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ABSTRACT

The person re-identification problem, i.e. recognizing a person across non-overlapping cameras at
different times and locations, is of fundamental importance for video surveillance applications. Due
to pose variations, illumination conditions, background clutter, and occlusions, re-identify a person is
an inherently difficult problem which is still far from being solved. In this work, inspired by the recent
police lineup innovations, we propose a re-identification approach where Multiple Re-identification
Experts (MuRE) are trained to reliably match new probes. The answers from all the experts are then
combined to achieve a final decision. The proposed method has been evaluated on three datasets
showing significant improvements over state-of-the-art approaches.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction1

Recognize a person moving across the disjoint fields-of-view2

(FoVs) of a camera network is a challenging problem known as3

person re-identification. It is of fundamental importance for4

wide area video analytics systems, where, due the amount of5

human supervision, privacy concerns, and maintenance costs6

involved, a large amount of the environment is not covered7

by sensors FoVs Martinel et al. (2014b). Many different rela-8

ted applications, like situational awareness Alcaraz and Lopez9

(2013), scene understanding Nayak et al. (2013), etc. would be-10

nefit from it.11

In spite of a surge of effort put in by the community in the re-12

cent years (see Vezzani et al. (2013)), re-identify a person is still13

an open issue due to a number of challenges. In particular, in a14

wide are surveillance scenario cameras are deployed to cover as15

much area as possible. Thus, the acquired footages have (i) low16

resolution, (ii) the persons are viewed from different points-of-17

view, and (iii) their appearance drastically changes due to the18

different illumination and color conditions as well as their po-19

ses. As a result of these variations, the appearance of a person20

differs significantly in the disjoint views.21
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To tackle such challenges, current methods mainly follow 22

three different approaches. However, all of them share the idea 23

that, in order to re-identify a person, a feature representation 24

should be computed by considering the visual appearance. Dis- 25

criminative signature-based methods form the first class of ap- 26

proaches. These focus on novel highly discriminative person 27

signatures that are robust to the aforementioned wide area ca- 28

mera network issues. Feature transformation methods belong to 29

the second class of approaches and aim to model the transfor- 30

mation of the features that is undergoing between disjoint ca- 31

meras. Finally, metric learning-based methods define the third 32

class of approaches. These aim to learn an optimal signature 33

distance metric such that the intra-class distances are minimi- 34

zed while the inter-class distances are maximized. 35

In this work, a re-identification framework inspired by the 36

modalities adopted by the organs of justice to conduct crime 37

investigations is proposed. The idea comes from the widely 38

used lineup procedure: an expert putative identification of a 39

suspect is confirmed to a level that can count as evidence at trial. 40

As shown in National Research Council (2014), such a practice 41

plays an important role in criminal cases. However, the limits of 42

human vision and memory have, sometimes, lead to failure of 43

identifications. To sidestep such issues, novel modalities have 44

been introduced. Among these, a common practice is to require 45

the intervention of multiple identification experts. 46

The idea is well suited for the re-identification problem. In 47

the proposed work, such a model has been adopted and multiple 48

experts are trained to re-identify persons moving across disjoint 49
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cameras. Differently from the existing methods, the single de-50

