
Model Checking Well-Behaved Fragments of HS: The (Almost) Final Picture

Alberto Molinari and Angelo Montanari
Department of Mathematics, Computer Science, and Physics

University of Udine, Italy
molinari.alberto@gmail.com, angelo.montanari@uniud.it

Adriano Peron
Department of Electronic Engineering and IT

University of Napoli “Federico II”, Italy
adrperon@unina.it

Pietro Sala
Department of Computer Science

University of Verona, Italy
pietro.sala@univr.it

Abstract

Model checking is one of the most powerful and widespread
tools for system verification with applications in many areas
of computer science and artificial intelligence. The large ma-
jority of model checkers deal with properties expressed in
point-based temporal logics, such as LTL and CTL. However,
there exist relevant properties of systems which are inher-
ently interval-based. Model checking algorithms for interval
temporal logics (ITLs) have recently been proposed to check
interval properties of computations. As the model checking
problem for full Halpern and Shoham’s ITL (HS for short)
turns out to be decidable, but computationally heavy, research
has focused on its well-behaved fragments. In this paper, we
provide an almost final picture of the computational complex-
ity of model checking for HS fragments with modalities for
(a subset of) Allen’s relations meets, met by, starts, and ends.

Introduction

Model checking is a significant and extensively studied
problem in computer science and artificial intelligence. It
has proved itself to be extremely useful in formal verifica-
tion (Clarke, Grumberg, and Peled 2002), but it has also
been successfully exploited in various areas of AI, rang-
ing from planning and plan validation to configuration and
multi-agent systems, e.g., (Giunchiglia and Traverso 1999;
Lomuscio and Raimondi 2006).

Model checking allows one to specify the desired prop-
erties of a system in a temporal logic and to automat-
ically check them against a suitable model of the sys-
tem. Point-based temporal logics, such as LTL, CTL, and
the like, which allow one to predicate over computation
states/worlds, are usually adopted as the specification lan-
guage, while system models are generally labelled state-
transition graphs (Kripke structures). In a large number of
application domains, point-based temporal logics turn out to
be suitable for practical purposes. However, there are some
relevant temporal properties that involve actions with du-
ration, accomplishments, and temporal aggregations, which
are inherently “interval-based” and thus cannot be expressed
by point-based logics. In this paper, we focus on model
checking algorithms for interval temporal logic (ITL).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ITLs take intervals, instead of points, as their primitive
entities, providing an alternative setting for reasoning about
time (Halpern and Shoham 1991; Moszkowski 1983; Ven-
ema 1990; 1991). They have been applied in various areas
of computer science and AI, including formal verification,
computational linguistics, planning, and multi-agent sys-
tems (Lomuscio and Michaliszyn 2013; Moszkowski 1983;
Pratt-Hartmann 2005; Zhou and Hansen 2004). To check
interval properties of computations, one needs to collect
information about states into computation stretches. This
amounts to interpret each finite path of a Kripke structure
as an interval, and to suitably define its labelling on the ba-
sis of the labelling of the states that compose it.

The most famous among ITLs is Halpern and Shoham’s
modal logic of time intervals, abbreviated HS (Halpern and
Shoham 1991). HS features one modality for each of the 13
possible ordering relations between pairs of intervals (the
so-called Allen’s relations (Allen 1983)), apart from equal-
ity. The satisfiability problem for HS turns out to be unde-
cidable over all relevant (classes of) linear orders (Halpern
and Shoham 1991). The same holds for most fragments of
it (Bresolin et al. 2014; Lodaya 2000; Marcinkowski and
Michaliszyn 2014). However, some meaningful exceptions
exist, including the logic of temporal neighbourhood AA
and the logic of sub-intervals D (Bresolin et al. 2010; 2009;
2011; Montanari, Puppis, and Sala 2010).

In this paper, we address some open issues in HS model
checking, which only recently entered the research agenda.
In (Montanari et al. 2014), Montanari et al. deal with the
model checking problem for full HS over finite Kripke struc-
tures (under the homogeneity assumption (Roeper 1980)).
They introduce the fundamental ingredients of the problem,
namely, the interpretation of HS formulas over (abstract) in-
terval models, the mapping of finite Kripke structures into
(abstract) interval models, and the notion of track descrip-
tor, and they prove a small model theorem showing its non-
elementary decidability. In (Molinari et al. 2015), Molinari
et. al. provide a lower bound to the complexity of the prob-
lem, showing that it is EXPSPACE-hard, if a succinct en-
coding of formulas is used, PSPACE-hard otherwise. In
(Molinari, Montanari, and Peron 2015b), the authors show
that model checking for the HS fragment AABBE (resp.,
AAEEB), whose modalities allow one to access intervals

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

473

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/53360148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

which are met by/meet the current one, or are prefixes (resp.,
suffixes) or right/left-extensions of it, is in EXPSPACE.
Moreover, they prove that the problem is NEXPTIME-
hard, if a succinct encoding of formulas is used, NP-hard
otherwise. Finally, they showed that formulas which satisfy
a (constant) bound on the nesting depth of 〈B〉 (resp., 〈E〉)
modalities can be checked in polynomial working space. In
(Molinari, Montanari, and Peron 2015a), the authors iden-
tify some well-behaved HS fragments, which are expressive
enough to capture meaningful interval properties and com-
putationally much better: the universal fragment of AABE
and the fragments AABE and AB, whose model checking is
complete for, respectively, co-NP and PSPACE.

In (Lomuscio and Michaliszyn 2013; 2014; 2015), Lo-
muscio and Michaliszyn investigate the model checking
problem for epistemic extensions of some HS fragments. A
detailed account of their results can be found in (Molinari
et al. 2015). However, their semantic assumptions consider-
ably differ from those made in (Montanari et al. 2014), thus
making it difficult to compare the two research lines.

In the present work, we almost completely sort out
the complexity of the sub-fragments of AABE. We al-
ready know that AB is PSPACE-complete. We first show
that the model checking problem for A (and for A) is
PNP[O(logn)]-hard. Then, we prove that the problem for AA
is in PNP[O(log2 n)]. We conclude the paper by showing that
it is already PSPACE-hard for B (and for E). It is worth
pointing out that in all cases the complexity of the model
checking problem turns out be comparable to or lower than
that of LTL (which is known to be PSPACE-complete).

The rest of the paper is organized as follows. First, we
give some background knowledge about HS, Kripke struc-
tures and abstract interval models. Then, we provide an
overview of the main results and relate them to known ones.
In the next three sections, a hardness result for A (and A), a
model checking algorithm for AA, and a hardness result for
B (and E) are presented. Conclusions provide a short assess-
ment of the work and outline future research directions.

Preliminaries

The interval temporal logic HS

An interval algebra to reason about intervals and their rela-
tive order was first proposed by Allen in (Allen 1983). A sys-
tematic logical study of interval representation and reason-
ing was then presented by Halpern and Shoham, who intro-
duced the interval temporal logic HS featuring one modal-
ity for each Allen’s relation, with the exception of equal-
ity (Halpern and Shoham 1991). Table 1 depicts 6 of the 13
Allen’s relations, together with the corresponding HS (ex-
istential) modalities. The other 7 relations are the 6 inverse
relations (given a binary relation R , the inverse relation R is
such that bR a if and only if aR b) and equality.

The HS language consists of a set of proposition let-
ters AP , the Boolean connectives ¬ and ∧, and a temporal
modality for each of the (non trivial) Allen’s relations, i.e.,
〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, and

Table 1: Allen’s relations and corresponding HS modalities.
Allen’s relation HS Definition w.r.t. interval structures Example

x y
v z

v z
v z

v z
v z

v z

MEETS 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v
BEFORE 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

STARTED-BY 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y
FINISHED-BY 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

CONTAINS 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y
OVERLAPS 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

〈O〉. HS formulas are defined by the following grammar:

ψ ::= p | ¬ψ | ψ ∧ ψ | 〈X〉ψ | 〈X〉ψ,
where p ∈ AP and X ∈ {A,L,B,E,D,O}. In the fol-
lowing, we will also exploit the standard logical connectives
(disjunction ∨, implication →, and double implication ↔)
as abbreviations. Furthermore, for any modality X , the dual
universal modalities [X]ψ and [X]ψ are defined as ¬〈X〉¬ψ
and ¬〈X〉¬ψ, respectively. Given any subset of Allen’s re-
lations {X1, · · · , Xn}, we denote by X1 · · ·Xn the HS frag-
ment that features modalities 〈X1〉, · · · , 〈Xn〉 only.

