Università
 degli Studi
 di Padova

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

Invariable generation of permutation groups

Original Citation:

Availability:
This version is available at: 11577/3146540 since: 2016-09-26T15:16:57Z

Publisher:

Published version:
DOI: 10.1007/s00013-015-0749-2

Terms of use.
Open Access
This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

INVARIABLE GENERATION OF PERMUTATION GROUPS

ELOISA DETOMI AND ANDREA LUCCHINI

> Abstract. Let G be a finite permutation group of degree n and let $d=2$ if $G=\operatorname{Sym}(3), d=[n / 2]$ otherwise. We prove that there exist d elements g_{1}, \ldots, g_{d} in G with the property that $G=\left\langle g_{1}^{x_{1}}, \ldots, g_{d}^{x_{d}}\right\rangle$ for every choice of $\left(x_{1}, \ldots, x_{d}\right) \in G^{d}$.

1. Introduction

Following [4] we say that a subset S of a group G invariably generates G if $G=\left\langle s^{g(s)} \mid s \in S\right\rangle$ for each choice of $g(s) \in G, s \in S$. Any finite group G contains an invariable generating set (consider the set of representatives of each of the conjugacy classes).

Several papers deal with the question of bounding the minimal cardinality $d_{I}(G)$ of an invariable generating set for a finite group G together with an analysis of the probability that d independently and uniformly randomly chosen elements of G invariably generate G with good probability (see for example [2], [4], [5], [6], [7], [8], [10], [14]).

Clearly $d_{I}(G)$ is not less than the minimal cardinality $d(G)$ of a generating set of the finite group G. On the other hand, it follows from [7, Proposition 2.5] and [3, Theorem 1] that the difference $d_{I}(G)-d(G)$ can be arbitrarily large. Many results in the literature provide bounds for $d(G)$ in relation with different structural properties of G, so it is an open and interesting problem to which extent results on $d(G)$, the smallest cardinality of a generating set, can be generalized to comparable results on the smallest cardinality $d_{I}(G)$ of an invariable generating set. In this paper we consider the question of bounding the cardinality of an invariable generating set of a permutation group in terms of its degree.

The best bound for the cardinality of a generating set of a permutation group is due to A. McIver and P. Neumann: the so call "McIver-Neumann Half- n Bound" says that if G is a subgroup of $\operatorname{Sym}(n)$ and $G \neq \operatorname{Sym}(3)$, then $d(G) \leq[n / 2]$. This result is stated without a proof in [11, Lemma 5.2] and a sketch of the proof is given in [1, Section 4]. It cannot be improved without imposing more restrictive conditions (for example transitivity) as is shown by

$$
G=\langle(1,2),(3,4), \ldots,(2 m-1,2 m)\rangle \leq \operatorname{Sym}(2 m) .
$$

Despite the fact that the difference $d_{I}(G)-d(G)$ can be quite large, the McIverNeumann Half- n Bound remains true with respect to the invariable generation of finite permutation groups. Indeed we have:

[^0]Theorem 1. Let G be a subgroup of $\operatorname{Sym}(n)$: either $G=\operatorname{Sym}(3)$ and $d_{I}(G)=2$ or $d_{I}(G) \leq[n / 2]$.

2. Preliminaries

If N is a normal subgroup of G, then clearly $d_{I}(G / N) \leq d_{I}(G)$ and we denote by $d_{I}(G, N)$ the difference $d_{I}(G)-d_{I}(G / N)$. When N is a normal abelian subgroup of $G, d_{G}(N)$ denotes the minimal number of generators of N as a G-module.

We collect in the following lemma some basic results on invariable generation.
Lemma 2. Let N be a normal subgroup of a group G.
(1) $d_{I}(G, N) \leq d_{I}(N)$.
(2) If N is abelian, then $d_{I}(G, N) \leq d_{G}(N)$.
(3) If N is a minimal normal subgroup, then $d_{I}(G, N) \leq 1$ if N is abelian and $d_{I}(G, N) \leq 2$ if N is non-abelian.

Proof. Parts (1) and (2) follow from the proofs of [8, Lemma 2.8] and [8, Lemma 2.10], respectively. Part (3) is Theorem 3.1 in [7].

