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Complex behavior can appear in the modeling of gas
 discharges even in apparently simple
steady-state situations. Time-dependent solvers may fail to deliver essential information in

such cases. One of such cases considered in thiswork is
the 1D DC discharge. The other case is represented by
multiple multidimensional solutions existing in the
theory of DC discharges and describing modes of
current transfer with different patterns of spots on the
cathodes. It is shown that, although some of the
solutions, including those describing beautiful self-
organized patterns, can be computed by means of a
time-dependent solver, in most examples results of
time-dependent modeling are at best incomplete. In
most examples, numerical stability of the time-
dependent solver was not equivalent to physical
stability.
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1. Introduction

DC gas discharges are usually computed by means of

time-dependent solvers: an initial state of a discharge is

specified and its evolution over time is followed until a

steady state has been attained. This is the approach used

by virtually all popular toolkits for computer modeling of

gas discharges, although exceptions exist: e.g., toolkit

Plasimo[1] supports both transient and steady-state

simulations.
One of the limitations of such approach is illustrated by

Figure 1, where results are shown of numerical solution of

one of the simplest problems of gas discharge theory,

namely, of the problem of one-dimensional (1D) DC glow

discharge. The plasma-producing gas is argon at the

pressure of 120 Torr, the interelectrode gap is 0.5mm, the

kinetic and transport coefficients used in the simulations

are specified in Appendix A (note that this work is

concerned with the methodology of computing solutions;

questions related to the experimental realization, such as

the possibility of glow to arc transition at high current

densities shown in Figure 1, are not considered). The points

in Figure 1 represent the current-voltage characteristic

(CVC). These data have been computed with the use of the

Plasma module of COMSOL Multiphysics employed as

illustrated by the DC glow discharge model from its model

library. The simulations in Figure 1 started from a high

value of discharge voltage U and then U was gradually

reduced; each computed steady state served as an initial
(1 of 9) 1600122



Figure 1. CVC of the 1D DC glow discharge in Ar. Points: plasma
module of COMSOL Multiphysics. Solid: plasma module with
control of current. Dotted: stationary solver.
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condition for the computation of the next state. The

convergence was lost shortly before the minimum of the

CVC.

Thus, the straightforward application of the Plasma

module of COMSOL Multiphysics allows one to readily

compute only the abnormal discharge. A more robust code

can be built by adding the possibility of using the discharge

current density j as a control parameter (instead of the

discharge voltageU). Thismay be achieved by supplement-

ing the Plasma module by a boundary condition written

with the use of the ‘‘weak form’’ formulation available in

COMSOL, without expressly introducing a ballast resis-

tance. The solid lines in Figure 1 depict results obtained in

thiswaybystarting fromhighand lowvaluesof the current

density. The results are discontinuous, which is why the

lines are disconnected; as the code has reached the end of

one of the lines, it jumped to the other line.

Presumably, the two solid lines in Figure 1 represent

branches of the same discharge mode which manifests

hysteresis. Such hysteresis is unusual in a 1D DC discharge,

but the alternative – which is the existence of two

disconnected modes – would be unusual as well. It is

desirable to clarify this point.

To this end, a replica of thePlasmamodulewasbuiltwith

the use of the weak form formulation. This formulation

allows one to employ a stationary solver (and also to

introduce some other relevant modifications, in particular,

to more accurately evaluate boundary conditions and the

current density in the calculation domain and at the

boundaries and to remove the restriction that does not

allow the user to set diffusion coefficients of heavy

particles).
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The code built in this way works well for all the

conditions of Figure 1 and the results are depicted by the

dotted line (most of the line coincides with the solid lines

and only a part is visible). One can see that the transition

between low and high currents or, in otherwords, between

subnormal and abnormal discharge is accompanied by

hysteresis occurring in a rather wide current range,

3 kAm�29 j9 9kAm�2. We do not discuss here the

underlying physics because of lack of space and only

mention that a similar hysteresis has been found bymeans

of the stationary solver in the xenon plasma[2]; however,

modeling results not shown here reveal that the disregard

of stepwise ionization does not result in the disappearance

of the hysteresis in Ar, in contrast to what happens for Xe.

This example shows that complexbehavior canappear in

the modeling of gas discharges even in apparently simple

steady-state situations and time-dependent solvers may

fail to deliver essential information in such cases.

