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Space-Resolved Modeling of Stationary Spots on
Copper Vacuum Arc Cathodes and on Composite

CuCr Cathodes with Large Grains
Mikhail S. Benilov, Mário D. Cunha, Werner Hartmann, Sylvio Kosse, Andreas Lawall, and Norbert Wenzel

Abstract— A self-consistent space-resolved numerical model of
cathode spots in vacuum arcs is realized on the computational
platform COMSOL Multiphysics. The model is applied to the
investigation of stationary spots on planar cathodes made of
copper or composite CuCr material with large (�20 µm)
chromium grains. The modeling results reveal a well defined spot
with a structure, which is in agreement with the general theory
of stationary cathode arc spots and similar to that of spots on
cathodes of arcs in ambient gas. In the case of CuCr contacts
with large chromium grains, spots with currents of the order of
tens of amperes on copper coexist with spots on chromium with
currents of the order of one or few amperes. The main effect of
change of the cathode material from copper to chromium is a
reduction of thermal conductivity of the cathode material, which
causes a reduction of the radius of the spot and a corresponding
reduction of the spot current.

Index Terms— Cathode spots, circuit breakers, composite
cathodes, vacuum arcs.

I. INTRODUCTION

AVARIETY of approaches are available in the litera-
ture for modeling of cathode spots in vacuum arcs.

These include space-resolved descriptions based on numerical
solution of 1-D [1]–[5] or 2-D [6]–[12] partial differential
equations, both stationary and nonstationary.

However, the simplest model, namely a stationary spot on
an infinite planar cathode, has been studied mostly in the
zero-dimensional approximation, where the spot is described
only at the integral level ([13]–[16] and works referenced
therein). Some authors have discussed the possibility of a
thermal runaway, i.e., the instability caused by a positive
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feedback between Joule heat production in the cathode body
and temperature because of the Wiedemann–Franz law [17],
[18]. In mathematical terms, the presence of a thermal runaway
would mean that a steady-state solution describing a stationary
spot on an infinite planar vacuum arc cathode either does not
exist or is unstable. Nonstationary zero-dimensional modeling
performed in recent works [19]–[21] appears to indicate that a
steady-state solution does exist and is stable. These works are
interesting and useful, but they can hardly serve as the ultimate
argument, i.e., a space-resolved 2-D modeling is required.
The lack of a mathematically accurate solution of the most
basic problem of the theory of plasma–cathode interaction in
vacuum arc discharges is unfortunate and detrimental to the
theory.

The aim of this and forthcoming papers is to obtain steady-
state axially symmetric numerical solutions describing station-
ary spots on cathodes of vacuum arcs and to investigate their
stability. Also investigated are the effect produced on these
solutions and their stability by a granular structure of the
cathode—a question that is of significant interest in connection
with contacts of high-power vacuum circuit breakers.

Results reported in this paper concern steady-state solutions
describing stationary spots on copper vacuum arc cathodes
and cathodes made of CuCr composite material in which the
chromium grains are large (no smaller than about 20 μm).
Results on stability of these solutions, steady-state solutions
describing stationary spots attached to small-to-medium size
chromium grains, and stability of these solutions will be
reported in a forthcoming paper.

The rest of this paper is structured as follows. The numerical
model is described in Section II. Simulation results are given
in Section III for spots on copper cathodes and in Section IV
for spots on large chromium grains in a copper matrix.
Conclusions are summarized in Section V.

II. MODEL OF INDIVIDUAL CATHODE SPOTS

A. Equations and Boundary Conditions

The model of plasma–cathode interaction used in this paper
exploits the fact that significant power is deposited into the
near-cathode space-charge sheath and is sometimes called the
model of nonlinear surface heating. The model is widely
used in the theory and modeling of arcs in ambient gas
([22] and works referenced therein, [23]–[27]). Distributions of
temperature T and electrostatic potential ϕ in the cathode body
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Fig. 1. Schematic of the model of a cathode spot.

are calculated by means of solving in the cathode body the
time-dependent heat conduction equation, written with account
of Joule heat generation in the cathode body, and the current
continuity equation supplemented with Ohm’s law

ρccp
∂T

∂ t
= ∇ · (κ ∇T ) + σ (∇ϕ)2 (1)

∇ · (σ∇ϕ) = 0. (2)

Here, t is time, ρc, cp, κ , and σ are, respectively, the mass
density, specific heat, and thermal and electrical conductivities
of the cathode material, which are treated as known functions
of the local temperature: κ = κ(T ); ρc = ρc (T ); cp = cp (T );
and σ = σ (T ). Note that one can expect that the variation of
potential inside the (metallic) cathode is small, and it will be
seen that this is indeed the case. However, even small voltage
drop in the cathode body can render the Joule effect inside the
cathode quite significant [27].

