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SUM OF ONE PRIME AND TWO SQUARES OF PRIMES
IN SHORT INTERVALS

ALESSANDRO LANGUASCO and ALESSANDRO ZACCAGNINI

Abstract. Assuming the Riemann Hypothesis we prove that the interval [N,N + H]
contains an integer which is a sum of a prime and two squares of primes provided that
H ≥ C(logN)4, where C > 0 is an effective constant.

1. Introduction

The problem of representing an integer as a sum of a prime and of two prime squares
is classical. Letting

A = {n ∈ N : n ≡ 1 mod 2; n 6≡ 2 mod 3},

it is conjectured that every sufficiently large n ∈ A can be represented as n = p1+p22+p23.
Let now N be a large integer. Several results about the cardinality E(N) of the set of
integers n ≤ N , n ∈ A which are not representable as a sum of a prime and two prime
squares were proved during the last 75 years; we recall the papers of Hua [3], Schwarz [17],
Leung-Liu [11], Wang [18], Wang-Meng [19], Li [12] and Harman-Kumchev [2]. Recently
L. Zhao [20] proved that

E(N)� N1/3+ε.

As a consequence we can say that every integer n ∈ [1, N ] ∩A, with at most O
(
N1/3+ε

)
exceptions, is the sum of a prime and two prime squares. Letting

r(n) =
∑

p1+p22+p
2
3=n

log p1 log p2 log p3, (1)

in fact L. Zhao also proved that a suitable asymptotic formula for r(n) holds for every
n ∈ [1, N ] ∩ A, with at most O

(
N1/3+ε

)
exceptions.

In this paper we study the average behaviour of r(n) over short intervals [N,N + H],
H = o(N). Assuming that the Riemann Hypothesis (RH) holds, we prove that a suitable
asymptotic formula for such an average of r(n) holds in short intervals with no exceptions.

Theorem 1. Assume the Riemann Hypothesis (RH). We have

N+H∑
n=N+1

r(n) =
π

4
HN +O

(
H1/2N(logN)2 +HN3/4(logN)3 +H2L3/2

)
as N →∞,

uniformly for ∞((logN)4) ≤ H ≤ o
(
NL−3/2

)
, where f =∞(g) means g = o(f).
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2 ONE PRIME AND TWO SQUARES OF PRIMES IN SHORT INTERVALS

Letting

r∗(n) =
∑

p1+p22+p
2
3=n

1,

a similar asymptotic formula holds for the average of r∗(n) too.
In the unconditional case our proof yields a weaker result than Zhao’s, namely, the

asymptotic formula for the average of r(n) holds just for H ≥ N7/12+ε; for this reason,
here we are only concerned with the conditional one. It is worth remarking that, under
the assumption of RH, the formula in Theorem 1 implies that every interval [N,N +H]
contains an integer which is a sum of a prime and two prime squares, where CL4 ≤ H =
o
(
NL−3/2

)
, C > 0 is a suitable large constant and L = logN . We recall that the analogue

results for the binary Goldbach problem are respectively H � N c+ε with c = 21/800, by
Baker-Harman-Pintz and Jia, see [15], and H � L2, under the assumption of RH; see,
e.g., [5]. Assuming RH, the expectation in Theorem 1 is the lower bound H � L2 since
the crucial error term should be � H1/2N logN ; the loss of a factor L in such an error

term is due to the lack of information about a truncated fourth-power average for S̃2(α):
see Lemma 5 and (32) below.

The proof of Theorem 1 uses the original Hardy-Littlewood settings of the circle
method, i.e., with infinite series instead of finite sums over primes. This is due to the
fact that for this problem both the direct and the finite sums approaches do not seem to
be able to work in intervals shorter than N1/2.

Acknowledgements. This research was partially supported by the grant PRIN2010-
11 Arithmetic Algebraic Geometry and Number Theory. We wish to thank the referee
for pointing out some inaccuracies.

2. Notation and Lemmas

Let ` ≥ 1 be an integer. The standard circle method approach requires to define

S`(α) =
∑

1≤p`≤N

log p e(p`α) and T`(α) =
∑

1≤n`≤N

e(n`α),

where e(x) = exp(2πix), and needs the following lemma which collects the results of
Theorems 3.1-3.2 of [8].