Another example of complex behavior is represented by

modes with different patterns of spots on cathodes of DC

discharges. Such modes do not necessarily result from

different physical mechanisms: if a spot or pattern is

unrelated tonon-uniformities of the electrode surface, then

it is a manifestation of self-organization. Hence, self-

consistent theoretical models of current transfer to

cathodes of DC discharges, even the most basic ones,

should admit multiple multidimensional solutions, which

exist at the same discharge current and describe a spotless

mode andmodes with spots or spot patterns; see review.[3]

In the theory of high-pressure DC arc discharges, such

solutions have been computed with the use of stationary

solvers of ANSYS and COMSOL software (e.g., refs.,[4,5–8]

respectively) and a home-made stationary solver.[9] Sta-

tionary solvers of COMSOL Multiphysics have been

employed for computing solutions describing different

modes of current transfer in the theory of DC glow

discharges.[3] On the other hand, some multiple steady-

state solutions describing different modes of current

transfer to electrodes ofDCdischarges have been computed

in the course of time-dependent modeling,[10–14] although

the reported solutions refer to just one current value or a

narrow current range. Note that solutions periodic in time

describing self-organized patterns in DBDs have been

successfully computed by time-dependent solvers; e.g.,

ref.[15]

In this situation, the question if time-dependent solvers

are suitable for investigation of complex behavior ofDC gas

discharges, illustrated by Figure 1, arises again. In other

words, can solutions describing different modes of current

transfer to cathodes of DC discharges be systematically

computed in a wide current range by means of time-

dependent solvers? In addition to being of methodological

interest, this question is relevant for applications, e.g., for

modeling of cathode arc spots. One of the objectives of this
14, 1600122
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work is to try to answer this question, considering as an

example time-dependent solvers of COMSOLMultiphysics.

The other question to be dealt with concerns stability is the

(im)possibility of computing a steady state of a gas

discharge by means of a time-dependent solver a proof of

(in)stability of this state, as is frequently assumed?

In this work, both low-current, cold-cathode DC (glow)

discharges, and high-current, hot-cathode DC (arc) dis-

charges are considered. Note that despite the different

physical mechanisms of electron emission in the two

discharges, thepatternof self-organization is thesame; cf.[3]

The outline of the paper is as follows. Themodels used in

this work and relevant aspects of numerical realization on

the COMSOLMultiphysics platform are briefly described in

Section 2. In Sections 3.1 and 3.2, examples of simulation

results are given for, respectively, high-pressure arc

discharge and glow discharge. A summary and conclusions

are given in Section 4.
2. Models and Numerics

2.1. High-Pressure Arc Discharge

Plasma-cathode interaction in high-pressure DC arc dis-

charges is simulated in this work bymeans of the so-called

modelofnonlinear surfaceheating,whichwasproposed for

the first time apparently in ref.[16] and has become a

standard simulation tool by now; e.g., refs.[17,18] The model

is based on the fact that a very substantial electric power is

deposited by the arc power supply into the near-cathode

space-charge sheath, so the energy flux to the cathode

surface is generated in a very thin near-cathode plasma

layer comprising the space-charge sheath and the adjacent

ionization layer. As a consequence, the plasma-cathode

interaction is to the first approximation unaffected by the

arc column and may be simulated independently.

The procedure may be briefly described as follows. First,

one solves 1D equations describing current transfer

through the near-cathode plasma layer, thus calculating

all parameters of the near-cathode layer as functions of the

local temperature Tw of the cathode surface and of the near-
cathodevoltagedropU. Inparticular, densitiesof theenergy

flux and the electric current from the plasma to the cathode

surface are determined: q ¼ q Tw;Uð Þ and j ¼ j Tw;Uð Þ.
At the second step, distribution of temperature and

potential inside the cathode body and at the surface are

calculated bymeans of solving the thermal-conduction and

current-continuity equations in the cathode. The boundary

conditions at the current-collecting part of the cathode

surface are k@T=@n ¼ q Tw;Uð Þ and s@w=@n ¼ j Tw;Uð Þ,
where k and s are thermal and electrical conductivities

of the cathodematerial,n is adirection locally orthogonal to
Plasma Process Polym 2017, 14, 1600122
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the cathode surface and directed outside the cathode, and

q Tw;Uð Þ and j Tw;Uð Þ are the dependences found at thefirst
step. After the solution has been found, one will know

distributions of the temperature Tw and, consequently, of

all parameters of the near-cathode layer along the cathode

surface. Integrating the distribution of the current density

found in thisway, onewill find the value of the arc current I
corresponding to the specified near-cathode voltage U.

In order to best illustrate the comparison of different

solvers, it is desirable to consider a simple geometry which

admits temperature distributions of different symmetries:

a cathode in the form of a upright cylinder with the top in

contact with the plasma, the bottom being externally

cooled, and the lateral surface being electrically and

thermally insulated.