cision taken by a trained expert –that may not be enough to51

achieve a reliable re-identification– is replaced by an answer52

obtained by pooling the decision of the multiple trained experts.53

2. Related Work54

In the recent past Vezzani et al. (2013), many different works55

have been proposed to tackle the re-identification challenges.56

In the following, a brief presentation of the recent appearance-57

based approaches is given.58

To obtain discriminative signature representations from59

disjoint camera views, various pursuits have been reported.60

Multiple local features Martinel and Foresti (2012); Bak et al.61

(2012), also biologically-inspired Ma et al. (2014a), were used62

to compute discriminative signatures for each person using mul-63

tiple images. Other methods investigated dissimilarity-based64

approaches Satta et al. (2012), adopted collaborative represen-65

tation that best approximates the query frames Wu et al. (2012)66

or exploited reference sets to represent the whole body as an as-67

sembly of compositional and alternative parts Xu et al. (2013).68

Recently, coupled dictionaries exploiting labeled and unlabeled69

data Liu et al. (2014) and sparse discriminative classifiers en-70

suring that the best candidates are ranked at each iteration were71

proposed Lisanti et al. (2014).72

Due to the significant appearance changes, achieving accu-73

rate classification through such method is very difficult. Met-74

hods in the second and third classes of approaches aim to over-75

come such a problem.76

In particular, features transformation-based methods address77

the re-identification problem by finding the transformation78

functions that affect the visual features acquired by disjoint79

cameras. These methods were initially designed to transform80

the feature space of one camera to the feature space of anot-81

her one Javed et al. (2008). Recently, a few methods Li and82

Wang (2013); Martinel et al. (2015a) had also considered the83

fact that the transformation is not unique and it depends on se-84

veral factors (e.g. poses and viewpoint changes Garcia et al.85

(2014), image resolutions, photometric settings of cameras).86

Methods that exploit optimal feature distances advantage of87

a training phase to learn non-Euclidean distances used to com-88

pute the match in a different feature space. Several method89

were proposed by learning a relaxed Mahalanobis metric Hi-90

rzer et al. (2012a), by considering multiple metrics Ma et al.91

(2014b); Martinel et al. (2015b) in a transfer learning set up Li92

et al. (2012), or by relying on equivalence constraints Kostinger93

et al. (2012); Tao et al. (2014). Others have focused on local94

distance comparison problems Li and Wang (2013); Li et al.95

(2013); Liong et al. (2015).96

Finally, it is worth mentioning that the re-identification can97

be also conducted by exploiting biometric features Micheloni98

et al. (2009), mainly represented by soft biometrics Nambiar99

et al. (2015) and gait features Sarkar et al. (2005); Lu and Tan100

(2010a). Works in such direction introduced methods achieving101

view invariant properties Liu et al. (2011); Lu and Tan (2010b)102

also by exploiting multiple view fusion methods Lu and Zhang103

(2007). The problem of re-identifying a person walking with104
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Fig. 1. Proposed expert-based system architecture. A robust feature repre-
sentation is computed for each image acquired by a camera in the network.
In the training phase, such representations computed for image pairs are
used to train a set of experts. In the re-identification phase, the trained
experts evaluate the new feature representations of an image pair. The
answers from all the experts are pooled to obtain the final decision.

arbitrary directions was explored in Lu et al. (2014). Despite 105

the success of such methods, computing such features require 106

a constrained camera deployment and high resolution sensors 107

which are not always available in a wide area camera network. 108

As a result, appearance features are still the dominant choice. 109

All such methods aim to achieve the optimal re-identification 110

by proposing a single solution. Thus, they believe that the gi- 111

ven answer is unique and it is the only one that should be used 112

to decide if two images acquired by disjoint cameras belong 113

to the same person or not. The only work that has a slightly 114

different view, which is partially shared with the proposed met- 115

hod, is Li and Wang (2013). It differs from the proposed ap- 116

proach on the following aspects. In Li and Wang (2013), the 117

feature space is partitioned according to the orientation of a per- 118

son, then a metric is learned for each partition. During the re- 119

identification, the orientations of the persons in the two images 120

are used to select the metric used to match the corresponding 121

features. Hence, in Li and Wang (2013), it is assumed that the 122

orientation of a person can be computed and a single metric is 123

still enough to provide the final answer. In the proposed work, 124

no assumption is made on the appearance/pose of a person and 125

the answers from all the experts are considered to reach a final 126

decision. 127

3. The Experts-Based Approach 128

3.1. Approach Overview 129

The steps conducted to perform the re-identification using the 130

proposed MuRE approach are illustrated in Fig. 1. As shown, 131

it considers two phases which share two common steps. Given 132

a pair of images acquired by disjoint cameras, these are input 133

to the feature extraction module. This is in charge to compute 134

a discriminative feature representation of each person conside- 135

ring visual clues only. In the training phase, the representations 136

obtained for a training set of image pairs are given to the experts 137
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which individually learn how to optimally discriminate between138