W.l.o.g., we assume the strict semantics of HS: only in-
tervals consisting of at least two points are considered, thus
excluding point-intervals1. Under this assumption, all HS
modalities can be expressed in terms of modalities 〈A〉,
〈B〉, 〈E〉, 〈A〉, 〈B〉, and 〈E〉 (Venema 1990). HS can be
viewed as a multi-modal logic with these 6 primitive modal-
ities and its semantics can be defined over a multi-modal
Kripke structure, called abstract interval model, where
(strict) intervals are treated as atomic objects and Allen’s
relations as binary relations between pairs of intervals.

Definition 1. (Molinari et al. 2015) An abstract interval
model is a tuple A = (AP , I, AI, BI, EI, σ), where:
• AP is a finite set of proposition letters;
• I is a possibly infinite set of atomic objects (worlds);
• AI, BI, EI are three binary relations over I;
• σ : I �→ 2AP is a (total) labeling function, which assigns

a set of proposition letters to each world.

In the interval setting, I is interpreted as a set of intervals
and AI, BI, and EI as Allen’s interval relations A (meets), B
(started-by), and E (finished-by), respectively, and σ assigns
to each interval in I the set of proposition letters that hold
over it.

Given an abstract interval model A = (AP , I, AI, BI,
EI, σ) and an interval I ∈ I, the truth of an HS formula
over I is inductively defined as follows:
• A, I |= p iff p ∈ σ(I), for any p ∈ AP ;
• A, I |= ¬ψ iff it is not true that A, I |= ψ (also denoted

as A, I �|= ψ);
• A, I |= ψ ∧ φ iff A, I |= ψ and A, I |= φ;
• A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there exists J ∈ I

such that I XI J and A, J |= ψ;
• A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there exists J ∈ I

such that J XI I and A, J |= ψ.

1Strict semantics can easily be “relaxed” to include point-
intervals. All results we prove in the paper hold for the non-strict
semantics as well.

474

v0
p

v1
q

Figure 1: The finite Kripke structure K2.

Kripke structures and abstract interval models

Finite state systems are usually modelled as finite Kripke
structures. In (Montanari et al. 2014), the authors define a
mapping from Kripke structures to abstract interval models,
that allows one to specify interval properties of computa-
tions by means of HS formulas.

Definition 2. A finite Kripke structure is a tuple K =
(AP ,W, δ, μ, w0), where AP is a set of proposition letters,
W is a finite set of states, δ ⊆ W ×W is a left-total relation
between pairs of states, μ : W �→ 2AP is a total labelling
function, and w0 ∈ W is the initial state.

For all w ∈ W , μ(w) is the set of proposition letters that
hold at w, while δ is the transition relation that describes the
evolution of the system over time.

Example 1. Figure 1 depicts the finite Kripke structure K2=
({p, q}, {v0, v1}, δ, μ, v0), where μ(v0)={p}, μ(v1)={q},
and δ = {(v0, v0), (v0, v1), (v1, v0), (v1, v1)}. The initial
state v0 is identified by a double circle.

Definition 3. A track ρ over a finite Kripke structure K =
(AP ,W, δ, μ, w0) is a finite sequence of states v0 · · · vn, with
n ≥ 1, such that for all i ∈ {0, · · · , n− 1}, (vi, vi+1) ∈ δ.

Let TrkK be the (infinite) set of all tracks over a finite
Kripke structure K . For any track ρ = v0 · · · vn ∈ TrkK , we
define: |ρ| = n+1, ρ(i) = vi, states(ρ) = {v0, · · · , vn} ⊆
W , intstates(ρ) = {v1, · · · , vn−1} ⊆ W , fst(ρ) = v0, and
lst(ρ) = vn. If fst(ρ) = w0, ρ is called an initial track.
With ρ(i, j) = vi · · · vj , for 0 ≤ i < j ≤ |ρ| − 1, we
denote the subtrack of ρ bounded by positions i and j. By
Pref(ρ) = {ρ(0, i) | 1 ≤ i ≤ |ρ| − 2} and Suff(ρ) =
{ρ(i, |ρ| − 1) | 1 ≤ i ≤ |ρ| − 2} we denote the sets of all
proper prefixes and suffixes of ρ, respectively. Notice that
the length of tracks, prefixes, and suffixes is greater than 1,
as they will be mapped into strict intervals. Finally, by ρ · ρ′
we denote the concatenation of the tracks ρ and ρ′.

An abstract interval model (over TrkK) can be naturally
associated with a finite Kripke structure K by considering
the set of intervals as the set of tracks of K . Since K has
loops (δ is left-total), the number of tracks in TrkK , and thus
the number of intervals, is infinite.

Definition 4. The abstract interval model induced by a fi-
nite Kripke structure K = (AP ,W, δ, μ, w0) is AK =
(AP , I, AI, BI, EI, σ), where I = TrkK , AI = {(ρ, ρ′) ∈ I×
I | lst(ρ) = fst(ρ′)}, BI = {(ρ, ρ′) ∈ I× I | ρ′ ∈ Pref(ρ)},
EI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Suff(ρ)}, and σ : I �→ 2AP is
such that σ(ρ) =

⋂
w∈states(ρ) μ(w), for all ρ ∈ I.

Relations AI, BI, and EI are interpreted as the Allen’s rela-
tions A,B, and E, respectively. Moreover, according to the
definition of σ, p ∈ AP holds over ρ = v0 · · · vn iff it holds

over all the states v0, · · · , vn of ρ. This conforms to the ho-
mogeneity principle, according to which a proposition letter
holds over an interval iff it holds over all its subintervals.

Satisfiability of an HS formula over a Kripke structure can
be given in terms of induced abstract interval models.
Definition 5. Let K be a finite Kripke structure, ρ ∈ TrkK ,
and ψ be an HS formula. A track ρ of K satisfies ψ, denoted
as K , ρ |= ψ, iff it holds that AK , ρ |= ψ.
Definition 6. Let K be a finite Kripke structure and ψ be an
HS formula. We say that K models ψ, denoted as K |= ψ, iff
for all initial tracks ρ ∈ TrkK it holds that K , ρ |= ψ.

The model checking problem for HS over finite Kripke
structures is the problem of deciding whether K |= ψ.

Some examples of meaningful properties of tracks ex-
pressible in HS can be found in (Molinari et al. 2015).

The general picture

In (Montanari et al. 2014; Molinari et al. 2015), the authors
show that, given a finite Kripke structure K and a bound
k on the structural complexity of HS formulas, that is, on
the nesting depth of E and B modalities, it is possible to
obtain a finite representation for AK , which is equivalent to
AK with respect to satisfiability of HS formulas with struc-
tural complexity less than or equal to k. Then, by exploiting
such a representation, they prove that the model checking
problem for (full) HS is decidable, providing an algorithm
with non-elementary complexity. Moreover, they show that
the problem for the fragment AABE, and thus for full HS, is
PSPACE-hard (EXPSPACE-hard if a suitable succinct
encoding of formulas is exploited).

In (Molinari, Montanari, and Peron 2015b), the authors
study the fragment AABBE (and the symmetrical fragment
AAEBE), devising an EXPSPACE model checking al-
gorithm which exploits the possibility of finding, for each
track of the Kripke structure, a satisfiability-preserving track
of bounded length, called track representative. In this way,
the algorithm needs to check only tracks having a bounded
maximum length. Later (Molinari, Montanari, and Peron
2015a) proved that the problem for AABBE (and AAEBE)
is PSPACE-hard (if a suitable succinct encoding of for-
mulas is exploited, the algorithm remains in EXPSPACE,
but a NEXPTIME lower bound can be given (Molinari,
Montanari, and Peron 2015b)).

In (Molinari, Montanari, and Peron 2015a) the authors
identify some well-behaved HS fragments, namely, ∀AABE
(and ∃AABE) and AABE, which are still expressive enough
to capture meaningful interval properties of state-transition
systems and whose model checking problem exhibits a com-
putational complexity considerably lower than that of full
HS. In particular, they prove that the problem is PSPACE-
complete for the fragment AABE (and its sub-fragment AB)
and co-NP-complete for the fragment ∀AABE.

