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Abstract. The model checking problem has thoroughly been explored
in the context of standard point-based temporal logics, such as LTL,
CTL, and CTL⇤, whereas model checking for interval temporal logics
has been brought to the attention only very recently.
In this paper, we prove that the model checking problem for the logic
of Allen’s relations started-by and finished-by is highly intractable, as it
can be proved to be EXPSPACE-hard. Such a lower bound immedi-
ately propagates to the full Halpern and Shoham’s modal logic of time
intervals (HS). In contrast, we show that other noteworthy HS fragments,
namely, Propositional Neighbourhood Logic extended with modalities for
the Allen relation starts (resp., finishes) and its inverse started-by (resp.,
finished-by), turn out to have—maybe unexpectedly—the same complex-
ity as LTL (i.e., they are PSPACE-complete), thus joining the group of
other already studied, well-behaved albeit less expressive, HS fragments.

1 Introduction

Model checking (MC) is one of the most successful techniques in the area of for-
mal methods. It allows one to automatically check whether some desired prop-
erties of a system, specified by a temporal logic formula, hold over a model of it
(generally, a Kripke structure). MC has proved itself to be extremely useful in
formal verification [7], but it has also been successfully exploited in various areas
of AI, ranging from planning to configuration and multi-agent systems (see, for
instance, [9, 17]).

Point-based temporal logics, such as LTL [26], CTL, and CTL⇤ [8], that allow
one to predicate over computation states/worlds, are usually adopted in MC as
the specification language, as they are suitable for practical purposes in many ap-
plication domains. However, some relevant temporal properties, that involve, for
instance, actions with duration, accomplishments, and temporal aggregations,
are inherently “interval-based” and thus cannot be expressed by point-based
logics. Here, we focus on MC algorithms for interval temporal logic (ITL).

ITLs take intervals, instead of points, as their primitive entities, providing
an alternative setting for reasoning about time [11, 25, 31, 32]. They have been

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-40229-1_27



applied in various areas of computer science and AI, including formal verifica-
tion, computational linguistics, planning, and multi-agent systems [2, 14, 25, 27,
33]. In order to check interval properties of computations, one needs to collect
information about states into computation stretches: each finite path of a Kripke
structure is interpreted as an interval, whose labelling is defined on the basis of
the labelling of the component states.

Halpern and Shoham’s modal logic of time intervals HS [11] is the most
famous among ITLs. It features one modality for each of the 13 possible ordering
relations between pairs of intervals (the so-called Allen’s relations [1]), apart from
equality. The satisfiability problem for HS turns out to be highly undecidable
for all relevant (classes of) linear orders [11]. The same holds for most fragments
of it [3, 13, 18]. However, some meaningful exceptions exist, including the logic
of temporal neighbourhood AA and the logic of sub-intervals D [4–6, 24].

In this paper, we address some open issues in the MC problem for HS, which
only recently entered the research agenda [14–16, 19–23]. In [19, 23], Montanari
et al. deal with MC for full HS over Kripke structures (under the homogeneity
assumption [28]). They introduce the problem and prove its non-elementary de-
cidability and PSPACE-hardness. Since then, the attention was also brought
to the fragments of HS, which, similarly to what happens with satisfiability,
are often computationally better. Here, we focus on the border between good
and bad HS fragments, showing the criticality of the combined use of modali-
ties for interval prefixes and su�xes (modalities for Allen’s relations started-by
and finished-by). On the one hand, we prove that MC for the HS fragment BE,
whose modalities can express properties of both prefixes and su�xes of inter-
vals, is EXPSPACE-hard, and this lower bound immediately propagates to full
HS. On the other hand, we show that the complexity of MC for HS fragments
where properties of prefixes and su�xes of intervals are considered separately is
markedly lower. In [22] the authors proved that if we consider only properties of
future and past intervals, MC is in P

NP; if modalities for interval extensions to
the left and to the right are added, MC becomes PSPACE-complete [20]. Here
we prove that MC for the HS fragment AABB (resp., AAEE), that allows one to
express properties of interval prefixes (resp., su�xes), future and past intervals,
and right (resp., left) interval extensions, is in PSPACE. Since MC for the HS
fragment featuring only one modality for right (resp., left) interval extensions
is PSPACE-hard [22], PSPACE-completeness immediately follows. Moreover,
we show that if we restrict HS to modalities either for interval prefixes or for
interval su�xes (HS fragments B and E), MC turns out to be co-NP-complete.

The MC problem for epistemic extensions of some HS fragments have been
investigated by Lomuscio and Michaliszyn [14–16] (a detailed account of their
results can be found in [19]). However, their semantic assumptions di↵er from
those of [23], thus making it di�cult to compare the two research lines.

In the next section, we introduce the fundamental elements of the MC prob-
lem for HS and its fragments. Then, in Section 3 we focus on the fragment BE,
while in Section 4 we deal with AAEE and E (and with AABB and B). Conclusions
provide an assessment of the work done and outline future research directions.



Table 1. Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example
x

y

v z

v z

v z

v z

v z

v z

meets hAi [x, y]RA[v, z] () y = v

before hLi [x, y]RL[v, z] () y < v

started-by hBi [x, y]RB [v, z] () x = v ^ z < y

finished-by hEi [x, y]RE [v, z] () y = z ^ x < v

contains hDi [x, y]RD[v, z] () x < v ^ z < y

overlaps hOi [x, y]RO[v, z] () x < v < y < z

2 Preliminaries

The interval temporal logic HS. An interval algebra to reason about intervals
and their relative order was proposed by Allen in [1], while a systematic logical
study of interval representation and reasoning was done a few years later by
Halpern and Shoham, who introduced the interval temporal logic HS featuring
one modality for each Allen relation, but equality [11]. Table 1 depicts 6 of the
13 Allen’s relations, together with the corresponding HS (existential) modalities.
The other 7 relations are the 6 inverse relations (given a binary relation R , the
inverse relation R is such that bR a if and only if aR b) and equality.

The HS language consists of a set of proposition letters AP , the Boolean con-
nectives ¬ and ^, and a temporal modality for each of the (non trivial) Allen’s
relations, i.e., hAi, hLi, hBi, hEi, hDi, hOi, hAi, hLi, hBi, hEi, hDi, and hOi. HS
formulas are defined by the grammar  ::= p | ¬ |  ^  | hXi | hXi , where
p 2 AP and X 2 {A,L,B,E,D,O}. In the following, we will also exploit the
standard logical connectives (disjunction _, implication !, and double implica-
tion $) as abbreviations. Furthermore, for any modality X, the dual universal
modalities [X] and [X] are defined as ¬hXi¬ and ¬hXi¬ , respectively.

Given any subset of Allen’s relations {X
1

, · · · , Xn}, we denote by X1 · · ·Xn

the HS fragment featuring existential (and universal) modalities for X
1

, . . . , Xn

only.
W.l.o.g., we assume the non-strict semantics of HS, which admits intervals

consisting of a single point5. Under such an assumption, all HS modalities can
be expressed in terms of modalities hBi, hEi, hBi, and hEi [31]. HS can thus be
viewed as a multi-modal logic with these 4 primitive modalities and its seman-
tics can be defined over a multi-modal Kripke structure, called abstract interval
model, where intervals are treated as atomic objects and Allen’s relations as
binary relations between pairs of intervals. Since later we will focus on the HS
fragments AAEE and AABB—which respectively do not feature hBi, hBi and hEi,
hEi—we add both hAi and hAi to the considered set of HS modalities.

