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Abstract
This paper is concerned with summarizing simple analytical models of space-charge sheaths
and tracing their relation to the Child–Langmuir model of an ion sheath. The topics discussed
include the Child–Langmuir law and model of a collisionless ion sheath, the Mott–Gurney law
and model of a collision-dominated ion sheath, the Bohm model of a collisionless ion–electron
sheath, the Su–Lam–Cohen model of a collision-dominated ion–electron sheath, ion sheaths
with arbitrary collisionality, high-accuracy boundary conditions for the Child–Langmuir and
Mott–Gurney models of an ion sheath and the mathematical sense of Child–Langmuir type
models of an ion sheath from the point of view of modern theoretical physics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In his 1911 paper [1], Child treated what he called the
electrostatic effect produced by ions. He considered positive
ions moving without collisions between two infinite parallel
plates, i.e. in a plane-parallel vacuum diode. There is an
infinitely large number of ions at the positive plate and their
velocity there is zero. The electric field between the plates
is steady state and distorted by the space charge of the
ions. Solving the equation of motion of an ion jointly with
the Poisson equation, Child found an analytical solution for
distributions of the electrostatic potential, electric field and the
ion density between the plates. One of the results was that
the current which is possible to be carried by positive ions
with a given distance and a given potential difference between
the plates is limited, however big the capability of ion supply
from the positive plate. This limitation is caused by the ion
space charge, i.e. by the mutual repulsion of the ions, and the
limiting current occurs when the electric field at the positive
plate is zero. The limiting current varies directly as the three-
halves power of the applied voltage and inversely as the square
of the distance separating the plates. In 1913, Langmuir [2]
applied similar equations to the case where the conduction
takes places by electrons rather than ions, as a part of his study
of the effect of space charge on thermionic emission currents
in high vacuum.

The works [1, 2] represent a basis of the theory of space-
charge-limited currents, and the formula for the space-charge-
limited current in a plane-parallel diode is known as the
Child–Langmuir law, or Child’s law, or the three-halves power
law. The theory has different applications, and the one which
is of particular interest for gas discharge and plasma physics
emerged in the 1920s: in the papers [3, 4] Langmuir suggested a
model of a high-voltage near-cathode sheath which is virtually
electron-free and formed by positive ions that enter the sheath
with energies negligible compared with those they acquire
in the sheath itself, and these ion sheaths are in a natural
way described by Child’s theory of space-charge-limited ion
current. This model has initiated a huge number of publications
concerned with the analytical theory of space-charge sheaths.
By now, this theory is well developed (e.g. review [5] and
references therein) and includes both simple and sophisticated
models, the simplest and still most well known being the Child–
Langmuir model.

Nowadays, simulation methods are available that allow
unified modeling of the whole volume occupied by the ionized
gas, without a priori dividing it into a quasi-neutral plasma and
space-charge sheaths. However, analytical models of space-
charge sheaths, and in the first place simple ones, still retain
there significance. One of the reasons for this is, of course, their
methodical value. Another reason is as follows: the above-
mentioned unified simulation methods are available for ‘cold’
plasmas but are more difficult to develop for plasmas with
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a high density of charged particles and, consequently, a high
degree of quasi-neutrality in the bulk. The example of the latter
are plasmas of high-pressure arc discharges, where methods of
unified simulation of near-cathode layers are just appearing and
the Child–Langmuir sheath model or models not very different
from it still remain a workhorse; e.g. review [6] and references
therein.

This paper is concerned with summarizing simple
analytical models of space-charge sheaths and tracing their
relation to the Child–Langmuir model of an ion sheath. Both
collision-free and collision-dominated sheaths are treated. The
outline of the paper is as follows. The Child–Langmuir model
of a collisionless ion sheath and its analog for a collision-
dominated sheath, the Mott–Gurney model, are described
in section 2. Section 3 is concerned with sheath models
accounting for the presence of ions and electrons, which are
capable of providing descriptions of a sheath with a moderate
voltage and of a transition from an ion sheath to a quasi-
neutral plasma. The models treated in this section include
the Bohm model of a collisionless sheath and its analog for
a collision-dominated sheath, the Su–Lam–Cohen model. A
model of an ion sheath with an arbitrary degree of collisionality,
which describes a smooth transition from the Child–Langmuir
model for a collisionless sheath to the Mott–Gurney model
for a collision-dominated sheath, is treated in section 4. Also
given in section 4 are high-accuracy boundary conditions for
the Child–Langmuir and Mott–Gurney models. Another topic
discussed in section 4 is the mathematical sense of models
of ion sheaths from the point of view of modern theoretical
physics.

2. Ion sheaths

2.1. Collisionless ion sheath: the Child–Langmuir law and
sheath model

Following [1], we consider a vacuum diode consisting of two
infinite parallel plates, a positive one (anode) positioned at
x = 0 and a negative one (cathode) at x = d . Singly charged
positive ions are emitted into the gap by the anode with a zero
velocity. There is a voltage U applied to the diode. The system
of governing equations includes the equation of motion of an
ion, the equation of conservation of the ion flux across the gap
and the Poisson equation:

mivi
dvi

dx
= −e

dϕ

dx
, ji = enivi, ε0

d2ϕ

dx2
= −eni.

(1)

Here mi, ni and vi are the particle mass, number density
and velocity of the ions, ji is the density of electric current
transported by the ions (a constant positive quantity) and ϕ is
the electrostatic potential. While writing the first equation, the
acceleration of an ion, dvi/dt , was represented as vidvi/dx.

The unknown functions vi(x) and ϕ(x) satisfy boundary
conditions

vi(0) = 0, ϕ(0) = 0, ϕ(d) = −U. (2)

The first equation in (1) may be integrated to give the
equation of conservation of the total energy of an ion. Finding

the integration constant with the use of the first two boundary
conditions (2), one finds vi = √−2eϕ/mi. Using this result
and the second equation in (1) in order to eliminate ni from
the Poisson equation in terms of ϕ, one arrives at an equation
involving only one unknown function, ϕ(x). Since it involves
neither the independent variable x nor the first derivative
dϕ/dx, it can be solved analytically. To this end, one can
multiply this equation by dϕ/dx and integrate over x. The
equation obtained may be written as

(
eε2

0

8mij
2
i

)1/2 (
dϕ

dx

)2

= √−ϕ + C1. (3)

Here and further C1, C2, ... are integration constants. Note
that the constant C1 is related to the electric field at the anode

surface: C1 =
(

eε2
0

8mij
2
i

)1/2 (
dϕ

dx

∣∣∣
x=0

)2
. Solving equation (3)

for dx/dϕ and integrating over ϕ, one arrives at the following
solution for the function ϕ(x):

4

3

(√−ϕ + C1
)1/2 (√−ϕ − 2C1

) =
(

8mij
2
i

eε2
0

)1/4

(x + C2) .