In this paper, we (almost) complete the picture for the sub-
fragments of AABE. We first prove that the model checking
problem for A (and for A) is PNP[O(logn)]-hard by a re-
duction from the PARITY(SAT) problem. Then, we devise
a model checking algorithm for AA by reducing its model

475

AABE PSPACE-complete 2,3 B PSPACE-complete

E PSPACE-complete

AA
PNP[O(log2 n)]

PNP[O(logn)]-hard
A

PNP[O(log2 n)]

PNP[O(logn)]-hard

∀AABE coNP-complete 3 Prop coNP-complete 3

AABBE
EXPSPACE 2

PSPACE-hard 3

succinct AABBE
EXPSPACE 2

NEXP-hard 2

AABE
nonELEMENTARY 1

PSPACE-hard 1

HS
nonELEMENTARY 1

PSPACE-hard 1

succinct AABE
nonELEMENTARY 1

EXPSPACE-hard 1

succinct HS
nonELEMENTARY 1

EXPSPACE-hard 1

hardness

hardness

upper-bound

hardness

upper-bound

hardness

hardness

hardness

1 (Molinari et al. 2015)
2 (Molinari, Montanari, and Peron 2015b)
3 (Molinari, Montanari, and Peron 2015a)

Figure 2: Complexity of model checking for HS fragments.

checking problem to the TB(SAT)1×M problem, thus prov-
ing that the former is in PNP[O(log2 n)]. Finally, we show
that model checking B (and E) formulas is PSPACE-hard
by a reduction from the QBF problem.

In Figure 2 we summarize known complexity results, de-
picted in white boxes, and new ones, in grey boxes.

We conclude this section with a simple example (a sim-
plified version of the one given in (Molinari, Montanari, and
Peron 2015a)), showing that the considered fragments can
express meaningful properties of state-transition systems.

Example 2. Let K = (AP ,W, δ, μ, w0) be the Kripke struc-
ture of Figure 3, where AP = {r0, r1, e0, e1, x0}. K models
the interactions between a scheduler S and two processes,
P0 and P1, which possibly ask for a shared resource. At

w0
x0

w1
r0, x0

w2
r1

w3
r0, r1

w4
r0, r1, e1

w5
e1

w6
r0, r1, e0, x0

w7
e0, x0

P1 P0

S

Figure 3: A simple state-transition system.

the initial state w0, S has not received any request from the
processes yet, while in w1 (resp., w2) only P0 (resp., P1)
has sent a request, and thus r0 (resp., r1) holds. As long as
at most one process has sent a request, S is not forced to
allocate the resource (w1 and w2 have self loops). At w3,
both P0 and P1 are waiting for the shared resource, and
hence both r0 and r1 hold there. State w3 has transitions
only towards w4 and w6. At w4 (resp., w6) P1 (resp., P0)
can access the resource: e1 (resp., e0) holds in w4w5 (resp.,
w6w7). Finally, from w5 and w7, the system can only move
to w0, where S waits for new requests from P0 and P1.

Now, let P be the set {r0, r1, e0, e1} and let x0 be an aux-
iliary proposition letter labelling the states w0, w1, w6, and
w7, where S and P0, but not P1, are active.

We observe that K |= [A]ψ if and only if ψ holds over any
(reachable) computation sub-interval.

It holds that K |= [A]
(
r0 → (〈A〉 e0∨〈A〉 〈A〉 e0)

)
. Such

a formula, belonging to A (and AA), expresses the following
reachability property: if r0 holds over some interval, then
there is always a way to reach an interval over which e0
holds. Obviously, this does not mean that all possible com-
putations will necessarily lead to such an interval; however,
the system will never fall in a state from which it is no more
possible to satisfy requests from P0.

It also holds that K |= [A]
(
(r0 ∧ r1) → [A](e0 ∨ e1 ∨∧

p∈P ¬p)) (in A and AA). Indeed, if both processes send
a request to S (state w3), then it immediately allocates the
resource. Formally, if r0∧r1 holds over some tracks (the only
possible cases are w3w4 and w3w6), then in any possible
subsequent interval of length 2 e0 ∨ e1 holds, that is, P0 or
P1 are executed, or

∧
p∈P ¬p holds, if we consider tracks

longer than 2. On the other hand, if only one process asks
for the resource, then S can arbitrarily delay its allocation,
that is, K �|= [A]

(
r0 → [A](e0 ∨

∧
p∈P ¬p)).

Finally, it holds that K |= x0 → 〈B〉x0 (in B), that is, any
initial track satisfying x0 (any such track involves states w0,
w1, w6, and w7 only) can be extended to the right in such a
way that the resulting track still satisfies x0. This amounts to
say that there exists a computation in which P1 starves. No-
tice that S and P0 can continuously interact without waiting
for P1. This is the case, for instance, when P1 does not ask
for the shared resource at all.

PNP[O(logn)]-hardness of the model checking

problem for A (and A)

In this section, we prove that the model checking problem
for formulas of A (and of A), over finite Kripke structures,
is PNP[O(logn)]-hard. The complexity class PNP[O(logn)]

contains the problems decided by a deterministic polynomial
time algorithm which requires only O(log n) queries to an
NP oracle, being n the input size. Such a class is higher than
both NP and co-NP in the polynomial time hierarchy, but
lower than PNP (a PNP problem may require a polynomial
number of queries). Like the class PNP, it is closed under
complementation.

A complete problem for PNP[O(logn)] is PARITY(SAT):
given a set of Boolean formulas Γ, one has to decide whether

476

q0

sf1

sf1

sf2

sf2

sfn

sfn

sz1

sz1

szt

szt

s

ZF

s1 s2 sn

sx1
1

sx1
1

sx2
1

sx2
1

sxn
1

sxn
1

sx1
m1

sx1
m1

sx2
m2

sx2
m2

sxn
mn

sxn
mn

. . .

. . .

Figure 4: The Kripke structure K Γ
PAR.

the number of satisfiable formulas in Γ is odd or even (Gott-
lob 1995). In the following, we show how to reduce the PAR-
ITY(SAT) problem to the model checking problem for A.

Let Γ be a set of n Boolean formulas {φi(x
i
1, · · · , xi

mi
) |

1 ≤ i ≤ n, mi ∈ N}. We provide a Kripke structure K Γ
PAR

and an A-formula Φ such that K Γ
PAR |= Φ if and only if the

number of satisfiable Boolean formulas in Γ is odd.
We start by defining a Boolean formula, parity(F,Z),

over two sets of Boolean variables, F = {f1, · · · , fn} and
Z = {z1, · · · , zt}, where t = 3 ·(n−1)+1. Such a formula
allows one to decide the parity of the number of variables
in F that evaluate to true. Z is a set of auxiliary variables,
whose truth values are functionally determined by those as-
signed to the variables in F , that is, for a given truth as-
signment, the number of variables in F set to true is even
if parity(F,Z) evaluates to true, and, in particular, its last
variable zt evaluates to true. The formula parity(F,Z) is
defined as follows: parity(f1, · · · , fn, z1, · · · , zt) = zt ∧
parn(f1, · · · , fn, z1, · · · , zt), where t = 3 · (n − 1) + 1.
For i ≥ 1, pari(f1, f2, · · · , fi, z1, · · · , z3(i−1)+1) is in-
ductively defined as: par1(f1, z1) = ¬f1 ↔ z1, and, for
all i ≥ 2, pari(f1, f2, · · · , fi, z1, · · · , zα+3) =

(
zα+1 ↔

(fi ∧ ¬zα)
) ∧ (

zα+2 ↔ (¬fi ∧ zα)
) ∧ (

zα+3 ↔ (zα+2 ∨
zα+1)

) ∧ pari−1(f1, f2, · · · , fi−1, z1, · · · , zα), where α =
3 · (i − 2) + 1. Each assignment satisfying pari has to
set zα to the parity value for the set of Boolean variables
f1, f2 . . . , fi−1; such a value is then possibly changed ac-
cording to the truth of fi and assigned to zα+3. Notice that
the length of parity(F,Z) is polynomial in n.