Definition 1. [19] An abstract interval model is a tuple A = (AP , I, AI, BI, EI,
�), where AP is a set of proposition letters, I is a possibly infinite set of atomic
objects (worlds), AI, BI, and EI are three binary relations over I, and � : I 7! 2AP

is a (total) labeling function, which assigns a set of proposition letters to each
world.
5 All the results we prove in the paper hold for the strict semantics as well.



In the interval setting, I is interpreted as a set of intervals and AI, BI, and EI
as Allen’s relations A (meets), B (started-by), and E (finished-by), respectively;
� assigns to each interval in I the set of proposition letters that hold over it.

Given an abstract interval model A = (AP , I, AI, BI, EI,�) and an interval
I 2 I, the truth of an HS formula over I is inductively defined as follows:
– A, I |= p i↵ p 2 �(I), for any p 2 AP ;
– A, I |= ¬ i↵ it is not true that A, I |=  (also denoted as A, I 6|=  );
– A, I |=  ^ � i↵ A, I |=  and A, I |= �;
– A, I |= hXi , for X 2 {A,B,E}, i↵ there is J 2 I s.t. I XI J and A, J |=  ;
– A, I |= hXi , for X 2 {A,B,E}, i↵ there is J 2 I s.t. J XI I and A, J |=  .

Kripke structures and abstract interval models. Finite state systems are usually
modelled as finite Kripke structures. In [23], the authors define a mapping from
Kripke structures to abstract interval models, that allows one to specify interval
properties of computations by means of HS formulas.

Definition 2. A finite Kripke structure is a tuple K = (AP ,W, �, µ, w
0

), where
AP is a set of proposition letters, W is a finite set of states, � ✓ W ⇥W is a left-
total relation between pairs of states, µ : W 7! 2AP is a total labelling function,
and w

0

2 W is the initial state.

For all w 2 W , µ(w) is the set of proposition letters that hold at w, while �
is the transition relation that describes the evolution of the system over time.

v0
p

v1
q

Fig. 1. The Kripke structure K
2

.

Fig. 1 depicts the finite Kripke structure
K
2

= ({p, q}, {v
0

, v
1

}, �, µ, v
0

), where � =
{(v

0

, v
0

), (v
0

, v
1

), (v
1

, v
0

), (v
1

, v
1

)}, µ(v
0

) =
{p}, and µ(v

1

) = {q}. The initial state v
0

is identified by a double circle.

Definition 3. A track ⇢ over a finite Kripke structure K = (AP ,W, �, µ, w
0

)
is a finite sequence of states v

1

· · · vn, with n � 1, such that (vi, vi+1

) 2 � for
i = 1, . . . , n� 1.

Let TrkK be the (infinite) set of all tracks over a finite Kripke structure K . For
any track ⇢ = v

1

· · · vn 2 TrkK , we define:
– |⇢| = n, fst(⇢) = v

1

, and lst(⇢) = vn;
– any index i 2 [1, |⇢|] is called a ⇢-position and ⇢(i) = vi;
– states(⇢) = {v

1

, · · · , vn} ✓ W ;
– ⇢(i, j) = vi · · · vj , for 1  i  j  |⇢|, is the subtrack of ⇢ bounded by the
⇢-positions i and j (we write ⇢i for ⇢(i, |⇢|), for 1  i  |⇢|);

– Pref(⇢) = {⇢(1, i) | 1  i  |⇢|� 1} and Su↵(⇢) = {⇢(i, |⇢|) | 2  i  |⇢|} are
the sets of all proper prefixes and su�xes of ⇢, respectively.

Given ⇢, ⇢0 2 TrkK , we denote by ⇢ · ⇢0 the concatenation of the tracks ⇢ and ⇢0.
Moreover, if lst(⇢) = fst(⇢0), we denote by ⇢ ? ⇢0 the track ⇢(1, |⇢| � 1) · ⇢0. In
particular, when |⇢| = 1, ⇢ ? ⇢0 = ⇢0. In the following, when we write ⇢ ? ⇢0, we
implicitly assume that lst(⇢) = fst(⇢0). Finally, if fst(⇢) = w

0

(the initial state of
K ), ⇢ is called an initial track.



An abstract interval model (over TrkK ) can be naturally associated with a
finite Kripke structure K by considering the set of intervals as the set of tracks
of K . Since K has loops (� is left-total), the number of tracks in TrkK , and thus
the number of intervals, is infinite.

Definition 4. The abstract interval model induced by a finite Kripke struc-
ture K = (AP ,W, �, µ, w

0

) is AK = (AP , I, AI, BI, EI,�), where I = TrkK , AI =
{(⇢, ⇢0) 2 I ⇥ I | lst(⇢) = fst(⇢0)}, BI = {(⇢, ⇢0) 2 I ⇥ I | ⇢0 2 Pref(⇢)},
EI = {(⇢, ⇢0) 2 I ⇥ I | ⇢0 2 Su↵(⇢)}, and � : I 7! 2AP is such that �(⇢) =
T

w2states(⇢) µ(w), for all ⇢ 2 I.

Relations AI, BI, and EI are interpreted as the Allen’s relations A,B, and E,
respectively. Moreover, according to the definition of �, p 2 AP holds over ⇢ =
v
1

· · · vn i↵ it holds over all the states v
1

, · · · , vn of ⇢. This conforms to the
homogeneity principle, according to which a proposition letter holds over an
interval if and only if it holds over all its subintervals.

Definition 5. Let K be a finite Kripke structure and  be an HS formula; we
say that a track ⇢ 2 TrkK satisfies  , denoted as K , ⇢ |=  , i↵ it holds that
AK , ⇢ |=  . Moreover, we say that K models  , denoted as K |=  , i↵ for all
initial tracks ⇢0 2 TrkK it holds that K , ⇢0 |=  . The model checking problem for
HS over finite Kripke structures is the problem of deciding whether K |=  .

We conclude with a simple example (a simplified version of the one given in
[19]), showing that the fragments considered in this paper can express meaningful
properties of state-transition systems.

v0
;

v2
p
2

v1
p
1

v3
p
3

v1
p
1

v2
p
2

v3
p
3

r

1

r

2

r

3

u

1

u

2

u

3

r

2

r

3

r

1

r

3

r

1

r

2

Fig. 2. The Kripke structure KSched.

