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SHORT INTERVALS ASYMPTOTIC FORMULAE FOR BINARY PROBLEMS
WITH PRIMES AND POWERS, II: DENSITY 1

ALESSANDRO LANGUASCO and ALESSANDRO ZACCAGNINI

Abstract. We prove that suitable asymptotic formulae in short intervals hold for the problems
of representing an integer as a sum of a prime square and a square, or a prime square. Such
results are obtained both assuming the Riemann Hypothesis and in the unconditional case.

1. Introduction

In this second paper devoted to study asymptotic formulae in short intervals for additive
problems with primes and squares, we focus our attention on density-one problems, i.e., on
representing integers as sum of two squares. We considered the case of the sum of a prime and a
square in our paper [5].
We will consider two separate cases depending on the number of prime squares involved in

the summations. Let ε > 0, N be a sufficiently large integer and let further H be an integer such
that Nε < H = o(N) as N → ∞. Taking n ∈ [N, N + H], the key quantities are

r′′2,2(n) =
∑

p2
1+p2

2=n

log p1 log p2 and r′2,2(n) =
∑

p2+m2=n

log p.

Since it is well known that the expected behaviour of such functions is erratic, to work in a more
regular situation we will study their average asymptotics over a suitable short interval.

We have the following results which extend and improve the ones cited in the Introduction of
the paper by Daniel [1]. We write f = ∞(g) for g = o( f ).
Theorem 1. Assume the Riemann Hypothesis (RH) holds. Then

N+H∑
n=N+1

r′′2,2(n) =
π

4
H + O

( H2

N
+ H1/2N1/4(log N)3/2)

as N → ∞ uniformly for∞(N1/2(log N)3) ≤ H ≤ o(N).
Theorem 2. Let ε > 0. Then there exists a constant C = C(ε) > 0 such that

N+H∑
n=N+1

r′′2,2(n) =
π

4
H + O

(
H exp

(
− C

( log N
log log N

)1/3))
as N → ∞ uniformly for N7/12+ε ≤ H ≤ N1−ε.

We remark that Plaksin [7] (see Lemma 11 there) proves the case H = N of Theorem 2 with a
stronger error term of the form N exp(−C(log N)1/2). Following its proof it is clear that it can
be further improved to N exp(−C(log N)3/5(log log N)−1/5). The comparative weakness of our
error term is due to the use of the zero-density estimates for the Riemann zeta-function (we need
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2 ASYMPTOTIC FORMULAE FOR BINARY PROBLEMS, II: DENSITY 1

them to be able to get a short interval result). A direct trial following the lines of Lemma 11 of
Plaksin [7] leads to weaker uniformity ranges: H � N3/4LA, for some A > 0, assuming RH and
H � N7/24+1/2+ε unconditionally. Here L = log N .
Concerning the sum of a prime square and a square, we have

Theorem 3. Assume the Riemann Hypothesis holds. Then
N+H∑

n=N+1
r′2,2(n) =

π

4
H + O

( H2

N
+

H log log N
(log N)1/2

)
as N → ∞ uniformly for∞(N1/2(log N)2) ≤ H ≤ o(N).
Theorem 4. Let ε > 0. Then there exists a constant C = C(ε) > 0 such that

N+H∑
n=N+1

r′2,2(n) =
π

4
H + O

(
H exp

(
− C

( log N
log log N

)1/3))
as N → ∞ uniformly for N7/12+ε ≤ H ≤ N1−ε.

An argument similar to the proof Lemma 11 of Plaksin [7] proves the case H = N of Theorem
4 with a stronger error term of the form N exp(−C(log N)3/5(log log N)−1/5). As in the previous
case, the comparative weakness of our error term is due to the use of the zero-density estimates for
the Riemann zeta-function. A direct trial following the lines of Lemma 11 of Plaksin [7] leads to
weaker uniformity ranges: H � N3/4LA, for some A > 0, assuming RH and H � N7/24+1/2+ε

unconditionally.
Concerning the problem about the sum of two squares, i.e. the asymptotic formula for

r2,2(n) =
∑

m2
1+m2

2=n

1,

our method leads to a weaker result than the one that follows from the well-known formula∑N
n=1 r2,2(n) = π

4 N − N1/2 + O(Nα) , with α ∈ (1/4, 1/3).
In the proofs we will use the original Hardy-Littlewood circle method setting. This depends

on the fact in the standard finite sums method the approximation needed to detect the main term
contribution leads to an error term which is under control essentially only for H > N2/3+ε, see
also Remark 1 at the bottom of the proof of Theorem 2.

