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Modeling Spots on Composite Copper–Chromium
Contacts of Vacuum Arcs and their Stability
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Abstract— Cathode spots on copper–chromium contacts of
vacuum interrupters are simulated by means of a self-consistent
space-resolved numerical model of cathode spots in vacuum
arcs developed on the basis of the COMSOL Multiphysics
software. Attention is focused on spots attached to Cr grains
in the Cu matrix in a wide range of values of the ratio of the
grain radius to the radius of the spot. In the case where this
ratio is close to unity, parameters of spot are strongly different
from those operating on both pure-copper and pure-chromium
cathodes; in particular, the spot is maintained by Joule heat
generation in the cathode body and the net energy flux is directed
from the cathode to the plasma and not the other way round.
An investigation of stability has shown that stationary spots are
stable if current controlled. However, under conditions of high-
power circuit breakers, where the near-cathode voltage is not
affected by ignition or extinction of separate spots, the spots
are unstable and end up either in explosive-like behavior or in
destruction by thermal conduction. On the other hand, spots live
significantly longer-up to one order of magnitude-if the spot and
grain sizes are close; else, typical spot lifetimes are of the order of
10 µs. This result is very interesting theoretically and may explain
the changes in grain size occurring in the beginning of the lifetime
of contacts of high-power current breakers. A sensitivity study
has shown that variations in different aspects of the simulation
model produce quantitative changes but do not affect the results
qualitatively.

Index Terms— Cathode spot, grain size, spot extinction, spot
lifetime, stability, vacuum circuit breaker, vacuum interrupter.

I. INTRODUCTION

UNDERSTANDING plasma-cathode interaction in switch-
ing arcs in vacuum circuit breakers is a question

of significant interest for the optimal interrupter design.
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An important issue that has not been clarified yet is the
effect on cathode spots produced by the granular structure of
contacts.

A variety of approaches have been developed so far toward
modeling cathode spots in vacuum arcs. As far as a study of
the effect of grains is concerned, one should choose a space-
resolved description of spots with at least two spatial variables;
0-D (integral) or 1-D descriptions (e.g., [1]–[4] and references
therein) can hardly give meaningful information on an effect
that is multidimensional by nature. 2-D numerical modeling
of vacuum arc spots is reported in [5]–[14]. In particular,
in [12] and [13] cathode spots on composite CuCr contacts
have been studied in the case where chromium grains are
large, which occurs at initial stages of life of contacts of high-
power circuit breakers. It was found that in this case spots
with currents of the order of tens of amperes operating on the
copper matrix coexist with spots with currents of the order of
one or few amperes on chromium grains.

This paper represents a continuation of [12] and [13] and
is concerned with simulation of spots attached to Cr grains
in the Cu matrix in a wide range of values of the ratio of
the grain radius to the radius of the spot. Also studied is the
stability of stationary spots as well as the sensitivity of the
obtained results with respect to variations in different aspects
of the simulation model.

The outline of this paper is as follows. The numerical model
is briefly introduced in Section II. The results of numerical
investigation of stationary spots attached to chromium grains
in the copper matrix and of their stability are reported
in Sections III and IV, respectively. Section V is dedicated
to the sensitivity analysis. The conclusions are summarized
in Section VI.

II. MODEL

Simulations of this paper have been performed by means
of the space-resolved numerical model of plasma-cathode
interaction of arc discharges which exploits the fact that a
significant electrical power is deposited into the near-cathode
space-charge sheath. The model allows one to simulate the
cathode and the near-cathode plasma layer independently of
the arc column and sometimes is called the model of nonlinear
surface heating. The model is used in the theory and modeling
of arcs in ambient gas (see [15]–[22] as examples of more
recent references) and has been extended to vacuum arcs [13].
In this paper, the model of nonlinear surface heating has
been used in the same form as in [13] and its description
is skipped for brevity; we only note that the specific heats
of copper and chromium have been evaluated with the use
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Fig. 1. Micrograph of copper–chromium contact material: copper
matrix (reddish/dark gray) and chromium particles (silver/light gray areas).

Fig. 2. Schematic of the model of a cathode spot.

of data from [23] and [24], respectively, with account of the
latent heat of melting introduced along the same lines as is
done in the simulation of metal casting [25].

