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Abstract

We study the power of four popular unit root tests in the presence of a local-to-finite variance DGP.

We characterize the asymptotic distribution of these tests under a sequence of local alternatives,

considering both stationary and explosive ones . We supplement the theoretical analysis with a

small simulation study to assess the finite sample power of the tests. Our results suggest that

the finite sample power is affected by the α-stable component for low values of α and that, in

the presence of this component, the DW test has the highest power under stationary alternatives.

We also document a rather peculiar behavior of the DW test whose power, under the explosive

alternative, suddenly falls from 1 to zero for very small changes in the autoregressive parameter

suggesting a discontinuity in the power function of the DW test.
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1. Introduction

This paper is concerned with the power of unit root tests under local departures from the

maintained hypothesis of finite variance of the error term. Following the approach proposed by

Amsler and Schmidt (2012), and used by Cappuccio and Lubian (2007), we provide expressions for

the asymptotic distributions of unit root tests under a sequence of local alternatives from the unit

root null hypothesis under the assumption that the error term of a driftless random walk belongs

to the normal domain of attraction of a stable law in any finite sample but has finite variance in

the limit as T ↑ ∞.

A setup of local departures from finite variance is interesting because it allows us to investigate

the behavior of unit root tests in borderline or near borderline cases between finite and infinite

variance. This kind of robustness analysis may indeed be relevant in practical settings where the

existence of the variance is dubious such as, for example, in the analysis of financial time series. It

is well-known that the empirical distribution of financial asset returns is often characterized by fat

tails suggesting the relevance of non-gaussian stable laws. However, the empirical evidence in favor

of the stable model is not clear-cut (McCulloch, 1997) so that the local-to-finite variance approach

can be useful for improving our understanding of the robustness of unit root and stationarity tests

in these circumstances.

Amsler and Schmidt (2012) first proposed this approach and derived the null distribution of the

KPSS test, Callegari et al. (2003) obtained the asymptotic distributions of DF type tests of unit

root, and Cappuccio and Lubian (2007) obtained the null distribution of additional stationarity

and nonstationarity tests. In this paper we provide additional results both on the asymptotic

distributions and the finite samples properties of unit root tests under a sequence of local alternatives

and local-to-finite variance error term.

In the next section we derive the asymptotic distribution of four popular test of the unit root

hypothesis under a sequence of stationary and explosive alternatives when the data generating

process displays local-to-finite variance errors. In Section 3 we carry out a simulation experiment

to study the finite sample power functions of the tests.

2. Asymptotic distributions under a sequence of local alternatives

Our modeling of the local-to-finite variance process follows the approach proposed in Amsler

and Schmidt (2012) whereby the process has infinite variance in finite samples but collapses to the

standard finite variance case asymptotically. The Data Generating Process for the error term ut is
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then given by

ut = v1t +
γ

aT 1/α−1/2 v2t. (1)

where v1t is an i.i.d. process with zero mean and finite variance σ2 and v2t is also an i.i.d. process,

symmetrically distributed with distribution belonging to the normal domain of attraction of a stable

law with characteristic exponent α, with α ∈ (0; 2), denoted as v2t ∈ ND(α), and a can be set

equal to 1 as in Amsler and Schmidt (2012). It follows that that ut exhibits infinite variance in any

finite sample size but finite variance in the limit as T approaches infinity. The role played by the

stable component decreases as the sample size increases even though this occurs at a slower rate as

α increases. Thus, for a given γ, when α is close to 2 we need a large sample size to offset the stable

component whereas for α < 1 a relatively small sample size is required. By Donsker’s theorem, it is

well known that T−1/2
∑[Tr]

t=1 v1t ⇒ σW (r), where⇒ stands for the weak convergence of probability

measures, and W (r) is the standard Wiener process. Further, (see, for instance, Resnick, 1986;

Phillips, 1990), for the partial sum process a−1T
∑[Tr]

t=1 v2t we have the following converegence results 1

aT

[Tr]∑
t=1

v2t,
1

a2T

[Tr]∑
t=1

v22t

⇒ (Uα(r), V (r)) , (2)

where aT = aT 1/α, Uα(r) is a Lévy α-stable process on the space D[0, 1], V (r) is its quadratic

variation process V (r) = [Uα, Uα]r = U2
α(r)− 2

∫ r
0 U

−
α dUα (see Protter, 1990, pg. 58, Phillips, 1990,

eq. (11)) and U−α (r) stands for the left limit of the process Uα(·) in r. The process V (r) is a

Lévy α/2-stable process appears frequently in the asymptotic distribution of unit root tests. For

α ∈ (0, 1), it is non a degenerate random variable, while for α = 2 we have V (1) = 1.