Acknowledgements. This research was partially supported by the grant PRIN2010-11
Arithmetic Algebraic Geometry and Number Theory. We wish to thank the referee for his/her
remarks.

2. Definitions and Lemmas

Let L = log N and ` ≥ 1 be an integer. We define

S̃`(α) =
∞∑

n=1
Λ(n)e−n`/N e(n`α), z = 1/N − 2πiα and U(α, H) =

∑
1≤m≤H

e(mα), (1)

where e(α) = e2πiα. From now on, we denote

Ẽ`(α) := S̃`(α) − Γ(1/`)
`z1/` . (2)
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We will also need the following unconditional version of Lemma 3 of [4]; the proof is
essentially the same used there and so we skip part of the argument. We just repeat the definition
of the main quantities involved and write how to use the zero-density estimates to conclude the
proof. In fact all of the following lemmas will be used just for ` = 1, 2 but we take this occasion
to describe the general case.

Lemma 1. Let ε be an arbitrarily small positive constant, ` ≥ 1 be an integer and N be a
sufficiently large integer. Then there exists a positive constant c1 = c1(ε), which does not depend
on `, such that ∫ ξ

−ξ
|Ẽ`(α)|2 dα �` N2/`−1 exp

(
− c1

( L
log L

)1/3)
uniformly for 0 ≤ ξ < N−1+5/(6`)−ε.
Proof. Since z−ρ/` = |z |−ρ/` exp

�
−i(ρ/`) arctan 2πNα

�
, by Stirling’s formula we have that

1
`

∑
ρ

z−ρ/`Γ
( ρ
`

)
�`

∑
ρ

|z |−β/` |γ | β/`−1/2 exp
(γ
`

arctan 2πNα −
π

2`
|γ |) .

Recalling the Vinogradov-Korobov zero-free region, i.e., there are no zeros β+ iγ of the Riemann
zeta function having

β ≥ 1 −
c′

(log(|γ | + 2))2/3(log log(|γ | + 2))1/3 = 1 − δ(γ), (3)

say, where c′ > 0 is an absolute constant, for |α| ≤ 1/N or γα < 0 we get∑
ρ

z−ρ/`Γ(ρ/`) � N1/`
∑
ρ

N−δ(γ)/` |γ |1/`−1/2 exp
(
−C

|γ |
`

)
�` N1/`

∑
ρ

N−δ(γ)/` exp
(
−C1

|γ |
`

)
�` N (1−ε)/`,

where C,C1 > 0 are absolute positive constants and ε ∈ (0, 1) is suitably small. Hence, by the
explicit formula for S̃` which is Lemma 2 of [4], we have

I(N, ξ, `) :=
∫ ξ

−ξ

���S̃`(α) −
Γ(1/`)
`z1/`

���
2
dα �` N2(1−ε)/`ξ (4)

if 0 ≤ ξ ≤ 1/N , and

I(N, ξ, `) �`

∫ ξ

1/N

���
∑
ρ : γ>0

z−ρ/`Γ
( ρ
`

) ���
2
dα +

∫ −1/N

−ξ

���
∑
ρ : γ<0

z−ρ/`Γ
( ρ
`

) ���
2
dα + N2/`−1−2ε/` (5)

if ξ > 1/N . We will treat only the first integral on the right hand side of (5), the second being
completely similar. Clearly∫ ξ

1/N

���
∑
ρ : γ>0

z−ρ/`Γ
( ρ
`

) ���
2
dα =

K∑
k=1

∫ 2η

η

���
∑
ρ : γ>0

z−ρ/`Γ
( ρ
`

) ���
2
dα + O(1) (6)

where η = ηk = ξ/2k , 1/N ≤ η ≤ ξ/2 and K is a suitable integer satisfying K = O(L). Writing
arctan 2πNα = π/2 − arctan(1/2πNα) and using the Saffari-Vaughan technique we have∫ 2η