We now show how to build the Kripke structure K Γ
PAR,

where a subset of paths encode all the possible truth assign-
ments to the variables of F∪Z and to all the variables occur-
ring in formulas of Γ. K Γ

PAR is shown in Figure 4. It features
a couple of states for each Boolean variable in F ∪Z as well
as for all the variables of formulas in Γ (one state for each

truth value). Each path from the initial state q0 to the state
s represents a truth assignment to the variables in F ∪ Z.
Then, the structure branches into n substructures, each one
modeling the possible truth assignments to the variables of
a formula in Γ. Formally, K Γ

PAR = (AP ,W, δ, μ, q0), where
AP = {p, q} ∪ F ∪ Z ∪ {auxi | 1 ≤ i ≤ n} ∪ {xi

ji
| 1 ≤

i ≤ n, 1 ≤ ji ≤ mi}, W = {q0} ∪ {sfi , sfi | 1 ≤ i ≤
n}∪{sz, sz | z ∈ Z}∪{s}∪{si | 1 ≤ i ≤ n}∪{sxi

ji
, sxi

ji
|

1 ≤ i ≤ n, 1 ≤ ji ≤ mi}, δ = {(q0, sf1), (q0, sf1)} ∪
{(sfi , sfi+1), (sfi , sfi+1), (sfi , sfi+1), (sfi , sfi+1) | 1 ≤
i < n} ∪ {(sfn , sz1), (sfn , sz1), (sfn , sz1), (sfn , sz1)} ∪
{(szi , szi+1), (szi , szi+1), (szi , szi+1), (szi , szi+1)|1 ≤ i < t}∪
{(szt , s), (szt , s)} ∪ {(s, si), (si, sxi

1
), (si, sxi

1
) | 1 ≤ i ≤ n} ∪

{(sxi
ji

, sxi
ji+1

), (sxi
ji

, sxi
ji+1

), (sxi
ji

, sxi
ji+1

), (sxi
ji

, sxi
ji+1

)|1 ≤
i ≤ n, 1 ≤ ji < mi}∪{((sxi

mi
, sxi

mi
), (sxi

mi
, sxi

mi
)|1 ≤ i ≤

n}, and the labeling function μ is defined as follows:
• μ(q0) = {p, q} ∪ F ∪ Z;
• for all 1 ≤ i ≤ n, μ(sfi) = {p, q} ∪ F ∪ Z; μ(sfi) =
{p, q} ∪ (F \ {fi}) ∪ Z;

• for all z ∈ Z, μ(sz) = {p, q} ∪ F ∪ Z; μ(sz) = {p, q} ∪
F ∪ (Z \ {z});

• μ(s) = {q} ∪ F ∪ Z ∪ {auxi | 1 ≤ i ≤ n} ∪ {xi
ji
| 1 ≤

i ≤ n, 1 ≤ ji ≤ mi};
• for all 1 ≤ i ≤ n, μ(si) = {auxi}∪{xi

ji
| 1 ≤ ji ≤ mi};

• for all 1 ≤ i ≤ n, 1 ≤ ki ≤ mi, μ(sxi
ki

) = {auxi} ∪
{xi

ji
| 1 ≤ ji ≤ mi}, and μ(sxi

ki

) = {auxi}∪{xi
ji
| 1 ≤

ji ≤ mi} \ {xi
ki
}.

According to the definition of K Γ
PAR, it holds that:

1. Each track ρ from q0 to s encodes a truth assignment to
the proposition letters in F ∪ Z (for all y ∈ F ∪ Z, y is
true in ρ iff y ∈ ⋂

w∈states(ρ) μ(w)). Conversely, for each
truth assignment to the proposition letters in F ∪Z, there
exists an initial track ρ, reaching the state s, encoding such
an assignment. Notice that, among the initial tracks, those
leading to s are exactly those satisfying q ∧ ¬p.

2. An initial track leading to s satisfies parity(F,Z) if the
induced assignment sets an even number of fi’s to true,
and every z ∈ Z to the truth value which is functionally
implied by the values of the fi’s.

3. A Boolean formula φi(x
i
1, · · · , xi

mi
) ∈ Γ is satisfiable

iff there exists a track ρ̃ starting from s and ending in a
state si or sxi

j
or sxi

j
, for some j = 1, · · · ,mi, such that

K Γ
PAR, ρ̃ |= φi(x

i
1, · · · , xi

mi
).

Finally, let us consider the A formula ψ = q ∧ ¬p ∧
parity(F,Z)∧∧n

i=1

(
fi ↔ 〈A〉(auxi ∧φi(x

i
1, · · · , xi

mi
))
)
.

In view of the above observations, ψ is satisfied by an initial
track ρ if (and only if) (i) ρ leads to s, (ii) ρ induces an as-
signment which sets an even number of fi’s to true and all
z ∈ Z accordingly, and (iii) for all 1 ≤ i ≤ n, fi is true iff
there exists a track ρ̃ starting from s and ending in a state si
or sxi

j
or sxi

j
, such that K Γ

PAR, ρ̃ |= φi(x
i
1, · · · , xi

mi
). Notice

that the length of ψ is polynomial in the input size.
Let us assume we are given an instance of PARITY(SAT)

Γ with an even number of satisfiable Boolean formulas.
There exists an initial track ρ ending in s such that, for
all i, sfi ∈ states(ρ) if φi(x

i
1, · · · , xi

mi
) is satisfiable,

477

B

∃V1.F1(Y, V1)

G1

∃V2.F2(Y, V2)

G2

· · · ∃Vp.Fp(Y, Vp)

Gp

x1 x2 xp

E1(X) E2(X) · · · Ek(X)

z : z1 z2 zk

y1: y11 y12 · · · y1k · · · ym1 ym2 · · · ymkym:

Figure 5: General form of a block.

and sfi ∈ states(ρ) otherwise. Moreover, ρ can be cho-
sen so that K Γ

PAR, ρ |= parity(F,Z). It immediately follows
that, for all i, K Γ

PAR, ρ |= fi iff K Γ
PAR, ρ |= 〈A〉(auxi ∧

φi(x
i
1, · · · , xi

mi
)), concluding that K Γ

PAR, ρ |= ψ.
Conversely, let ρ be an initial track such that K Γ

PAR, ρ |=
ψ. It holds that ρ ends in s and sets an even number of
fi’s to true. Moreover, if K Γ

PAR, ρ |= fi, then there ex-
ists ρ̃ starting from s and ending in si or sxi

j
or sxi

j
, such

that K Γ
PAR, ρ̃ |= φi(x

i
1, · · · , xi

mi
), hence φi(x

i
1, · · · , xi

mi
)

is satisfiable. If K Γ
PAR, ρ |= ¬fi, then there exists no ρ̃

starting from s and ending in si or sxi
j

or sxi
j
, such that

K Γ
PAR, ρ̃ |= φi(x

i
1, · · · , xi

mi
). So φi(x

i
1, · · · , xi

mi
) is un-

satisfiable. Hence, Γ contains an even number of satisfiable
formulas.

Therefore we have proved that the number of satisfiable
Boolean formulas of Γ is even iff there exists an initial track
ρ such that K Γ

PAR, ρ |= ψ. This amounts to say that Γ con-
tains an odd number of satisfiable Boolean formulas (the
PARITY(SAT) problem) iff K Γ

PAR |= Φ, where Φ = ¬ψ
(the model checking problem).

Theorem 1. The model checking problem for A formulas,
over finite Kripke structures, is PNP[O(logn)]-hard (under
LOGSPACE reductions).

A similar proof can be given for A.

A model checking algorithm for AA
In this section, we provide a model checking algorithm
for AA via a reduction to the problem TB(SAT)1×M . To
the best of our knowledge, TB(SAT)1×M is the first com-
plete problem for the class PNP[O(log2 n)] that has been pro-
posed in the literature (Schnoebelen 2003). We recall that
PNP[O(log2 n)] is the class of problems decided by a de-
terministic polynomial time algorithm which requires only
O(log2 n) queries to an NP oracle, being n the input size.
Like PNP[O(logn)], PNP[O(log2 n)] is higher than both NP
and co-NP and lower than PNP in the polynomial time
hierarchy, and it is closed under complementation.