images of a same or different persons. In the re-identification139

phase, the trained experts are required to evaluate the represen-140

tations extracted from a new pair of test images and to provide141

a pooled answer.142

3.2. Experts Training143

Let Ia
p ∈ Rm×n and Ib

g ∈ Rm×n be the images of persons p144

and g which have been acquired by camera a and camera b,145

respectively. Then, the corresponding feature representations146

denoted as xa
p ∈ Rd and xb

g ∈ Rd can be obtained by compu-147

ting a suitable representation (e.g., histogram) of the outputs of148

feature extraction processes π(Ia
p, i, j) and π(Ib

g, i, j) (e.g., gra-149

dient orientations) computed for every image pixel at locations150

i = 1, . . . ,m, and j = 1, . . . , n. Since the goal is to re-identify a151

person moving across disjoint cameras and image pairs are con-152

sidered in the proposed framework, we can cast the problem as153

a binary classification one. Thus, to a given image pair (Ia
p, Ib

g)154

corresponds a label yp,g ∈ {0, 1}, where yp,g = 0 if the images155

are of a different person (i.e., p , g), and yp,g = 1 otherwise156

(i.e., p = g).157

Assuming M persons are viewed by the two cameras, and
the data is available for the training phase, then the correspon-
ding feature vectors are collected in the sets Xa = {xa

p|xa
p, p =

1, . . . ,M} and Xb = {xb
g, |xb

g, g = 1, . . . ,M}. These, together
with the set containing all possible values of yp,g denoted here
as Y = {yp,g|yp,g, p = 1, . . . ,M, g = 1, . . . ,M}, are exploited
to separately train K experts. In the current framework each
expert can be different from the others, e.g. the first expert can
be a Deep Net, the second a Support Vector Machine, the third
a non-Euclidean metric, etc. To train each of such experts to
discriminate between the set of feature vectors belonging to the
same person and the set of feature vectors belonging to different
persons suitable expert-dependent learning procedures should
be adopted. However, in general, for each expert there exists a
cost function which should be minimized to estimate the set of
parameters that optimally separates the two sets as

M̂k = arg min
Mk

Lk

(
Xa,Xb,Y,Mk

)
(1)

where Lk(·) is the k-th expert-dependent cost function to mi-158

nimize and Mk characterizes the k-th expert parameters (e.g.,159

the connection weights of a Deep Neural Network, the coeffi-160

cients of the separating hyperplane and bias of a Support Vec-161

tor Machine, the entries of the matrix defining a non-Euclidean162

pseudo-metric, etc.).163

3.3. Experts Evaluation and Pooling164

The resulting estimated experts parameters M̂k, for k =165

1, . . . ,K are then used in the re-identification phase to match a166

probe person viewed in camera a and a gallery person detected167

by camera b. More formally, given a probe image Îa
p, a gallery168

image Îb
g, the corresponding feature representations x̂a

p and x̂b
g169

are compared by each expert to obtain K separate answers.170

In the current framework, it is assumed that each expert is not
able to take a strong binary decision on the new sample pair, but
it has some uncertainty about it. Hence, the expert answer can

be defined as the probability of a probe person p and a gallery
person g being the same, given the observed feature representa-
tions and the estimated expert parameters. This translates to

Pk

(
yp,g = 1|M̂k

)
= σ

(
Jk(x̂a

p, x̂
b
g, M̂k)

)
(2)

whereJk(x̂a
p, xb

g, M̂k) is the k-th expert decision function which 171

output is computed by evaluating the input feature representati- 172

ons x̂a
p and xb

g with the learned parameters M̂k. 173

We assume that the output of an expert decision function 174

Jk(·) is a similarity score or a distance measure. To translate 175

such an output to a probability value we introduced the σ(·) 176

function. More specifically, if the expert output is a simila- 177

rity score, then to ensure the value is in [0, 1], we have used 178

σ(z) = 1
1+exp(−z) (i.e., the logistic function). On the other hand, 179

if the expert output is a distance measure, we have we have used 180

σ(z) = exp(−z). 181

In order to reach a common decision shared among the ex-
perts, the obtained answers must be pooled. Since the K ans-
wers are independent from each other and those are defined to
be probabilities, the pooled answer can be obtained by compu-
ting the conditional probability considering all the K experts.
Thus, the final answer is computed as

P
(
yp,g = 1|M̂1, . . . , M̂K

)
=

∏
k

Pk

(
yp,g = 1|M̂k

)
. (3)

