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SHORT INTERVALS ASYMPTOTIC FORMULAE FOR BINARY PROBLEMS
WITH PRIMES AND POWERS, |: DENSITY 3/2

ALESSANDRO LANGUASCO and ALESSANDRO ZACCAGNINI

ABSTRACT. We prove that suitable asymptotic formulae in short irdésfold for the problems
of representing an integer as a sum of a prime and a squar@rsna square. Such results are
obtained both assuming the Riemann Hypothesis and in thendlitional case.

1. INTRODUCTION

In this first paper devoted to study asymptotic formulae iorsimtervals for additive prob-
lems with primes and squares, we focus our attention on ye8£2 problemsj.e., on repre-
senting integers as sum of a prime and a square. In the foninggpaper/[5] we will consider
density-1 problems.

Lete > 0, N be a sufficiently large integer and let furthdrbe an integer such that® <
H =o(N) asN — . Takingn € [N,N + H], the key quantities are

ria(n) = ; logp and ry,(n) = % log p11og p2.
p+me=n p1+p5=n

Since it is well known that the expected behaviour of suctctions is erratic, to work in a
more regular situation we will study their average asymepsobver a suitable short interval.
We write f = oo(g) for g=o(f). In the following we prove

Theorem 1. Assume the Riemann Hypothesis (RH) holds. Then

N+H
3 r1a(m) = HNYZ.+ O(N¥*(logN)? + H¥%(logN) /2 + HN"/?logN)
n=N+1

asN — o uniformly for o (NY/4(logN)2) <H < o(N/(logN)?).

Theorem 2. Lete > 0. Then there exist two constam@s= C(g) > 0, C; = Cy(€) > 0 such that

N+H

5 o o))

asN — oo uniformly for

logN \1/3 _
N e I
P . loglogN -~
A direct trial following the lines of Lemma 11 of Plaksin [&adds to have a square summand
in [N,N + H] and hence the final uniformity range has to be larger tHan N'/2 which is
weaker than our results above.
Concerning the sum of a prime and a prime square we have tloe/iiod
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Theorem 3. Assume the Riemann Hypothesis holds. Then

RELL 1/2 H? 3/4 3 1/3 2
n=%+1r1’2(n):HN +O<W+N (logN)°+HN>>(logN) )

asN — oo uniformly foro(NY4(logN)3) <H < o(N).

Theorem 4. Lete > 0. Then there exists a const&hit= C(€) > 0 such that

N-+H

3 e = o e gt ) )

asN — oo uniformly for N7/12+& < H < N1-€,

In this case too, a direct trial following the lines of Lemniadf Plaksin[[8] leads to weaker
uniformity rangesH > N34(logN)” assuming RH an#il >> N7/24t1/2+€ ynconditionally.

Our results are proved via a circle method technique; in factTheorem B we’'ll need
the original Hardy-Littlewood approach (using infiniteissrinstead of finite sums) otherwise
Lemmd2 below requirgd > N/2. This is similar to the phenomenon we already encountered
in our paper[4]. We also remark that the original Hardy{kittood approach can be applied in
proving Theorerfill too; but in this case it will just lead tolege the error terri3/2(logN)3/2
with the slightly better on&i2N~1/2,

Clearly our result implies the existence of an integer repnéed as a sum of a prime and
a square, or a prime square, in the stated intervals. Cangetims we have to remark that
Kumchev and Liul[l] unconditionally proved the existencapofinteger which is the sum of a
prime and a prime square in the shorter inteltab N°33 but without any information about
the relevant asymptotic formula. As far as we know this iskibst known result for the the
sum of a prime and a square case too.

Acknowledgements. This research was partially supported by the grant PRIN2A1Arith-
metic Algebraic Geometry and Number Theol¥e wish to thank the referee for his/her re-
marks.