(4)

A relationship between integration constants C1 and C2 is
found by means of the second boundary condition (2):

C2 = −83/4

3

(
eε2

0

mij
2
i

)1/4

C
3/2
1 . (5)

The constant C1 is found by means of the third boundary
condition (2), which can be written in a dimensionless form as

(1 + b1)
1/2(1 − 2b1) + 2b

3/2
1 = a1, (6)

where a1 = (81mid
4j 2

i /32eε2
0U

3)1/4 may be interpreted as
the square root of the dimensionless ion current density and
b1 = C1/

√
U as the squared dimensionless electric field at the

anode surface.
Equation (6) represents an algebraic equation relating the

(positive) unknown b1 to a (positive) parameter a1. It admits
no real positive roots at a1 > 1. There is one root in the interval
0 < a1 � 1, which is shown in figure 1. It should be stressed
that b1 = 0 at a1 = 1. Note that a simple approximate formula
for this root may be obtained by means of a rational-fraction
interpolation (Padé approximant) over a2

1 between the two-
term asymptotic expansion of the function b1(a1) at a1 → 0
and the value b1 = 0 at a1 = 1:

b1 = 243

16a2
1

1 − a2
1

27 + 5a2
1

. (7)

One can see from figure 1 that this formula is quite accurate.
The solution is complete now. One can conclude that the

problem being considered is solvable provided that the ion
current density does not exceed a value that corresponds to
a1 = 1, namely,

ji =
(

32eε2
0U

3

81mid4

)1/2

. (8)
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Figure 1. The square root of the dimensionless current density
versus the squared dimensionless electric field at the emitting
electrode in the Child–Langmuir and Mott–Gurney models. Solid:
solutions to equations (6) and (15). Dashed: approximate solutions,
equations (7) and (16).

If the density of the ion current emitted by the anode is below
this value, then every ion emitted will reach the cathode, ji

the current density in the gap equals the ion emission current
density and is treated as a known quantity, the electric field
at the anode is non-zero and its value is given by formula (7)
(or may be determined by numerically solving equation (6)).
As the emission capability of the anode increases and the
current in the gap approaches the limiting value (8), the electric
field at the anode surface vanishes and the current in the gap
stops increasing. This limitation is due to the space charge
which is created in the gap by the charge carriers (ions).

Obviously, the above treatment is equally applicable to
the case where the charge carriers are electrons emitted by the
cathode rather than ions emitted by the anode. In particular,
the limiting electron current is given by equation (8) with mi

replaced by the electron mass [2].
The above treatment represents a basis of the theory of

space-charge-limited currents, and equation (8) is the Child–
Langmuir law.

Let us apply the above treatment to a physical object other
than a vacuum diode, namely, a high-voltage near-cathode
sheath in a gas discharge [3, 4]. Citing Langmuir [4]: ‘If the
electrode is 50 volts or more negative with respect to the plasma
the sheath will contain no appreciable number of electrons and
the positive ions will enter the sheath with energies negligible
compared to those they acquire in the sheath itself.’ The
positive ions are assumed to cross the sheath and reach the
cathode without collisions with neutral particles. The value
x = 0, which in the case of a vacuum diode was attributed to
the anode, is now attributed to the outer edge of the sheath,
i.e. a plasma–sheath boundary, and x = d to the cathode
surface, so d designates the thickness of the sheath. The zero of
potential is attributed to the sheath edge and the sheath voltage
is designated by U .

Under the above assumptions, the near-cathode sheath
is described by equations (1) and boundary conditions (2).
Since the electric field in the plasma is much smaller than
a characteristic field inside the sheath, the electric field at the
outer edge of the sheath may be set equal to zero while treating
the sheath:

dϕ

dx

∣∣∣∣
x=0

= 0. (9)

A solution to the stated problem is given by equation (4) in
which C1 is set equal to zero in accordance with the boundary
condition (9). (This also implies C2 = 0 in accordance
with equation (5).) In other words, a collisionless ion sheath
is described by the same solution that describes a vacuum
diode with a space charge-limited ion current. In particular,
the ion current density, the sheath voltage and thickness are
related by the Child–Langmuir law (8). However, the physical
interpretation of the latter equation is now different. Citing
Langmuir [4]: ‘In the usual applications of [equation (8)] the
voltage and the distance between the electrodes are known and
we wish to calculate the current density that can flow when
the current is limited by space charge. In the present case,
however, the current density [ji] is fixed by conditions within
the plasma and since the applied voltage is usually known the
equation can be used to calculate only the thickness [d] of the
sheath’.

The Child–Langmuir law (8) was applied to the
description of a near-cathode layer of a gas discharge in the
1923 papers by Ryde [7] and Langmuir [3]. The concept
of a high-voltage electron-free near-cathode sheath, which
constitutes the basis of such approach, was formulated in the
latter work.

Let us introduce a characteristic value of the ion
density in the sheath: n

(s)

i = ji/e
√

eU/mi. Eliminating from
equation (8) ji in terms of n

(s)

i , one can obtain

d = 25/4

3

√
ε0U

n
(s)

i e
. (10)

Thus, the thickness of the ion sheath is of the order of the Debye
length in which the electron thermal energy kTe is replaced by
the electrostatic energy eU .

Equation (3) with C1 = 0 allows one to find the electric
field at the cathode surface in terms of the ion current density
ji and the sheath voltage U (but not the sheath thickness):

− dϕ

dx

∣∣∣∣
x=d

=
(

8mij
2
i U

eε2
0

)1/4

. (11)

This equation is used in the theory of arc discharges for
evaluation of the effect of the electric field at the cathode
surface over the electron emission current [8] and is usually
called the Mackeown equation.

The above-described ion sheath model is based on the
assumption that the electron contribution to the space charge
in the sheath is negligible. The electrons can enter the sheath
both from the adjacent plasma and on being emitted from the
cathode. The above-cited condition of the sheath voltage being
high enough ensures that the plasma electrons cannot overcome

3
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the retarding electric field and enter the sheath, but the question
of the contribution of the emitted electrons remains. If needed,
this contribution can be taken into account [7, 8]. On the other
hand, a simple estimate follows from the fact that the electric
current in the sheath transported by the emitted electrons is
comparable to or much smaller than the ion current (in the cases
of an arc or, respectively, glow discharge): since the velocity
of the electrons is much higher than the ion velocity, it follows
immediately that the space charge of the emitted electrons is
negligible [7].

2.2. Collision-dominated ion sheath: the Mott–Gurney law
and sheath model

The above theory of space charge-limited currents in a plane-
parallel vacuum diode can be readily modified for the case
where the interelectrode gap is filled with a gas and motion
of charge carriers in the gap is collision-dominated rather
than collision-free. In this case, the first equation in (1) is
replaced by

vi = −µi
dϕ

dx
, (12)

where µi is the mobility of the charge carriers (ions).
Equation (12) is written under the assumption that diffusion of
the ions is negligible compared with drift in the electric field.
(This assumption is justified provided that the ion gas is cold
enough: the thermal energy of an ion should be much smaller
than the electrostatic energy eU . The thermal energy of an ion
equals the thermal energy of a neutral particle plus a difference
of the order of work of the electric field over the ion mean free
path. The thermal energy of a neutral particle is always much
smaller than eU , work of the electric field over the ion mean
free path in the collision-dominated case is also much smaller
than eU . Hence, the above-mentioned assumption is always
satisfied in the collision-dominated case.) For brevity, let us
restrict consideration to the case where the frequency of ion–
atom collisions does not depend on velocity, then µi may be
treated as constant. The first boundary condition in (2) must
be discarded.

The stated problem is rather similar to the problem of a
vacuum diode considered in the preceding section and may
be solved in a similar way. The Poisson equation may be
rewritten as

ε0µi
dϕ

dx

d2ϕ

dx2
= ji. (13)

Integrating equation (13) over x, solving the obtained equation
for dϕ/dx and integrating over x once again, one arrives at the
following solution for the function ϕ(x):

ϕ = −
(

8ji

9ε0µi

)1/2

(x + C3)
3/2 + C4. (14)

The integration constant C3 is related to the electric field at the

anode surface, C3 = ε0µi

2ji

(
dϕ

dx

∣∣∣
x=0

)2
, and is governed by the

equation
(1 + b2)

3/2 − b
3/2
2 = a−1

2 , (15)

where a2 = (8d3ji/9ε0µiU
2)1/2 and b2 = C3/d . Again, this

is an algebraic equation for the (positive) unknown b2, which

admits no real positive roots at a2 > 1 and has one root in the
interval 0 < a2 � 1. This root is shown in figure 1. One can
see from figure 1 that this root is accurately approximated by
the simple formula

b2 = 32

9a2
2

1 − a2
2

8 + a2
2

. (16)

Again, this formula was obtained by means of a rational-
fraction interpolation between the two-term asymptotic
expansion of the function b2(a2) at a2 → 0 and the value
b2 = 0 at a2 = 1.