Chromium grains in contacts of vacuum interrupters
have a complex shape as shown in Fig. 1. However,
attempts to consider this complex shape in numerical
modeling would be unwarranted at this stage. Equally
unwarranted would be attempts to take into account protru-
sions on the cathode surface. Results reported in this paper
refer to the case where the grain has a hemispherical shape
as shown in Fig. 2 and the cathode surface is flat. This is a
convenient test case for elucidating the underlying physics.
On the other hand, one should keep in mind that results
obtained for this case may turn out to be only qualitatively
correct as far as real devices are concerned. For example,
values of the spot lifetime obtained for cathodes with a flat
surface and hemispherical grains represent an upper estimate
of lifetime of spots in real devices.

Distributions of temperature T and electrostatic potential ϕ
in the cathode body are computed by means of solving in the
cathode body the time-dependent heat conduction equation,
written taking into account the Joule heat generation in the
cathode body, and the current continuity equation supple-
mented with Ohm’s law. The simulations are axially symmetric
and are performed in a cylindrical domain designated
O ABC in Fig. 2.

III. STATIONARY SPOTS ATTACHED TO

Cr GRAINS IN Cu MATRIX

This section is concerned with stationary spots attached to
chromium grains of various sizes. An example of distributions
of temperature along the cathode surface and along the axis
of symmetry for a near-cathode voltage of 20 V and three
values of the grain radius, RCr = 2.5, 5, and 10 μm, are
shown in Fig. 3. For comparison, also shown are distributions
of temperature on cathodes made of pure copper (RCr = 0)
and pure chromium (RCr = ∞). Similar to what happens for
cathodes made of pure copper and pure chromium [13], there
is a well-pronounced spot with a virtually constant temperature
of the cathode surface. Distributions of other parameters are
skipped for brevity and we note only that similar to what
happens for cathodes made of pure metals, the spot edge
may be identified with the maximum in the distribution of the
density of energy flux from the plasma; the current outside the
spot is negligible; the maximum of distribution of potential in
the cathode body occurs on the surface at the center of
the spot.

For RCr = 2.5 μm, the grain radius is substantially smaller
than the spot radius. Unsurprisingly, the surface distribution
of temperature for RCr = 2.5 μm in Fig. 3(a) coincides to the
graphical accuracy with that for RCr = 0, i.e., for a
pure-Cu cathode. The same is true of the distribution of
temperature in the cathode body in Fig. 3(b) except for a
region z � 2.5 μm, where the temperature distribution for
RCr = 2.5 μm has a maximum. The latter is an indication of
a significant Joule heat production in the cathode.

For RCr = 10 μm, the grain radius substantially exceeds the
spot radius. Unsurprisingly, the distributions of temperature
over the cathode surface and in the cathode body for
RCr = 10 μm are rather close to those for RCr = ∞,
i.e., for a pure-Cr cathode.

For RCr = 6 μm, the temperature distribution is strongly
different from those in the cases of pure-Cu and pure-Cr
cathodes: there is a maximum inside the cathode positioned
beneath the spot center and this maximum is significantly
higher than that for RCr = 2.5 μm and its separation from
the cathode surface is bigger.

Integral parameters of the spots, namely, the spot current
and its components, the maximum temperature of the cathode
body, and the radius of spots (defined as the radial position
of a point at the cathode surface where the distribution
of the energy flux density attains the maximum value) are
plotted in Fig. 4 as functions of the radius of the grain.
Here ICr and ICu designate currents coming from the plasma
to chromium and copper parts of the cathode surface,
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Fig. 3. Distributions of the temperature along (a) surface of composite cathode and (b) axis of symmetry. U = 20 V.

Fig. 4. (a) Spot current and its components. (b) Spot radius and maximum temperature in the cathode body. U = 20 V.

I = ICr + ICu is the total current per spot, and R is the
spot radius. The horizontal dashed lines in Figs. 4 and 5
refer to a cathode made of pure chromium. The dashed-dotted
straight line in Fig. 4(b) represents the function R = RCr;
note that the spot radius coincides with the grain radius for
RCr ≈ 5.9 μm, R < RCr for RCr � 5.9 μm, and R > RCr
for RCr � 5.9 μm.

The power balance of a spot is illustrated by Fig. 5.
Here (Q p)Cr is the power delivered to the grain by the plasma,
Q p is the total power per spot delivered to the cathode by the
plasma, (Q J )Cr is the power dissipated in the grain due to
Joule effect, and Q J is the total power per spot dissipated in
the cathode.