To start with, we give a short account of the TB(SAT)1×M

problem. As a preliminarily step, we need to introduce the
notion of block. A block (see Figure 5) is a circuit B whose

B1

B2 B3

B4 B5 B6 B7

Figure 6: A tree of blocks (B5 has degree m = 0).

input lines are organized in m bit vectors y1, . . . , ym, each
one with k entries: yi = (yi1, · · · , yik). The values m and
k are respectively called the degree and the width of B.
Input lines are connected to p internal gates G1, . . . , Gp.
Each gate Gi queries a SAT oracle to decide whether the
associated Boolean formula Fi(Y, Vi) is satisfiable, where
Y = {yjs | j = 1, · · · ,m, s = 1, · · · , k} and Vi is a set
of private variables of Fi (Vi ∩ Vj = ∅ for j �= i). The
output of Gi is conveyed by xi, which evaluates to � if
and only if Fi(Y, Vi) is satisfiable. Finally, k classical cir-
cuits (without oracle queries) E1, . . . , Ek compute, from
X = {x1, · · · , xp}, the final k bits, output of the block B,
conveyed by the output lines z1, . . . , zk (thus, the number
of output lines equals the width). The size of B is the total
number of gates, as usual, plus the sizes of all the formulas
Fi(Y, Vi).

Blocks of the same width can be combined together to
form a tree-structured complex circuit, called tree of blocks
(see Figure 6 for an example). Every block Bi in the tree
has a level: blocks which are leaves of the tree are at level
1; a block Bi whose inputs depend on (at least) a block Bj

at level d − 1 and possibly on other blocks at some levels
≤ d − 1, is at level d. In Figure 6, B4, B5, B6, B7 are at
level 1, B2 and B3 at level 2, and B1 at level 3.

TB(SAT) is the problem of deciding whether a specific
output zi (of the root) of a tree of blocks T is � or ⊥, given
the values for the inputs (of the leaf blocks) of T . As proved
in (Schnoebelen 2003), TB(SAT) is PNP-complete.

The problem TB(SAT)1×M is TB(SAT) with a re-
striction: the Boolean formulas (SAT queries) of each
block B of the tree of blocks must be of the following
form: ∃�1, · · · , �m ∃V ′i Fi(y

1
�1
, · · · , ym�m , �1, · · · , �m, V ′i),

with �1, · · · , �m ∈ {1, · · · , k}, where m and k are respec-
tively the degree and the width of B. This amounts to say
that Fi can use only one bit from each input vector of B (no
matter which), hence “1×M”. As a matter of fact, the exis-
tential quantification over the indexes �1, · · · , �m is an abuse
of notation borrowed from (Schnoebelen 2003); however,
∃�j ∈ {1, · · · , k} is just a shorthand for k bits (belonging to
its set of private variables) “�j = 1”, . . . , “�j = k”, among
which exactly one is 1. In (Schnoebelen 2003), the author
proves that TB(SAT)1×M is PNP[O(log2 n)]-complete.

We now outline a reduction from the model checking
problem for AA to the problem TB(SAT)1×M , showing how

478

to build a suitable tree of blocks that allows us to decide the
former problem.

Given an AA formula ψ (w.l.o.g., we assume that
ψ contains only existential modalities) to check over a
Kripke structure K = (AP ,W, δ, μ, w1), where W =
{w1, · · · , w|W |}, we consider its negation ¬ψ and build
from it a tree of blocks TK ,¬ψ . Each block of TK ,¬ψ has
a type, FORWARD or BACKWARD, and it is associated with
a subformula of ¬ψ. The root block, Broot, is always FOR-
WARD and it is associated with ¬ψ. Each block B has an
output line zi for each state wi ∈ W , thus the width of all
blocks is k = |W |.

The notion of modal subformula plays a fundamental role
in the reduction, as it allows us to build the tree recursively.

Definition 7. Let χ be an AA formula. The set of its modal
subformulas, denoted by ModSubf(χ), is the set of subfor-
mulas of χ of the form 〈A〉χ′ or 〈A〉χ′, for some AA for-
mula χ′, not in the scope of any other modality 〈A〉 or 〈A〉.

For instance, we have that ModSubf(〈A〉 〈A〉 q) =
{〈A〉 〈A〉 q} and ModSubf

((
(〈A〉 p) ∧ (〈A〉 〈A〉 q)) →

〈A〉 p) = {〈A〉 p, 〈A〉 〈A〉 q};
Starting from Broot, TK ,¬ψ is built recursively as follows.

If some block B is associated with a formula ϕ, then:
• for every φ ∈ ModSubf(ϕ), with φ = 〈A〉 ξ, we create a

FORWARD child B′ of B associated with ξ, and
• for every φ′ ∈ ModSubf(ϕ), with φ′ = 〈A〉 ξ′, we create

a BACKWARD child B′′ of B associated with ξ′.
Then, the procedure is applied recursively to all the gener-
ated children of B, terminating when ModSubf(ϕ) = ∅.
Notice that B has thus degree m = |ModSubf(ϕ)|.

The procedure allows us to determine the general struc-
ture of TK ,¬ψ . We now need to describe the internal structure
of its blocks. As a preliminary step, we suitably transform
some AA formulas ϕ into Boolean ones. To this end, we re-
place all the occurrences of proposition letters and modal
subformulas in ϕ by Boolean variables.

Definition 8. Given K = (AP ,W, δ, μ, w0) and an AA for-
mula χ, we define χ(VAP , VmodSubf), where VAP = {vp |
p ∈ AP} and VmodSubf = {vχ′ | χ′ ∈ ModSubf(χ)} are
sets of Boolean variables, as the Boolean formula obtained
from χ by replacing each (occurrence of a) modal subfor-
mula χ′ ∈ ModSubf(χ) by the variable vχ′ , and then each
(occurrence of a) proposition p ∈ AP by the variable vp.

Given a track ρ ∈ TrkK and an AA formula χ, it is easy to
prove (by induction on the complexity of χ(VAP , VmodSubf))
that if ω is an interpretation of the variables of VAP ∪
VmodSubf such that ω(vp) = � ⇐⇒ K , ρ |= p, for
all p in AP , and ω(vχ′) = � ⇐⇒ K , ρ |= χ′, for
all χ′ in ModSubf(χ), then it holds that K , ρ |= χ ⇐⇒
ω(χ(VAP , VmodSubf)) = �.

We are now ready to describe the internal structure of
a (generic) block B in TK ,¬ψ for a formula ϕ. Let us
assume that B has FORWARD type. We refer again to
Figure 5. First of all, each output line zi is directly linked
to the output xi of the oracle gate Gi, avoiding circuits
E1, . . . , Ek, which can be omitted from B. The formula

Fi(Y, V) of Gi (1 ≤ i ≤ |W |) is defined in Figure 7, where
V = Vlast ∪ Vtrack ∪ VAP ∪ VmodSubf is the set of (private)
variables, with Vlast = {v1, v2, · · · , v|W |}, Vtrack =

{v11 , · · · , v1|W |, v21 , · · · , v2|W |, · · · , v|W |
2+2

1 , · · · , v|W |2+2
|W | },

and VAP and VmodSubf as in Definition 8 (for the sake
of simplicity, we decided to write V for Vi). In Figure 7,
V AL(wj , p) is just a shorthand for � if p ∈ μ(wj), and
⊥ otherwise; yξj denotes the input of B linked to the j-th
output of the child B′ associated with the formula ξ. The
construction of a block of BACKWARD type is symmetric
(we just replace the first conjunct v1i of Fi(Y, V) by vi).

Proposition 1. Given a track ρ ∈ TrkK , with |ρ| ≤ |W |2 +
2, there is a truth assignment ω to the variables in V which
satisfies the formula track(Vtrack, Vlast, VAP), and ω is such
that for any 1 ≤ t ≤ |ρ| and 1 ≤ j ≤ |W |, ρ(t) = wj ⇐⇒
ω(vtj) = � and ω(v

|ρ|
j) = ω(vj); moreover, for any p ∈ AP ,

ω(vp) = � ⇐⇒ K , ρ |= p. Conversely, if there is a
truth assignment ω to the variables in V satisfying the s-
th disjunct of track(Vtrack, Vlast, VAP), then there is a track
ρ ∈ TrkK , with |ρ| = s + 1, such that, for any 1 ≤ t ≤ |ρ|
and 1 ≤ j ≤ |W |, ρ(t) = wj ⇐⇒ ω(vtj) = � and, for
any p ∈ AP , K , ρ |= p ⇐⇒ ω(vp) = �.