The physical meaning of the obtained solution is quite
similar to that in the problem of vacuum diode. The space-
charge-limited ion current is

ji = 9ε0µiU
2

8d3
. (17)

This formula, which is usually called the Mott–Gurney law,
represents an analog of the Child–Langmuir law, equation (8),
for the collision-dominated case. It was derived in [9] in
connection with conduction current in semiconductors and
insulators and in [10] as an analog of the Child–Langmuir law
for a plane-parallel diode filled with a high-pressure gas.

The above treatment, including solution (14) with C3 =
C4 = 0 and the Mott–Gurney law, can be in a natural way
applied to a collision-dominated near-cathode ion sheath, just
in the same way as the Child–Langmuir law applies to a
collision-free near-cathode ion sheath. Let us introduce a
characteristic value of the ion density in the sheath: n

(s)

i =
jid/eµiU . Eliminating ji from equation (17), one again arrives
at equation (10), except for the numerical coefficient (3/23/2

rather than 25/4/3). Hence, the thickness of the ion sheath
again is of the order of the Debye length evaluated in terms of
the electrostatic energy.

An analogue of the Mott–Gurney law for the case of
constant mean free path, where the cross section of ion–atom
collisions does not depend on velocity, was given in [11].

3. Sheaths formed by ions and electrons

The applicability of the model of an electron-free sheath
introduced by Langmuir [3, 4] is limited to the case of high
sheath voltages. A question arises regarding the models
applicable at moderate sheath voltages. Obviously, such
models must take into account not only positive ions but
also electrons entering the sheath from the plasma against the
retarding sheath electric field.

The model of an electron-free sheath represents a
reasonable approximation in the bulk of a high-voltage near-
cathode sheath, where the plasma electrons cannot penetrate
and their density ne is much smaller than ni the positive
ion density. On the other hand, the model clearly loses its
validity in an outer section of the near-cathode sheath: if the
two densities are virtually equal in the (quasi-neutral) plasma
outside the sheath, then ne in an outer section of the sheath,
while being smaller than ni, is still comparable to it. This
outer section of a high-voltage near-cathode sheath can be

4
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called an ion–electron layer. A question arises of finding a
solution describing this layer and matching it with the solution
describing the electron-free bulk of the sheath (which can be
called the ion layer). This can be done by applying the limit
of high sheath voltages to a model of a moderately negative
sheath mentioned in the previous paragraph. Results of such
analysis must in a natural way describe both the electron-free
ion layer and the ion–electron layer.

Both above-mentioned questions are addressed in this
section, first for a collisionless sheath and then for a collision-
dominated one.

3.1. Collisionless ion–electron sheath: the Bohm model

In order to describe a collisionless negative sheath formed by
cold (monoenergetic) ions and Boltzmann-distributed plasma
electrons, it is sufficient to supplement the Poisson equation in
the Child–Langmuir ion sheath model with a term accounting
for space charge contributed by the electrons: the third
equation (1) is replaced by

ε0
d2ϕ

dx2
= −e(ni − ne), ne = n0 exp

eϕ

kTe
, (18)

where Te is the electron temperature and n0 is the electron
number density at a point where ϕ = 0. This equation
was introduced by Langmuir; cf equations (68) and (70) of
[4]. Note that the assumption of cold ions is justified in
this case provided that the ion temperature is much smaller
than the electron temperature. The assumption of Boltzmann
distribution of the density of plasma electrons is justified if the
flux of the electrons from the plasma to the electrode surface is
much smaller than the chaotic electron flux inside the plasma.
The latter is the case if the potential of the surface at which the
sheath is formed is around or below the floating potential.

This is the only amendment that has to be introduced in the
equations of the electron-free collision-free ion sheath model
in order to render it applicable to a collision-free ion–electron
sheath; the first and second equations (1) remain unchanged.
There is, however, a fundamental difference between the two
models as far as boundary conditions on the plasma side are
concerned. The ion sheath model breaks down at a finite
distance from the cathode: a solution cannot be extended
beyond a point at which the electric field vanishes, and this
point represents an outer edge of the ion sheath. There is
no such breakdown in the model of an ion–electron sheath:
a solution can be extended to infinitely large distances from
the cathode, with the ion and electron densities tending to
the same constant value and the potential also tending to a
constant value. In modern terms, one can say that the ion–
electron sheath solution can be asymptotically matched with a
solution describing the quasi-neutral plasma, in contrast to the
ion sheath solution which neglects the presence of electrons
and therefore cannot be matched with a plasma solution. This
feature of the ion–electron sheath model and its most important
consequence, the ‘Bohm criterion’, were described in 1949 by
Bohm [12]. Indications in the same direction can be found
already in the 1929 paper by Langmuir [4]; e.g. the first
paragraph on p 976 and fourth paragraph on p 980.

Obviously, there is no sense in talking of a sheath edge
in the Bohm model. Therefore, the definition of the axis x

used up to now needs to be modified: in the current section
and in the next one we will assume that the origin is positioned
at the electrode (or wall) surface and the axis is directed from
the electrode into the plasma. (Note that the ion velocity vi

and the ion current density ji become negative.) The boundary
condition at the electrode surface is the same as in (2):

ϕ = −U. (19)

Boundary conditions on the plasma side of the sheath, i.e. at
infinitely large x, read

ni → ns, ne → ns, vi → −vs, ϕ → 0,

(20)

where ns is the density of the charged particles on the plasma
side of the sheath, vs = (−ji)/ens is the speed with which
the ions leave the plasma and enter the sheath, the potential
on the plasma side of the sheath is set equal to zero. (The
latter means that n0 = ns.) The words ‘infinitely large x’ have
here the conventional theoretical-physics meaning: boundary
conditions (20) apply at distances from the electrode much
larger than the scale of thickness of the sheath but much smaller
than a characteristic length scale in the quasi-neutral plasma.

Note that some authors, including Bohm himself, use the
term ‘sheath edge’ in connection with the boundary conditions
(20). This is shorter to write than ‘region on distances from
the electrode much larger than the scale of thickness of the
sheath but much smaller than a characteristic length scale in
the quasi-neutral plasma’, but has proved confusing. We stress
once again that an ion–electron sheath has no definite edge; of
course, one can define a sheath edge as a point where the charge
separation equals 1% (or 3%, 5%, etc), but any such definition
will be arbitrary.