Solutions shown hereafter have been computed for station-
ary spots on infinite planar cathodes (Fig. 1). The spots are
axially symmetric and so is the modeling. Equations (1) and
(2) are solved in a cylindrical domain designated O ABC in
Fig. 1. Boundary conditions on the cathode surface (line O A)
are κ ∂T/∂z = −q(Tw, U), σ ∂ϕ/∂z = − j (Tw, U), where
q and j are densities of the energy flux and electric current
from the plasma to the cathode surface computed in advance as
functions of Tw , the local temperature of the cathode surface,
and U , the near-cathode voltage drop; see the next section.

Boundary conditions far away from the spot (for ρ → ∞,
where ρ = √

r2 + z2 is distance from the spot center) are
T → T∞, ϕ → 0, where T∞ is a known parameter
(temperature of the cathode far away from the spot; results
reported in this paper have been computed with T∞ = 1200K).
A straightforward numerical implementation would amount to
setting T = T∞, ϕ = 0 on the boundary ABC . However,
functions (T − T∞) and ϕ decay for large ρ rather slowly: pro-
portionally to ρ−1, similarly to the potential of the electric field
of a point charge. Therefore, the use of the straightforward
boundary conditions would require the computation domain
to be very large. It is natural in such a situation to apply on

the boundary ABC somewhat more involved conditions

ρ
∂T

∂ρ
+ T − T∞ = 0, ρ

∂ϕ

∂ρ
+ ϕ = 0. (3)

It can be readily verified that the functions on the LHS of (3)
decay for ρ → ∞ proportionally to ρ−2, i.e., much faster than
the functions (T − T∞) and ϕ. Therefore, the use of conditions
(3) allows us reduce the calculation domain compared to
the case where the straightforward boundary conditions are
used.

The current per spot, I , is expressed as I =
2π

∫ rA
0 j (Tw, U) r dr , where rA is the radius of the computa-

tion domain.
If the current per spot is specified, then the above-described

nonlinear boundary-value problem is complete, the unknown
quantities being functions T (r, z), ϕ (r, z), and parameter
U . In this paper, this problem is numerically solved by
means of the commercial software COMSOL Multiphysics.
This software has been extensively used for modeling cathode
spots in arcs in ambient gas [24], [25], [27]–[29]. The finite-
volume mesh has to be strongly nonuniform because of a
very fast variation of the density of the energy flux coming
from the plasma which occurs in the vicinity of the spot
edge. Note that, in some cases, the near-cathode voltage drop
U was treated as a control parameter and the current per
spot I as an unknown—a formulation of the problem that
is mathematically equivalent as long as stationary spots are
concerned but sometimes more convenient.

Note that one of the conditions of applicability of the
considered model is that values of potential of the cathode
surface be much smaller than the near-cathode voltage U ;
otherwise, the assumption of U being the same at different
points of the cathode surface inside the spot and in its vicinity
is unjustified.

Note that the above model may be readily adjusted for
nonplanar cathodes, for example, cathode with micrometer-
sized protrusions. It also allows one to investigate nonstation-
ary effects, such as the formation of spots on a cathode of a
given shape. On the other hand, the above formulation does
not account for convective heat transfer due to the motion of
molten metal and changes of shape of the cathode surface
that may occur as a result of the motion of molten metal,
microexplosions, and ejection of macroparticles.