The following theorem holds (hereafter, we write B(zi)
for the output line zi of B).

Theorem 2. Given an AA formula ψ and a Kripke structure
K = (AP ,W, δ, μ, w1), for every block B of TK ,¬ψ , if B is
associated with an AA formula ϕ, then
• if B is FORWARD, ∀i ∈ {1, · · · , |W |}, B(zi) = � iff

there exists a track ρ ∈ TrkK such that fst(ρ) = wi and
K , ρ |= ϕ;

• if B is BACKWARD, ∀i ∈ {1, · · · , |W |}, B(zi) = � iff
there exists a track ρ ∈ TrkK such that lst(ρ) = wi and
K , ρ |= ϕ;

Proof. The proof is by induction on the level L of the block
B. We skip the base case in which L = 1, because it is an
easy simplification of what we prove in the inductive step.

Let us consider a FORWARD block B at level L ≥ 2, asso-
ciated with a formula ϕ (the BACKWARD case is symmetric).

We first prove the implication (⇐). We have to show that
if there exists a track ρ ∈ TrkK such that fst(ρ) = wi (for
some i ∈ {1, · · · , |W |}) and K , ρ |= ϕ, then B(zi) = �
that is, there exists a truth assignment ω to the variables
in V satisfying the formula Fi(Y, V) of Gi. In (Molinari,
Montanari, and Peron 2015b), it is proved that if ϕ is an
AA formula and K , ρ |= ϕ (as in this case), there ex-
ists a track ρ′ ∈ TrkK , with |ρ′| ≤ |W |2 + 2, such that
fst(ρ) = fst(ρ′) = wi, lst(ρ) = lst(ρ′), and K , ρ′ |= ϕ.
Thus, by Proposition 1, there exists a truth assignment ω to
the variables in V , that satisfies track(Vtrack, Vlast, VAP),
such that for all 1 ≤ r ≤ |ρ′| and 1 ≤ j ≤ |W |,
ρ(r) = wj ⇐⇒ ω(vrj) = � and ω(v

|ρ|
j) = ω(vj), and

for all p ∈ AP , ω(vp) = � ⇐⇒ K , ρ′ |= p (
).
Since L ≥ 2, ModSubf(ϕ) �= ∅ holds. So we consider

a FORWARD child B′ of B (if any), at a level lower than
L, associated with some ξ such that 〈A〉 ξ ∈ ModSubf(ϕ),

479

Fi(Y, V) = ∃V
(
v1i ∧track(Vtrack, Vlast, VAP)∧ϕ(VAP , VmodSubf) ∧

∧
〈A〉 ξ∈ModSubf(ϕ)

(
v〈A〉 ξ ↔

|W |∨
j=1

(vj∧yξj)
) ∧

∧

〈A〉 ξ′∈ModSubf(ϕ)

(
v〈A〉 ξ′ ↔

|W |∨
j=1

(v1j ∧yξ
′

j)
))

,

where onet(v
t
1, v

t
2, · · · , vt|W |) =

(|W |∨
j=1

vtj

)
∧
(|W |∧

j=1

|W |∧
k=j+1

¬(vtj ∧ vtk)
)

, edget(v
t
1, · · · , vt|W |, vt+1

1 , · · · , vt+1
|W |) =

∨
(wk,wj)∈δ

(vtk ∧ vt+1
j), and

track(Vtrack, Vlast, VAP) =

|W |2+2∨
�=2

[�∧
t=1

onet(v
t
1, v

t
2, · · · , vt|W |) ∧

�−1∧
t=1

edget(v
t
1, · · · , vt|W |, vt+1

1 , · · · , vt+1
|W |) ∧

|W |∧
t=1

(v�t ↔ vt)∧

∧
p∈AP

((
vp →

�∧
t=1

|W |∧
j=1

(vtj → V AL(wj , p))
) ∧ (¬vp →

�∨
t=1

|W |∧
j=1

(vtj → ¬V AL(wj , p))
))]

Figure 7: Definition of Fi(Y, V) for a block of FORWARD type.

and we apply the inductive hypothesis, which ensures that,
for all j, B′(zj) = � iff there exists a track ρ ∈ TrkK
such that fst(ρ) = wj and K , ρ |= ξ. Thus, K , ρ′ |= 〈A〉 ξ
iff there exists ρ̃ ∈ TrkK , with fst(ρ̃) = lst(ρ′) = wj ,
for some j, and K , ρ̃ |= ξ iff B′(zj)(= yξj) = �. So
if K , ρ′ |= 〈A〉 ξ, then yξj = �, and ω(vj) ∧ yξj = �.
Now, to satisfy Fi(Y, V), the truth assignment ω has to be
such that ω(v〈A〉 ξ) = �. If K , ρ′ �|= 〈A〉 ξ, then yξj = ⊥,

and so
∨|W |

s=1(ω(vs) ∧ yξs) is false, and ω must be such that
ω(v〈A〉 ξ) = ⊥. To conclude, K , ρ′ |= 〈A〉 ξ iff ω(v〈A〉 ξ) =
� (

). The symmetric reasoning can be applied to BACK-
WARD children of B. Since K , ρ′ |= ϕ, by (
) and (

), we
have ω(ϕ(VAP , VmodSubf)) = �.

Let us now prove the implication (⇒). If B(zi) = �, then
it holds that there exists a truth assignment ω of V satisfying
Fi(Y, V). In particular, ω satisfies track(Vtrack, Vlast, VAP)
and v1i , thus, by Proposition 1, there exists a track ρ ∈ TrkK
such that fst(ρ) = wi, lst(ρ) = wj , for some j, and
K , ρ |= p ⇐⇒ ω(vp) = �, for any p ∈ AP . By induc-
tive hypothesis, for all the formulas 〈A〉 ξ ∈ ModSubf(ϕ),
K , ρ |= 〈A〉 ξ iff ω(v〈A〉 ξ) = �, and symmetrically, for all
〈A〉 ξ′ ∈ ModSubf(ϕ), K , ρ |= 〈A〉 ξ′ iff ω(v〈A〉 ξ′) = �.
Since ω(ϕ(VAP , VmodSubf)) = �, then K , ρ |= ϕ.

The two next corollaries immediately follow.
Corollary 1. Let ψ be an AA formula, K = (AP ,W, δ,
μ, w1) be a Kripke structure, and Broot be the root block
of TK ,¬ψ . It holds that Broot(z1) = ⊥ ⇐⇒ K |= ψ.

Corollary 2. The model checking problem for AA formulas,
over finite Kripke structures, is in PNP[O(log2 n)].

Proof. The result follows from Corollary 1 and the fact that
the instance of TB(SAT)1×M generated from an AA formula
ψ and a Kripke structure K is polynomial in |ψ| and |K |.

PSPACE-completeness of B and E
In this section, we prove that the model checking prob-
lem for formulas of B and of E, over finite Kripke struc-
tures, is PSPACE-complete. In (Molinari, Montanari, and

Peron 2015b), the authors prove that the fragment AABE
is in PSPACE. Membership of B and of E to PSPACE
thus immediately follows. Here, we prove the PSPACE-
hardness of the problem for B formulas by means of a re-
duction from the QBF problem, that is, the problem of de-
termining the truth of a fully-quantified Boolean formula
in prenex normal form, which is known to be PSPACE-
complete (see, for example, (Sipser 2012)). The proof for B
can easily be modified to show the PSPACE-hardness of
the symmetric fragment E.

Let ψ be a quantified Boolean formula QnxnQn−1xn−1

· · ·Q1x1φ(xn, xn−1, · · · , x1), where, for i = 1, . . . , n,
Qi ∈ {∃, ∀} and φ(xn, xn−1, · · · , x1) is a quantifier-
free Boolean formula over the set of variables V ar =
{xn, . . . , x1}. We define a Kripke structure K V ar

QBF , whose
initial tracks represent all the possible assignments to the
variables of V ar. For each variable x ∈ V ar, K V ar

QBF fea-
tures a pair of states w�x and w⊥x , that represent a � and ⊥
truth assignment to x, respectively. An example of K V ar

QBF ,
with V ar = {x, y, z}, is given in Figure 8.