A solution to the stated problem may be found in
quadratures in the same way as the solution to the Child–
Langmuir ion sheath model was found in section 2.1. The
ion velocity may be expressed as

vi = −
√

v2
s − 2eϕ

mi
. (21)

Eliminating from the first equation in (18) (the Poisson
equation) ni and ne in terms of ϕ with the use of the second
equation in (1), equation (21), and the second equation in
(18), one arrives at an equation involving only one unknown
function, ϕ(x), and not involving the independent variable
nor the first derivative. Multiplying this equation by dϕ/dx,
integrating over x and finding the integration constant by taking
into account that dϕ/dx → 0 as ϕ → 0 in accordance with
the last boundary condition (20), one obtains

ε0

2

(
dϕ

dx

)2

= nsmiv
2
s

[(
1 − 2eϕ

miv2
s

)1/2

− 1

]

+ nskTe

(
exp

eϕ

kTe
− 1

)
. (22)
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Solving this equation for dx/dϕ and integrating over ϕ, one
can obtain a solution in quadratures. Without elaborating this
point, we note the following. At large x, where ϕ is small,
the right-hand side of equation (22) may be expanded in ϕ and
assumes the form

nse
2

2

(
1

kTe
− 1

miv2
s

)
ϕ2 + · · · . (23)

The left-hand side of equation (22) is positive, so the first term
in (23) must be non-negative. One comes to the inequality

vs �
√

kTe

mi
. (24)

Thus, the ions leave the quasi-neutral plasma and enter the
sheath with a velocity equal to or exceeding uB = √

kTe/mi;
the famous Bohm criterion [12].

There is a huge number of works dedicated to the Bohm
criterion and, in more general terms, different aspects of the
transition from a quasi-neutral plasma to a collisionless sheath;
see reviews [5, 13] and references therein. The most reliable
results have been obtained by means of the method of matched
asymptotic expansions, which is a standard tool for solving
multi-scale problems (e.g. [14–19]) and represents a powerful
alternative to intuitive approaches. Except in a few artificial
cases, the Bohm criterion is satisfied with the equality sign.
To a first approximation, the plasma-sheath transition is rather
simple: the above-described Bohm solution for the sheath can
be directly matched with a solution describing the quasi-neutral
plasma and the Bohm criterion with the equality sign plays the
role of a boundary condition for both the sheath and plasma
solutions. The situation turns more complex in a second
approximation: an intermediate region separating the sheath
and the quasi-neutral plasma must be introduced [20–22].
The necessity of such a region is clear from the fact that the
ion velocities in the sheath and in the quasi-neutral plasma
approach the Bohm velocity from above and, respectively,
below; hence a direct matching is impossible beyond the first
approximation and an intermediate region must be introduced
where the ions moving to the electrode pass the Bohm velocity
or, as one can say (e.g. [13] and references therein), the ion
acoustic sound barrier is broken.

We consider at the moment the case of a moderately
negative sheath on an electrode or an insulating wall, where
the sheath voltage U is of the order of kTe/e the electron
temperature measured in electronvolts. Variations of potential
in the sheath are also of the order of kTe/e. The charged-
particle densities are of the order of ns. Equation (22) with vs

replaced by the Bohm velocity uB may be written as

λ2
D

2

(
e

kTe

)2 (
dϕ

dx

)2

=
(

1 − 2eϕ

kTe

)1/2

− 2 + exp
eϕ

kTe
,

(25)

where λD = (ε0kTe/n0e
2)1/2 is the Debye length evaluated on

the plasma side of the sheath. Assuming that in the sheath the
term on the left-hand side of this equation is of the same order
of magnitude as the terms on the right-hand side, one finds that
the thickness (length scale) of the sheath is of the order of λD.

The above-described Bohm model is applicable not only
to moderately negative near-electrode and near-wall sheaths
but also to high-voltage near-cathode sheaths, where U �
kTe/e. Hence, the Child–Langmuir model can be derived
from the Bohm model by means of the limiting transition
χ → ∞, where χ = eU/kTe. An investigation of this limiting
transition is of interest in order to better understand errors
introduced by different approximations of the Child–Langmuir
model and to eventually improve the overall accuracy. Such
an investigation, performed by means of the method of
matched asymptotic expansions in [23], revealed two sub-
layers: the ion–electron layer, which is an outer section of
the space-charge sheath where the electron and ion densities
are comparable, and the ion layer, which occupies the bulk of
the space-charge sheath and in which the electron density is
exponentially small compared with the ion density.

Scalings in the ion–electron layer are the same as those in
a moderately negative sheath, i.e. the length scale, the charged-
particle densities and variations of potential are of the orders
of λD, ns, and kTe/e, respectively. Let us estimate orders of
magnitude of parameters in the ion layer. In the ion layer, −ϕ

is of the order of U and considerably exceeds kTe/e; hence
the right-hand side of equation (25) equals (−2eϕ/kTe)

1/2 to
a first approximation and is of the order of χ1/2. Equating the
order of magnitude of the left-hand side of equation (25) to
χ1/2, one finds that the thickness of the ion layer is of the order
of λDχ3/4.

It follows from equation (21) that the ion speed in the ion
layer is of the order of uBχ1/2. Consequently, the ion density
is of the order of nsχ

−1/2. The electron density in the ion
layer, being governed by the Boltzmann distribution (18), is
exponentially small with respect to the large parameter χ .

It follows from the above asymptotic estimates that the
thickness (length scale) of the ion layer substantially exceeds
the thickness of the ion–electron layer. Hence, the ion layer
has a more or less distinct edge. On the other hand, no
unambiguous definition of this edge can be given to an accuracy
better than O(χ−3/4), which is the order of the ratio of the
thickness of the ion–electron layer to the thickness of the ion
layer. The voltage drop in the ion layer is much higher than
that in the ion–electron layer. The ion speed and density in the
ion layer are much higher and, respectively, lower than in the
ion–electron layer. The scale of ion density in the ion layer,
n

(il)
i = nsχ

−1/2, and the length scale δ = λDχ3/4 are related
by the equation

δ =
√

ε0U

n
(il)
i e

, (26)

which is similar to equation (10) and has the same physical
meaning (the thickness of the ion layer is of the order of the
Debye length evaluated in terms of the local ion density and
the electrostatic energy).

The above-described asymptotic structure is shown in
figure 2.

It can be shown on the basis of the above asymptotic
estimates that the ion layer to a first approximation is described
by the Child–Langmuir model, and the (relative) error of
this approximation is of the order of χ−1/2. In other words,
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Figure 2. Asymptotic structure of the collision-free high-voltage
cathode sheath.

terms which are missing from the solution, or are calculated
incorrectly, are of the order of χ−1/2 relative to the leading
terms. It should be stressed that this estimate refers to the
accuracy of the Child–Langmuir model compared with the
Bohm model. In other words, this is just one component of
the overall error, other components being errors inherent to the
Bohm model, e.g. errors originating in the neglect of ion–atom
collisions in the sheath.

3.2. Collision-dominated ion–electron sheath: the
Su–Lam–Cohen model

A theory of collision-dominated space-charge sheaths in a
weakly ionized plasma was developed in 1963 by Su and Lam
[24] and Cohen [25] in connection with a problem of a spherical
electrostatic probe in a quiescent weakly ionized plasma with
constant electron and heavy-particle temperatures and without
ionization and recombination. The work [24] was concerned
with the case of high negative probe potentials and the work
[25] with the case of moderate potentials. These were the
first works on the sheath theory in which matched asymptotic
expansions were applied. Refined asymptotic treatments were
given in [26, 27]. In this section, a summary is given of a
simplified version of the theory which was developed in the
work [28] and is based on the assumptions of cold ions and
Boltzmann-distributed electrons.

