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Abstract
Data streams are ubiquitous in many areas of modern life. For example, applications
in healthcare, education, finance, or advertising often deal with large-scale and evolv-
ing data streams. Compared to stationary applications, data streams pose considerable
additional challenges for automated decision making and machine learning. Indeed, on-
line machine learning methods must cope with limited memory capacities, real-time re-
quirements, and drifts in the data generating process. At the same time, online learning
methods should provide a high predictive quality, stability in the presence of input noise,
and good interpretability in order to be reliably used in practice. In this thesis, we ad-
dress some of the most important aspects of machine learning in evolving data streams.
Specifically, we identify four open issues related to online feature selection, concept drift
detection, online classification, local explainability, and the evaluation of online learning
methods. In these contexts, we present new theoretical and empirical findings as well
as novel frameworks and implementations. In particular, we propose new approaches
for online feature selection and concept drift detection that can account for model uncer-
tainties and thus achieve more stable results. Moreover, we introduce a new incremental
decision tree that retains valuable interpretability properties and a new change detection
framework that allows for more efficient explanations based on local feature attributions.
In fact, this is one of the first works to address intrinsic model interpretability and local
explainability in the presence of incremental updates and concept drift. Along with this
thesis, we provide extensive open resources related to online machine learning. Notably,
we introduce a new Python framework that enables simplified and standardized evalu-
ations and can thus serve as a basis for more comparable online learning experiments
in the future. In total, this thesis is based on six publications, five of which were peer-
reviewed at the time of publication of this thesis. Our work touches all major areas of
predictive modeling in data streams and proposes novel solutions for efficient, stable,
interpretable and thus reliable online machine learning.
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Kurzfassung
Datenströme sind in vielen Bereichen des modernen Lebens allgegenwärtig. Beispiels-
weise haben Anwendungen im Gesundheitswesen, im Bildungswesen, im Finanzwesen
oder in der Werbung häufig mit großen und sich verändernden Datenströmen zu tun. Im
Vergleich zu stationären Anwendungen stellen Datenströme eine erhebliche zusätzliche
Herausforderung für die automatisierte Entscheidungsfindung und das maschinelle Ler-
nen dar. So müssen Online Machine Learning-Verfahren mit begrenzten Speicherkapa-
zitäten, Echtzeitanforderungen und Veränderungen des Daten-generierenden Prozesses
zurechtkommen. Gleichzeitig sollten Online Learning-Verfahren eine hohe Vorhersage-
qualität, Stabilität bei Eingangsrauschen und eine gute Interpretierbarkeit aufweisen, um
in der Praxis zuverlässig eingesetzt werden zu können. In dieser Arbeit befassen wir
uns mit einigen der wichtigsten Aspekte des maschinellen Lernens in sich entwickeln-
den Datenströmen. Insbesondere identifizieren wir vier offene Fragen im Zusammen-
hang mit Online Feature Selection, Concept Drift Detection, Online-Klassifikation, lo-
kaler Erklärbarkeit und der Bewertung von Online Learning-Methoden. In diesem Kon-
text präsentieren wir neue theoretische und empirische Erkenntnisse sowie neue Fra-
meworks und Implementierungen. Insbesondere schlagen wir neue Ansätze für Onli-
ne Feature Selection und Concept Drift Detection vor, die Unsicherheiten im Modell
berücksichtigen und dadurch stabilere Ergebnisse erzielen können. Darüber hinaus stel-
len wir einen neuen inkrementellen Entscheidungsbaum vor, der wertvolle Eigenschaf-
ten hinsichtlich der Interpretierbarkeit einhält, sowie ein neues Framework zur Erken-
nung von Veränderungen, das effizientere Erklärungen auf der Grundlage lokaler Fea-
ture Attributions ermöglicht. Tatsächlich ist dies eine der ersten Arbeiten, die sich mit
intrinsischer Interpretierbarkeit von Modellen und lokaler Erklärbarkeit bei inkremen-
tellen Aktualisierungen und Concept Drift befasst. Gemeinsam mit dieser Arbeit stellen
wir umfangreiche Ressourcen für Online Machine Learning zur Verfügung. Insbeson-
dere stellen wir ein neues Python-Framework vor, das vereinfachte und standardisier-
te Auswertungen ermöglicht und künftig somit als Grundlage für vergleichbare Online
Learning-Experimente dienen kann. Insgesamt stützt sich diese Arbeit auf sechs Publi-
kationen, von denen fünf zum Zeitpunkt der Veröffentlichung der Dissertation bereits im
Peer-Review Format begutachtet wurden. Unsere Arbeit berührt alle wichtigen Berei-
che der prädiktiven Modellierung in Datenströmen und schlägt neuartige Lösungen für
effizientes, stabiles, interpretierbares und damit zuverlässiges Online Machine Learning
vor.
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Chapter 1

Introduction to Online Machine
Learning
Evolutionary and incremental changes in data are abundant in real-world applications.
We find them in biological and physical processes, sensory measurements, financial
transactions and user behavior, in applications such as credit scoring, e-commerce, au-
tonomous driving, fraud detection or social media [13, 8, 45, 58, 16, 126, 117, 11, 41]. In
such dynamic environments, that operate with or generate continuous and evolving data
streams, machine learning models face considerable challenges. This thesis addresses
some of the most pressing issues on the path to more reliable online machine learning.

1.1 Challenges in Learning From Evolving Data Streams
Machine learning techniques are successfully used to process large amounts of data and
automate decisions in a variety of applications. However, traditional machine learning
approaches often employ a notion of stationary distributions that does not apply to real-
world scenarios. In practice, training observations often arrive sequentially and over
a potentially infinite period of time. Moreover, intrinsic process properties or external
events may influence the data generating process and make previously learned concepts
obsolete. For example, network attackers will constantly try to find new ways to over-
come security measures, so an intrusion detection application must adapt accordingly
[175]. Similarly, medical treatments may need to be adjusted to resistances and muta-
tions that develop over time [175]. As a consequence, traditional batch learning tech-
niques are often too inflexible to be applied to evolving data streams. For example, pre-
processing techniques such as feature selection usually require the entire training data to
be available in main memory. In addition, online applications typically work with limited
resources. Therefore, powerful but complex architectures such as deep neural networks
or large ensembles may not be feasible in a real streaming scenario [8].

In online machine learning, we aim to overcome these limitations. To this end, we re-
quire dedicated solutions for preprocessing incoming data [141], detecting and managing
changes in the data generating distribution [108, 69], and providing powerful predictions
over time.
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Chapter 1 Introduction to Online Machine Learning

The goal of a holistic online learning approach is to represent and adjust to the dynam-
ics of a data stream well at any point in time. In this context, data stream applications
impose extensive requirements [62, 63, 126, 58, 117, 48, 99]. Indeed, to achieve truly
reliable machine learning in evolving data streams, a number of important abstract re-
quirements must be met:

• Predictive Performance: To be reliably used for automated decision-making in
data streams, online learning methods should achieve the desired predictive quality
(i.e., according to expert-based and application-dependent quality measures) at all
times.

• Efficiency: To meet real-time demands and deal with limited hardware capaci-
ties, online learning methods should be efficient in terms of computation time and
computation resources.

• Robustness: In order to rely on the model and its predictions, online learning
methods should be robust to noisy inputs, abrupt changes in data, and outliers.

• Adaptation to Concept Drift: As data streams can be subject to changing data
distributions, online learning methods need to ensure that they can quickly adapt
accordingly.

• Interpretability and Explainability: To enable trustworthy user-centered appli-
cation of online learning methods and allow their use in sensitive areas with strict
regulations, the mechanics of the model should be interpretable and any prediction
should be explainable to a human.

It is generally difficult to address all requirements simultaneously. In fact, there are var-
ious trade-offs. For example, using sliding windows to store past observations often has
advantages in terms of predictive power and robustness, but requires additional resources
[8, 22]. Similarly, adjusting for distributional changes using heuristic mechanisms could
reduce the predictive performance and interpretability. In practice, the importance of
each requirement also often depends on the application at hand. For example, high stakes
applications in healthcare or banking might prioritize accurate predictions and high inter-
pretability over efficiency. Conversely, fraud detection and spam filtering usually aim for
high throughput, accepting the risk of false alarms. Ideally, online learning approaches
should be flexible enough to be adapted to the requirements of a particular application
[99]. However, the weakly specified and dynamic nature of data streams makes reliable
online machine learning a major challenge.

Compared to areas such as deep learning or reinforcement learning, online learning has
lost momentum despite its impact on various applications. The state of the art in online
learning has indeed not changed much in recent years, although existing approaches
are known to have their limitations with regard to the requirements mentioned above.
Therefore, there are a number of new and open problems that still need to be explored.
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1.2 Objects of Study
Similar to other areas of machine learning, online learning involves many different activ-
ities. In this thesis, we address five particularly important ones: online feature selection,
concept drift detection, online classification, local explainability in data streams, and the
evaluation of online learning methods. Given the general desiderata and requirements
introduced in Section 1.1, there are a number of open questions related to each of these
activities [99, 141]. In this thesis, we address the following issues:

Online feature selection and concept drift detection techniques often do not account
for high model uncertainty. Many online feature selection and concept drift detection
methods rely on an underlying predictive model. As online predictive models evolve
over time, they can be subject to a high degree of uncertainty, which manifests itself,
for example, in drastic parameter updates or predictive quality degradation between time
steps. Indeed, data streams are subject to various sources of uncertainty [44, 160] that
may propagate to the online learning model. These include missing and adversarial
data, unknown data distributions and concept drift, as well as noise. Existing online
feature selection and concept drift detection methods often do not take this uncertainty
into account, resulting in non-robust behavior.

Online classification approaches typically do not address the interpretability of the
learned model over time. Due to increased public awareness and new legislation, such
as the European Union’s General Data Protection Regulation, the interpretability of ma-
chine learning models is becoming increasingly important [129, 32]. Intrinsic inter-
pretability describes a comprehensible inner mechanics of the predictive model [51, 36].
Interpretability can thus not be measured objectively [116, 146] and is instead often
linked to a heuristic quantification of model complexity [15, 71]. Accordingly, simple
models such as linear models, rule-based learners, and shallow decision trees are widely
considered to be interpretable [71]. The complexity of most online classifiers changes
over time. For example, online ensembles typically remove old components and add new
ones to adjust to concept drift [100, 67]. Similarly, incremental decision trees change by
adding new leaf nodes and pruning or replacing outdated branches [46, 88, 18, 111].
However, the effect of such changes on interpretability is often neglected. As a result,
many common online classifiers rely on heuristic updating procedures or become in-
creasingly complex and thus do not provide the level of interpretability required in prac-
tice.

The behavior of feature attribution methods for local explainability in data streams
is largely unexplored. Explanation methods for machine learning allow us to explain
the predictions of complex, i.e., non-interpretable, models [71]. For example, we typ-
ically require a form of post-hoc explainability to understand the predictions of deep
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neural networks or large ensembles. Explanation methods can also be used as an effec-
tive tool for detecting bias in the data or model [129]. Local attribution methods are one
of the most widely used post-hoc explanation techniques [96, 109, 110, 143, 151, 158].
Given an observation to be explained, local attributions aim to quantify the local im-
portance of each input feature in the prediction produced by a trained complex model.
However, local attributions in data streams have not received much attention in the past
[30, 43, 159]. In particular, it is unclear how local attributions may change as a result
of (local) model updates and concept drift, and whether an attribution is still meaningful
after the time step in which it was generated.

There is little standardization in the evaluation of online learning methods. Due
to the lack of publicly available non-stationary real-world data sets [154] and the multi-
tude of different programming languages and libraries used in the literature [90, 8, 21,
118, 120, 73], the evaluation of online learning methods is not properly standardized.
Indeed, authors often use different assumptions and experimental evaluation strategies,
leading to confusing or non-reproducible results. Although various best practices have
been proposed in the past [48, 62, 24, 63, 117], there is not yet a comprehensive set of
evaluation standards and requirements including all core components of the online learn-
ing process. In particular, there is little standardization in the evaluation of online feature
selection models and concept drift detection methods.

1.3 Our Contribution
In this thesis, we address four fundamental problems in online learning (see Section 1.2).
We demonstrate the practical relevance of these issues through real-world examples,
leading to new theoretical and empirical insights. On this basis, we present novel frame-
works and implementations that overcome the limitations of previous work. Overall, our
contributions cover major parts of the online learning process, solving known problems
and thus contributing to more reliable machine learning in evolving data streams. In this
sense, we also hope to provide an impulse for future work.

This thesis is based on six publications, each contributing to one of the four specific
problems mentioned above. In the following, we briefly summarize our contributions:

Uncertainty-Aware Online Feature Selection and Concept Drift Detection (Paper 1
and 2, Chapter 2): We show that existing online feature selection and concept drift
detection methods can often be outperformed by using information about the uncertainty
of the predictive model. Specifically, we propose a flexible and probabilistic framework
that allows us to quantify the uncertainty of model parameters, using an efficient incre-
mental optimization on the marginal likelihood of the parameters (Paper 1). Our frame-
work can be used with differentiable models such as Generalized Linear Models [124],
neural networks, and Soft Decision Trees [91, 57]. On this basis, we present FIRES, a
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novel approach for stable online feature weighting and selection (Paper 1). By taking
parameter uncertainty into account, FIRES is able to produce discriminative and much
more stable feature sets than previous methods. In this way, FIRES improves the over-
all reliability of the obtained feature sets. Based on the same probabilistic framework,
we propose ERICS, a novel concept drift detection approach. ERICS detects concept
drift by monitoring changes in the estimated parameter distribution. Since concept drift
typically manifests itself in more uncertain model parameters, ERICS is often able to
detect concept drift more reliably than related methods. In fact, ERICS is one of few
drift detection methods that can detect concept drift at the input feature level, thus also
contributing to better interpretability.

Reliable and Interpretable Online Classification (Paper 4, Chapter 3): Heuristic
updating procedures and increasing model complexities often impair the predictive re-
liability and the interpretability of state of the art online classifiers. As an alternative,
we present the Dynamic Model Tree (DMT) (Paper 4). The DMT is a novel framework
for more interpretable online learning based on Model Trees [33, 140, 138, 89]. Model
Trees, unlike most decision trees, contain simple (linear) predictors at the leaf nodes.
The DMT extends this idea by incrementally training simple models at both the leaf and
inner nodes. Using gain functions based on the estimated loss of the simple models, up-
dates to the DMT can be tied to changes in the approximate data concept. In this way,
split and pruning decisions become much more understandable. Indeed, compared to
existing incremental decision trees, the DMT offers considerable advantages in terms of
predictive quality, complexity and intrinsic interpretability.

Efficient and Effective Local Explainability in Data Streams (Papers 3 and 5, Chap-
ter 4): Explanation techniques such as local feature attributions have not received much
attention in the context of online learning. As one of the first works, we investigate the
behavior of local feature attribution methods under incremental model updates and con-
cept drift (Paper 5). Specifically, we examine the local accuracy of attribution methods
[109], a common property that expresses the adherence of the local explanation with
the prediction of the model. As it turns out, attributions may become invalid with ev-
ery model update, e.g., after a concept drift. Therefore, in order to obtain meaningful
and reliable explanations over time, outdated attributions must be identified and recalcu-
lated. To this end, we propose an effective and model-agnostic change detection frame-
work called CDLEEDS (Paper 5). With CDLEEDS, both global and local change can
be detected, identifying outdated attributions and enabling more targeted and efficient
recalculations.

In addition, we empirically investigate the role of the baseline for local feature attri-
butions (Paper 3). The baseline represents missing discriminative information, e.g., a
black pixel in image classification [158]. A baseline hyperparameter can be found in
feature coalition-based attribution methods [109], but also in gradient-based attribution
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methods [151, 158] and evaluation tests with feature ablation [84, 144]. Although the
corresponding paper has a broader focus, it allows us to draw interesting implications
for meaningful baselines in data streams where our understanding of missingness might
change over time.

Standardized Evaluation and Comparison of Online Learning Methods (Paper 6,
Chapter 5): Without a common standard, online learning experiments are often not
comparable or provide unreliable (i.e., non-reproducible or non-generalizable) and un-
realistic results (e.g., if a model was optimized under extremely simplified or unrealistic
assumptions for a given data set). We aim to fill this gap with a comprehensive summary
on the evaluation of online learning methods (Paper 6). Specifically, we propose mean-
ingful properties for the evaluation of online classifiers, concept drift detection methods
and online feature selection models. In addition, we introduce a novel Python evalua-
tion framework called float. Float automatizes major parts of the evaluation workflow,
thereby enabling quicker and more comparable experiments. Since float can be com-
bined with custom code, as well as popular online learning libraries like scikit-multiflow
[118] and river [120], it is a flexible and powerful solution for better online learning ex-
periments. Float is open-sourced and can be accessed on Github or the Python packaging
index (Pypi).

1.4 Scope and Structure
This work deals with a variety of different online learning activities and techniques.
Therefore, we cannot provide a thorough analysis of all related methods. Instead, we
focus on the approaches that are most closely related to our contributions and highlight
their limitations in relation to the problems mentioned above. The thesis is based on six
publications. In the main body of this thesis we provide an overview of the contributions
in each paper. Further details can then be found in the full papers in the Appendix of this
thesis.

To make reading more comprehensible, we structure the background information and
contributions according to the four topics described in Section 1.3. After a brief intro-
duction to general concepts and the setting for online machine learning (Section 1.5), the
thesis is organized as follows: In Chapter 2, we focus on online feature selection and
concept drift detection. In this context, we introduce existing methods and present the
probabilistic framework that serves as the basis for our proposed approaches: FIRES and
ERICS. In Chapter 3, we look at online classification techniques, summarize the limita-
tions of common approaches and introduce the novel Dynamic Model Tree framework
for online learning. In Chapter 4, we examine the behavior of popular local attribution
methods in data streams and highlight the important role of baselines for representing
missing features. We then introduce the CDLEEDS change detection framework, which
is an intuitive extension to local attribution methods in data streams. Finally, we discuss
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the need for uniform evaluation standards and introduce the new float Python framework
in Chapter 5.

1.5 Typical Setting for Online Machine Learning
Online machine learning differs from regular batch learning as data arrives sequentially
and is subject to temporal changes. Accordingly, machine learning in data streams re-
quires specialized solutions, e.g., for preprocessing, handling concept drift, and predic-
tive modeling. In this section, we briefly introduce the definitions, important terms, and
assumptions that are relevant to our work.

In the context of online machine learning, a data stream is typically represented by a
potentially infinite series of discrete time steps 1, . . . , t, . . . ,T . At each time step t, we
receive a batch of observations xt ∈Rn×m, where n is the batch size and m is the number
of input features. In the supervised setting, which is the focus of this work, we also
obtain a vector of labels yt ∈ Rn corresponding to the observations in xt .

The data generating process can be described in terms of probability distributions. In
particular, we can represent the input observations and labels by corresponding random
variables X and Y that follow a probability distribution at time step t, commonly denoted
as

Pt(X ,Y ) = Pt(Y |X)Pt(X), (1.1)

where Pt(Y |X) is the conditional distribution of the target variable and Pt(X) is the
marginal distribution of the observations [108, 168, 64, 117, 45]. The probability dis-
tribution Pt(X ,Y ) is also called the active concept at time step t [168]. Typically, a
probability distribution is specified in terms of a probability mass function for discrete
random variables and in terms of a probability density function for continuous random
variables. However, the general notation of Eq. (1.1) is more commonly used in the
literature.

1.5.1 Concept Drift
In offline batch learning, the data generating process is generally assumed to be stationary
[117]. However, in data streams, the probability distribution Pt(X ,Y ) may change over
time. This phenomenon is called concept drift. Specifically, a concept drift between two
time steps t1 and t2 is defined as a change in the joint probability distribution:

Pt1(X ,Y ) ̸= Pt2(X ,Y ). (1.2)

Based on this general definition, we can distinguish two fundamental types of concept
drift: real concept drift and virtual concept drift [108, 168, 175, 64, 117, 45]. Real con-
cept drift, sometimes also called concept shift, corresponds to a drift of the conditional
distribution Pt(Y |X), while the marginal distribution Pt(X) remains stationary, i.e., for
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x1

x2

(a) Original data concept at
time step t1: Pt1(X ,Y ).

x2

x1

(b) Virtual concept drift be-
tween the time steps t1
(see subfigure (a)) and t2:
Pt1(X) ̸= Pt2(X).

x1

x2

(c) Real concept drift be-
tween the time steps t1
(see subfigure (a)) and t2:
Pt1(Y |X) ̸= Pt2(Y |X).

Figure 1.1: Virtual and Real Concept Drift. We illustrate the two fundamental types
of concept drift. This illustration is inspired by Gama et al. [64]. In the left subplot, we
show the original data concept, i.e., the probability distribution Pt1(X ,Y ). Specifically,
we depict two dimensional toy data with a binary target (indicated by green circles and
blue stars). The decision boundary is highlighted by a dashed line. In the center subplot,
we depict the active concept Pt2(X ,Y ) after a virtual drift. Virtual concept drift changes
the marginal distribution of the data, i.e., Pt1(X) ̸= Pt2(X), but does not affect the condi-
tional target distribution. Conversely, as the right hand subplot shows, real concept drift
changes the conditional target distribution Pt1(Y |X) ̸= Pt2(Y |X).

two time steps t1 and t2 we write

Pt1(Y |X) ̸= Pt2(Y |X). (1.3)

On the other hand, virtual concept drift describes a shift of the marginal distribution
Pt(X), i.e.,

Pt1(X) ̸= Pt2(X). (1.4)

Virtual drift leaves the conditional distribution Pt(Y |X) unaffected. An illustrative com-
parison of real and virtual concept drift is shown in Figure 1.1. In practice, we might
also observe a mixture of both types of concept drift, leading to a change in both the
conditional and marginal distribution [108].

We can further distinguish concept drift according to the characteristics of the tran-
sition between two concepts. While there exist extensive taxonomies of concept drift
[168], the most commonly mentioned types are sudden (or abrupt), incremental, grad-
ual and reoccuring concept drift [108, 168, 175, 64, 117]. A simple illustration of these
concept drift types was introduced by Gama et al. [64] and is shown in Figure 1.2.

Sudden (or abrupt) concept drift corresponds to an immediate transition from the old
to the new concept. Since the old concept becomes obsolete within a short period of time
(often after a single time step), sudden drift is usually the easiest to detect. At the same
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Figure 1.2: Types of Concept Drift. In addition to virtual and real concept drift, the
literature often further distinguishes between different types of drift. The most common
types are sudden, incremental, and gradual drift. We might also observe reoccuring
concepts. Above, we show the illustration of the different concept drift types from Gama
et al. [64], which is based on changes in the data mean. In practice, the true type of
concept drift is usually unknown. Indeed, since concept drift manifests itself in atypical
observations (compared to the ones seen so far), it is often difficult to distinguish concept
drift from outliers.

time, sudden drift requires a short adaptation time to avoid a dramatic deterioration in
predictive performance [117]. Incremental (or stepwise) concept drift describes a smooth
transition between two concepts. Incremental drift usually occurs over a longer period of
time, during which we observe several intermediate concepts [117, 64]. Incremental drift
is thus often more difficult to detect than sudden drift. Similarly, during a gradual concept
drift, the old and the new concept alternate within the transition period [117]. That is,
both concepts are temporarily active until the new concept eventually replaces the old
one [175]. Adjusting the predictive model during gradual drift can be difficult because
we need to learn and maintain information about both concepts. Finally, we may also
observe reocurring concepts. Such reocurrence can, but need not necessarily correspond
to a periodic event [175, 117]. Ideally, to deal with reocurring concepts, one would need
to memorize previous concepts and find an effective way to retrieve this information in
the future. In practice, however, information on obsolete concepts is usually discarded
for reasons of computational efficiency.

Webb et al. [168] proposed a more principled categorization of concept drift in terms
of quantitative measures. However, since the data generating distribution is unknown in
practice, the true type of concept drift usually remains unclear.

1.5.2 Common and Simplifying Assumptions

Real-world streaming processes are highly dynamic and therefore difficult to replicate in
all details. To simplify the development and testing of online machine learning methods,
one usually makes a number of assumptions. In the following, we briefly describe the
most important assumptions for our work.

As mentioned above, we consider a supervised setting. In particular, if not stated
otherwise, we assume a classification setting. That is, the random variable Y follows ei-
ther a binary or categorical distribution, thereby representing the class label. In practice,
labeling information might not be immediately available [62, 63, 8]. For example, in
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healthcare, the diagnosis corresponding to a vector of symptoms might not be available
for a few days. However, for simplicity, we assume that there is no delay of labels.

In practice, the number or proportion of classes may change over time [24]. Similarly,
the input feature space might be subject to temporal changes [141, 58]. For example,
when processing streaming text data, new words may appear in the future while old
words become irrelevant [114]. These phenomena are called concept evolution and fea-
ture evolution, respectively [85, 114]. However, in line with previous work, we assume
that both the set of available classes and the set of input features are stable.

In contrast to machine learning for time series data, online machine learning is mainly
concerned with heterogeneous feature sets and tabular data. In this context, we com-
monly assume the independence of observations drawn from the active concept [62, 8].
Although this independence assumption may be violated in practice, it has allowed for
effective online learning in many applications.
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Chapter 2

Uncertainty-Aware Online Feature
Selection and Concept Drift Detection
Online feature selection and concept drift detection are two important tasks in online
machine learning. While feature selection is a preprocessing technique used in many
scenarios, concept drift detection is unique to online learning. Both tasks have been
studied extensively over the years. However, there are still open questions, especially
regarding the stability and reliability of existing methods in both contexts. In this chapter,
we present the state of the art in online feature selection and concept drift detection. We
also take a more general look at common approaches to handle concept drift during
incremental training. We then introduce a novel probabilistic framework that enables
improved online feature selection and concept drift detection by taking into account the
uncertainty of the optimal model parameters. The contributions presented in this chapter
are based on the Papers 1 and 2.

2.1 Background on Online Feature Selection
Many real-world applications deal with high-dimensional data. High-dimensionality typ-
ically entails considerable memory consumption and computational cost for training a
machine learning model [26, 103]. Indeed, high-dimensional training data can lead to a
series of phenomena and problems that do not occur in a low-dimensional setting and are
called the curse of dimensionality [14]. Specifically, training data usually become sparse
in high-dimensional space, which in turn can lead to poor generalization ability of the
predictive model [26]. That is, predictive models trained on a high-dimensional feature
space tend to overfit if the number of training observations does not grow proportionally
[103]. To mitigate the effects of the curse of dimensionality, and thereby improve the
generalization and computational efficiency of machine learning methods, we can apply
dimensionality reduction techniques.

Feature selection and feature extraction are the most popular approaches for dimen-
sionality reduction. Feature extraction methods generate low-dimensional representa-
tions by transforming the original high-dimensional feature space [141, 103]. Principal
component analysis and matrix factorization techniques like singular value decomposi-
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(a) Relevant feature f1. (b) Redundant feature f2 given
feature f1.

(c) Irrelevant feature f3.

Figure 2.1: Important Feature Types During Feature Selection. Feature selection
methods aim to eliminate irrelevant and redundant features, while retaining all features
that are relevant for the prediction of the target [38]. Above, we depict a simple example
of the three general types of features that need to be considered for feature selection. The
blue and red markers indicate a binary target class. This illustration was taken from Li
et al. [103].

tion are widely used feature extraction methods [72]. Feature selection, on the other
hand, selects a subset of the original features [141, 103]. In particular, feature selection
aims to find a small subset of the original input features that contains enough informa-
tion about the target class to achieve high predictive performance [26]. Since feature
selection retains the original meaning of the input features, it generally provides better
interpretability [103, 141]. Therefore, we focus on feature selection in this thesis.

In general, feature selection models aim to identify relevant, i.e., discriminative, in-
put features and discard irrelevant and redundant ones. A feature is irrelevant for the
prediction, if it is conditionally independent of the target class [38]. Similarly, a feature
can be considered redundant if it correlates strongly with another input feature, thereby
providing similar discriminative information about the target. Typically, feature selec-
tion algorithms aim to avoid redundancies in the selected feature set [103]. However,
Guyon and Elisseeff [72] conducted a comprehensive analysis of the effects of feature
correlation, which shows potential benefits of including redundant features. A simple
illustration of the different types of features considered in feature selection was provided
by Li et al. [103] and is shown in Figure 2.1.

Evaluating all possible feature sets is not tractable. As a result, feature selection mod-
els cannot generally guarantee that the optimal (i.e., most predictive) feature set will be
selected [38]. Likewise, the optimal number of selected features is usually not known
and must therefore be specified by the user via a hyperparameter [103]. In practice, how-
ever, it is often difficult to optimize the number of selected features. If the set of selected
features is too small, relevant features could be wrongly discarded. If, on the other hand,
the set of selected features is too large, irrelevant features may still be used, which can
impair the predictive performance [103]. Most feature selection approaches comprise
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an auxiliary feature weighting or ranking procedure [72], which can help optimize the
size of the selected feature set. For example, the number of selected features can be set
dynamically by specifying a threshold for the feature weights obtained.