Numerical results reported in this work refer to arcs

burning in argon and cathodesmade of tungsten. The near-

cathode plasma layer was calculated by means of the

formulas summarized in ref.[19] Data on thermal conduc-

tivity and emissivity of tungsten have been taken from

refs.,[20,21] respectively.
2.2. Glow Discharge

We consider the conventional model of glow discharges,

which comprises equations of conservation of the ions and

the electrons, transport equations for the ions and the

electrons written in the drift-diffusion approximation, and

thePoissonequation. Boundary conditionsat theelectrodes

are written in the conventional form as well: diffusion

fluxes of the attracted particles are neglected compared to

drift; the normal flux of the electrons emitted by the

cathode is related to the flux of incident ions in terms of the

effective secondary emission coefficient, which is assumed

to characterize allmechanisms of electron emission (due to

ion, photon, andexcited atombombardment)[22]; density of

the ions vanishes at the anode; the normal component of

the electric current density vanishes at the insulatingwalls

of the discharge vessel.

Once again, in order to best illustrate the comparison of

different solvers we consider a simple geometry which

admits solutions of different symmetries: the discharge

tube in the form of a upright cylinder with parallel-plane

electrodes and lateral (insulating) wall reflecting imping-

ing charged particles back to the discharge. The latter

amounts to the boundary conditions for the charged

particle densities at dielectric surface being zero normal

derivatives.

Results reported in this work refer to plasmas of xenon

andargon. Thekinetic and transport coefficientsused in the

modelingare specified in thebeginningof Section3.2and in

Appendix A, respectively.
(3 of 9) 1600122olymers.org
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2.3. Numerical Realization

Let us introduce cylindrical coordinates r;f; zð Þ with the z-
axis coincidingwith the axis of the cathode or the discharge

tube (in the cases of arc cathodes or DC glows, respectively).

The boundary-value problems discussed in the preceding

sections admit solutions of different symmetries: a 1D

solution f ¼ f zð Þ, describing the spotless (diffuse) mode of

current transfer to the cathode; axially symmetric, or 2D,

solutions f ¼ f r; zð Þ, describing modes with a spot at the

center of the cathode and/or one or more ring spots; and

three-dimensional (3D) solutions f ¼ f r; f; zð Þ, describing
modes with one or more off-center spots.

The 3D solutions are periodic with respect to the

azimuthal angle. For example, a solution with two spots

at the edge of the cathode has a period of p and can be

computed on the computation domain 0 � f � p=2 with

the boundary conditions of zero derivatives @f=@f at f ¼ 0

and f ¼ p=2. Such reduction of the computation domain, in

addition to loosening the requirements for RAM and CPU

time, also reduces the number of multiple solutions to

which the code can converge: in this example, solutions

with, e.g., one or three spots at the edge of the cathode are

eliminated.Note,however, that theoutcomeofcalculations

is still not unique: sometimes the code converges not to the

desired solutionwith two spots, but to a solutionwith, e.g.,

four, or six, or eight spots, if such solutions exist under

conditions specified.

One of the objectives of this work is to compare

capabilities of time-dependent and stationary solvers of

COMSOL Multiphysics to systematically compute differ-

ent modes of current transfer to cathodes of DC

discharges in a wide current range. To this end, we

attempt to recompute by means of a time-dependent

solver some of solutions which describe different modes

and have been computed in preceding works by means of

the stationary solver.

The boundary condition mentioned in the Introduction

wasused,whichadds thepossibility of running the code for

specified values of the discharge current I, with the

corresponding values of U being found as a part of the

solution jointly with distributions of all parameters

f r;f; zð Þ (we remind that U is the near-cathode voltage

drop in the case of high-pressure arcs and the discharge

voltage in the case of DC glows).

The equations in the cathode in the modeling of plasma-

cathode interaction in high-pressure arc discharges were

solved by means of Heat Transfer in Solids module of

COMSOLMultiphysics.Amodule for computationof current

transfer through thenear-cathodeplasma layerwaswritten

in Fortran. Numerical data on the functions q Tw;Uð Þ and

j Tw;Uð Þ, produced by the latter module, were interpolated

by means of two-dimensional (2D) bi-cubic spline in

MATLAB, which interacted with COMSOL via Livelink.
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Simulations of glow discharge reported in Section 3.2

havebeenperformedwith theuseof themodulesTransport

of Diluted Species and Electrostatics of COMSOL

Multiphysics.
2.4. Stability of Steady States

It is frequently implied that time-dependent solvers

compute states of DC discharges which are stable, so no

special investigationof stability of these states is needed, in

contrast to what happens if a stationary solver has been

employed. However, in reality, the situation is more

complex. First, one could hope (at best) for the computed

solutions tobe stable only against perturbationshaving the

same symmetry towhich the code is adjusted. For example,

states computed by means of an axially symmetric time-

dependent solver may be unstable against 3D perturba-

tions, which are usually just the most dangerous ones.

Second, even if consideration is limited to perturbations

having the symmetry to which the code is adjusted, the

question arises if numerical stability of time-dependent

solvers commonly used in themodeling of gas discharges is

equivalent to physical stability or, in other words, if time-

dependent solvers cancomputeall stable statesandwillnot

compute any unstable state.