One can observe from Figs. 4 and 5 that spot parameters
for RCr � 3 μm, where the grain size is substantially smaller
than the spot radius, are close to those of spots on pure-Cu

cathodes. Spot parameters for RCr � 7 μm are close to those
of spots on pure-Cr cathodes. Parameters of spots in the range
4 μm � RCr � 6 μm are quite different from the parameters
of spots on both pure-Cu and pure-Cr cathodes. It is to mention
that the spot radius in this interval is about the same as the
grain radius, so this result is not very surprising. Note that in
the interval 4.8 μm � RCr � 6.3 μm the power that the grain
loses to the plasma exceeds the power coming to the copper
surface and the net power Q p is slightly negative, which means
that it is the cathode that heats the plasma and not the other
way round. What maintains the spot in this case is a very
substantial Joule heat generation inside the chromium grain.
For example, one can mention that 84% of the Joule heat
is generated in the grain and 16% in the surrounding copper
for RCr = 6 μm. Note that the maximum value of the voltage
drop in the cathode body (i.e., the potential difference between
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Fig. 5. Power balance of a spot. U = 20 V.

the center of the spot and points far away from the spot) is
attained at RCr = 5.3 μm and equals 2.0 V. While sufficient
for producing a strong Joule effect, the voltage drop in the
cathode is still much smaller than the near-cathode voltage U .

IV. STABILITY OF STATIONARY SPOTS

Stationary solutions describing steady-state spots attached to
Cr grains in the Cu matrix, reported in the preceding section,
have been computed by means of the steady-state solver of
COMSOL Multiphysics. An important question is whether
these solutions are stable. In this connection, their stability
was investigated through following the development in time
of perturbations imposed over the stationary solution. The
nonstationary solver of COMSOL Multiphysics was used to
this end.

The perturbations of the distribution of the cathode temper-
ature at the initial moment t = 0 were assumed in the form
β[T (r, z) − T∞], where T (r, z) is the stationary distribution
of the cathode temperature, T∞ is the average temperature
of the cathode (which was assumed to be equal to 1200 K
in all the simulations reported in this paper), and β is a
given parameter. There was no perturbation of the distribution
of electrostatic potential at t = 0. Two limiting cases of
loading conditions were considered, namely, spots operating
at a fixed current and spots operating at a fixed voltage. The
model of a spot operating at a fixed current is of interest
in connection with low-current arc devices and small-scale
experiments, where there is only one arc attachment to the
cathode and the arc power supply is current controlled. The
model of a spot operating at a fixed voltage is appropriate
for conditions where a very large number of spots operate
simultaneously and ignition or extinction of a spot does not
affect appreciably the arc voltage, which is the case for,
e.g., high-power circuit breakers.

It was found that in the course of temporal evolution of
spots operating at a fixed current, the perturbations decay and
the system returns to the stationary solution. In other words,
spots operating at a fixed current are stable.

Fig. 6. Development of perturbations of the stationary spot on chromium
grains. Solid line: perturbation with an initial level of +1%.
Dotted line: perturbation with an initial level of −1%. U = 20 V.

On the contrary, spots operating at fixed voltage are
unstable. Scenarios of the development of the instability are
illustrated in Fig. 6, where temporal evolution of the maximum
temperature of the cathode body is shown for two levels of
initial perturbations, β = ±1%, and four values of the grain
radius marked by circles on the curve Tmax(RCr) in Fig. 4(b).
At first, the perturbations decrease, although this is not seen
on the graph since the initial level of perturbations is too low.
Then there is a period during which the perturbations are
more or less constant. After this, the perturbations start
rapidly growing and enter the nonlinear phase. In the case
of positive perturbations, β > 0, the temperature maximum is
shifted from the surface into the cathode volume and Tmax
rapidly increases up to extremely high values. In the case
of negative perturbations, β < 0, the spot rapidly cools
down to temperatures below 2000 K. These two outcomes
of the development of instability have been found also in
the investigation of the stability of stationary spots on
pure-Cu cathodes [14] and have been termed, respec-
tively, thermal explosion and destruction of the spot by
thermal conduction.