In Fig. 2, we provide an exam-
ple of a finite Kripke structure KSched

that models the behaviour of a sched-
uler serving three processes which are
continuously requesting the use of a
common resource. The initial state is
v
0

: no process is served in that state.
In any other state vi and vi, with
i 2 {1, 2, 3}, the i-th process is served
(this is denoted by the fact that pi
holds in those states). For the sake
of readability, edges are marked ei-
ther by ri, for request(i), or by ui,

for unlock(i). Edge labels do not have a semantic value, that is, they are neither
part of the structure definition, nor proposition letters; they are simply used to
ease reference to edges. Process i is served in state vi, then, after “some time”,
a transition ui from vi to vi is taken; subsequently, process i cannot be served
again immediately, as vi is not directly reachable from vi (the scheduler cannot
serve the same process twice in two successive rounds). A transition rj , with
j 6= i, from vi to vj is then taken and process j is served. This structure can
easily be generalised to a higher number of processes.



AABE PSPACE-complete 2,3
B PSPACE-complete 4

E PSPACE-complete 4

AAEE PSPACE-completeAABB PSPACE-complete

AA

P

NP[O(log

2 n)] 4

P

NP[O(logn)]-hard 4

A

P

NP[O(log

2 n)] 4

P

NP[O(logn)]-hard 4

B coNP-complete

E coNP-complete

Prop coNP-complete 3

AABBE

EXPSPACE 2

PSPACE-hard 3

succinct AABBE
EXPSPACE 2

NEXP-hard 2

BE

nonELEMENTARY 1

EXPSPACE-hard

full HS
nonELEMENTARY 1

EXPSPACE-hard

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness
hardness

1 [19], 2 [21], 3 [20], 4 [22]

Fig. 3. Complexity of the model checking problem for HS fragments: known results are
depicted in white boxes, new ones in gray boxes.

We show how some meaningful properties to be checked over KSched can be
expressed in HS, and, in particular, with formulas of AAEE. In all formulas,
we force the validity of the considered property over all legal computation sub-
intervals by using modality [E] (all computation sub-intervals are su�xes of at
least one initial track). The truth of the next statements can be easily checked:

– KSched |= [E]
�

hEi3 > ! (�(p
1

, p
2

) _ �(p
1

, p
3

) _ �(p
2

, p
3

))
�

,

where �(p, q) := hEi hAi p ^ hEi hAi q;
– KSched 6|= [E](hEi10 > ! hEi hAi p

3

);
– KSched 6|= [E](hEi5 ! (hEi hAi p

1

^ hEi hAi p
2

^ hEi hAi p
3

)).

The first formula states that in any su�x of length at least 4 of an initial track,
at least 2 proposition letters are witnessed. KSched satisfies the formula since a
process cannot be executed twice in a row. The second formula states that in
any su�x of length at least 11 of an initial track, process 3 is executed at least
once in some internal states (non starvation). KSched does not satisfy the formula
since the scheduler can avoid executing a process ad libitum. The third formula
states that in any su�x of length at least 6 of an initial track, p

1

, p
2

, p
3

are all
witnessed. The only way to satisfy this property is to constrain the scheduler to
execute the three processes in a strictly periodic manner (strict alternation), i.e.,
pipjpkpipjpkpipjpk · · · , i, j, k2{1, 2, 3}, i 6=j 6=k 6= i, but this is not the case.

The general picture. We now describe known and new complexity results about
the model checking problem for HS fragments (see Fig. 3 for a visual account).



In [19, 23], the authors show that, given a finite Kripke structure K and
a bound k on the structural complexity of HS formulas, that is, on the nesting
depth of hEi and hBimodalities, it is possible to obtain a finite representation for
AK , which is equivalent to AK with respect to satisfiability of HS formulas with
structural complexity less than or equal to k. Then, by exploiting such a repre-
sentation, they prove that the model checking problem for (full) HS is decidable,
providing an algorithm with non-elementary complexity. Moreover, they show
that the problem for the fragment AABE, and thus for full HS, is PSPACE-hard
(EXPSPACE-hard if a suitable succinct encoding of formulas is exploited). In
[21], the authors study the HS fragments AABBE and AAEBE, devising for each of
them an EXPSPACE model checking algorithm which exploits the possibility
of finding, for each track of the Kripke structure, a satisfiability-preserving track
of bounded length, called track representative. In this way, the algorithm needs
to check only tracks having a bounded maximum length. Later [20], they prove
that the problem for AABBE and AAEBE is PSPACE-hard (if a suitable suc-
cinct encoding of formulas is exploited, the algorithm remains in EXPSPACE,
but a NEXPTIME lower bound can be given [21]). Finally, they show that
formulas satisfying a constant bound on the nesting depth of hBi (resp., hEi)
can be checked in polynomial working space [21].

In [20, 22] the authors identify some well-behaved HS fragments, namely,
AABE, B, E, AA, A, and A, which are still expressive enough to capture mean-
ingful interval properties of state-transition systems and whose model checking
problem has a computational complexity markedly lower than that of full HS.
In particular, they prove that the problem is PSPACE-complete for the first

three fragments, and in between P

NP[O(logn)] and P

NP[O(log

2 n)] [10, 29] for the
last three. In all cases, the complexity of the problem turns out be comparable
to or lower than that of LTL, which is known to be PSPACE-complete [30].

In this paper, we first strengthen the lower bound to the complexity of the
model checking problem for full HS by proving EXPSPACE-hardness of the
fragment BE. Then, we study two more well-behaved fragments, namely, AABB
and AAEE, and we prove that their model checking problem is PSPACE-
complete (the previously known upper bound was EXPSPACE [21]). This is
somehow surprising, as their expressive power seems to be really higher than that
of the fragments analyzed in [20, 22], but their complexity turns out to be the
same. Finally, we prove that B and E are in co-NP, and thus co-NP-complete,
as the purely propositional fragment of HS, Prop, is co-NP-complete [20].

It is worth pointing out that, in order to determine the complexity of AABB
and AAEE, we exploit the structure of the specific input formula, rather than
considering generically the nesting depth of hBi or hEi modalities (as we did
in [21]). In [21] a track representative is a track of exponential length, which is
satisfiability equivalent—with respect to all AABBE (resp., AAEBE) formulas
with nesting depth of hBi (resp., hEi) modality equal to or less than some k—to
all the (possibly infinitely many) represented tracks. Here, we weaken such a
strong constraint by requiring satisfiability equivalence only with respect to the
specific formula under consideration, which allows us to restrict our attention to



tracks of polynomially-bounded length, that is, we prove that if a track ⇢ fulfils
a formula  of AABB (resp., AAEE), then there is a polynomial-length track ⇢0

satisfying  as well (such a track depends on  ).

3 EXPSPACE-hardness of BE

In this section, we prove that the model checking problem for formulas of the HS
fragment BE is EXPSPACE-hard. This lower-bound immediately propagates
to the problem for full HS formulas.

Theorem 1. The model-checking problem for BE formulas over finite Kripke
structures is EXPSPACE-hard (under polynomial-time reductions).