The main convergence result used in the paper is the following

1√
T

[Tr]∑
t=1

ut ⇒ σ1W (r) + γUα(r) ≡ Zα,γ(r)

whose proof follows directly from the above joint convergence and the continuous mapping theorem.

A number of useful results on the limiting behavior of sample moments and partial sums of the local-

to-finite variance error term have been provided by Cappuccio and Lubian (2007, Lemma 2.1).

We consider the baseline case of a driftless random walk and assume that {yt} is generated as

yt = ρyt−1 + ut, t = 1, . . . , T (3)

where ρ = 1 and that the initial condition y0 is any random variable whose distribution does not

depend on T .
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We consider four test statistics for testing the null hypothesis HDS : ρ = 1 in (3) such as

T (ρ̂ − 1) and the t-ratio statistics, where ρ̂ is the OLS estimator of ρ in 3, proposed by Dickey

and Fuller (1976), the Lagrange Multiplier test (hereafter LM) proposed by Ahn (1993), and the

Durbin-Watson (DW ) test. Formally, the t-ratio statistics , the LM and DW tests are given by

tρ̂ =

(
T∑
t=2

y2t−1

)1/2

(ρ̂− 1)/s (4)

LM =

(∑T
t=2(yt − yt−1)yt−1

)2
s2
∑T

t=2 y
2
t−1

(5)

DW =

∑T
t=2(yt − yt−1)2∑T

t=2 y
2
t−1

(6)

where s2 =
∑T

t=2(yt − yt−1)2/T . As remarked by Paulauskas et al. (2011), the weak convergence

to stochastic integrals for sample moments of i.i.d. random vectors in the domain of attraction of a

multivariate stable law with an index 0 < α < 2 has been proved by Paulauskas and Rachev (1998).

The limiting behavior of the above test statistics under DGP (1) and the null hypothesis H0 : ρ = 1

has been provided by Cappuccio and Lubian (2007) and is reported here for completeness

T (ρ̂− 1)⇒
∫ 1
0 Zα,γdZα,γ∫ 1

0 Z
2
α,γ

, tρ̂ ⇒
∫ 1
0 Zα,γdZα,γ(

Kγ(1)γ2V (1)
∫ 1
0 Z

2
α,γ

)1/2
LM ⇒

(∫ 1
0 Zα,γdZα,γ

)2
Kγ(1)

∫ 1
0 Z

2
α,γ

, TDW ⇒ Kγ(1)∫ 1
0 Z

2
α,γ

where Kγ(1) = σ2 + γ2V (1). The null distribution of the four test statistics for DGP (3) in the

infinite variance case has been established by Ahn et al. (2001) and for DGPs with a constant or

a constant and a drift by Callegari et al. (2003). Even though the process ut has finite variance,

the limiting distributions of the unit root test statistics turns out to be a function of both the

Wiener process W (r) and the Lévy α-stable process Uα(r), so that they depend on the maximal

moment exponent α and the nuisance parameters σ2 and γ. As expected, the weight of Uα(r) in

the asymptotic distribution increasesas with γ.

To study the power of these tests, we consider local departures from the null hypothesis assuming

that the data generating process is given by

yt = ρT yt−1 + ut (7)

where ρT = ec/T with c < 0, a noncentrality parameter, to focus on the stationary alternatives.

When c = 0 we are under the null hypothesis, while for c > 0 the process is explosive. When c is

3



negative but close to zero, the process (7) is said to be near-integrated or to display a local-to-unity

root. Since ec/T = 1 + O(T−1), as well as for the OLS estimator under the null hypothesis, the

asymptotic distribution of unit root tests will depend on c. The behavior induced by the parameter

c can be helpful to understand the effect on the asymptotic distribution of departures from the null

hypothesis under a sequence of local to unity alternatives.