A model of a collision-dominated sheath formed by
cold ions and Boltzmann-distributed plasma electrons can
be obtained from the Mott–Gurney model in the same way
as the Bohm model for the collisionless case is obtained
from the Child–Langmuir model. First, the Poisson equation
is supplemented with a term accounting for space charge
contributed by the electrons. Thus, the system of equations
includes the second equation (1) and equations (12) and (18).
Second, the boundary conditions at the edge of the ion sheath
must be replaced by conditions of matching with the quasi-
neutral plasma. These boundary conditions apply at ‘infinitely
large’ values of x, which again means distances from the
electrode much larger than the scale of thickness of the sheath
but much smaller than a characteristic length scale in the quasi-
neutral plasma. In order to derive these conditions, let us

multiply the first equation (18) by dϕ/dx, remove ni by means
of the second equation (1) and equation (12) and ne by means
of the second equation (18) and integrate over x. The resulting
equation may be written as

λ2
D

2

(
e

kTe

)2 (
dϕ

dx

)2

= − x

�
+ exp

eϕ

kTe
+ C5, (27)

where λD = (ε0kTe/n0e
2)1/2 as before and � = n0kTeµi/

(−ji). At large x where the plasma is quasi-neutral, the
left-hand side of this equation is negligible and one finds the
following asymptotic behavior:

ne = n0
x

�
+ · · · , ni = n0

x

�
+ · · · , (28)

ϕ = kTe

e

[
ln

x

�
+ o (1)

]
. (29)

As usual, dots designate terms of higher orders of smallness in
the asymptotic parameter; in this case, in the large parameter
x and o(1) designate terms that tend to zero at large x.

Expressions (28) and (29) are substantially different
from the corresponding expressions in the Bohm model,
equation (20): while the (first-approximation) solution in
a collisionless sheath tends at large x to constant values,
in a collision-dominated sheath it manifests an algebraic
asymptotic behavior for charged-particle densities and a
logarithmic behavior for the potential. In other words,
parameters of a collisionless plasma at distances from the
electrode surface much larger than the scale of thickness of the
sheath but much smaller than a characteristic length scale in the
quasi-neutral plasma are constant to a first approximation, and
just these values are implied when one speaks of the density
of the charged particles and potential on the plasma side of the
sheath or the velocity with which the ions leave the plasma
and enter the sheath. Nothing of the latter makes any sense in
the case of a collision-dominated sheath. On the other hand,
an algebraic or logarithmic intermediate asymptotic behavior
is quite common in multi-scale problems and the method of
matched asymptotic expansions is very well suited for such
cases, so a theory of collision-dominated sheaths can be readily
developed.

Since there is no way to unambiguously identify a
potential on the plasma side of the sheath, a voltage drop in the
sheath cannot be unambiguously defined. It is appropriate then
to define a combined voltage drop across the sheath and the
adjacent plasma region where the ion flux to the cathode surface
is generated. In other words, let us choose a reference point
for the potential at the external boundary of the plasma region
adjacent to the sheath where the ion flux to the cathode surface
is generated. Then n0 signifies the charged-particle density
at this boundary and U appearing in the boundary condition
(19) signifies a combined voltage drop across the sheath and
the adjacent plasma region. As an example, let us consider
a spherical electrostatic probe in a quiescent weakly ionized
plasma with constant electron and heavy-particle temperatures
and without ionization and recombination, treated in [24, 25].
In this example, the ion current to the probe is generated
in the whole volume of the quasi-neutral plasma up to the
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undisturbed plasma at distances from the probe much larger
than the probe radius. Then n0 represents the charged-particle
density in the undisturbed plasma and ϕ = 0 corresponds
to the plasma potential. The near-cathode plasma region in
arc discharges can be considered as another example. In this
example, the ion current to the cathode is generated in the
so-called ionization layer (e.g. [6] and references therein),
which is a region of quasi-neutral plasma where deviations
from ionization equilibrium are localized. It is the ionization
layer that plays a role of the plasma region adjacent to the
sheath in this example, so n0 represents the charged-particle
density on the plasma side of the ionization layer and U is the
combined voltage drop in the sheath and in the ionization layer.

The ion current to a negative electrode generated
in a collision-dominated quasi-neutral plasma is governed
by ambipolar diffusion and may be evaluated as ji =
−eDadnc/dx, where Da is the coefficient of ambipolar
diffusion which in the case of cold ions is related to the
ion mobility by the formula Da = kTeµi/e and dnc/dx is
the derivative of the charged-particle density evaluated in the
quasi-neutral approximation at the electrode surface. Now
one can understand the meaning of the length � appearing
in equations (27)–(29): � = n0(dnc/dx)−1, i.e. it is a scale of
thickness of the plasma region adjacent to the sheath where
the ion flux to the cathode surface is generated. (In the
above-mentioned examples, � equals the probe radius or,
respectively, the ionization length [6].) Note that λD =
(ε0kTe/n0e

2)1/2 has in this section the meaning of Debye
length evaluated at the external boundary of the plasma region
adjacent to the sheath where the ion flux to the cathode surface
is generated. The applicability of the present analysis is
obviously subject to the inequality λD � �, which justifies
a division of the near-electrode region into a quasi-neutral
plasma and a space-charge sheath. On the other hand, λD must
be not too small so that the sheath thickness is much larger
than the mean free paths of the charged particles.

We consider at the moment the case of a moderately
negative near-electrode or near-wall sheath, where the sheath
voltage is of the order of kTe/e. Variations of potential in the
sheath are also of the order of kTe/e. Assuming that in the
sheath the term on the left-hand side of equation (27) and
the first term on the right-hand side are of the same order of
magnitude, one finds that the scale of thickness of the sheath
is λ

2/3
D �1/3. Assuming that the second term on the right-hand

side of equation (27) is in the sheath of the same order as the
first term and the term on the left-hand side, one finds that the
potential distribution in the sheath may be represented as

ϕ = −kTe

e

(
2

3
ln

�

λD
+ �

)
, (30)

where � = �(X) is a dimensionless function of the stretched
coordinate X = x/λ

2/3
D �1/3.

The electric field in the sheath is of the order of
kTe/eλ

2/3
D �1/3. It follows from the second equation (1)

and equation (12) that ni in the sheath is of the order of
n0(λD/�)2/3. It follows from equation (30) that exp eϕ

kTe
is of

the order of (λD/�)2/3; hence ne in the sheath is of the order
of n0(λD/�)2/3, i.e. comparable to ni as it should be.

The function �(X) is governed by equation (27) written
in the dimensionless form

1

2

(
d�

dX

)2

= −X + e−� + C6, (31)

where C6 = C5(�/λD)2/3. Boundary conditions are obtained
from (19) and (29):

X = 0 : � = �w, X −→ ∞ : � = − ln X + o(1),

(32)

where �w is related to U by the formula

U = 2

3

kTe

e
ln

�

λD
+

kTe

e
�w (33)

and should be treated as a given positive parameter.
The boundary-value problem (31), (32) may be

conveniently solved as follows. The constant C6 is removed by
introducing the new independent variable X̃ = X − C6. After
this, equation (31) is solved for d�/dX̃ and the obtained first-
order differential equation is integrated numerically with the
second boundary condition (32). Note that the function �(X̃)

is universal, i.e. does not depend on any control parameters.
A graph of this function can be found in [28] and a number of
subsequent works (e.g. [29, 30]). After the function �(X̃) has
been determined, the constant C6 is found: C6 = −X̃w, where
X̃w is the value of the argument at which this function attains
the value �w, i.e. the root of the equation �(X̃) = �w.

As discussed above, U represents a combined voltage
drop across the sheath and the adjacent plasma region and
there is no way to unambiguously separate contributions of the
sheath and the adjacent plasma region. On the other hand,
the first term on the right-hand side of equation (33) involves
parameters � and n0, characterizing the plasma region, while
the second term involves parameter �w, characterizing the
potential distribution in the sheath. Therefore, it is natural to
assume, by convention, that these terms represent contributions
of, respectively, the plasma region and the sheath.

The above analysis applies to the case of a moderately
negative near-electrode or near-wall sheath, where the sheath
voltage kTe�w/e is comparable to kTe/e, i.e. �w is of order
unity. The asymptotic nature of the results, including the
scalings, remains the same also if a finite ion temperature
and deviations of the electron density from the Boltzmann
distribution (i.e. transport of the electrons) are taken into
account [25, 27].

