observations, summarized by the posterior

distributions of the model’s parameters.

The results obtained for the wind data set show that this statistical new approach

approximates well the wind velocity, specially if we concentrate the observation data on

localizations where it is known to exist more turbulence of the data. Nevertheless, there

is the possibility of improving the model, considering in the mixed effects model, along

with a spatial effect, for instance fixed effects, where other covariates are introduced in

the model, namely, pressure, temperature, etc. We should point out that the simplicity of

the model is not compromised with the introduction of fixed effects.

Furthermore, we plan to continue our work in this field, following the results in

[27], where the authors extend the results in [29] to random vector fields, constructing

multivariate Gaussian random fields (GRF) using systems of SPDE,b11(k2
11 −∆)α11/2x+ b12(k2

12 −∆)α12/2x = f1

b21(k2
21 −∆)α21/2x+ b22(k2

22 −∆)α22/2x = f2

where f1 and f2 are noise processes. GRF are approximated by GMRF with sparse pre-

cision matrices, which again allow great computational benefits, when compared to ex-

isting multivariate GRF models. This way, instead of applying the INLA methodology

to each wind component, we can model both components together. According to [27],

some assumptions should be made, in order to keep the model computationally feasible.

Nevertheless, it opens the way for a new approach regarding the modelling of complex

phenomena.
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