B. Material Functions

Results reported in this paper refer to cathodes made of
copper or chromium. Functions q = q(Tw, U), j = j (Tw, U)
are evaluated using the model of near-cathode plasma layers
in vacuum arcs, which is described in [30] and is based on a
numerical simulation of near-cathode space-charge sheath with
ionization of atoms emitted by the cathode surface [31]. Note
that the dependence of q on Tw for a fixed U computed in
[30] is nonmonotonic with a maximum, which is in agreement
with a similar result [6] obtained on the basis of an elementary
model. This is a very important feature, which is characteristic
also of near-cathode layers in arcs in ambient gas and which
suggests that spots on cathodes of vacuum arcs may appear
as a result of instability of local thermal balance in a body

Authorized licensed use limited to: b-on: Universidade da Madeira. Downloaded on September 01,2022 at 10:06:35 UTC from IEEE Xplore.  Restrictions apply. 



1952 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 41, NO. 8, AUGUST 2013

heated by an external energy flux with a growing dependence
on the local surface temperature and that stationary regimes
of cathode spots in vacuum arcs are possible, at least in cases
where the Joule heating inside the cathode is insignificant.

Thermal conductivity κ(T ) of copper is evaluated with the
use of [32]. Note that the data in [32] cover the range up
to 8500 K, although the values above 2600 K have been
obtained by estimation. Thermal conductivity of chromium
is evaluated with the use of [33] in the temperature range
T � 2000 K and is assumed to be constant in the temperature
range T � 2000 K, where no data have been found.

Electrical conductivities σ (T ) of copper and chromium are
evaluated in terms of the thermal conductivity κ (T ) using the
Wiedemann–Franz law. Note that the data obtained in this way
are in a good agreement with the data available in the literature
[33]–[35] in the case of copper. Reference data are scarce in
the case of chromium, but the agreement remains reasonably
good.

III. SPOTS ON COPPER CATHODES

As an example, distributions of the temperature and poten-
tial in the cathode body for copper cathode and the near-
cathode voltage of 20 V are shown in Fig. 2. Note that
the electric current per spot, I , in this case equals 47 A.
Distributions of different parameters over the cathode surface
are shown in Fig. 3 for three values of the near-cathode
voltage: U = 20 V, 18 V (I = 61 A), and 16 V (I = 85 A).

In each case, there is a well pronounced spot with a virtually
constant temperature of the cathode surface, negligible current
outside the spot, and a maximum of the density of energy flux
from the plasma being positioned at the spot edge, which are
features familiar from the general theory of stationary cathode
arc spots [36] and from the modeling of spots on cathodes of
arcs in ambient gas [37]. The maximum in the distribution
of the density of energy flux over the cathode surface is
a consequence of the above-mentioned nonmonotony of the
dependence q (Tw) for fixed U ; therefore, the temperature at
the spot edge coincides with the value of Tw corresponding to
the maximum of the dependence q (Tw). Maximum values of
the temperature and potential occur at the cathode surface at
the center of the spot. The electric current density, the erosion
rate, and the ion backflow coefficient are virtually constant
inside the spot, which is unsurprising since these quantities
are evaluated in terms of the local surface temperature, which
is also virtually constant. The electrostatic potential, which is
not directly related to the surface temperature, varies appre-
ciably inside the spot. The energy flux density, in spite of
being evaluated in terms of the local surface temperature,
also varies appreciably inside the spot, decreasing from the
edge to the center, which is due to the extremely rapid
decrease of the function q (Tw) on the right-hand branch of
the maximum. Again, this feature is well known from the
general theory [36] and modeling of spots on cathodes of
arcs in ambient gas [37]. The energy flux density outside
the spot is small and negative: the plasma-related heating
is absent since there is no plasma near the cathode surface
outside the spot, so the cathode surface is cooled, mostly by the
evaporation.
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Fig. 2. Distributions of the temperature (a, in K) and potential (b, in V) in
the cathode body. Coordinates in mm. Cu cathode, U = 20 V (I = 47 A).

Let us designate by T∗ the value of Tw corresponding to
the maximum of the dependence q (Tw) and by T2 the value
of Tw at which the dependence q (Tw) turns negative after
passing through the maximum (or, in other words, the value
starting from which the electron emission cooling exceeds the
ion heating; see discussion in [30]). Strictly speaking, both
values depend on U , but this dependence is weak: according
to calculations [30], T∗ varies from 4180 K for U = 15 V to
4130 K for U = 20 V, while T2 equals 4420 K for all U
from 15 to 20 V. The virtual constancy of T∗ means that the
temperature at the spot edge is virtually independent of U and,
consequently, I . On the other hand, modeling in this paper has
shown that the computed temperature of the cathode surface
at the spot center, Tc, also is virtually constant and quite close
to T2: it varies between 4437 K for U = 15 V and 4407 K for
U = 20 V.