Formally, let K V ar
QBF = (AP ,W, δ, μ, w0), where:

• AP = V ar ∪ {s} ∪ {x̃i | 1 ≤ i ≤ n};
• W = {w�

xi
| 1 ≤ i ≤ n, � ∈ {⊥,�}} ∪ {w0, w1, sink};

• if n = 0, δ = {(w0, w1), (w1, sink), (sink, sink)};
if n > 0, δ = {(w0, w1), (w1, w

�
xn
), (w1, w

⊥
xn
)} ∪

{(w�
xi
, wm

xi−1
) | � ,m ∈ {⊥,�}, 2 ≤ i ≤ n} ∪

{(w�x1
, sink), (w⊥x1

, sink), (sink, sink)}.
• μ(w0) = μ(w1) = V ar ∪ {s} ∪ {x̃i | xi ∈ V ar};

for all 1 ≤ i ≤ n, μ(w�xi
) = V ar ∪ {x̃j | 1 ≤ j ≤ i} and

μ(w⊥xi
) = (V ar \ {xi}) ∪ {x̃j | 1 ≤ j ≤ i};

μ(sink) = V ar.
The quantified Boolean formula ψ is reduced to the B for-

mula ξ = s → ξn, where

ξi =

⎧⎨
⎩
φ(xn, xn−1, · · · , x1) i = 0

〈B〉 (x̃i ∧ ξi−1

)
i > 0 ∧Qi = ∃

[B]
(
x̃i → ξi−1

)
i > 0 ∧Qi = ∀

.

Notice that both K V ar
QBF and ξ can be built by using logarith-

mic working space. In Theorem 3, we shall show the correct-

480

w0

x, y, z
s, x̃, ỹ, z̃

w1

x, y, z
s, x̃, ỹ, z̃

w�x
x, y, z
x̃, ỹ, z̃

w⊥x
y, z

x̃, ỹ, z̃

w�y
x, y, z
ỹ, z̃

w⊥y
x, z
ỹ, z̃

w�z
x, y, z
z̃

w⊥z
x, y
z̃

sink
x, y, z

Figure 8: The Kripke structure K x,y,z
QBF .

ness of the reduction, namely, that ψ is true iff K V ar
QBF |= ξ.

As a preliminary step, we introduce some technical defini-
tions and an auxiliary lemma.

Given a Kripke structure K = (AP ,W, δ, μ, w0) and
a B formula χ, we denote by p�(χ) the set of proposi-
tion letters occurring in χ and by K |p�(χ) the structure ob-
tained from K by restricting the labelling of each state
to p�(χ), namely, the Kripke structure (AP ,W, δ, μ, w0),
where AP = AP ∩ p�(χ) and μ(w) = μ(w) ∩ p�(χ), for all
w ∈ W . Moreover, for v ∈ W , we denote by reach(K , v)
the subgraph of K induced by the states reachable from
v, namely, the Kripke structure (AP ,W ′, δ′, μ′, v), where
W ′ = {w ∈ W | there exists ρ ∈ TrkK with fst(ρ) =
v and lst(ρ) = w}, δ′ = δ∩(W ′×W ′), and μ′(w) = μ(w),
for all w ∈ W ′. As usual, we say that two Kripke struc-
tures K = (AP ,W, δ, μ, w0) and K ′ = (AP ′,W ′, δ′, μ′, w′0)
are isomorphic (written K ∼ K ′) iff there is a bijection
f : W �→ W ′ such that (i) f(w0) = w′0; (ii) for all u, v ∈
W , (u, v) ∈ δ iff (f(u), f(v)) ∈ δ′; (iii) for all v ∈ W ,
μ(v) = μ′(f(v)). Finally, if AK = (AP , I, AI, BI, EI, σ) is
the abstract interval model induced by a Kripke structure K
and ρ ∈ TrkK , we denote σ(ρ) by L(K , ρ).

Let K and K ′ be two Kripke structures. The following
lemma, which is an immediate consequence of Lemma 1 of
(Molinari, Montanari, and Peron 2015a), states that, for any
B formula ψ, if the same set of proposition letters, restricted
to p�(ψ), holds over two tracks ρ ∈ TrkK and ρ′ ∈ TrkK ′ ,
and the subgraphs consisting of the states reachable from,
respectively, lst(ρ) and lst(ρ′) are isomorphic, then ρ and ρ′
are equivalent with respect to ψ.

Lemma 1. Given a B formula ψ, two Kripke structures
K = (AP ,W, δ, μ, w0) and K ′ = (AP ′,W ′, δ′, μ′, w′0),
and two tracks ρ ∈ TrkK and ρ′ ∈ TrkK ′ such that
L(K |p�(ψ), ρ)=L(K ′

|p�(ψ), ρ
′) and reach(K |p�(ψ), lst(ρ))∼

reach(K ′
|p�(ψ), lst(ρ

′)), it holds that K , ρ |=ψ iff K ′, ρ′ |=ψ.

Theorem 3. The model checking problem for B formu-
las, over finite Kripke structures, is PSPACE-hard (under
LOGSPACE reductions).

Proof. Let ψ be the quantified Boolean formula Qnxn

Qn−1xn−1 · · ·Q1x1φ(xn, xn−1, · · · , x1). We prove by in-
duction on the number n of variables of ψ that ψ is
true if and only if K xn,··· ,x1

QBF |= ξ. In the following,
φ(xn, xn−1, · · · , x1){xi/υ}, with υ ∈ {�,⊥}, denotes the
formula obtained from φ(xn, xn−1, · · · , x1) by replacing
all occurrences of xi by υ. Notice that K xn,xn−1,··· ,x1

QBF and

K xn−1,··· ,x1

QBF are isomorphic if restricted to the states w�xn−1
,

w⊥xn−1
, · · · , w�x1

, w⊥x1
, sink (i.e., the initial parts of both

Kripke structures are eliminated), and the labelling of states
is suitably restricted. Moreover, notice that only the track
w0w1 satisfies the proposition letter s in ξ.

Base case (n = 0). In this case, ψ = φ(∅) is a Boolean
formula devoid of variables. If ψ is true, then in particular
K ∅
QBF , w0w1 |= φ(∅) and thus K ∅

QBF |= s → φ(∅)(= ξ).
Conversely, if K ∅

QBF |= s → φ(∅), then K ∅
QBF , w0w1 |=

φ(∅), and since φ(∅) has no variables, it must be true.
Case n ≥ 1. We first prove that if the formula

ψ = QnxnQn−1xn−1 · · ·Q1x1φ(xn, xn−1, · · · , x1) is
true, then K xn,··· ,x1

QBF |= ξ.
If Qn = ∃, one possibility is that the quantified Boolean

formula Qn−1xn−1 · · ·Q1x1φ
′(xn−1, · · · , x1) is true,

where φ′(xn−1, · · · , x1) = φ(xn, xn−1, · · · , x1){xn/�}.
By inductive hypothesis, it holds that K xn−1,··· ,x1

QBF |= ξ′,
where ξ′ = s → ξ′n−1 and ξ′n−1 = ξn−1{xn/�}. Thus
K xn−1,··· ,x1

QBF , w′0w
′
1 |= ξ′n−1 (w′0 and w′1 are the two “left-

most” states of the structure K xn−1,··· ,x1

QBF). By Lemma 1,
K xn,··· ,x1

QBF , w0w1w
�
xn

|= ξ′n−1. Since every right extension
of w0w1wx�

n
models xn, K xn,··· ,x1

QBF , w0w1w
�
xn

|= ξn−1, and
so K xn,··· ,x1

QBF , w0w1 |= 〈B〉(x̃n∧ξn−1)(= ξn). To conclude,
K xn,··· ,x1

QBF |= s → ξn(= ξ). The only other possible case
is that Qn−1xn−1 · · ·Q1x1φ

′(xn−1, · · · , x1) is true, with
φ′(xn−1, · · · , x1) = φ(xn, xn−1, · · · , x1){xn/⊥}. As be-
fore, it follows that K xn,··· ,x1

QBF , w0w1w
⊥
xn

|= ξn−1{xn/⊥}
and thus K xn,··· ,x1

QBF , w0w1 |= 〈B〉(x̃n ∧ ξn−1).
Now, let Qn = ∀. Both the formula Qn−1xn−1 · · ·

Q1x1φ(xn, xn−1, · · · , x1){xn/�} and the formula
Qn−1xn−1 · · ·Q1x1φ(xn, xn−1, · · · , x1){xn/⊥} are true.
By reasoning as in the existential case, we have that
K xn,··· ,x1

QBF , w0w1w
�
xn

|= ξn−1 and K xn,··· ,x1

QBF , w0w1w
⊥
xn

|=
ξn−1. Thus, K xn,··· ,x1

QBF , w0w1 |= [B](x̃n → ξn−1) and
K xn,··· ,x1

QBF |= s → [B](x̃n → ξn−1).
We now prove that if K xn,··· ,x1

QBF |= ξ, then ψ is true.