In the case of a high-voltage near-cathode sheath, where
the sheath voltage is considerably higher than kTe/e, the sheath
includes two sub-layers: the ion–electron layer and the ion
layer. Scalings in the ion–electron layer are the same as
those in a moderately negative sheath, i.e. the length scale,
the charged-particle densities and variations of potential are
of the orders of, respectively, λ

2/3
D �, n0(λD/�)2/3 and kTe/e.

Let us estimate orders of magnitude of parameters in the ion
layer. For brevity, the consideration is restricted to the case
where the sheath voltage substantially exceeds not only kTe

e

but also kTe
e

ln �
λD

. In this case, the voltage drop in the adjacent
plasma region may be neglected compared with the sheath

8
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voltage and the latter to a first approximation equals U . In the
ion layer, −ϕ is of the order of U . Assuming that the term
on the left-hand side of equation (27) and the first term on the
right-hand side are of the same order of magnitude in the ion
layer, one finds that the thickness of the ion layer is of the
order of λ

2/3
D �1/3χ2/3. The electric field in the ion layer is

of the order of U/λ
2/3
D �1/3χ2/3. It follows from the second

equation (1) and equation (12) that ni in the ion layer is of the
order of n0(λD/�)2/3χ−1/3. The electron density in the ion
layer, being governed by the Boltzmann distribution (18), is
exponentially small.

It follows from the above asymptotic estimates that the
thickness (length scale) of the ion layer substantially exceeds
the thickness of the ion–electron layer. Hence, the ion layer
has a more or less distinct edge; however no unambiguous
definition of this edge can be given to an accuracy better
than O(χ−2/3). The voltage drop in the ion layer is much
higher than that in the ion–electron layer. The electric field
and the ion density in the ion layer are much stronger and,
respectively, much lower than those in the ion–electron layer.
The scale of ion density and the length scale in the ion
layer are related by equation (26), the difference being that
n

(il)
i = n0(λD/�)2/3χ−1/3 and δ = λ

2/3
D �1/3χ2/3 in the present

case.
It can be shown on the basis of the above asymptotic

estimates that the ion layer to a first approximation is described
by the Mott–Gurney model, the error of this approximation
being of the order of χ−1. Except for different scalings and the
Mott–Gurney model appearing in place of the Child–Langmuir
model, all above are similar to what happens in the case of a
collision-free high-voltage sheath and are schematically shown
in figure 2.

The above-described ion–electron and ion layers also
appear in the treatments [24, 26], in which a theory of high-
voltage near-cathode sheaths with account of a finite ion
temperature and transport of the electrons was developed in
connection to spherical electrostatic probes. The ion drift in
a strong electric field occurring in the ion layer significantly
exceeds the ion diffusion caused by the ion pressure gradient;
therefore the ion layer in the analysis [24, 26] is described by
the Mott–Gurney model (with the curvature effect taken into
account). Additionally, an ion diffusion layer adjacent to the
cathode surface appears ‘at the bottom’ of the ion layer. In the
ion diffusion layer, ion diffusion comes into play and the ion
density rapidly falls in the direction of the cathode surface.

4. Advanced models of ion sheaths

Without trying to review all the works concerned with
advanced models of ion sheath, we will consider three topics
here. The first one is fluid modeling of ion sheaths with
an arbitrary degree of collisionality, which spans the whole
range of conditions from a collisionless sheath described by
the Child–Langmuir model to a collision-dominated sheath
described by the Mott–Gurney model. The second topic is
a derivation of high-accuracy boundary conditions for the
Child–Langmuir and Mott–Gurney models. The third topic
is a mathematical interpretation of ion sheath models from the
point of view of modern theoretical physics.

4.1. Ion sheath with arbitrary collisionality

A theory of an electron-free ion sheath with an arbitrary
degree of collisionality (e.g. [31–36]) can be developed in the
framework of the so-called fluid model. A fluid model is based
on treating the ions and the atoms as separate fluids coexisting
with, rather than diffusing in, each other; e.g. [37–39]. The
fluid model is understood to ensure a sufficient accuracy in
applications and is widely used in modeling of low-pressure
gas discharges; e.g. [39] and references therein. In the case of
cold ions, the fluid model of an electron-free ion sheath relies
on equations (1) with the difference that the first equation (1)
is written in the form of an equation of motion of the ion fluid:

mivi
dvi

dx
= −e

dϕ

dx
− evi

µi
. (34)

The term on the left-hand side of this equation describes
the inertia force. If the sheath is dominated by collisions,
this term is minor and equation (34) becomes identical
to the corresponding equation of the Mott–Gurney model,
equation (12). The terms on the right-hand side describe
the electric-field force and a friction force resulting from
elastic collisions of the ions with neutral particles. If the
sheath is collision-free, the second term on the right-hand
side is minor and equation (34) becomes identical to the
corresponding equation of the Child–Langmuir model, first
equation (1). Thus, the fluid model contains the Child–
Langmuir and Mott–Gurney models as limiting cases for the
collision-free and, respectively, collision-dominated sheaths
and describes a smooth transition from one to the other at finite
collisionalities.

Let us assume that the origin x = 0 is positioned at the
sheath edge and the x-axis is directed to the cathode as in
section 2. Then the boundary conditions (2) and (9) remain
applicable.

As above, µi is treated as constant. In this case, the above-
described problem admits a simple analytical solution [36],
which can be conveniently found by treating the electric field
as a new independent variable and vi as an unknown function.
This solution may be written in a universal form:

V = E + e−E − 1, (35)

� = E3

3
− E2

2
+ 1 − Ee−E − e−E, (36)

ξ = E2

2
− E + 1 − e−E, (37)

where the dimensionless variables are defined as

ξ = ex

miµiv
(0)

i

, V = vi

v
(0)

i

, E = − µi

v
(0)

i

dϕ

dx
,

� = − eϕ

miv
(0)2
i

, (38)

with the characteristic ion velocity v
(0)

i = miµ
2
i ji/eε0. The

solution (35)–(37) is parametric, the role of the parameter being
played by the dimensionless electric field E.

The dimensionless coordinate ξ may be interpreted as a
characteristic number of collisions that an ion suffers while
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Figure 3. Solid: solution for the ion sheath with arbitrary degree of
collisionality, equations (35)–(37). Dashed: the Child–Langmuir
solution, equations (39). Dotted: the Mott–Gurney solution,
equations (40).

crossing the distance x. Therefore, solutions that correspond
to the limiting cases of collision-free and collision-dominated
sheaths are obtained from equations (35)–(37) by applying
the limits of small and, respectively, large ξ (or E, which is
equivalent):

V = (3ξ)2/3

21/3
, � = (3ξ)4/3

25/3
, E = (6ξ)1/3. (39)

V =
√

2ξ, � = (2ξ)3/2

3
, E =

√
2ξ . (40)

The second equations in (39) and (40) represent dimensionless
forms of equations (4) and, respectively, (14), i.e. the Child–
Langmuir and Mott–Gurney solutions, as they should.

The solution (35)–(37) is shown in figure 3. Also shown
are solutions that correspond to the Child–Langmuir and Mott–
Gurney models. As expected, the fluid model describes a
smooth transition between the Child–Langmuir and Mott–
Gurney models.