η

���
∑
ρ : γ>0

z−ρ/`Γ
( ρ
`

) ���
2

dα ≤
∫ 2

1

(∫ 2δη

δη/2

���
∑
ρ : γ>0

z−ρ/`Γ
( ρ
`

) ���
2
dα

)
dδ
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=
∑

ρ1 : γ1>0

∑
ρ2 : γ2>0

Γ
( ρ1

`

)
Γ
( ρ2

`

)
e
π
2` (γ1+γ2−i(β1−β2)) · J, (7)

say, where

J = J(N, η, `, β1, β2, γ1, γ2) =
∫ 2

1

(∫ 2δη

δη/2
f1(α) f2(α) dα

)
dδ,

f1(α) = |z |−w, f2(α) = exp
(
−
γ1 + γ2 − i(β1 − β2)

`
arctan

1
2πNα

)
,

and w = w(`, β1, β2, γ1, γ2) = (β1 + β2)/` + (i/`)(γ1 − γ2). Arguing exactly as in the proof of
Lemma 3 in [4], see pages 6-7 there, we get

J �` η
1−(β1+β2)/` 1 + (1+γ1+γ2

Nη )2
1 + |γ1 − γ2 |2 exp

(
−c

(γ1 + γ2

Nη

))
,

hence from (7) and Stirling’s formula we have∫ 2η

η

���
∑
ρ : γ>0

z−ρ/`Γ
( ρ
`

) ���
2
dα �`

∑
ρ1 : γ1>0

∑
ρ2 : γ2>0

η1−(β1+β2)/`γ β1/`−1/2
1 γ

β2/`−1/2
2

×
1 + (1+γ1+γ2

Nη )2
1 + |γ1 − γ2 |2 exp

(
−c

(γ1 + γ2

Nη

))
. (8)

Sorting real and imaginary parts it is clear that

γ
β1/`−1/2
1 γ

β2/`−1/2
2

{
1 +

(1 + γ1 + γ2

Nη

)2}
exp

(
−c

(γ1 + γ2

Nη

))
�` γ

2β1/`−1
1 exp

(
−

c
2
γ1

Nη

)
,

hence the r.h.s. of (8) becomes

�`

∑
ρ1 : γ1>0

η1−2β1/`γ
2β1/`−1
1 exp

(
−

c
2
γ1

Nη

) ∑
ρ2 : γ2>0;β2≤ β1

1
1 + |γ1 − γ2 |2

�`

∑
ρ1 : γ1>0

(γ1

η

)2β1/`−1
exp

(
−

c
4
γ1

Nη

)
(9)

since the number of zeros ρ2 = β2 + iγ2 with n ≤ |γ1 − γ2 | ≤ n + 1 is O(log(n + γ1)).
Now we use (3) and the Ingham-Huxley zero-density estimate, i.e., for 1/2 ≤ σ ≤ 1 we have

that N(σ, t) � t(12/5)(1−σ)(log t)B. Hence, uniformly for 1/N < η < N−1+5/(6`)−ε, by (6.17) of
Saffari and Vaughan [8] we get that (9) is∑

ρ1 : γ1>0

(γ1

η

)2β1/`−1
exp

(
−

c
4
γ1

Nη

)
�

∑
β1≥1/2

0<γ1≤N4

(γ1

η

)2β1/`−1
exp

(
−

c
4
γ1

Nη

)

�` max
1/2≤σ≤1−δ(N4)

∫ N4

0
t(12/5)(1−σ)(log t)B

[( t
η

)2σ/`−1
exp

(
−

c
8

t
Nη

)]′
dt

�` max
1/2≤σ≤1−δ(N4)

∫ ∞

0
(Nu)2σ/`−1(Nηu)(12/5)(1−σ) exp

(
−

c
8

u
)

du

�` max
1/2≤σ≤1−δ(N4)

((Nη)(12/5)(1−σ)N2σ/`−1
)
�` N2/`−1 exp

(
−c1

( L
log L

)1/3)
, (10)
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where c1 = c1(ε) is a positive constant which does not depend on `. From (4)-(6) and (8)-(10)
we get ∫ ξ

−ξ

���
∑
ρ : γ>0

z−ρ/`Γ
( ρ
`

) ���
2
dα �` N2/`−1 exp

(
− c1

( L
log L

)1/3)
(11)

uniformly for 1/N < ξ < N−1+5/(6`)−ε. Lemma 1 follows from (4)-(5) and (11). �

We need also the following analogue of Lemma 1 of [5]. Let

ω`(α) =
∞∑

m=1
e−m`/N e(m`α) =

∞∑
m=1

e−m` z . (12)

We explicitly remark that for ` = 1 the proof of Lemma 2 gives just trivial results; in this case a
non-trivial estimate, which, in any case, is not useful in this context, can be obtained following
the line of Corollary 3 of [3].