If Qn = ∃, then K xn,··· ,x1

QBF , w0w1 |= 〈B〉(x̃n ∧ ξn−1). So
K xn,··· ,x1
QBF , w0w1w

�
xn

|= ξn−1 or K xn,··· ,x1
QBF , w0w1w

⊥
xn

|= ξn−1.
In the former case, K xn,··· ,x1

QBF , w0w1w
�
xn

|= ξn−1{xn/�}
(since every right extension of w0w1w

�
xn

models xn).
By Lemma 1, K xn−1,··· ,x1

QBF , w′0w
′
1 |= ξn−1{xn/�}, and

K xn−1,··· ,x1

QBF |=s → ξn−1{xn/�}. By inductive hypothesis,
Qn−1xn−1 · · ·Q1x1φ(xn, xn−1, · · · , x1){xn/�} is true,
thus ψ = ∃xnQn−1xn−1 · · ·Q1x1φ(xn, xn−1, · · · , x1)
is true. In the latter case, we symmetrically have that
Qn−1xn−1..Q1x1φ(xn, xn−1, · · · , x1){xn/⊥} is true, so
ψ=∃xnQn−1xn−1 · · ·Q1x1φ(xn, xn−1, · · · , x1) is true.

If Qn = ∀, then K xn,··· ,x1

QBF , w0w1 |= [B](x̃n →
ξn−1). Therefore, both K xn,··· ,x1

QBF , w0w1w
�
xn

|= ξn−1

and K xn,··· ,x1

QBF , w0w1w
⊥
xn

|= ξn−1. By reasoning as
in the existential case, we have that both the formula
Qn−1xn−1 · · ·Q1x1φ(xn, xn−1, · · · , x1){xn/�} and the

481

formula Qn−1xn−1 · · ·Q1x1φ(xn, xn−1, · · · , x1){xn/⊥}
are true, thus ψ=∀xnQn−1xn−1 · · ·Q1x1φ(xn, xn−1, · · · ,
x1) is true.

Conclusions and future work
In this paper, we investigated the complexity of the model
checking problem for all fragments of AABE. From the
PSPACE-hardness of the problem for B and E, it imme-
diately follows that model checking is PSPACE-complete
for any fragment of AABE including modalities 〈B〉 or 〈E〉.
As for the fragments A, A, and AA, we showed that they
belong to PNP[O(log2 n)] and are PNP[O(logn)]-hard, thus
leaving open the question whether their model checking
problem can be solved by less than O(log2 n) queries to an
NP oracle or a tighter lower bound can be proved (or both).
As a matter of fact, any attempt to reduce TB(SAT)1×M to
the model checking problem for A or AA failed, as in the re-
duction we need an HS formula of length Θ(nlogn), which
clearly cannot be generated in polynomial time.

As for future work, we are studying HS fragments featur-
ing modality 〈B〉, modality 〈E〉, or both of them: although
it may seem counterintuitive, B and B (the same holds for
E and E) do not behave the same, and completely differ-
ent techniques are needed to deal with the former. On the
one hand, we would like to establish whether PSPACE-
completeness can be preserved by adding modality 〈B〉 (or,
alternatively, 〈E〉) to AABE, thus improving the existing
EXPSPACE algorithms for AABBE and AAEBE (Moli-
nari, Montanari, and Peron 2015b). On the other hand, we
would like to check whether the interplay between 〈B〉 and
〈E〉 actually causes a significant complexity blowup, as it
happens for the satisfiability problem (Bresolin et al. 2014).

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832–843.
Bresolin, D.; Goranko, V.; Montanari, A.; and Sciavicco, G.
2009. Propositional interval neighborhood logics: Expres-
siveness, decidability, and undecidable extensions. Annals
of Pure and Applied Logic 161(3):289–304.
Bresolin, D.; Goranko, V.; Montanari, A.; and Sala, P. 2010.
Tableau-based decision procedures for the logics of subin-
terval structures over dense orderings. Journal of Logic and
Computation 20(1):133–166.
Bresolin, D.; Montanari, A.; Sala, P.; and Sciavicco, G.
2011. What’s decidable about Halpern and Shoham’s inter-
val logic? The maximal fragment ABBL. In LICS, 387–396.
IEEE Computer Society.
Bresolin, D.; Della Monica, D.; Goranko, V.; Montanari, A.;
and Sciavicco, G. 2014. The dark side of interval temporal
logic: marking the undecidability border. Annals of Mathe-
matics and Artificial Intelligence 71(1-3):41–83.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 2002. Model
Checking. MIT Press.
Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In ECP, LNCS 1809, 1–20. Springer.

Gottlob, G. 1995. NP Trees and Carnap’s Modal Logic.
Journal of the ACM 42(2):421–457.
Halpern, J. Y., and Shoham, Y. 1991. A propositional modal
logic of time intervals. Journal of the ACM 38(4):935–962.
Lodaya, K. 2000. Sharpening the undecidability of interval
temporal logic. In ASIAN, LNCS 1961, 290–298. Springer.
Lomuscio, A., and Michaliszyn, J. 2013. An epistemic
Halpern-Shoham logic. In IJCAI, 1010–1016.
Lomuscio, A., and Michaliszyn, J. 2014. Decidability of
model checking multi-agent systems against a class of EHS
specifications. In ECAI, 543–548.
Lomuscio, A., and Michaliszyn, J. 2015. Model checking
epistemic Halpern-Shoham logic extended with regular ex-
pressions. CoRR abs/1509.00608.
Lomuscio, A., and Raimondi, F. 2006. MCMAS: A model
checker for multi-agent systems. In TACAS, LNCS 3920,
450–454. Springer.
Marcinkowski, J., and Michaliszyn, J. 2014. The undecid-
ability of the logic of subintervals. Fundamenta Informati-
cae 131(2):217–240.
Molinari, A.; Montanari, A.; Murano, A.; Perelli, G.; and
Peron, A. 2015. Checking interval properties of computa-
tions. Acta Informatica. Accepted for publication.
Molinari, A.; Montanari, A.; and Peron, A. 2015a. Com-
plexity of ITL model checking: some well-behaved frag-
ments of the interval logic HS. In TIME, 90–100.
Molinari, A.; Montanari, A.; and Peron, A. 2015b. A model
checking procedure for interval temporal logics based on
track representatives. In CSL, 193–210.
Montanari, A.; Murano, A.; Perelli, G.; and Peron., A. 2014.
Checking interval properties of computations. In TIME, 59–
68.
Montanari, A.; Puppis, G.; and Sala, P. 2010. Maximal
decidable fragments of Halpern and Shoham’s modal logic
of intervals. In ICALP (2), LNCS 6199, 345–356. Springer.
Moszkowski, B. 1983. Reasoning About Digital Circuits.
Ph.D. Dissertation, Dept. of Computer Science, Stanford
University, Stanford, CA.
Pratt-Hartmann, I. 2005. Temporal prepositions and their
logic. Artificial Intelligence 166(1-2):1–36.
Roeper, P. 1980. Intervals and tenses. Journal of Philosoph-
ical Logic 9:451–469.
Schnoebelen, P. 2003. Oracle circuits for branching-time
model checking. In ICALP, LNCS 2719, 790–801. Springer.
Sipser, M. 2012. Introduction to the Theory of Computation.
International Thomson Publishing, 3rd edition.
Venema, Y. 1990. Expressiveness and completeness of an
interval tense logic. Notre Dame Journal of Formal Logic
31(4):529–547.
Venema, Y. 1991. A modal logic for chopping intervals.
Journal of Logic and Computation 1(4):453–476.
Zhou, C., and Hansen, M. R. 2004. Duration Calculus -
A Formal Approach to Real-Time Systems. Monographs in
Theoretical Computer Science. An EATCS Series. Springer.

482