4.2. High-accuracy boundary conditions for the
Child–Langmuir and Mott–Gurney models

There are two sources of errors in the Child–Langmuir
and Mott–Gurney models of electron-free sheath compared
with the corresponding models taking into account the
presence of the electrons (the Bohm model and, respectively,
the Su–Lam–Cohen model with cold ions and Boltzmann-
distributed plasma electrons): the disregard of the electron
density term of the Poisson equation and the trivial boundary
conditions at the sheath edge. The electron density term of
the Poisson equation in the bulk of the sheath is exponentially
small in the large parameter χ = eU/kTe, so the error caused
by dropping this term also is exponentially small. The error
caused by the trivial boundary conditions is of algebraic order

(χ−1/2 for the Child–Langmuir model and χ−1 for the Mott–
Gurney model), i.e. essentially higher, and it is this error that
limits the accuracy of the model on the whole. It is natural
in such a situation to try to derive more accurate boundary
conditions and thus improve the overall accuracy of the model.

There has been a significant number of works concerned
with this task; see, e.g. [23, 30, 32, 33, 40–48]. Boundary
conditions were found that indeed ensure the exponential
accuracy of the Child–Langmuir and Mott–Gurney models
[23, 43, 46]. Let us start with the Child–Langmuir model. Let
us transform equation (25) to variables normalized in such a
way that they are of order unity in the bulk of the sheath:

1

2

(
d�

dX

)2

= (χ−1 + 2�)1/2 − 2χ−1/2 + χ−1/2e−χ�, (41)

where X = x/λDχ3/4, � = −ϕ/U . The right-hand side of
equation (41) contains three terms which are small at large
χ , all of them of different orders of smallness. The simplest
model of an ion layer is obtained by dropping all the three
terms, i.e. by retaining only the term (2�)1/2. One can readily
see that this approximation corresponds to the original Child–
Langmuir model, in which the ion velocity and electric field
at the edge of the ion layer are neglected as well as the voltage
drop in the ion–electron layer. The most accurate model is
obtained by dropping only the last term on the right-hand
side of equation (41), which is exponentially small, while
retaining the other two terms, which are small algebraically.
The resulting equation reads after transformation to the original
variables

λ2
D

2

(
e

kTe

)2 (
dϕ

dx

)2

=
(

1 − 2eϕ

kTe

)1/2

− 2. (42)

This equation, which coincides with equation (25) without
the last term on the right-hand side, describing the electron
density, represents the desired exponential-accuracy model of
an ion layer. The procedure of its derivation is equivalent to
asymptotic matching of a solution describing the region where
−ϕ � kTe/e, i.e. the ion layer, with a solution describing the
region where −eϕ/kTe is of order unity, i.e. the ion–electron
layer.

Let us recast the exponential-accuracy model (42) into
a form of the Child–Langmuir model with new (non-trivial)
boundary conditions at the edge of the ion layer (electron-free
sheath). First, one must define what is the edge of the ion layer
in this new model; for example, it can be associated with a given
value of the electric field, or the potential, or the ion velocity.
A natural definition which is usual in multi-scale asymptotic
methods is obtained by assuming that the model is used in the
whole region where its solution exists; thus the edge of the ion
layer is a point at which the ion-layer solution breaks down.
A solution to equation (42) exists provided that the right-hand
side of this equation is non-negative, i.e. at ϕ � −3kTe/2e,
and breaks down at a point where ϕ described by this solution
reaches the value −3kTe/2e or, in other words, where the
electric field described by this solution vanishes. It follows
from equation (21) that vi = −2uB at this point. Thus, the

10



Plasma Sources Sci. Technol. 18 (2009) 014005 M S Benilov

above definition results in the following boundary conditions
for an ion-layer solution at the edge of the ion layer:

dϕ

dx
= 0, vi = −2uB, ϕ = −3

2

kTe

e
. (43)

Boundary conditions (43) admit a simple interpretation
shown in figure 2: the ions are accelerated in the ion–electron
layer from the Bohm velocity, vi = −uB, on the plasma side of
the ion–electron layer, to twice the Bohm velocity, vi = −2uB,
at the edge of the ion layer; the voltage drop in the ion–electron
layer is 3

2
kTe
e

. We stress that these boundary conditions have a
merely illustrative purpose; they have been obtained with the
use of an extrapolation (the ion-layer solution loses its validity
before the electric field described by this solution vanishes)
and do not amount to assuming that there is a real physical
point at which dϕ/dx = 0 and vi = −2uB (of course, no such
point exists: the electric field at a point where vi = −2uB is
not exactly zero; however it is much smaller than the electric
field inside the ion layer).

One can readily check that the Child–Langmuir
equations (1) jointly with boundary conditions (43) are exactly
equivalent to the exponential-accuracy model (42). In other
words, boundary conditions (43) indeed ensure the exponential
accuracy of the Child–Langmuir model. A further discussion
of the exponential-accuracy model of a collision-free ion layer
and a comparison of its results with exact results as well as
results given by various approximate models can be found
in [46].

An exponential-accuracy model for a collision-dominated
ion layer formed by cold ions in a weakly ionized plasma
may be developed in a similar way [43]. If the frequency
of collisions ion–atom does not depend on velocity and the
ion mobility may be treated as constant, then the exponential-
accuracy model is equivalent to the Mott–Gurney model with
the following boundary conditions at the edge of the ion layer:

dϕ

dx
= 0, ϕ = −2

3

kTe

e
ln

�

λD
− 1.0082

kTe

e
. (44)

The first boundary condition represents a definition of an edge
of the ion layer: it is once again defined as a point where
the extrapolation of the ion-layer electric field vanishes. The
first and second terms on the right hand-side of the second
boundary condition may be interpreted as the voltage drop in
the plasma region adjacent to the sheath where the ion flux to
the cathode surface is generated and, respectively, the voltage
drop in the ion–electron layer. The numerical coefficient
in the second term was determined by means of numerical
calculations [43, 47] and is quite close to unity, meaning that
the voltage drop in the collision-dominated ion–electron layer
is very close to kTe/e.

The above-described models ensure the accuracy of
several per cent for sheath voltages exceeding kTe/e three or
four times or more. Since the voltage drop across a sheath on a
floating surface is no smaller than approximately 4kTe/e, these
models are accurate enough for all near-cathode and near-wall
sheaths.

4.3. Mathematical sense of Child–Langmuir type models
from the point of view of modern theoretical physics

The mathematical sense of Langmuir’s model of an electron-
free ion sheath with the ion velocity, electric field and potential
vanishing at the sheath edge became clear after the method
of matched asymptotic expansions was developed in the
1950s–1960s and applied to the problem of plasma-electrode
transition: the model perfectly fits into the formalism of
matched asymptotic expansions in the large parameter equal to
the ratio of the sheath voltage to the electron temperature, and a
solution to this model represents the first term of an asymptotic
expansion valid in the bulk of the space-charge sheath. Note
that a similar statement can be made concerning Bohm’s model
of a collisionless ion–electron sheath [12]: it perfectly fits into
the formalism of matched asymptotic expansions in the small
parameter equal to the ratio of the Debye length to the ion mean
free path, and Bohm’s solution represents the first term of an
asymptotic expansion describing a collisionless space-charge
sheath with cold ions on a moderately negative surface. Such a
fit is a manifestation, on the one hand, of the power of physical
intuition of Langmuir and Bohm, and on the other hand, of the
capability of the method of matched asymptotic expansions
to reveal and exploit the underlying physics of layers of fast
variations, such as viscous boundary layers in fluid mechanics,
shock waves in gas dynamics, skin layers in electromagnetic
theory or, in this case, different layers constituting a space-
charge sheath or separating a sheath from the plasma.