Proof. The claim is proved by a polynomial-time reduction from a domino-tiling
problem for grids with rows of single exponential length [12]. An instance I
of such problem is a tuple I = (C,�, n, d

init

, d
final

), where C is a finite set of
colors, � ✓ C4 is a set of tuples (c

down

, c
left

, c
up

, c
right

) of four colors, called
domino-types, n > 0 is a natural number encoded in unary, and d

init

, d
final

2 �
are domino-types. A tiling of I is a mapping f : [0, k]⇥ [0, 2n�1] ! �, for some
k � 0, satisfying the following constraints:
– two adjacent cells in a row have the same color on the shared edge: for all

(i, j) 2 [0, k]⇥ [0, 2n � 2], [f(i, j)]
right

= [f(i, j + 1)]
left

;
– two adjacent cells in a column have the same color on the shared edge: for

all (i, j) 2 [0, k � 1]⇥ [0, 2n � 1], [f(i, j)]
up

= [f(i+ 1, j)]
down

;
– f(0, 0) = d

init

(initialization) and f(k, 2n � 1) = d
final

(acceptance).
It is well-known that checking the existence (resp., the non-existence) of

a tiling for I is EXPSPACE-complete [12]. We now show how to build in
polynomial time a Kripke structure KI and a BE formula 'I such that there
exists an initial track of KI satisfying 'I if and only if there exists a tiling of I.
Hence KI |= ¬'I i↵ there does not exist a tiling of I, and Theorem 1 follows.

We use the following set AP of proposition letters to encode tilings of I:
AP = �[ {$}[ {0, 1}. Proposition letters in {0, 1} are used to encode the value
of an n-bits counter numbering the cells of one row of a tiling. In particular, a
cell with content d 2 � and column number j 2 [0, 2n�1] is encoded by the word
of length n+1 over AP given by d b

1

. . . bn, where b1 . . . bn is the binary encoding
of the column number j (bn is the most significant bit). A row is encoded by the
word listing the encodings of cells from left to right, and a tiling f with k + 1
rows is encoded by the finite word r

0

$r
1

. . . $rk, where ri is the encoding of the
i-th row of f for all i 2 [0, k].

The Kripke structure KI is defined as KI = (AP ,AP ,AP ⇥AP , µ, d
init

), where
µ(p) = {p}, for any p 2 AP . Thus, the initial tracks of KI correspond to the
finite words over AP which start with the initial domino type d

init

.
In order to build the BE formula 'I , we use some auxiliary formulas, namely,

lengthi, beg(p), end(p), �cell, and ✓j(b, b
0) where i 2 [1, 2n+2], j 2 [2, n+1], p 2

AP , and b, b0 2 {0, 1}. The formula lengthi has size linear in i and characterizes



the tracks of length i. It can be expressed as follows:

lengthi := (hBi . . . hBi
| {z }

i�1

>) ^ ([B] . . . [B]
| {z }

i

?).

The formula beg(p) (resp., end(p)) captures the tracks of K which start (resp.,
end) in state p:

beg(p) := (p^length
1

)_hBi(p^length
1

), end(p) := (p^length
1

)_hEi(p^length
1

).

The formula �
cell

captures the tracks of KI which encode cells:

�
cell

:= lengthn+1

^
⇣

_

d2�

beg(d)
⌘

^ [E](beg(0) _ beg(1)).

Finally, for all j 2 [2, n+ 1] and b, b0 2 {0, 1}, the formula ✓j(b, b0) is defined
as ✓j(b, b0) := hBi(lengthj ^ end(b)) ^ hEi(lengthn�j+2

^ beg(b0)). The formula
✓j(b, b0) is satisfied by a track ⇢ if |⇢| � j + 1, |⇢| � n � j + 3, ⇢(j) = b, and
⇢(|⇢| � n + j � 1) = b0. In particular, for a track ⇢ starting with a cell c and
ending with a cell c0, ✓j(b, b0) is satisfied by ⇢ if the jth bit of c is b and the jth
bit of c0 is b0.

Additionally, we use the derived operator hGi and its dual [G], which allow
us to select arbitrary subtracks of the given track, including the track itself:

hGi :=  _ hBi _ hEi _ hBi hEi .

Then, the formula 'I is defined as 'I := '
b

^ '
req

^ '
inc

^ '
rr

^ '
rc

.
'
b

checks that the given track starts with a cell with content d
init

and column
number 0, and ends with a cell with content d

final

and column number 2n � 1:

'
b

:= hBi�
cell

^ beg(d
init

) ^ hEi(�
cell

^ beg(d
final

)) ^
n+1

^

j=2

✓j(0, 1).

The conjunct '
req

ensures the following two requirements: (i) each occurrence
of $ in the given track is followed by a cell with column number 0 and (ii) each
cell c in the given track is followed either by another cell, or by the separator
$, and in the latter case c has column number 2n � 1. The first requirement is
encoded by the formula: [G]

�

(lengthn+2

^ beg($)) ! hEi(�
cell

^ [E]beg(0))
�

; the
second one by the formula:

[G]
n

(lengthn+2

^
_

d2�

beg(d)) !

⇣

hBi�
cell

^ (end($) _
_

d2�

end(d)) ^ (end($) ! [E](beg($) _ beg(1)))
⌘o

.

The conjunct '
inc

checks that adjacent cells along the given track have con-
secutive columns numbers:

'
inc

= [G]
⇣

�
two cells

!
n+1

_

j=2

⇥

✓j(0, 1) ^
j�1

^

h=2

✓h(1, 0) ^
n+1

^

h=j+1

_

b2{0,1}

✓h(b, b)
⇤

⌘

,



where �
two cells

is given by length
2n+2

^ hBi�
cell

^ hEi�
cell

. Note that '
req

and
'
inc

ensure that the column numbers are correctly encoded.
The conjunct '

rr

checks that adjacent cells in a row have the same color on
the shared edge:

'
rr

= [G]
⇣

�
two cells

!
_

(d,d0
)2�⇥�|d

right

=d0
left

(beg(d) ^ hEi(lengthn+1

^ beg(d0)))
⌘

.

Finally, the conjunct '
rc

checks that adjacent cells in a column have the same
color on the shared edge. For this, it su�ces to require that for each subtrack of
the given one containing exactly one occurrence of $, starting with a cell c, and
ending with a cell c0, if c and c0 have the same column number, then d

up

= d0
down

,
where d (resp., d0) is the content of c (resp., c0). Thus, formula '

rc

is defined as
follows, where we use the formulas ✓j(b, b), with j 2 [2, n+1] and b 2 {0, 1}, for
expressing that c and c0 have the same column number:

'
rc

= [G]
n ⇣

�
one

($) ^ hBi�
cell

^ hEi�
cell

^
n+1

^

j=2

_

b2{0,1}

✓j(b, b)
⌘

!
_

(d,d0
)2�⇥�|d

up

=d0
down

(beg(d) ^ hEi(lengthn+1

^ beg(d0)))
o

,

where �
one

($) is defined as (hBi end($)) ^ ¬(hBi(end($) ^ hBi end($))).
Note that 'I has size polynomial in the size of I. By construction, a track

⇢ of KI satisfies 'I if and only if ⇢ encodes a tiling. Since the initial tracks of
KI are the finite words over AP starting with d

init

, it follows that there exists
a tiling of I if and only if there exists an initial track of KI which satisfies 'I .
Hence, the result follows, which concludes the proof. ut

4 The fragments AAEE and AABB: polynomial-size
model-track property

In this section, we show that the model checking problem for the fragments
AAEE and AABB is in PSPACE by proving that a polynomial size model-track
property holds, that is, we show that if a track ⇢ of a Kripke structure K satisfies
a given formula ' of the fragments AAEE or AABB, then there exists also a track
⇡, whose length is polynomial in the sizes of ' and K , starting from and leading
to the same states as ⇢, that satisfies '. Moreover, we show that the problem
is in co-NP for the smaller fragments B and E. We conclude the section by
providing two model checking procedures, one for AAEE formulas and one for E
formulas.