Under DGP (7), using standard results we have

T−1/2y[Tr] ⇒ σJc(r) + γGc,α(r)

where Jc(r) =
∫ r
0 e

(r−s)cdW (s) = W (r) + c
∫ r
0 e

(r−s)cW (s)ds, and Gc,α(r) =
∫ r
0 e

(r−s)cdUα(s) =

Uα(r) + c
∫ r
0 e

(r−s)cU−α (s)ds. Applying the continuous mapping theorem we obtain immediately the

following convergence for sample moments of the process (7). These are summarized in the following

proposition.

Proposition 1. Under DGP (7) and the local-finite variance assumption (1), as T ↑ ∞, we have

T−3/2
T∑
y=1

yj ⇒
∫ 1

0
[σJc(r) + γGc,α(r)]dr (8)

T−2
T∑
y=1

y2j ⇒
∫ 1

0
[σJc(r) + γGc,α(r)]2dr (9)

T−1
T∑
y=1

yj−1uj ⇒
1

2
(σJc(1) + γGc,α(1))− c

∫ 1

0
]σJc(r) + γGc,α(r)]2dr − 1

2
(σ2 + γ2V (1)) (10)

Given these results we can move to analyze the limiting distribution of the unit root tests under

the sequence of local alternatives. We discuss each test at a time.

Dickey-Fuller test T (ρ̂− 1)

Since ρT ' 1 + c/T , the limiting distribution of T (ρ̂− 1) is given by

T (ρ̂− 1)⇒ c+
1
2 [σJc(r) + γGc,α(r)]2 − c

∫ 1
0 [σJc(r) + γGc,α(r)]2dr − 1

2(σ2 + γ2V (1))∫ 1
0 [σJc(r) + γGc,α(r)]2dr

In the standard case, which represents the reference settings when studying the behavior of the test,

we have the γ = 0. The distribution under the sequence of local alternatives becomes

c+

∫ 1
0 Jc(r)dW (r)∫ 1

0 J
2
c (r)dr
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which, using Lemma 2 in Phillips (1987) can be used to obtain the rejection regions of the null

hypothesis H0 : c = 0. Under the stationary alternative hypothesis H1 : c < 0, we have that

c+

(−2c)1/2

⇒N(0,1)︷ ︸︸ ︷[∫ 1

0
Jc(r)dW (r)

]
(−2c)

∫ 1

0
J2
c (r)dr︸ ︷︷ ︸

→−1

so that, as c→ −∞, the distribution is pushed to the left and its variance increases linearly with c

at the rate
√

2c. It follows that the critical region will be in the left tail of the distibution under the

null. On the contrary, under the explosive alternative hypothesis H1 : c > 0, using again Lemma 2

in Phillips (1987), we have

c+

(2c)e−c

⇒ξη︷ ︸︸ ︷[
(2c)e−c

∫ 1

0
Jc(r)dW (r)

]
(2c)2e−2c

∫ 1

0
J2
c (r)dr︸ ︷︷ ︸

⇒η

where ξ and η are independent N(0, 1). In this case, as c→∞, the distribution moves to the right

and, eventually, collapses on c at the rate e−c. Therefore, the rejection region will lie in the right

tail of the null distribution.

Dickey-Fuller tρ̂

From the limiting distribution of T (ρ̂T − ρT ) we have that (ρ̂T − ρT ) = Op(T
−1) and, therefore,

ρ̂T = ρT + Op(T
−1). Recalling that ρT = ec/T , it follows that ρ̂T → 1 a.s. as T ↑ ∞. Since

s2 ⇒ σ2 + γ2V (1), we have

tρ̂ ⇒ c+
1
2 [σJc(r) + γGc,α(r)]2 −−1

2(σ2 + γ2V (1))(
(σ2 + γ2V (1))

∫ 1
0 [σJc(r) + γGc,α(r)]2dr

)1/2
Some algebraic rearrangements allow us to write the distribution under the finite variance case