By a wreath product $H \imath \operatorname{Sym}(s)$ we mean the usual semidirect product W of the symmetric group $\operatorname{Sym}(s)$ and the s-fold direct power H^{s} of the group H. The projection of W onto $\operatorname{Sym}(s)$ corresponding to the semidirect decomposition will be denoted by π, the kernel H^{s} of π will be called base subgroup of W. If we consider π as a permutation representation of W, a point stabiliser W_{i} has a direct decomposition

$$
W_{i}=H \times\left(H \imath \operatorname{Stab}_{\operatorname{Sym}(s)}(i)\right) \cong H \times(H \imath \operatorname{Sym}(s-1))
$$

we denote by π_{i} the projection of W_{i} onto the first direct factor H. Following [9] we will use the following definition.

Definition 3. A subgroup G of $W=H \imath \operatorname{Sym}(s)$ is called large if

- $\pi(G)$ is transitive on $\{1, \ldots, s\}$,
- $\pi_{1}\left(G \cap W_{1}\right)=H$.

Note that, since $\pi(G)$ is transitive, the condition $\pi_{1}\left(G \cap W_{1}\right)=H$ is equivalent to have that $\pi_{i}\left(G \cap W_{i}\right)=H$ for all $i \in\{1, \ldots, n\}$.

Lemma 4. Let A be a non-abelian minimal normal subgroup of H and let G be a large subgroup of $H 2 \operatorname{Sym}(s)$. If $A^{s} \cap G \neq 1$, then $A^{s} \cap G$ is a minimal normal subgroup of G.

Proof. Suppose $M=A^{s} \cap G \neq 1$ and let L be a minimal normal subgroup of G contained in M. Since G is large and A is a minimal normal subgroup of H, both M and L are subdirect products of A^{s}. In particular M is a centerless completely reducible group and L is a direct factor of M. On the other hand, $C_{A^{s}}(L)=1$, since L is a subdirect product of A^{s}, hence $C_{M}(L)=1$. Therefore $M=L$.

Lemma 5. Let G be a large subgroup of H 2 $\operatorname{Sym}(s)$.
(1) $d_{I}\left(G, G \cap H^{s}\right) \leq s a+2 b$ where a is the number of abelian factors in a composition series of H and b is the number of non-abelian factors in a chief series of H.
(2) If $u=\max \left\{d_{I}(X) \mid X\right.$ subnormal subgroup of $\left.H\right\}$, then $d_{I}\left(G, G \cap H^{s}\right) \leq$ su.
(3) If A is a minimal normal subgroup of H of order p^{t} for some prime p, then $d_{I}\left(G, G \cap A^{s}\right) \leq s t-1$.

Proof. (1) We consider a chief series of G passing through $G \cap H^{s}$ and we look at the factors X / Y in this series with $X \leq G \cap H^{s}$. By Lemma 4 the number of the non-abelian factors is at most b. The number of the abelian factors is at most sa, since it is trivially bounded by the number of the abelian composition factors of $G \cap H^{s}$. Then we apply part 3 of Lemma 2.
(2) Let $K=\pi_{1}\left(G \cap H^{s}\right)$, and denote by $\tilde{\pi}_{i}$ the restriction of the projection π_{i} to $G \cap H^{s}$, for $i=1, \ldots, s$. As G is large, $K \unlhd H$. Then $d_{I}(K) \leq u$ and, by part 1 of Lemma 2, we get

$$
d_{I}\left(G \cap H^{s}\right) \leq d_{I}(K)+d_{I}\left(\operatorname{ker}\left(\tilde{\pi}_{1}\right)\right) \leq u+d_{I}\left(\operatorname{ker}\left(\tilde{\pi}_{1}\right)\right)
$$

Now $\operatorname{ker}\left(\tilde{\pi}_{1}\right) \unlhd G \cap H^{s}$, hence $\tilde{\pi}_{2}\left(\operatorname{ker}\left(\tilde{\pi}_{1}\right)\right)$ is a normal subgroup of $K=$ $\tilde{\pi}_{2}\left(G \cap H^{s}\right)$, and therefore it is subnormal in H. Then $d_{I}\left(\tilde{\pi}_{2}\left(\operatorname{ker}\left(\tilde{\pi}_{1}\right)\right)\right) \leq u$ and thus

$$
d_{I}\left(\operatorname{ker}\left(\tilde{\pi}_{1}\right)\right) \leq u+d_{I}\left(\operatorname{ker}\left(\tilde{\pi}_{1}\right) \cap \operatorname{ker}\left(\tilde{\pi}_{2}\right)\right) .
$$