Lemma 2. Let ` ≥ 2 be an integer and 0 < ξ ≤ 1/2. Then∫ ξ

−ξ
|ω`(α)|2 dα �` ξN1/` +

{
L if ` = 2
1 if ` > 2

and ∫ ξ

−ξ
|S̃`(α)|2 dα �` ξN1/`L +

{
L2 if ` = 2
1 if ` > 2.

Proof. By symmetry we can integrate over [0, ξ]. We use Corollary 2 of Montgomery and
Vaughan [6] (see also the remark after their statement) with T = ξ, ar = exp(−r`/N) and
λr = 2πr` thus getting∫ ξ

0
|ω`(α)|2 dα =

∑
r≥1

e−2r`/N �
ξ + O

�
δ−1

r
��
�` ξN1/` +

∑
r≥1

r1−`e−2r`/N

since δr = λr − λr−1 �` r`−1. The last term is�` 1 if ` > 2 and� L otherwise. This proves the
first part of Lemma 2. Arguing analogously with ar = Λ(r) exp(−r`/N), by the Prime Number
Theorem we get∫ ξ

0
|S̃`(α)|2 dα =

∑
r≥1
Λ(r)2e−2r`/N �

ξ + O
�
δ−1

r
��
�` ξN1/`L +

∑
r≥1
Λ(r)2r1−`e−2r`/N .

The last term is�` 1 if ` > 2 and� L2 otherwise. The second part of Lemma 2 follows. �

Let now

T̃`(α) =
∞∑

p=2
log p e−p`/N e(p`α). (13)

We also have

Lemma 3. Let ` ≥ 1 be an integer. Then |S̃`(α) − T̃`(α)| �` N1/(2`).
Proof. Clearly we have

|S̃`(α) − T̃`(α)| ≤
∑
k≥2

∑
p≥2

log p e−pk`/N �` N1/(2`)

where in the last inequality we used the Prime Number Theorem. �
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Letting ω(α) = ω2(α) and

θ(z) =
∞∑

n=−∞

e−n2/N e(n2α) =
∞∑

n=−∞

e−n2z = 1 + 2ω(α),

the functional equation of the θ-function (see, e.g., Proposition VI.4.3, page 340, of Freitag and
Busam [2]) gives that θ(z) = (π/z)1/2θ(π2/z). Hence we have

ω(α) = 1
2

(
π

z

)1/2
−

1
2
+

(
π

z

)1/2 +∞∑
`=1

e−`
2π2/z . (14)

Lemma 4. Let N be a large integer, z = 1/N − 2πiα, α ∈ [−1/2, 1/2] and Y = <(1/z) > 0.
We have

���
+∞∑
`=1

e−`
2π2/z ��� �

{
e−π

2Y for Y ≥ 1
Y−1/2 for 0 < Y ≤ 1.

Proof. It is clear that

���
+∞∑
`=1

e−`
2π2/z ��� ≤

+∞∑
`=1

e−`
2π2Y ≤

+∞∑
`=1

e−`π
2Y =

e−π
2Y

1 − e−π2Y
� e−π

2Y

for Y ≥ 1. Moreover, for Y > 0, we also have
+∞∑
`=1

e−`
2π2Y ≤ 1 +

∫ +∞

1
e−t2π2Y dt � 1 + Y−1/2

and the lemma is proved. �

Since

Y = <(1/z) = N
1 + 4π2α2N2 ≥

1
5π2

{
N if |α| ≤ 1/N
(α2N)−1 if |α| > 1/N,

from Lemma 4 we get

���
+∞∑
`=1

e−`
2π2/z ��� �




exp(−π2N) if |α| ≤ 1/N
exp(−π2/(α2N)) if 1/N < |α| = o

�
N−1/2�

1 + N1/2 |α| otherwise.
(15)

We also recall that

|U(α, H)| ≤ min
�
H; |α|−1�

, (16)

|z |−1 � min
�
N, |α|−1�

(17)

and we finally define

B = B(N, c) = exp
(
c
( L
log L

)1/3)
, (18)

where c = c(ε) > 0 will be chosen later.
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3. Proof of Theorem 1