Anobjective of thiswork is to try to answer this question.

To this end, results given by time-dependent solvers of

COMSOL Multiphysics will be analyzed in light of

information on stability of different steady states, which

has been obtained in previous works in the framework of

the linear stability theory, analytically and bymeans of the

eigenvalue solver of COMSOL for arc cathodes[23,24] and by

means of the COMSOL eigenvalue solver for axially

symmetric states of DC glows.[25]
3. Results

Multiple steady-state solutions existing in the considered

problems for the same values of the discharge current have

been computed in preceding works bymeans of stationary

solvers. The pattern of these solutions and physics behind

them have been relativelywell understood by now and are

discussed in detail elsewhere; see ref.,[3] where also a

discussion of experimental verification of these solutions

can be found. In this work, the treatment is focused on

which of these solutions can be computed by means of

time-dependent solvers and how the results of these

calculations relate to the known stability properties of the

solutions.

Solid and dotted lines in the figures of this section

represent results obtained by means of time-dependent

and stationary solvers, respectively. Simulations bymeans
14, 1600122
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of time-dependent solvers, if successful, give results

coinciding with those given by the stationary solver;

therefore, there is a dotted line present beneath each solid

line. For example, solid lines a1A and CD in Figure 2 are

superimposed over parts of the dotted lines Ba1A and CDa1.

Each one of the multiple steady-state solutions is a

continuous function of current, although not necessarily

single-valued; a solution may join another solution (a

bifurcation) or turn back but cannot just disappear. For

example, in Figure 2 the solution CDa1 turns back at the

turning point D and joins the solution Ba1A at the

bifurcation point a1 (both points are marked by circles).

Therefore, each dotted line in each figure is continuous and

either represents a loop or is limited by the boundaries of

the figure or by bifurcation points, although some sections

of dotted lines may be invisible because of being super-

imposed by solid lines as mentioned above.
3.1. High-Pressure Arc Discharge

Examples of calculations of different modes of current

transfer to cathodes of high-pressure arc discharge are

shown in Figures 2–4. The pressure of plasma-producing

gas (argon) here is set equal to 1 bar, the cathode radius is

2mm and height 10mm, and the temperature at the

bottom of the cathode is 293K.

The CVC of the diffuse mode and the first 3D mode are

shown in Figure 2.Note that bothmodeswere computedby

the samecode,whichmeans that thediffusemode,which is

1D, was computed in the 3D domain. The 3D mode is
Figure 2. CVC of the diffuse mode (Ba1A) and the first three-
dimensional mode (CDa1) of current transfer to the cathode of a
high-pressure arc discharge. Conditions listed in the beginning of
Section 3.1.
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associated with a spot at the edge of the cathode. The 3D

mode branches off from the diffusemode at the bifurcation

point a1 in the direction of higher currents, then it turns

backward at the turning point D and continues in the

direction of lower currents; see ref.[3] for discussion.

Two series of simulations by means of the time-

dependent solver have been performed as is schematically

indicated by arrows in Figure 1. In the first series,

simulations started from high currents, namely, from state

A belonging to the diffuse mode. As the current was

successively decreased, the time-dependent solver first

continued along the diffuse mode. When the current has

been reduced down to the value corresponding to the

bifurcation point a1, the solver jumped to the 3Dmode and

then continued along it.

The second series of simulations started from state C on

the 3Dmode. As the currentwas successively increased, the

time-dependent solver continued along the 3D mode until

the turning pointD has been reached. At the turning point,

the solver jumped to the diffuse mode and then continued

along it.

Thus, the time-dependent solver is capable of computing

steady states belonging to the section a1A of the diffuse

mode and to the section CD of the 3Dmodewith the spot at

the edge. This behavior conforms to results of stability

analysis: these are the only stable states, as shown

analytically[23] and numerically[24] in the framework of

the linear stability theory. The existence of hysteresis,

suggested by the time-dependent modeling and seen in

Figure 2, agrees with the linear stability theory [23,24] and

the experiment (e.g., ref.[26]).

The lines Ba1A and Ea1GF in Figure 3 depict CVCs of the

diffuse mode and the first 2D mode, respectively. Here, the

diffusemodewas computed in the 2D domain. The state a1

represents the bifurcation point at which the 2D mode

branchesoff fromthediffusemode. The2Dmodecomprises

two branches separated by the bifurcation point: the

branch Ea1, associated with a ring spot at the edge of the

cathode, and the branch a1GF, which is associated with a

spot at the center of the cathode and possesses a turning

point (G). Note that the CVC of the branch Ea1 coincides to

the graphic accuracy with the section Ba1 of the CVC of the

diffuse mode.

Because of the latter, the graphic representation of

different modes seen in Figure 3 is not very clear. A more

illustrative representation is shown in Figure 4, where je is
the current density at the edge of the cathode.