γ = 0 as

tρ̂ ⇒ c

(∫ 2

0
Jc(r)

2dr

)1/2

+

∫ 2
0 Jc(r)dW (r)(∫ 2
0 Jc(r)

2dr
)1/2
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The second term of this expression is identical to the second term in the previous Dickey-Fuller test,

while the first term differs for a multiplicative term. However, notice that

c

(∫ 2

0
Jc(r)

2dr

)1/2

= c

→1︷ ︸︸ ︷
−2c

(∫ 2

0
Jc(r)

2dr

)1/2

(−2c)1/2

so that, as c→ −∞, the distribution is shifted to the left and the rejection region is given by the left

tail of the null distribution. A similar reasoning applies to the sequence of explosive alternatives,

the only difference with the first Dickey-Fuller test is that, given that in the first term c is multiplied

by a random variable, the distribution will not collapse to a single point but it will diverge to ∞ as

c increases. Hence, the rejection region is given by the right tail of the null distribution.

LM test

From (1) and the fact that s2 ⇒ σ2 + γ2V (1), the distribution of the LM test (6) is given by

LM ⇒
(
1
2 [σJc(r) + γGc,α(r)]2 − 1

2(σ2 + γ2V (1))
)2

(σ2 + γ2V (1))
∫ 1
0 [σJc(r) + γGc,α(r)]2dr

The critical region for this test statistics is easily found. Since the numerator is always positive, the

distribution shifts to the right as c diverges to ±∞ so that the rejection region always lies in the

right tail. Formally, let us consider the case γ = 0:(
1
2σJc(1)2 − 1

2σ
2
)

σ2
∫ 1
0 σJc(r)

2dr

The denominator converges to 0 as c → −∞ and diverges as c → ∞. The numerator collapses to

1/4 as c→ −∞,(
1

2
Jc(1)2 − 1

2

)2

=

[
c

∫ 1

0
Jc(r)

2dr +

∫ 2

0
Jc(r)dW (r)

]2
=

[
−1

2
(−2c)

∫ 1

0
Jc(r)

2dr +
1

(−2c)1/2
(−2c)1/2

∫ 2

0
Jc(r)dW (r)

]2
→
(
−1

2

)2

and it diverges to ∞ for c→∞[
c

∫ 1

0
Jc(r)

2dr

∫ 2

0
Jc(r)dW (r)

]2
=[

1

c(2e−c)2
(2ce−c)2

∫ 1

0
Jc(r)

2dr +
1

(2ce−c)1/2
(−2ce−c)

∫ 2

0
Jc(r)dW (r)

]2
so that, in both cases, the distribution of the LM test shifts to the right.
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DW test

The distribution of the DW test is easy to deal with and its asymptotic distribution is given by

TDW ⇒ σ2 + γ2V (1)∫ 1
0 [σJc(r) + γGc,α(r)]2dr

Whe γ = 0 we have that

TDW ⇒ σ2∫ 1
0 σJc(r)

2dr

The numerator is a bounded and strictly positive quantity, while the denominator converges to 0 for

c→ −∞ and diverges for c→∞. The rejection region lies in the right tail of the null distribution

under the stationary alternative and, on the contrary, it lies in the left tail under the explosive

alternative. With regard to this latter case, we recall that the distribution under the null is positive

and that, therefore, coherently the test goes to zero under the exposive alternative. This result is in

line with the usual approximation of the DW test given by DW ≈ 2(1− ρ̂) which implies that the

test is approximately equal to −2 times the first DF test. Then, the behavior of this test is clearly

the opposite of the behavior of the DF tests.

3. Finite sample properties

3.1. Montecarlo experiment

The asymptotic null distributions depend on the unknown nuisance parameters α and γ and,

when analyzing the behavior under the null and under the alternative hypoteses,one should consider

appropriate critical values for each combination of these two parameters. In practice, this approach

seems to be difficult to follow in empirical settings where both α and γ are unknown. Here, we

follow a different approach by considering the critical values under the finite variance case γ = 0

and considering the local-to-finite variance component as a perturbation to the standard maintained

null hypothesis of finite variance. Of course, we depart somehow from a rigorous theoretical analysis

but we believe that our approach will be closer to the context of actual use of the test.