By a repeated use of these arguments and the fact that $\cap_{i=1}^{s} \operatorname{ker}\left(\tilde{\pi}_{i}\right)=1$, we deduce that $d_{I}\left(G \cap H^{s}\right) \leq s u$.
(3) Since G is large and A is minimal normal in H, if $G \cap A^{s}=A^{s}$, then $G \cap A^{s}$ is a cyclic G-module. Otherwise, $G \cap A^{s}<A^{s}$, hence $G \cap A^{s}$ has at most st -1 abelian composition factors, and thus $d_{G}\left(G \cap A^{s}\right) \leq s t-1$. Therefore, by Lemma $2, d_{I}\left(G, G \cap A^{s}\right) \leq d_{G}\left(G \cap A^{s}\right) \leq s t-1$.

Let G be a subgroup of $H \imath \operatorname{Sym}(s)$. If U is an $\mathbb{F}_{p} H$-module, then $V=U^{s}$ can be viewed as an $\mathbb{F}_{p} G$-module by setting

$$
\left(v_{1}, \ldots, v_{s}\right)^{\left(h_{1}, \ldots, h_{s}\right) \sigma}=\left(v_{1 \sigma}^{h_{1 \sigma}}, \ldots, v_{s \sigma}^{h_{s \sigma}}\right),
$$

where $\left(v_{1}, \ldots, v_{s}\right) \in V$ and $\left(h_{1}, \ldots, h_{s}\right) \sigma \in G$.
Lemma 6. Let G be a large subgroup of $H \imath \operatorname{Sym}(s)$ and let U be an $\mathbb{F}_{p} H$-module. For any $\mathbb{F}_{p} G$-submodule W of $V=U^{s}$ we have $d_{G}(W) \leq \frac{d s}{2}$, where d is the dimension of U over \mathbb{F}_{p}.
Proof. Reverting to additive notation, we write $V=\sum_{1 \leq i \leq s} U_{i}$. Since $\pi(G)$ is transitive, there exists an element $g \in G$ such that $\pi(g)$ is fixed-point-free on $I=\{1, \ldots, s\} ; \pi(g)$ has t orbits I_{1}, \ldots, I_{t} on I with $t \leq\left[\frac{s}{2}\right]$. We can view V as $\mathbb{F}_{p}[x]$-module, x acting as g does: V is then the direct sum of the $\mathbb{F}_{p}[x]$-submodules $\tilde{U}_{r}=\sum_{i \in I_{r}} U_{i}, 1 \leq r \leq t$ which have at most d generators each, so that the $\mathbb{F}_{p}[x]$ module V is m-generated for some $m \leq \frac{d s}{2}$; as $\mathbb{F}_{p}[x]$ is a principal ideal domain, the same is true for every submodule. Finally, if W is an $\mathbb{F}_{p} G$-submodule of V, any set of $\mathbb{F}_{p}[x]$-generators of W is also a set of $\mathbb{F}_{p} G$-generators.

3. Proof of Theorem 1

The case where G is primitive follows from a bound on the length of a chief series.

Proposition 7. Let G be a primitive subgroup of degree n. Then $d_{I}(G) \leq 4 \log (n)$.

Proof. By [12, Theorem 10.0.6], the chief length of a primitive subgroup of degree n is at most $2 \log (n)$. By Lemma 2 it follows that $d_{I}(G) \leq 4 \log (n)$.

Corollary 8. Let G be a primitive subgroup of degree $n \neq 3$. Then $d_{I}(G) \leq n / 2$.
Proof. For $n \geq 44$, by Proposition $7, d_{I}(G) \leq 4 \log (n) \leq n / 2$. In the remaining cases, using the list of the primitive permutation groups of small degree, it is straightforward to check that $a+2 b \leq n / 2$ where a in the number of abelian factors and b is the number of non-abelian factors in a chief series of G (and so we may conclude by Lemma 2), except when $G=\operatorname{Sym}(5)$ or $G=\operatorname{AGL}(1,5)$ and $n=5$ or $G=\operatorname{Sym}(4)$ and $n=4$. Then it is sufficient to check that $\operatorname{Sym}(5)$ is invariably generated by the set $\{(1,2),(1,2,3,4,5)\}$, $\operatorname{Sym}(4)$ is invariably generated by the set $\{(1,2,3),(1,2,3,4)\}$ and $\operatorname{AGL}(1,5)$ is invariably generated by any set consisting of an element of order 5 and an element of order 4.