Feature selection has proven effective in mitigating the effects of high-dimensional
data in the stationary setting [72]. However, online feature selection has not received
the same level of attention in the past [26]. In data streams, feature selection is not
a preprocessing technique that is applied once to the entire training data, but must be
applied to every incoming streaming observation. In addition, the importance of the input
features may change over time due to concept drift, so we need to update the selected
features accordingly. In fact, changes in feature importance (also called feature drift)
directly affect the decision boundary and can thus be considered a form of real concept
drift [141]. If we fail to eliminate features that become irrelevant over time and include
new relevant features in their place, predictive performance generally suffers.

In the literature on online feature selection, different assumptions are made about the
streaming process [141]. In particular, we can distinguish between online feature se-
lection methods for data streams and feature streams. As described in our definition
from Section 1.5, a data stream consists of a series of time steps, where we receive a
new observation (or batch) at each time step. Moreover, we generally assume that the
feature space is stable, i.e., that the set of available input features is fixed. In contrast,
in a feature stream setting, we assume that new features become available over time,
while the sample of observations remains fixed [141, 103]. Based on this static sample,
feature stream methods determine whether a newly observed feature should be included
in the selected feature set and whether an old feature should be removed in its place
[103]. Many online feature selection methods are designed for the feature stream set-
ting [174, 169, 170, 102, 167, 134]. According to our definition (Section 1.5), however,
a streaming process is characterized by the gradual appearance of new observations.
Hence, we consider the more common data stream setting. Figure 2.2 illustrates the dif-
ference between both settings. Note that real-world applications may also comprise a
combination of data stream and feature stream [141].

In both the offline and online setting, we distinguish between three categories of fea-
ture selection methods: filters, wrappers, and embedded methods [141, 26, 72]. Intu-
itively, these categories are based on the relationship and interaction between the feature
selection model and the predictive model [26]. In particular, filter methods act indepen-
dently from the prediction [38]. They are typically based on simple statistical measures
(e.g., correlation). Wrapper methods use a predictive model to identify relevant features.
In general, wrappers aim to select the feature set that offers the highest improvement in
predictive performance. Embedded feature selection methods are most strongly entan-
gled with the predictive model. Here, feature selection is an inherent part of the training
procedure. In Section 2.1.1, we give a brief overview of popular online feature selection
methods in each category.

Aside from the discriminative power of the selected features, the stability of feature
sets has received attention in the past [72, 38, 93, 128]. In data streams, where the
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Figure 2.2: Online Feature Selection Settings. Online feature selection methods usually
adopt one of two stream processing settings [103, 141]. In the traditional data stream
setting (left subplot), new observations appear over time, while the set of features is
assumed to be stable. Conversely, in the feature stream setting (right subplot), novel
features may appear over time, while the data sample is assumed to be fixed. Above, the
green color indicates the dimension that is subject to a temporal change. In this thesis,
we focus on the more common data stream setting.

online predictive model is subject to change and uncertainty, the stability of the generated
feature set can have a strong impact on the interpretability and overall reliability of the
underlying model. In Section 2.1.2, we go into more detail about the importance of stable
feature sets.

Finally, more information about feature selection in general, and online feature selec-
tion in particular can be found in several surveys [38, 72, 103, 141, 103].

2.1.1 Popular Methods for Online Feature Selection

As mentioned above, feature selection models are usually divided into three categories
based on the degree of entanglement between feature selection and the training process
[26]. Accordingly, we introduce popular online filter, wrapper and embedded feature
selection models below.

Online Filter Methods

Filter methods for online feature selection are independent of the training process [141].
Instead, filters typically apply simple and efficient weighting strategies based on an
information-theoretic or statistical measure.

Katakis et al. [97] proposed an online feature selection filter for text processing. They
argued that each word (feature) can be ranked according to a cumulative statistic of
the frequency of occurrence of the word in each class. Specifically, they applied the
χ2 statistic to rank words. This approach can be transferred to a more general setting
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with arbitrary feature types. Accordingly, we can use the χ2 statistic to measure the co-
occurrence of a feature value and class, and thus quantify the relative importance of each
input feature.

The Fast Correlation-Based Filter (FCBF) is based on symmetrical uncertainty, a coef-
ficient that quantifies the dependence of features using the information gain normalized
by the entropy [171]. FCBF is applied in a sequential procedure to remove irrelevant and
redundant features. The original FCBF algorithm can also be used in a sliding window
approach (see Section 2.2.1), which was shown by Nguyen et al. [125]. In particular,
the authors proposed a Heterogeneous Ensemble with Feature Drift for Data Streams
(HEFT) that integrates ensemble learning and online feature selection based on FCBF.

The DXMiner is a holistic classification framework that includes a feature selection
component [114]. In particular, the authors proposed a predictive and an informative fea-
ture selection approach. The informative feature selection is an unsupervised approach
where features are selected according to their frequency in the current training batch. The
predictive feature selection, on the other hand, is similar to the filter method of Katakis
et al. [97], but uses a new selection criterion called deviation weight. Similar to the χ2

statistic, the deviation weight scales with the conditional frequency of a feature given the
class.

For most online filters, including the three methods presented above, we need to main-
tain frequency statistics over time, e.g., in a sliding window (see Section 2.2.1). The
performance of a filter depends heavily on whether these frequency statistics are repre-
sentative of the active data concept, which can be difficult to achieve. Filters also do
not take into account the model’s performance and uncertainty, which can reduce the
robustness and expressiveness of the selected features.

Online Wrapper Methods

Many online learning models maintain an internal representation of the importance of
each input feature. For example, linear models represent the input features by a vector of
weights. Wrapper methods use this model-inherent information to select features [141].

The online feature selection (OFS) algorithm is one of the best known wrapper meth-
ods [166]. OFS uses the weights of a Perceptron model trained by stochastic gradient
descent. Since the raw Perceptron weights are too unreliable for online feature selection,
Wang et al. [166] proposed a sparse projection approach. Specifically, OFS projects the
weight vector to an L2 ball to ensure the boundedness of the obtained feature weights.
OFS then selects the features with highest absolute weight.

Similarly, the Extremal Feature Selection (EFS) model uses the weights of a modified
balanced Winnow classifier [37]. EFS ranks the input features according to the absolute
difference between the positive and negative weights of the Winnow model. Surprisingly,
Carvalho and Cohen [37] found that the discriminative power of the obtained feature sets
can be improved by including also a small number of low-ranked features.

Linear models such as the Perceptron or Winnow algorithm are particularly adept for
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online feature selection due to their efficiency. In general, however, a wrapper could
also be implemented with a more complex model type, such as a neural network. For
example, the Cancelout approach introduces an additional feature selection layer after
the input layer of a neural network [28]. The nodes of the Cancelout layer are mapped
one-to-one to the nodes of the input layer. The network then automatically learns the
weights of input features, such that the activation of irrelevant features in the Cancelout
layer approaches zero. Although Cancelout is an offline approach, the algorithm could
generally be used in an online setting where the neural network is trained incrementally
(e.g., via stochastic gradient descent).

While many wrapper methods exploit the first order information of a predictive model,
Liu et al. [104] proposed an online feature selection method based on second order in-
formation. Their Adaptive Sparse Confidence Weighted (ASCW) algorithm uses an en-
semble of confidence-weighted linear learners [49] that consider feature correlations by
modeling a Gaussian distribution over the weights. According to Liu et al. [104], the
ASCW algorithm is particularly well-suited for online feature selection on imbalanced
targets, as it employs a cost-sensitive loss function.

Finally, there are also unsupervised wrapper methods, such as the Feature Selection on
Data Streams (FSDS) [87]. FSDS applies matrix sketching techniques to obtain a low-
rank approximation of incoming data. The low-rank matrix is continuously updated as
new observations arrive. Using a regularized linear model (e.g., Lasso or Ridge), FSDS
is able to generate feature weights from the current low-rank approximation at each time
step. Due to the use of matrix sketching techniques, the FSDS algorithm can be more
time-consuming than related wrapper methods.

Wrappers are usually associated with higher computational costs than filters, as they
require an incrementally updated predictive model. However, if the model is robust to
noise and adapts well to concept drift, the selected features of a wrapper can be much
more discriminative [141]. In general, the performance of a wrapper depends strongly
on the underlying predictive model. For example, if the weights of a linear model vary
greatly between time steps, the sets of selected features will be unstable. Yet, none of
the above methods except ASCW [104] takes into account the uncertainty of the model,
which could help to extract more stable and meaningful feature sets. While ASCW only
works for a specific linear model type, we generally aim for an online feature selection
framework that offers the same level of expressiveness but can be flexibly applied to
different (non-linear) model types depending on the application at hand.

Online Embedded Methods

Feature selection does not always have to be an isolated activity but can be embedded
in the training process [141]. Lasso and Ridge regression models are popular examples
of offline predictive models with embedded feature selection. In online learning, incre-
mental decision trees are the most popular models with embedded feature selection. In
an incremental decision tree, the set of selected features implicitly grows whenever a
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new feature is used for splitting. We discuss incremental decision trees in more detail in
Section 3.1.4.

The distinction between wrapper and embedded methods can sometimes be confusing.
In general, a wrapper exploits a predictive model for feature selection without using it for
the actual prediction. A separate predictive model is trained on the reduced feature set
in a second step. Embedded methods, on the other hand, use the same model for feature
selection and prediction.

One advantage of embedded feature selection is that the number of features is usually
determined automatically. Accordingly, there are fewer hyperparameters to optimize.
On the other hand, this gives us less control over the type of features selected.

2.1.2 Importance of Stable Feature Sets
As mentioned earlier, it is typically intractable to find the optimal set of features from
all possible combinations. Therefore, feature selection methods generally optimize the
selected features with respect to a heuristic, e.g., the empirical error or accuracy [38]. As
a result, there may be many possible combinations of features that all achieve the same
or similar performance – especially if the data set contains redundant features [72]. The
abundance of possible feature sets may lead to undesirable variations. However, high
variability in the selected features for samples drawn from the same data distribution
can lead to practical concerns about robustness, trustworthiness and overall reliability
[72, 38]. Feature selection methods should therefore aim to produce stable feature sets.
Stable feature sets reduce the computational cost of (re)training the model (especially
if feature selection is not embedded in the training process) and can help increase user
confidence in the prediction [93].

Algorithmic stability has been extensively studied in the context of predictive machine
learning [161, 31, 70, 74]. Here, stability describes the sensitivity of the model outcome
to variations in the input data. However, the stability of feature selection methods has not
received the same attention [38]. Kalousis et al. [93] describe the stability of a feature
selection algorithm as the sensitivity of the generated feature preferences to differences
in the training set drawn from the same data generating distribution. The term “feature
preferences” serves as a generalization of the possible outcomes of a feature selection
model, i.e., feature weights, a ranking, or a selected subset. In this thesis, we are mainly
concerned with subset selection, where feature weighting or ranking is often used as
an intermediate step. Accordingly, we use the term feature set stability (also known as
subset stability [128]) throughout our exposition.

The stability of feature sets is particularly important in data streams, which often have
a high degree of variation and noise. Since the selected features are updated at each time
step, high variability of the selected subset between time steps can lead to considerable
model retraining costs and reliability issues. Fortunately, the notion of feature set stabil-
ity can be directly applied to the online case. Specifically, we say that an online feature
selection model is stable if the feature subset obtained has low variability over time under
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a stationary data concept.
To quantify feature set stability, we require a similarity measure [93]. For example,

Kalousis et al. [93] proposed different correlation measures to quantify the similarity of
two sets of feature preferences. Later, Nogueira et al. [128] introduced a novel stability
measure for feature sets that is a generalization of many existing measures and has a
number of desirable properties. Although the stability measure of Nogueira et al. [128]
is specified for offline methods, it can be readily adopted for data streams. In Paper 1
(and again in Paper 6), we describe a corresponding implementation, which we repeat
below for the sake of convenience.

Based on the exposition of Nogueira et al. [128], let at ∈ {0,1}m be the active feature
vector at time step t, where m is the total number of features. Specifically, selected
features are represented by ones and unselected features are represented by zeros. We
can measure feature set stability at time step t for a sliding window of size w as:

FSSt,w = 1−
1
m ∑

m
j=1 s2

j
k
m

(
1− k

m

) , (2.1)

where k is the number of selected features specified by the user and s2
j =

w
w−1 p̂ j(1− p̂ j)

is the unbiased sample variance of the selection of feature j, with p̂ j =
1
w ∑

w−1
i=0 at−i, j.

Here, at−i, j denotes the j’th element of the active feature vector at time step t− i, i.e., it
denotes whether feature j was selected at time step t− i. Note that the feature set stability
measure decreases, if the total variability of the selected features ∑

m
j=1 s2

j increases. The
stability Eq. (2.1) is maximized if s2

j = 0 for all features j, i.e., if the selected feature
set remains stationary over the full length of the sliding window. Unfortunately, this
measure does not explicitly account for concept drift, where we would tolerate some
degree of variation in the feature set. However, as long as we lack a dedicated measure,
Eq. (2.1) provides a valuable indication of the stability of feature sets over time.

In general, online feature selection models should aim at providing both discrimina-
tive and stable feature sets [93]. However, the trade-off between stability and sufficient
flexibility to adapt to concept drift can be challenging and should receive more attention
[141].

2.2 Background on Concept Drift Handling

Concept drift (see Section 1.5) is a fundamental characteristic of data streams that dis-
tinguishes online machine learning from batch learning. In particular, concept drift can
render previously learned data distributions and model parameters obsolete. As a result,
concept drift can have a large impact on the predictive quality and interpretability of
online learning approaches.

Concept drift requires us to “forget” outdated information while we continue to learn
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new information about the current data generating concept [64]. In general, we can deal
with concept drift in a passive way, by continuously updating the model, or in an active
way, by explicitly detecting concept drift and making appropriate model adjustments
[45]. In the following, we outline common mechanisms for passive model adaptation
and present popular methods for active concept drift detection.

2.2.1 Mechanisms for Passive Model Adaptation
To some extent, any online learning model that is incrementally updated will naturally
adapt to new data generating concepts over time [64]. However, predictive performance
in the presence of concept drift – and in particular sudden concept drift – can usually be
improved by including an explicit forgetting mechanism in the model design. Most pas-
sive forgetting mechanisms either apply performance-based re-evaluation of old model
components or use a windowing scheme to keep up with recent training observations.
Other passive adaptation strategies include instance selection and feature engineering or
manipulation [175]. However, these strategies are out of the scope of this work.

Dynamic Re-Evaluation of Model Components

Dynamic re-evaluation of model components is an effective mechanism to adapt to con-
cept drift. In general, the goal is to identify parts of the online learning model that no
longer contribute to the overall performance and dynamically delete or replace them. Re-
evaluation mechanisms are usually integrated into the incremental update procedure and
use either the historical predictive performance [176] or a heuristic gain measure (e.g.,
as in the incremental decision trees [111] introduced in Section 3.1.4).

Ensemble models (see Section 3.1.5) are particularly well suited for such re-evaluations
[45]. Indeed, ensembles allow the isolated addition and deletion of a weak (base) learner
without affecting the remaining components. If the weak learners are diverse, this can be
a practical advantage as concept drift often only affects parts of the input space. The
adaptability of an ensemble is usually achieved through dynamic weighting (fusion)
schemes [175]. In this context, the weights represent the confidence in the weak learners
and control their influence on the prediction of future observations. In Section 3.1, we
introduce popular adaptive online learning models and ensembles.

Windowing Schemes

Time windows are a simple and popular approach to obtain a representation of the active
concept at any point in time. Many online learning techniques integrate time windows
to use current observations more effectively [88, 18]. Time windows are also a key
component of a large number of active concept drift detection approaches (see Section
2.2.2). Although windowing schemes have proven themselves in practice, they introduce
additional hyperparameters and increase memory consumption. A simple illustration of
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(a) Sliding window, i.e., a win-
dow of recent observations with
fixed or adaptive [17] size.

(b) Landmark window, i.e., a
window of all observations start-
ing from a landmark point.

(c) Decayed window, i.e., a grad-
ual forgetting of old observations
by means of decaying weights.

Figure 2.3: Popular Windowing Schemes. Windowing schemes are a popular mech-
anism for passive model adaptation in the presence of concept drift. Indeed, they are
a straight-forward approach to “forgetting” outdated information in online learning.
Above, we depict illustrations by Bahri et al. [8] for three of the most common win-
dowing schemes.

common windowing schemes was introduced by Bahri et al. [8] and is shown in Figure
2.3. We summarize the different windowing schemes below.

Fixed-size sliding windows are one of the most frequently used schemes. A sliding
window stores recent streaming observations according to the first-in-first-out (FIFO)
principle [64, 8]. In this way, old observations are gradually replaced by new ones.
Choosing an appropriate size for the sliding window can be difficult in practice. If the
window size is too large, the window might contain outdated information long after a
concept drift, which in turn can lead to performance deterioration [126]. Conversely, if
the window size is too small, one might discard information that is still valid. Indeed, a
small window size may lead to models with high variance and overfitting [125].

To overcome the difficulty of selecting an appropriate window size, Bifet and Gavaldà
[17] proposed the Adaptive Windowing (ADWIN) method. ADWIN manages a variable-
length window of recent observations. In a first step, new streaming observations are
added to the window as they become available. The window size is then automatically
adjusted if the window contains two sub-windows that exhibit distinct enough averages.
Specifically, if the average value of the older sub-window differs significantly from the
average of the newer sub-window, the old sub-window can be removed, reducing the
overall size of the sliding window. Accordingly, ADWIN grows the window as long
as the active concept is stationary and shrinks the window by removing outdated obser-
vations as soon as a change becomes apparent. In other words, ADWIN automatically
adjusts the sliding window size to the current rate of change in the data. A shrinking AD-
WIN window can therefore also be considered as an indicator of concept drift [17, 58].

An alternative windowing scheme is the landmark window [8]. A landmark window
stores all streaming observations after a specified time step (the landmark). Indeed, the
landmark window continues to grow until the landmark is reset. Resetting the landmark
deletes all previously stored observations. Consequently, resetting the landmark means
that we are temporarily relying on a relatively small set of recent observations, which

20



2.2 Background on Concept Drift Handling

could affect the robustness of our model. For this reason, the landmark is sometimes
positioned at the first time step and never reset, creating a window that contains the
entire data stream [126]. Obviously, this approach is infeasible for realistic, large-scale
streaming applications.

Both the sliding window and the landmark window correspond to a mechanism of
abrupt forgetting [64]. In particular, each observation within the window has the same
importance. That is, the weight of old observations in the window does not diminish
over time. However, as soon as an observation falls out of the window, it abruptly loses
its importance. This abrupt behavior might affect the performance of the online learning
model – in particular if the window is small.

Decayed windows, also called damped or fading windows, provide a more gradual
decay of importance [8, 126, 64]. Decayed windows assign weights to each streaming
observation that scale proportionally to their age. Specifically, the weight of old and
possibly outdated observations is automatically reduced over time by a fading function.
If the weight of an observation falls below a threshold, the observation may be removed
altogether [8]. The choice of the fading factor, i.e., the degree by which the weight of
old observations deteriorates, can be difficult in practice. Note that the decayed window-
ing scheme is also closely related to the well-known Exponentially Weighted Moving
Average (EWMA).

The tilted time window is a another, but less common windowing scheme [126, 58].
A tilted time window stores observations at different granularities depending on their
age. Methodologically, this approach lies somewhere between a sliding window and a
decayed window [126]. Similar to these schemes, the tilted time window follows the
intuition that old observations can be stored with coarse granularity, while more recent
observations should be stored with finer granularity. In this way, the tilted time window
aims to provide a memory efficient representation of the entire data stream.

Online sampling approaches are an alternative to the classical windowing schemes
presented above [64]. Reservoir sampling [164] is the most common approach to obtain
a representative sample from a data stream. In contrast to windowing schemes, reser-
voir sampling produces an unbiased sample. Each streaming observation is randomly
included in the reservoir with uniform probability. In turn, a randomly chosen obser-
vation is removed from the reservoir to maintain the specified sample size. Sampling
techniques, while providing an effective way to summarize statistics from data streams,
may not be suitable for certain applications such as anomaly or extreme value detection
[58, 64]. Since sampling methods are not relevant to our work, we do not go into further
detail.

2.2.2 Popular Methods for Active Concept Drift Detection
Passive adaptation strategies (see Section 2.2.1) allow us to adjust the online learning
model continuously or periodically. Alternatively, many online learning frameworks use
dedicated methods to actively detect concept drift. Generally, these strategies involve
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re-training the online learning model (or parts of it) when a concept drift is explicitly
detected [64, 175]. Active concept drift detection often works well in the presence of
sudden concept drift, which requires an immediate – and typically extensive – adjustment
of the online learning model [45].

Reliable concept drift detection is usually difficult to achieve. In particular, we need
to be able to distinguish concept drift from noise, which manifests itself in similar ways
in the data and in the model. Therefore, most drift detection models are very sensitive to
the configuration of their hyperparameters. However, active drift detection can provide
additional insights into the latent dynamics of the data stream and the behavior of the
model. It can therefore also be a tool to improve the overall interpretability of online
learning.

Lu et al. [108] introduced a comprehensive taxonomy of concept drift detection meth-
ods. Accordingly, concept drift detection can be distinguished according to whether it
is based on the error rate, the data distribution or a combination of different criteria us-
ing multiple hypothesis testing. Below, we briefly outline each category and introduce
popular implementations.

Error Rate-Based Drift Detection

Error rate-based drift detection is the largest category of active concept drift detection
methods [108]. These methods follow a simple intuition: In general, the predictive error
of an online learning model can be expected to decrease as long as the model is optimized
with respect to a stationary data concept [61, 162]. However, as soon as concept drift
changes the data generating distribution, the error usually increases because the model
has not yet been optimized with respect to the new data concept. A (significant) increase
in the error is therefore an indication of concept drift. This principle can also be applied
to other performance estimates such as accuracy [69].

The adaptive windowing method ADWIN [17], described in Section 2.2.1, can be used
as an error rate-based drift detector. ADWIN automatically reduces its size if it identifies
subwindows with significantly different means. Accordingly, the length of an ADWIN
window over the observed errors would decrease if the mean error changes significantly.
This change in window size can in turn be used to detect a concept drift.

The Cumulative Sum (CUSUM) and the Page-Hinkley test are two memory-less error
rate-based drift detection methods [23]. Both tests are originally based on the expositions
of Page [131] and have been adopted for online learning [23, 118, 21, 69]. Intuitively,
these tests attempt to detect concept drift through deviations from the mean error over
time.

Let et be the error at time step t and let ēt =
1
t ∑

t
i=0 ei be the mean error up to the given

time step. Moreover, let zt = et − ēt be the difference between the current error and the
mean error. To identify concept drift, CUSUM calculates the following test statistic at
time step t:

gt = max(0,gt−1 + zt−δ ), (2.2)
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where δ is a hyperparameter that controls the sensitivity of the test [23]. The test statistic
is initialized with zero at time step t = 0. If gt > h for a user-defined threshold h, CUSUM
issues a drift alert and resets the test statistic to gt = 0. In other words, if concept drift
increases the error et , it temporarily increases zt (as the mean error ēt does not change
as quickly), which ultimately increases the test statistic gt of the CUSUM method. The
Page-Hinkley test operates in a similar fashion, using the following test statistic [23]:

gt = gt−1 + zt−δ (2.3)

Given the current minimal statistic, i.e., gmin
t = min(gmin

t−1,gt), the Page-Hinkley method
issues an alert if gt − gmin

t > h. Note that there exist alternative implementations of the
Page-Hinkley test that use a decay hyperparameter α ∈ [0,1] to calculate the test statistic
gt = αgt−1 + zt−δ [118]. In this case, the corresponding test is gt > h.

The Drift Detection Method (DDM) proposed by Gama et al. [61] is another well-
known model. In DDM, the error rate is described by the probability of misclassifying
an observation at time step t, denoted pt . The corresponding standard deviation is given
by st =

√
pt(1− pt)/t. Similar to the Page-Hinkley test, DDM stores the minimal statis-

tics pmin and smin over time, which are updated whenever pt + st reaches a new mini-
mum. DDM issues an intermediate warning at pt + st ≥ pmin + 2smin (corresponding to
a confidence level of 95%) and a drift alert at pt + st ≥ pmin +3smin (corresponding to a
confidence level of 99%) [61]. The warning can be used to prepare a retraining of the
predictive model. Specifically, once the warning level is reached, we may start saving all
future observations, which corresponds to a landmark windowing scheme (see Section
2.2.1) [108]. If a drift is detected, we can use these recent observations to retrain the
model [61]. If the error decreases after the warning without reaching the drift threshold
first, we can assume a false alarm. In this case, we would discard the stored observations
and continue training the old model.

There are many other and more advanced methods for detecting concept drifts based
on error rates. In general, these methods are very similar to the ones described above, but
differ in the way the error is accumulated over time, what test statistics are calculated,
or what threshold is applied for issuing a warning and drift alarm. Below is a concise
summary of some of the most popular methods.

The DDM algorithm [61] has inspired a variety of follow-up work. The Early Drift
Detection Method (EDDM) is an early adaptation of DDM [6]. EDDM is based on the
distance between errors, i.e., the number of streaming observations between two errors.
Another adaptation is the Reactive Drift Detection Method (RDDM) [12]. RDDM resets
the statistics of the DDM method, if the data concept is stationary for a long time, i.e.,
if we observed many observations without issuing an alert. In this way, RDDM aims to
obtain more recent error statistics and thus react to concept drift faster. DDM was also
used for local drift detection, by training a separate drift detector at every inner node of
an incremental decision tree [59]. Another method similar to DDM was proposed by
Ross et al. [145]. The authors used exponentially weighted moving averaging (EWMA)
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to obtain a more recent estimate of the error rate. The corresponding algorithm is called
ECDD (EWMA for Concept Drift Detection).

Drift detection methods also often use probabilistic inequalities, which allow more
principled statistical tests and performance guarantees. For example, Hoeffding’s in-
equality, which we discuss in more detail in Section 3.1.4, is used by the Hoeffding
Drift Detection Method (HDDM) [56] and the Fast Hoeffding Drift Detection Method
(FHDDM) [135]. The Adaptive Sliding Window Based Drift Detection Method (ADDM)
also applies Hoeffding’s inequality to dynamically determine the size of a sliding win-
dow [50]. ADDM then monitors the entropy in the window to detect concept drift. In
contrast to the above methods, the McDiarmid Drift Detection Method (MDDM) uses
the more general McDiarmid’s inequality [137].

Instead of using a single time window, one may also compare error rates across two
time windows. The Statistical Test of Equal Proportions Detection (STEPD) compares
the accuracy in a window of recent observations with the accuracy in the overall land-
mark window from the beginning of the data stream [127]. Cabral and Barros [35] pro-
posed a variation of the STEPD method using Fisher’s exact test. Similarly, the Paired
Learners (PL) method uses two models, a “stable” learning model that is trained on all
observations and a “reactive” learning model that is trained on a sliding window of recent
observations [5]. PL uses the difference between both models to detect concept drift.

A different approach was proposed by Harel et al. [75], who apply permutation tests to
estimate the distribution of the loss, which in turn is used for concept drift detection. The
method of Sobhani and Beigy [153] processes streaming observations batch-wise and
detects concept drift by comparing the labels of close data points in successive batches.
And finally, How Tan et al. [86] presented a semi-supervised approach to concept drift
detection that measures the diffusion of density estimates of the posterior class probabil-
ities.

Error rate-based drift detection methods are usually very efficient. They are also
model-agnostic, i.e., they can be applied to any type of model. However, for reliable
error rate-based drift detection, label (target) information must be continuously avail-
able and the online learning model must be robust. In particular, if the data concept is
stationary, the predictive model must provide stable error scores to avoid false alarms.

The above summary of error rate-based concept drift detection methods is not exhaus-
tive. For more information on related methods, we refer to the surveys of Gonçalves
et al. [69], Lu et al. [108] and Gama et al. [64].

Data Distribution-Based Drift Detection

One may detect concept drift directly from changes in the (estimated) distribution of
streaming observations. For this purpose, data distribution-based methods typically use
distance measures to quantify the dissimilarity between historical and current observa-
tions [108].

An early distribution-based drift detection approach was introduced by Kifer et al.
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[98]. The proposed method compares the observations in a sliding window of recent
observations with a reference (landmark) window of historical observations. Specifi-
cally, concept drift is detected by testing whether the samples in the two windows were
drawn from different distributions. The reference window is reset when a concept drift
is detected. Kifer et al. [98] introduced a new family of distance functions that provide
sensible guarantees. To detect different types of concept drift, they used several pairs of
windows with different sizes.

A similar window-based strategy was used by Dasu et al. [42]. Here, the authors pro-
posed an information-theoretic approach that uses the Kullback-Leibler divergence to
measure the distance between empirical distributions in two sliding windows. In partic-
ular, they apply bootstrapping to obtain a set of distance estimates and thereby determine
statistical significance. Similar to Kifer et al. [98], Dasu et al. [42] argued that we can
account for different types of concept drift by using multiple windows of different sizes.