The power of the test statistic against stationary fixed alternatives, T = 200 and for α = 1 and

α = 1.5 has been investigated by Ahn et al. (2001) in a simulation study, showing the consistency of

the tests. In the MonteCarlo experiment we set the variance of v1t equal to 1, that is, σ2 = 1. We

consider 3 different sample sizes T = 100, 1000, 10000 and three different values for α = 0.5, 1, 1.5.

As in Cappuccio and Lubian (2007) and Amsler and Schmidt (2012) we consider the following grid

for γ:

γ = {0.1, 0.316, 1, 3.16, 10, 31.6}
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Table 1: Critical values of the test statistics at 5% and 95% for some values of γ

5% 95%

γ = 0

T (ρ̂− 1) −8.04 1.255
tρ̂ −1.943 1.256
DW 0.602 17.79
LM − 4.123

α = 0.5 α = 1 α = 1.5 α = 0.5 α = 1 α = 1.5

γ = 0.316

T (ρ̂− 1) −7.039 −7.429 −7.608 1.190 1.295 1.295
tρ̂ −1.798 −1.875 −1.893 1.130 1.235 1.283
DW 0.679 0.373 0.351 17.33 16.96 16.98
LM 3.588 3.894 3.987

γ = 31.6

T (ρ̂− 1) −4.663 −6.340 −7.261 1.136 1.286 1.278
tρ̂ −1.391 −1.674 −1.845 0.820 1.034 1.158
DW 0.837 0.462 0.411 16.98 16.48 16.95
LM 2.132 3.125 3.691

where 3.16 ≈
√

10. As for c, we consider the following values

c = {−18,−16,− 14,−13,−12,−11,−10,−9,−8,−7,−6,−5,−4,

− 3,−2,−1,−0.5, 0, 0.51, 2, 3, 4, 6, 8, 10}

Overall, we have 3 sample sizes, 3 values for α, 6 values for γ, and 26 different values for c, for a

total of 1404 combinations of parameters/sample size. In addition, we consider the benchmark case

γ = 0 which is used as a reference in the empirical research. For each combination of parameters

and sample size we simulate 20000 realizations of the four test statistics. In practice, we proceed

as follows: for each sample size T we simulate the first-order autoregressive process with parameter

ρT = ec/T and error term as in (1) for specific values of α and γ, and σ = 1. Then, we calculate the

four test statistics. We repeat this procedure 20000 times. In addition, to approximate the limiting

distribution under the null we compute 100000 simulation of the DGP under the null and then we

tabulate the critical values of the test statistics. These critical values are reported in Table 1 for

selectd values of γ.

We notice that the 5% critical values of the test statistics T (ρ̂−1), tρ̂ and DW move rightwards

both as γ increases holding α fixed and as α decreases holding γ constant. Conversely, the 95%

critical values of the LM test move to the left. In all cases, this suggests that the researcher will

reject the null too few times if she uses the standard critical values for α = 0 when the α-stable

component is indeed present.

We begin by studying how the power of the test statistics changes with c. Using the critical

values in Table 1 we compute the power of the tests by simply counting how many times the different
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test statistics lead to a rejection of the null hypothesis in our replications. We shall compute not

only the non-adjusted power power, using the critical values under γ = 0, but also the adjusted

power, computed using the true values of γ. Thus, we obtain a nonparametric estimate of the

rejection probability under the null hypothesis, i.e., the power of the test. In Figure 1 and 3 we

plot the size-unadjusted power curves of the four test statistics for two sample sizes, T = 100 (left

column) and T = 1000 (right column), and three values of α, namely, 0.5 (top), 1 (middle), and 1.5

(bottom) for γ = 0.316 and γ = 31.6, respectively.

As expected, for c < 0, i.e., for stationary alternatives, all tests are consistent and power

increases and approaches unity as c decreases. The power curves of the four test statistics are close

to each other with the DW test being more powerful as c starts decreasing from zero and then

being beated by the t-test as c decreases. For T = 100, the t-ratio is slightly more powerful than

the other tests and, on the other hand, the LM test is less powerful, with noticeable differences in

power for T = 1000 too. As γ increases, i.e., as the α-stable component becomes more important in

finite samples, power tend to decrease. This occurs not only for T = 100 but also for T = 1000, a

substantially large sample size. This phenomenon can be appreciated by comparing the behavior of

the power functions reported in the top-left panels of Figure 1 and 3. When γ = 31.6, the power is

much lower than when γ = 0.316 and it stay very low whenever c is between 7 and 8, then it raises

very sharply for large values of γ.