The fact that the computed temperature at the center of a
spot on a planar cathode is quite close to T2 has already been
known from modeling of cathode spots in arcs in ambient
gas [37]. The difference is that the modeling [37] was
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Fig. 3. Distributions of parameters over the surface of a copper cathode inside
the spot and in its vicinity. (a) Temperature (solid) and potential (dashed).
(b) Densities of energy flux (solid) and electric current (dashed) from the
plasma to the cathode surface. (c) Erosion rate G (solid) and ion backflow
coefficient μ (dashed).

performed without accounting for Joule heating inside the
cathode body and, as a consequence, Tc never exceeded T2.
The present modeling takes into account Joule heating, and

it is for this reason that situations are possible where Tc > T2
and, as a consequence, the energy flux at the central part of
the spot is negative, as shown by the distribution q (r) for
U = 16 V shown in Fig. 3(b). However, the difference Tc −T2
is minimal, which is an obvious consequence of the modulus
of the derivative ∂q (Tw, U) /∂Tw at Tw = T2 being extremely
high.

The above reasoning explains why the computed tempera-
ture of the cathode surface is virtually constant inside the spot
and is virtually independent of the spot current, as seen in
Fig. 3(a): these are consequences of T∗ and T2 being rather
close (the difference T2 − T∗ is in the range 240–290 K)
and virtually independent of the near-cathode voltage drop.
This reasoning also allows one to conveniently evaluate the
temperature of the cathode surface inside a spot without actu-
ally simulating the spot (i.e., without performing numerical
simulations described in Section II): it is sufficient to calculate
the dependence of q on Tw and identify the temperatures T∗
and T2.

Inside the spot, the ion backflow coefficient μ is close
to unity: most of the atoms emitted by the cathode surface
get ionized in the space-charge sheath before the potential
maximum [31] and return to the cathode in the form of ions.
Outside the spot, the ion backflow coefficient is negligible.
The erosion rate, while being nearly constant inside the spot,
possesses a narrow maximum at the spot edge and tends to
zero outside the spot. This is understandable if one takes into
account the fact that the erosion rate represents a product of
the evaporation rate and the escape factor (1 − μ). Outside
the spot, the escape factor is close to unity; however, the
temperature is low and the evaporation rate is negligible. Inside
the spot, the evaporation rate is high but the escape factor
is very low, so the erosion rate is not high. At the sheath
edge, the evaporation rate is already rather high while the
escape factor is still rather high, and the erosion rate attains
a maximum value here. Note that this result is consistent
with the nonmonotonic dependence of G on Tw discussed
in [30].

Variations of potential in the cathode body are below
0.8 V in the current range considered, i.e., much smaller than
the near-cathode voltage. This is an important result which,
as mentioned at the end of Section II-A, justifies the model
being employed.

Integral characteristics of spots on copper cathodes are
plotted in Fig. 4 as functions of the current per spot. Here,
ϕc = ϕ (0, 0) is the potential of the cathode surface at the
center of the spot; R is the spot radius estimated as the position
of a point where the distribution of the energy flux density
attains the maximum value; g is the so-called g-factor defined
as the loss of mass of the cathode per unit charge transported
(i.e., the integral loss of mass of the cathode per spot divided
by the current per spot); Q p is power per spot coming to the
cathode surface from the plasma; and Q J is power per spot
dissipated in the cathode body due to Joule effect. Note that
the loss of mass of the cathode and power Q p coming from
the plasma are found by integrating the quantities G and q
over the cathode-surface boundary of the computation domain
(line O A in Fig. 1), and power Q J dissipated in the cathode
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Fig. 4. Integral characteristics of spots on copper cathodes. (a) Near-cathode
voltage U and the temperature and potential at the center of the spot, Tc and
ϕc . (b) Spot radius R and erosion rate g. (c) Power coming from the plasma,
Q p , and power dissipated in the cathode body due to Joule effect, Q J .

body is found by integrating the quantity σ (∇ϕ)2 over the
whole computation domain.