Data distribution-based methods can often provide information about the location of
concept drift in the input space. However, they generally involve higher computational
costs than the error rate-based models presented above. Additional methods and infor-
mation on data distribution-based concept drift detection can be found in the survey of
Lu et al. [108].

Drift Detection With Multiple Hypothesis Tests

Concept drift detection methods typically use a single test statistic, e.g., based on the
error rate. In practice, however, this can lead to problems with reliability. For example,
if the target class is imbalanced, the error rate is not a meaningful indicator of changes in
model performance [165]. Concept drift detection methods based on multiple hypotheses
aim to compensate for such weaknesses. In these approaches, concept drift is detected by
a structured examination of multiple characteristics, trading computational efficiency for
more reliable results. In general, one can distinguish between approaches with parallel
and hierarchical multiple hypothesis testing [108].

Alippi and Roveri [3] proposed an extension of the CUSUM model [131, 23] for paral-
lel multiple hypothesis testing. Assuming that the streaming observations are identically
and independently distributed, the authors apply the central limit theorem to model the
data stream by a set of statistics (i.e., the mean and variance of a normal distribution).
These statistics are then extended to a larger feature set, including new features gener-
ated by the pairwise correlation of existing ones. This high-dimensional feature vector
is again reduced by a Principal Component Analysis. Finally, Alippi and Roveri [3] use
the resulting features in an extended multidimensional CUSUM test.

The Linear Four Rates (LFR) algorithm is another concept drift detection model based
on parallel multiple hypothesis testing [165]. LFR detects concept drift based on four
independent tests on the characteristic rates (TP, TN, FP, FN) of a confusion matrix.
Compared to simpler error rate-based drift detection, the performance of LFR is not
affected by class imbalances.
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The idea of hierarchical multiple hypothesis testing is to validate the original drift
detection in an additional layer [108]. Specifically, the hierarchical approach aims to
make concept drift detection more reliable by filtering out false alarms of the first layer
model. Yu et al. [172] proposed a hierarchical hypothesis testing framework, which they
combined with the LFR model [165] to detect concept drift. At the first layer, they use
LFR to detect a potential concept drift. The second layer confirms or rejects the potential
concept drift based on a more elaborate permutation test. If the second layer test declares
the drift detection a false alarm, the LFR model statistics are reset. If, on the other hand,
the second layer confirms the concept drift, the predictive model can be updated or re-
trained accordingly.

As before, we refer to the overview of Lu et al. [108] for more information on concept
drift detection based on multiple hypothesis testing.

2.3 An Incremental Framework for Modeling Parameter
Uncertainty

Online learning models often have to deal with noisy or erroneous inputs, as new obser-
vations are generated in real time (e.g., social media posts or sensor signals) and thorough
data cleansing is not possible. In addition, the model can only access a small number of
observations at each time step and must account for concept drifts. As a result, updates to
the model can vary greatly over time, which in turn can lead to considerable uncertainty
in the optimized parameters.

As shown in Section 2.1 and 2.2, a large number of existing methods for online feature
selection and concept drift detection use an underlying online learning model. In par-
ticular, this involves online wrapper methods (Section 2.1.1) and error rate-based drift
detection models (Section 2.2.2). To obtain stable feature sets and to avoid false drift
alarms, we require robust model behavior. Accordingly, uncertain model parameters can
cause problems for both online feature selection and concept drift detection if they are not
taken into account. On the other hand, if we were able to quantify the uncertainty of the
model, we might use this information to develop more powerful and reliable algorithms.

Based on this intuition, we propose a simple framework for estimating parameter un-
certainty over time (Paper 1). Let θ = [θ1, . . . ,θk, . . . ,θK] be the parameter vector of
an online learning model. Variations of the parameters θ are our best estimate of the
uncertainty of the model. In order to quantify this uncertainty, we can treat the model
parameters θ as random variables, which are parameterized by ψ (sufficient statistics).
Given a data stream up until time step T , we aim to find the set of distribution parameters
Ψ∗T that maximize the log-likelihood L:

Ψ
∗
T = argmax

ΨT

L(ΨT ,XT ,YT ) = argmax
ΨT

T

∑
t=1

logP(yt |xt ,ψt), (2.4)
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where
P(yt |xt ,ψt) =

∫
P(yt |xt ,θt)P(θt |ψt) dθt , (2.5)

is the marginal likelihood at time step t. Generally, we cannot solve Eq. (2.4) analyti-
cally. Instead, we may incrementally update the distribution parameters ψ over time. To
this end, we can use a gradient-based optimization strategy such as stochastic gradient
descent (SGD). SGD is an efficient and popular incremental optimization algorithm that
is well suited for evolving data streams. In particular, if the data distribution is station-
ary, SGD converges almost surely to a local optimum. At the same time, if concept drift
makes a previously learned parameter distribution obsolete, the gradient step at time step
t resembles, in the worst case, an optimization with random prior parameters ψt . Since
we aim to maximize the log-likelihood, we ascent on the gradient. Accordingly, the
distribution parameters at time step t can be updated as

ψt+1 = ψt +
τ

P(yt |xt ,ψt)
∇ψt P(yt |xt ,ψt), (2.6)

where the hyperparameter τ specifies the learning rate. In practice, we may also perform
multiple gradient steps per time step, which can lead to faster convergence.

The above framework leaves the predictive model and the distribution of its parameters
unspecified. It is therefore a very flexible solution. For an effective implementation of
the framework, we may use independent, normally distributed model parameters (Paper
1). Accordingly, let D(ψk) = N (µk,σk) be the distribution of the parameter θk, where
µk is the mean and σk is the standard deviation. Treating the parameters as indepen-
dent has computational advantages and often leads to good results, as we show in Paper
1 and 2 in the context of online feature selection and concept drift detection. Besides,
the normal distribution is found in various natural phenomena and has valuable prop-
erties that simplify calculations. In fact, for Generalized Linear Models with normally
distributed weights, we can obtain a closed form solution for the gradients of µt and σt
in Eq. (2.6) (see Paper 1). Similarly, we can obtain effective implementations of the
proposed framework for deep neural networks and Soft Decision Trees [57, 91], using
Monte Carlo sampling and the reparameterization trick (see Paper 1). If the parameter
distributions are treated as independent, the framework can generally also easily handle
changing parameterizations of the model. That is, we may delete and add parameters
over time, allowing the framework to adapt to changing model complexity.

Although it is a straightforward approach, the framework presented above can be very
powerful in practice. Indeed, it enables two novel approaches to online feature selection
and concept drift detection.
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2.3.1 FIRES - Stable Online Feature Selection

Online feature selection is an effective mechanism for improving predictive quality and
interpretability in high-dimensional data streams. To learn from new observations and
adapt to concept drifts, we need to update the set of selected features over time. Ideally,
however, we only want to alter the selected features when the importance of the input
features for the prediction has actually changed. At all other times, e.g., after marginal
(local) updates of the model parameters, the selected features should remain stable (see
Section 2.1.2). Therefore, in order to obtain both discriminative and stable feature sets,
we aim to select the input features that offer the best trade-off between high importance
and low uncertainty.

As mentioned earlier, the parameters of an online learning model can provide a straight-
forward quantification of the importance and uncertainty of each input feature. The close
link between input features and model parameters is most evident in linear models where
there is a one-to-one mapping between features and parameters. For the sake of illustra-
tion, we thus consider a linear model below. However, in Paper 1 we describe how our
approach can also be applied to neural networks and Soft Decision Trees [57, 91], where
there is a one-to-many relationship between features and parameters.

According to the framework presented in Section 2.3, the distribution of a model pa-
rameter θ j contains information about the importance and uncertainty of the correspond-
ing input feature. In particular, for independent normally distributed model parameters,
the mean µ j indicates importance and the standard deviation σ j indicates uncertainty.
On this basis, we present the Fast, Interpretable and Robust Feature Evaluation and Se-
lection (FIRES). FIRES weights input features in a trade-off between importance and
uncertainty according to the following objective:

argmax
ωT

T

∑
t=1

( m

∑
j=1

ωt jµ
2
t j

︸ ︷︷ ︸
importance

−λs

m

∑
j=1

ωt jσ
2
t j

︸ ︷︷ ︸
uncertainty

−λr

m

∑
j=1

ω
2
t j

︸ ︷︷ ︸
regularizer

)

=argmax
ωT

T

∑
t=1

m

∑
j=1

ωt j(µ
2
t j−λsσ

2
t j−λrωt j) (2.7)

The additional regularization term prevents arbitrarily large feature weights. With the
hyperparameters λs and λr we can control the influence of the uncertainty penalty and
the regularization term. In particular, by increasing λs, we can reduce the optimal weight
of features with high uncertainty. To calculate the weight of a particular feature j at time
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step t, we evaluate the corresponding derivative with respect to Eq. (2.7):

∂

∂ωt j
= µ

2
t j−λsσ

2
t j−2λrωt j

!
= 0

⇔ −2λrωt j =−µ
2
t j +λsσ

2
t j

⇔ ω
∗
t j =

1
2λr

(
µ

2
t j−λsσ

2
t j
)

(2.8)

According to Eq. (2.8), features with low importance and high uncertainty receive the
smallest weights for the final feature selection, and vice versa. In this way, we can jointly
increase the discriminative power and stability of the selected features over time.

FIRES belongs to the group of wrapper methods (Section 2.1.1), and is one of the
first approaches whose feature weights satisfy three meaningful properties, such as a
consistent ranking of features for stable data concepts (see Paper 1). As a result, FIRES is
able to generate stable and discriminative feature sets in a variety of applications. In our
experiments, FIRES implemented on a Probit model outperformed existing approaches
in terms of predictive performance, computation time and feature set stability (Eq. (2.1)).

2.3.2 ERICS - Global and Partial Concept Drift Detection

To achieve high discriminative power over time, online learning models need to adapt to
concept drift. In this context, active concept drift detection methods (Section 2.2.2) can
enable more targeted adjustments while providing additional information about the data
generating process. However, existing drift detection methods often only consider the
predictive outcome (e.g., the error), but not the uncertainty of the model.

As before, we argue that concept drift detection can benefit from taking model uncer-
tainty into account. Accordingly, let θt be the parameter vector of the model at time step
t. Since the parameters are updated incrementally with new observations, the likelihood
of the parameters θt can usually be considered a good approximation to the true con-
ditional target distribution Pt(Y |X), i.e., Pt(Y |X) ≈ P(Y |X ,θt). In this sense, the model
parameters θt represent our most current information about the data generating concept
at time step t. Moreover, (drastic) changes of the optimal model parameters are a clear in-
dication of concept drift. If we treat the model parameters as random variables according
to the framework presented in Section 2.3, we can associate concept drift with a change
of the optimal parameter distributions. Specifically, we may represent real concept drift
between two time steps t1 and t2 by a difference in the marginal likelihood (Paper 2):

P(Y |X ,ψt1) ̸= P(Y |X ,ψt2)

⇔ |P(Y |X ,ψt1)−P(Y |X ,ψt2)|> 0

⇔
∣∣∣
∫

P(Y |X ,θ)
[
P(θ |ψt1)−P(θ |ψt2)

]
dθ

∣∣∣> 0. (2.9)
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Accordingly, concept drift is reflected in different distribution parameters ψt1 and ψt2 ,
e.g., in different means or variances for normally distributed model parameters.

Based on this intuition, we present a novel approach for the Effective and Robust
Identification of Concept Shift (ERICS) (Paper 2). ERICS uses information-theoretic
measures to detect concept drift based on changes in the distributional uncertainty of the
optimal model parameters. Specifically, we may replace the integral in Eq. (2.9) with
a proportional expression based on the differential entropy h and the Kullbach-Leibler
(KL) divergence DKL to rephrase the basic drift detection scheme as follows (see Paper
2): ∣∣h[P(θ |ψt2)]−h[P(θ |ψt1)]︸ ︷︷ ︸

∆Uncertainty

+DKL[P(θ |ψt2)∥P(θ |ψt1)]︸ ︷︷ ︸
∆Distribution

∣∣> 0 (2.10)

Accordingly, concept drift manifests itself in two intuitive ways: as a change in entropy
(i.e., distributional uncertainty) and as a divergence between the optimal parameter dis-
tributions at the respective time steps. As mentioned in Section 2.3, when optimizing
parameters with SGD, we know that the algorithm almost surely converges to a local
optimum if the data generating distribution is stationary. Thus, as long as there is no
concept drift, the difference in entropy and the KL divergence should decrease over time.
Accordingly, for concept drift detection, we are generally only interested in an increase
of both measures.

We may use Eq. (2.10) to continuously check for concept drift at all successive time
steps. However, attempting to detect concept drift based on the parameter distributions
in two isolated time steps may not be robust in practice. To mitigate noise and achieve
more reliable drift detection, we can instead investigate the moving average of Eq. (2.10)
in a fixed-size sliding window (Paper 2). Moreover, like FIRES (Section 2.3.1), ERICS
can be implemented with different parameter distributions and predictive models. For
example, as before, we can use a linear model with normally distributed parameters,
which allows us to calculate the differential entropy and KL divergence in closed form.

If we treat the model parameters as independent random variables, we can also apply
ERICS to each parameter individually. This allows us to detect partial (i.e., feature-wise)
concept drift. In particular, for linear models, concept drift at a parameter directly indi-
cates partial drift of the corresponding input feature. For larger models such as neural
networks or Soft Decision Trees, we can apply the simple parameter aggregation tech-
niques proposed in Paper 1 to achieve partial drift detection.

ERICS cannot be clearly assigned to one of the existing categories of concept drift
detection methods (Section 2.2.2). It is most closely related to the error rate-based drift
detectors. However, ERICS comes with the advantage that it does not need to use the
predictive outcome, but directly examines the parameterization of the model, which is
much more sensitive to subtle and early changes in the data generating distribution. In
this way, we can detect concept drift earlier and more reliably, as we have shown in
experiments (Paper 2).
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2.4 Discussion and Future Work
In this chapter, we presented new approaches for online feature selection and concept
drift detection – two of the most challenging tasks in online learning. In the correspond-
ing papers (Paper 1 and 2), we studied the limitations of previous work and highlighted
the practical advantages of FIRES and ERICS. In the following, we briefly summarize
our main findings and open questions.

The simple probabilistic framework underlying FIRES and ERICS is an effective ap-
proach to quantifying parameter uncertainty over time. Apart from its use in FIRES and
ERICS, the framework provides an intuitive mechanism for detecting uncertain parts of
the model. In this way, we can enable more informed training or debugging and con-
tribute to better overall interpretability.

However, the performance of both FIRES and ERICS is closely linked to the predic-
tive model via the proposed framework. If the model is not able to represent the data
generating concept well, the parameter distributions are usually not very meaningful.
Therefore, we need to ensure that our framework is used in combination with reliable
online learning methods. The implementations of FIRES and ERICS with a linear model
have performed well in experiments (see Paper 1 and 2). In fact, we did not find a consid-
erable advantage in extracting importance and uncertainty estimates from the parameters
of more complex models. In general, the predictive power and flexibility of complex
nonlinear models could be better exploited, if we used more advanced strategies for ag-
gregating parameter statistics. However, this flexibility comes at a drastically increased
computational cost. Thus, given the strong performance and high efficiency of the simple
linear implementations of FIRES and ERICS in a variety of applications, we argue that
a simple scheme should usually be sufficient.

Like most online feature selection approaches, FIRES requires the user to specify the
number of selected features. However, as mentioned earlier, it is usually difficult to
choose an appropriate feature set size. In the future, one could therefore experiment
with thresholds applied to the obtained feature weight vector to determine the number of
features more dynamically. Alternatively, one might replace the squared ℓ2 regularization
term in Eq. (2.7) with a different penalty (e.g., the ℓ1 norm) to enforce sparser feature
weights.

Although FIRES is a wrapper method, it could also be embedded in an online learning
framework because of its efficiency and flexibility. In particular, we could use FIRES
to reduce the set of eligible split candidates at each node of an incremental decision tree
or to reduce the dimensionality of linear models learned at the leaf nodes (see Section
3.1.4). Besides, in Paper 1, we showed that FIRES is able to identify salient areas in the
images of the MNIST data set. In the future, one might extend this analysis and exploit
the proposed framework as an effective and principled global explanation mechanism for
evolving data streams.

Concept drift detection methods like ERICS are often sensitive to the configuration of
the hyperparameters. In general, there is no particular configuration that works well for
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all applications. Therefore, it can often make sense to re-evaluate the hyperparameter
configuration of a drift detector at frequent intervals. In the future, one could try reduce
the number of adjustable hyperparameters in ERICS, e.g., by replacing the fixed size
sliding windows with an adaptive parameter-free windowing scheme like ADWIN [17]
(see Section 2.2.1).

While we demonstrated the ability of ERICS to detect concept drifts in experiments,
we have not yet embedded ERICS in an online learning model. Therefore, future work
should investigate how ERICS changes the predictive performance of popular online
learning methods that rely on active concept drift detection (e.g., adaptive versions of the
Hoeffding Tree [18] presented in Section 3.1.4).
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Chapter 3

Reliable and Interpretable Online
Classification

Classification is one of the most common applications of offline and online machine
learning. The goal of a classifier is to predict the correct label among two or more pos-
sible target classes for a given observation. For example, in spam detection, we aim to
classify an email as either genuine or spam. In general, a classifier should offer high
discriminative power, while trying to reduce time and memory requirements. In addi-
tion, classifiers should be interpretable – especially when they are used for high stakes
decisions, e.g., in healthcare or credit scoring. Interpretability is not only required by
regulations such as the European Union’s General Data Protection Regulation (GDPR),
but also helps build confidence in the model and predictions. In this chapter, we give an
overview of the current state of the art in online classification. In this context, we also
briefly address the interpretability of online learning models, which has been largely ne-
glected in the past. Finally, we introduce the Dynamic Model Tree, a novel incremental
decision tree framework that has valuable properties to achieve a more interpretable and
thus reliable classification in data streams. The contributions of this chapter are based on
Paper 4.

3.1 Background on Online Classification

Similar to concept drift detection and online feature selection methods (Chapter 2), on-
line classification models are trained incrementally to learn from new observations and
adjust to concept drift [106]. In particular, an online classifier should be able to learn
new data concepts while retaining previously learned information that is still relevant
[67, 106]. This trade-off can be difficult, as (sudden) concept drift may require a quick
adjustment of the classifier, while wrong and extensive retraining often affects the pre-
dictive performance [67, 106].

Online classification models should adhere to the general requirements mentioned in
the introduction (Section 1.1). Similarly, previous work has established a set of important
properties for online classifiers [47, 48, 8], the most relevant of which we repeat below:
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Figure 3.1: Taxonomy of Online Classifiers. Bahri et al. [8] distinguished five cate-
gories of online classifiers. Above, we show a corresponding illustration that closely fol-
lows the original work [8]. We also name a popular framework for each category (green),
which is described below. The focus of this thesis is on tree-based online classifiers such
as the Hoeffding Tree [46], as this is the most popular group of online classifiers with
strong benefits in terms of flexibility and efficiency.

• Observations should be processed in small constant time, using a limited amount
of memory.

• As a consequence of the above, an online classifier should deal with a single pass
over incoming observations.

• Besides, an online classifier should be able to perform predictions at any time.

• Finally, an online classifier should be able to handle both periods of stationary
concept and concept drift.

In general, there are two alternative approaches for processing streaming data [8, 142].
In the batch-incremental approach, the classifier is updated as soon as a new batch of
observations (of a given size) is available. In the instance-incremental approach, the
classifier learns from each observation as it arrives. Since instance-incremental process-
ing is more time and memory efficient, it is more in line with the desiderata mentioned
above. Indeed, most of the models discussed in this chapter use instance-incremental
processing.

Bahri et al. [8] proposed a simple taxonomy of online classifiers that we adopt in this
thesis (see Figure 3.1). The focus of our work is on tree-based online classifiers. This
well-explored group of online learning models has been shown to offer a good trade-off
between efficient computation, effective adaptation to concept drift, and strong predic-
tive performance. Tree-based classifiers are also very flexible, e.g., they can be easily
combined into an ensemble. Nevertheless, we also briefly present popular models from
the remaining categories. A more detailed summary of online classification methods and
the state of the art can be found in recent surveys [126, 45, 106].
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3.1.1 Naı̈ve Bayes
Naı̈ve Bayes is a well-known probabilistic classifier that applies Bayes’ theorem to in-
fer the posterior class probabilities from given observations. To do this efficiently, the
classifier “naı̈vely” assumes that the input features are independent given the target class.

A Naı̈ve Bayes classifier is trained incrementally and can therefore be applied to data
streams out of the box. The original algorithm can also be extended by sketching tech-
niques to maintain approximate class frequencies for more efficiency in the online en-
vironment [7]. However, Naı̈ve Bayes does not incorporate an explicit mechanism to
handle concept drift. To be able to adjust to (sudden) concept drift, the Naı̈ve Bayes clas-
sifier should thus be combined with an active drift detection model (see Section 2.2.2)
[7].

3.1.2 K-Nearest Neighbors
The k-nearest neighbors (kNN) model is one of the best-known and most intuitive clas-
sifiers. Given a test observation, kNN identifies the k closest observations according to
some distance metric (e.g., the Euclidean distance). The classifier then predicts the la-
bel of the test observation by majority voting among the labels of these k neighboring
observations.

The kNN classifier is a “lazy learner”, because it does not need to train parameters.
Instead, kNN requires access to a set of observations that serve as possible neighbors.
Since it would be infeasible to store all streaming observations over time, online adap-
tations of kNN typically use sliding windows (Section 2.2.1), which also helps to adjust
to concept drift [8]. Indeed, simple implementations of the kNN classifier show surpris-
ingly good performance on common benchmark streaming data sets [142]. However,
kNN does not provide information about the importance of each input feature. Besides,
as already mentioned, choosing the right size of sliding window can be difficult. Bifet
et al. [22] showed that there is typically a trade-off between small windows with high ef-
ficiency and large windows with high predictive power. As a compromise, we might use
a dual-memory strategy, where a short-term and a long-term memory represent current
and past data generating concepts respectively [105].

3.1.3 Perceptron and Deep Neural Networks
Neural networks are a powerful solution for various classification tasks. However, mod-
ern deep learning techniques tend to be computationally intensive. For example, while
recurrent neural networks have been successfully used in other dynamic applications like
speech processing or time series forecasting, they are generally too complex to meet the
strict memory and real-time requirements of a data stream [8].

In the online learning domain, we therefore usually only find very simple neural net-
work architectures like the Perceptron. The Perceptron algorithm is a single-layer neural
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network that can be used for online classification. Compared to the traditional imple-
mentation of the Perceptron, the online version does not use multiple training iterations
(epochs) over the data. Instead, the weights are updated once for each incoming obser-
vation with stochastic gradient descent [8].

Still, there are also approaches to using advanced neural networks for machine learn-
ing in evolving data streams. For example, Sahoo et al. [149] introduced a scalable
deep neural network architecture. Specifically, they proposed to add a classifier to every
hidden layer and combine the individual outputs for the final prediction. The weights
of the individual classifiers are learned incrementally, so that the weighting of the lower-
performing classifiers decreases over time. In this way, the influence of each hidden layer
is dynamically adjusted. Likewise, Pratama et al. [139] presented a randomized neural
network that can scale to both instance-incremental and batch-incremental online learn-
ing. Finally, there are also approaches to combine deep learning with online learning
techniques such as concept drift detection to improve training efficiency [53].

Apart from efficiency problems, however, neural networks have other weaknesses in
the context of data streams [8]. Specifically, neural networks are often sensitive to the
configuration of hyperparameters and therefore usually require extensive tuning, which
is infeasible in an online application. In addition, neural networks often have disadvan-
tages on heterogeneous tabular data [29], which is the most common data type in online
learning. Therefore, neural networks are rarely used for online classification [8].

3.1.4 Tree-Based Online Classifiers

Most state of the art online learning frameworks are based on incrementally trained de-
cision trees. Decision trees are efficient, intuitive, and usually deliver good predictive
performance. Moreover, through the effective use of pruning, decision trees allow to
discard outdated information more easily than linear models, neighborhood-based ap-
proaches or neural networks. In the following, we introduce the two incremental decision
tree frameworks that are relevant to our work.

Hoeffding Tree

The Hoeffding Tree, first introduced by Domingos and Hulten [46], is the most popular
incremental decision tree framework. Like all online learning methods, Hoeffding Trees
do not have access to a full training data set at any point in time. Instead, Hoeffding Trees
apply Hoeffding’s inequality to determine at which point there is sufficient evidence (i.e.,
a sufficiently large number of streaming observations) to split a leaf node and thereby
grow the tree.

In line with Domingos and Hulten [46], let r be a random variable in the range R and
let r̄ be the empirical mean of that random variable over n independent observations.
According to Hoeffding’s inequality, the true mean of the variable is at least r̄− ε with
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probability 1−δ , where δ is a hyperparameter and

ε =

√
R2 ln(1/δ )

2n
. (3.1)

Let then G be a heuristic gain measure (e.g., the Information Gain) used to compare
split candidates (i.e., feature-value pairs that may be used to separate observations at
a node). According to Domingos and Hulten [46], Hoeffding’s inequality allows us to
determine the time step at which the gain of a split candidate a is significantly greater
than the gain of a second candidate b. Indeed, Hoeffding’s inequality ensures that with
probability 1−δ the candidate a chosen after n observations would also be optimal after
infinitely many observations. Formally, if Ḡa− Ḡb > ε after n observations, then a is
the best split candidate with probability 1− δ [46]. Therefore, we would split the node
on the candidate a and continue to grow the tree. Domingos and Hulten [46] show that
a Hoeffding Tree trained in this way guarantees a high asymptotic similarity with the
corresponding batch tree trained on the full data set.

The Very Fast Decision Tree (VFDT) is an early implementation of the Hoeffding
Tree [46]. In addition to the core algorithm outlined above, VFDT applies a number of
extensions to improve efficiency and predictive power. For example, VFDT introduces a
threshold to break ties between split candidates with similar gains. Moreover, the mem-
ory usage of the algorithm is reduced by deleting split candidates whose gain diverges
too far from the currently optimal gain. More details about the VFDT algorithm can be
found in the corresponding paper.

A major disadvantage of the VFDT algorithm is that it does not take concept drift into
account. In fact, Domingos and Hulten [46] assumed that the data generating process is
stationary. Accordingly, split decisions made by the VFDT may no longer be optimal in
the future due to concept drift, making old nodes and branches of the tree obsolete. To
overcome this problem, Hulten et al. [88] introduced an adaptive version of the VFDT,
called CVFDT, which revisits old split decisions. CVFDT keeps node statistics consis-
tent with a sliding window of recent observations (Section 2.2.1). In this way, CVFDT
is able to periodically revisit and replace outdated splits. Specifically, CVFDT begins to
grow an alternate subtree at a node, once there is sufficient evidence that another split
candidate might be more suitable. If the new subtree outperforms the old one, CVFDT
replaces the obsolete branch.

Later, Bifet and Gavaldà [18] generalized this idea to the Hoeffding Window Tree
(HWT). A HWT is any incremental decision tree that uses Hoeffding’s inequality and
a sliding window. For example, a HWT can be implemented with ADWIN [17] (see
Section 2.2.1). If ADWIN detects concept drift at a node, the HWT starts growing an
alternate subtree, which may ultimately replace the old branch [18]. According to Bifet
and Gavaldà [18], the HWT constructs and replaces subtress faster than the CVFDT,
using fewer hyperparameters. The Hoeffding Adaptive Tree (HAT) is an extension of the
general HWT framework [18]. In HAT, the frequency statistics at the nodes are replaced
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by simple estimators (e.g., an exponentially weighted moving average or ADWIN). As
a result, HAT can work without a fixed window size and is therefore more memory-
efficient than HWT. Both HAT and HWT guarantee that the resulting tree is equivalent
to the VFDT, if no concept drift is detected.

The Hoeffding Tree and its early implementations have been improved over the years.
For the sake of brevity, we do not discuss each paper in full detail, but give a brief
summary of some of the most important work.

The Hoeffding Anytime Tree (HATT) is less rigorous than earlier Hoeffding Trees
regarding initial split decisions [111]. In particular, HATT applies a split as soon as it
is beneficial in terms of predictive performance, even if it is not significantly better than
the second-best split candidate. This initial split decision will be revisited and possibly
replaced in the future. The Extremely Fast Decision Tree (EFDT) is a popular imple-
mentation of the HATT.

The basic VFDT algorithm may grow indefinitely, which can compromise its effi-
ciency and interpretability. As mentioned above, sliding window schemes and concept
drift detection methods are the most popular approaches to avoid an increasingly com-
plex tree. However, there are other attempts to control the complexity of a Hoeffding
Tree. For example, the approach of Losing et al. [107] monitors the class distribution
of previous splits to approximate the minimum time to reach the Hoeffding bound. In
this way, certain (unlikely) splits can be avoided in the first place. Alternatively, one
can introduce regularization to reduce the complexity of the Hoeffding Tree [9, 10]. In
particular, Barddal and Enembreck [10] proposed to reduce the tree depth by penalizing
splits on features that had not been used before. At the same time, their method allows
the reuse of a previously used feature only if the gain exceeds the maximum previous
gain for that feature in the current branch [10].