In the following, we focus on the fragment AAEE and the smaller fragment
E, being the cases of the fragments AABB and B completely symmetric.

Let K = (AP ,W, �, µ, w
0

) be a Kripke structure. We start by introducing the
notions of induced track and well-formed track, which will be exploited to prove
the polynomial size model-track property.



Definition 6. Let ⇢ 2 TrkK be a track of length n. A track induced by ⇢ is
a track ⇡ 2 TrkK such that there exists an increasing sequence of ⇢-positions
i
1

< . . . < ik, with i
1

= 1, ik = n, and ⇡ = ⇢(i
1

) · · · ⇢(ik). Moreover, we say that
the ⇡-position j and the ⇢-position ij are corresponding.
The induced track ⇡ is well-formed with respect to ⇢ if, for all ⇡-positions j,
with corresponding ⇢-positions ij, and all proposition letters p 2 AP , it holds that
K ,⇡j |= p () K , ⇢ij |= p.

Note that if ⇡ is induced by ⇢, then fst(⇡) = fst(⇢), lst(⇡) = lst(⇢), and |⇡|  |⇢|
(in particular, |⇡| = |⇢| i↵ ⇡ = ⇢). Intuitively, a track induced by ⇢ is obtained by
contracting ⇢, namely, by concatenating some subtracks of ⇢, provided that the
resulting sequence is a track of K as well. Well-formedness implies that the su�x
of ⇡ starting from position j and the su�x of ⇢ starting from the corresponding
position ij agree over all the proposition letters in AP , i.e., they have the same
satisfiability pattern of proposition letters. In particular, K ,⇡ |= p i↵ K , ⇢ |= p,
for all p 2 AP . It can be easily seen that the well-formedness relation is transitive.

The following proposition shows how it is possible to contract a track, pre-
serving the same satisfiability of proposition letters with respect to su�xes. Such
a criterion represents a “basic step” in a contraction process which will allow us
to prove the polynomial size model-track property.

Proposition 1. For any track ⇢ of K = (AP ,W, �, µ, w
0

), there exists a track ⇡
of K , which is well-formed with respect to ⇢, such that |⇡|  |W | · (|AP |+ 1).

Proof. Let ⇢ 2 TrkK be a track of length n. If n  |W | · (|AP | + 1), the thesis
trivially holds. Let us assume n > |W | · (|AP |+ 1). We show that there exists a
track of K which is well-formed with respect to ⇢ and whose length is smaller
than n. Since n > |W | · (|AP | + 1), there is some state w 2 W occurring in
⇢ at least |AP | + 2 times. Assume that for all ⇢-positions i and j, with j > i,
if ⇢(i) = ⇢(j) = w, then there exists some p 2 AP such that K , ⇢j |= p and
K , ⇢i 6|= p. This assumption leads to a contradiction, as the su�xes of ⇢ may
feature at most |AP |+1 distinct satisfiability patterns of proposition letters (due
to the homogeneity principle in Definition 4), while there are at least |AP | + 2
occurrences of w. As a consequence, there are two ⇢-positions i and j, with j > i,
such that ⇢(i) = ⇢(j) = w and, for all p 2 AP , K , ⇢j |= p i↵ K , ⇢i |= p. It is
easy to see that ⇡ = ⇢(1, i) ? ⇢(j, n) 2 TrkK is well-formed with respect to ⇢ and
|⇡| < n. Now, if |⇡|  |W | · (|AP |+ 1), the thesis is proved; otherwise, the same
basic step can be iterated a finite number of times, and the thesis follows by
transitivity of the well-formedness relation. ut

The next definition introduces some distinguished positions in a track. The
intuition is that—as we will see in the proof of Theorem 2—if we perform a con-
traction (as we did in the proof of Proposition 1) between a pair of such positions,
we get an equivalent track with respect to satisfiability of the considered AAEE

formula. In the following, we restrict ourselves to formulas in negation normal
form (NNF), namely, formulas where negation is applied only to proposition
letters. By using De Morgan’s laws and the dual modalities [E], [E], [A], and



[A] of hEi, hEi, hAi, and hAi, we can trivially convert in linear time a formula
into an equivalent one in NNF, of at most double length.

Definition 7 (Witness positions). Let ⇢ be a track of K and ' be a formula
of AAEE. Let us denote by E(', ⇢) the set of subformulas hEi of ' such that
K , ⇢ |= hEi . The set Wt(', ⇢) of witness positions of ⇢ for ' is the minimal
set of ⇢-positions satisfying the following constraint: for each hEi 2 E(', ⇢),
the greatest ⇢-position i > 1 such that K , ⇢i |=  belongs to Wt(', ⇢)6.

It is immediate to see that the cardinalities of E(', ⇢) and ofWt(', ⇢) are at most
|'|� 1. We are now ready to prove the polynomial-size model-track property.

Theorem 2 (Polynomial-size model-track property). Let ⇢ and � be two
tracks of K = (AP ,W, �, µ, w

0

) and ' be an AAEE formula in NNF such that
K , ⇢ ? � |= '. Then, there exists a track ⇡, induced by ⇢, such that K ,⇡ ? � |= ',
and |⇡|  |W | · (|'|+ 1)2.

Notice that the theorem holds in particular if |�| = 1, and thus ⇢?� = ⇢ and
⇡ ? � = ⇡. In such a case, if K , ⇢ |= ', then K ,⇡ |= ', where ⇡ is induced by ⇢
and |⇡|  |W | ·(|'|+1)2. The more general statement of Theorem 2 is needed for
technical reasons in the soundness/completeness proof of the next algorithms.

Proof. W.l.o.g., we restrict ourselves to the proposition letters occurring in '.
Thus, |AP |  |'|. Let Wt(', ⇢ ? �) be the set of witness positions of ⇢ ? � for
'. Let {i

1

, . . . , ik} be the ordering of Wt(', ⇢ ? �) such that i
1

< . . . < ik. Let
i
0

= 1 and ik+1

= |⇢ ? �|. Hence, 1 = i
0

< i
1

< . . . < ik  ik+1

= |⇢ ? �|.
If the length of ⇢ is at most |W | · (|'|+ 1)2, the thesis trivially holds. Let us

assume that |⇢| > |W | · (|'|+ 1)2. We show that there exists a track ⇡ induced
by ⇢, with |⇡| < |⇢|, such that K ,⇡ ? � |= '.

