
A New Tableau-based Satisfiability
Checker for Linear Temporal Logic

(Extended Abstract)

Matteo Bertello1, Nicola Gigante1, Angelo Montanari1, and Mark Reynolds2

1 University of Udine, Italy
{bertello.matteo,gigante.nicola}@spes.uniud.it

angelo.montanari.uniud.it
2 University of Western Australia, Australia

mark.reynolds@uwa.edu.au

Abstract Tableaux-based methods were among the first techniques pro-
posed for Linear Temporal Logic satisfiability checking. The earliest
tableau for LTL by Wolper worked by constructing a graph whose path
represented possible models for the formula, and then searching for an
actual model among those paths. Subsequent developments led to the
tree-like tableau by Schwendimann, which works by building a struc-
ture similar to an actual search tree, which however still has back-edges
and needs multiple passes to assess the existence of a model. This paper
summarizes the work done on a new tool for LTL satisfiability checking
based on a novel tableau method. The new tableau construction, which
is very simple and easy to explain, builds an actually tree-shaped struc-
ture and it only requires a single pass to decide whether to accept a
given branch or not. The implementation has been compared in terms
of speed and memory consumption with tools implementing both exist-
ing tableau methods and different satisfiability techniques, showing good
results despite the simplicity of the underlying algorithm.

1 Introduction

Linear Temporal Logic (LTL) is a modal logic useful to reason about proposi-
tions whose truth value depends on a linear and discrete flow of time. Initially
introduced in the field of formal methods for the verification of properties of
programs and circuit designs [13], it has found applications also in AI, e.g., as a
specification language for temporally extended goals in planning problems [3].

The most studied problem regarding LTL is probably model checking, i.e., the
problem of establishing whether a given temporal structure satisfies an LTL for-
mula. However, satisfiability checking, that is, the problem of deciding whether a
formula has a satisfying model in the first place, has also received a lot of atten-
tion. After being proved to be PSPACE-complete [18], the satisfiability problem
for LTL was solved by a number of different methods developed over the years.
First of all, LTL satisfiability can be easily reduced to the model checking prob-
lem, for which a number of successful techniques exist [5]. Substantial work has

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/53360167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

also been devoted to methods based on temporal resolution, first pioneered by
Cavalli and Fariñas del Cerro, and later refined by Fisher et al. in [7, 8]. Tempo-
ral resolution is also at the core of the more recent labeled superposition method
[19], which proved to be very fast in practice. See [15, 16, 20] for comprehensive
experimental comparisons among the tools implementing these techniques.

This paper focuses on tableau-based decision procedures for LTL, which were
among the first satisfiability checking methods proposed for it. The first tableau-
based method for LTL has been proposed by Wolper [21]. His tableau works by
first building a graph-shaped structure, and then performing a number of oper-
ations on this graph. Thus, it can be classified as a graph-shaped and multiple-
pass tableau method. An incremental version, which does not require to build
the whole graph, was later proposed in [10]. In a subsequent development by
Schwendimann [17], a tree-like tableau was proposed which, according to exper-
imental comparisons [9], outperformed the graph-shaped one. The major break-
through of this new tableau was that of being single-pass. While the shape of
Schwendimann’s tableau is arguably similar to a tree, it is actually still a graph
since a number of back-edges have to be maintained. Moreover, the extraction
of an actual model from the built tableau is possible, but it requires some work.

Here, we describe an original tool to check LTL satisfiability based on the tree-
shaped tableau proposed in [14]. A detailed account of the tool and of relevant
experiments can be found in [4]. In contrast to the tableau by Schwendimann, an
actual tree is built, and a successful branch directly provides the corresponding
satisfying model. Moreover, the tableau rules are very easy to explain and to
reason about, but, despite this simplicity, an efficient implementation has shown
to offer good average performance on a number of standard benchmarks.

The next sections are organized as follows. Section 2 introduces LTL syntax
and semantics, and it quickly describes how previous tableau-based methods
behave. Section 3 gives a short account of the new one-pass tree-shaped tableau,
and it summarizes the result of experimental comparisons that were reported in
[4]. Section 4 outlines possible future developments of the work.