In general, a Hoeffding Tree uses majority voting at the leaf nodes to obtain pre-
dictions. However, the leaves of Hoeffding Trees have also been augmented with sim-
ple predictive models to improve classification performance. For example, the VFDTc
algorithm uses Naı̈ve Bayes models (Section 3.1.1) [60]. Similarly, Bifet et al. [20]
extended the Hoeffding Tree with Perceptron models (Section 3.1.3). Although such
extensions usually improve predictive performance, Holmes et al. [83] also discovered
situations in which a majority voting scheme proved more discriminative. In particular,
they showed that noisy inputs lower the performance of a Naı̈ve Bayes classifier. As a
solution, Holmes et al. [83] suggested switching between majority voting and prediction
by a simple model, depending on the current performance of the two approaches.

Limitations and Modifications of the Hoeffding Tree. Hoeffding Trees are intuitive,
efficient and transparent. Besides, they are supported by a variety of online learning
packages (see Section 5.1) and are thus easily accessible to a broad community. Still, the
general Hoeffding Tree framework has been repeatedly questioned. In the following, we
summarize some of its fundamental limitations.
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Rutkowski et al. [147] claimed that Hoeffding’s inequality is often too restrictive in
practice, as it requires inputs that are numeric and can be expressed as a sum of inde-
pendent variables. As a solution, the Hoeffing bound may be replaced with a different
criterion, e.g., based on the more general McDiarmid’s inequality [147]. The same au-
thors also proposed a specific split criterion for the Gini gain function [148].

However, Matuszyk et al. [115] showed that existing implementations often also vio-
late the independence assumption that is shared by both Hoeffding’s and McDiarmid’s
inequality. Specifically, since the gain measurements are usually averaged over a sliding
window, the gains in successive time steps relate to an overlapping set of observations.
Therefore, the obtained gains are not independent. Matuszyk et al. [115] presented a
simple workaround by adjusting the threshold according to Eq. (3.1). In addition, they
proposed the Quality Gain function, which measures the possible improvement of a new
leaf node over its parent in terms of accuracy. Unlike existing gain functions such as
the Information Gain, Quality Gain can be safely combined with Hoeffding’s inequality
[115].

Although modern implementations of the Hoeffding Tree perform well in a variety
of online applications, they need to overcome a number of limitations of the basic al-
gorithm. Indeed, Manapragada et al. [112] found that most implementations of the Ho-
effding Tree make a number of (unspecified) design decisions to improve performance.
As mentioned above, these include mechanisms to adjust for concept drift, achieve the-
oretically sound split decisions, and improve predictive performance at the leaf nodes.
However, many of these modifications are costly and may ultimately affect the inter-
pretability and reliability of the Hoeffding Tree in practical applications.

Model Tree

As mentioned before, Hoeffding Trees have been augmented with simple models like
Naı̈ve Bayes [60] or Perceptron [20] to improve predictive performance. The Model Tree
framework generalizes this idea. A Model Tree is a decision tree that maintains simple
– typically linear – models at the leaf (and sometimes also inner) nodes. Through the
hierarchical combination of these weak learners, Model Trees are able to approximate
complex and non-linear functions [138], while remaining highly transparent. Model
Trees have been successfully used in offline batch learning scenarios [140, 33]. However,
Model Trees for online learning have received less attention.

Potts and Sammut [138] were one of the first to present an incremental training and
pruning procedure for Model Trees. The authors introduced a new test statistic to eval-
uate whether all observations at a given node were generated by a single linear model
(null hypothesis). Accordingly, in their approach a node is split if the null hypothesis can
be rejected. Likewise, if the null hypothesis at an inner node can no longer be rejected
after obtaining new training observations, the corresponding subtree is considered obso-
lete and pruned. At test time, each leaf node of the Model Tree generates a prediction.
The predictions are then smoothly aggregated in a bottom-up approach, so that predic-
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tions that reach an inner node are weighted according to the distance of the predicted
observation from the split value [138].

Compared to the Hoeffding Tree, the incremental Model Tree proposed by Potts and
Sammut [138] is much more costly. Ikonomovska et al. [89] presented a more efficient al-
ternative called Fast Incremental Model Tree with Concept Drift Detection (FIMT-DD).
FIMT-DD uses the Standard Deviation Reduction measure as a gain criterion. Unlike the
approach of Potts and Sammut [138], FIMT-DD does not exploit the simple models at
the leaves (they used Perceptrons) to identify good split candidates. Rather, FIMT-DD
adopts many ideas from the Hoeffding Tree framework. In particular, FIMT-DD applies
Hoeffding’s inequality to determine the right time for splitting. Moreover, FIMT-DD
uses the Page-Hinkley test [131] (see Section 2.2) to detect concept drift and replace ob-
solete nodes and branches. Consequently, we argue that FIMT-DD could be considered
both a Model Tree and a Hoeffding Tree.

The incremental Model Trees of Potts and Sammut [138] and Ikonomovska et al.
[89] were introduced as a solution for online regression problems. However, because
of the flexibility added by the simple models, Model Trees may often adapt better to the
active data concept than standard Hoeffding Trees. Therefore, Model Trees should be
investigated as an alternative for online classification.

3.1.5 Ensembles for Online Classification

Ensembles are an effective approach to combine the strengths of multiple weak learners
for better predictions [8]. In practice, ensembles are often more powerful and versatile
than stand-alone classifiers. Indeed, tree-based ensemble techniques such as XGBoost
[40] still dominate machine learning on tabular data in the stationary setting [29].

There are several challenges when building an ensemble. In particular, one needs to
select appropriate weak models. In general, the weak models should complement each
other to form a diverse set of classifiers [100, 67]. In addition, one must decide how to
combine the results of the individual weak learners, e.g., through a meaningful voting
rule [67].

Ensembles offer distinct benefits for online machine learning. They are easily scal-
able by adding or deleting weak learners. Moreover, ensembles provide straightforward
mechanisms for dealing with concept drift and outdated information. Specifically, we
can dynamically change the voting rule over time to give less weight to low-performing
weak learners [101]. Alternatively, we can periodically update or remove old weak learn-
ers and add new ones based on recent observations [8, 101]. In this context, many online
ensembles apply passive adaptation strategies [100]. Yet, some ensembles also use active
drift detection (Section 2.2.2) to identify outdated weak learners [66, 68, 173].

In the following, we briefly summarize popular online ensemble models. Most of these
ensembles are implemented with tree-based online classifiers such as the Hoeffding Tree
(see Section 3.1.4).
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Oza [130] adapted the popular bagging and boosting techniques for machine learning
on data streams. Traditional bagging approaches aim to construct a diverse ensemble by
training the weak learners on different samples drawn with replacement from the train-
ing data. Oza [130] showed that the probability distribution of the number of times an
observation is drawn converges to a Poisson(λ = 1) distribution. Accordingly, in online
bagging, each streaming observation should be used k∼ Poisson(λ = 1) times to update
a weak learner. This simulation of sampling with replacement using the Poisson distribu-
tion can also be used for online boosting. Generally, boosting ensembles combine weak
learners in a sequential manner, so that observations misclassified in one weak learner
are given higher weight in the subsequent learner. In the online boosting approach, the
weight of misclassified observations can be adjusted by increasing the λ -parameter of
the Poisson distribution. In this way, Oza [130] translated the popular AdaBoost [55]
algorithm to the online case. A possible disadvantage of online boosting is that the train-
ing weights of new observations depend on the current performance of the ensemble.
Therefore, depending on the order of streaming observations and the behavior of the un-
derlying distribution, the training process and overall performance of an online boosting
ensemble may change.

The basic online bagging and boosting approaches of Oza [130] have been improved
and extended several times. The Leveraging Bagging algorithm aims to increase predic-
tive performance of online bagging by using stronger randomization [19]. Specifically,
Leveraging Bagging increases the λ -parameter of the Poisson distribution to further ran-
domize the training data of each weak learner. In addition, the algorithm randomizes the
output using error-correcting output codes, a technique that converts multi-class classi-
fication problems into a set of binary classification problems. Similarly, Gomes et al.
[68] combined online bagging with streaming random patches to add randomization and
thus increase the diversity of the weak learners. Moreover, Wang et al. [166] applied
cost-sensitive ensemble techniques to improve the performance of online bagging and
boosting in the presence of imbalances. Finally, Montiel et al. [119] introduced an on-
line version of the eXtreme Gradient Boosting (XGBoost) algorithm [40], which is one
of the most powerful and widely used machine learning models.

Random forests are another popular ensemble technique. Like bagging, random forests
combine multiple weak learners, in this case decision trees, trained on different samples
of the original data. In addition to standard bagging, a random forest allows only a small
random subset of features to be considered for splitting at each node. In this way, the
diversity of the weak learners is further increased. The Adaptive Random Forest (ARF)
is an online adaptation of this general approach [66]. The ARF uses the same sampling
strategy as online bagging [130]. In addition, the ARF incorporates an active drift detec-
tion method such as ADWIN [17] or Page-Hinkley [131] (Section 2.2.2). Specifically,
when the drift detector of a weak learner issues a warning, the ARF starts training an
alternate decision tree. In this way, the ARF can immediately replace an outdated weak
learner as soon as a concept drift is detected.

The Hoeffding Tree (Section 3.1.4) is often used as a weak model type in online en-
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sembles. However, its asymptotic convergence guarantees actually restrict the usefulness
of the Hoeffding Tree as a diverse (unstable) weak learner [113, 68]. In this context, dy-
namic versions of the Hoeffding Tree with lower short-term stability such as the EFDT
[111] are more suitable. Indeed, using EFDT as a weak learner can improve the perfor-
mance of many of the ensemble techniques presented above [113].

Likewise, online ensembles can be constructed with weak model types that are not
based on decision trees. For example, the DXMiner [114] that we discussed in the con-
text of online feature selection (Section 2.1.1) uses nearest neighbor models. Similarly,
the HEFT approach [125] (also introduced in Section 2.1.1) was combined with online
Naı̈ve Bayes as weak learners. Even neural networks have already been used as weak
learners in an online ensemble [65].

Ensembles have become an extremely popular solution for online classification. How-
ever, ensemble techniques are inherently more complex than stand-alone classifiers. The
resource consumption can be reduced through distributed computing and parallelization
[8, 67], but the high complexity mitigates the interpretability of ensembles. That is, by
combining the outputs of a dynamic set of weak learners, predictions of an online en-
semble become more difficult to understand [67]. Krawczyk et al. [100] summarized
and categorized online ensemble approaches according to different criteria. Similarly,
Gomes et al. [67] proposed an extensive taxonomy of online ensembles, which we rec-
ommend for further reference.

3.2 On the Interpretability of Online Learning Methods
The term “interpretability” describes how well the inner workings of a model can be
understood by a human. Accordingly, interpretability is highly subjective [51, 146]. To
assess the interpretability of a machine learning model, we therefore usually resort to
heuristic measures of complexity [15]. For example, the interpretability of a decision
tree is often represented by the tree depth (local interpretability) or the number of nodes
and leaves (global interpretability) [122]. Yet, it can be challenging to compare the
complexity of different types of models [15]. In general, the fewer parameters a model
uses in the prediction, the more interpretable it can be considered.

Surprisingly, interpretability in online learning has not received much attention in the
past. In general, however, we can adopt the heuristic understanding of interpretability
described above. Accordingly, we may say that an online learning model is interpretable
if it uses a small constant number of parameters over time. This applies, for example,
to linear models such as Naı̈ve Bayes or the Perceptron (Section 3.1). However, most
modern online learning models do not have a fixed number of parameters, but change
their complexity over time.

The popular Hoeffding Tree framework is subject to considerable limitations that re-
strict its interpretability (see Section 3.1.4). In particular, the basic Hoeffding Tree con-
tains no inherent mechanism for adjusting to concept drift. Accordingly, Hoeffding Trees
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would grow indefinitely (see early implementations, e.g., VFDT [46]) without using ex-
plicit mechanisms to prune obsolete branches. However, most extensions of the Hoeffd-
ing Tree, such as active drift detection methods (see Section 2.2), are chosen heuristically
and typically increase complexity again.

In general, the complexity of online learning methods is dynamic. Indeed, complex-
ity can often change suddenly as the model adapts to concept drift. Unfortunately, it
is still unclear how changes in complexity, e.g., due to pruning, additional ensemble
components or adaptive window sizes, affect the interpretability of online learning mod-
els. There is no common understanding of good interpretability in evolving data streams.
However, given the public’s increasing sensitivity to interpretable and fair machine learn-
ing, interpretability should play a greater role in the development of online learning
methods. Specifically, we argue that there is a strong demand for a new and inherently
interpretable online classification framework to replace the state of the art Hoeffding
Trees.

3.3 Dynamic Model Tree
Existing and powerful online classifiers can exhibit low interpretability in practice. For
example, Hoeffding Trees and tree-based ensembles (Section 3.1) often rely on heuristic
gain functions or increase in complexity over time. As a result, the inner workings of
these models can become less comprehensible. In this section, we present the Dynamic
Model Tree (Paper 4), a novel online learning framework that combines the efficiency
and extensibility of existing methods with greater flexibility regarding concept drift and
stronger overall interpretability.

The Dynamic Model Tree (DMT) is based on the Model Tree framework presented
in Section 3.1.4. Unlike previous Model Trees for data streams [138, 89], the DMT
maintains simple predictive models at both the inner and leaf nodes. These simple mod-
els allow us to find new split candidates, identify outdated splits, and make predictions.
Therefore, we need to update the simple models over time. We can represent each node
of the DMT by a set of time indices corresponding to observations that passed through
that node. Let St ⊆ {1, . . . , t} be such a set of time indices. Accordingly, given a node
represented by St , XSt and YSt denote the corresponding observations and labels, and ΘSt

the parameters of the simple model. Our goal is to optimize the model parameters with
respect to a loss function L(·)≥ 0:

Θ
∗
St
= argmin

ΘSt

L(ΘSt ,YSt ,XSt )

= argmin
ΘSt

∑
t∈St

L(θt ,Yt ,Xt) (3.2)

We train the model parameters incrementally over time. In particular, we may use
stochastic gradient descent, where θt−1 serves as the prior parameter for the optimization
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at time step t. Based on Eq. (3.2), we update the simple model of a node whenever it
receives a new observation.

Now, instead of using heuristic gain functions to identify split candidates, the simple
models allow us to select candidates based on the estimated loss. To this end, we intro-
duce new and node-specific gain functions. Suppose we are at a leaf node of the DMT
represented by the set St . We look for the split candidate that would offer the greatest
improvement in terms of the current loss. Let Ct ⊆ St be the set of time steps represent-
ing the left child of a potential split and let C̄t = St\Ct be the set representing the right
child. In other words, Ct and C̄t correspond to the observations in St that would have
been assigned to a potential left and right child node, respectively. On this basis, we can
express the ideal split candidate at a leaf node as follows:

C∗t = argmax
Ct

GSt ,Ct , with

GSt ,Ct = L(ΘSt ,YSt ,XSt )−L(ΘCt ,YCt ,XCt )−L(ΘC̄t
,YC̄t

,XC̄t
), (3.3)

where L(ΘCt ,YCt ,XCt ) is the loss of the possible left child and L(ΘC̄t
,YC̄t

,XC̄t
) is the loss

of the possible right child. According to Eq. (3.3), we would split the leaf node whenever
there is a candidate that allows us to reduce the current loss.

We can define similar gain functions to re-evaluate the existing splits at the inner
nodes of the DMT. As before, let It be a set of time indices representing an inner node.
Each inner node is the root of a subtree (branch) of the DMT. Hence, to re-evaluate an
existing split, we must check whether the current loss can be reduced by removing the
corresponding subtree. Specifically, we can either make the inner node a leaf or replace
it with a new inner node and two corresponding children. We propose the following two
gain functions:

GIt ,Ct = ∑
Jt⊆It

L(ΘJt ,YJt ,XJt )−L(ΘCt ,YCt ,XCt )−L(ΘC̄t
,YC̄t

,XC̄t
), (3.4)

GIt = ∑
Jt⊆It

L(ΘJt ,YJt ,XJt )−L(ΘIt ,YIt ,XIt ), (3.5)

where each L(ΘJt ,YJt ,XJt ) denotes the loss at one leaf of the subtree and L(ΘIt ,YIt ,XIt )
is the loss at the current inner node. Accordingly, Eq. (3.4) measures the gain when we
replace the current split with a new split (and thus replace the current subtree with a new
subtree containing only two leaf nodes). Conversely, Eq. (3.5) corresponds to the gain
when we make the current inner node a leaf node. In practice, we calculate both gains
and choose the adjustment that brings the greater loss reduction (or larger gain).

To improve the training efficiency of the DMT, we incorporate the gradient-based al-
gorithm of Broelemann and Kasneci [33], which allows us to approximate the candidate
loss L(ΘCt ,YCt ,XCt ) and L(ΘC̄t

,YC̄t
,XC̄t

) without training corresponding simple models.
In this way, we can consider a large number of split candidates without risking compu-
tational overload. In addition, to improve the robustness of split and prune decisions, we
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introduce a threshold for the gain functions. Our threshold is based on the Akaike Infor-
mation Criterion and can be dynamically adjusted to control the sensitivity and response
time of the DMT.

The proposed framework can be used with different simple model types and loss func-
tions, making it a flexible solution for various online applications. The DMT also adheres
to two sensible properties that enable more meaningful and interpretable updates (see Pa-
per 4). In particular, unlike previous work, the DMT guarantees that nodes and branches
that no longer contribute to the overall loss are pruned. Consequently, the DMT achieves
low complexity and adjusts to concept drift without using heuristic measures or separate
drift detection models. In experiments, the DMT was able to outperform existing classi-
fiers – especially in the presence of concept drift – while remaining much shallower than
state of the art Hoeffding Trees (Paper 4).

3.4 Discussion and Future Work
In this chapter, we presented some of the most well-known frameworks for online clas-
sification and discussed their limitations – especially in terms of interpretability. In a
corresponding publication (Paper 4), we introduced the Dynamic Model Tree (DMT), a
novel and powerful online learning framework. In the following, we briefly summarize
important results and point to future work.

The DMT is one of the first online learning frameworks to explicitly address inter-
pretability in data streams. In this context, the DMT eliminates some of the most fun-
damental limitations of existing incremental decision trees. These include heuristic gain
functions, active concept drift detection methods, and invalid applications of Hoeffing’s
inequality (see the limitations in Section 3.1.4). As a result, the DMT requires a fraction
of the complexity of existing models, while delivering state of the art predictive quality.
In fact, in our experiments, a stand-alone DMT was able to outperform an online ensem-
ble of Hoeffding Trees (Section 3.1). In the future, it could also be interesting to evaluate
the predictive performance of an ensemble of DMTs.

The DMT is extremely flexible. By switching the simple model or the loss function,
the proposed framework can be used for both online classification and regression. While
we have demonstrated the performance of the DMT as a classifier, we have not yet im-
plemented it for online regression. In any case, the performance of the DMT depends
heavily on the simple models. If the simple models are not robust or discriminative, the
split and prune decisions will suffer. We implemented the DMT with simple linear mod-
els (logit and multinomial logit), which worked well in our experiments. In particular,
we found that our implementation has advantages when there are linear relationships in
the data. In the future, however, one could experiment with different simple models or
optimization techniques (e.g., SGD with momentum).

Additionally, one might extend the DMT with the probabilistic framework presented in
Section 2.3. To be precise, we could treat the parameters of the simple models as random
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variables. In this way, we would obtain a quantification of the importance and uncertainty
of input features that could serve as an explanatory mechanism on different hierarchies.
Also, we could apply FIRES (Section 2.3.1) to select important features. In this way, we
could reduce the number of eligible split candidates at each node, which in turn would
improve the efficiency of the DMT. Accordingly, we believe that a combination of the
frameworks presented in Chapter 2 and 3 could lead to more efficient, interpretable and
reliable online machine learning than before.
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Chapter 4

Efficient and Effective Local
Explainability in Data Streams

Automated decisions can have considerable practical implications, e.g., in job applica-
tion systems, university admission platforms, or credit scoring. In these contexts, it can
be crucial that we are able to mitigate bias [129] and ensure fair and transparent deci-
sions. Otherwise, users may lose confidence in the underlying models and techniques, as
the infamous case of racial bias in risk assessment of defendants has shown [4]. There-
fore, automated decisions should be transparent and explainable when used in highly
sensitive applications. In fact, the demand for transparency in AI is also reflected in new
legislation [74]. Accordingly, it is becoming increasingly important to be able to describe
the output and inner workings of a machine learning model in an understandable way.

In Chapter 3, we discussed the development of inherently interpretable online classi-
fiers. Here, we focus on explanation techniques. While the terms interpretability and
explainability are often used synonymously, we consider interpretability to be an in-
herent property of the predictive model, whereas explainability is typically achieved by
post-hoc and external methods. Like interpretable online learning, explanation methods
for evolving data streams have not received much attention in the past. Indeed, it is often
unclear how common explanation methods can be applied to online learning models and
how the generated explanations change in the face of incremental model updates and
concept drift.

In this chapter, we look at local explanation techniques in data streams, in particular
the popular family of feature attribution methods. We summarize important properties of
local attributions and demonstrate their behavior under incremental model updates and
concept drift. On this basis, we present a new change detection framework that enables
more efficient and temporally coherent attributions in data streams. Finally, we discuss
the choice of a meaningful attribution baseline, which is an important hyperparameter of
many feature attribution methods. This chapter is based on the results presented in Paper
3 and 5.
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4.1 Background on Local Attribution-Based
Explainability

Many real-world machine learning tasks cannot be adequately handled with simple (e.g.,
linear) models, but require more powerful and complex techniques. State of the art mod-
els based on deep neural networks or ensembles achieve high predictive quality in a vari-
ety of scenarios, but are not inherently interpretable. In this context, explanation methods
help to achieve the level of transparency required in critical applications. While explain-
ability has been thoroughly studied in the stationary setting [116, 146, 51, 39, 71, 36], it
remains largely unexplored in the data stream domain.

In general, post-hoc explanation methods can deliver explainability either at the global
or local level [51]. While global explanations describe the general behavior of the model,
local explanations refer to a specific observation (e.g., a customer) [71]. Local feature at-
tribution methods are among the best-known and most widely used post-hoc explanation
techniques. They quantify the local importance of each input feature for the prediction.
In general, we can distinguish between model-agnostic and model-specific attribution
methods. Model-specific approaches exploit the functional form of the predictive model,
e.g., to calculate attributions more efficiently. For example, there exists a variety of at-
tribution methods for decision trees [110] and neural networks [96, 54, 151, 152, 158].
On the other hand, model-agnostic approaches [143, 109] are applicable to any kind of
complex model. Therefore, they can also be used to explain complex online learning
models such as very deep Hoeffding Trees or online ensembles (Section 3.1).

There are several high-quality surveys that summarize popular local attribution meth-
ods, e.g., Guidotti et al. [71] and Carvalho et al. [36]. For this reason, and because we
focus on the general behavior of local attributions in data streams, we do not provide an
overview of the different methods. Instead, we introduce important attribution properties
and the baseline hyperparameter. In addition, we briefly present existing work that has
looked at local attributions in evolving data streams.

4.1.1 Attribution Properties

Local feature attributions should fulfil a number of meaningful properties to ensure their
reliability in practice. Lundberg and Lee [109] proposed three generic properties that are
widely recognized in the literature. We introduce these properties below.

Let f be the complex predictive model and let g be a local attribution method. Accord-
ing to Lundberg and Lee [109], we can represent the observation to be explained x by a
simplified vector x′ ∈ {0,1}m. The simplified input vector x′ represents missing features
by zeros and all remaining features by ones. In addition, let hx be a function of x that
maps the simplified input vector to the original observation, i.e., x = hx(x′).
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The first property defined by Lundberg and Lee [109] is local accuracy:

f (x) = g(x′) = φ0 +
m

∑
j=1

φ
(x, f )
j x′j, (4.1)

where φ
(x, f )
j is the attribution of feature j with respect to the observation x and the model

f . The value φ0 serves as a baseline. According to Lundberg and Lee [109], the baseline
corresponds to the model outcome with all features missing, i.e., φ0 = f (hx(⃗0)). We
discuss the role of the baseline in more detail in Section 4.1.2. Intuitively, local accuracy
describes that the sum of the generated attributions must be equivalent to the difference
between the original model outcome f (x) and the baseline outcome φ0. Local accuracy is
thus an important property that allows us to represent the influence of each input feature
as a concrete change in the predictive outcome.

The second property is missingness, which is defined as

x′j = 0⇒ φ
(x, f )
j = 0. (4.2)

According to Eq. (4.2), missing features should have no attributed impact on the pre-
diction. This property primarily serves to complete the holistic attribution framework of
Lundberg and Lee [109]. Since the observation to be explained usually has no missing
features, the property is less relevant in practice.

The third and final property presented by Lundberg and Lee [109] concerns the con-
sistency of local attributions. In particular, a local attribution is consistent between two
complex models f and f ′ if for any simplified input vector z′ ∈ {0,1}m the following
holds:

f ′(hx(z′))− f ′(hx(z′\ j))≥ f (hx(z′))− f (hx(z′\ j))

⇒ φ
(x, f ′)
j ≥ φ

(x, f )
j , (4.3)

where z′\ j denotes the simplified input z′ with feature j missing, i.e., z′j = 0. Consistency
according to Eq. (4.3) guarantees that the attribution of an input feature does not decrease
as its contribution to the model outcome increases.

For the family of additive feature attribution methods, Lundberg and Lee [109] showed
that the Shapley value is the unique solution that guarantees all three of the above
properties. However, variations of these properties can also be found in other works
[158, 151, 157].

4.1.2 Attribution Baselines

The local accuracy property (Eq. (4.1)) due to Lundberg and Lee [109] establishes a
baseline φ0 that represents the model outcome for a vector of missing features. The
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baseline serves as a reference value for the generated attributions and thus defines their
natural meaning. A baseline can be found in similar forms in other local attribution meth-
ods [143, 151, 158]. In general, the baseline should correspond to a value that represents
the absence of discriminative information (missingness). In this way, a local attribution
vector would express all the discriminative information contained in the corresponding
observation. For example, in image recognition, the importance of pixels (features) is
often measured using a black image as the baseline [151, 158].

The choice of an appropriate baseline can also be important for the evaluation and
comparison of local attribution methods. In particular, the baseline is an important hy-
perparameter in evaluation methods based on feature ablation tests [84, 1, 144]. In an ab-
lation test, the quality of attributions is assessed by gradually adding or removing highly
rated input features and measuring the change in predictive performance. For example,
if we compare the accuracy of a classifier before and after removing the feature with
the strongest attribution, we would expect a large decrease in accuracy. Since machine
learning models usually cannot handle arbitrary patterns of missing (ablated) features,
the baseline serves as a surrogate value.

Heuristic approaches such as the black image baseline still dominate the literature. As
an alternative, Izzo et al. [92] recently proposed the neutral baseline. The neutral baseline
corresponds to a value that lies on the decision boundary of the classifier. Compared to
heuristic baselines, the neutral baseline represents a more theoretically sound definition
of missingness. However, depending on the model at hand, the neutral baseline may be
hard to optimize, so its practical value is still limited.

In practice, the baseline can considerably influence the expressiveness and reliability
of local attributions [157]. Indeed, Sturmfels et al. [156] showed that the quality of attri-
bution methods in image classification is greatly affected by switching between different
baselines. However, baselines have not yet been assessed for other areas of machine
learning. These include tabular and streaming data, where the choice of baseline can be
even more difficult. In data streams, for example, our understanding of missingness may
change over time due to concept drift, so the baseline might have to be dynamic.

4.1.3 Local Attributions in Data Streams
Explainability is becoming increasingly important in various domains. However, with
a few exceptions [159, 30, 43], feature attribution methods – or explanation methods in
general – have not received much attention in the context of online learning. A possi-
ble reason for the lack of online attribution methods is that online learning models are
often inherently simple and interpretable. For example, incremental decision trees al-
ready provide an intuitive way to extract local explanations in the form of decision rules
by following the decision path of a particular observation. However, powerful online
learning models are often limited in their interpretability by high or gradually increasing
complexity (see Section 3.1). For this reason, local feature attribution methods can be
useful to explain predictions in data streams.
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In online learning, there is no real “post-hoc” state, as models are updated incremen-
tally. Therefore, we have to compute explanations repeatedly over time. Indeed, Bosnić
et al. [30] argued that explainability in online learning can only be achieved through a
series of individual explanations. However, it is often unclear how long an attribution,
once generated, will be valid in the future. Unfortunately, existing feature attribution
methods do not allow us to update a local attribution along with changes of the online
learning model. Accordingly, we need to explicitly monitor changes and recalculate old
attributions if necessary.