Lemma 1. Let N be a large integer, ` > 0 be a real number and ε be an arbitrarily
small positive constant. Then there exists a positive constant c1 = c1(ε), which does not
depend on `, such that∫ 1/H

−1/H
|S`(α)− T`(α)|2 dα�` N

2/`−1
(

exp
(
− c1

( L

logL

)1/3)
+
HL2

N

)
,

uniformly for N1−5/(6`)+ε ≤ H ≤ N . Assuming further RH we get∫ 1/H

−1/H
|S`(α)− T`(α)|2 dα�`

N1/`L2

H
+HN2/`−2L2,

uniformly for N1−1/` ≤ H ≤ N .

So it is clear that this approach works only when the lower bound H ≥ N1−1/` holds.
Such a limitation comes from the fact that Gallagher’s lemma translates the mean-square
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average of an exponential sum in a short interval problem. When `-powers are involved,
this leads to p` ∈ [N,N +H] which is a non-trivial condition only when H ≥ N1−1/`.

So, when ` = 2, the standard circle method approach works only if H ≥ N1/2; on
the other hand we can easily show that the direct attack works, under RH, only for
H = ∞(N1/2L2). Therefore, to have the chance to reach smaller H-values, we will use
the original Hardy and Littlewood [1] circle method setting, i.e., the weighted exponential
sum

S̃`(α) =
∞∑
n=1

Λ(n)e−n
`/Ne(n`α),

since it lets us avoid the use of Gallagher’s lemma, see Lemmas 2-3 below.
The first ingredient we need is the following explicit formula which generalizes and

slightly sharpens what Linnik [13] proved: see also eq. (4.1) of [14]. Let

z = 1/N − 2πiα. (2)

We remark that

|z|−1 � min
(
N, |α|−1

)
. (3)

Lemma 2. Let ` ≥ 1 be an integer, N ≥ 2 and α ∈ [−1/2, 1/2]. Then

S̃`(α) =
Γ(1/`)

`z1/`
− 1

`

∑
ρ

z−ρ/`Γ
(ρ
`

)
+O`(1), (4)

where ρ = β + iγ runs over the non-trivial zeros of ζ(s).

Proof. We recall that Linnik proved this formula in the case ` = 1, with an error term
� 1 + log3(N |α|).

Following the line of Lemma 4 in Hardy and Littlewood [1] and of §4 in Linnik [13],
we have that

S̃`(α) =
Γ(1/`)

`z1/`
− 1

`

∑
ρ

z−ρ/`Γ
(ρ
`

)
− ζ ′

ζ
(0)− 1

2πi

∫
(−
√
3/2)

ζ ′

ζ
(`w)Γ(w)z−w dw. (5)

Now we estimate the integral in (5). Writing w = −
√

3/2 + it, we have |(ζ ′/ζ)(`w)| �`

log(|t| + 2), z−w = |z|
√
3/2 exp(t arg(z)), where | arg(z)| ≤ π/2. Furthermore the Stirling

formula implies that Γ(w)� |t|−(
√
3+1)/2 exp(−π|t|/2). Hence∫

(−
√
3/2)

ζ ′

ζ
(`w)Γ(w)z−w dw �` |z|

√
3/2

∫ 1

0

log(t+ 2) dt

+ |z|
√
3/2

∫ ∞
1

log(t+ 2)t−(
√
3+1)/2 exp

(
(arg(z)− π

2
)t
)

dt

�` |z|
√
3/2 + |z|

√
3/2

∫ ∞
1

log(t+ 2)t−(
√
3+1)/2 dt�` |z|

√
3/2.

This is �` 1 as stated since z � 1 by (2). Hence the lemma is proved. �

We explicitly remark that Lemma 2 is stronger than the corresponding Lemma 1 of [9]
(or Lemma 1 of [7]) because in this case α is bounded.

The second lemma is an L2-estimate of the remainder term in (4) which generalizes a
result of Languasco and Perelli [5]; we will follow their proof inserting many details since
the presence of ` changes the shape of the involved estimates at several places. In fact we
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will use Lemma 3 just for ` = 1, 2 but we take this occasion to describe the more general
case since it may be useful for future works.

Lemma 3. Assume RH. Let ` ≥ 1 be an integer and N be a sufficiently large integer.
For 0 ≤ ξ ≤ 1/2, we have∫ ξ

−ξ

∣∣∣S̃`(α)− Γ(1/`)

`z1/`

∣∣∣2dα�` N
1/`ξL2.

Proof. Since z−ρ/` = |z|−ρ/` exp
(
−i(ρ/`) arctan 2πNα

)
, by RH and Stirling’s formula we

have that

1

`

∑
ρ

z−ρ/`Γ
(ρ
`

)
�`

∑
ρ

|z|−1/(2`)|γ|(1−`)/(2`) exp
(γ
`

arctan 2πNα− π

2`
|γ|
)
.