2. DEFINITIONS AND LEMMAS

LetL = logN, ro(m) be the number of representationsnofis a sum of two squares (recall
thatro(m) < n¥ is a well-known fact) and

Rio(m= 5 Am) and Ri,(= 5  A(m)A(ny).
my-+Mg=n My +mg=n

1<my, m<N 1<my, m<N

Asne [N,N+H],N — o andH = o(N), it is easy to see that

HL
ra(n) = % logp+ O<W—|—H1/2L) = R/l,z(n)+o( | % log p)+o(H1/2|_)
p+m‘=n pl4+m=n

1<p,mP<N 1<pl,mP<N;j>2
— R’172(n)+0( Y logp+ > log p>+O(H1/2L)
p?X - mP=n p2t TR —n
1<p?, mP<N;k>1 1< PP <N k>1

= Ryo(n) + O(ro(mL2+ 3L+ HY2L) = R o(n) + O(n/ 3L + HY/2L), 1)
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using the Prime Number Theorem, and, similarly, that
r{ 5(n) = Ry 5(n) + 0(n/3L% + HY/2L2). ()

So from now on we can work with the uppercd&&inctions. Let now > 1 be an integer

and
<;< e(mfa), T(a)= WZSN e(ma),

m Y2e(ma), U(a,H)= S e(ma), (3)

1<m<N 1<m<H

wheree(a) = €%, We also have the usual numerically explicit inequality

U (a,H)| < min(H;|a| ™), (4)
see.e.g, on page 39 of Montgomery|[6]. Let further
L \1/3
B=B(N,c) :exp<c(@> ), (5)

wherec = ¢(g) > 0 will be chosen later.

In the proofs we will need the following lemmas. In fact we lwise them just fo¥ = 1,2
but we take this occasion to describe the general case. Weidypemark that for/ = 1 the
proof of Lemmad_ll gives just trivial results; in this case a4tivial estimate, which, in any
case, is not useful in this context, can be obtained follgvie line of Corollary 3 of [2].

Lemmal. Let¢ > 2 be an integerand < § <1/2. Then

; oL) ift=2
Ty(at)|?da = 2ENY*
/_z”(a)‘ a=2NTEN o) ifes2

and

L2) ife=2
/|S€ @)|*da = NW'-JFO(ENW) {gg((l)) :'f§>2

Proof. By symmetry we can integrate ovig; &]. We use Corollary 2 of Montgomery-Vaughan
[7] with T =&, a, = 1 andA, = 21’ thus getting

/OE|T4(0()|2d0(: Z (E+0(5 1Y) =&eNY 1 0(8)+ Og({Z r1—4>

rt<N re<N

sinced; = Ay — Ar_1 >, r'~1. The last error term i<, 1 if ¢ > 2 and< L otherwise. This
proves the first part of Lemma 1. Arguing analogously véith= A(r), by the Prime Number
Theorem we get

/0E S(ePda= 5 AM*E+0(E ) = %NWH 0 (ENY) + 0 Y A,

r‘<N r‘<N
Again by the Prime Number Theorem, the last error terrxjsl if ¢ > 2 and< L2 otherwise.
The second part of Lemnia 1 follows. O

We need the following lemma which collects the results ofdreens 3.1-3.2 of [3]; see also
Lemma 1 of [4].
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Lemma 2. Let? > 0 be a real number arglbe an arbitrarily small positive constant. Then
there exists a positive constant= c,(€), which does not depend dnsuch that

/_11/;; 1Sy(a) — Ty(a) [Pda <<, N2/¢1 (exp(—q(@)m) + KWLZ),

uniformly for N1-5/(60+¢ < K < N. Assuming further RH we get

1/K 1/¢) 2
/ 1S (a) —Tz(a)|2da <y N™"L +KN2/‘—2|_2,
1/K K

uniformly forNI-1/¢ <K < N.

3. PROOF OFTHEOREM[

From now on, we denotg,(a) := S(a) — T,(a). By () it is an easy matter to see that

% R’1,2(n+ N) = Y S (o) T2(0)U (—a, H)e(—Na) da
n=1 -1/2
— 11//22T1(G)f2(0()U(—O(,H)e(—NO()do(+ 11//22T1(0()(T2(a) — fo(0))U (—a, H)e(—Na) do
1/2
+ /_1/2 El(G>T2(G>U (—G, H)e(—NG) do = |1+ |2—|— |37 (6)

say. Now we evaluath. A direct calculation and Lemma 2.9 of Vaughan [9] give

/11//22T1(G) fo(a)e(—(n+N)a)da = % Z mIl/Z _ % Z (NN m)—l/z

my+mMy=n+N 1<m<N
1<myg,mp<N
_ (/2 1/2 12\ _ 1/2 1/2
_W(MN) +0(n74) = (n+N)7“+ 0(n"/?). (7)
By (€)-(7) we obtain
H
1= S (n+N)¥2+ 0(H¥2) = HNY2+ O(H¥?), 8)

n=1

Now we estimaté,. We first recall, by Theorem 4.1 of Vaughan [9], thigt(a) — f2(0)| <
(1+ |a|N)¥/2. Using also the inequality; (a) < min(N; |a] 1), we get