When the simulations started from high currents,

namely, from state A on the diffuse mode (Figures 3a and

4a), the time-dependent solver followed the diffuse mode

till approximately the bifurcation point a1, then jumped

to the branch with a spot on the center and continued

along this branch. When the simulations started from

low currents on the branch with a spot on the center
(5 of 9) 1600122olymers.org



Figure 3. CVC of the diffuse mode (Ba1A) and the first 2D mode (Ea1GF) of current
transfer to the cathode of a high-pressure arc discharge. Time-dependent simulations
(solid) started from high (a) and low (b) currents.
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(state F; Figures 3b and 4b), the time-dependent solver

followed this branch till the turning point G, then jumped

to the diffuse mode and followed it. This behavior

conforms to results on stability of different modes

against 2D perturbations[23,24]: the only 2D steady states

stable against 2D perturbations are those belonging to

the section a1A of the diffuse mode and section FG on the

central-spot branch of the first 2D mode.

On the other hand, the time-dependent solver produced

converged solutions in simulations that started from low

currents on the branch with a ring spot (state E; Figures
3band4b): the solver followed this branch till the end (state

a1) and thencontinuously switched to thediffusemodeand

followed the latter. Furthermore, the time-dependent

solver produced converged solutions also in simulations

that started from low currents on the diffusemode (state B;
Figures 3b and 4b): the solver followed this branch till the

state I¼ 24A, then jumped to the ring-spot branch and

followed it till the bifurcation point a1, and then continu-

ously returned to the diffuse mode and followed the latter.
Figure 4. Graphic representation of the diffuse mode (Ba1A) and the first 2D mode
(Ea1GF) of current transfer to the cathode of a high-pressure arc discharge. je: current
density at the edge of the cathode. Time-dependent simulations (solid) started from
high (a) and low (b) currents.
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This behavior is in clear contradiction

with the linear stability theory: all steady

stateson the ring-spotbranchEa1 and the

section Ba1 of the diffuse mode are

unstable against 2D perturbations.
3.2. Glow Discharge

Once again, in order to best illustrate the

comparison of different solvers, we

consider in this sectiona simple example:

the most basic self-consistent model of

glowdischarge, which comprises a single

ion species (molecular ions) and a single

ionization channel (direct ionization),
with electron kinetic and transport coefficients depending

only on the local electric field (the so-called local-field

approximation). While being relatively simple, this model

nevertheless provides a representative example: an ac-

count of detailed plasma chemistry and non-locality of

electron kinetics results in an increase in the number of

multiple solutions but does not change their pattern.[2]

Results shown in Figures 5 and 6 refer to the plasma-

producing gas being xenon at the pressure of 30 Torr (here

jh i designates the average current density at the cathode

surface). The transport and kinetic coefficients are the same

as in ref.,[27] the effective secondary emission coefficient is

0.33, the interelectrode gap is 0.5mm, the discharge tube

radius is 1.5mm in 2D simulations and 0.5mm in 3D

simulations. The linesBb1b8a8a1Aandb1Ca1Db1 in Figure 5

represent CVCs of the 1D mode and the first 2D mode,

respectively. In the case of glow discharge, each 2D mode

joins the 1Dmode at two bifurcation points; for the first 2D

mode, the bifurcation points are designated a1 and b1. As in

the case of high-pressure arc, the 2D mode comprises two
branches separated by the bifurcation

points: thebranchb1Da1, associatedwith

a ring spot at the edge of the cathode, and

the branch b1Ca1, associated with a spot

at the center.

In contrast to what happens in the

more detailed model to which Figure 1

refers, in this case, the1Dmoderevealsno

retrograde behavior (hysteresis) and

there is no problem in computing it in

the 1D domain by means of the time-

dependent solver in the whole range of

its existence, from A to B (high to low

currents) andB toA (lowtohighcurrents).

The same is true also for computation

performed in the 2D domain, in spite of

this mode being unstable against 2D

perturbations between the bifurcation



Figure 5. CVCs of different modes of DC glow discharge in Xe.
Bb1b8a8a1A: the 1D mode. b1Ca1Db1: the first 2D mode. a8b8: the
eighth three-dimensional mode.
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points a1 and b1.
[25] On the other hand, the time-dependent

solver doesnot allowcomputationof any statebelonging to

the 2D mode.

Lineb8a8 in Figure 5depicts the eighth3Dmode,which is

associated with a pattern of six spots forming a ring, and is

barely distinguishable from the line Bb1b8a8a1A
Figure 6. Graphic representation of the 1D (Ba7A) and seventh 2D
(Ca7D) modes of DC glow discharge in Xe. jc: current density at the
center of the cathode. Time-dependent simulations started from
state D.
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representing the 1D mode. The time-dependent solver

allows one to compute a section of thismode (this section is

shown by the solid line ending with arrows) but not the

mode in the entire range of its existence.