If γα ≤ 0 or |α| ≤ 1/N we get
∑

ρ z
−ρ/`Γ(ρ/`) �` N

1/(2`), where, in the first case, ρ
runs over the zeros with γα ≤ 0. Hence

I(N, ξ, `) :=

∫ ξ

−ξ

∣∣∣S̃`(α)− Γ(1/`)

`z1/`

∣∣∣2dα�` N
1/`ξ (6)

if 0 ≤ ξ ≤ 1/N , and

I(N, ξ, `)�`

∫ ξ

1/N

∣∣∣∑
γ>0

z−ρ/`Γ
(ρ
`

)∣∣∣2dα +

∫ −1/N
−ξ

∣∣∣∑
γ<0

z−ρ/`Γ
(ρ
`

)∣∣∣2dα +N1/`ξ (7)

if ξ > 1/N . We will treat only the first integral on the right hand side of (7), the second
being completely similar. Clearly∫ ξ

1/N

∣∣∣∑
γ>0

z−ρ/`Γ
(ρ
`

)∣∣∣2dα =
K∑
k=1

∫ 2η

η

∣∣∣∑
γ>0

z−ρ/`Γ
(ρ
`

)∣∣∣2dα +O(1) (8)

where η = ηk = ξ/2k, 1/N ≤ η ≤ ξ/2 and K is a suitable integer satisfying K = O(L).
Writing arctan 2πNα = π/2− arctan(1/2πNα) and using the Saffari-Vaughan technique
we have ∫ 2η

η

∣∣∣∑
γ>0

z−ρ/`Γ
(ρ
`

)∣∣∣2 dα ≤
∫ 2

1

(∫ 2δη

δη/2

∣∣∣∑
γ>0

z−ρ/`Γ
(ρ
`

)∣∣∣2dα)dδ

=
∑
γ1>0

∑
γ2>0

Γ
(ρ1
`

)
Γ
(ρ2
`

)
e
π
2`
(γ1+γ2) · J, (9)

say, where

J = J(N, η, γ1, γ2) =

∫ 2

1

(∫ 2δη

δη/2

f1(α)f2(α) dα
)

dδ, w =
1

`
+
i

`
(γ1 − γ2),

f1(α) = |z|−w and f2(α) = exp
(
−γ1 + γ2

`
arctan

1

2πNα

)
.

Now we proceed to the estimation of J . Integrating twice by parts and denoting by F1

a primitive of f1 and by G1 a primitive of F1, we get

J =
1

2η

(
G1(4η)f2(4η)−G1(2η)f2(2η)

)
− 2

η

(
G1(η)f2(η)−G1

(η
2

)
f2

(η
2

))
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− 2

∫ 2

1

G1(2δη)f ′2(2δη)dδ + 2

∫ 2

1

G1

(δη
2

)
f ′2

(δη
2

)
dδ +

∫ 2

1

(∫ 2δη

δη/2

G1(α)f ′′2 (α) dα
)

dδ. (10)

If α > 1/N we have

f ′2(α)�`
1

α

(γ1 + γ2
Nα

)
f2(α)

f ′′2 (α)�`
1

α2

{(γ1 + γ2
Nα

)
+
(γ1 + γ2

Nα

)2}
f2(α),

hence from (10) we get

J �`
1

η
max

α∈[η/2,4η]
|G1(α)|

{
1 +

(γ1 + γ2
Nη

)2}
exp
(
−c
(γ1 + γ2

Nη

))
, (11)

where c = c(`) > 0 is a suitable constant.
In order to estimate G1(α) we use the substitution

u = u(α) =
( 1

N2
+ 4π2α2

)1/2
, (12)

thus getting

F1(α) =
1

2π

∫
u1−w

(u2 −N−2)1/2
du.

By partial integration we have

F1(α) =
1

2π(2− w)

{ u2−w

(u2 −N−2)1/2
+

∫
u3−w

(u2 −N−2)3/2
du
}
. (13)

From (12) and (13) we get

G1(α) =
1

2π(2− w)

{
A(α) +

∫
B(α) dα

}
, (14)

where

A(α) =
1

2π

∫
u3−w

u2 −N−2
du and B(α) =

∫
u3−w

(u2 −N−2)3/2
du.