The method of matched asymptotic expansions has been
widely used for treating problems with layers of fast variation
in different areas of theoretical physics, in particular, in fluid
mechanics. One of the very important advantages of this
method with respect to intuitive methods is that the method
of matched asymptotic expansions provides an estimate of
accuracy of a solution. Solutions obtained by means of this
method are smooth, in contrast to solutions given by intuitive
methods, which inevitably suffer discontinuities, or have
discontinuous derivatives, at boundaries separating different
regions. Another very important advantage is that this is a
regular procedure in the sense that the results do not depend
on the researcher’s taste, in contrast to intuitive methods which
usually lead different researchers to different solutions of the
same problem.

In the course of the procedure of the method of matched
asymptotic expansions, all mathematical simplifications which
are justified by the underlying physics will be duly revealed
and exploited. In other words, the method of matched
asymptotic expansions produces relevant physical information
at a minimal effort; thus the idea that this method is
unnecessarily heavy mathematically, which is encountered in
some works on the theory of collisionless and moderately
collisional space-charge sheaths, is unjustified.

Another sometimes encountered idea is that the method
of matched asymptotic expansions requires a great deal of
mathematical expertise. This idea is also unjustified: one can
readily verify by inspecting textbooks (e.g. [14–19]) that the
formalism of this method is not complex and does not require
specific mathematical skills. Equally unjustified is the idea that
the method of matched asymptotic expansions produces results
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which are not robust enough for engineering purposes: such
results always have a distinct physical sense and, if reduced
to the same level of description, are no more difficult to use
than results provided by any minimally reasonable intuitive
approach. In fact, asymptotic results are usually easier to use,
since they account for only effects that are pertinent at the level
of accuracy being adopted, while intuitive results in most cases
take into account some effects which are below the adopted
level of accuracy and therefore unnecessarily complicate the
results.

As far as space-charge sheaths are concerned, the method
of matched asymptotic expansions plays a dominant role in
the theory of collision-dominated sheaths. The situation in
the theory of collisionless and moderately collisional sheaths
for some reason is different: the intuitive approach based
on patching (i.e. ‘gluing’ solutions at one point rather than
asymptotically matching them) is still in use, and a heated
discussion around the two methods has unfolded during the
last decade, e.g. [49–52] and references therein.

Without trying to follow the above-mentioned discussion,
we note that the most instructive way of comparing different
methods is to apply them to several clear-cut examples. In [46],
results given by the Child–Langmuir model, patching and the
method of matched asymptotic expansions were compared in
three examples. One of the examples was a collision-free dc
sheath, treated in sections 3.1 and 4.2. The second example
was a matrix sheath. The third example was a high-voltage
collisionless capacitive RF sheath, driven by a sinusoidal
current source, with the ions responding to the time-averaged
electric field and the inertialess electrons responding to the
instantaneous electric field. (An elegant analytical solution
to this problem was given in [53–55]; note that an analytical
solution for the case of a collision-dominated RF sheath was
given in [56].)

In all three examples, the Child–Langmuir model and
patching provide results which are accurate to the first
approximation in the sheath voltage but not to the second,
irrespective of details of patching. In order to illustrate this
statement, let us turn to the example of an RF sheath. In [46],
this problem was treated by means of the method of matched
asymptotic expansions with an asymptotic large parameter κ

equal to the fourth power of the dimensionless amplitude of the
driving current. A two-term expansion of the dimensionless
(normalized by kTe/e) sheath voltage was found, with the first
and second terms being of the orders of κ and κ1/2, respectively.
The first term represents an analogue for an RF sheath of
the Child–Langmuir solution for a dc sheath. The solutions
[53, 55] and [54] correctly describe the first term, i.e. the Child–
Langmuir type solution, but not the second. Furthermore, the
order of the second term in the solution [53, 55] is incorrect:
χ3/4 instead of χ1/2. It follows that the Child–Langmuir
type solution and the solution [54] are more accurate than the
solution [53, 55]: terms missing from the Child–Langmuir type
solution and calculated incorrectly in the solution [54] are of
the order of κ1/2, which is lower than the order of the terms
calculated incorrectly in the solution [53, 55] (κ3/4).

In all the three examples, the method of matched
asymptotic expansions ensures a higher or considerably higher

asymptotic accuracy than the Child–Langmuir model and
patching. The same is true for numerical accuracy, as
was demonstrated in [46] by means of a comparison with
exact solutions (in the cases of dc and matrix sheaths)
and the numerical simulations [57] (in the case of an
RF sheath).

These and other examples clearly show that intuitive
considerations can hardly improve the quality of results beyond
those given by simple Child–Langmuir type models. If not
satisfied with a simple Child–Langmuir type model, one should
better resort to a standard tool, i.e. to the method of matched
asymptotic expansions, or alternatively directly computed
solutions (but one has to recognize that in the latter case the
number of parameters is too large to obtain simple analytic
approximations). They would give more accurate and reliable
results than intuitive considerations.

One more comment on Bohm’s 1949 paper [12] seems
to be in place. Authors of the recent work [52] assumed that
Bohm was trying to patch the plasma and sheath solutions
rather than to asymptotically match them and found on these
grounds misinterpretations and contradictions in Bohm’s work.
One should admit that not all aspects of Bohm’s work [12] are
presented equally clearly; in particular, the term ‘sheath edge’
in the context on an ion–electron sheath model is appropriate
for patching and not matching. On the other hand, there are
clear indications towards matching in the text of the paper
[12], for example, on p 79: ‘... plasma fields, compared
with sheath fields, are so small that they produce negligible
changes of potential over distances many sheath thicknesses
in extent. To a first approximation, therefore, it may be
assumed that the plasma potential is constant, at least in so far
as the processes involved in sheath formation are concerned.
However, the plasma fields cannot be completely neglected,
because over the long distances that they cover they are able to
accelerate positive ions up to appreciable energies...’. These
words reflect the very essence of the asymptotic multi-scale
approach.

The clearest indication of the intentions of a theoretical
physicist comes from his formulae. It is mentioned above
that the solution [12] without a single change represents the
first term of an asymptotic expansion describing a collisionless
space-charge sheath with cold ions on a moderately negative
surface. If Bohm’s solution is correct from the point of
the method of matched asymptotic expansions and contains
misinterpretations and contradictions from the point of view
of patching, is it not legitimate to assume that Bohm aimed
at—and succeeded in—what is called today matching rather
than patching?

Bohm’s paper [12] was written before multi-scale
asymptotic methods were developed. The term ‘sheath
edge’, while being misleading in the framework of Bohm’s
model of an ion–electron sheath, is relevant to Langmuir’s
model of an electron-free ion sheath (see discussion in
section 3.1), and this may have influenced Bohm. If this term
is replaced by ‘region on distances from the electrode much
larger than the local Debye length but much smaller than a
characteristic length scale in the quasi-neutral plasma’, then the
corresponding statements in [12] will become consistent and
appropriate.
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5. Conclusions

We have tried to trace the footprint of the Child–Langmuir
model of an electron-free ion sheath with the ion velocity,
electric field and potential vanishing at the sheath edge. It is
no exaggeration to say that this model gave the origins of the
modern theory of near-electrode and near-wall space-charge
sheaths and still remains the most widely used model of a
collisionless near-cathode sheath.

From the point of view of modern theoretical physics, the
ion sheath model perfectly fits into the formalism of the method
of matched asymptotic expansions and represents the first term
of an asymptotic expansion in the large parameter equal to
the ratio of the sheath voltage to the electron temperature,
describing the bulk of the space-charge sheath. The method of
matched asymptotic expansions has given the most accurate
and reliable results in the analytical theory of sheaths and
sheath–plasma transition. In particular, it has provided a better
understanding and improvement of the accuracy of the ion
sheath model.
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