2 Tableau-based methods for LTL

Before illustrating tableau-based decision procedures for LTL, we briefly recap
syntax and semantics of the logic. An LTL formula is obtained from a set Σ of
proposition letters by possibly applying the usual Boolean connectives and the
two temporal operators X (tomorrow) and U (until). Formally, LTL formulae φ
are generated by the following syntax:

φ := p | ¬φ1 | φ1 ∨ φ2 | Xφ1 | φ1 U φ2,

where φ1 and φ2 are LTL formulae and p ∈ Σ. Standard derived Boolean con-
nectives can also be used, together with logical constants ⊥ ≡ p ∧ ¬p, for p ∈ Σ,
and > ≡ ¬⊥. Moreover, two derived temporal operators Fφ ≡ >Uφ (eventually)
and Gφ ≡ ¬F¬φ (always) are defined.

LTL formulae are interpreted over temporal structures. A temporal structure
is a triple M = (S,R, g), where S is a finite set of states, R ⊆ S × S is a
binary relation, and, for each s ∈ S, g(s) ⊆ Σ. R is the transition relation,
which is assumed to be total, and g is a labeling function, that tells us which
proposition letters are true at each state. Given a structure M , we say that an
ω-sequence of states 〈s0, s1, s2, . . .〉 from S is a full-path if and only if, for all
i ≥ 0, (si, si+1) ∈ R. If σ = 〈s0, s1, s2, . . .〉 is a full-path, then we write σi for si
and σ≥i for the infinite suffix 〈si, si+1, . . .〉 (also a full-path). We writeM,σ |= ϕ
if and only if the LTL formula ϕ is true on the full-path σ in the structure M ,
which is defined by induction on the structural complexity of the formula:

– M,σ |= p iff p ∈ g(σ0), for p ∈ Σ,
– M,σ |= ¬ϕ iff M,σ 6|= ϕ
– M,σ |= ϕ1 ∨ ϕ2 iff M,σ |= ϕ1 or M,σ |= ϕ2

– M,σ |= Xϕ iff M,σ≥1 |= ϕ
– M,σ |= ϕ1 U ϕ2 iff there is some i ≥ 0 such that M,σ≥i |= ϕ2 and for all j,

with 0 ≤ j < i, it holds that M,σ≥j |= ϕ1

Most existing tableau methods for LTL, including the one described in this
paper, make use of the observation that any LTL formula can be rewritten by
splitting it into two parts, one prescribing something about the current state,
and one talking about the next state. In particular, this is true for formulae
whose outermost operator is a temporal one:

α U β ≡ β ∨ (α ∧ X(α U β)); Fβ ≡ β ∨ XFβ; Gα ≡ α ∧ XGα

Here, the formulae X(α U β) and XFβ are called X-eventualities, i.e., pending
requests that has to be eventually fulfilled somewhere in the future, but that can
for the moment be postponed. Note that Gα does not lead to an eventuality,
since it has to be fulfilled immediately in any case.

The first tableau by Wolper starts by building a graph where each node
is labeled by a set of locally consistent formulae belonging to the closure of
φ. Each node collects the relevant formulae that are true at a specific state.
Nodes u and v are connected by an edge if v can be a successor state of u
according to the semantics of the logic. The equivalences shown above are useful
in determining these edges. Paths in the graph represent potential models, which
are consistent when we look at the single transitions. Finding an actual model
then consists of searching for a path that fulfills all the pending eventualities.
This approach requires the construction of the entire graph before the actual
search, which means that an exponential amount of memory was required, which
is not optimal with regards to the complexity of the problem, which is PSPACE-
complete. An incremental version of this tableau, which does not require to build
the whole graph beforehand, thus achieving the polynomial space lower bound,
was introduced by Kesten et al. [10]. Later, a tableau à la Wolper was provided
by Lichtenstein and Pnueli [12] to also handle past temporal operators.

Marking a significant development, a new one-pass tableau for LTL was intro-
duced by Schwendimann [17]. His tableau method works by building a tree-like

structure, more similar to a search tree. Since the fulfillment of the eventuali-
ties in a branch are checked during the construction, subsequent passes are not
needed. While the tableau structure resembles a tree, it is actually still a sort
of cyclic graph (called loop tree in the original presentation), and the searches
performed on separate branches are not completely independent. Although the
complexity of the decision procedure based on Schwendimann’s tableau is worse
than the one by Wolper, since it requires doubly exponential time in the worst
case, experimental comparisons [9] have shown that in practice this method out-
performs previous tableaux, in some cases by large margins.