Such answer is finally used to compute the final ranking for 182

re-identification. 183

4. Experimental Results 184

The proposed MuRE approach has been evaluated using 185

three publicly available benchmark datasets: the VIPeR data- 186

set Gray et al. (2007), the 3DPeS dataset Baltieri et al. (2011) 187

and the CHUK02 dataset Li et al. (2012). These datasets have 188

been selected because they provide many challenges faced in 189

real scenarios, i.e., viewpoint, pose and illumination changes, 190

different backgrounds, image resolutions, occlusions, etc. Spe- 191

cific dataset details and related challenges are described below. 192

4.1. Evaluation Settings 193

In the current framework, the following settings have been 194

used to compute all the results. 195

4.1.1. Evaluation Criteria 196

The re-identification mechanism commonly depends on how 197

the gallery and the probe sets are organized. Given N images 198

per each person in the two sets, two main matching approaches 199

are commonly adopted: i) single-shot (N = 1); ii) multiple-shot 200

(N > 1). To consider both modalities, in the current framework, 201

the same approach in Martinel et al. (2015a) has been adopted 202

and all the N × N final answers are average pooled. 203

As commonly performed by the literature Vezzani et al. 204

(2013), all the following results are shown using the Cumu- 205

lative Matching Characteristic (CMC) curve and the normali- 206

zed Area Under Curve (nAUC) values. The CMC curve is a 207

plot of the recognition performance versus the rank score and 208
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Fig. 2. 10 image pairs from the VIPeR dataset. The two rows show the
different appearances of the same person viewed by two disjoint cameras.

represents the expectation of finding the correct match within209

the first k ones. The nAUC is a global indicator which descri-210

bes how well a re-identification method performs irrespectively211

of the dataset size. For each dataset, the evaluation procedure212

is repeated 10 times using independent random splits and the213

average results are shown. All the results used for comparison214

with state-of-the-art methods were provided by the authors of215

the corresponding works.216

4.1.2. Person Appearance and Expert Models217

To model the person appearance, images are first resized to218

64× 128 pixels, then the WHOS person descriptor Lisanti et al.219

(2014) is extracted. As a result, each person is represented by220

a 5138-dimensional vector which is obtained by concatenating221

color histograms, LBP texture and HOG shape features.222

Due to the recent success of metric learning algorithms, the223

LFDA Pedagadi et al. (2013), KISSME Kostinger et al. (2012)224

and LADF Li et al. (2013) approaches have been selected as225

re-identification experts to evaluate the proposed approach. Re-226

sults obtained using such methods have been computed using227

our implementations and the proposed person representation.228

However, such methods also provide re-identification results229

on some of the considered datasets. When MuRE is compa-230

red to state-of-the-art methods, the results directly provided by231

the authors of the corresponding works are shown. To indicate232

which methods have been used in the proposed framework the233

following notation is used: MuRE (a-b-. . . ), where “a” and “b”234

are the acronyms denoting the experts methods. The distance235

output by each of such experts has been translated to a probabi-236

lity value using σ(z) = exp−z.237

4.2. VIPeR Dataset1238

The VIPeR dataset Gray et al. (2007) is considered the most239

challenging one for person re-identification due to the changes240

in illumination and pose. This dataset contains low spatial reso-241

lution images of 632 persons viewed by two different cameras242

in an outdoor environment (see Fig. 2 for a few samples).243

4.2.1. Performance Analysis244

Results in Fig. 3a and Table 1 have been computed to evalu-245

ate the performance of each single expert. Following a common246

approach Gray et al. (2007); Lisanti et al. (2014); Martinel et al.247

(2015a), the results have been computed using 316 persons both248

1Available at http://soe.ucsc.edu/~dgray/
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Fig. 3. Results on the VIPeR dataset reported as CMC curves averaged
over 10 different trials. In (a) performance of MuRE using different ex-
perts. In (b) results of MuRE (LFDA-KISSME-LADF) are shown as a
function of the test set size.

Table 1. Comparison of the performance achieved by the selected experts
on the VIPeR dataset. Best results for each rank are in boldface font.