As an example of a higher order 2D mode, the 7th 2D

modeofDCglowdischarge isdepicted inFigure6by the line

Ca7D. Since the CVC of this mode is indistinguishable from

that of the 1D mode, the coordinates jh i; jc
� �

are chosen,

where jc is the current density at the center of the cathode.

Thismodecomprisesbrancheswithacentral spotand three

ring spots inside the cathode (line Ca7) and three ring spots

inside thecathodeandaringspotat theperiphery (Da7). The

time-dependent simulations started fromthe stateDon the

branchassociatedwithapatternwithout a central spot and

then jh iwas increased with a step of 0.02Am�2. As seen in

Figure 6, the time-dependent solver jumped erratically

between the two branches of the seventh 2Dmode until it

finally jumped to the 1Dmode Ba7A and stayed on it. Thus,

the time-dependent solver produces a fragmentary picture:

a patch of solution here and another there, and one would

havedifficulties even in realizing that thepatches belong to

the same mode. Note that results not shown here reveal

that, depending on the step in the average current density,

the time-dependent solvermayalso jumptoothermodesor

stop converging.

If the lateral wall of the discharge tube absorbs (rather

than reflects) the ions and the electrons, the boundary

conditions of zero normal derivatives of the densities of the

charged particle at the wall are replaced with the zero

density conditions. As a consequence, the problemdoes not

admit a 1D solution. Skipping detailed results for lack of

space, we only note the following. The simplest discharge

mode in this case is the 2D mode comprising the (2D)

Townsend discharge at low currents, the subnormal

discharge and discharge with the normal spot at interme-

diate currents, and theabnormaldischargeathighcurrents.

The CVC of this mode is shown in Figure 2 of ref.[25] and is

similar to those computed in previous works by means of

time-dependent solvers (e.g., Figure 1[28] and Figure 2[29]),

except for the small retrograde section connecting the

Townsend and subnormal discharges and denoted a 2ð Þa 3ð Þ

in above-mentioned figure. The time-dependent solver

cannot compute the retrograde section. However, it is able

to compute all the rest of the mode, and this is again in

contradiction with the linear stability theory: there is a

wide current range (a 1ð Þa 4ð Þ in the above-mentioned figure)

where all steady states are unstable against 2D

perturbations.[25]
4. Concluding Remarks

Complex behavior can appear in the modeling of gas

discharges even in apparently simple steady-state
(7 of 9) 1600122olymers.org



Table 1. Kinetic scheme for argon and data used to describe each
process.
Arþ e� ! Arþ þ e� þ e� BOLSIGþ[30,31]

Ar� þ e� ! Arþ þ e� þ e� Equation (8)[32]

Ar�2 þ e� ! Arþ2 þ e� þ e� 9� 10�8T0:7
e e�3:66=Tecm3s�1[33]

Arþ e� ?Ar� þ e� BOLSIGþ[30,31]

Arþ þ Arþ Ar ! Arþ2 þ Ar 2:5� 10�31cm6s�1[33]

Ar� þ Ar� ! Arþ þ Arþ e� 10�9cm3s�1[33]

Arþ2 þ e� ! Ar� þ Ar 5:38� 10�8T�0:66
e cm3s�1[33]

Ar� ! Arþ f 7:00� 108s�1[34]

Ar�2 ! 2Arþ f 3:5� 105s�1[34]

Ar� þ Arþ Ar ! Ar�2 þ Ar 1:0� 10�32cm6s�1[34]

Te in eV.
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situations and time-dependent solvers may fail to deliver

essential information in such cases. One of such cases

considered in this work is the 1D DC discharge in argon;

Figure 1.

The other case is represented by multiple multidimen-

sional solutions existing in the theory of DC discharges and

describing modes of current transfer with different

patterns of spots on the cathodes. We attempted to

recompute bymeans of time-dependent solvers of COMSOL

Multiphysics someofsuchsolutionscomputed inpreceding

works by means of the stationary solver for both glow and

high-pressure arc discharges. Of all the modes considered,

only one could be computed in the whole region of its

existence without gaps by means of the time-dependent

solver: the 1D mode of DC glow discharge in xenon in the

framework of the local-field approximation; line

Bb1b8a8a1A in Figure 5. No states belonging to somemodes

could be computed by means of time-dependent solvers;

e.g., the first 2D mode in glow discharge in xenon, line

b1Ca1Db1 in Figure 5. In all the other cases, the modeling

results are incomplete. An extreme example of the latter

situation is seen in Figure 6: the time-dependent solver has

produced a patchy picture, and one would have difficulties

even inunderstandingwhichpatchbelongs towhichmode.