Proof of Theorem 1. Let G be a finite permutation group of degree n. We have to show that

$$
d_{I}(G) \leq \frac{n+\epsilon}{2}
$$

where $\epsilon=1$ if $n=3, \epsilon=0$ otherwise.
The proof is by induction on n, the cases $n \leq 3$ being trivial.
The case where G is primitive, is actually Corollary 8.
Case G intransitive. Suppose that $G \leq \operatorname{Sym}(n)$ is intransitive. Let s be the size of an orbit and identify G with a subgroup of $\operatorname{Sym}(s) \times \operatorname{Sym}(n-s)$. Let $\rho=\rho_{/ G}$ the restriction to G of the projection of $\operatorname{Sym}(s) \times \operatorname{Sym}(n-s)$ on the second factor of the direct product; then $\rho(G) \leq \operatorname{Sym}(n-s)$ and $\operatorname{ker}(\rho) \leq \operatorname{Sym}(s)$. By Lemma 2,

$$
d_{I}(G) \leq d_{I}(\rho(G))+d_{I}(\operatorname{ker}(\rho))
$$

If both s and $n-s$ are not 3 , then the inductive hypothesis gives $d_{I}(G) \leq(n-$ $s) / 2+s / 2=n / 2$ and we are done.

Now assume $s=3$. If $\operatorname{ker}(\rho)$ is cyclic, then $d_{I}(\operatorname{ker}(\rho))=1$ and we have $d_{I}(G) \leq$ $(n-3+\epsilon) / 2+1 \leq n / 2$ as desired. Otherwise $\operatorname{ker}(\rho)=\operatorname{Sym}(3)$. This implies that G is actually isomorphic to a direct product of $\operatorname{Sym}(3)$ and a subgroup $H \leq \operatorname{Sym}(n-3)$; clearly we can assume $H \neq 1$. Let h_{1}, \ldots, h_{t} be invariable generators for H. Then the set

$$
\left\{((1,2), 1),\left((1,2,3), h_{1}\right),\left(1, h_{2}\right), \ldots,\left(1, h_{t}\right)\right\}
$$

invariably generates G. Indeed, let $g_{1}, g_{2}, \ldots, g_{t} \in G$, with $g_{1}=\left(x_{1}, y_{1}\right)$ and $g_{2}=\left(x_{2}, y_{2}\right)$, and define

$$
\begin{aligned}
X & =\left\{((1,2), 1)^{g_{1}},\left((1,2,3), h_{1}\right)^{g_{2}},\left(1, h_{2}\right)^{g_{3}}, \ldots,\left(1, h_{t}\right)^{g_{t}}\right\} \\
& =\left\{\left((1,2)^{x_{1}}, 1\right),\left((1,2,3)^{x_{2}}, h_{1}^{y_{2}}\right),\left(1, h_{2}\right)^{g_{3}}, \ldots,\left(1, h_{t}\right)^{g_{t}}\right\} .
\end{aligned}
$$

Since X contains $\left((1,2)^{x_{1}}, 1\right)^{\left((1,2,3)^{x_{2}}, h_{1}^{y_{2}}\right)}=\left(\left((1,2)^{x_{1}}\right)^{(1,2,3)^{x_{2}}}, 1\right)$ and this element is not equal to $\left((1,2)^{x_{1}}, 1\right), X$ contains the whole subgroup $\operatorname{Sym}(3) \times\{1\}$. Then, as h_{1}, \ldots, h_{t} invariably generate $H \cong X /(\operatorname{Sym}(3) \times\{1\})$, we conclude that $X=G$. Therefore, $d_{I}(G) \leq d_{I}(H)+1 \leq(n-3+\epsilon) / 2+1 \leq n / 2$ and the case when G is intransitive is complete.