As the spot current increases from 47 to 102 A, the near-
cathode voltage decreases from 20 to 15 V. The temperature at

the center of the spot remains virtually constant as discussed
above. Variation of potential in the cathode body slightly
increases but remains under 0.9 V. The spot radius increases
from 13 to 21 μm and the erosion rate increases from 10 to
19 μg/C.

The power Q p coming from the plasma decreases from
17 to 4 W. This power represents only a small fraction of
the total power IU deposited by the external circuit into the
near-cathode plasma layer, which varies from 941 to 1534 W.
It follows that most part of the deposited power is transported
from the near-cathode layer into the bulk plasma by the electric
current and flux of the erosion products. The power Q J

dissipated in the cathode body due to Joule effect exceeds
the power coming from the plasma and increases from 20 to
64 W.

A quantitative comparison of the above numerical solutions
with experiment is unwarranted before one can be sure that
the above solutions are stable and therefore may be realized.
It is worth noting, however, that the computed parameters
fit into the usual range of parameters of macrospots, or
group spots [38]. Values of g-factor shown in Fig. 4(b),
which refer to the ion erosion rate, represent about one-fourth
to one-half of the experimental values of the ion erosion
g-factor for copper, which are in the range 33–39 μg/C
[39, p. 157]. This may indicate that the vaporization mech-
anism is responsible for about one-fourth to one-half of the
ion erosion and the rest is due to explosive emission [40].

IV. SPOTS ON LARGE Cr GRAINS IN Cu MATRIX

This section is concerned with spots on cathodes made of
CuCr composite material in which the Cr grains are large,
which occurs at initial stages of life of contacts of high-power
vacuum circuit breakers. The analytical treatment in [30] has
shown that, in this case, spots with currents of the order of
tens of amperes on copper coexist with spots on chromium
with currents of the order of 1 A or a few amperes. In
this connection, integral characteristics of spots on chromium
cathodes computed numerically as described in Section II
are shown in Fig. 5 for near-cathode voltages from 15 to
20 V, which correspond to spots with current of the order
of tens of amperes on copper as seen in Fig. 4(a). One can
see that spots on chromium operate at currents between 1.9
and 3.6 A according to the numerical simulations, which is
in agreement with the prediction of the analytical treatment
[30]. The temperatures at the center of the spot on copper and
chromium cathodes are similar, but the spot radius and the
erosion rate are smaller on chromium—again effects predicted
by the analytical treatment [30]. Variations of potential in the
cathode body are smaller for chromium. Power coming from
the plasma to a spot on chromium is significantly smaller than
that coming to a spot on copper. On the other hand, power
coming from the plasma to a spot on chromium exceeds that
dissipated inside the cathode. The g-factor of spots on copper
exceeds that of spots on chromium by a factor of about 2.
Taking into account strongly differing currents, one concludes
that the rate of ion erosion of copper exceeds that of chromium
by up to two orders of magnitude—again a result predicted by
the analytical treatment [30].
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As pointed out in [30], because of low current, small diame-
ter, and low erosion rate, spots on chromium should be much
dimmer than those on copper and are not easy to observe.
However, high-resolution photographs of copper–chromium
contacts of high-current arcs [41]–[43] have revealed, in addi-
tion to cathode spots with the average current of 45 A similar
to those on pure copper cathodes, also very small and dim
spots. The latter may be interpreted as the spots on chromium
predicted by the analytical treatment [30] and the numerical
modeling in this paper. Consistent with this interpretation is
the well established experimental fact that the value of the
chopping current is of the order of few amps on CuCr contacts
(and on contacts made of copper with other additives) and of
the order of 10A on pure copper contacts [44]–[48].

In order to understand the reason for such a large differ-
ence between spots on copper and chromium, modeling has
been performed of spots on cathodes with “mixed” material
functions. Integral characteristics of spots obtained in these
simulations are shown in Table I for U = 20 V. (Data in the
second and last lines of Table I refer to “unmixed” material
functions corresponding to chromium and copper, respectively,
and have been added for comparison; data shown in the third
line, which is marked Cu Cr Cr, have been obtained by means
of simulations with the electrical conductivity of the cathode
material referring to Cu, thermal conductivity referring to Cr,
and the pair of functions q (Tw, U), j (Tw, U), characterizing
the plasma–cathode interface, referring to Cr; etc.) One can
see that the switching in each of the material functions from
Cr to Cu causes an increase of current, the increase caused by
the switching in thermal conductivity being the strongest.