Recalling (1) and (13), it is an easy matter to see that
N+H∑

n=N+1
e−n/Nr′′2,2(n) =

∫ 1/2

−1/2
T̃2(α)2U(−α, H)e(−Nα) dα

=

∫ 1/2

−1/2
(T̃2(α)2 − S̃2(α)2)U(−α, H)e(−Nα) dα

+

∫ 1/2

−1/2

π

4z
U(−α, H)e(−Nα) dα +

∫ 1/2

−1/2

(
S̃2(α)2 − π

4z

)
U(−α, H)e(−Nα) dα

= I0 + I1 + I2, (19)

say. Using the identity f 2 − g2 = 2 f ( f − g) − ( f − g)2 and the Cauchy-Schwarz inequality we
have

I0 �

∫ 1/2

−1/2
|S̃2(α)||S̃2(α) − T̃2(α)||U(α, H)| dα +

∫ 1/2

−1/2
|S̃2(α) − T̃2(α)|2 |U(α, H)| dα

� N1/4
(∫ 1/2

−1/2
|S̃2(α)|2 |U(α, H)|dα)1/2 (∫ 1/2

−1/2
|U(α, H)| dα)1/2

+ N1/2
∫ 1/2

−1/2
|U(α, H)| dα,

by Lemma 3. By Lemma 2, (16) and a partial integration argument we obtain∫ 1/2

−1/2
|S̃2(α)|2 |U(α, H)|dα � H

∫ 1/H

−1/H
|S̃2(α)|2 |U(α, H)|dα +

∫ 1/2

1/H
|S̃2(α)|2 dα

α

� H
( N1/2L

H
+ L2

)
+ N1/2L +

∫ 1/2

1/H
(N1/2ξL + L2)dξ

ξ2

� N1/2L2 + HL2.

Hence

I0 � N1/4(N1/2L2 + HL2)1/2L1/2 + N1/2L � N1/2L3/2 + H1/2N1/4L3/2. (20)

Now we evaluate I1. Using Lemma 4 of [4] we immediately get

I1 =
π

4

N+H∑
n=N+1

e−n/N + O

(
H
N

)
=
πH
4e
+ O

(
H2

N

)
. (21)

Now we estimate I2. Again using the identity f 2 − g2 = 2 f ( f − g)− ( f − g)2, by (2) we obtain

I2 �

∫ 1/2

−1/2
|Ẽ2(α)| |U(α, H)|

|z |1/2 dα +
∫ 1/2

−1/2
|Ẽ2(α)|2 |U(α, H)| dα = J1 + J2, (22)

say. Using (16)-(17), Lemma 3 of [4] and a partial integration argument we have

J2 � H
∫ 1/H

−1/H
|Ẽ2(α)|2 dα+

∫ 1/2

1/H
|Ẽ2(α)|2 dα

α
� N1/2L2+N1/2L2

(
1+

∫ 1/2

1/H

dξ
ξ

)
� N1/2L3.

(23)
Using the Cauchy-Schwarz inequality and arguing as for J2 we get

J1 � H N1/2
(∫ 1/N

−1/N
dα

)1/2 (∫ 1/N

−1/N
|Ẽ2(α)|2 dα

)1/2
+ H

(∫ 1/H

1/N

dα
α1/2

)1/2 (∫ 1/H

1/N
|Ẽ2(α)|2 dα

α1/2

)1/2
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+
(∫ 1/2

1/H

dα
α3/2

)1/2 (∫ 1/2

1/H
|Ẽ2(α)|2 dα

α3/2

)1/2

� H N−1/4L + H3/4N1/4L
( 1

H
+

∫ 1/H

1/N

dξ
ξ1/2

)1/2
+ H1/4N1/4L

(
H1/2 +

∫ 1/2

1/H

dξ
ξ3/2

)1/2

� H1/2N1/4L. (24)

Combining (22)-(24) we finally obtain

I2 � H1/2N1/4L + N1/2L3. (25)

Now using (19)-(21) and (25) we have
N+H∑

n=N+1
e−n/Nr′′2,2(n) =

πH
4e
+ O

( H2

N
+ N1/2L3 + H1/2N1/4L3/2

)
(26)

which is an asymptotic formula for∞(N1/2L3) ≤ H ≤ o(N). From e−n/N = e−1 + O(H/N) for
n ∈ [N + 1, N + H], we get