W.l.o.g., we can assume that i
0

< i
1

< . . . < ij , for some j � 0, are ⇢-
positions (while ij+1

< . . . < ik+1

are (⇢ ? �)-positions not in ⇢). We claim that
either (i) there exists t 2 [0, j � 1] such that it+1

� it > |W | · (|'| + 1) or (ii)
|⇢(ij , |⇢|)| > |W | · (|'|+1). By way of contradiction, suppose that neither (i) nor
(ii) holds. We need to distinguish two cases. If ⇢?� = ⇢, then |⇢| = (ik+1

� i
0

)+
1  (k+1)·|W |·(|'|+1)+1; otherwise (|⇢| < |⇢?�|), |⇢| = (ij�i

0

)+|⇢(ij , |⇢|)| 
j · |W | · (|'| + 1) + |W | · (|'| + 1)  (k + 1) · |W | · (|'| + 1). The contradiction
follows since (k+1) · |W | · (|'|+1)+1  |'| · |W | · (|'|+1)+1  |W | · (|'|+1)2.

Let us define (↵,�) = (it, it+1

) in case (i), and (↵,�) = (ij , |⇢|) in case
(ii). Moreover let ⇢0 = ⇢(↵,�). In both cases, we have |⇢0| > |W | · (|'| + 1) �
|W | · (|AP |+1), being |AP |  |'|. By Proposition 1, there exists a track ⇡0 of K ,
well-formed with respect to ⇢0, such that |⇡0|  |W | · (|AP |+ 1) < |⇢0|. Let ⇡ be
the track induced by ⇢ obtained by replacing the subtrack ⇢0 of ⇢ with ⇡0. Since
|⇡| < |⇢|, it remains to prove that K ,⇡ ? � |= '.

Let us denote ⇡ ? � by ⇡ and ⇢ ? � by ⇢. Moreover, let H : [1, |⇡|] ! [1, |⇢|]
be the function mapping positions of ⇡ into positions of ⇢ in this way: positions
“outside” ⇡0 (i.e., outside the interval [↵,↵ + |⇡0| � 1]) are mapped into their

6 Note that such a ⇢-position exists by definition of E(', ⇢).



original position in ⇢; positions “inside” ⇡0 (i.e., in [↵,↵+ |⇡0|� 1]) are mapped
to the corresponding position in ⇢0 (exploiting well-formedness of ⇡0 w.r. to ⇢0).

H(m) =

8

>

<

>

:

m if m < ↵

↵+ `m�↵+1

� 1 if ↵  m < ↵+ |⇡0|
m+ (|⇢0|� |⇡0|) if m � ↵+ |⇡0|

(1)

where `m is the ⇢0-position corresponding to the ⇡0-position m. It is easy to check
that H satisfies the following properties:
1. H is strictly monotonic, i.e., for all j, j0 2 [1, |⇡|], j < j0 i↵ H(j) < H(j0);
2. for all j 2 [1, |⇡|], ⇡(j) = ⇢(H(j));
3. H(1) = 1 and H(|⇡|) = |⇢|;
4. Wt(', ⇢) ✓ {H(j) | j 2 [1, |⇡|]};
5. for each j 2 [1, |⇡|] and p 2 AP , K ,⇡j |= p i↵ K , ⇢H(j) |= p.

The fact that K ,⇡ |= ' is an immediate consequence of the following claim,
considering that H(1) = 1, K , ⇢ |= ', ⇢1 = ⇢, and ⇡1 = ⇡.

Claim. For all j 2 [1, |⇡|], all subformulas  of ', and all u 2 TrkK , it holds that
if K , u ? ⇢H(j) |=  , then K , u ? ⇡j |=  .

Proof. Assume that K , u ? ⇢H(j) |=  . Note that u ? ⇢H(j) is defined i↵ u ? ⇡j is
defined. We prove by induction on the structure of ' that K , u ? ⇡j |=  . Since
' is in NNF, only the following cases occur:
–  = p or  = ¬p for some p 2 AP . By Property 5 of H, K ,⇡j |= p i↵

K , ⇢H(j) |= p. Hence, K , u ? ⇡j |= p i↵ K , u ? ⇢H(j) |= p, and the result holds.
–  = ✓

1

^ ✓
2

or  = ✓
1

_ ✓
2

, for some AAEE formulas ✓
1

and ✓
2

: the result
directly follows from the inductive hypothesis.

–  = [E]✓. We need to show that for each proper su�x ⌘ of u ? ⇡j , K , ⌘ |= ✓.
We distinguish two cases:
• ⌘ is not a proper su�x of ⇡j . Hence, ⌘ is of the form uh ?⇡j for some h 2
[2, |u|]. Since K , u ? ⇢H(j) |= [E]✓, then K , uh ? ⇢H(j) |= ✓. By induction,
K , uh ? ⇡j |= ✓.

• ⌘ is a proper su�x of ⇡j . Hence, ⌘ = ⇡h for some h 2 [j + 1, |⇡|]. By
Property 1 of H, H(h) > H(j), and since K , u?⇢H(j) |=  , we have that
K , ⇢H(h) |= ✓. By induction, K ,⇡h |= ✓.

Therefore, K , u ? ⇡j |= [E]✓.
–  = hEi ✓. We need to show that there exists a proper su�x of u?⇡j satisfying
✓. Since K , u ? ⇢H(j) |=  , there exists a proper su�x ⌘0 of u ? ⇢H(j) such
that K , ⌘0 |= ✓. We distinguish two cases:
• ⌘0 is not a proper su�x of ⇢H(j). Hence, ⌘0 is of the form uh ? ⇢H(j) for
some h 2 [2, |u|]. By induction, K , uh ? ⇡j |= ✓, and K , u ? ⇡j |= hEi ✓.

• ⌘0 is a proper su�x of ⇢H(j). Hence, ⌘0 = ⇢i for some i 2 [H(j) + 1, |⇢|],
and K , ⇢i |= ✓. Let i0 be the greatest position of ⇢ such that K , ⇢i

0 |= ✓.
Hence i0 � i and, by Definition 7, i0 2 Wt(', ⇢). By Property 4 of H,
i0 = H(h) for some ⇡-position h. Since H(h) > H(j), it holds that h > j
(Property 1). By induction, K ,⇡h |= ✓, and K , u ? ⇡j |= hEi ✓.



–  = [E]✓ or  = hEi ✓: a direct consequence of the inductive hypothesis.
–  = [A]✓,  = hAi ✓,  = [A]✓ or  = hAi ✓. Since u ? ⇡j and u ? ⇢H(j) start

at the same state and lead to the same state (by Properties 2 and 3 of H),
the result trivially follows. This concludes the proof of the claim.

We have proved that K ,⇡ |= ', with |⇡| < |⇢|. Now, if |⇡|  |W | · (|'|+ 1)2, the
thesis is proved, otherwise we can iterate the above contraction a finite number
of times, until the bound is achieved. ut

Now, by exploiting the polynomial-size model-track property stated by The-
orem 2, it is easy to define a PSPACE model checking algorithm for AAEE

formulas, and a co-NP model checking algorithm for E formulas.