Case G imprimitive. Suppose $G \leq \operatorname{Sym}(n)$ is transitive and imprimitive. Let Δ be a minimal block containing 1 ; then $n=r s$ where $r=|\Delta|$ and s is the number of blocks in the system of imprimitivity containing Δ. We denote by

$$
\pi: G \mapsto \operatorname{Sym}(s)
$$

the representation of G on the blocks of the system, by T the image of π, by N the setwise stabiliser of Δ in G and by H the image of the representation of N on Δ. Thus G is isomorphic to a large subgroup of $H \imath T$, where $H \leq \operatorname{Sym}(r)$ is primitive and $T \leq \operatorname{Sym}(s)$ is transitive.

Let a be the number of abelian factors in a composition series of H and let b be the number of non-abelian factors in a chief series of H. By point 1 of Lemma 5 ,

$$
d_{I}\left(G, G \cap H^{s}\right) \leq s a+2 b
$$

The inductive hypothesis gives $d_{I}\left(G / G \cap H^{s}\right) \leq(s+\epsilon) / 2$ where $\epsilon=1$ if $s=3$, $\epsilon=0$ otherwise, hence

$$
\begin{equation*}
d_{I}(G) \leq \frac{s+\epsilon}{2}+s a+2 b \tag{3.1}
\end{equation*}
$$

We want to prove that $d_{I}(G) \leq r s / 2=n / 2$.
As H is a primitive subgroup of $\operatorname{Sym}(r)$, by [13, Theorem 2.10] a composition series of H has at $\operatorname{most} \log (r)$ non-abelian factors and at most $3.25 \log (r)$ abelian factors.

Then, by (3.1),

$$
d_{I}(G) \leq \frac{s+\epsilon}{2}+2 \log (r)+3.25 \log (r) s
$$

Note that $\epsilon / 2+2 \log (r) \leq s \log (r)$, hence

$$
d_{I}(G) \leq \frac{s}{2}+s \log (r)+3.25 \log (r) s=s(1 / 2+4.25 \log (r))
$$

When $r>48$ we have $1 / 2+4.25 \log (r) \leq r / 2$ and therefore

$$
d_{I}(G) \leq \frac{r s}{2}=\frac{n}{2}
$$

as desired.
We are left with the case where $r \leq 48$. We note that

$$
\begin{equation*}
\text { if } l(H) \leq \frac{r}{2}-1, \quad \text { then } \quad d_{I}(G) \leq \frac{n}{2} \tag{3.2}
\end{equation*}
$$

where $l(H)$ is the composition length of H. Indeed, as $(s+\epsilon) / 2 \leq s$,

$$
d_{I}(G) \leq \frac{s+\epsilon}{2}+s a+2 b \leq s+s l(H) \leq s+s\left(\frac{r}{2}-1\right)=\frac{s r}{2}=\frac{n}{2}
$$

It is straightforward to check that for all primitive subgroups of degree $r \leq 48$ and $r \neq 2,3,4,5,7,8,9,16$, we have $l(H) \leq r / 2-1$ and hence, by $(3.2), d_{I}(G) \leq n / 2$.

We are left to prove that $d_{I}(G) \leq n / 2$ in the cases where $r=2,3,4,5,7,8,9,16$, and H is a primitive subgroup of $\operatorname{Sym}(r)$ with composition length $l(H)>r / 2-1$.

Cases $r=5,7,9$.
If $s \neq 3$, then by induction $d_{I}\left(G /\left(G \cap H^{s}\right)\right) \leq s / 2$. As r is odd and $r \neq 3$, every subnormal subgroup of H is invariably generated by at most $[r / 2]=(r-1) / 2$
elements. By point (2) of Lemma 5, this implies that $d_{I}\left(G, G \cap H^{s}\right) \leq s(r-1) / 2$ and we conclude that

$$
d_{I}(G) \leq d_{I}\left(G /\left(G \cap H^{s}\right)\right)+d_{I}\left(G, G \cap H^{s}\right) \leq \frac{s}{2}+\frac{s(r-1)}{2}=\frac{s r}{2}=\frac{n}{2}
$$