One can invoke the general theory of stationary cathode
arc spots [36] in order to understand these effects, although
it should be kept in mind that this theory neglects the Joule
effect in the cathode body. In the framework of this theory,
the spot radius is governed by the following formula that has
been derived by means of asymptotic solution of the equation
of heat conduction in the cathode body:

R = 1

π

[∫ T∗

T∞
� (T ) dT

]2 {∫ T2

T∞
q (T, U) � (T ) dT

}−1

.

(4)
Given that the temperatures at the spot center are quite close
for all variants shown in Table I, one should assume that the
current densities in the spot are close as well. The latter leads
one to the assumption that the spot current in the transition
between the variants varies approximately proportionally to
R2, and one can see from Table I that this is indeed the case.
Thermal conductivity of copper in the temperature range of
interest exceeds that of chromium by a factor of about 3.
It follows that the switching of thermal conductivity from
chromium to copper should cause an increase in R by about 3
and in I by about an order of magnitude. Comparing variants
(Cr, Cr, Cr) and (Cr, Cu, Cr) in Table I, and also variants
(Cu, Cr, Cr) and (Cu, Cu, Cr), one can check that this is
indeed the case. Note that the increase in R seen in the
transition from the variant (Cu, Cu, Cr) to (Cu, Cu, Cu) in
Table I is consistent with the integral in the curly brackets on
the RHS of (4), when evaluated with the use of the function
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Fig. 5. Integral characteristics of spots on chromium cathodes. Designations
are the same as in Fig. 4.

q for copper, being smaller than that evaluated with the use
of the function q for chromium (see Fig. 6(a) [30]).

One can conclude that the significant difference in integral
parameters of spots on copper and chromium is due in the
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TABLE I

EFFECT OF MATERIAL FUNCTIONS ON INTEGRAL PARAMETERS OF SPOTS. U = 20V

σ (T ) κ (T )
q (Tw, U) ,

j (Tw, U)

I
(A )

Tc

(K )

ϕc

(V )

R
(μm)

Q p

(W)
Q J
(W)

Cr Cr Cr 1.9 4347 0.4 2.5 1.2 0.56

Cu Cr Cr 2.6 4340 0.13 3 1.7 0.26

Cr Cu Cr 13.7 4381 1.23 6.4 6.5 12.7

Cu Cu Cr 27.9 4356 0.46 9.5 15.3 9.7

Cu Cu Cu 47 4407 0.57 13.3 16.8 20.2

first place to different thermal conductivities of copper and
chromium.

One can see from Fig. 5(b) that the diameter of spots on
chromium is up to approximately 8 μm. This allows one to
specify the limit of validity of the present modeling as far as
the Cr grain size is concerned: it should be no smaller than
about 20 μm.

V. CONCLUSION

A space-resolved numerical model of cathode spots in
vacuum arcs has been realized on the computational platform
COMSOL Multiphysics. The approach is based on the model
of nonlinear surface heating, which is widely used in the
theory and modeling of plasma–cathode interaction in arcs
in ambient gas, supplemented with a module simulating
near-cathode layers in vacuum arcs. The model allows one to
compute both stationary and nonstationary spots on cathodes
of any given shape. Results reported in this paper concern sta-
tionary spots on planar cathodes made of copper or composite
CuCr material with large (� 20 μm) chromium grains.

In every case, there is a well pronounced spot with a
virtually constant temperature of the cathode surface and a
maximum of the density of energy flux from the plasma being
positioned at the spot edge. The spot structure is in agreement
with the general theory of stationary cathode arc spots and
similar to that of spots on cathodes of arcs in ambient gas.

In the case of CuCr contacts with large chromium grains,
which occurs at the initial stages of life of contacts of
high-power circuit breakers, independent spots operate on the
copper matrix and chromium grains at the same value of
the near-cathode voltage. The modeling results indicate, in
agreement with the analytical treatment [30], that spots with
current of the order of tens of amperes on copper coexist with
spots on chromium with currents of the order of one or few
amperes. It is found that the main effect of change of the
cathode material from copper to chromium is a reduction of
the thermal conductivity of the cathode material, which causes
a reduction of the radius of the spot and a corresponding
reduction of the spot current.
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