3 A new one-pass and tree-shaped tableau for LTL

A new one-pass and tree-shaped tableau for LTL was proposed in [14]. A satisfi-
ability checker based on it3, written in C++, and a detailed comparison with pre-
vious tableaux as well as with tools implementing different satisfiability checking
techniques are given in [4].

In contrast to Schwendimann’s one, the new tableau works by building an
actual tree. In the tableau tree for a formula φ, each node is labeled by a set
Γ of formulae. For each ψ ∈ Γ , ψ is a subformula of φ or is a formula of the
form Xψ′, where ψ′ is a subformula of φ. The tree construction starts from the
root being labeled by {φ}. The tree is then built by applying a sequence of rules
which, for what concerns Boolean connectives, resembles the classical tableau
for propositional logic, with disjunctions causing a node to fork into different
branches. Temporal formulae are instead expanded using the already mentioned
equivalences from Section 2. A node where no further expansion is possible is said
to have a poised label, and it represents what is true at the current state in the
resulting model. In a poised label, only literals or tomorrow temporal operators
are present at top level. A Step rule is then used to advance the branch to the
next temporal state, by creating a new node whose label includes a formula α
for each formula of the form Xα found in the previous node. If contradictory
literals are ever introduced into a label, the branch is rejected (7), while if a
Step rule results into an empty label, the branch is accepted (3), and a model
can be extracted from all the nodes preceding the application of the Step rule
from there to the root of the tree.

These rules alone, however, are insufficient to handle formulae satisfiable
by infinite models only as well as formulae that are unsatisfiable not because of
propositional contradictions but because of unsatisfiable eventualities. To handle
these cases, the following two rules are applied before the Step one. The first,
the Loop rule, accepts a branch each time we find ourselves on a label that have
already been expanded before, and all the eventualities have been fulfilled in
between, meaning that the node needs not to be further expanded because the
repeating part of an ultimately periodic model has been found. The second, the
Prune rule, handles unsatisfiable formulae like, for instance, G¬p ∧ q U p, by
3 http://www.github.com/corralx/leviathan

http://www.github.com/corralx/leviathan

ensuring that the tableau expansion does not hang into the infinite expansion of
a branch that would not be able to fulfill the remaining pending eventualities.
The latter is definitely the most sophisticated rule of the tableau system. One of
its distinctive features is that it needs to go through three different nodes with
the same label before crossing the branch.

A complete description of the rules can be found in [14], but it can already
be noted how simple the whole construction is. The space and running time
worst cases are the same as those of the tableau system by Schwendimann, but
the rules and the bookkeeping required to apply them is simpler and can be
implemented in an efficient way. The result is an implementation that, despite
its simplicity, has good performance on average both in terms of speed and
memory consumption on a number of standard benchmarks [4].

4 Conclusions and Future Work

In this extended abstract, we described a new one-pass and tree-shaped tableau
for LTL which is very simple to state and to reason about and can be imple-
mented in an efficient way, showing good performance when compared with
previous tableau-based systems. Simplicity may be regarded as its major advan-
tage, that we plan to exploit in future developments. For example, we expect
that its simple search procedure can be augmented with advanced search heuris-
tics like clause-learning techniques used in propositional SAT solvers. SAT and
SMT technologies can also be exploited in order to improve performance when
dealing with temporal formulae that sport large propositional parts.

Such a simple tableau can also be viewed as a useful tool to reason about
theoretical properties of LTL and its extensions. For instance, extending its rules
to support a parametric Xn operator, with n represented succinctly, appears to be
straightforward, and immediately results into an optimal decision procedure for
this simple EXPSPACE extension of LTL. In a similar way, we plan to investigate
the possibility of implementing other LTL extensions on top of this framework,
such as logics that feature metric variants of the until operator [2], past operators
with forgettable past [11], freeze quantifiers [1], finite models [6], and others.