Let now $s=3$. If $r=5$ and $l(H)>5 / 2-1$, then $H \in\left\{D_{10}, C_{20}, \operatorname{Sym}(5)\right\}$. If $H=\operatorname{Sym}(5)$, then by formula (3.1), with $\epsilon=1, a=1$ and $b=1$, it follows $d_{I}(G) \leq 2+3 a+2 b \leq 7 \leq 15 / 2$. Otherwise H has a minimal normal subgroup $A \cong C_{5}$ and $G /\left(G \cap A^{3}\right)$ is isomorphic to a subgroup of $C_{4} 乙 \operatorname{Sym}(3) \leq \operatorname{Sym}(12)$, hence, by induction, $d_{I}\left(G /\left(G \cap A^{3}\right)\right) \leq 12 / 2=6$. Moreover, A^{3} is a completely reducible G-module, since the action is coprime, and hence $G \cap A^{3}$ is a cyclic G module. Therefore, by point 2 in Lemma $2, d_{I}(G) \leq 6+1=7 \leq 15 / 2$.

If $r=7$ and $l(H)>2$, then H has a minimal normal subgroup $A \cong C_{7}$ with $G /\left(G \cap A^{3}\right)$ isomorphic to a subgroup of $C_{6} 2 \operatorname{Sym}(3) \leq \operatorname{Sym}(18)$. By induction, $d_{I}\left(G /\left(G \cap A^{3}\right)\right) \leq 18 / 2=9$. As A^{3} is a completely reducible G-module, $G \cap A^{3}$ is a cyclic G-module and thus $d_{I}(G) \leq 9+1=10 \leq 21 / 2$.

If $r=9$ and $l(H)>3$, then $H=C_{3}^{2} \rtimes P$ where P is a 2-group and every subgroup of P is 2-generated. Then $A=C_{3}^{2}$ is a minimal normal subgroup of H and by point (3) of Lemma 5 we have $d_{I}\left(G, G \cap A^{3}\right) \leq 3 \cdot 2-1=5$. By point 2 in Lemma $5, G /\left(G \cap A^{3}\right) \leq P \imath \operatorname{Sym}(3)$ is invariably generated by $3 \cdot 2+2=8$ elements, and therefore it follows that $d_{I}(G) \leq 8+5=13 \leq 27 / 2$.

Cases $r=2$.
The intersection $N=\operatorname{Sym}(2)^{s} \cap G$ is a G-submodule of $V=\operatorname{Sym}(2)^{s}$. By Lemma $6, d_{G}(N) \leq[s / 2]$. But then $d_{I}(G) \leq[s / 2]+[(s+1) / 2]=s$.
Case $r=3$.
Let $N=\langle(1,2,3)\rangle^{s} \cap G$. Notice that $G / N \leq C_{2}$ 2 $\operatorname{Sym}(s)$ so, by induction, $d_{I}(G / N) \leq s$. Moreover, by Lemma $6, d_{I}(G, N) \leq d_{G}(N) \leq[s / 2]$. Thus $d_{I}(G) \leq$ $3 s / 2$.

Case $r=4$.

Consider the intersection $N=H^{s} \cap G$. By induction, $d_{I}(G / N) \leq(s+\epsilon) / 2$. Let A be the Klein subgroup of $\operatorname{Sym}(4)$.

If $N \leq A^{s}$, then by Lemma $6, d_{I}(G, N) \leq d_{G}(N) \leq s$, and we are done.
From now on we will assume that $N>G \cap A^{s}$. For $1 \leq i \leq s$, consider the projection $\pi_{i}: H^{s} \rightarrow H$ and, for $i \geq 2$, call

$$
N_{i}=N \cap \operatorname{ker} \pi_{1} \cap \cdots \cap \operatorname{ker} \pi_{i-1}
$$

and set $N_{1}=N$. Note that each N_{i} is a normal subgroup of N, hence, since G is large, $\pi_{i}\left(N_{i}\right)$ is trivial, or a Klein subgroup, or $\operatorname{Alt}(4)$ or $\operatorname{Sym}(4)$; in particular, as $N>G \cap A^{s}, \pi_{1}\left(N_{1}\right)$ contains Alt(4).