Time scales characterizing development of perturbations of
spots in chromium grains of different sizes are given in Table I.
Here t1 represents the time during which the amplitude of
the perturbation is reduced to one-half of its initial value and
may be interpreted as the time scale of the initial decay of the
perturbation; t2 designates the time in which the amplitude of
the perturbation attains 500 K and may be interpreted as the
time of beginning of the nonlinear phase of the instability;
and t3 designates the time in which the amplitude of the
perturbation attains 2000 K, so t3 − t2 may be interpreted as
the time scale of the nonlinear phase. Note that the amplitude
of the perturbation here is defined as |Tmax − T (st)

max |, where
Tmax = Tmax(t) and T (st)

max are the maximum values of the
temperature of the cathode body described by, respectively,
the perturbed (time-dependent) and stationary solutions.



BENILOV et al.: MODELING SPOTS ON COMPOSITE COPPER–CHROMIUM CONTACTS OF VACUUM ARCS 2257

TABLE I

CHARACTERISTIC TIME SCALES OF DEVELOPMENT OF INSTABILITY OF VOLTAGE-CONTROLLED SPOTS

ATTACHED TO CHROMIUM GRAINS OF DIFFERENT SIZES. U = 20 V

One can see that the time of beginning of the nonlinear
phase of the instability is of the order of 10 μs in the cases
RCr = 3, 7, and 10 μm, where the spot radius R is
significantly different from the grain radius RCr, and by up
to an order of magnitude higher in the case RCr = 6.4 μm.
In other words, spots live significantly longer if the spot and
grain sizes are close.

V. SENSITIVITY ANALYSIS

The sensitivity of calculation results with respect to
different aspects of the model used can be illustrated by the
following example. It was found that the simulation results are
affected by the way in which the Murphy–Good formalism
in the calculation of electron emission is implemented. The
approach employed in this paper, as well as in [13], is based on
the method in [26]. The latter relies on Padé approximants and
is accurate in the whole range of validity of the
Murphy–Good theory from field to thermo-field to thermionic
emission, while being as simple and computationally efficient
as possible. It is of interest to compare the present results with
those obtained with the use of a straightforward evaluation of
the Murphy–Good formalism. The latter implies, among other
things, a fixed step of integration over the electron energy
(which was equal to 10−20 J in the simulations reported here)
and is significantly less accurate from the mathematical point
of view for certain combinations of surface temperature and
electric field.

As far as the energy flux from the plasma to the cathode
surface is concerned, such a comparison can be found
in [26, Fig. 4]: the results are qualitatively similar, although
quantitative difference is rather significant. Simulations of
spots on a pure-Cu cathode with the use of a straightforward
evaluation of the Murphy–Good formalism, performed in
this paper, gave results that are qualitatively similar to those
reported in Section III for RCr = 0: in both cases, there is a
well-pronounced spot with a virtually constant temperature of
the cathode surface, negligible current outside the spot, and
a maximum of the density of energy flux from the plasma
being positioned at the spot edge. And again, there is a
visible quantitative difference: the maximum values of the
temperature inside the spot are lower by about 600 K, the
voltage drop inside the spot is lower by about 200 mV, and
the spot radius is somewhat higher.

The effect on simulations of spots attached to chromium
grains in the copper matrix is illustrated by Fig. 7,

Fig. 7. Maximum temperature of the cathode body as a function of the
radius of the chromium grain. Straightforward evaluation of the
Murphy–Good formalism. U = 20 V.

where the maximum temperature of the cathode body
calculated with the use of the straightforward evaluation of the
Murphy–Good formalism is shown. The horizontal dashed line
in this figure refers to a cathode made of pure chromium.
Fig. 7 is to be compared with Fig. 4(b). The main differences
between the two figures are as follows.

1) The range of values of RCr at which spot parameters
are quite different from the parameters of spots on both
pure-Cu and pure-Cr cathodes is shifted in the direction
of higher RCr (to values around 10 μm).

2) The transition from a pure-Cu cathode to
a pure-Cr cathode is accompanied with hysteresis.

Let us proceed to the effect on stability of stationary spots
attached to chromium grains. Current-controlled spots have
been found to be stable, similar to what was reported
in Section IV. Voltage-controlled spots are stable if attached
to grains whose radius belongs to the section shown by the
dotted line in Fig. 7; outside this section, voltage-controlled
stationary spots attached to chromium grains are unstable.