N+H∑
n=N+1

r′′2,2(n) =
πH
4
+ O

( H2

N
+ N1/2L3 + H1/2N1/4L3/2

)
+ O

( H
N

N+H∑
n=N+1

r′′2,2(n)
)
. (27)

Using en/N ≤ e2 and (26) for H in the previously mentioned range, it is easy to see that the
last error term is� H2N−1. Combining (27) and the last remark, Theorem 1 hence follows for
∞(N1/2L3) ≤ H ≤ o(N). �

4. Proof of Theorem 2

Recalling (1) and (13), it is an easy matter to see that
N+H∑

n=N+1
e−n/Nr′′2,2(n) =

∫ 1/2

−1/2
T̃2(α)2U(−α, H)e(−Nα) dα

=

∫ 1/2

−1/2
(T̃2(α)2 − S̃2(α)2)U(−α, H)e(−Nα) dα +

∫ B/H

−B/H

π

4z
U(−α, H)e(−Nα) dα

+

∫ B/H

−B/H

(
S̃2(α)2 − π

4z

)
U(−α, H)e(−Nα) dα +

∫
[−1/2,−B/H]∪[B/H,1/2]

S̃2(α)2U(−α, H)e(−Nα) dα

= I0 + I1 + I2 + I3, (28)

say, where B is defined in (18). I0 can be estimated as in (20) and gives

I0 � N1/2L3/2 + H1/2N1/4L3/2. (29)

Now we evaluate I1. Using Lemma 4 of [4] and (16) we immediately get

I1 =
π

4

N+H∑
n=N+1

e−n/N + O
( H

N

)
+ O

(∫ 1/2

B/H

dα
α2

)
=
πH
4e
+ O

( H2

N
+

H
B

)
. (30)

Now we estimate I2. Using the identity f 2 − g2 = 2 f ( f − g) − ( f − g)2, by (2) and (16) we
obtain

I2 � H
(∫ B/H

−B/H
|Ẽ2(α)| dα

|z |1/2 +
∫ B/H

−B/H
|Ẽ2(α)|2 dα

)
= H(J1 + J2), (31)
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say. Using Lemma 1 with ` = 2 we have

J2 � exp
(
− c1

( L
log L

)1/3)
(32)

provided that∞(1/N) < B/H < N−7/12−ε/2, i.e. N7/12+ε ≤ H ≤ o(N) suffices.
Using the Cauchy-Schwarz inequality and arguing as for J2 we get

J1 �
(∫ B/H

−B/H

dα
|z |

)1/2 (∫ B/H

−B/H
|Ẽ2(α)|2 dα

)1/2
� exp

(
−

c1

4
( L
log L

)1/3)
, (33)

provided that∞(1/N) < B/H < N−7/12−ε/2, i.e. N7/12+ε ≤ H ≤ o(N).
Combining (31)-(33), for N7/12+ε ≤ H ≤ o(N) we finally obtain

I2 � H exp
(
−

c1

4
( L
log L

)1/3)
. (34)

Now we estimate I3. By (16), Lemma 2 and a partial integration argument we get

I3 �

∫ 1/2

B/H
|S̃2(α)|2 dα

α
� N1/2L +

HL2

B
+ L

∫ 1/2

B/H
(ξN1/2 + L)dξ

ξ2 �
(
N1/2 +

H
B

)
L2. (35)

Now using (28)-(30) and (34)-(35), and choosing 0 < c < c1/4 in (18), we have that there exists
a constant C = C(ε) > 0 such that

N+H∑
n=N+1

e−n/Nr′′2,2(n) =
πH
4e
+ O

(
H exp

(
− C

( L
log L

)1/3)
+

H2

N

)
uniformly for N7/12+ε ≤ H ≤ o(N). Theorem 2 hence follows for N7/12+ε ≤ H ≤ N1−ε since
the exponential weight e−n/N can be removed as we did at the bottom of the proof of Theorem
1. �

Remark 1. Using the finite-sum approach we need to define T2(α) = ∑
1≤m2≤N e(m2α) and

f2(α) = (1/2)∑1≤m≤N m−1/2e(mα). Theorem 4.1 of Vaughan [9] gives |T2(α) − f2(α)| �
(1 + |α|N)1/2. The main term comes from the integral of f2(α)2U(−α, H) but we also need to
evaluate the quantity

���

∫ B/H

−B/H
(T2(α)2 − f2(α)2)U(−α, H)e(−Nα) dα��� �

N B1/2

H1/2 .