Now set $x_{1,1}=(1,2,3), x_{1,2}=(1,2,3,4)$ if $\pi_{1}(N)=\operatorname{Sym}(4)$, and $x_{1,2}=$ $(1,2)(3,4)$ if $\pi_{1}(N)=\operatorname{Alt}(4)$. Let $\Omega=\left\{z_{1}, \ldots, z_{t}\right\}$ be a set of invariant generators of G modulo N with $t \leq(s+\epsilon) / 2$. To this set we add two elements $y_{1,1}, y_{1,2} \in N$ with $\pi_{1}\left(y_{1,1}\right)=x_{1,1}$ and $\pi_{1}\left(y_{1,2}\right)=x_{1,2}$ and then, for each $i>1$ with $\pi_{i}\left(N_{i}\right)$ non trivial, we add one element $y_{i} \in N_{i}$ whose image $x_{i}=\pi_{i}\left(y_{i}\right)$ is

- $(1,2)(3,4)$, if $\pi_{i}\left(N_{i}\right)$ is a Klein group;
- $(1,2,3)$, if $\pi_{i}\left(N_{i}\right)=\operatorname{Alt}(4)$;
- $(1,2)$, if $\pi_{i}\left(N_{i}\right)=\operatorname{Sym}(4)$.

In this way we get a set $\tilde{\Omega}$ containing at most $\frac{s+\epsilon}{2}+2+s-1 \leq 2 s$ elements. We claim that they are invariable generators for G. Indeed let $\left\{g_{\omega}\right\}_{\omega \in \tilde{\Omega}}$ be any family of elements of G and consider the subgroup $X=\left\langle\omega^{g_{\omega}} \mid \omega \in \tilde{\Omega}\right\rangle$ of G. Since $\tilde{\Omega}$ contains Ω, we have that $X N=G$. To conclude that $X=G$, if suffices to prove that $\pi_{i}\left(X \cap N_{i}\right)=\pi_{i}\left(N_{i}\right)$ for each $i \in\{1, \ldots, s\}$ with $\pi_{i}\left(N_{i}\right) \neq 1$. First notice that X contains $\overline{y_{1,1}}=y_{1,1}{ }^{g_{1}}$ and $\overline{y_{1,2}}=y_{1,2}{ }^{g_{2}}$ for suitable $g_{1}, g_{2} \in G$ and since $G=X N$ we may assume $g_{1}, g_{2} \in N$. But then there exist $h_{1}, h_{2} \in H$ such that $\pi_{1}\left(\overline{y_{1,1}}\right)=x_{1,1}{ }^{h_{1}}$ and $\pi_{1}\left(\overline{y_{1,2}}\right)=x_{1,2}{ }^{h_{2}}$. On the other hand $\left\langle x_{1,1}^{h_{1}}, x_{1,2}^{h_{2}}\right\rangle=\left\langle x_{1,1}, x_{1,2}\right\rangle=\pi_{1}(N)$, hence $\pi_{1}(X \cap N)=\pi_{1}(N)$. As $G=X N$, we have that $\pi(X)$ acts transitively on H^{s} and consequently $\pi_{i}(X \cap N)=\pi_{1}(X \cap N)=\pi_{1}\left(N_{1}\right) \geq \operatorname{Alt}(4)$ for every i. Now let $i \geq 2$ with $\pi_{i}\left(N_{i}\right) \neq 1$. There exists $n \in N$ such that $y_{i}^{n} \in X \cap N_{i}$ and consequently $\pi_{i}\left(y_{i}^{n}\right)=x_{i}^{m} \in \pi_{i}\left(N_{i} \cap X\right)$ for some $m \in \pi_{1}(N)$. Since $X \cap N$ normalizes $X \cap N_{i}$ and $\pi_{i}(X \cap N)=\pi_{1}(N)$ we have that

$$
\pi_{i}\left(X \cap N_{i}\right) \geq\left\langle x_{i}^{l} \mid l \in \pi_{1}(N)\right\rangle \geq\left\langle x_{i}^{l} \mid l \in \operatorname{Alt}(4)\right\rangle=\pi_{i}\left(N_{i}\right)
$$

Therefore, $\pi_{i}\left(X \cap N_{i}\right)=\pi_{i}\left(N_{i}\right)$ for every $i \in\{1, \ldots, s\}$.
Case $r=8$.

We have three possibilities for H, where H is a primitive group of degree 8 whose composition length is at least 4: $\mathrm{AGL}(1,8), \mathrm{A} \Gamma \mathrm{L}(1,8), \mathrm{ASL}(3,2)$. In the first two cases every subnormal subgroup of X can be invariably generated by 3 elements, so by Lemma $5, d_{I}(G) \leq 3 s+(s+1) / 2 \leq 4 s$. In the third case H has a minimal normal subgroup N of order 2^{3} and $H / N \cong \mathrm{SL}(3,2)$ is a non abelian simple group, so, by Lemma $5, d_{I}(G) \leq(3 s-1)+2+(s+\epsilon) / 2 \leq 4 s$.