In this context, changes of feature attributions over time may also be explored as a tool
to detect concept drift. In fact, Demšar and Bosnić [43] showed that we can detect con-
cept drift by measuring the dissimilarity between successive feature attributions. Specif-
ically, the authors applied a Page-Hinkley test [131] (Section 2.2.2) to the Euclidean
distance measurements between feature attributions at different time steps. However, for
the detection of local concept drift at the instance level, the approach of Demšar and
Bosnić [43] is too inefficient in practice.

Overall, the behavior, limitations, and potential value of local attributions for explain-
ability in evolving data streams still need to be explored.

4.2 Behavior of Locally Accurate Attributions in Data
Streams

According to the consistency property (Eq. (4.3)), a local attribution should not vary as
long as the predictive model is stationary. However, this is an unrealistic assumption for
streaming applications. In online learning, where the data distribution and model change
over time, we expect the local attributions to change as well. Here, we investigate this
behavior more formally (Paper 5).

Given that the decision boundary of an online learning model ft changes between
two time steps t1 and t2, we know that there must exist at least one point x, such that
ft1(x) ̸= ft2(x). We assume that the point x has no missing features and thus corresponds
to the simplified vector x′ = 1⃗ (see Section 4.1.1), which is a vector of all ones. With a
locally accurate attribution method according to Eq. (4.1), we know that the baseline φ t

0
or the attribution φ (x, ft) of the observation in question must have changed:

ft1(x) ̸= ft2(x)
(4.1)⇔ φ

t1
0 +

m

∑
j=1

φ
(x, ft1)
j ̸= φ

t2
0 +

m

∑
j=1

φ
(x, ft2)
j , (4.4)

where φ
t1
0 and φ

t2
0 are the baselines at the time steps t1 and t2, respectively. Accordingly,

due to local accuracy, every shift of the estimated decision boundary corresponds to a
change in the baseline or a change in the local attribution of one or multiple instances.
In a robust online learning model, shifts of the decision boundary are usually caused by
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Figure 4.1: Attribution Shift in Real-World Applications: Local feature attributions
can change over time due to updates of the predictive model and concept drift. In Pa-
per 5, we investigate this effect for the TüEyeQ data set [94, 95]. TüEyeQ comprises
socio-demographic information about 315 participants in an IQ study. The classifica-
tion task is to distinguish failed from passed test items. TüEyeQ has three natural and
sudden concept drifts by switching between different task blocks. Above, we depict the
median SHAP [109] attributions of the participants for each task block. In particular,
we show the attributions of the five features with the highest variability. This plot is
taken from Paper 5, in which we also provide additional information on the data and the
experimental setup. Strikingly, the median SHAP attributions change considerably over
time. This behavior can be attributed to the local accuracy property (Eq. (4.1)) shared
by most modern attribution methods. As a result, local attributions can typically only be
considered valid as long as the online learning model is stationary. In this context, a local
change detection mechanism (as presented in Section 4.3) can help to identify outdated
attributions and enable more efficient recalculations.

concept drift. In this sense, changes in local attributions are often a direct consequence
of concept drift. Indeed, this behavior can be observed in real-world applications (see
Figure 4.1).

In general, local attributions can only be considered valid at the time they were gen-
erated. Without information on local changes in the predictive model, we would have to
recalculate the feature attributions of previous observations after each model update to
assess and ensure their validity.

4.3 CDLEEDS - Local Change Detection for
Spatio-Temporally Coherent Attributions

Incremental model updates, e.g., due to concept drift, may shift the decision boundary of
an online learning model. Due to the local accuracy (Eq. (4.1)) of most attribution meth-
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ods, such shifts in turn lead to a difference between the attributions obtained at different
time steps (see Eq. (4.4)). Without an approach to incrementally update the attributions,
this difference can only be handled by repeatedly recomputing the local attributions over
time. However, excessive recomputations are usually not feasible. Besides, in practice,
we only want to recompute an attribution if it has actually changed. For this purpose, we
need to be able to detect local changes in the online learning model.

Accordingly, we propose a novel approach for Change Detection for Local Explain-
ability in Evolving Data Streams (CDLEEDS) (Paper 5). A naı̈ve change detection
scheme follows directly from the behavior of locally accurate attributions in data streams
(see Section 4.2). In the following, we add a subscript (index i) to xi in order to clearly
indicate the observation to be explained. Based on Eq. (4.4), we can detect changes in
a local attribution between two time steps without having to compute the actual attribu-
tion. Instead, we can infer changes of the attribution φ (xi, ft) from a shift in the difference
between the local model outcome ft(xi) and the baseline φ t

0:

m

∑
j=1

φ
(xi, ft1)
j ̸=

m

∑
j=1

φ
(xi, ft2)
j

(4.1)⇔ ft1(xi)−φ
t1
0 ̸= ft2(xi)−φ

t2
0 .︸ ︷︷ ︸

Naı̈ve Local Change Detection

(4.5)

The naı̈ve scheme according to Eq. (4.5) might be prone to noise, since we compare the
model in two isolated time steps. Also, for continuous change detection at the point xi,
we would need to obtain a prediction for each subsequent time step. Depending on the
complexity of the model and the total number of observations we want to monitor, this
may be too costly.

However, to infer local changes at a point xi, it is usually sufficient to detect changes
in nearby (similar) observations. In other words, if we can detect change in the neigh-
borhood of xi at time step t, we can assume that the decision boundary and the attribution
at xi have also changed. Based on this intuition, CDLEEDS introduces spatiotemporal
neighborhoods to make the change detection scheme in Eq. (4.5) more feasible and ro-
bust. Specifically, the spatiotemporal γ-neighborhood (STN) of an observation xi is a set
of time steps corresponding to close previous observations:

Ω
(xi,γ) = {t ∈ {1, . . . ,T} | sim(xt ,xi)≥ γ} (4.6)

The STN of an observation can be adjusted either by the similarity threshold γ or the time
interval considered (note that we have not restricted the time interval in Eq. (4.6)). Given
the STNs in two consecutive intervals Ω

(xi,γ)
<t = {u ∈ {1, . . . , t − 1} | sim(xu,xi) ≥ γ}

and Ω
(xi,γ)
≥t = {v ∈ {t, . . . ,T} | sim(xv,xi) ≥ γ}, we rephrase the initial scheme for local

change detection at time step t:

E
u∈Ω

(xi,γ)
<t

[ fu(xu)−φ
u
0 ] ̸= E

v∈Ω
(xi,γ)
≥t

[ fv(xv)−φ
v
0 ] (4.7)

53



Chapter 4 Efficient and Effective Local Explainability in Data Streams

We can treat the STNs as sliding windows to obtain a continuous monitoring of local
change. In addition, we can use a hypothesis test to evaluate whether the mean values in
the sliding windows differ significantly (see Paper 5).

In general, we want to detect local change not only for a single observation xi, but for a
large number of observations. In Paper 5, we propose a hierarchical clustering approach
that allows us to implement the drift detection method presented above in a more efficient
way. Specifically, we maintain only a small set of representative STNs (corresponding to
the leaves of the hierarchical cluster) that allow us to approximate the STNs of each new
streaming observation. The depth of the hierarchical clustering method can be controlled
by γ , which specifies the minimum similarity within each leaf node.

CDLEEDS is model-agnostic and can be combined with any predictive model and
attribution method. The clustering implementation of CDLEEDS is able to effectively
detect local changes throughout the entire input space. In this way, CDLEEDS helps to
drastically reduce the number of recalculations required to maintain meaningful attribu-
tions, as we showed in experiments (Paper 5). Moreover, the hierarchical clustering pro-
vides us with a simple mechanism to detect global changes. In fact, in our experiments,
a CDLEEDS-based approach to global concept drift detection has often outperformed
existing drift detectors (Section 2.2.2).

Accordingly, CDLEEDS is a powerful extension for modern feature attribution meth-
ods that enables more feasible and meaningful local explainability in data streams.

4.4 Choosing Baselines for Tabular and Streaming Data
As described in Section 4.1.2, the baseline is an important hyperparameter of many local
attribution methods. Indeed, the baseline also plays a central role in the proposed change
detection framework CDLEEDS (Section 4.3). In general, the choice of the baseline is
difficult, especially for data streams where our notion of a good baseline may change
over time.

The baseline is typically chosen heuristically and its influence on the generated at-
tribution is often neglected. As one of the first works, Sturmfels et al. [156] presented
and compared different baselines for image data. We complement their work in Paper 3,
where we categorize seven common baselines according to two properties:

• Static or Dynamic: Existing baselines are either static, i.e., the same baseline is
used for all attributions generated, or they are determined dynamically for each
local attribution.

• Deterministic or Stochastic: Existing baselines are either deterministic or ob-
tained in a stochastic way, e.g., by sampling.

A more formal definition of both properties can be found in Paper 3. This simple taxon-
omy facilitates the comparison and selection of baselines in practice.
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We evaluated common baselines using ablation tests (see Section 4.1.2) on several tab-
ular data sets (Paper 3). Strikingly, our experiments show that the explanatory power of
attributions from popular methods like SHAP [109], DeepLift [151], and Integrated Gra-
dients [158] is heavily influenced by the baseline. In fact, popular heuristic baselines like
the all-zero vector [158] can lead to local attributions on tabular data that are not mean-
ingful. In the extreme case, attributions based on a heuristic baseline may perform worse
in the ablation test than a random attribution. Nevertheless, some baselines worked well
in most of our experiments. In particular, the expectation baseline generally achieved top
results in the ablation test. The expectation baseline corresponds to the expected model
outcome for a random sample of training observations (e.g., as used by Lundberg and
Lee [109]) and is thus a static and stochastic baseline.

While Paper 3 focuses on the effect of baselines in explaining offline learning mod-
els, we can use these insights to identify a meaningful baseline for data streams. As
mentioned earlier, the expectation baseline is a good choice for most tabular data sets.
However, the expectation baseline is based on a static sample of observations, which can
lead to problems in data streams. Specifically, if the sample is no longer representative
of the current data generating distribution, the expectation baseline will also no longer be
representative, resulting in attributions that are not meaningful. Instead, we may spec-
ify the expectation baseline over a window of observations. For example, we can use a
decayed windowing scheme (Section 2.2). In this case, the baseline corresponds to the
exponentially weighted moving average (EWMA), a popular approach to mitigate the
influence of old observations. Notably, this baseline delivered good results in our eval-
uation of CDLEEDS (Paper 5). Unlike the classical expectation baseline, the EWMA is
a dynamic and stochastic baseline (assuming that the streaming observations are drawn
randomly from the data generating distribution).

4.5 Discussion and Future Work
In this chapter, we discussed problems and approaches related to local explainability in
online machine learning. In a corresponding paper (Paper 5), we demonstrated that local
attributions can be prone to large variations over time. In this context, we presented
CDLEEDS, a novel local change detection framework that allows for a targeted and
efficient recalculation of outdated attributions. Based on Paper 3, we also discussed the
choice of an appropriate baseline for local attributions in data streams. In the following,
we summarize our main findings and identify open issues that should be addressed in the
future.

CDLEEDS is one of the first frameworks capable of detecting concept drift at different
levels of granularity. In this sense, our approach can serve as an effective alternative
to the popular concept drift detection methods presented in Section 2.2.2. Indeed, we
demonstrated CDLEEDS as a global concept drift detector on a number of popular data
sets (Paper 5). These experiments could be extended in the future.
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Our adaptation of the expectation baseline using the exponentially weighted moving
average has proven successful in experiments (Paper 5). However, the neutral baseline
[92] seems an even more promising alternative for local attributions in data streams. As
described in Section 4.1.2, the neutral baseline corresponds to a value on the decision
boundary and hence does not contain discriminative information. Per definition, the
neutral baseline changes along with the decision boundary. Therefore, given a sensible
online learning model, the neutral baseline will always adequately represent the active
concept. However, the search-based algorithm presented by Izzo et al. [92] to find a
neutral baseline is extremely costly. To be able to use the neutral baseline in data streams,
we would need a more efficient algorithm.

In general, there is a lack of explanation methods designed for online learning. In this
context, CDLEEDS is a powerful addition to local feature attribution methods. However,
our experiments showed that local attributions are extremely sensitive to changes in the
online learning model. Hence, if the model does not exhibit locally stationary behavior,
local explanations may be of limited practical use. Indeed, explanations at a higher (i.e.,
global or subgroup) level might be more useful for dynamic data stream applications, as
they tend to be more robust to marginal and local updates of the predictor. In this sense,
the FIRES model presented in Section 2.3.1 may serve as a powerful global explanation
mechanism. FIRES produces stable feature weights in an intuitive combination of im-
portance and uncertainty. Likewise, the Dynamic Model Tree (Section 3.3) can provide
feature importance-based explanations at different levels via the parameters of the simple
models at each node.

In the future, it may be sensible to develop a new and distinct understanding of ex-
plainability in evolving data streams. In particular, we should consider how changes in
the model and data distribution can be addressed by an explanation method. That is,
online explanation methods should aim to describe both what the model has learned at
a particular time step and how the model learns between time steps. The latter form of
explainability cannot be achieved with existing attribution methods. In this context, com-
mon explanation properties (Section 4.1) might need to be reconsidered and expanded,
e.g., with the help of user studies.
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Methods

The dynamic nature of data streams makes it difficult to evaluate online learning meth-
ods under realistic conditions. In fact, common (offline) evaluation procedures are often
not readily applicable because pre-processing, training, and testing in a data stream are
highly intertwined. Online learning methods must be updated and evaluated periodically,
using a subset of observations at each time step. To obtain reliable results, an evaluation
must also consider possible concept drift. Existing experiments in online machine learn-
ing research rely heavily on simulations and are not standardized. Indeed, there are
major differences in the tools, evaluation criteria and performance measures used. As a
consequence, the results cannot usually be reliably compared with each other.

This chapter discusses best practices and standards for the evaluation of online ma-
chine learning methods, including online classifiers, online feature selection models and
concept drift detection methods. We briefly present previous work that has looked into
the evaluation of online learning methods and identify useful resources. We then propose
a number of important properties to consider when evaluating online learning methods.
Finally, we introduce a new Python framework that enables the evaluation of online
learning methods in a more principled, standardized, and transparent way than previous
work. This chapter summarizes the contributions of Paper 6.

5.1 Background on Evaluation Practices and Open
Resources

Data streams pose considerable challenges that need to be considered in the evaluation
of online learning methods. In this section, we present previous work that has addressed
these challenges. In addition, we briefly discuss the availability of benchmark data sets
and introduce popular libraries. A detailed summary of evaluation techniques and per-
formance measures is provided in Paper 6 (indeed, it is an important contribution of that
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work). For this reason, we do not discuss specific techniques below.
The evaluation of stream processing techniques and online machine learning methods

has been addressed several times in the past [48, 62, 63, 24, 99]. Earlier work is mainly
concerned with the evaluation of online predictive models, e.g., in the context of online
ensemble learning [100, 67]. Since supervised online learning (i.e., online regression
and classification) is very similar to its offline counterpart, previous work has focused on
adapting existing offline validation strategies and performance measures for incremental
evaluations. For example, Bifet et al. [24] presented a streaming version of the popular
k-fold cross validation. Moreover, there are adaptations of performance measures such
as accuracy [106] or AUC-ROC (area under the curve of the Receiver Operating Char-
acteristic) [34]. Similarly, for evaluating online feature selection models, one may use
adaptations of existing performance measures. These include, for example, the reduction
rate [141], which indicates by what fraction the original feature set has been reduced, or
the feature set stability [27, 128] (see Section 2.1.2), which quantifies the variability
between the selected feature sets. In contrast, concept drift detection has no straight-
forward counterpart in offline learning. Accordingly, to evaluate concept drift detection
methods, we require dedicated evaluation techniques and measures, as proposed in a
number of previous papers [69, 108, 64, 23].

Although there are some best practices and de facto standards for assessing online
learning methods, there is no unified evaluation framework [100]. In fact, experimental
results can differ considerably between publications (see Paper 6). This may be partly
because existing recommendations are scattered across a large number of papers and
terminology is often used imprecisely and interchangeably. Unfortunately, there is no
concise summary of evaluation techniques that covers all the major areas of online learn-
ing.

5.1.1 Availability of Benchmark Data Sets
Compared to other machine learning domains, there is a shortage of benchmark data
sets for online learning [52, 121, 163, 76, 25]. Souza et al. [154] provided a detailed
summary and description of popular benchmark streaming data sets. Therefore, we do
not summarize the data sets again in this thesis. Instead, we briefly introduce two valu-
able data collections with ground truth about concept drift: Insects [154] and TüEyeQ
[94, 95]. The Insects data sets were introduced by Souza et al. [154] and include sensor
measurements representing the characteristics of flying insect species [154]. The data
was obtained in a controlled environment under varying conditions to simulate different
types of concept drift. The Insects data sets are tabular data with a multi-class target
corresponding to the different insect species. TüEyeQ contains data from multiple par-
ticipants of an IQ test [95]. In particular, TüEyeQ provides eye movement data together
with task-specific details and socio-demographic information about each participant (tab-
ular data). In general, TüEyeQ may be used for various predictive tasks. For example,
we can train a binary online classifier on the socio-demographic and task-specific data
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to predict whether a given test item was passed or failed. Since the IQ test included dif-
ferent task blocks and the difficulty of the tasks increased over time, the observations in
TüEyeQ are subject to concept drift.

Apart from Insects and TüEyeQ, real-world streaming data sets do not usually provide
information on the extent to which they contain concept drift. However, in experiments
we often need a ground truth about concept drift, e.g., when evaluating active concept
drift detection methods (Section 2.2.2). In these cases, we can use data manipulation
techniques to introduce artificial concept drift. For example, Sethi and Kantardzic [150]
proposed a simple approach to simulate sudden concept drifts by randomly permuting
the entries of input features after a specified point in time. Specifically, they first rank
the input features according to the Information Gain. In a second step, they randomly
permute a fraction of the features at the bottom or top of the ranking to achieve different
forms of concept drift. However, such random permutations are often not meaningful
[176]. As an alternative, Žliobaitė [176] proposed three permutation schemes that pre-
serve the natural dynamics of the original data. The time permutation scheme simulates
sudden concept drifts (Section 1.5) by shifting entire blocks of observations. The speed
permutation moves sets of observations to the end of the data stream to simulate the re-
occurence of data concepts. Finally, the shape permutation simulates gradual concept
drifts by exchanging observations that are close in time.

As an alternative to real-world data sets, we often also find synthetically generated
data streams [123, 2, 88, 155]. Indeed, most online learning libraries (Section 5.1.2) pro-
vide a number of different and well-documented data generators. Synthetic data streams
can vary greatly depending on the configuration of the generator. For this reason, ex-
perimental results based on synthetic data can be misleading and should be treated with
caution.

5.1.2 Popular Libraries
There is a range of open source online learning tools and models in common program-
ming languages such as Java or Python. Summaries of existing open source software
for online learning and stream processing can be found in recent surveys [8, 90]. In the
following, we briefly introduce some of the most popular libraries.

One of the best known libraries for online learning is the Massive Online Analysis
(MOA) [21, 23]. MOA is implemented in Java and is related to the Waikato Environment
for Knowledge Analysis (WEKA). MOA provides various stream processing techniques,
data generators and online learning methods. It also has extensive documentation and a
graphical user interface.

Similar to other areas of machine learning, Python has quickly become a popular
choice for online learning. The scikit-multiflow [118, 117] and creme [73] libraries pro-
vide the most comprehensive set of data generators, online predictive models and con-
cept drift detection methods implemented in Python. Both packages integrate easily with
standard machine learning libraries such as scikit-learn [133]. Recently, scikit-multiflow
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and creme have been merged into a novel project called river [120]. In addition to these
extensive libraries, there are several smaller repositories to be found on Github, e.g., the
tornado framework for online classification and concept drift detection [136].

However, although the above-mentioned libraries offer a wealth of functionality, the
evaluation of online learning methods often requires a considerable additional imple-
mentation effort. Indeed, data stream experiments usually require many custom design
decisions, e.g., regarding the meaningful combination of online feature selection, drift
detection and online classification models, or the visualisation of the results.

5.2 Consolidating Evaluation Standards
Designing meaningful experiments to evaluate online machine learning methods can be
difficult. Indeed, there is no unified standard for data preparation, testing and training
strategy, or reported performance measures. Although some evaluation techniques are
widely used, it can be difficult to survey and compare the different approaches proposed
in the literature – especially for novices in the field.

To enable more informed decisions, we introduce a concise and up-to-date summary
of evaluation practices for online learning (Paper 6). Our work helps to clarify important
terms, compare existing techniques and thus achieve a more comparable and standard-
ized evaluation of online learning methods in practice. Below, we briefly present and
discuss general evaluation strategies as well as important properties for online feature
selection, concept drift detection (Chapter 2) and online classification (Chapter 3). For
more details, please refer to Paper 6.

Online learning methods are incrementally tested and trained as new streaming ob-
servations emerge. In this context, there are three commonly used evaluation strategies.
Each of the three evaluation strategies has its strengths and weaknesses, which we dis-
cuss more thoroughly in Paper 6. In the periodic holdout evaluation, we test the online
learning method at regular intervals using a sample of test observations. This test sam-
ple may be either static or updated over time, e.g., using a reservoir sampling approach
(see Section 2.2.1). In contrast, in a prequential evaluation, the model is tested at each
time step. More precisely, each incoming observation is first used to test and (once the
label is available) to train the model. Finally, the distributed k-fold evaluation strategy is
an adaptation of the popular k-fold cross-validation scheme [24]. In a distributed k-fold
evaluation, we train k instances of the model in parallel. Each streaming observation
is assigned to one or multiple model instances for testing or training according to one
of three different schemes [24]. The results of the individual model instances can be
aggregated to obtain a more robust overall evaluation.

Apart from the general evaluation strategy, we need to decide which properties of
the online learning method we want to assess. Indeed, there are a number of important
properties that need to be considered when developing and evaluating online learning
methods. Most of these properties have already been discussed in earlier sections of this
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thesis. In Paper 6, we identify the following general properties:

• Predictive Performance and Generalization: Online machine learning methods
are used for automated decision making. Accordingly, an online learning method
should provide high predictive quality for previously unseen data at each time step.

• Computational Efficiency: Online applications often deal with limited hardware
capacities. Ideally, online learning methods should be able to provide real-time
predictions while having a small memory footprint.

• Algorithmic Stability: Online learning methods should provide stable predictions
in the presence of noisy inputs.

• Concept Drift Adaptability: Online learning methods use different strategies to
deal with concept drift, e.g., online predictive models often employ active concept
drift detection (Section 2.2). Regardless of the strategy used, online learning meth-
ods should be able to adjust quickly to concept drift without drastically degrading
performance.

• Interpretability: High-stakes decisions and new laws for AI regulation require
machine learning methods to be interpretable. In the absence of an objective mea-
sure, we generally tie interpretability to the complexity of a method (Section 3.2).

While these properties apply to most online learning methods, there are additional prop-
erties related to concept drift detection and online feature selection. Specifically, we
introduce the following important properties for concept drift detection (Paper 6):

• Detection Truthfulness: Concept drift detection methods should be able to cor-
rectly detect concept drifts while avoiding a high number of false alarms.

• Detection Timeliness: In order to allow fast updates of the predictive model and
avoid long-term performance deterioration, concept drift detection methods should
be able to detect concept drifts with a short delay.

Finally, we identify two more properties for online feature selection (Paper 6):

• Feature Set Stability: To be reliably used in practice, the feature sets obtained by
an online feature selection model should be stable as long as the data generating
distribution does not change (Section 2.1.2).

• Feature Selectivity: An online feature selection method should be able to select
the important features for prediction at each time step while discarding irrelevant
features. If the number of selected features is automatically determined, then the
size of the selected feature set compared to the original number of features is an
interesting property.

A more detailed discussion of each property can be found in Paper 6, where we also
propose meaningful performance measures. Based on the proposed properties, it is much
easier to design reliable and comparable experiments for online machine learning.
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1 from skmultiflow.trees import HoeffdingTreeClassifier

2 from sklearn.metrics import zero_one_loss

3
4 from float.data import DataLoader

5 from float.prediction.evaluation import PredictionEvaluator

6 from float.prediction.evaluation.measures import noise_variability

7 from float.pipeline import PrequentialPipeline

8 from float.prediction.skmultiflow import SkmultiflowClassifier

9
10 # Load a data set from main memory with the DataLoader module.

11 # Alternatively , we can provide a sciki -multiflow FileStream ...

12 # ... object via the ’stream ’ attribute.

13 data_loader = DataLoader(path=’./ datasets/spambase.csv’,

14 target_col=-1)

15
16 # Set up an online classifier. Note that we need a wrapper to...

17 # ...use scikit -multiflow functionality.

18 classifier = SkmultiflowClassifier(model=HoeffdingTreeClassifier (),

19 classes=data_loader.stream.target_values)

20
21 # Set up an evaluator object for the classifier:

22 # Specifically , we want to measure the zero_one_loss and the...

23 # ... noise_variability as an indication of stability.

24 # The arguments of the performance measures (measure_func)...

25 # ...can be directly added to the Evaluator object ...

26 # ... constructor , e.g. we may specify the number of...

27 # ... samples (n_samples) and the reference_measure used ...

28 # ...to compute the noise_variability.

29 evaluator = PredictionEvaluator(measure_funcs=[zero_one_loss ,

30 noise_variability],

31 n_samples=15,

32 reference_measure=zero_one_loss)

33
34 # Set up a pipeline for a prequential evaluation of the classifier.

35 pipeline = PrequentialPipeline(data_loader=data_loader ,

36 predictor=classifier ,

37 prediction_evaluator=evaluator ,

38 n_max=data_loader.stream.n_samples ,

39 batch_size=25)

40
41 # Run the experiment.

42 pipeline.run()

Figure 5.1: Conducting Online Learning Experiments With the Float Python-
Framework. Here, we show the source code for a simple online learning experiment
using float, which can also be found in slightly adjusted form on float’s README page
on Github. Further experiments and detailed information on the modules and hyperpa-
rameters can be found in the documentation for our framework.
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5.3 Float - A Python-Package for Data Stream
Evaluations

Although there is a variety of useful online learning libraries (Section 5.1.2), there is
no Python package dedicated to the evaluation of online learning methods. With the
Frictionless Online Model Analysis and Testing (float), we introduce a novel Python
framework that fills this gap (Paper 6). Float provides different modules (Python classes)
for concept drift detection, online feature selection and online classification. Its modular
structure makes it possible to combine float with the popular online learning libraries
scikit-multiflow [118] and river [120]. Yet, by providing abstract base classes for all core
modules, float also enables easy integration of user-defined methods.

To design an experiment, we can flexibly combine modules via a pipeline (Python
class). Float offers three standardized pipelines that correspond to the evaluation strate-
gies mentioned in Section 5.2. The pipeline automatizes the entire evaluation process –
from loading the data to computing different performance measures. In this way, float al-
lows the flexible combination of different online learning methods to perform customized
experiments without the user having to deal with low-level implementation details. A ba-
sic example on how to use a float pipeline is shown in Figure 5.1.

Float is introduced in Paper 6, along with the evaluation properties outlined in Section
5.2. Although float is not intended as a library of online learning models, it contains
several implementations of recent models that are not yet integrated into one of the major
libraries. These include FIRES (Section 2.3.1) and ERICS (Section 2.3.2), for example.
In addition, float contains a visualization module with different types of plots that can be
easily created from the results of a pipeline run.

The proposed framework is thus a useful extension of existing online learning libraries
and can serve as a basis for more standardized and reliable evaluations in data streams.
Float is open sourced under the MIT license and can be accessed on Github1 or PyPi2.

5.4 Discussion and Future Work
In this chapter, we discussed pressing and recurring issues in the evaluation of online
learning methods. As one of the first works, we summarized and extended common
evaluation strategies by translating them into a set of important properties (Paper 6). We
also presented a novel framework that enables the evaluation of online learning methods
in a few lines of Python code. In the following, we briefly outline future work.

With Paper 6 and float, we created the basis for a standardized evaluation of online
learning methods. In a next step, the proposed tools could be used to compare common
online learning methods in large-scale experiments. These results could in turn serve as

1https://github.com/haugjo/float
2https://pypi.org/project/float-evaluation/
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a benchmark for the development of new online learning methods.
Float offers a variety of modules and functions that could be expanded in the future.

In particular, float currently lacks a module for generating local attributions based on
CDLEEDS (Section 4.3). In addition, one may implement other performance measures
and vizualization types. Likewise, float could be extended to include common hypothesis
tests to automatically identify significant effects based on a distributed k-fold evaluation
[24] (see Section 5.2).

Although we have addressed a number of issues in the evaluation of online learning
methods, there are still open questions that require attention. In particular, we currently
lack performance measures that adequately account for concept drift. In online feature
selection, for example, we would usually expect variability in the selected feature set
after a concept drift, as the online learning model needs to adjust to the new data dis-
tribution. During this time, low feature set stability (Section 2.1.2) does not necessarily
indicate unstable behavior. In fact, some degree of variation may even be desirable, as
it is an indicator that the model is learning the new concept. Finally, we require more
real-world data streams with known concept drift to avoid using synthetic data in exper-
iments. As an alternative, it might also be sensible to explore generative models or data
augmentation techniques. In this way, we might expand the existing real-world data sets
and obtain more realistic and reliable evaluations.
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Reliable machine learning for evolving data streams requires well-designed solutions.
Indeed, to cope with the dynamic and restrictive nature of online applications, online
learning methods have to meet high requirements, e.g., in terms of predictive perfor-
mance, resource and runtime efficiency, and stability. While a number of methods have
emerged as state of the art over the years, they often have known limitations or do not ad-
dress current and pressing issues, such as the interpretability of models and predictions.