Again by partial integration we obtain

A(α) =
1

2π(4− w)

{ u4−w

u2 −N−2
+ 2

∫
u5−w

(u2 −N−2)2
du
}

and

B(α) =
1

4− w

{ u4−w

(u2 −N−2)3/2
+ 3

∫
u5−w

(u2 −N−2)5/2
du
}
.

Hence by (12) we have for α ∈ [η/2, 4η] that

A(α)�`
u2−1/`

1 + |γ1 − γ2|
� α2−1/`

1 + |γ1 − γ2|
and B(α)�`

α1−1/`

1 + |γ1 − γ2|
, (15)

where A(α) and B(α) satisfy A(η/4) = B(η/4) = 0, and from (14)-(15) we obtain

G1(α)�`
α2−1/`

1 + |γ1 − γ2|2
(16)

for α ∈ [η/2, 4η]. From (11) and (16) we get

J �` η
1−1/` 1 + (γ1+γ2

Nη
)2

1 + |γ1 − γ2|2
exp
(
−c
(γ1 + γ2

Nη

))
,
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hence from (9) and Stirling’s formula we have∫ 2η

η

∣∣∣∑
γ>0

z−ρ/`Γ
(ρ
`

)∣∣∣2dα
�` η

1−1/`
∑
γ1>0

∑
γ2>0

|γ1|(1−`)/(2`)|γ2|(1−`)/(2`)
1 + (γ1+γ2

Nη
)2

1 + |γ1 − γ2|2
exp
(
−c
(γ1 + γ2

Nη

))
. (17)

But sorting imaginary parts it is clear that

|γ1|(1−`)/(2`)|γ2|(1−`)/(2`)
{

1 +
(γ1 + γ2

Nη

)2}
exp
(
−c
(γ1 + γ2

Nη

))
�` |γ1|(1−`)/` exp

(
− c

2

γ1
Nη

)
,

hence (17) becomes

�` η
1−1/`

∑
γ1>0

|γ1|(1−`)/` exp
(
− c

2

γ1
Nη

)∑
γ2>0

1

1 + |γ1 − γ2|2
�` N

1/`ηL2, (18)

since the number of zeros ρ2 = 1/2 + iγ2 with n ≤ |γ1 − γ2| ≤ n+ 1 is O(log(n+ |γ1|)).
From (6)-(8) and (18) we get∫ ξ

−ξ

∣∣∣∑
γ>0

z−ρ/`Γ
(ρ
`

)∣∣∣2dα�` N
1/`ξL2, (19)

and Lemma 3 follows from (19). �

We will also need the following result based on the Laplace formula for the Gamma
function, see [10]. In fact we will need it just for µ = 2 but, as before, we write the more
general case.

Lemma 4. Let N be a positive integer, z = 1/N − 2πiα, and µ > 0. Then∫ 1/2

−1/2
z−µe(−nα) dα = e−n/N

nµ−1

Γ(µ)
+Oµ

(
1

n

)
,

uniformly for n ≥ 1.

Proof. We start with the identity

1

2π

∫
R

eiDu

(a+ iu)s
du =

Ds−1e−aD

Γ(s)
,

which is valid for σ = <(s) > 0 and a ∈ C with <(a) > 0 and D > 0. Letting u = −2πα
and taking s = µ, D = n and a = N−1 we find∫

R

e(−nα)

(N−1 − 2πiα)µ
dα =

∫
R
z−µe(−nα) dα =

nµ−1e−n/N

Γ(µ)
.

For 0 < X < Y let

I(X, Y ) =

∫ Y

X

eiDu

(a+ iu)µ
du.

An integration by parts yields

I(X, Y ) =
[ 1

iD

eiDu

(a+ iu)µ

]Y
X

+
µ

D

∫ Y

X

eiDu

(a+ iu)µ+1
du.
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Since a > 0, the first summand is �µ D
−1X−µ, uniformly. The second summand is

� µ

D

∫ Y

X

du

uµ+1
�µ D

−1X−µ.

The result follows. �

We remark that if µ ∈ N, µ ≥ 2, Lemma 4 can be proved in an easier way using the
Residue Theorem (see, e.g., Languasco [4] or Languasco and Zaccagnini [6]).

In the following we will also need a fourth-power average of S̃2(α).

Lemma 5. We have ∫ 1/2

−1/2
|S̃2(α)|4 dα� NL2.