Since the expected order of magnitude of the main term is H, the previous estimate is under
control if and only if H ≥ N2/3B1/3 which is weaker than the result we obtain. Similar remarks
apply for the other problems studied in the remaining sections.

5. Proof of Theorem 3

Letting 1 < A = A(N) < H/2 to be chosen later, by (1) and (12)-(14) it is an easy matter to
see that

N+H∑
n=N+1

e−n/Nr′2,2(n) =
∫ 1/2

−1/2
T̃2(α)ω(α)U(−α, H)e(−Nα) dα

=

∫ 1/2

−1/2
(T̃2(α) − S̃2(α))ω(α)U(−α, H)e(−Nα) dα
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+

∫ A/H

−A/H

( π
4z
−
π1/2

4z1/2

)
U(−α, H)e(−Nα) dα +

∫ A/H

−A/H
Ẽ2(α)ω(α)U(−α, H)e(−Nα) dα

+

∫ A/H

−A/H

π

2z

(+∞∑
`=1

e−`
2π2/z

)
U(−α, H)e(−Nα) dα +

∫
[−1/2,−A/H]∪[A/H,1/2]

S̃2(α)ω(α)U(−α, H)e(−Nα) dα

= I0 + I1 + I2 + I3 + I4, (36)

say. Using Lemma 3 and the Cauchy-Schwarz inequality we have

I0 � N1/4
(∫ 1/2

−1/2
|ω(α)|2 |U(α, H)| dα)1/2 (∫ 1/2

−1/2
|U(α, H)| dα)1/2

.

By Lemma 2, (16) and a partial integration argument we obtain

I0 � N1/4(N1/2L + HL)1/2L1/2 � N1/2L + H1/2N1/4L. (37)

Now we evaluate I1. Using Lemma 4 of [4] and (16) we immediately get

I1 =

N+H∑
n=N+1

(π
4
−

1
4n1/2

)
e−n/N + O

( H
N

)
+ O

(∫ 1/2

A/H

dα
α2

)
=
πH
4e
+ O

( H
N1/2 +

H2

N
+

H
A

)
. (38)

To have that πH/(4e) dominates in I0 + I1 we need that A→ ∞, H = o(N) and H = ∞(N1/2L2).
Now we estimate I3. Assuming H = ∞(N1/2 A), by (15)-(17), we have

I3 �
H N
eπ2N

∫ 1/N

−1/N
dα +

H
eπ2H2/N

∫ 1/H

1/N

dα
α
+

∫ A/H

1/H

dα
α2eπ2/(Nα2)

�
H

eπ2N
+

HL
eπ2H2/N

+
H

eπ2H2/(N A2) (39)

which is o(H) provided that H = ∞(N1/2 log L) and H = ∞(N1/2 A).
Now we estimate I2. Recalling H = ∞(N1/2 A), for every |α| ≤ A/H we have, by (14)-(15),

that |ω(α)| � |z |−1/2. Hence

I2 �

∫ A/H

−A/H
|Ẽ2(α)| |U(α, H)|

|z |1/2 dα.

Using (17) and the Cauchy-Schwarz inequality and Lemma 3 of [4] we get

I2 � H N1/2
(∫ 1/N

−1/N
dα

)1/2 (∫ 1/N

−1/N
|Ẽ2(α)|2 dα

)1/2
+ H

(∫ 1/H

1/N

dα
α1/2

)1/2 (∫ 1/H

1/N
|Ẽ2(α)|2 dα

α1/2

)1/2

+
(∫ A/H

1/H

dα
α3/2

)1/2 (∫ A/H

1/H
|Ẽ2(α)|2 dα

α3/2

)1/2

� H N−1/4L + H3/4N1/4L
( 1

H
+

∫ 1/H

1/N

dξ
ξ1/2

)1/2
+ H1/4N1/4L

(
H1/2 +

∫ A/H

1/H

dξ
ξ3/2

)1/2

� H1/2N1/4L. (40)

Remark that I2 = o(H) provided that H = ∞(N1/2L2).
Now we estimate I4. By (16), Lemma 2 and a partial integration argument we get