1/2
o< [ ] L TI1To(@) — fo(a) U (e H) do

1N 1/H 1/2
<<HN/ da+HN1/2/ d—a+|\|1/2/ o Nz, ©)
/N N al/2 1H ad/2
To estimatds we need Lemmdd[I-2. Byl(4) and the Cauchy-Schwarz inequedityave

1/2 12, 1/2 1/2
3 ([, JEs(a) Pmin(i; o 4 ca) A | JTe(@) Pmin(H: o *)dar) QEERAL)

say. Since

1/H 1/2 q
< H/ \El(a)|2dcx+/ |E1(0()\2—a,
—1/H 1/H a
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by Lemmd.2 withd = 1 and partial integration we get

Ji < NL3+H2L2. (10)
Arguing analogously and using Lemia 1 witk- 2, we obtain
Jo < (NY2 4 H)L. (11)
Hence combinind(10)J-(11) we have
I3 < N¥/4L2 4 HNYAL3/2 4 HY/2NY/21 2 L 43/23/2, (12)

Now using [(6), [(8)1(P) and_(12), we can finally write

H
S Ria(n+N) = HNYZ4+ O(N¥/4L2 4 H¥2L%2 4 HY/2NY/2L2 4 HNY/AL%2)
n=1

Using (1), Theoreriil1 hence follows fer(NY/4L2) < H < o(N/L®). O

4. PROOF OFTHEOREM[Z

We need now to split the main interval in a different way. Rigog (B) andE,(a) = S(a) —
Ty(a), by (3) we have

N-+H B/H
% Ri2(n) = . HSl(a)Tz(G)U(—G,H)e(—NG)dO‘+/51(0()T2(0‘)U(—0‘7"')9(—'\'0‘)‘10‘
n=Nr+1 —B/ [~1/2,~B/H]U[B/H.1/2]

B/H B/H
:/ Ti(a) f2(a)U (—a,H)e(—Na) da +/ T1(a)(Tz2(a) — f2(a))U (—a,H)e(—Na) da
—B/H —B/H

B/H
+ El(or)Tz(or)U(—cx,H)e(—ch)dor+/Sl(cx)Tz(cx)U(—or,H)e(—Nor)dcx
~B/H [~1/2,~B/H]U[B/H,1/2]
=l1+1lx+ I3+ 14, (13)

say. Arguing as ir({7), usin@l(4) arfd(a) < min(N¥/2,1/|a|%/?) (see Lemma 2.8 of Vaughan
[9]), we obtain

H 1/2 da
_ 1/2 3/2
|1—n;(n+N) +O(H )+o(/B/H 572

) =HNY2.4 0(H?2). (14)
I, can be estimate as inl(9) and gives
I, < HY/2NY/2, (15)
Now we estimatés. By (4) the Cauchy-Schwarz inequality we have
B/H 1/2 B/H 1/2
< H( [ [Eale)Pda) ([ Mol ) = H(B)M2
—B/H —B/H
say. By Lemmal2 we can write that
L \1/3
NI Nexp(—cl(m> ) (16)

provided thaN—1¢/2 < B/H < N~1/6-¢/2: henceN/6+¢ < H < N1-¢ suffices. By Lemmal1l

with ¢ = 2, we obtain
N1/2B

H

N R +L. (17)
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Hence combinind (16)=(17) fad1/6+¢ < H < N1-¢ we have

L \1/3
lg < (HY2N%/4BY2 4 HNY2LY/2) exp( — Cl(logL) ). (18)