Proof. Let P2 = {pj : j ≥ 2, p prime} and r0(m) be the number of representations of m
as a sum of two squares. We have∫ 1/2

−1/2
|S̃2(α)|4 dα

=
∑

n1,n2,n3,n4≥2

Λ(n1)Λ(n2)Λ(n3)Λ(n4) e
−(n2

1+n
2
2+n

2
3+n

2
4)/N

∫ 1/2

−1/2
e((n2

1 + n2
2 − n2

3 − n2
4)α) dα

�
∑

p1,p2≥2

log p1 log p2 e
−2(p21+p22)/N

∑
p3,p4≥2

p21+p
2
2=p

2
3+p

2
4

log p3 log p4

+
∑

n1,n2≥2
n1∈P2

Λ(n1)Λ(n2) e
−2(n2

1+n
2
2)/N

∑
n3,n4≥2

n2
1+n

2
2=n

2
3+n

2
4

Λ(n3)Λ(n4)

= Σ1 + Σ2, (20)

say. In Σ1 we separately consider the contribution of the cases p1p2 = p3p4 and p1p2 6=
p3p4; hence Σ1 � S1 +S2 where, by partial summation and the Prime Number Theorem,
we have

S1 = 2
(∑
p≥2

(log p)2e−2p
2/N
)2
�
(

1 +

∫ +∞

2

u2

N
(log u) e−2u

2/N du
)2
� NL2,

and, by a dissection argument and Satz 3 on page 94 of Rieger [16], we also obtain

S2 �
∑
y≥1

∑
1≤x≤y

y2x2e−2
2y+1/Ne−2

2x+1/N
( ∑
2y≤p1<2y+1

∑
2x≤p2<2x+1

∑
p3,p4≥2

p21+p
2
2=p

2
3+p

2
4

p1p2 6=p3p4

1
)

�
∑
y≥1

y4e−2
2y+1/N

( ∑
p1,p2<2y+1

∑
p3,p4≥2

p21+p
2
2=p

2
3+p

2
4

p1p2 6=p3p4

1
)( ∑

1≤x≤y

e−2
2x+1/N

)

�
∑
y≥1

y2ye−2
2y+1/N

(∫ y

1

e−2
t/Ndt

)
�
∑
y≥1

y22ye−2
2y+1/N

�
∫ +∞

2

(log u)2e−u/N du� NL2.
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Summing up

Σ1 � NL2. (21)

Recalling that r0(m)� mε, it is also easy to see that

Σ2 �
∑

n1,n2≥2
n1∈P2

Λ(n1)Λ(n2)(log(n2
1 + n2

2))
2 r0(n

2
1 + n2

2) e
−2(n2

1+n
2
2)/N

�
∑

n1,n2≥2
n1∈P2

nε1n
ε
2 e
−2(n2

1+n
2
2)/N �

(∑
j≥2

∑
p≥2

pjεe−2p
2j/N

)(∑
n≥2

nεe−2n
2/N
)

�
(∑
j≥2

e−2
2j/N

∫ +∞

2

tjεe−t
2j/Ndt

)(
N1/2+ε

∫ +∞

0

uε−1/2e−u du
)

� N1/2+2ε
∑
j≥2

N1/(2j)e−2
2j/N

� N1/2+2ε
(
N1/4 logN +

∑
j>(1/2) logN

e−2
2j/N

)
� N3/4+3ε. (22)

Combining (20)-(22), Lemma 5 follows.
�

3. Proof of Theorem 1

Let H ≥ 2, H = o(N) be an integer. We recall that we set L = logN for brevity.
Recalling (1) and letting

R(n) =
∑

a+b2+c2=n

Λ(a)Λ(b)Λ(c),

we have (see, e.g., page 14 of [20]) that

r(n) = R(n) +O
(
n3/4(log n)3

)
. (23)

Then, for every n ≤ 2N , we can write

r(n) = R(n) +O
(
n3/4(log n)3

)
= en/N

∫ 1/2

−1/2
S̃1(α)S̃2(α)2e(−nα) dα +O

(
n3/4(log n)3

)
.

From this equation, the Cauchy-Schwarz inequality, Lemma 5 and the Prime Number
Theorem, for every n ≤ 2N we also have

r(n)�
∫ 1/2

−1/2
|S̃1(α)||S̃2(α)|2dα +N3/4L3

�
(∫ 1/2

−1/2
|S̃1(α)|2dα

)1/2(∫ 1/2

−1/2
|S̃2(α)|4dα

)1/2
+N3/4L3 � NL3/2. (24)

We need now to choose a suitable weighted average of r(n). We further set

U(α,H) =
H∑
m=1

e(mα)
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and, moreover, we also have the usual numerically explicit inequality

|U(α,H)| ≤ min
(
H;

1

|α|

)
. (25)

With these definitions and (23), we may write

S̃(N,H) :=
N+H∑
n=N+1

e−n/Nr(n) =

∫ 1/2

−1/2
S̃1(α)S̃2(α)2U(−α,H)e(−Nα) dα +O

(
HN3/4L3

)
.