Algorithm 1 ModCheck(K , )

1: for all initial ⇢̃ 2 TrkK s.t. |⇢̃|  |W | · (2| |+3)2 do

2: if Check(K , , ⇢̃) = 0 then

3: return 0: “K , ⇢̃ 6|=  ”/ Counterexample found

4: return 1: “K |=  ”

The main model checking
procedure for AAEE for-
mulas is ModCheck(K , )
(Algorithm 1). All the ini-
tial tracks ⇢̃, obtained by
visiting the unravelling of
K from w

0

up to depth
|W | · (2| | + 3)2, are checked w.r. to  by the function Check(K , , ⇢̃) (Algo-
rithm 2)—which decides whether K , ⇢̃ |=  by basically calling itself recursively
on the sub-formulas of  and unravelling again K —until either some initial track
is found that does not model  or all of them model  (and thus K |=  ).

Notice that the for-loop at the first line considers all initial tracks of length
at most |W | · (2| | + 3)2 � |W | · (|NNF (¬ )| + 1)2. The reason is that in the
soundness/completeness proof of the algorithm, we need to consider the NNF of
¬ , and we exploit the polynomial bound of Theorem 2 applied to such a form.

The next theorem states soundness and completeness of the presented pro-
cedures (for the proof, see Appendix A and B).

Algorithm 2 Check(K , , ⇢̃)

1: if  = p, for p 2 AP then

2: if p 2
T

s2states(⇢̃) µ(s) then
3: return 1 else return 0
4: else if  = '

1

^ '
2

then

5: if Check(K ,'

1

, ⇢̃) = 0 then

6: return 0
7: else

8: return Check(K ,'

2

, ⇢̃)

9: else if  = hAi' then

10: for all ⇢ 2 TrkK such that fst(⇢) = lst(⇢̃),
and |⇢|  |W | · (2|'|+ 1)2 do

11: if Check(K ,', ⇢) = 1 then

12: return 1
13: return 0

14: else if  = hEi' then

15: for each ⇢ su�x of ⇢̃ do

16: if Check(K ,', ⇢) = 1 then

17: return 1
18: return 0
19: else if  = hEi' then

20: for all ⇢ 2 TrkK such that lst(⇢) = fst(⇢̃),
and 2  |⇢|  |W | · (2|'|+ 1)2 do

21: if Check(K ,', ⇢ ? ⇢̃) = 1 then

22: return 1
23: return 0
24: else if  = ¬' then

25: return 1� Check(K ,', ⇢̃)

26: . . . /  = hAi' is analogous to  = hAi'



Theorem 3. Let  be an AAEE formula and K be a Kripke structure. Then,
(i) ModCheck(K , ) = 1 if and only if K |=  ; (ii) for any track ⇢̃ 2 TrkK ,
Check(K , , ⇢̃) = 1 if and only if K , ⇢̃ |=  .

The given procedures require polynomial working space, since:
– ModCheck needs to store only a track no longer than |W | · (2| | + 3)2 (ob-

viously, many tracks are generated while visiting the unravelling of K , but
only one at a time needs to be stored);

– every recursive call to Check (possibly) needs space for a track no longer
than |W | · (2|'|+ 1)2, where ' is a subformula of  such that |'| = | |� 1;

– at most 1 call to ModCheck and | | calls to Check can be jointly active.
Therefore, the maximum space needed by the given algorithms is (| | + 1) ·
O(log |W |) ·(|W | ·(2| |+3)2) bits, where O(log |W |) bits are needed to represent
a state of K .

Corollary 1. The model checking problem for AAEE formulas over finite Kripke
structures is PSPACE-complete.

Proof. The PSPACE-hardness immediately follows from that of the fragment
E, as proved in [22]. ut

By means of simple modifications to the proposed procedures, it is possible
to prove the following corollary. See Appendix C for a detailed explanation.

Corollary 2. The model checking problem for E formulas over finite Kripke
structures is co-NP-complete.

Proof (Sketch). It is easy to see that checking an E formula over a given track
can be done in deterministic polynomial time in the size of the track and of
the formula. Moreover, by Theorem 2, one can restrict to non-deterministically
guessing a possible counterexample (i.e., an initial track not satisfying the input
formula  ) of length at most |W | · (|NNF (¬ )|+ 1)2. If a counterexample can
be found, K 6|=  . It follows that the model checking problem for E is in co-NP.

Finally, co-NP-hardness immediately follows from that of Prop [20]. ut

5 Conclusions

In this paper, we have sharpened the border between good and bad fragments
of Halpern and Shoham’s modal logic of time intervals with respect to model
checking. On the one hand, we have shown that the presence of both modality hBi
and modality hEi su�ces for a fragment to be EXPSPACE-hard. This lower
bound immediately propagates to full HS. On the other hand, we have studied
two well-behaved, PSPACE-complete fragments, AAEE and AABB, which are
quite promising from the point of view of applications.

The fragment AABBE (as well as the symmetric fragment AAEBE), investi-
gated in [21], still lies somehow across the border between good and bad frag-
ments, as it is situated in between EXPSPACE and PSPACE. One possibility



for AABBE is to be PSPACE-complete—which would mean that hEi does not
add complexity to AABB, and analogously hBi to AABE. Another possibility
is that the presence of both hBi and hEi causes a significant blow-up in com-
plexity. A larger complexity gap is the one for full HS: we have shown it to be
EXPSPACE-hard, but the only known upper bound is non-elementary. In our
future work, we will definitely come back to both AABBE and full HS.
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A Proof of soundness/completeness of Algorithm 2

Lemma 1. Let  be an AAEE formula, K be a Kripke structure, and ⇢̃ 2 TrkK .
Then, Check(K , , ⇢̃) = 1 if and only if K , ⇢̃ |=  .

Proof. The proof is by induction on the structure of  . (Base cases). The case
in which  = p, for p 2 AP , follows from the definition. (Inductive cases). The
cases in which  = ¬' and  = '

1

^ '
2

are also trivial and thus omitted. We
focus on the remaining cases.
–  = hAi'. If K , ⇢̃ |=  , then there exists a track ⇢ 2 TrkK such that

lst(⇢̃) = fst(⇢) and K , ⇢ |= '. By Theorem 2, there exists a track ⇡ 2 TrkK ,
with |⇡|  |W | · (|'0| + 1)2 and fst(⇡) = fst(⇢)(= lst(⇢̃)), such that K ,⇡ |=
'0, where '0 is the NNF of '. Thus, being |⇡|  |W | · (2|'| + 1)2, such
track ⇡ is considered in the for-loop at line 10. By the inductive hypothesis,
Check(K ,',⇡) = 1 and thus Check(K , , ⇢̃) = 1.
Vice versa, if Check(K , , ⇢̃) = 1, then there exists a track ⇢ 2 TrkK such that
lst(⇢̃) = fst(⇢) for which Check(K ,', ⇢) = 1. By the inductive hypothesis,
K , ⇢ |= ', hence K , ⇢̃ |=  .



–  = hAi' is analogous to the previous case.
–  = hEi'. If K , ⇢̃ |=  , there exists a track ⇢ 2 Su↵(⇢̃) such that K , ⇢ |= '.