References

[1] R. Alur and T. A. Henzinger. “A Really Temporal Logic.” In: Journal of
the ACM 41.1 (1994), pp. 181–204.

[2] R. Alur and T. A. Henzinger. “Real-Time Logics: Complexity and Expres-
siveness.” In: Information and Computation 104 (1993), pp. 35–77.

[3] F. Bacchus and F. Kabanza. “Planning for Temporally Extended Goals.”
In: Annals of Mathematics and Artificial Intelligence 22 (1998), pp. 5–27.

[4] M. Bertello, N. Gigante, A. Montanari, and M. Reynolds. “Leviathan: A
New LTL Satisfiability Checking Tool Based on a One-Pass Tree-Shaped
Tableau.” In: Proc. of the 25th Int. Joint Conference on Artificial Intelli-
gence. 2016.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999.

[6] G. De Giacomo and M. Y. Vardi. “Linear Temporal Logic and Linear Dy-
namic Logic on Finite Traces.” In: Proc. of the 23rd Int. Joint Conference
on Artificial Intelligence. 2013.

[7] M. Fisher. “A Normal Form for Temporal Logics and its Applications in
Theorem-Proving and Execution.” In: Journal of Logic and Computation
7.4 (1997), pp. 429–456.

[8] M. Fisher, C. Dixon, and M. Peim. “Clausal Temporal Resolution.” In:
ACM Transactions on Computational Logic 2.1 (2001), pp. 12–56.

[9] V. Goranko, A. Kyrilov, and D. Shkatov. “Tableau Tool for Testing Satisfi-
ability in LTL: Implementation and Experimental Analysis.” In: Electronic
Notes in Theoretical Computer Science 262 (2010), pp. 113–125.

[10] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. “A Decision Algorithm
for Full Propositional Temporal Logic.” In: Proc. of the 5th Int. Conference
on Computer Aided Verification. 1993, pp. 97–109.

[11] F. Laroussinie, N. Markey, and P. Schnoebelen. “Temporal Logic with
Forgettable Past.” In: Proc. of the 17th IEEE Symposium on Logic in
Computer Science. 2002, pp. 383–392.

[12] O. Lichtenstein and A. Pnueli. “Propositional Temporal Logics: Decidabil-
ity and Completeness.” In: Logic Journal of the IGPL 8.1 (2000), pp. 55–
85.

[13] A. Pnueli. “The Temporal Logic of Programs.” In: Proc. of the 18th Annual
Symposium on Foundations of Computer Science. 1977, pp. 46–57.

[14] M. Reynolds. “A new rule for LTL tableaux.” In: Proc. of the 7th Int.
Symposium on Games, Automata, Logics and Formal Verification. 2016.

[15] K. Y. Rozier and M. Y. Vardi. “LTL Satisfiability Checking.” In: Inter-
national Journal on Software Tools for Technology Transfer 12.2 (2010),
pp. 123–137.

[16] V. Schuppan and L. Darmawan. “Evaluating LTL Satisfiability Solvers.”
In: Proc. of the 9th Int. Symposium Automated Technology for Verification
and Analysis. 2011, pp. 397–413.

[17] S. Schwendimann. “A New One-Pass Tableau Calculus for PLTL.” In: Proc.
of the 4th Int. Conference on Automated Reasoning with Analytic Tableaux
and Related Methods. 1998, pp. 277–292.

[18] A. P. Sistla and E. M. Clarke. “The Complexity of Propositional Linear
Temporal Logics.” In: Journal of the ACM 32.3 (1985), pp. 733–749.

[19] M. Suda and C. Weidenbach. “A PLTL-Prover Based on Labelled Su-
perposition with Partial Model Guidance.” In: Proc. of the 6th Int. Joint
Conference on Automated Reasoning. 2012, pp. 537–543.

[20] M. Y. Vardi, Li J, L. Zhang, G. Pu, and J. He. “LTL Satisfiability Checking
Revisited.” In: Proc. of the 20th Int. Symposium on Temporal Representa-
tion and Reasoning. 2013, pp. 91–98.

[21] P. Wolper. “The Tableau Method for Temporal Logic: An Overview.” In:
Logique et Analyse 28 (1985).

	A New Tableau-based Satisfiability Checker for Linear Temporal Logic