Using Lemma 2 with ` = 1, 2 and recalling that Γ(1) = 1, Γ(1/2) = π1/2, we can write

S̃(N,H) =

∫ 1/2

−1/2

π

4z2
U(−α,H)e(−Nα) dα +

∫ 1/2

−1/2

1

z

(
S̃2(α)2 − π

4z

)
U(−α,H)e(−Nα) dα

+

∫ 1/2

−1/2

(
S̃1(α)− 1

z

)
S̃2(α)2U(−α,H)e(−Nα) dα +O

(
HN3/4L3

)
= I1 + I2 + I3 +O

(
HN3/4L3

)
, (26)

say. From now on, we denote

Ẽ`(α) := S̃`(α)− Γ(1/`)

`z1/`
.

Using Lemma 4 we immediately get

I1 =
π

4

N+H∑
n=N+1

ne−n/N +O
(
H

N

)
=
πHN

4e
+O

(
H2
)
. (27)

Now we estimate I2. Using the identity f 2 − g2 = 2f(f − g)− (f − g)2 we obtain

I2 �
∫ 1/2

−1/2
|Ẽ2(α)| |U(α,H)|

|z|3/2
dα +

∫ 1/2

−1/2
|Ẽ2(α)|2 |U(α,H)|

|z|
dα = J1 + J2, (28)

say. Using (3), (25), Lemma 3 and a partial integration argument we obtain

J2 � HN

∫ 1/N

−1/N
|Ẽ2(α)|2 dα +H

∫ 1/H

1/N

|Ẽ2(α)|2 dα

α
+

∫ 1/2

1/H

|Ẽ2(α)|2 dα

α2

� HN1/2L2 +HN1/2L2
(

1 +

∫ 1/H

1/N

dξ

ξ

)
+N1/2L2

(
H +

∫ 1/2

1/H

dξ

ξ2

)
� HN1/2L3. (29)

Using the Cauchy-Schwarz inequality and arguing as for J2 we get

J1 � HN3/2
(∫ 1/N

−1/N
dα
)1/2(∫ 1/N

−1/N
|Ẽ2(α)|2 dα

)1/2
+H

(∫ 1/H

1/N

dα

α2

)1/2(∫ 1/H

1/N

|Ẽ2(α)|2dα

α

)1/2
+
(∫ 1/2

1/H

dα

α4

)1/2(∫ 1/2

1/H

|Ẽ2(α)|2dα

α

)1/2
� HN3/4L+HN3/4L

(
1 +

∫ 1/H

1/N

dξ

ξ

)1/2
+H3/2N1/4L

(
1 +

∫ 1/2

1/H

dξ

ξ

)1/2
� HN3/4L3/2 +H3/2N1/4L3/2 � HN3/4L3/2. (30)
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Combining (28)-(30) we finally obtain

I2 � HN3/4L3/2. (31)

Now we estimate I3. By the Cauchy-Schwarz inequality, (25) and Lemma 5 we obtain

I3 �
(∫ 1/2

−1/2
|S̃2(α)|4 dα

)1/2(∫ 1/2

−1/2
|Ẽ1(α)|2|U(α,H)|2 dα

)1/2
� N1/2L

(
H2

∫ 1/H

−1/H
|Ẽ1(α)|2 dα +

∫ 1/2

1/H

|Ẽ1(α)|2 dα

α2

)1/2
� H1/2NL2, (32)

where in the last step we used Lemma 3 and a partial integration argument.
By (26)-(27), (31) and (32), we can finally write

S̃(N,H) =
π

4e
HN +O

(
H1/2NL2 +HN3/4L3 +H2

)
.

Theorem 1 follows since the exponential weight e−n/N = e−1 + O(H/N) for n ∈ [N +
1, N + H] and hence by (24) it can be removed at the cost of inserting an extra factor
O
(
H2L3/2

)
in the error term. The corollary about the existence in short intervals follows

by remarking that S̃(N,H) > 0 if L4 � H = o
(
NL−3/2

)
. �
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