By the inductive hypothesis, Check(K ,', ⇢) = 1. Since all the su�xes of ⇢̃
are checked, Check(K , , ⇢̃) = 1.
Vice versa, if Check(K , , ⇢̃) = 1, then for some ⇢ 2 Su↵(⇢̃), it holds that
Check(K ,', ⇢) = 1. By the inductive hypothesis K , ⇢ |= ', hence K , ⇢̃ |=  .

–  = hEi'. If K , ⇢̃ |=  , then there exists a track ⇢ 2 TrkK , with |⇢| � 2,
such that K , ⇢? ⇢̃ |= '. By Theorem 2, there exists a track ⇡ 2 TrkK induced
by ⇢, with |⇡|  |W | · (|'0| + 1)2, such that K ,⇡ ? ⇢̃ |= '0, where '0 is
the NNF of '. Such track ⇡ is considered in the for-loop at line 20, since
|⇡|  |W | · (2|'| + 1)2 and |⇡| � 2 as it is induced by ⇢. By the inductive
hypothesis, Check(K ,',⇡ ? ⇢̃) = 1, hence Check(K , , ⇢̃) = 1.
Vice versa, if Check(K , , ⇢̃) = 1, there exists a track ⇢ 2 TrkK , with |⇢| � 2,
such that Check(K ,', ⇢ ? ⇢̃) = 1. By the inductive hypothesis, K , ⇢ ? ⇢̃ |= ',
hence K , ⇢̃ |=  . ut

B Proof of soundness/completeness of Algorithm 1

Theorem 4. Let  be an AAEE formula and K be a Kripke structure. Then,
ModCheck(K , ) = 1 if and only if K |=  .

Proof. (() If K |=  , then, for all initial tracks ⇢ 2 TrkK , we have that K , ⇢ |=  .
By Lemma 1, it follows that Check(K , , ⇢) = 1. Now, the for-loop at line 1
considers a subset of the initial tracks. This implies that ModCheck(K , ) = 1.

()) If ModCheck(K , ) = 1, then, for any initial track ⇢ considered by the for-
loop at line 1, that is, with |⇢|  |W |·(2| |+3)2, it holds that Check(K , , ⇢) = 1.
Let us assume by contradiction that K 6|=  , that is, there exists an initial
track ⇢ 2 TrkK such that K , ⇢ |= ¬ , or, equivalently, K , ⇢ |=  , where  
is the NNF of ¬ . Thus, by Theorem 2, there exists an initial track ⇢̃ with
|⇢̃|  |W | · (| |+ 1)2  |W | · (2| |+ 3)2, such that K , ⇢̃ |=  , namely, K , ⇢̃ 6|=  .
By Lemma 1, it holds that Check(K , , ⇢̃) = 0. This leads to a contradiction.
Therefore K |=  . ut

C Model checking algorithm for E formulas

Here we describe a model checking algorithm for the fragment E, which, in its
turn, heavily rests on the polynomial-size model-track property.
CounterExE(K , ) is a non-deterministic procedure (Algorithm 3) which searches
for counterexamples to the input E formula  , that is, initial tracks satisfying ¬ .
If such a counterexample is found, clearly K 6|=  . First, the procedure generates
in a non-deterministic way an initial track ⇢̃, of length at most |W | · (2| |+3)2,
by means of A track(K , w

0

, | |). Then, CheckE(K , , ⇢̃) (Algorithm 4) evaluates
 over the track ⇢̃ in a deterministic way. If CheckE returns ?, a counterexample
has been found and CounterExE returns Yes (thus the non-deterministic compu-
tation of the algorithm is successful). Otherwise, it returns No (the computation
fails).



Algorithm 3 CounterExE(K , )

1: ⇢̃ A track(K , w

0

, | |) / a track of K from w

0

of length  |W | · (2| |+ 3)2

2: if CheckE(K , , ⇢̃) = ? then

3: return Yes: “K , ⇢̃ 6|=  ” / Counterexample found

4: else

5: return No: “K , ⇢̃ |=  ” / Counterexample not found

Algorithm 4 CheckE(K ,�, ⇢̃)

1: T  New Table(|�|, |⇢̃|)
2: for all subformulas ' of � by increasing

length do

3: if ' = p, for p 2 AP then

4: T [p, |⇢̃|] p 2 µ(lst(⇢̃))
5: for i = |⇢̃|� 1, · · · , 1 do

6: T [p, i] T [p, i+ 1] and p 2 µ(⇢̃(i))

7: else if ' = ¬'
1

then

8: for i = |⇢̃|, · · · , 1 do

9: T [', i] not T ['
1

, i]

10: else if ' = '

1

^ '
2

then

11: for i = |⇢̃|, · · · , 1 do

12: T [', i] T ['
1

, i] and T ['
2

, i]

13: else if ' = hEi'
1

then

14: T [', |⇢̃|] ?
15: for i = |⇢̃|� 1, · · · , 1 do

16: T [', i] T [', i+ 1] or T ['
1

, i+ 1]

17: return T [�, 1]

As for CheckE, it clearly holds that CheckE(K ,�, ⇢̃) = > () K , ⇢̃ |= �, for
any E formula �. This procedure scans all the sub-formulas ' of the input � by
increasing length, and annotates in the Boolean entry T [', i] (for 1  i  |⇢̃|) of
the table T whether K , ⇢̃i |= ' or not. At line 2, when the sub-formula ' of �
is being considered, it holds that for all other sub-formulas ⇠ processed in some
previous iteration, T [⇠, i] = > () K , ⇢̃i |= ⇠.

We now briefly prove soundness and completeness of CounterExE. On the
one hand, if CounterExE(K , ) has a successful computation, then there exists
an initial track ⇢̃, such that CheckE(K , , ⇢̃) = ?. This means that K , ⇢̃ 6|=  , and
thus K 6|=  . On the other hand, if K 6|=  , then there exists an initial track ⇢ such
that K , ⇢ 6|=  . By Theorem 2, there exists an initial track ⇢̃, of length at most
|W | · (| 0| + 1)2  |W | · (2| | + 3)2, such that K , ⇢̃ |=  0, where  0 is the NNF
of ¬ . Now, some non-deterministic instance of A track(K , w

0

, | |) generates
exactly such ⇢̃, being |⇢̃|  |W | · (2| |+3)2. Moreover, CheckE(K , , ⇢̃) = ?, and
thus CounterExE(K , ) has a successful computation.

CounterExE(K , ) is in NP, as the generated track(s) ⇢̃ has (have) a length
polynomial in |W | and | |, and can thus be calculated in polynomial time.
Subsequently, CheckE performs a polynomial number of steps, since all it has to
do is filling in the table T , which features | | · |⇢̃| entries.
Corollary 2. The model checking problem for E formulas over finite Kripke
structures is co-NP-complete.

Proof. Membership of the problem to co-NP follows as CounterExE(K , ) has
a successful computation if and only if K 6|=  , and such a procedure runs in
(non-deterministic) polynomial time. The co-NP-hardness derives immediately
from that of the purely propositional fragment of HS, Prop, as proved in [20]. ut