In Figures 2 and 4 we provide a zoom of the power function over the interesting interval (−4, 4)

for the parameter c which corresponds to the interval (0.96, 1.04) for the autoregressive parameter

ρ. This allows us to examine the behavior of the test statistics in the vicinity of the null hypohesis

and for values of the autoregressive parameter under the alternative which are likely to be relevant

in empirical research. As expected from the theoretical analysis, even though power approaches

unity as c moves away from 0 in all cases and for all test statistics, quite a different empirical power

is observed for negative c, stationary alternatives, and for positive c, explosive alternatives. In

particular, power is quite low for stationary alternatives, ranging from about 20% when α = 1.5 to

around 10% when α = 0.5. This result is in line with the well known fact that unit root tests have

low power when the alternative hypothesis is very close to the null. Further, these Figures allows

us to fully appreciate the highpower of the DW test for small deviations from the null hypothesis

in the stationary direction.

Under explosive alternatives and for all tests, apart from the DW test for T = 100, power goes

to unity quite fast (the LM and the DW are the slowest though) and this occurs for all values

taken by γ. The test statistic T (ρ̂ − 1) dominates the others and the DW has the worst overall

performance. In addition, the power of the DW test exhibits a behavior in line with the theoretical
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Figure 1: Non-adjusted power for γ = 0.316
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Figure 2: Non-adjusted power for γ = 0.316 (zoom)
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Figure 3: Non-adjusted power for γ = 31.6
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Figure 4: Non-adjusted power for γ = 31.6 (zoom)
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Table 2: Rejection rates DW test at 5% of nominal size, α = 1, T = 1000

γ
0.00 0.316 3.16 31.6

c

20.0 1.00 1.00 1.00 1.00
21.0 1.00 1.00 1.00 1.00
22.0 1.00 0.99 1.00 1.00
23.0 1.00 1.00 1.00 1.00
24.0 1.00 1.00 1.00 1.00
24.1 1.00 1.00 1.00 1.00
24.2 1.00 1.00 1.00 1.00
24.3 0.00 0.00 0.00 0.00
24.4 0.00 0.00 0.00 0.00

prediction since power falls suddenly from 1 to zero, suggesting the test might be inconsistent. This

behavior seems to depend just on the sample size and not on the the values taken by c and/or γ.

In fact, if we consider the case T = 100, from Figures 1 we can see how power falls abruptly to zero

when c exceeds 7 whereas, for the same range of values of c and α, when T = 1000, see Figure 3,

there is no fall in power.

Table 2 makes this point very clearly. For T = 1000 and α = 1, and irrespective of γ, power is

equal to 1 as c increases from 20 to 24.2 and it collapses to zero for c = 24.3 (c = 20 corresponds

to an autogressive parameter ρ = 1.02, c = 24.2 to ρ = 1.0244 and c = 24.3 to ρ = 1.0245). Thus,

very small changes in the autoregressive parameter induce large changes in the power of DW test

suggesting the existence of a discontinuity in the power curve of the test.

It should be remarked that the behavior of the DW test does not depend on the α-stable

component or its weight in the DGP given it does not change with γ or α. In fact, from our

analytical results we know that under the explosive alternative the DW test is inconsistent as it

approaches zero as we move away from the null hypothesis. The theoretical result is obtained as