In this work, we identified four issues in online learning that are not adequately ad-
dressed in existing work. We contributed to these issues in six publications. Together,
our contributions cover large parts of the online learning process: In Chapter 2, we in-
troduced a novel incremental framework that allows us to estimate the distributions of
the parameters of differentiable online learning models. Based on this framework, we
proposed FIRES and ERICS, novel approaches for online feature selection and concept
drift detection, respectively. By explicitly accounting for uncertainty in the model, both
approaches have been shown to improve important performance indicators, such as fea-
ture set stability or drift detection delay. In Chapter 3, we introduced the Dynamic Model
Tree (DMT) classification framework. Inspired by the limitations of ever-growing incre-
mental decision tree-based models on data streams, the DMT adheres to sensible prop-
erties that allow it to obtain powerful predictions with reduced complexity and higher
interpretability. In a similar context, we studied the behavior of local attribution methods
for black-box explainability in evolving data streams (Chapter 4). We showed that the
validity of local attributions can often only be maintained over a short period of time, so
that we have to recompute the attributions several times during the online training. In this
context, we presented CDLEEDS, a local change and concept drift detection framework
that enables more targeted recalculations and thus more feasible attribution-based ex-
plainability in data streams. Finally, in Chapter 5, we examined the state of experiments
in the online learning environment, uncovering unaddressed issues and non-standardized
evaluation procedures. In this context, we summarized important online learning proper-
ties based on previous work. In addition, we released a new Python package called float
that enables standardized evaluation of online learning methods, including online feature
selection, concept drift detection and online classification approaches.

Overall, this thesis and related papers made important methodological and practical
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contributions. We presented theoretical and empirical findings, proposed new techniques
and frameworks, and published extensive open resources. Accordingly, our work is an
important step towards more reliable machine learning in evolving data streams.

We strongly believe that online machine learning will continue to be of great interest
for many practical applications. In particular, online learning techniques are valuable
wherever an application is subject to temporal change but long-term human supervision
or repeated retraining is not feasible. However, existing online learning techniques often
lack the versatility to deal with highly challenging use cases and data types such as
images or language. As a result, real-world and dynamic processes are increasingly
being tackled with more complex solutions – especially from the field of deep learning.
Although these approaches are very powerful, they usually have inherent limitations in
terms of interpretability and resource consumption. In view of recent efforts, e.g., related
to fairness, transparency, or “Green IT”, online learning, and in particular the techniques
presented in this thesis, can offer viable and powerful alternatives.
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Appendix A

Publications
This thesis is based on six papers. All papers are publicly available. The papers provided
here are identical to the versions published online.

I am the main contributor and first author of each publication. A more detailed state-
ment about the contributions of each author can be found in the following sections.

A.1 Leveraging Model Inherent Variable Importance for
Stable Online Feature Selection

Publication: Published in the proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD 2020).

Contribution: I developed major parts of the general framework and the implementa-
tions of the FIRES model. I also performed the experiments and wrote most parts of the
paper. Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci contributed to the pa-
per by challenging and improving early ideas, formalizations, and the analysis of results.
All co-authors helped revise the final manuscript.
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ABSTRACT
Feature selection can be a crucial factor in obtaining robust and
accurate predictions. Online feature selection models, however,
operate under considerable restrictions; they need to efficiently ex-
tract salient input features based on a bounded set of observations,
while enabling robust and accurate predictions. In this work, we in-
troduce FIRES, a novel framework for online feature selection. The
proposed feature weighting mechanism leverages the importance
information inherent in the parameters of a predictive model. By
treating model parameters as random variables, we can penalize
features with high uncertainty and thus generate more stable fea-
ture sets. Our framework is generic in that it leaves the choice of
the underlying model to the user. Strikingly, experiments suggest
that the model complexity has only a minor effect on the discrimi-
native power and stability of the selected feature sets. In fact, using
a simple linear model, FIRES obtains feature sets that compete with
state-of-the-art methods, while dramatically reducing computation
time. In addition, experiments show that the proposed framework
is clearly superior in terms of feature selection stability.
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1 INTRODUCTION
Online feature selection has been shown to improve the predictive
quality in high-dimensional streaming applications. Aiming for real
time predictions, we need online feature selection models that are
both effective and efficient. Recently, we also witness a demand for
interpretable and stable machine learning methods [31]. Yet, the
stability of feature selection models remains largely unexplored.

In practice, feature selection is primarily used to mitigate the so-
called curse of dimensionality. This term refers to the negative effects
on the predictive model that we often observe in high-dimensional
applications; such as weak generalization abilities, for example. In
this context, feature selection has successfully been applied to both
offline and online machine learning applications [3, 8, 14, 22].

Data streams are a potentially unbounded sequence of time steps.
As such, data streams preclude us from storing all observations
that appear over time. Consequently, at each time step 𝑡 , feature
selection models can analyse only a subset of the data to identify
relevant features. Besides, temporal dynamics, e.g. concept drift,
may change the underlying data distributions and thereby shift
the attentive relation of features [12]. To sustain high predictive
power, online feature selection models must be flexible with respect
to shifting distributions. For this reason, online feature selection
usually proves to be more challenging than batch feature selection.

Online models should not only be flexible with regard to the data
distribution, but also robust against small variations of the input
or random noise. Otherwise, the reliability of a model may suffer.
Robustness is also one of the key requirements of a report published
by the European Commission [15]. For online feature selection, this
means that we aim to avoid drastic variations of the selected features
in subsequent time steps. Yet, whenever a data distribution changes,
we must adjust the feature set accordingly. Only few authors have
examined the stability of feature selection models [1, 18, 28], which
leaves plenty of room for further investigation.

Ideally, we aim to uncover a stable set of discriminative features
at every time step 𝑡 . Feature selection stability, e.g. defined by [28],
usually corresponds to a low variation of the selected feature set.
We could reduce the variation and thereby maximize the stability of
a feature set by selecting only those features we are certain about.
Still, we aim to select a feature set that is highly discriminative

Appendix A Publications
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𝜓𝑡
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Figure 1:Graphical Model. The target variable𝑦𝑡 at time step
𝑡 ∈ {1, ..,T } depends on a feature vector 𝑥𝑡 (observed vari-
able = shaded grey) and model parameters \𝑡 . We treat the
parameters \𝑡 as random variables that are parameterised
by𝜓𝑡 , which in turn contains information about feature im-
portance and uncertainty. We update the distribution of \ at
every time step 𝑡 with respect to the new observations.

with respect to the current data generating distribution. In order to
meet both requirements, one would have to weigh the features ac-
cording to their importance and uncertainty regarding the decision
task at hand. We translate these considerations into three sensible
properties for stable feature weighting in data streams:

Property 1. (Attentive Weights) Feature weights must preserve
attentive relations of features. Given an arbitrary feature 𝑥 𝑗 , let `𝑡 𝑗
be its measured importance and let 𝜔𝑡 𝑗 be its weight at some time
step 𝑡 . The feature weight 𝜔𝑡 𝑗 must be a function of `𝑡 𝑗 , such that
`𝑡 𝑗 = 0⇒ 𝜔𝑡 𝑗 ≤ 0.

Intuitively, we would expect the weight of a feature to be exactly
zero, if its associated importance is zero. But since there might be
dependencies between the different weights, we allow the weights
in such cases to become smaller than zero, thus ensuring a higher
flexibility in the possible weight configurations.

Property 2. (Monotonic Weights) Feature weights must be a
strictly monotonic function of importance and uncertainty. Given
two arbitrary features 𝑥𝑖 ≠ 𝑥 𝑗 , let |`𝑡𝑖 |, |`𝑡 𝑗 | be their absolute mea-
sured importance and let 𝜎𝑡𝑖 , 𝜎𝑡 𝑗 ≥ 0 be the respective measure of
uncertainty at some time step 𝑡 . Two conditions must hold:

2.1 Given |`𝑡𝑖 | = |`𝑡 𝑗 |, the following holds: 𝜎𝑡𝑖 ≥ 𝜎𝑡 𝑗 ⇔ 𝜔𝑡𝑖 ≤
𝜔𝑡 𝑗 . Otherwise, if 𝜎𝑡𝑖 < 𝜎𝑡 𝑗 , meaning we are more certain
about feature 𝑥𝑖 ’s than feature 𝑥 𝑗 ’s discriminative power, it
holds that 𝜔𝑡𝑖 > 𝜔𝑡 𝑗 , and vice versa.

2.2 Given 𝜎𝑡𝑖 = 𝜎𝑡 𝑗 , the following holds: |`𝑡𝑖 | ≥ |`𝑡 𝑗 | ⇔ 𝜔𝑡𝑖 ≥
𝜔𝑡 𝑗 . Otherwise, if |`𝑡𝑖 | < |`𝑡 𝑗 |, meaning that feature 𝑥𝑖 is less
discriminative than feature 𝑥 𝑗 , it holds that 𝜔𝑡𝑖 < 𝜔𝑡 𝑗 , and
vice versa.

The second property specifies that features with high importance
and low uncertainty must be given a higher weight than features
with low importance and high uncertainty.

Property 3. (Consistent Weights) For a stable target distribution,
feature weights must eventually yield a consistent ranking. Let R(𝜔𝑡 )
be the ranking of features according to their weights at time step 𝑡 .
Assume ∃𝑡 , such that 𝑃 (𝑦𝑡 |𝑥𝑡 ) = 𝑃 (𝑦𝑡+1 |𝑥𝑡+1) ∀𝑡 ≥ 𝑡 . As 𝑡 ≥ 𝑡 →∞,
it holds that R(𝜔𝑡 ) = R(𝜔𝑡−1).

Consistent weights eventually yield a stable ranking of features,
if the conditional target distribution does not change anymore.

These three properties can help guide the development of robust
feature weighting schemes. To the best of our knowledge, they

Table 1: Important Variables and Notation

Notation Description

𝑡 ∈ {1, ..,T } Time step.
𝑥𝑡 ∈ R𝐵×𝐽 Observations at time step 𝑡 with 𝐽 fea-

tures and a batch size of 𝐵.
𝑦𝑡 = [𝑦𝑡1, .., 𝑦𝑡𝐵] Target variable at time step 𝑡 .

\𝑡 = [\𝑡1, .., \𝑡𝑘 , .., \𝑡𝐾 ] Parameters of a modelM\𝑡 ; 𝐾 ≥ 𝐽 .
𝑃 (\𝑡𝑘 |𝜓𝑡𝑘 ) Probability distribution of \𝑡𝑘 , parame-

terised by𝜓𝑡𝑘 .
𝜔𝑡 = [𝜔𝑡1, .., 𝜔𝑡 𝑗 , .., 𝜔𝑡 𝐽 ] Feature weights at time step 𝑡 .

𝑀 ∈ N Number of selected features;𝑀 ≤ 𝐽 .

are also the first formal definition of valuable properties for stable
feature weighting in data streams.

In order to fulfill the properties specified before, we need a mea-
sure of feature importance and corresponding uncertainty. If a
predictive modelM\ is trained on the input features, we expect
its parameters \ to contain the required information. Specifically,
we can extract the latent importance and uncertainty of features
regarding the prediction at time step 𝑡 , by treating \𝑡 as a random
variable. Accordingly, \𝑡 is parameterised by𝜓𝑡 , which contains the
sufficient statistics. Given that all parameters initially follow the
same distribution, we can optimize𝜓𝑡 for every new observation
using gradient updates (e.g. stochastic gradient ascent). If we up-
date𝜓𝑡 at every time step, the parameters contain the most current
information about the importance and uncertainty of input features.
These considerations translate into the graphical model in Figure
1 and form the basis of a novel framework for Fast, Interpretable
and Robust feature Evaluation and Selection (FIRES). FIRES selects
features with high importance, penalizing high uncertainty, to gen-
erate a feature set that is both discriminative and stable.

In summary, the contributions of this work are:
(a) A specification of sensible properties which, when fulfilled,

help to create more reliable feature weights in data streams.
(b) A flexible and generic framework for online feature weight-

ing and selection that satisfies the proposed properties.
(c) A concrete application of the proposed framework to three

common model families: Generalized Linear Models (GLM)
[26], Artificial Neural Nets (ANN) and Soft Decision Trees
(SDT) [11, 17] (an open source implementation can be found
at https://github.com/haugjo/fires).

(d) An evaluation on several synthetic and real-world data sets,
which shows that the proposed framework is superior to
existing work in terms of speed, robustness and predictive
accuracy.

The remainder of this paper is organized as follows: We intro-
duce the general objective and feature weighting scheme of our
framework in Section 2. Here, we also show that FIRES produces
attentive, monotonic and consistent weights as defined by the Prop-
erties 1 to 3. We describe three explicit specifications of FIRES in
Section 2.1. In Section 2.2, we show how feature selection stabil-
ity can be evaluated in streaming applications. Finally, we cover
related work in Section 3 and evaluate our framework in a series of
experiments in Section 4.
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𝑃 (𝑦 |𝑥, \ )

[𝑦, 𝑥1, ..., 𝑥 𝑗 , ..., 𝑥 𝐽 ]

\1 ∼ N(`1, 𝜎1) =

\𝑘 ∼ N(`𝑘 , 𝜎𝑘 ) =

\𝐾 ∼ N(`𝐾 , 𝜎𝐾 ) =

M\
𝜔 𝑗

𝜔1

𝜔 𝐽

(
𝜕𝑃
𝜕`1
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)
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𝜕`𝑘

, 𝜕𝑃𝜕𝜎𝑘
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, 𝜕𝑃𝜕𝜎𝐾

)
(` ′
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Figure 2: The FIRES Framework. By treating the parameters of a modelM\ as random variables, the proposed framework is
able to extract the importance and uncertainty of every input feature with respect to the prediction. For illustration, let \𝑘 ∀𝑘
be normally distributed parameters. FIRES optimizes the mean `𝑘 (importance) and standard deviation 𝜎𝑘 (uncertainty) of all
𝐾 parameters, by using gradient updates. Based on the updated parameters, FIRES then computes feature weights 𝜔 𝑗 ∀𝑗 .

2 THE FIRES FRAMEWORK
The parameters of a predictive model encode every input feature’s
importance in the prediction. By treating model parameters as ran-
dom variables, we can quantify the importance and uncertainty of
each feature. These estimates can then be used for feature weighting
at every time step. This is the core idea of the proposed framework
FIRES, which is illustrated in Figure 2. Table 1 introduces relevant
notation. Let \ be a vector of model parameters whose distribu-
tion is parameterised by 𝜓 . Specifically, for every parameter \𝑘
we choose a distribution, so that𝜓𝑘 comprises an importance and
uncertainty measure regarding the predictive power of \𝑘 . We then
look for the 𝐾 distribution parameters that optimize the prediction.

General Objective: We translate these considerations into an ob-
jective: Find the distribution parameters𝜓 that maximize the log-
likelihood given the observed data, i.e.

arg max
ΨT

L(ΨT , 𝑌T , 𝑋T ) = arg max
ΨT

T∑
𝑡=1

𝑙𝑜𝑔 𝑃 (𝑦𝑡 |𝑥𝑡 ,𝜓𝑡 ), (1)

with observations 𝑥𝑡 and corresponding labels 𝑦𝑡 . Note that we
optimize the logarithm of the likelihood, because it is easier to com-
pute. By the nature of data streams, we never have access to the
full data set before time step T . Hence, we cannot compute (1) in
closed form. Instead, we optimize𝜓 incrementally using stochastic
gradient ascent. Alternatively, one could also use online variational
Bayes [6] to infer posterior parameters. However, gradient based
optimization is very efficient, which can be a considerable advan-
tage in data stream applications. The gradient of the log-likelihood
with respect to𝜓𝑡 is

∇𝜓𝑡L =
1

𝑃 (𝑦𝑡 |𝑥𝑡 ,𝜓𝑡 ) ∇𝜓𝑡 𝑃 (𝑦𝑡 |𝑥𝑡 ,𝜓𝑡 ), (2)

with the marginal likelihood

𝑃 (𝑦𝑡 |𝑥𝑡 ,𝜓𝑡 ) =
∫

𝑃 (𝑦𝑡 |𝑥𝑡 , \𝑡 ) 𝑃 (\𝑡 |𝜓𝑡 ) 𝑑\𝑡 . (3)

We update𝜓𝑡 with a learning rate 𝛼 in iterations of the form:

𝜓 ′𝑡 = 𝜓𝑡 + 𝛼∇𝜓𝑡L (4)

Feature Weighting Scheme: Given the updated distribution pa-
rameters, we can compute feature weights in a next step. Note that

we may have a one-to-many mapping between input features and
model parameters, depending on the predictive model at hand. In
this case, we have to aggregate relevant parameters, which we will
show in Section 2.1.4. In the following, we assume that there is a
single (aggregated) parameter per input feature. Let `𝑡 , 𝜎𝑡 be the
estimated importance and uncertainty of features at time step 𝑡 .
Our goal is to maximize the feature weights 𝜔𝑡 whenever a feature
is of high importance and to minimize the weights under high un-
certainty. In this way, we aim to obtain optimal feature weights
that are both discriminative and stable. We express this trade-off in
an objective function:

arg max
𝜔T

T∑
𝑡=1

( 𝐽∑
𝑗=1

𝜔𝑡 𝑗 `
2
𝑡 𝑗

︸      ︷︷      ︸
importance

− _𝑠
𝐽∑
𝑗=1

𝜔𝑡 𝑗𝜎
2
𝑡 𝑗

︸          ︷︷          ︸
uncertainty

− _𝑟
𝐽∑
𝑗=1

𝜔2
𝑡 𝑗

︸      ︷︷      ︸
regularizer

)

= arg max
𝜔T

T∑
𝑡=1

𝐽∑
𝑗=1

𝜔𝑡 𝑗 (`2
𝑡 𝑗 − _𝑠𝜎2

𝑡 𝑗 − _𝑟𝜔𝑡 𝑗 ) (5)

Note that we regularize the objective with the squared ℓ2-norm
to obtain small feature weights. Besides, we specify two scaling
factors _𝑠 ≥ 0 and _𝑟 ≥ 0, which scale the uncertainty penalty and
regularization term, respectively. These scaling factors allow us
to adjust the sensitivity of the weighting scheme with respect to
both penalties. For example, if we have a critical application that
requires high robustness (e.g. in medicine), we can increase _𝑠 to
impose a stronger penalty on uncertain parameters. Choosing an
adequate _𝑠 is usually not trivial. In general, a larger _𝑠 improves
the robustness of the feature weights, but limits the flexibility of
the model in the face of concept drift.

From now on, we omit time indices to avoid overloading the
exposition, e.g. 𝜔𝑡 = 𝜔 . The considerations that follow account
for a single time step 𝑡 . We further assume a batch size of 𝐵 = 1.
To maximize (5) for some 𝜔 𝑗 , we evaluate the partial derivative at
zero:

𝜕

𝜕𝜔 𝑗
= `2

𝑗 − _𝑠𝜎2
𝑗 − 2_𝑟𝜔 𝑗

!
= 0

⇔ −2_𝑟𝜔 𝑗 = −`2
𝑗 + _𝑠𝜎2

𝑗

⇔ 𝜔∗𝑗 =
1

2_𝑟

(
`2
𝑗 − _𝑠𝜎2

𝑗

)
(6)
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In accordance with Property 1 to 3, we show that the weights
obtained from (6) are attentive, monotonic and consistent:

Lemma 2.1. Equation (6) produces attentive weights as specified
by Property 1.

Proof. This property follows immediately from (6). Since𝜎2
𝑗 ≥ 0

and _𝑠 , _𝑟 ≥ 0, for ` 𝑗 = 0 we get 𝜔 𝑗 ≤ 0. □

Lemma 2.2. Equation (6) produces monotonic weights as specified
by Property 2.

Proof. Given two features 𝑥𝑖 ≠ 𝑥 𝑗 , Property 2 specifies two
sub-criteria, which we proof independently:

> Given |`𝑖 | = |` 𝑗 |, we can show 𝜎𝑖 ≥ 𝜎 𝑗 ⇔ 𝜔𝑖 ≤ 𝜔 𝑗 :
𝜎𝑖 ≥ 𝜎 𝑗

⇔ 𝑐 − 𝑏𝜎2
𝑖 ≤ 𝑐 − 𝑏𝜎2

𝑗 ; 𝑏, 𝑐 ≥ 0

For 𝑐 = 1
2_𝑟 `

2
𝑖 = 1

2_𝑟 `
2
𝑗 and 𝑏 = _𝑠

2_𝑟 we get

⇔ 1
2_𝑟

`2
𝑖 −

_𝑠
2_𝑟

𝜎2
𝑖 ≤

1
2_𝑟

`2
𝑗 −

_𝑠
2_𝑟

𝜎2
𝑗

⇔ 𝜔𝑖 ≤ 𝜔 𝑗
> Given 𝜎𝑖 = 𝜎 𝑗 , we can show |`𝑖 | ≥ |` 𝑗 | ⇔ 𝜔𝑖 ≥ 𝜔 𝑗 :

|`𝑖 | ≥ |` 𝑗 |
⇔ 𝑏`2

𝑖 − 𝑐 ≥ 𝑏`2
𝑗 − 𝑐; 𝑏, 𝑐 ≥ 0

for 𝑏 = 1
2_𝑟 and 𝑐 = _𝑠

2_𝑟 𝜎
2
𝑖 = _𝑠

2_𝑟 𝜎
2
𝑗 , we get

⇔ 1
2_𝑟

`2
𝑖 −

_𝑠
2_𝑟

𝜎2
𝑖 ≥

1
2_𝑟

`2
𝑗 −

_𝑠
2_𝑟

𝜎2
𝑗

⇔ 𝜔𝑖 ≥ 𝜔 𝑗
□

Lemma 2.3. Equation (6) produces consistent weights as specified
by Property 3.

Proof. ∃𝑡 , such that
𝑃 (𝑦𝑡 |𝑥𝑡 ,𝜓𝑡 ) = 𝑃 (𝑦𝑡+1 |𝑥𝑡+1,𝜓𝑡+1), ∀𝑡 ≥ 𝑡,

which by (3) can be formulated in terms of the marginal likeli-
hood. Consequently, since the marginal likelihood function does
not change after time step 𝑡 , the SGA updates in (4) will eventually
converge to a local optimum. Let 𝑡∗ ≥ 𝑡 be the time of convergence.
Notably, 𝑡∗ specifies the time step at which 𝑃 (\ |𝜓 ) and the distribu-
tion parameters𝜓 have been learnt, such that𝜓𝑡 = 𝜓𝑡∗ ∀𝑡 ≥ 𝑡∗. By
(6), we compute feature weights 𝜔 as a function of𝜓 . Consequently,
it also holds that 𝜔𝑡 = 𝜔𝑡∗ ∀𝑡 ≥ 𝑡∗. For the ranking of features,
denoted by R(𝜔), this implies R(𝜔𝑡 ) = R(𝜔𝑡∗ ) ∀𝑡 ≥ 𝑡∗. □

2.1 Illustrating the FIRES Mechanics
The proposed framework has three variable components, which we
can specify according to the requirements of the learning task at
hand:

(1) The prior distribution of model parameters \
(2) The prior distribution of the target variable 𝑦
(3) The predictive model M\ used to compute the marginal

likelihood (3)

The flexibility of FIRES allows us to obtain robust and discriminative
feature sets in any streaming scenario. By way of illustration, we
make the following assumptions:

The prior distribution of \ must be specified so that𝜓 contains
a measure of importance and uncertainty. The Gaussian normal
distribution meets this requirement. In our case, the mean value
refers to the expected importance of \ in the prediction. In addition,
the standard deviation measures the uncertainty regarding the
expected importance. Since the normal distribution is well-explored
and occurs in many natural phenomena, it is an obvious choice.
Accordingly, we get \𝑘 ∼ N(𝜓𝑘 ) ∀𝑘 , where𝜓𝑘 comprises the mean
`𝑘 and the standard deviation 𝜎𝑘 .

In general, we infer the distribution of the target variable 𝑦 from
the data. For illustration, we assume a Bernoulli distributed target,
i.e. 𝑦 ∈ {−1, 1}. Most existing work supports binary classification.
The Bernoulli distribution is therefore an appropriate choice for
the evaluation of our framework.

Finally, we need to choose a predictive modelM\ . FIRES sup-
ports any predictive model type, as long as its parameters represent
the importance and uncertainty of the input features. To illustrate
this, we apply FIRES to three common model families.

2.1.1 FIRESAndGeneralizedLinearModels. Generalized Lin-
ear Models (GLM) [26] use a link function to map linear models of
the form

∑𝐽
𝑗=1 \ 𝑗𝑥 𝑗 + \ 𝐽 +1 to a target distribution. Since we map to

the Bernoulli space, we use the cumulative distribution function
of the standard normal distribution, Φ, which is known as a Pro-
bit link. Conveniently, we can associate each input feature with a
single model parameter. Hence, by using a GLM, we can avoid the
previously discussed parameter aggregation step. We discard \ 𝐽 +1,
as it is not linked to any specific input feature. With Lemma A.1
and A.2 (see Appendix) the marginal likelihood becomes

𝑃 (𝑦 = 1|𝑥,𝜓 ) =
∫

Φ
©«
𝐽∑
𝑗=1

\ 𝑗𝑥 𝑗
ª®¬
𝑃 (\ |𝜓 ) 𝑑\

= Φ
©«

1
𝜌

𝐽∑
𝑗=1

` 𝑗𝑥 𝑗
ª®¬

; 𝜌 =

√√√√
1 +

𝐽∑
𝑗=1

𝜎2
𝑗 𝑥

2
𝑗 .

Since Φ is symmetric, we can further generalize to

𝑃 (𝑦 |𝑥,𝜓 ) = Φ
©«
𝑦

𝜌

𝐽∑
𝑗=1

` 𝑗𝑥 𝑗
ª®¬
.

We then compute the corresponding partial derivatives as

𝜕

𝜕` 𝑗
𝑃 (𝑦 |𝑥,𝜓 ) = 𝜙

(
𝑦

𝜌

𝐽∑
𝑖=1

`𝑖𝑥𝑖

)
· 𝑦
𝜌
𝑥 𝑗 ,

𝜕

𝜕𝜎 𝑗
𝑃 (𝑦 |𝑥,𝜓 ) = 𝜙

(
𝑦

𝜌

𝐽∑
𝑖=1

`𝑖𝑥𝑖

)
· 𝑦

−2𝜌3 2𝑥2
𝑗𝜎 𝑗

𝐽∑
𝑖=1

`𝑖𝑥𝑖 ,

where 𝜙 is the probability density function of the standard normal
distribution.

2.1.2 FIRES And Artificial Neural Nets. In general, Artificial
Neural Nets (ANN) make predictions through a series of linear
transformations and nonlinear activations. Due to the nonlinearity
and complexity of ANNs, we usually cannot solve the integral of
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(3) in closed form. Instead, we approximate the marginal likelihood
using the well-known Monte Carlo method. Let 𝑓\ (𝑥) be an ANN
of arbitrary depth. We approximate (3) by sampling 𝐿-times with
Monte Carlo:

𝑃 (𝑦 |𝑥,𝜓 ) =
∫

𝑓\ (𝑥) 𝑃 (\ |𝜓 ) 𝑑\

≈ 1
𝐿

𝐿∑
𝑙=1

𝑓\ (𝑙 ) (𝑥); \
(𝑙)
𝑘

= 𝜎𝑘𝑟
(𝑙)
𝑘
+ `𝑘 ∀𝑘

Note that we apply a reparameterisation trick: By sampling 𝑟 (𝑙)
𝑘
∼

N(0, 1), we move stochasticity away from `𝑘 and 𝜎𝑘 , which allows
us to compute their partial derivatives:

𝜕𝑃 (𝑦 |𝑥,𝜓 )
𝜕`𝑘

=
1
𝐿

𝐿∑
𝑙=1

𝜕

𝜕\
(𝑙)
𝑘

𝑓\ (𝑙 ) (𝑥)
𝜕\
(𝑙)
𝑘

𝜕`𝑘
=

1
𝐿

𝐿∑
𝑙=1

𝜕

𝜕\
(𝑙)
𝑘

𝑓\ (𝑙 ) (𝑥),

𝜕𝑃 (𝑦 |𝑥,𝜓 )
𝜕𝜎𝑘

=
1
𝐿

𝐿∑
𝑙=1

𝜕

𝜕\
(𝑙)
𝑘

𝑓\ (𝑙 ) (𝑥)
𝜕\
(𝑙)
𝑘

𝜕𝜎𝑘
=

1
𝐿

𝐿∑
𝑙=1

𝜕

𝜕\
(𝑙)
𝑘

𝑓\ (𝑙 ) (𝑥) 𝑟 (𝑙)𝑘

We obtain 𝜕

𝜕\ (𝑙 )
𝑘

𝑓\ (𝑙 ) (𝑥) by backpropagation.