Rank→ 1 10 20 50 100 nAUC

LFDA Pedagadi et al. (2013) 36.90 79.91 89.62 97.50 99.15 0.9761
KISSME Kostinger et al. (2012) 29.81 75.51 87.75 96.77 99.02 0.9721
LADF Li et al. (2013) 35.95 84.15 93.07 98.32 99.53 0.9817

MuRE (LFDA-KISSME) 38.26 81.33 91.46 97.66 99.21 0.9783
MuRE (LFDA-LADF) 42.50 88.04 95.13 99.02 99.56 0.9858
MuRE (KISSME-LADF) 39.49 86.77 94.24 98.77 99.59 0.9839
MuRE (LFDA-KISSME-LADF) 42.72 88.04 94.87 98.73 99.56 0.9852

Max Voting Fusion 39.87 87.04 94.21 98.61 99.19 0.9811

for training and for testing. When more than 1 expert is consi- 249

dered, eq.(3) is used to obtain the pooled answer. Results de- 250

monstrate that the optimal overall performance is achieved by 251

combining LFDA and LADF (i.e., by MuRE (LFDA-LADF)). 252

The highest rank 1 score is achieved by pooling all the three 253

experts answers (i.e., MuRE (LFDA-KISSME-LADF)). 254

In Table 1 a comparison with a max voting fusion scheme is 255

also provided. In such a case, each expert makes a decision, 256

then the max voting rule is used to fuse the decisions of all the 257

experts (i.e., LFDA, KISSME and LADF). Results show that 258

the max voting fusion approach achieves worse performance 259

than the proposed one. In particular, the recognition percentage 260

at rank 1 is 3% lower than MuRE (LFDA-KISSME-LADF). 261

4.2.2. Comparison with State-of-the-art Methods 262

In Table 2, the results of the proposed MuRE framework are 263

compared to the ones achieved by current state-of-the-art ap- 264

proaches. The results are reported for the case when 316 per- 265

sons are considered in both the training and the test set. Re- 266

sults demonstrate that the MuRE (LFDA-KISSME-LADF) ap- 267

proach has rank 1 performance very close to the LMF Zhao 268

et al. (2014)+LADF Li et al. (2013) approach and achieves bet- 269

ter results than any other existing method on higher ranks. This 270

is reflected by the reported nAUC value. 271

As commonly performed in literature An et al. (2013); Ma 272

et al. (2014b), the proposed method has been evaluated conside- 273

ring three additional different train/test sizes. The performance 274

achieved under such scenarios are shown in Fig. 3b and Table 3. 275

Results demonstrate that our method outperforms all existing 276

approaches and it is robust to significant reductions in the trai- 277

http://soe.ucsc.edu/~dgray/
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Table 2. Comparison with state-of-the-art methods on the VIPeR dataset. Best results for each rank are in boldface font.

Rank→ 1 10 20 50 100 nAUC

MuRE (LFDA-KISSME-LADF) 42.72 88.04 94.87 98.73 99.56 0.9852
LMF Zhao et al. (2014)+LADF Li et al. (2013) 43.29 85.13 94.12 - - -
LOMO+XQDA Liao et al. (2015) 40.00 80.51 91.08 - - -
PKFM Chen et al. (2015) 36.8 83.7 91.7 97.8 - -
SWF Martinel et al. (2014a) 32.97 75.63 86.87 96.17 98.96 0.9701
kBiCoV Ma et al. (2014a) 31.11 70.71 82.44 - - -
QALF Zheng et al. (2015) 30.17 62.44 73.81 - - -
SalMatch Zhao et al. (2013) 30.16 65.54 79.15 91.49 98.10 0.9542
LAFT Li and Wang (2013) 29.60 69.30 81.34 96.80 - -
LADF Li et al. (2013) 29.30 78.80 92.20 97.40 - -
LMF Zhao et al. (2014) 29.10 66.30 81.00 - - -
MtMCML Ma et al. (2014b) 28.83 75.82 88.51 - - -
ISR Lisanti et al. (2014) 27.43 61.06 72.92 86.69 - 0.9410
PatMatch Zhao et al. (2013) 26.90 62.34 75.63 90.51 97.47 0.9496
WFS Martinel et al. (2015a) 25.81 69.56 83.67 95.12 98.89 -
SSCDL Liu et al. (2014) 25.6 68.1 83.6 - - -

Table 3. Comparisons on the VIPeR dataset. Recognition rates per rank score as a function of the test set size. Best results are in boldface font.