T → ∞ while in finite samples this may occur for a sample size as low as T = 100. A peculiar

behavior of the DW test has been documented elsewhere in the literature. Krämer (1985) has

shown that in linear regression models without an intercept the power of the DW is either 1 or

zero, and Krämer and Zeisel (1990) have shown that for some choice of the regressors the power of

the DW test drops to zero as the autocorrelation among the disturbances increases. Bartels (1992)

find that, when testing for no autocorrelation in the linear regression model, for some dataset the

power of the DW test goes to 0 as the autoregressive parameter goes to ±1. In a simulation study

of the DW test when the error term in linear regression models follows some strongly dependent

process such as a fractionally integrated process, Kleiber and Krämer (2005) find that the power of

the DW test can drop to zero when the long memory parameter approaches the stationarity region.
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This behavior of the DW test is clearly a serious drawback of the test and the fact that for

large sample sizes this behavior does not disappear raises serious concerns on its usefulness when

considering explosive alternatives. On the other hand, we have just seen that, in the vicinity of

the null hypothesis on the stationary side, the DW test has the best performance: little if any size

distortion and higher power. The use of the DW test is therefore strongly recommended under those

circumstances.

Figure 5 and 7 report the size-adjusted power of the tests, i.e., for an effective size of the test

equal to 5%, for γ = 0.316 and γ = 31.6 and Figure 6 and 8 provide a zoom of the empirical power

function over a range for c associated to small departures from the null hypothesis. Adjusted-power

curves are useful when the effective size of the tests, whose power properties are investigated, differ

from the nominal size as it occurs sometimes in our case. When γ is small, comparing Figure 1 and

Figure 5, the adjusted power is close to the non-adjusted power. However, when γ is high, looking

at Figure 3 and Figure 7, we notice that the DW test has quite low power against stationary

alternatives while the other tests are much more powerful than in the size-unadjusted case. The

low empirical power of the DW test in size-adjusted case seems to shed some doubts on the overall

usefulness of the DW test as a nonstationarity test since (a) it has lower power under stationary

alternatives and (b) it seems inconsistent under explosive alternatives. However, we would like to

point out that the pratictioner would rarely be able to use the critical values generating an effective

size equal to the nominal one, which would require the knowledge of α and γ, but it will rather use

the standard critical values valid in the finite variance case. Under these circumstances, the high

power of DW test under stationary alternatives might be fully appreciated. Finally, Figure 6 and

8 allows to asses the heterogeneity in the power of the tests in the vicinity of the null hypothesis,

in particular for explosive alternatives. The t-ratio has the best performance as c increases, for any

sample size and α, but its power is rapidly reached by the T (ρ̂− 1) test with the LM test lagging

behind in all cases. As for the DW test, as in the size-unadjusted case, we document the sudden

fall in power from 1 to 0 as c exceeds a given threshold, irrespective of the value taken by α and γ.

The same behavior can be observed for the adjusted power curves (Figure 5 and 7) only for the

DW test while for the other test statistics power seems to be higher when γ is large.

Finally, in Figure (9), we graph the non-adjusted power curve of the four tests for α = 1,

γ = 31.6 and four increasing values for the sample sizes (T = 50, 100, 1000, 10000) to investigate its

effect on power. If we consider stationary alternatives, i.e., c negative, we notice that for the t-ratio

power is not very sensitive to the sample size whereas for the other tests power increases with the

sample size even thouh the beneficial effect of a larger sample size is mild inthe vicinity of the null

hypothesis and it becomes stronger as we move further in the stationary region. Under explosive
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Figure 5: Adjusted power for γ = 0.316
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Figure 6: Adjusted power for γ = 0.316 (zoom)
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Figure 7: Adjusted power for γ = 31.6
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Figure 8: Adjusted power for γ = 31.6 (zoom)
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Figure 9: Non-adjusted power for α = 1 and γ = 31.6
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alternatives, the DW test display, as discussed above, a sudden fall in power to 0 while the other

tests have a similar behavior as a function of t.

4. Conclusions

In this paper we have studied the power of four popular unit root tests in the presence of a

local-to-finite variance DGP. We have characterized the distribution of these tests under a sequence

of local alternatives, considering both stationary and explosive alternatives . We carried out a small

simulation study to assess the finite sample power of the tests. Our results suggest that the finite

sample power is affected by the α-stable component for low values of α and that, in the presence of

this component, the DW test has the highest power under stationary alternatives. We also document

a bizarre behavior of the DW test which under the explosive alternative suddenly falls from 1 to

zero for small changes in the alternative hypothesis suggesting a discontinuity in the power function

of the DW test.
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