Case $r=16$.
There are four possibilities for H being primitive of degree 16 and with $l(H) \geq 8$. In any case $H=V \rtimes X$ where $V \cong C_{2}^{4}$ and X is a soluble irreducible subgroup of GL $(4,2)$. More precisely

$$
X \in\left\{\operatorname{Sym}(3)^{2}, \operatorname{Sym}(3)^{2} \rtimes C_{2},\left(C_{3} \times C_{3}\right) \rtimes C_{4}, C_{15} \rtimes C_{4} .\right\}
$$

Let $N=V^{s} \cap G$. Since $N \leq C_{2}^{4 s}$ we have $d_{I}(G, N) \leq d_{I}(N) \leq 4 s$, so it suffices to prove that $d_{I}(G / N) \leq 4 s$. We have that G / N is a large subgroup of $X \imath \operatorname{Sym}(s)$. If $X \in\left\{\operatorname{Sym}(3)^{2}, \operatorname{Sym}(3)^{2} \rtimes C_{2}\right\}$, then X has a faithful permutational representation of degree 6 , so G / N can be identified with a subgroup of $\operatorname{Sym}(6 s)$ and $d_{I}(G / N) \leq 3 s$ by induction. Otherwise it can be easily seen that every subnormal subgroup of X can be invariably generated by 2 elements, so by Lemma, $5, d_{I}\left(G / N,\left(H^{s} \cap\right.\right.$ $G) / N) \leq 2 s$, while, by induction, $d\left(G /\left(H^{s} \cap G\right)\right) \leq(s+1) / 2$: we conclude that $d_{I}(G / N) \leq 2 s+(s+1) / 2 \leq 4 s$.

References

1. P. Cameron, R. Solomon, A. Turull, Chains of subgroups in symmetric groups. J. Algebra 127 (1989), no. 2, 340-352.
2. E. Detomi, A. Lucchini, Invariable generation with elements of coprime prime-power order, Journal of Algebra (2015), pp. 683-701; doi:10.1016/j.jalgebra.2014.10.037.
3. E. Detomi, A. Lucchini, Invariable generation of prosoluble groups, to appear on Israel J. Math., arXiv:1410.5271
4. J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Math. 105 (1992) 25-39.
5. J. Fulman, R. Guralnick, Derangements in simple and primitive groups, in: A.A. Ivanov, M.W. Liebeck, J. Saxl (Eds.), Groups, Combinatorics and Geometry, Durham 2001, World Sci. Publ., River Edge, NJ, 2003, pp. 99-121.
6. R. Guralnick, G. Malle, Simple groups admit Beauville structures, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 694-721.
7. W. M. Kantor, A. Lubotzky, A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, J. Algebra 348 (2011), 302-314.
8. W. M. Kantor, A. Lubotzky, A. Shalev, Invariable generation of infinite groups, J. Algebra 421 (2015), 296310.
9. L. G. Kovács, Primitive subgroups of wreath products in product action, Proc. London Math. Soc. (3) 58 (1989), no. 2, 306-322.
10. T. Luczak, L. Pyber, On random generation of the symmetric group, Combin. Probab. Comput. 2 (1993) 505-512.
11. A. McIver, P. Neumann, Enumerating finite groups. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 152, 473-488.
12. N. Menezes, Random generation and chief length of finite groups, PhD Thesis, http://research-repository.st-andrews.ac.uk/handle/10023/3578
13. L. Pyber, Asymptotic results for permutation groups. Groups and computation (New Brunswick, NJ, 1991), 197219, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 11, Amer. Math. Soc., Providence, RI, 1993.
14. A. Shalev, A theorem on random matrices and some applications, J. Algebra 199 (1998) 124-141.

Eloisa Detomi and Andrea Lucchini, Università degli Studi di Padova,, Dipartimento di Matematica, , Via Trieste 63, 35121 Padova, Italy

[^0]: The research was partially supported by GNSAGA (INdAM).
 2010 Mathematics Subject Classification. 20B05; 20 F 05.
 Keywords: Invariable generation; finite permutation groups.