Test Set Size 432 512 532
Rank→ 1 10 20 1 5 10 20 1 10 20

MuRE (LFDA-KISSME-LADF) 34.19 79.47 89.44 27.11 55.66 70.27 83.50 24.49 67.82 81.02
SWF Martinel et al. (2014a) 24.72 66.29 82.70 14.77 38.06 53.29 68.32 10.67 45.46 65.95
RCCA An et al. (2013) 22 59 75 - - - - 15 47 60
MtMCML Ma et al. (2014b) 20 62 77 - - - - 12 45 61
RPLM Hirzer et al. (2012b) 20 56 71 - - - - 11 38 52
NRDV Zhou et al. (2014) 20 54 67 - - - - 14 44 55
MCE-KISS Tao et al. (2014) 14 49 69 - - - - - - -
RS-KISS Tao et al. (2013) 10 40 61 - - - - - - -
PRDC Zheng et al. (2013) 13 44 60 9.12 24.19 34.40 48.55 9 34 49
MCC Zheng et al. (2013) - - - 5.00 16.32 25.92 39.64 - - -
LAFT Li and Wang (2013) - - - 12.90 30.30 42.73 58.02 - - -

Fig. 4. 10 image pairs from the CUHK02 dataset. The two rows show the
different appearances of the same person viewed by two disjoint cameras.

ning set size. This is a desirable property that avoids the need of278

large quantities of labeled training data. More in details, when279

432 persons are considered as test set, MuRE (LFDA-KISSME-280

LADF) has a rank 1 correct recognition rate of 34.19%, while281

the runner up (RCCA An et al. (2013)) has a recognition rate of282

only 22%. A similar behavior is achieved when the number of283

test persons increases to 512 and 532.284

4.3. CUHK02 Campus Dataset2285

The CUHK02 Campus dataset Li et al. (2012) has images286

acquired by 5 disjoint camera pairs (denoted as P1-P5) de-287

ployed in a campus environment. Each person has two images288

in each camera. To evaluate the proposed method and compare289

it to the state-of-the-art, the same protocol used in Zhao et al.290

(2013); Li et al. (2012) has been used, hence results for ca-291

mera pair P1 when N ∈ {1, 2} are provided. In this camera pair,292

images from the first camera are captured from lateral view,293

2Available at http://www.ee.cuhk.edu.hk/~xgwang/CUHK_

identification.html

while images from the second camera are acquired from a fron- 294

tal view or back view (see Fig. 4). 295

4.3.1. Performance Analysis 296

As done for the VIPeR dataset, in Fig. 5a and Fig. 5b the 297

results achieved by different experts are provided in terms of 298

CMC curves. The reported results have been computed using 299

486 persons for training and 485 persons for testing. 300

In Fig. 5a, results are for the single-shot approach. In such a 301

case, results show that while MuRE (LFDA-KISSME-LADF) 302

reaches the highest rank 1 correct recognition rate (36.62%), the 303

optimal overall performance is achieved by combining LFDA 304

and LADF (i.e., MuRE (LFDA-lADF)). 305

Performance shown in Fig. 5b are for the multiple-shot sce- 306

nario with N = 2. Results demonstrate that the MuRE fra- 307

mework yields to better performance than any other baseline 308

method. In particular, when N = 2 images are used, MuRE 309

(LFDA-LADF) reaches the highest rank 1 correct recognition 310

rate (57.29%) and the optimal overall performance (with an 311

nAUC of 0.9892). It is worth noticing that in such a case the 312

single LADF expert yields to better overall performance than all 313

MuRE combination (other than MuRE(LFDA-LADF)). This is 314

due to the fact that KISSME performance is very poor com- 315

pared to other experts. Therefore, including it in the MuRE 316

framework causes a degradation of the performance. 317

In Fig. 5c, results achieved by the proposed framework using 318

different train/test sizes are shown. Results demonstrate that 319

when the proposed framework is robust to even extreme cases 320

like when only 97 persons are used for training and 874 are used 321

for testing. This is reflected by the fact that, among all the five 322

considered splits, the nAUC values change by less than 3%. 323

http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
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Fig. 5. Results on the CUHK02 dataset reported as CMC curves averaged over 10 different trials. In (a) comparisons with different experts are shown
for the single shot-approach. In (b) the results achieved by the MuRE framework and the adopted experts are given for the multiple-shot approach with
N = 2. In (c) results of the proposed MuRE (LFDA-KISSME-LADF) are shown as a function of the test set size.