On the contrary, the stationary solver is capable of

computing all modes in the whole range of their existence

and is, therefore, a tool of choice for investigation of the

whole pattern of solutions in a wide current range. Of

course, there are also numerical aspects not discussed here:

the use of stationary solvers is generally simpler than the

use of time-dependent solvers, since there is more freedom

in the choice of spatial mesh and no necessity to resolve

different time scales.

It is frequently understood that no special investigation

of stability of steady states computed by means of time-

dependent solvers is needed, since time-dependent solvers
Plasma Process Polym 2017,
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compute stateswhich are stable andonly such states (Table

1). The latter proved true in only one of the examples

considered; Figure 2. In all the other cases where linear

stability results are known, time-dependent solvers have

computed some states that are unstable and/or were

unable to compute some stable states. In other words,

numerical stability of time-dependent solvers of COMSOL is

not necessarily equivalent to physical stability. Further-

more, time-dependent solvers cannot give any information

concerning stability against perturbations of symmetries

different from the one to which the solver is adjusted. For

example, 2Dstateswith thespotat thecenterof thecathode

computed by the time-dependent solver in 2D under

conditions of Figure 3a are unstable against 3D perturba-

tions.[23,24] Consequently, conclusions about the stability of

steady states in most cases cannot be drawn solely on the

basis ofwhether these states canbe calculatedusinga time-

dependent solver or not.
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Appendix A
Kinetic and Transport Coefficients for
Modeling Glow Discharge in Argon

The model used for computing results on discharge in

argon shown in Figure 1 accounts for several ionization

channels, several ionic species, and non-locality of

electron transport and kinetics. The system of reactions,

data necessary for calculations, and corresponding

references are summarized in Table 1 (here Te is the

electron temperature related to e the average electron

energy by the usual relation Te ¼ 2e=3). Excited states

higher than 4 s were assumed to decay instantly into the

representative state Ar�; in other words, the total rate of

excitation into higher excited states, which was com-

puted with BOLSIGþ, was included in the source term of

conservation equation of species Ar�.
Mobility and diffusion coefficient of atomic ions Arþ

were evaluated as functions of the reduced electric field by

means of the two-temperature displaced-distribution

theory.[35] Mobility of molecular ions Arþ2 was evaluated

by means of an approximation of the measurements[36]:

mi2 ¼ 7:1� 1021m�1 V�1 s�1 =nn, where nn is the density of

neutral gas. Diffusion coefficient ofmolecular ions Arþ2 was

evaluated by means of Einstein relation with Ti¼ 300K.

Mobility and diffusion coefficient of electrons were
14, 1600122
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evaluated as functions of the average electron energy e
usingBOLSIGþ[30]andcross-sectionsrecommendedinref.[31]

Reaction rates for processes of electron impact ionization

and excitation from the ground state were evaluated in

terms of the Townsend coefficients, which have been

computed in terms of e bymeans of BOLSIGþ[30] and cross-

sections recommended in ref.[31] The effective secondary

emission coefficient of both ion species was set equal to

0.03.Thetransportequations foratomsinexcitedstatesand

excimers were written in the form of Fick’s law. The

diffusion coefficients were set equal to 10�2m2s�1 follow-

ing[37] (note that this valuehas little effect on results,which

is in accordance with ref.[37]).

The model comprises also the differential equation of

conservation of electron energy in the form suggested in

ref.,[30]whichgoverns thedistributionof the average electron

energy �e. The electron energy mobility and electron energy

diffusion coefficient were evaluated in terms of e using

BOLSIGþandcross-sectionsrecommendedinref.,[31] thework

function of the cathode material was set equal to 4eV.

Received: July 1, 2016; Revised: September 16, 2016; Accepted:
September 28, 2016; DOI: 10.1002/ppap.201600122

Keywords: DC discharges; electrodes; gas discharge modeling
[1] J. van Dijk, K. Peerenboom, M. Jimenez, D. Mihailova,
J. van der Mullen, J. Phys. D: Appl. Phys. 2009, 42, 194012.

[2] P. G. C. Almeida,M. S. Benilov, Phys. Plasmas 2013, 20, 101613.
[3] M. S. Benilov, Plasma Sources Sci. Technol. 2014, 23, 054019.
[4] R. B€otticher, W. B€otticher, J. Phys. D: Appl. Phys. 2000, 33, 367.
[5] L. Dabringhausen, O. Langenscheidt, S. Lichtenberg, M.

Redwitz, J. Mentel, J. Phys. D: Appl. Phys. 2005, 38, 3128.
[6] M. S. Benilov, M. Carpaij, M. D. Cunha, J. Phys. D: Appl. Phys.

2006, 39, 2124.
[7] A. Lenef, in Proc. Comsol Users Conference 2006 (Boston, Oct.