Now we estimaté,. By (4), the Prime Number Theorem, Lemfida 1 with 2 and a partial
integration argument we get

o< [T % < ([ is@PS) ([ e

/H /H
HNL 1/2 12, HL 1/2 12 dE /2 HNY2L HI/2N3/AL

Now using [I8){(1b) and(18)-(19) and choosing @ < c; in (B), we have that there exists
a constan€ = C(g) > 0 such that

N+H

% R 2(n) = HNY2+ O((H1/2N3/4+ HNY/2) exp( . C(@) 1/3)>
1

uniformly for for N¥/6+€ < H < N1~£. Using [1), Theorernl2 hence follows for

Nl/zexp(—C1<ﬁ>l/3> <H<NE

for every 0< C; =Cy(g) < 2C. O

5. PROOF OFTHEOREM[3
We need the original Hardy-Littlewood approach otherwisenind 2 implies that we need
to assuméd > N1/2. Let further
Z A(n)e " /Ne(n‘a), R »(n) = S A(m)A(mp) andz=1/N—2ria. (20)
My +mg=n
From now on, we denotg(a) := Sy(a) — ' (1/¢)/(¢ZY/"). We remark
177t < min(N,|a| ™) (21)
and, arguing analogously ta (1)}(2), that
ri,(n) = ﬁ’l’z(n) +o(n'3L2). (22)
By (20) it is an easy matter to see that

N+H 1/2 ~

3 &Rl = /. Su@)Si(@)U (o H)e(~Nar) da

1/2

1/2 /2 2
/1/2223/2 —0, H)e(—Na) d0‘+/ ~E5(0)U (0, H)e(—Na) da

1/2 1/2 1/2 _ .
+/ El(a)U(—a,H)e(—Na)da—i—/ E1(a)Ex(a)U (—a,H)e(—Na) da
1/2 221/2 ~1/2

=l1+1lx+ I3+ 14, (23)
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say. We evaluath. Using Lemma 4 of [4] we immediately get

-’-[1/2 N+H H HNl/Z H2
I = n%/2g~"/N o( ) o(—). 24
17 2r(3/2) n:%l TN e ' Y\Ni72 (24)
Now we estimaté,. By (21), the Cauchy-Schwarz inequality and Lemma 3 bf [4,abtain
1/H 12 _ da
I2<<HN/ Ex( )\dor+H/ Ex( )\ [FOE-
1/H a
~ da 1/2 1/H da 1/2 12 day\1/2/ (/2 day /2
HNYAL +H / Ex(a) 2= / — / Ex(0)[>— / —
< + ( 1/|\|| 2(G)| G) ( 1/N (X) ( 1/|-|| ( )| G) ( 1/H (13)
< HNY4L 4+ HNYAL2 £ HNY4L3/2 « HNYAL2, (25)

Now we estimatés. By (21), the Cauchy-Schwarz inequality and Lemma 3 of [4],have

1/H 12 da
1/2
|3<<HN// |Ex(a )|d0(+H/ Ea )a1/2+/ 1) 72

1M don1/2, (I/H 12 12 day1/2/ 12 do 1/2
X o da aa

<<HL+H<// Eu@PY) (/w da) +(/1/H B (/W )

< HL+HY2NY213/2 « HY/2NY213/2, (26)

By (4) and the Cauchy-Schwarz inequality we can write

/2 do\1/2, r1/2 _ dan 1/2
2 2 _
([ E@PT) () E@P) T =ar

/H a 1/H
say. By Lemma 3 of [4] and partial integration d# we obtain
J<N¥42 and J < N¥43

and hence we get

1 < N¥/4L8. (27)
Now using [28){(26) and(27) we can write
N+H B _ HNl/Z HZ
%He "NRp () = ——+ o(Nl/z —|—H1/2N1/2L3/2+N3/4L3> (28)

which is an asymptotic relation fas(NY/4L3) < H < o(N). From [22) ande™"N =e 1 +
O(H/N) for n€ [N+ 1,N +H], we get

NeH 1/2 HZ 3/4) 3 1/3, 2 H NEH
> Y 5(n) = HNY +o( S HNAL +HN/L)+O(N > R (29)
1 K ]

UsingeV/N < € and [28) forH in the previously mentioned range, it is easy to see thagte |
error term is< H2N~Y/2. Combining [29) and the last remark, Theorgm 3 hence folfows
oo(NY4L3) <H < o(N). O
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6. PROOF OFTHEOREMM