Query Person Ranked Matching Persons Correct Match

Fig. 6. Qualitative performance of MuRE (LFDA-KISSME-LADF) on the
CUHK02 dataset. In the first column 8 query persons are shown. The next
20 images per row represent the ranked matching persons. The correct
match (also shown in the last column) is highlighted in green.

Finally, since existing algorithms are not achieving a 100% of324

correct recognition rate at rank 1, human intervention is still re-325

quired to identify the true match within the given ranking. Thus,326

providing a suitable ranking for end-user inspection is a desira-327

ble feature that a re-identification algorithm should have. To328

show that MuRE has such a property, qualitative performance329

are shown in Fig.6: 8 query images and the first 20 ranks produ-330

ced by MuRE (LFDA-KISSME-LADF) are depicted. In, par-331

ticular we have included rankings in which the true match is332

not located in the first position (2nd to 8th rows). Results de-333

monstrate that even in such cases, the MuRE framework is able334

to correctly capture the inter-camera global appearance chan-335

ges and produces a suitable ranking (i.e., persons share visual336

similarities) that can be finally exploited by the end-user.337

4.3.2. Comparison with State-of-the-art Methods338

In Table 4, the results of the proposed MuRE framework are339

compared to the ones achieved by current state-of-the-art ap-340

Table 4. Comparison with state-of-the-art methods on the CUHK02 (P1)
dataset. Best results for each rank are in bold.

Rank→ 1 5 10 20 100 nAUC

Max Voting Fusion (N=1) 33.51 60.46 71.83 80.91 96.60 0.9694
MuRE (LFDA-KISSME-LADF) (N=1) 36.62 62.80 73.24 81.98 97.09 0.9719
Max Voting Fusion (N=2) 50.87 76.14 84.59 91.01 98.29 0.9821
MuRE (LFDA-KISSME-LADF) (N=2) 54.41 79.11 86.80 92.21 98.82 0.9877
SalMatch Zhao et al. (2013) 28.45 45.85 55.67 67.95 92.26 0.9374
PatMatch Zhao et al. (2013) 20.39 34.12 41.09 51.56 87.91 0.9065
TML(Our Generic) Li et al. (2012) 20.53 45.54 56.61 69.62 93.75 -

proaches. Since the CUHK02 dataset has 2 images per person 341

in each camera, multiple-shot performance with N = 2 are also 342

shown. The reported results have been computed using 486 343

persons for training and 485 persons for testing. 344

Results demonstrate that the MuRE (LFDA-KISSME- 345

LADF) approach has the best performance on every conside- 346

red rank when 1 or 2 images per person are used. In particular, 347

when N = 2 images are considered, MuRE (LFDA-KISSME- 348

LADF) has a rank 1 of 54.41% which almost doubles the pre- 349

vious top rank 1 achieved by SalMatch Zhao et al. (2013). 350

Comparisons with the max voting fusion scheme are also 351

provided. Results show that under both the single shot and the 352

multiple shot scenarios, the proposed fusion scheme yields to 353

better performance than the max voting one. 354

4.4. 3DPeS Dataset3 355

The 3DPeS dataset Baltieri et al. (2011) has images from 8 356

cameras which present different light conditions and viewpoints 357

(see Fig.7). Different sequences of 191 persons have been ta- 358

ken from such a multi-camera system on different days, under 359

strongly changing illumination conditions. Partial occlusions 360

and multiple persons appearing in the same image introduce 361

additional challenges. 362
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Fig. 7. 10 image pairs from the 3DPeS dataset. The two rows show the
different appearances of the same person viewed by two disjoint cameras.
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Fig. 8. Results on the 3DPeS dataset reported as CMC curves averaged
over 10 trials. In (a) performance of different experts are compared to the
MuRE framework under a single-shot modality. In (b) results are shown
as a function of the number of images available for each person.