22–24, 2006), edited by J. Hiller (COMSOL, ISBN 0-9766792-2-
1, Boston, MA, USA, 2006) pp. 125–130.

[8] A. Bergner, M. Westermeier, C. Ruhrmann, P. Awakowicz,
J. Mentel, J. Phys. D: Appl. Phys. 2011, 44, 505203.

[9] M. S. Benilov, M. D. Cunha, ‘‘On-line tool for simulation of
different modes of axially symmetric current transfer to
cathodes of high-pressure arc discharges, version 3,’’ 2009,
http://www.arc_cathode.uma.pt/tool
Plasma Process Polym 2017, 14, 1600122

� 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.plasma-p
[10] V. A. Shveigert, Tech. Phys. 1993, 38, 384.
[11] R. S. Islamov, E. N. Gulamov, IEEE Trans. Plasma Sci. 1998, 26,

7.
[12] S. T. Surzhikov, Physical and chemical kinetics in gas dynamics

(electronic journal) 2008, 7, in Russian. http://chemphys.edu.
ru/issues/2008-7/articles/464/

[13] M. S. Mokrov, Y. P. Raizer, J. Phys. D: Appl. Phys. 2011, 44,
425202.

[14] J. P. Trelles, Plasma Sources Sci. Technol. 2013, 22, 025017.
[15] T. Callegari, B. Bernecker, J. P. Boeuf, Plasma Sources Sci.

Technol. 2014, 23, 054003.
[16] Bade, W. L., Yos, J. M., Theoretical and Experimental

Investigation of Arc Plasma-Generation Technology. Part II,
Vol. 1: A Theoretical and Experimental Study of Thermionic
Arc Cathodes. Technical Report No. ASD-TDR-62-729 (Avco
Corpora-tion, Wilmington, Mass., USA, 1963).

[17] M. S. Benilov, J. Phys. D: Appl. Phys. 2008, 41, 144001 (30pp).
[18] M. S. Benilov, N. A. Almeida, M. Baeva, M. D. Cunha,

L. G. Benilova, D. Uhrlandt, J. Phys. D: Appl. Phys. 2016, 49,
215201.

[19] M. S. Benilov, M. D. Cunha, G. V. Naidis, Plasma Sources Sci.
Technol. 2005, 14, 517.

[20] Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Clemens, Thermal
Conductivity. Metallic Elements and Alloys, Thermophysical
Properties of Matter, vol. 1. IFI/Plenum, New York-Wash-
ington 1970.

[21] S. W. H. Yih, C. T. Wang, Tungsten: Sources, Metallurgy,
Properties, and Applications. Plenum Press, New York 1979.

[22] Y. P. Raizer, Gas Discharge Physics. Springer, Berlin 1991.
[23] M. S. Benilov, J. Phys. D: Appl. Phys. 2007, 40, 1376.
[24] M. S. Benilov, M. J. Faria, J. Phys. D: Appl. Phys. 2007, 40, 5083.
[25] P. G. C. Almeida, M. S. Benilov, M. J. Faria, J. Phys. D: Appl. Phys.

2011, 44, 415203.
[26] S. Lichtenberg, D. Nandelst€adt, L. Dabringhausen, M. Redwitz,

J. Luhmann, J. Mentel, J. Phys. D: Appl. Phys. 2002, 35, 1648.
[27] P. G. C. Almeida, M. S. Benilov, M. J. Faria, Plasma Sources Sci.

Technol. 2010, 19, 025019 (13pp).
[28] A. Fiala, L. C. Pitchford, J. P. Boeuf, Phys. Rev. E 1994, 49, 5607.
[29] R. R. Arslanbekov, V. I. Kolobov, J. Phys. D: Appl. Phys. 2003, 36,

2986.
[30] G. J. M. Hagelaar, L. C. Pitchford, Plasma Sources Sci. Technol.

2005, 14, 722.
[31] M. Hayashi, NIFS—Data 72 2003.
[32] L. Vriens, A. H. M. Smeets, Phys. Rev. A 1980, 22, 940.
[33] A. N. Bhoj, M. J. Kushner, J. Phys. D: Appl. Phys. 2004, 37, 2510.
[34] G. M. Petrov, C. M. Ferreira, Private communication 2010.
[35] P. G. C. Almeida, M. S. Benilov, G. V. Naidis, J. Phys. D: Appl.

Phys. 2002, 35, 1577.
[36] M. A. Biondi, L. M. Chanin, Phys. Rev. 1954, 94, 910.
[37] L. C. Pitchford, J. Kang, C. Punset, J. P. Boeuf, J. Appl. Phys. 2002,

92, 6990.
(9 of 9) 1600122olymers.org

http://www.arc_cathode.uma.pt/tool
http://chemphys.edu.ru/issues/2008-7/articles/464/
http://chemphys.edu.ru/issues/2008-7/articles/464/