Thus, switching from a straightforward method of eval-
uation of the Murphy–Good formalism to a more accu-
rate method affects numerical results on spots attached to
chromium grains in the copper matrix in three ways: the
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dependence of parameters of spots on the grain radius remains
qualitatively the same, although the range of values of RCr
where the spot radius is close to the grain radius and spot
parameters are quite different from the parameters of spots on
both pure-Cu and pure-Cr cathodes has shifted in the direction
of lower values; the hysteresis in this range has disappeared;
however, the variation of spot parameters in this range remains
abrupt; although voltage-controlled spots are no longer stable
at these values of RCr, they are long-lived, which in practical
terms is essentially the same.

The above results describe the effect of changes in the way
of evaluation of electron emission from the cathode surface,
which affects characteristics of the near-cathode plasma layer.
The sensitivity of spot characteristics with respect to properties
of the cathode material can be illustrated by simulations
performed for a pure-Cu cathode with the electrical conduc-
tivity of the cathode material being constant, reported in [14].
It was found that there are again visible quantitative variations
in the steady-state solutions and their stability; however, there
are no qualitative variations.

In summary, changes in different aspects of the simulation
model produce quantitative changes in the simulation results
but do not affect the results qualitatively.

VI. SUMMARY AND CONCLUDING REMARKS

Simulations of spots attached to chromium grains of
different radii in copper matrix have shown that a transition
from a pure-Cu cathode to a pure-Cr cathode is nonmonotonic:
when the grain radius is about the same as the spot radius,
parameters of spots operating in these regimes are strongly
different from those of spots operating on both pure-Cu
and pure-Cr cathodes. The spot is maintained by Joule heat
generation in the cathode body and the net energy flux is
directed from the cathode to the plasma and not the other
way round. These regimes, which are of significant interest,
are investigated in detail.

The overall pattern of stability of stationary spots on
composite CuCr cathode is similar to that of spots on
pure-Cu cathodes [14]: the spots are stable if they operate
at a fixed current, which is the case typical of low-current arc
devices and small-scale experiments; the spots are unstable if
the near-cathode voltage is not appreciably affected by ignition
or extinction of an individual spot, which is the case typical of
high-power circuit breakers; two scenarios of development of
the nonlinear phase of instability are possible, namely, thermal
explosion and destruction of the spot by thermal conduction.
A feature specific to spots on composite cathodes is that the
time of beginning of the nonlinear phase is rather long if the
grain and spot sizes are close.

Significant variations in different aspects of the simulation
model produce quantitative changes in the simulation results
but do not affect the results qualitatively.

Modeling of this paper shows that an appropriate
multidimensional numerical model is capable, at least in
principle, of describing different phases of life of cathode
spots on composite contacts of vacuum arcs. On the other
hand, results reported in this paper refer to cathodes with a
flat surface and hemispherical grains; therefore, values of the

spot lifetime reported in this paper represent an upper estimate.
One could think of a more advanced numerical model that
would account for geometrical nonuniformities on the cathode
surface, nonhemispherical grain shape, and physics of thermal
explosion. One can expect, however, that qualitative conclu-
sions drawn in this paper will not be changed by the results
of such sophisticated modeling.

The conclusion that spots on composite cathodes live
significantly longer if the grain and spot sizes are close, drawn
in this paper, in addition to being very interesting theoretically,
may also be important for applications due to the following
reason. Cr grains in fresh composite CuCr contacts of
high-power circuit breakers are of the order of a few tens
to hundred μm in size, depending on the production process.
After several switching events, the grain size is reduced down
to values of the order of 10 μm. In the general case, the final
grain size can be determined by metallurgical effects or/and
arc-cathode interaction. Metallurgical effects are relevant if a
large section of the cathode surface has been melted. If the
cathode is cold, the final grain size is presumably determined
by arcing effects and one should suspect that there may be a
relation between this size and the conclusion that spots live
longer if the grain and spot sizes are close.

It is well known that the chopping current is of the order
of 10 A on pure-copper contacts and of the order of few amps
on CuCr contacts [27]–[31]. This difference is consistent with
the reduction of computed current to a spot attached to a Cr
grain with respect to current to a spot burning on a pure copper
cathode, which is seen in Fig. 4(a). Furthermore, the computed
current to a spot attached to a Cr grain is not significantly
affected by the Cr grain size if the latter is not too small
[RCr � 6 μm under conditions of Fig. 4(a)]. This is consistent
with the experimental fact that the mean values of the chopping
currents are unaffected by the grain size if the latter is on the
scale of several micrometers [27] (although such dependence
appears on the nanometer scale [30]).
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