2.1.3 FIRES And Soft Decision Trees. Binary decisions as in
regular CART Decision Trees are not differentiable. Accordingly,
we have to choose a Decision Tree model that has differentiable
parameters to compute the gradient of (3). One such model is the
Soft Decision Tree (SDT) [11, 17]. Let 𝑛 be the index of an inner
node of the SDT. SDTs replace the binary split at 𝑛 with a logistic
function:

𝑝𝑛 (𝑥) = 1

1 + 𝑒−(
∑𝐽
𝑗=1 \𝑛𝑗𝑥 𝑗 )

This function yields the probability by which we choose 𝑛’s right
child branch given 𝑥 . Note that the logistic function is differentiable
with respect to the parameters \𝑛 . Similar to ANNs, however, we are
now faced with nonlinearity and higher complexity of the model.
Therefore, we approximate the marginal likelihood using Monte
Carlo and the reparameterisation trick. With 𝑓\ being an SDT, the
partial derivatives of (3) correspond to those of the ANN.

2.1.4 Aggregating Parameters. The number of model parame-
ters \ = [\1, .., \𝑘 , .., \𝐾 ] might exceed the number of input features
𝑥 = [𝑥1, .., 𝑥 𝑗 , .., 𝑥 𝐽 ], i.e. 𝐾 ≥ 𝐽 . Whenever this is the case, we have
to aggregate parameters, since we require a single importance and
uncertainty score per input feature to compute feature weights in
(6). Next, we show how to aggregate the parameters of an SDT and
an ANN to create a meaningful representation.

For SDTs the aggregation is fairly simple. Each inner node is a
logistic function that comprises exactly one parameter per input
feature. Let 𝑁 be the number of inner nodes. Accordingly, we have
a total of 𝐽 × 𝑁 parameters in the SDT model. We aggregate the
parameters associated with an input feature 𝑥 𝑗 by computing the
mean over all inner nodes:

\ 𝑗 =
1
𝑁

𝑁∑
𝑛=1

\𝑛𝑗 ; \ 𝑗 ∼ N
(

1
𝑁

𝑁∑
𝑛=1

`𝑛𝑗 ,
1
𝑁

𝑁∑
𝑛=1

𝜎𝑛𝑗

)

Due to the multi-layer architecture of an ANN, its parameters are
usually associated with more than one input feature. For this reason,
we cannot apply the same methodology as that proposed for the
SDT. Instead, for each input feature 𝑥 𝑗 , we aggregate all parameters
that lie along 𝑗 ’s path to the output layer. Let ℎ be the index of a
layer of the ANN, where ℎ = 1 denotes the input layer. Let further
U 𝑗
ℎ
be the set of all nodes of layer ℎ that belong to the path of 𝑥 𝑗 .

We sum up the average parameters along all layers and nodes on
𝑗 ’s path to obtain a single aggregated parameter \ 𝑗 :

\ 𝑗 =
𝐻−1∑
ℎ=1

1
|U 𝑗
ℎ
| |U 𝑗

ℎ+1 |
∑
𝑛∈U 𝑗

ℎ

∑
𝑖∈U 𝑗

ℎ+1

\𝑛𝑖 ;

\ 𝑗 ∼ N
(
𝐻−1∑
ℎ=1

1
|U 𝑗
ℎ
| |U 𝑗

ℎ+1 |
∑
𝑛∈U 𝑗

ℎ

∑
𝑖∈U 𝑗

ℎ+1

`𝑛𝑖 ,

𝐻−1∑
ℎ=1

1
|U 𝑗
ℎ
| |U 𝑗

ℎ+1 |
∑
𝑛∈U 𝑗

ℎ

∑
𝑖∈U 𝑗

ℎ+1

𝜎𝑛𝑖

)

where 𝐻 is the total number of layers and | · | is the cardinality of a
set. Note that \𝑛𝑖 is the parameter that connects node 𝑛 in layer ℎ
to node 𝑖 in layer ℎ + 1.

2.2 Feature Selection Stability in Data Streams
In view of increasing threats such as adversarial attacks, the stability
of machine learning models has received much attention in recent
years [13]. Stability usually describes the robustness of a machine
learning model against (adversarial or random) perturbations of the
data [5, 32]. In this context, a feature selection model is considered
stable, if the set of selected features does not change after we slightly
perturb the input [18]. Tomeasure feature selection stability, we can
therefore monitor the variability of the feature set [28]. Nogueira
et al. [28] developed a stability measure, which is a generalization
of various existing methods. Let Z = [𝐴1, .., 𝐴𝑟 ]𝑇 be a matrix
that contains 𝑟 feature vectors, which we denote by 𝐴𝑟 ∈ {0, 1}𝐽 .
Specifically, 𝐴𝑟 is the feature vector that was obtained for the 𝑟 ’th
sample, such that selected features correspond to 1 and 0 otherwise.
Feature selection stability according to Nogueira et al. [28] is then
defined as:

Γ(Z) = 1 −
1
𝐽

∑𝐽
𝑗=1 𝑠

2
𝑗

𝑀
𝐽

(
1 − 𝑀

𝐽

) , (7)

where𝑀 is the number of selected features and 𝑠2
𝑗 =

𝑟
𝑟−1𝑝 𝑗 (1−𝑝 𝑗 ) is

the unbiased sample variance of the selection of feature 𝑗 . Moreover,
let 𝑝 𝑗 = 1

𝑟

∑𝑟
𝑖=1 𝑧𝑖 𝑗 , where 𝑧𝑖 𝑗 denotes one element ofZ. According

to (7), the feature selection stability decreases, if the total variability∑𝐽
𝑗=1 𝑠

2
𝑗 increases. On the other hand, if 𝑠2

𝑗 = 0 ∀𝑗 , i.e. there is no
variability in the selected features, the stability reaches its maximum
value at Γ(Z) = 1.

Nogueira et al. [28] show that (7) has a clean statistical interpre-
tation. In addition, the measure can be calculated in linear time,
making it a sensible choice for evaluating online feature selec-
tion models. However, to calculate (7), we would have to sample
𝑟 feature vectors, which can be costly. A naïve but very efficient
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approach is to use the feature vectors in a shifting window in-
stead. Let 𝐴𝑡 be the active feature set at time step 𝑡 . We then define
Z𝑡 = [𝐴𝑡−𝑟+1, ..., 𝐴𝑡 ]𝑇 , where 𝑟 depicts the size of the shifting win-
dow. We compute the sample variance 𝑠2

𝑗 in the same fashion as
before. However, (7) is now restricted to the observations between
time step 𝑡 and 𝑡 − 𝑟 + 1.

The shifting window approach allows us to update the stability
measure for each new feature vector at each time step. However,
the approach might return low stability values, when the shifting
window falls within a period of concept drift. Accordingly, we
should control the sensitivity of the stability measure by a sensible
selection of the window size. An alternative to shifting windows
are Cross-Validation based schemes recently proposed by Barddal
et al. [1], based on an idea of Bifet et al. [2].

Finally, note that FIRES produces consistent feature rankings
when the target distribution is stable (Property 3). In this case, we
will ultimately achieve zero variance in subsequent feature sets,
thereby maximizing the feature selection stability according to (7).

3 RELATEDWORK
Traditionally, feature selection models are categorized into filters,
wrappers and embedded methods [8, 14, 30]. Embedded methods
merge feature selection with the prediction, filter methods are
decoupled from the prediction, and wrappers use predictive models
to weigh and select features [30]. Evidently, FIRES belongs to the
group of wrappers.

Data streams are usually defined as an unbounded sequence of
observations, where all features are known in advance. This as-
sumption is shared by most related literature. In practice, however,
we often observe streaming features, i.e. features that appear succes-
sively over time. The approaches dealing with streaming features
often assume that only a fixed set of observations is available. We
should therefore distinguish between online feature selection meth-
ods for “streaming observations” and “streaming features”. Next,
we present prominent and recent works in both categories.

Streaming Features: Zhou et al. [38] proposed a model that se-
lects features based on a potential reduction of error. The threshold
used for feature selection is updated with a penalty method called
alpha-investing. Later, Wu et al. [36] introduced Online Streaming
Feature Selection (OSFS), which constructs the Markov blanket of a
class and gradually removes irrelevant or redundant features. Like-
wise, the Scalable and Accurate Online Approach (SAOLA) removes
redundant features by computing a lower bound on pairwise fea-
ture correlations [37]. Another approach is Group Feature Selection
from Feature Streams (GFSFS), which uncovers and removes all fea-
ture groups that have a low mutual information with the target
variable [21]. Finally, Wang et al. [34] introduced Online Leverage
Scores for Feature Selection, a model that selects features based on
the approximate statistical leverage score.

StreamingObservations:An early approach isGrafting, which
uses gradient updates to iteratively adjust feature weights [29].
Later, Nguyen et al. [27] employed an ensemble model called Het-
erogeneous Ensemble with Feature Drift for Data Streams (HEFT) to
compute a symmetrical uncertainty measure that can be used to
weigh and select features. Online Feature Selection (OFS) is another
wrapper that adjusts feature weights based on misclassifications

of a Perceptron [35]. OFS truncates the weight vector at each time
step to retain only the top features. The Feature Selection on Data
Streams (FSDS) model by Huang et al. [16] maintains an approxi-
mated low-rank matrix representation of all observed data. FSDS
computes feature weights with a Ridge-regression model trained
on the low-rank matrix. Recently, Borisov et al. [4] proposed Cancel
Out, a sparse layer for feature selection in neural nets, which ex-
ploits the gradient information obtained during training. Another
recent proposal is the Adaptive Sparse Confidence-Weighted (ASCW)
model that obtains feature weights from an ensemble of sparse
learners [23].

Some online feature selection models can process “streaming
features” and “streaming observations” simultaneously. One exam-
ple is the Extremal Feature Selection (EFS) by Carvalho and Cohen
[7], which ranks features by the absolute difference between the
positive and negative weights of a modified balanced Winnow algo-
rithm. Another approach uses statistical measures like 𝜒2 to rank
and select features [20]. Finally, there are online predictive models
that offer embedded feature selection, e.g. DXMiner [24], as well as
explanation models like LICON [19], which quantify the influence
of input features. For further consultation of related work, we refer
the fellow reader to the surveys of Guyon and Elisseeff [14], Li et al.
[22] and Ramírez-Gallego et al. [30].

For the evaluation of our framework, we assume that all fea-
tures are known in advance. Note, however, that FIRES can also
support streaming features by dynamically adding parameters to
the likelihood model (we leave a detailed analysis for future work).

4 EXPERIMENTS
Next, we evaluate the FIRES framework in multiple experiments.
Specifically, we compare the three instantiations of FIRES intro-
duced above (see Sections 2.1.1 to 2.1.3). Besides, we compare our
framework to three state-of-the-art online feature selection models:
OFS [35], FSDS [16] and EFS [7]. The hyperparameters of each
related model were selected as specified in the corresponding pa-
pers. We have also defined a set of default hyperparameters for the
three FIRES models. Details about the hyperparameter search can
be found in the Appendix. We chose a binary classification context
for the evaluation, as it is a basic problem that all models should
handle well.

4.1 Data Sets
We have limited ourselves to known data sets that are either gener-
ated by streaming applications or are closely related to them. Table
2 shows the properties of all data sets. Further information about
the data sets and the preprocessing is included in the Appendix.

The Human Activity Recognition (HAR) and the MNIST data set
are multiclass data sets. We have transferred both data sets into a bi-
nary classification setting as follows: HAR contains measurements
of a motion sensor. The labels denote corresponding activities. For
our evaluation, we treated HAR as a one-vs-all classification of the
activity “Walking”. MNIST is a popular digit recognition data set.
Here, we chose the label “3” for a one-vs-all classification.

The Gisette and Madelon data sets were introduced as part of
a NIPS feature selection challenge. We also used a data set from
the 1999 KDD Cup that describes fraudulent and benign network
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Table 2: Data sets. “Types” denotes the data types included
in the data set (continuous, categorical). The synthetic RBF
(Radial Basis Function) and RTG (Random Tree Generator)
data sets were generated with scikit-multiflow [25].

Name #Samples #Features Types

HAR (one-vs-all) 10,299 562 cont.
Spambase 4,601 57 cont.
Usenet (20 Newsgroups) 5,931 658 cat.
Gisette (’03 NIPS challenge) 7,000 5,000 cont.
Madelon (’03 NIPS challenge) 2,600 500 cont.
Dota 100,000 116 cat.
KDD Cup 1999 Data 100,000 41 cont., cat.
MNIST (one-vs-all) 70,000 784 cont.
RBF (synthetic) 10,000 10,000 cont.
RTG (synthetic) 10,000 450 cont., cat.

activity. The Dota data set contains (won/lost) results of the strategy
game Dota 2. Its features correspond to player information, such
as rank or game character. Since KDD and Dota are fairly large
data sets, we took a random sample of 100,000 observations each to
compute the experiments in a reasonable time. Finally, Usenet is a
streaming adaptation of the 20 Newsgroups data set and Spambase
contains the specifications of various spam and non-spam emails.

Moreover, we generated two synthetic data sets with scikit-
multiflow [25]. Specifically, we obtained 10,000 instances with
10,000 continuous features from the Random RBF Generator (RBF
= Radial Basis Function). In addition, we generated another 10,000
instances with 50 categorical and 200 continuous features using
the Random Tree Generator (RTG). Here, each categorical feature
has five unique, one-hot-encoded values, giving a total of 450 fea-
tures. We used the default hyperparameters of both generators and
defined a random state for reproducibility.

4.2 Results
Feature selection generally aims to identify input patterns that are
discriminative with respect to the target. We show that FIRES does
indeed identify discriminative features by selecting the MNIST data
set for illustration. The task was to distinguish the class labels 3, 8
and 9, which can be difficult due to their similarity. By successively
using each class as the true label, we obtained three different fea-
ture weights, which are shown in Figure 3. In this experiment, we
used FIRES with the ANN base model. Strikingly, while all other
models had difficulty in selecting a meaningful set of features, FIRES
effectively captured the true pattern of the positive class. In fact,
FIRES has produced feature weights and feature sets that are easy
for humans to interpret.

Note that all models we compare are wrapper methods [30].
As such, they use a predictive model for feature selection, but do
not make predictions themselves. To assess the predictive power of
feature sets, we therefore had to choose an online classifier that was
trained on the selected features. We chose a Perceptron algorithm
because it is relatively simple, but still impressively demonstrates
the positive effect of online feature selection. As Table 3 shows,
feature selection can increase the performance of a Perceptron to the
point where it can compete with state-of-the-art online predictive

(a) EFS[7], 3 vs. all (b) EFS[7], 8 vs. all (c) EFS[7], 9 vs. all

(d) FSDS[16], 3 vs. all (e) FSDS[16], 8 vs. all (f) FSDS[16], 9 vs. all

(g) OFS[35], 3 vs. all (h) OFS[35], 8 vs. all (i) OFS[35], 9 vs. all

(j) FIRES, 3 vs. all (k) FIRES, 8 vs. all (l) FIRES, 9 vs. all

Figure 3: Discriminative Features. We have sampled all ob-
servations from MNIST with the label 3, 8 or 9. We succes-
sively selected each label as the positive class and carried
out a feature selection. The subplots above illustrate the fea-
ture weights (left, high weights being dark) and selected fea-
tures (right,𝑀 = 115) after observing the first 1000 instances.
While OFS, FSDS and EFS struggle to select meaningful fea-
tures, FIRES (ours) effectively identifies the discriminative
features of the positive class after observing very little data.

models. For comparison, we trained an Online Boosting [33] model
and a Very Fast Decision Tree (VFDT) [9] on the full feature space.
All predictive models were trained in an interleaved test-then-train
fashion (i.e. prequential evaluation). The Online Boosting model
shows very poor performance for the RBF data set. This is due
to the fact that the Naïve Bayes models, which we used as base
learners, were unable to enumerate the high-dimensional RBF data
set, given the relatively small sample size. Nevertheless, we have
kept the same boosting architecture in all experiments for reasons
of comparability. We chose accuracy as a prediction metric, because
it is a common choice in the literature. Moreover, since we do not
take into account extremely imbalanced data, accuracy provides a
meaningful assessment of the discriminative power of each model.

Table 3 and Table 4 exhibit the average accuracy, computation
time and stability of multiple evaluations with varying batch sizes
(25,50,75,100) and fractions of selected features (0.1, 0.15, 0.2). In
Figure 4 we show how the accuracy and stability develops over
time. In addition, Figure 5 illustrates how the different models
manage to balance accuracy and stability. We selected Gisette for
illustration, because it is a common benchmark data set for feature
selection. Note, however, that we have observed similar results for
all remaining data sets.

The results show that our framework is among the top models
for online feature selection in terms of computation time, predic-
tive accuracy and stability. Strikingly, FIRES coupled with the least
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Table 3: Accuracy and Computation Time.We tested our framework (FIRES) with three different base models; a GLM, an ANN
and an SDT (Sections 2.1.1 - 2.1.3). The Online Boosting [33] and Very Fast Decision Tree (VFDT) [9]models were trained on the
full feature set to serve as a benchmark. All models are evaluated on an i7-8550U CPU with 16 Gb RAM, runningWindows 10.
Further details about the experimental setup can be found in theAppendix. Here, we show the accuracy (acc.) and computation
time (feature selection + model training; milliseconds) observed on average per time step. Strikingly, while all three FIRES
models are competitive, FIRES-GLM takes first place on average in terms of both predictive accuracy and computation time.

Benchmark Models Feature Selection Models (with Perceptron)
Boosting [33] VFDT [9] FIRES-GLM FIRES-ANN FIRES-SDT OFS [35] EFS [7] FSDS [16]

Datasets acc. ms acc. ms acc. ms acc. ms acc. ms acc. ms acc. ms acc. ms
HAR 0.788 2264.805 0.819 192.515 0.87 2.729 0.842 38.156 0.872 27.497 0.928 20.892 0.87 43.309 0.919 4.195
Spambase 0.83 234.741 0.638 21.096 0.742 1.761 0.685 28.341 0.66 23.333 0.721 10.135 0.577 15.463 0.657 1.969
Usenet 0.507 2448.95 0.504 206.354 0.556 2.996 0.541 41.897 0.541 27.948 0.563 44.696 0.531 99.758 0.537 4.331
Gisette 0.673 15026.415 0.687 1781.348 0.933 22.391 0.902 164.682 0.906 42.29 0.911 291.428 0.881 667.923 0.921 36.806
Madelon 0.551 1398.29 0.481 245.073 0.523 2.849 0.509 38.992 0.508 27.482 0.522 51.872 0.511 82.638 0.539 4.217
Dota 0.552 330.895 0.521 54.143 0.516 2.200 0.505 30.645 0.505 23.62 0.514 18.084 0.504 24.396 0.505 2.944
KDD 0.989 110.659 0.985 12.226 0.969 2.073 0.928 28.614 0.956 22.96 0.962 1.829 0.971 10.756 0.785 1.977
MNIST 0.906 1960.237 0.894 275.872 0.930 3.298 0.884 43.129 0.940 28.607 0.950 14.597 0.879 24.094 0.930 6.075
RBF 0.323 26265.709 0.738 3567.720 0.973 34.953 0.995 226.017 0.973 38.409 0.748 1356.477 0.973 1594.846 0.984 85.514
RTG 0.812 1244.723 0.835 203.776 0.793 2.609 0.730 35.698 0.743 26.166 0.743 31.511 0.789 45.706 0.719 4.165
Mean 0.693 5128.542 0.710 656.012 0.781 7.786 0.752 67.617 0.760 28.831 0.756 184.152 0.749 260.889 0.750 15.219
Rank 8. 8. 7. 7. 1. 1. 4. 4. 2. 3. 3. 5. 6. 6. 5. 2.

Table 4: Feature Selection Stability. Here, we show the aver-
age feature selection stability per time step according to (7).
The size of the shifting window was 10. All FIRES models
produce consistently stable feature sets, with the GLMbased
model ranking first place on average.

Feature Selection Models
FIRES FIRES FIRES

Datasets -GLM -ANN -SDT OFS [35] EFS [7] FSDS [16]
HAR 0.985 0.652 0.865 0.756 0.921 0.986
Spambase 0.901 0.819 0.710 0.971 0.822 0.908
Usenet 0.820 0.931 0.747 0.775 0.749 0.937
Gisette 0.937 0.987 0.756 0.295 0.845 0.949
Madelon 0.526 0.489 0.682 0.158 0.783 0.281
Dota 0.978 0.950 0.932 0.444 0.993 0.700
KDD 0.997 0.996 0.978 0.940 0.990 0.999
MNIST 0.996 0.753 0.950 0.703 0.981 0.989
RBF 0.959 0.993 0.793 0.018 0.906 0.812
RTG 0.856 0.582 0.827 0.457 0.840 0.080
Mean (Rank) 0.896 0.815 0.824 0.552 0.883 0.764
Rank 1. 3. 4. 6. 2. 5.

complex base model (GLM) takes first place on average in all three
categories (see Table 3 and 4). The GLM based model generates
discriminative feature sets, even if the data is not linearly separable
(e.g. MNIST), which may seem strange at first. For feature weight-
ing, however, it is sufficient if we capture the relative importance
of the input features in the prediction. Therefore, a model does
not necessarily have to have a high classification accuracy. Since
GLMs only have to learn a few parameters, they tend to recognize
important features faster than other, more complex models. Further-
more, FIRES-ANN and FIRES-SDT are subject to uncertainty due
to the sampling we use to approximate the marginal likelihood. In
this experiment, FIRES-GLM achieved better results than all related
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Figure 4: Accuracy and Stability over Time. Here, we show
how the accuracy and stability scores develop over time. We
used the Gisette data for illustration. We trained on batches
of size 100 and used a shifting window of size 10 to compute
stability (Eq. (7)). All feature selection models achieve simi-
lar accuracy. The FIRESmodelsmaximize stability over time,
which was also observed for the remaining data sets.

models. Still, whenever a linear model may not be sufficient, the
FIRES framework is flexible enough to allow base models of higher
complexity.

5 CONCLUSION
In this work, we introduced a novel feature selection framework
for high-dimensional streaming applications, called FIRES. Using
probabilistic principles, our framework extracts importance and
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Figure 5: Accuracy vs. Stability. In practice, predictions
must be both robust and accurate. The proposed framework
(FIRES) aims at maximizing both aspects and produces fea-
ture sets accordingly, which we exemplary show for the
Gisette data set. The circle size indicates the variance in ac-
curacy. A perfect result would lie in the top right corner of
the plot. Note that in all data sets, we always found at least
one FIRES-model in the top region (here, it is the models
FIRES-GLM and FIRES-ANN ).

uncertainty scores regarding the current predictive power of ev-
ery input feature. We weigh high importance against uncertainty,
producing feature sets that are both discriminative and robust. The
proposed framework is modular and can therefore be adapted to
the requirements of any learning task. For illustration, we applied
FIRES to three common linear and nonlinear models and evaluated
it using several real-world and synthetic data sets. Experiments
show that FIRES produces more stable and discriminative feature
sets than state-of-the-art online feature selection approaches, while
offering a clear advantage in terms of computational efficiency.
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A IMPORTANT FORMULAE
Lemma A.1. Let 𝑋 ∼ N(`, 𝜎) be a normally-distributed random

variable and let Φ be the cumulative distribution function (CDF) of a
standard normal distribution. Then the following equation holds:

E [Φ(𝛼𝑋 + 𝛽)] =
∫ ∞

−∞
Φ(𝛼𝑥 + 𝛽)𝑃 (𝑋 = 𝑥) 𝑑𝑥

= Φ

(
𝛽 + 𝛼`√
1 + 𝛼2𝜎2

)
(8)

Proof. Let 𝑌 ∼ N(0, 1) be a standard-normal-distributed ran-
dom variable (independent of 𝑋 ). We can then rewrite Φ as: Φ(𝑟 ) =
𝑃 (𝑌 ≤ 𝑟 ). Using this, we get:

E [Φ(𝛼𝑋 + 𝛽)]
= E [𝑃 (𝑌 ≤ 𝛼𝑋 + 𝛽)]
= 𝑃 (𝑌 ≤ 𝛼𝑋 + 𝛽)
= 𝑃 (𝑌 − 𝛼𝑋 ≤ 𝛽)

The linear combination 𝑌 − 𝛼𝑋 is again normal-distributed with
mean −𝛼` and variance

√
12 + 𝛼2𝜎2. Hence, we can write

𝑌 − 𝛼𝑋 =
√

1 + 𝛼2𝜎2𝑍 − 𝛼`
where 𝑍 ∼ N(0, 1) is again standard-normal-distributed. We then
get:

𝑌 − 𝛼𝑋 ≤ 𝛽
⇔

√
1 + 𝛼2𝜎2𝑍 − 𝛼` ≤ 𝛽

⇔ 𝑍 ≤ 𝛽 + 𝛼`√
1 + 𝛼2𝜎2

Hence, we get
E [Φ(𝛼𝑋 + 𝛽)]

= 𝑃 (𝑌 − 𝛼𝑋 ≤ 𝛽)

= 𝑃

(
𝑍 ≤ 𝛽 + 𝛼`√

1 + 𝛼2𝜎2

)

= Φ

(
𝛽 + 𝛼`√
1 + 𝛼2𝜎2

)
□

Lemma A.2. Let 𝑋 = (𝑋1, ..., 𝑋𝑛) be normally-distributed random
variables with 𝑋𝑖 ∼ N(`𝑖 , 𝜎𝑖 ). Let 𝛼𝑖 , 𝛽 ∈ R be coefficients and let
Φ be the CDF of a standard normal distribution. Then the following
equation holds:

E

[
Φ

(
𝑛∑
𝑖=1

𝛼𝑖𝑋𝑖 + 𝛽
)]

=
∫ ∞

−∞
· ·

∫ ∞

−∞
Φ

(
𝑛∑
𝑖=1

𝛼𝑖𝑥𝑖 + 𝛽
)
𝑛∏
𝑖=1

𝑃 (𝑋𝑖 = 𝑥𝑖 ) 𝑑𝑥𝑛 . . 𝑑𝑥1

= Φ
©«
𝛽 +∑𝑛

𝑖=1 𝛼𝑖`𝑖√
1 +∑𝑛

𝑖=1 𝛼
2
𝑖 𝜎

2
𝑖

ª®®¬
(9)

Proof. Proof by mathematical induction over 𝑛:
Base case 𝑛 = 1: Lemma A.1

Inductive step 𝑛 ↦→ 𝑛 + 1: Let (9) hold for 𝑛. For 𝑛 + 1, we get:

E

[
Φ

(
𝑛+1∑
𝑖=1

𝛼𝑖𝑋𝑖 + 𝛽
)]

= E

[
Φ

(
𝑛∑
𝑖=1

𝛼𝑖𝑋𝑖 + 𝛼𝑛+1𝑋𝑛+1 + 𝛽︸          ︷︷          ︸
=:𝛽

)]

(9)
= E

[
Φ

©«
𝛽 +∑𝑛

𝑖=1 𝛼𝑖`𝑖√
1 +∑𝑛

𝑖=1 𝛼
2
𝑖 𝜎

2
𝑖

ª®®¬
]

= E

[
Φ

©«
𝛼𝑛+1√

1 +∑𝑛
𝑖=1 𝛼

2
𝑖 𝜎

2
𝑖

𝑋𝑛+1 +
𝛽 +∑𝑛

𝑖=1 𝛼𝑖`𝑖√
1 +∑𝑛

𝑖=1 𝛼
2
𝑖 𝜎

2
𝑖

ª®®¬
]

(8)
= Φ

©«

𝛽+∑𝑛𝑖=1 𝛼𝑖`𝑖√
1+∑𝑛𝑖=1 𝛼

2
𝑖 𝜎

2
𝑖

+ 𝛼𝑛+1√
1+∑𝑛𝑖=1 𝛼

2
𝑖 𝜎

2
𝑖

`𝑛+1
√√√

1 +
(

𝛼𝑛+1√
1+∑𝑛𝑖=1 𝛼

2
𝑖 𝜎

2
𝑖

)2

𝜎2
𝑛+1

ª®®®®®®®¬
= Φ

©«
𝛽 +∑𝑛

𝑖=1 𝛼𝑖`𝑖 + 𝛼𝑛+1`𝑛+1√
1 +∑𝑛

𝑖=1 𝛼
2
𝑖 𝜎

2
𝑖 + 𝛼2

𝑛+1𝜎
2
𝑛+1

ª®®¬
= Φ

©«
𝛽 +∑𝑛+1

𝑖=1 𝛼𝑖`𝑖√
1 +∑𝑛+1

𝑖=1 𝛼
2
𝑖 𝜎

2
𝑖

ª®®¬
□

B EXPERIMENTAL SETTING
B.1 Python Packages
All experiments were conducted on an i7-8550U CPU with 16
Gb RAM, running Windows 10. We have set up an Anaconda
(v4.8.2) environment with Python (v3.7.1). We mostly used standard
Python packages, including numpy (v1.16.1), pandas (v0.24.1), scipy
(v1.2.1), and scikit-learn (v0.20.2). The ANN base model was imple-
mented with pytorch (v1.0.1). Besides, we used the SDT implemen-
tation provided at https://github.com/AaronX121/Soft-Decision-
Tree/blob/master/SDT.py, extracting the gradients after every train-
ing step.