4.4.1. Performance Analysis363

In Fig. 8a the results achieved by different experts are provi-364

ded in terms of CMC curves. The reported results have been365

computed using 95 persons for training and 96 persons for366

testing. Differently from the other two datasets, results show367

that MuRE (LFDA-KISSME-LADF) obtains the optimal over-368

all performance, but the highest rank 1 correct recognition rate369

(33.46%) is achieved by combining LFDA and LADF.370

In Fig. 8b, CMC performance on the 3DPeS dataset obtai-371

ned by MuRE (LFDA-KISSME-LADF) are provided for N ∈372

{1, 2, 5,All}. Results show that the performance strongly im-373

proves just by considering more than a single image. However,374

there is a subtle difference in the overall performance for the375

case when N = 5 and N = All. Indeed, the obtained nAUC va-376

lues differ only by 0.0001. Despite this, when all the images are377

considered the obtained rank 1 improves of about 1.32% with378

respect to the case when N = 5 images are used.379

4.4.2. Comparison with State-of-the-art Methods380

In Table 5, the performance of the proposed MuRE frame-381

work are compared to the ones obtained by LFDA Pedagadi382

et al. (2013), KISSME Kostinger et al. (2012) and LMNN-383

R Dikmen et al. (2010). The same experimental protocol of Pe-384

dagadi et al. (2013) has been adopted, hence the dataset has385

been split into a training set and a test set each one composed of386

95 randomly selected persons. Since in Pedagadi et al. (2013)387

no details regarding the number of images used for each person388

are given, it is assumed that their results have been computed389

3Available at http://www.openvisor.org/3dpes.asp

Table 5. Comparison of the proposed method on the 3DPeS dataset. Best
results are in bold.

Rank→ 1 10 25 50 nAUC

Max Voting Fusion (N=All) 46.19 82.97 94.76 99.51 0.9506
MuRE (LFDA-KISSME-LADF) (N=1) 31.35 68.12 86.25 96.56 0.8958
MuRE (LFDA-KISSME-LADF) (N=2) 45.83 82.92 93.44 99.38 0.9445
MuRE (LFDA-KISSME-LADF) (N=All) 48.96 83.13 95.10 99.79 0.9539
LFDA Pedagadi et al. (2013) 33.43 69.98 84.80 95.07 0.8870
KISSME Kostinger et al. (2012) 22.94 62.21 80.74 93.21 0.8582
LMNN-R Dikmen et al. (2010) 23.03 55.23 73.44 88.92 0.8191

using all the available ones. Results show that the proposed 390

method achieves state-of-the-art performance when a single- 391

shot approach is used and outperforms existing methods when 392

N ≥ 2. In particular, a rank 1 correct recognition rate of 48.96% 393

is achieved when all the available images are used. 394

5. Discussion 395

The reported results show that the proposed MuRE frame- 396

work performs better than any other existing method on all the 397

three considered benchmark datasets. However, as shown in 398

Fig. 9, the approach performance analysis conducted on each 399

dataset has shown that there is not much strong consistency on 400

the performance when two or more experts are considered. In- 401

deed, for two datasets the top rank 1 performance are achieved 402

when only two experts are used, and the optimal global perfor- 403

mance are obtained when all experts are considered. For the 404

last dataset, the opposite result is achieved. This brings out 405

of the water a common problem in experts pooling Garg et al. 406

(2004), which is defining (or learning) proper ways of pool- 407

ing the answers from multiple experts. Since the preliminary 408

results obtained by pooling the experts answers through proba- 409

bility rules are promising, more complex ways of pooling will 410

be investigated in the future. 411

6. Conclusions 412

In the proposed work, a re-identification framework inspired 413

by the real police lineup method has been proposed. The re- 414

cent idea that the intervention of multiple identification experts 415

is better than using a single answer by a single expert has been 416

adapted for person re-identification purposes. In the current fra- 417

mework, different experts have been trained to discriminate be- 418

tween feature representations computed for pairs of images of 419

same or different persons. In the re-identification phase, the 420

answers from all the experts are pooled using probability rules. 421

Results obtained by evaluating the method on 3 benchmark da- 422

tasets have demonstrated that superior performance than state- 423

of-the-art approaches are achieved. 424
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