In the unconditional case we can use the finite sums appréadalling [3)4(5) andE,(a) =
S(a) —Ty(a), we have

N+H B/H
% Ri2(n) =/ Sl(G)Sz(G)U(—G,H>e(—NG>da+/Sl(a)sz(a)u(—a,H)e(_Na>da
1 —B/H
[~1/2,~B/H]U[B/H,1/2]
B/H B/H
_/ U (= or,H)e(—Nor)dcx+/ S1(a)Ex(0)U (=0, H)e(—Nat) da
B/H —B/H
B/H
+/B y El(cx)Tz(cx)U(—or,H)e(—Nor)dcx+/Sl(or)82(0()u(—or,H)e(—Na)da
B [~1/2,~B/H]U[B/H,1/2]
=l1+1lx+I3+14, (30)
say. Using|Tz(a) — fa(a)| < (1+|a|N)¥? (by Theorem 4.1 of Vaughan![9]) arl(a) <
min(N; |a|~1) we obtain

B/H B/H
1= [ T@) (@)U (- Hje(-Nada+ [ To()(Ta(@) ~ f2(0))U (o, H)e(~Na) do

1/H da B/H da
=7 O N [ da HNl/z/ == Nl/z/ AN oL omY2NY2). (31
1+ “1N + N 0(1/2+ " 0(3/2> 1+ 0( ), (31)

say. Using[(#) and arguing as [d (7) we obtain

1/2 1/2 dao
3y = _(n+N)a)da+ O / <
. 2/1/2 e-(n+Njayda+o( [ o)
- Z(n-l— N)Y/2.4 o(z n1/2)+o(H3/2) (32)
& BS/Z
By (31)-(32) we obtain
N+H
Il: % n1/2+O(H3/2—|—H1/2N1/2) :HN1/2—|— O(H3/2+Hl/2Nl/2). (33)
11

Now we estimate,. By the Cauchy-Schwarz inequality we can write

B/H 1/2 , rB/H 1/2
I, < H (/ [Ex(0) 2da) (/ S(@)Pda) = H(d1l)"2
—B/H —B/H
say. By Lemmal2 we get

N R exp( —C1 (ﬁ) 1/3> ,

provided thalN—17¢/2 < B/H < N~7/12-¢/2: henceN’/12+¢ < H < N1-¢ suffices. By the Prime
Number Theorem we obtaih < NL and hence

o (L)) e - (5", s

uniformly for N7/12t€ < H < N1-¢,
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Now we estimatés. By the Cauchy-Schwarz inequality we have

B/H 1/2 B/H 1/2
I < H(/ Ex(a)Pda) ([ [Tae) P = H(Kek) V2
—B/H
say. By Lemmal2 we get
L \1/3

provided thaN—1¢/2 < B/H < N~1/6-¢/2; henceN'/6+¢ < H < N1-¢ suffices. By Lemmall
with ¢ = 2, we obtain

N%/2B
Ko < ——=+L. (36)
Hence combinind (35)=(36) fai/6+¢ < H < N1~£ we have
1/3
I3 < (H1/2N3/4Bl/2+HN1/2L1/2)exp( “ (Iolg_;L) / ) (37)

Now we estimaté,. By (4), the Prime Number Theorem, Lemida 1 wite 2 and a partial
integration argument we get

|4<</E;/H2|sl(a)sz(a)|d—°‘<< (/E; 2|Sl( )|20|—0()1/2(/1/2|Sz(0(>|2d—0(>1/2

a a B/H a
HNL\2/2 (10 HL? V2 1, 0E\1/2
<(5) (N L B/H(EN +L)EZ)
HNL\Y/2 /15 5  HLZ\1/2
<(Tg) (W) (38)
Now using [(30),[(3B)E(34) and (B7)-(88), and choosing 6 < c; in (§), we have that there
exists a constar = C(g) > 0 such that
N+H L

3 Fhalo) = o e~ ) )

uniformly for N7/12t¢ < H < N1-£. Using [2), Theoreril4 hence follows fbF/12+€ < H <
Ni-¢,

O]
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