I4 �

∫ 1/2

A/H
|S̃2(α)ω(α)|dα

α
�

(∫ 1/2

A/H
|S̃2(α)|2 dα

α

)1/2 (∫ 1/2

A/H
|ω(α)|2 dα

α

)1/2
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�
(
N1/2L +

HL2

A
+ L

∫ 1/2

A/H
(ξN1/2 + L)dξ

ξ2

)1/2 (
N1/2 +

HL
A
+

∫ 1/2

A/H
(ξN1/2 + L)dξ

ξ2

)1/2

� L3/2
(
N1/2 +

H
A

)
(41)

which is o(H) provided that A = ∞(L3/2) and H = ∞(N1/2L3/2).
Combining the conditions on H and A we can choose A = L2/(log L) and H = ∞(N1/2L2).

Hence using (36)-(41) we can write
N+H∑

n=N+1
e−n/Nr′2,2(n) =

πH
4e
+ O

( H2

N
+

H log L
L1/2 + N1/2L3/2 + H1/2N1/4L

)
.

Theorem 3 follows for ∞(N1/2L2) ≤ H ≤ o(N) since the exponential weight e−n/N can be
removed as we did at the bottom of the proof of Theorem 1. �

6. Proof of Theorem 4

By (1) and (12)-(14), it is an easy matter to see that
N+H∑

n=N+1
e−n/Nr′2,2(n) =

∫ 1/2

−1/2
T̃2(α)ω(α)U(−α, H)e(−Nα) dα

=

∫ 1/2

−1/2
(T̃2(α) − S̃2(α))ω(α)U(−α, H)e(−Nα) dα

+

∫ B/H

−B/H

( π
4z
−
π1/2

4z1/2

)
U(−α, H)e(−Nα) dα +

∫ B/H

−B/H
Ẽ2(α)ω(α)U(−α, H)e(−Nα) dα

+

∫ B/H

−B/H

π

2z

(+∞∑
`=1

e−`
2π2/z

)
U(−α, H)e(−Nα) dα +

∫
[−1/2,−B/H]∪[B/H,1/2]

S̃2(α)ω(α)U(−α, H)e(−Nα) dα

= I0 + I1 + I2 + I3 + I4, (42)
say, where B is defined in (18). I0 can be estimated as in (37) and gives

I0 � N1/2L + H1/2N1/4L. (43)
I1 can be evaluated as in (38) and we get

I1 =
πH
4e
+ O

( H2

N
+

H
B

)
. (44)

Now we estimate I2. Using (16) and the Cauchy-Schwarz inequality we obtain

I2 � H
(∫ B/H

−B/H
|Ẽ2(α)|2 dα

)1/2 (∫ B/H

−B/H
|ω(α)|2 dα

)1/2
= H(J1 J2)1/2, (45)

say. Using Lemma 1 we can write

J1 � exp
(
− c1

( L
log L

)1/3)
(46)

provided that∞(1/N) < B/H < N−7/12−ε/2, i.e. N7/12+ε ≤ H ≤ o(N) suffices.
Using Lemma 2 with ` = 2 we have

J2 �
N1/2B

H
+ L � L. (47)
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Combining (45)-(47) for N7/12+ε ≤ H ≤ o(N) we finally obtain
I2 � H exp

(
−

c1

4
( L
log L

)1/3)
. (48)

Now we estimate I3. By (15)-(17), we have

I3 �
H N
eπ2N

∫ 1/N

−1/N
dα +

H
eπ2H2/(N B2)

∫ B/H

1/N

dα
α
� H exp

(
−

c1

4
( L
log L

)1/3)
, (49)

since N7/12+ε ≤ H ≤ o(N).
I4 can be estimated as in (41) and gives

I4 � L3/2
(
N1/2 +

H
B

)
. (50)

Now using (42)-(44) and (48)-(50), and choosing 0 < c < c1 in (18), we have that there exists
a constant C = C(ε) > 0 such that

N+H∑
n=N+1

e−n/Nr′2,2(n) =
πH
4e
+ O

(
H exp

(
− C

( L
log L

)1/3)
+

H2

N

)
uniformly for for N7/12+ε ≤ H ≤ o(N). Theorem 4 hence follows for N7/12+ε ≤ H ≤ N1−ε

since the exponential weight e−n/N can be removed as we did at the bottom of the proof of
Theorem 1. �
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