During the evaluation, we further used the FileStream, Ran-
domRBFGenerator, RandomTreeGenerator, PerceptronMask, Hoeffd-
ingTree (VFDT) and OnlineBoosting functions of scikit-multiflow
(v0.4.1). Finally, we generated plots with matplotlib (v3.0.2) and
seaborn (v0.9.0).

B.2 scikit-multiflow Hyperparameters
If not explicitly specified here, we have used the default hyperpa-
rameters of scikit-multiflow [25].

For the OnlineBoosting() function, we have specified the follow-
ing hyperparameters:
• base_estimator = NaiveBayes()
• n_estimators = 3
• drift_detection = False
• random_state = 0
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Figure 6: Choosing the _𝑠 Penalty Term. The larger _𝑠 , the
higher we weigh uncertainty against importance when com-
puting feature weights (see Eq. (5)). Here, we illustrate the
effect of _𝑠 on the average accuracy per time step (red) and
the average feature selection stability per time step (blue,
according to Eq. (7)). We used the Gisette data set for illus-
tration. If we increase _𝑠 , we initially also increase the sta-
bility. Yet, for _𝑠 > 1, the feature selection stability suffers.
We observed similar effects for all remaining data sets. This
suggests that stable feature sets depend not only on the un-
certainty, but also on the importance of features. _𝑠 = 0.01
was set as our default value throughout the experiments, be-
cause it provided the best balance between predictive power
and stability in all data sets.

Besides, we used the HoeffdingTree() function to train a VFDT
model. We set the parameter leaf_prediction to ’mc’ (majority class),
since the default choice ’nba’ (adaptive Naïve Bayes) is very ineffi-
cient in high-dimensional applications.

B.3 FIRES Hyperparameters
We assumed a standard normal distribution for all initial model pa-
rameters \ , i.e. `𝑘 = 0, 𝜎𝑘 = 1 ∀𝑘 . The remaining hyperparameters
of FIRES were optimized in a grid search. Below we list the search
space and final value of every hyperparameter:
𝜶 : Learning rate for updates of ` and 𝜎 , see Eq. (4): search

space=[0.01, 0.025, 0.1, 1, 10], final value=0.01.
𝝀𝒔 : Penalty factor for uncertainty in the weight objective, see

Eq. (5): search space=[10𝑒 − 5, 10𝑒 − 4, 10𝑒 − 3, 10𝑒 − 2, 10𝑒 −
1, 10𝑒0, 10𝑒1, 10𝑒2, 10𝑒3], final value=0.01. In Figure 6, we
exemplary show the effect of different _𝑠 for the Gisette
data.

𝝀𝒓 : Regularization factor in the weight objective, see Eq. (5):
search space=[0.01, 0.1, 1], final value=0.01.

There have been additional hyperparameters for the ANN and SDT
based models:
• Learning rate (ANN+SDT): Learning rate for gradient up-
dates after backpropagation: search space=[0.01, 0.1, 1], final
value=0.01.
• Monte Carlo samples (ANN+SDT): Number of times we
sample from the parameter distribution in order to compute
the Monte Carlo approximation of the marginal likelihood:
search space=[3, 5, 7, 9], final value=5.
• #Hidden layers (ANN): Number of fully connected hidden
layers in the ANN: search space=[3, 5, 7], final value=3

• Hidden layer size (ANN): Nodes per hidden layer: search
space=[50, 100, 150, 200], final value=100.
• Tree depth (SDT): Maximum depth of the SDT: search
space=[3, 5, 7], final value=3.
• Penalty coefficient (SDT): Frosst and Hinton [11] specify
a coefficient that is used to regularize the output of every
inner node: search space=[0.001, 0.01, 0.1], final value=0.01.

Note that we have evaluated every possible combination of hy-
perparameters, choosing the values that maximized the tradeoff
between predictive power and stable feature sets. Similar to related
work, we selected the search spaces empirically. The values listed
above correspond to the default hyperparameters that we have used
throughout the experiments.

C DATA SETS AND PREPROCESSING
The Usenet data was obtained from http://www.liaad.up.pt/kdus/
products/datasets-for-concept-drift. All remaining data sets are
available at the UCI Machine Learning Repository [10]. We used
pandas.factorize() to encode categorical features. Moreover, we nor-
malized all features into a range [0, 1], using the MinMaxScaler() of
scipy. Otherwise, we did not preprocess the data.

D PSEUDO CODE
Algorithm 1 depicts the pseudo code for the computation of feature
weights at time step 𝑡 . Note that the gradient of the log-likelihood
might need to be approximated, depending on the underlying pre-
dictive model. In the main paper, we show how to use Monte Carlo
approximation to compute the gradient for an Artificial Neural Net
(ANN) and a Soft Decision Tree (SDT).

Algorithm 1: Feature weighting with FIRES at time step 𝑡
Data: Observations 𝑥𝑡 ∈ R𝐵×𝐽 and corresponding labels

𝑦𝑡 = [𝑦𝑡1, .., 𝑦𝑡𝐵] (𝐵 = batch size, 𝐽 = no. of features);
Sufficient statistics of 𝐾 model parameters from the
previous time step: `𝑡−1, 𝜎𝑡−1 ∈ R𝐾

Result: Feature weights: 𝜔𝑡 ∈ R𝐽 ; Updated statistics:
`𝑡 , 𝜎𝑡 ∈ R𝐾

begin
/* Define the log-likelihood L for some base

model and compute the gradient */

∇`L ← Eq. (2);
∇𝜎L ← Eq. (2);

/* Update the sufficient statistics */

`𝑡 = `𝑡−1 + 𝛼`∇`L;
𝜎𝑡 = 𝜎𝑡−1 + 𝛼𝜎∇𝜎L;
if #𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐾 > #𝑖𝑛𝑝𝑢𝑡 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝐽 then

` ′𝑡 , 𝜎 ′𝑡 ∈ R𝐽 ← 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (`𝑡 , 𝜎𝑡 );
end

/* Compute feature weights */

𝜔𝑡 ← Eq. (6);
end
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Abstract—Data distributions in streaming environments are
usually not stationary. In order to maintain a high predictive
quality at all times, online learning models need to adapt to
distributional changes, which are known as concept drift. The
timely and robust identification of concept drift can be difficult,
as we never have access to the true distribution of streaming
data. In this work, we propose a novel framework for the
detection of real concept drift, called ERICS. By treating the
parameters of a predictive model as random variables, we show
that concept drift corresponds to a change in the distribution
of optimal parameters. To this end, we adopt common measures
from information theory. The proposed framework is completely
model-agnostic. By choosing an appropriate base model, ERICS
is also capable to detect concept drift at the input level, which is
a significant advantage over existing approaches. An evaluation
on several synthetic and real-world data sets suggests that the
proposed framework identifies concept drift more effectively and
precisely than various existing works.

I. INTRODUCTION

Data streams are a potentially unbounded sequence of
observations. As such, data streams are subject to a number of
external factors, e.g. seasonal or catastrophic events. Hence,
the distributions of a data stream are usually not stationary,
but change over time, which is known as concept drift.

Concept drift can seriously affect the quality of predictions,
if it goes unnoticed. Concept drift detection models help
identify and handle distributional changes, allowing us to
maintain a high predictive performance over time. Ideally,
concept drift detection models are sensitive enough to detect
drift with only a short delay. However, concept drift detection
should also be robust against small perturbations of the input
in order to avoid false positives and thus be reliable.

Let X and Y be random variables that correspond to the
streaming observations and the associated labels. According to
[1], concept drift resembles a difference in the joint probability
P (Y,X) at different time steps t, u ∈ {1, .., T }, i.e.

Pt(Y,X) ̸= Pu(Y,X)

⇔ Pt(Y |X)Pt(X) ̸= Pu(Y |X)Pu(X).

We call Pt(Y,X) the active concept at time step t. Moreover,
we distinguish between real and virtual concept drift. Virtual
concept drift describes a change in P (X), i.e. Pt(X) ̸=
Pu(X). Hence, virtual concept drift is independent from the
target distribution and does not change the decision boundary

[2]. On the other hand, real concept drift, sometimes called
concept shift, corresponds to a change in the conditional target
distribution, i.e. Pt(Y |X) ̸= Pu(Y |X). Real concept drift
shifts the decision boundary, which may influence subsequent
predictions [2]. It is therefore crucial to detect changes of
P (Y |X) in time to avoid dramatic drops in predictive perfor-
mance. In this paper, we investigate the effective and robust
identification of real concept drift.

Unfortunately, concept drift does not follow a clear pattern
in practice. Instead, we might observe large differences in
the duration and magnitude of concept drift. To this end, we
distinguish between different types of concept drift [1]–[3]:
Sudden drift describes an abrupt change from one concept to
another. Incremental drift is a steady transition of concepts
over some time period. In a gradual drift, the concepts al-
ternate temporarily, until a new concept ultimately replaces
the old one. Sometimes we also observe mixtures of different
concept drift types and recurring or cyclic concepts. For
further information, we refer the fellow reader to [1]. In
general, concept drift detection models should allow timely
and accurate detection of all types of concept drift.

In a data stream, we can only access a fraction of the
data at every time step t. To detect real concept drift, we
thus need to approximate Pt(Y |X), by using a predictive
model fθt . Accordingly, we get Pt(Y |X) ≈ P (Y |X, θt), with
parameters θt = (θtk)

K
k=1. We optimize the model parameters,

given the new observations in every time step. Consequently,
θt represents our most current information about the active
concept at time step t. A concept drift detection model should
therefore adhere to changes of the model parameters through
the following two properties:

Property 1. Model-Aware Concept Drift Detection. Let
θt, θu be the parameters of a predictive model fθ at two time
steps t and u. Let further D be a statistical divergence measure
(e.g., Kullback–Leibler, Jensen-Shannon, etc.). Concept drift
detection is model-aware, if for a detected drift between any
two time steps t and u, we observe D(θt, θu) > 0.

Accordingly, we associate concept drift with updates of the
predictive model fθ. Given that fθ is robust, model-awareness
reduces the sensitivity of a concept drift detection scheme to
random input perturbations, which in turn reduces the risk of
false alarms.
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Property 2. Explainable Concept Drift Detection. Concept
drift detection at time step t is explainable with respect to the
predictive model fθt , if the concept drift can be associated
with individual model parameters, i.e. each dimension of θt.

If we associate concept drift with individual parameters, we
can make more targeted model updates. Hence, we may avoid
unnecessary and costly adaptations of the predictive model.
Moreover, some parameter distributions even allow us to relate
concept drift to specific input features. In this way, concept
drift becomes much more transparent.

In this paper, we propose a novel framework for Effective
and Robust Identification of Concept Shift (ERICS). ERICS
complies with the Properties 1 and 2. We use the probabilistic
framework introduced in [4] to model the distribution of the
parameters θ at every time step. Specifically, we express real
concept drift in terms of the marginal likelihood and the
parameter distribution P (θ;ψ), which is itself parameterized
by ψ. Unlike many existing models, ERICS does not need
to access the streaming data directly [5]. Instead, we detect
concept drift by investigating the differential entropy and
Kullback-Leibler (KL) divergence of P (θ;ψ) at different time
steps. In this context, we show that concept drift corresponds
to changes in the distributional uncertainty of model parame-
ters. In other words, real concept drift can be measured as a
change in the average number of bits required to encode the
parameters of the predictive model. By specifying an adequate
parameter distribution, we can identify concept drift at the
input level, which offers a significant advantage over existing
approaches in terms of explainability. In fact, the proposed
framework can be applied to almost any parameter distribution
and online predictive model. For illustration, we apply ERICS
to a Probit model. In experiments on both synthetic and real-
world data sets, we show that the proposed framework can
detect different types of concept drift, while having a lower
average delay than state-of-the-art methods. Indeed, ERICS
outperforms existing approaches with respect to the recall and
precision of concept drift alerts.

In summary, we propose a generic and flexible frame-
work that leverages the uncertainty patterns of model pa-
rameters for more effective concept drift detection in data
streams. An open source version of ERICS is available at
https://github.com/haugjo/erics.

II. ERICS: A CONCEPT DRIFT DETECTION FRAMEWORK

Real concept drift corresponds to a change of the condi-
tional target distribution P (Y |X) [1]. However, data streams
are potentially infinite and so the true distribution P (Y |X)
remains unknown. Hence, we may use a predictive model
fθ to approximate P (Y |X). Since we update the model
parameters θ for every new observation, θt represents our most
current information about the active concept at time step t.
Consequently, we may identify concept drift by investigating
changes in θ over time.

To this end, we adopt the general framework of [4] and treat
the parameters θ as a random variable, i.e. θ ∼ P (θ;ψ). Anal-
ogously, we optimize the distribution parameters ψ at every

time step with respect to the log-likelihood. This optimization
problem can be expressed in terms of the marginal likelihood
P (Y |X,ψ) [4]. Hence, the marginal likelihood relates to
the optimal parameter distribution under the active concept.
Accordingly, we may associate concept drift between two time
steps t and u with a difference of the marginal likelihood for
the distribution parameters ψt and ψu:

P (Y |X;ψt) ̸= P (Y |X;ψu)

⇔ |P (Y |X;ψt)− P (Y |X;ψu)| > 0

⇔
∣∣∣
∫
P (Y |X, θ)

[
P (θ;ψt)− P (θ;ψu)

]
dθ
∣∣∣ > 0. (1)

From (1), we may obtain a general scheme for concept
drift detection. To this end, we rephrase (1) in terms of the
differential entropy and KL-divergence, which are common
measures from information theory. The entropy of a random
variable corresponds to the average degree of uncertainty of
the possible outcomes. Besides, entropy is often described
as the average number of bits required to encode a sample
of the distribution. On the other hand, the KL-divergence
measures the difference between two probability distributions.
It is frequently applied in Bayesian inference models, where
it describes the information gained by updating from a prior
to a posterior distribution. We can derive the following pro-
portionality:
∫
P (Y |X, θ)

[
P (θ;ψt)− P (θ;ψu)

]
dθ

∝
∫
P (θ;ψt) dθ −

∫
P (θ;ψu) dθ

∝
∫
P (θ;ψt) logP (θ;ψt) dθ −

∫
P (θ;ψu) logP (θ;ψt) dθ

= H[P (θ;ψu), P (θ;ψt)]− h[P (θ;ψt)]

= h[P (θ;ψu)]− h[P (θ;ψt)] +DKL[P (θ;ψu)∥P (θ;ψt)],
(2)

where h[P (θ;ψt)] is the differential entropy of the parameter
distribution at time step t. Note that we have rephrased
the cross entropy H[P (θ;ψu), P (θ;ψt)] by using the KL-
divergence DKL. We may now substitute (2) into (1) to derive
a general scheme for concept drift detection:
∣∣h[P (θ;ψu)]− h[P (θ;ψt)]︸ ︷︷ ︸

∆Uncertainty

+DKL[P (θ;ψu)∥P (θ;ψt)]︸ ︷︷ ︸
∆Distribution

∣∣ > 0

(3)
Intuitively, real concept drift thus corresponds to a change in
the uncertainty of the optimal parameters and a divergence
of the parameter distribution. On the other hand, stable con-
cepts are characterized by a static parameter distribution and
uncertainty.

Note that (3) has another interpretation in the context of
Bayesian inference. As mentioned before, the KL-divergence
DKL[P (θ;ψu)∥P (θ;ψt)] can be interpreted as the informa-
tion gained from inferring the posterior P (θ;ψu) from a prior
P (θ;ψt). According to (3), we thus find that every difference
in parameter uncertainty (entropy) between time step t and
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u, which can not be attributed to the inference of posterior
parameters, may be traced back to a concept drift.

Finally, we show that the proposed concept drift detection
scheme adheres to the Properties 1 and 2.

Proof that ERICS is model-aware (Property 1): By
construction, we model the parameters θ through a distribution
P (θ;ψ). According to (3), we write
∣∣∣
∫
P (θ;ψt) logP (θ;ψt) dθ −

∫
P (θ;ψu) logP (θ;ψt) dθ

∣∣∣,

which is 0 iff P (θ;ψt) = P (θ;ψu). Consequently, we find
that Equation (3) evaluates to true, iff P (θ;ψt) ̸= P (θ;ψu).
By definition, for any sensible statistical divergence measure
D, we know that D(P (θ;ψt), P (θ;ψu)) = 0 ⇔ P (θ;ψt) =
P (θ;ψu). Equation (3) holds true, and thus P (θ;ψt) ̸=
P (θ;ψu)⇔ D(P (θ;ψt), P (θ;ψu)) > 0

Proof that ERICS is explainable (Property 2): By con-
struction, any parametric distribution P (θ;ψ) used in Equation
(3) can be evaluated for each parameter individually, i.e. we
have P (θk;ψk) ∀k.

A. Continuous Concept Drift Detection

Based on the general scheme (3), we are able to identify
concept drift between any two time steps t and u. In practice,
we are mainly interested in concept drifts between successive
time steps t − 1 and t. However, if we were to study (3) for
two time steps only, our concept drift detection model might
become too sensitive to random variations of the predictive
model. To be more robust, we examine the moving average
of (3) instead. Specifically, we compute the moving average
at time step t over M time steps as

MAt =
1

M

t∑

i=t−M+1

(∣∣h[P (θ;ψi)]− h[P (θ;ψi−1)]+

DKL[P (θ;ψi)∥P (θ;ψi−1)]
∣∣
)
. (4)

As before, the moving average contains our latest information
on the model parameters and the active concept. We can adjust
the sensitivity of our framework by selecting M appropriately.
In general, the larger we select M , the more robust the
framework becomes. However, a large M might also hide
concept drifts of small magnitude or short duration.

So far we have treated all changes of the parameter dis-
tribution as an indication of concept drift. Indeed, this is in
line with the general definition of concept drift [1]. Still, we
argue that only certain changes in the parameter distribution
have practical relevance. For example, suppose that we use
stochastic gradient descent (SGD) to optimize the model
parameters at every time step. If we start from an arbitrary
initialization, the distribution of optimal parameters usually
changes significantly in early training iterations. However,
given that the concept P (Y |X) is stationary, SGD will almost
surely converge to a local optimum. Consequently, we will
ultimately minimize the entropy and KL-divergence of P (θ;ψ)
in successive time steps. In other words, (4) will tend to
decrease as long as we optimize the parameters ψ with respect

(a) β = 0.01

(b) β = 0.001

(c) β = 0.0001

Fig. 1. Updating the α-Threshold. The proposed framework uses a dynamic
threshold α (red line) to detect concept drift. According to (4), we track a
moving average of the divergence of the parameter distribution (dark blue
line). If the total divergence in a sliding window (green line) exceeds the
threshold, ERICS detects a concept drift (black vertical lines). By adjusting
the hyperparameter β, we can control the iterative updates of α and thus
regulate the sensitivity of ERICS after a drift is detected. Generally, the
larger we choose β, the more sensitive ERICS becomes to changes of the
parameter distribution. Here, we depict different β for the KDD data set [6].
We artificially generated four sudden concept drifts (blue vertical lines). In this
example, small update steps (i.e. small β) are preferable to give the predictive
model enough time to adapt to the new concept. Note that the early alerts
correspond to the initial training phase of the predictive model. Hence, we
would ignore them in practice.

to the active concept. However, if the decision boundary
changes due to a real concept drift, SGD-updates will aim
for a different optimum. This change of the objective will
temporarily lead to more uncertainty in the model and thus
increase the entropy of the parameter distribution.

We exploit this temporal pattern for concept drift detection.
To this end, we measure the total change of (4) in a sliding
window of size W :

t∑

j=t−W+1

(
MAj −MAj−1

)
> αt ⇔ Drift at t, (5)

where αt ≥ 0 is an adaptive threshold. As before, we may
control the robustness of the concept drift detection with the

Appendix A Publications

100



sliding window size W . Whenever we detect concept drift, i.e.
(5) evaluates to true, we redefine αt as

αt =

t∑

j=t−W+1

(
MAj −MAj−1

)
. (6)

In this way, we temporarily tolerate all changes to the predic-
tive model up to a magnitude of (6). We consider these changes
to be the after-effects of the concept drift. We then update αt

in an iterative fashion. Let β be a user-defined hyperparameter
in the interval [0, 1]. Each update depends on the current α-
value, the β-hyperparameter and the time elapsed since the
last concept drift alert, which we denote by ∆Drift:

αt = αt−1 − (αt−1 ∗ β ∗∆Drift) (7)

Note that αt will asymptotically approach 0 over time, if
there is no concept drift. In this way, we gradually reduce
the tolerance of our framework after a drift is detected.

The choice of a suitable β usually depends on the applica-
tion at hand. By way of illustration, we applied ERICS with
different β to the KDD data set [6]. We used [7]’s method to
induce sudden concept drift after every 20% of observations.
For more information, see Section V. Figure 1 illustrates the
components of ERICS for three different β-values. Notably,
the larger we chose β, the more drifts we detected. Since we
were dealing with a sudden concept drift in this particular
example, we could be less sensitive and apply smaller update
steps. For β = 0.0001, we achieved good first results in all
our experiments. Therefore, this value can generally be used
as a starting point for further optimization.

To conclude our general framework, we provide a pseudo
code implementation in Figure 2.

B. Limitations and Advantages

The proposed framework does not access streaming obser-
vations directly, but uses the parameters of a predictive model
instead. Accordingly, our approach is much more memory
efficient than many related works. Yet, if the parameter distri-
bution does not change in a drift period, concept drift may go
unnoticed. In general, however, ERICS can detect all concept
drifts that affect the predictive outcome.

One should also be aware that some predictive models are
prone to adversarial attacks. Accordingly, ERICS can only be
as robust as its underlying predictive model. This sensitivity
to the predictive model is shared by most existing works. With
ERICS, the possibility of misuse is drastically reduced, as we
closely monitor the distribution of the model parameters at all
times.

III. ILLUSTRATING ERICS
ERICS is model-agnostic. This means that the framework

can be applied to different predictive models fθ and param-
eter distributions P (θ;ψ). In this way, we enable maximum
flexibility with regard to possible streaming applications. By
way of illustration, we adopt a Probit model with independent
normally distributed parameters. This setup has achieved state-
of-the-art results in online feature selection [4]. Besides,

Require: [ψt, .., ψt−M ]; [MAt−1, ..,MAt−W ]; αt−1; ∆Drift

αt ← Eq. (7)
∆Drift ← ∆Drift + 1
MAt ← Eq. (4)
sumWindow ←∑t

j=t−W+1

(
MAj −MAj−1

)

if sumWindow > αt then
αt ← sumWindow
∆Drift ← 1

end if

return αt; MAt; ∆Drift

Fig. 2. Pseudo Code. Concept drift detection with ERICS at time step t.

it offers dramatic computational advantages due to its low
complexity. In line with [4], we optimize ψ at every time step
with respect to the log-likelihood for the Probit model.

The assumption of independent model parameters may
appear restrictive, but in practice it often leads to good results,
e.g. in the case of local feature attributions [8], [9] or feature
selection [4], [10]. In fact, the independence assumption allows
us to identify the parameters affected by concept drift and thus
to comply with Property 2. Since the Probit model comprises
one parameter per input feature, we can readily associate
concept drift with individual input variables.

Accordingly, let P (θ;ψt) = N (ψt = (µt,Σt)), where µt =
(µtk)

K
k=1 is a vector of mean values and Σt is the diagonal

covariance matrix, where the diagonal entries correspond to
the vector σ2

t = (σ2
tk)

K
k=1. The differential entropy of P (θ;ψt)

is

h
[
P (θ;ψt)

]
=

1

2

(
K +K ln(2π) + ln

K∏

k=1

σ2
tk

)
.

The KL-divergence between P (θ;ψt) and P (θ;ψt−1) is

DKL[P (θ;ψt)∥P (θ;ψt−1)]

=
1

2

(
K∑

k=1

σ2
tk + (µt−1,k − µtk)

2

σ2
t−1,k

−K + ln

∏K
k=1 σ

2
t−1,k∏K

k=1 σ
2
tk

)
.

According to (4), we then write the moving average as

MAt =
1

2M

t∑

i=t−M+1

∣∣∣∣∣
K∑

k=1

σ2
ik + (µi−1,k − µik)

2

σ2
i−1,k

−K
∣∣∣∣∣. (8)

Note that (8) scales linearly with the number of parameters
K, i.e. it has O(K) time complexity.

In order to identify concept drift at individual parameters
(which is equivalent to examining individual features, since we
use a Probit model), we can investigate the moving average
of a specific parameter θk:

MAtk =
1

2M

t∑

i=t−M+1

∣∣∣∣∣
σ2
ik + (µi−1,k − µik)

2

σ2
i−1,k

− 1

∣∣∣∣∣ (9)

In this case, we maintain a different threshold αk per param-
eter. Note that (9) has a constant time complexity.
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IV. RELATED WORK

In this section, we briefly introduce some of the most
prominent and recent contributions to concept drift detection.

DDM monitors changes in the classification error of a
predictive model [11]. Whenever the observed error changes
significantly, DDM issues a warning or an alert. We find
various modifications of this general scheme, including [12]
and [13]. Another well-known method for concept drift adap-
tation is ADWIN [14]. Here, the authors maintain a sliding
window, whose size changes dynamically according to the
current rate of distributional change. [15] also employ a sliding
window approach and provide a feasible implementation of
Fisher’s Exact test, which they use for concept drift detection.
Similar to our framework, [16] use a sliding window and
the entropy to detect concept drift. However, they examine
entropy with regard to the predictive result and disregard
the model parameters. FHDDM applies a sliding window to
classification results and tracks significant differences between
the current probability of correct predictions and the previously
observed maximal probability [17]. To this end, FHDDM
employs a threshold that is based on the Hoeffding bound. In
a later approach, the same authors instead use McDiarmid’s
inequality to detect concept drift [18]. EWMA is a method that
monitors an increase in the probability that observations are
misclassified [19]. The authors use an exponentially weighted
moving average, which places greater weight on the most
recent instances in order to detect changes. [20] also focus
on the predictive outcome. Specifically, they investigate the
distribution of the loss function via resampling. Likewise, the
LFR method uses certain test statistics to detect concept drift
by identifying changes through statistical hypothesis testing
[21]. Finally, [22] compare the labels of close data points in
successive batches to detect concept drift.

In addition, we find various approaches that examine en-
sembles of online learners to deal with concept drift. For
example, [23] compare two models; one that is trained with
all streaming observations and another that is trained only
with the latest observations. Likewise, [24] analyze the density
of the posterior distributions of an incremental and a static
estimator.

More information about the progress in concept drift detec-
tion can be found in [1]–[3], [25].

Conceptually, our work differs substantially from the re-
maining literature. Instead of directly examining the stream-
ing observations or the predictive outcome, ERICS monitors
changes in the parameters of a predictive model.

V. EXPERIMENTS

We evaluated ERICS in multiple experiments. All exper-
iments were conducted on an i5-8250U CPU with 8 Gb
of RAM, running 64-bit Windows 10 and Python 3.7.3.
We compared our framework to the popular concept drift
detection methods ADWIN [14], DDM [11], EWMA [19],
FHDDM [17], MDDM [18] and RDDM [13]. We used the
predefined implementations of these models as provided by
the Tornado framework [26]. Besides, we applied the default

TABLE I
SYNTHETIC AND REAL WORLD DATA SETS

Name #Samples #Features Data Types

SEA (synth.) 100,000 3 cont.
Agrawal (synth.) 100,000 9 cont.
Hyperplane (synth.) 100,000 20 cont.
Mixed (synth.) 100,000 9 cont.
Spambase 4,599 57 cont.
Adult 48,840 54 cont., cat.
HAR (binary) 7,450 562 cont.
KDD (sample) 100,000 41 cont., cat.
Dota 102,944 116 cat.
MNIST (binary) 10,398 784 cont.

TABLE II
HYPERPARAMETERS OF ERICS PER DATA SET

Data Set M W β Epochs LR µ LR σ

SEA 75 50 0.0001 10 0.01 0.01
Agrawal 100 50 0.001 10 0.01 0.01
Hyperplane 100 50 0.0001 10 0.01 0.01
Mixed 100 50 0.0001 10 0.1 0.01
Spambase 35 25 0.001 10 0.1 0.01
Adult 50 50 0.001 10 0.1 0.01
HAR 25 50 0.001 10 0.1 0.01
KDD 50 50 0.0001 10 0.01 0.01
Dota 75 50 0.0001 10 0.01 0.01
MNIST 25 20 0.001 50 0.1 0.01

set of parameters throughout all experiments. Note that all
related models require classifications of a predictive model.
To this end, we trained a Very Fast Decision Tree (VFDT)
[27] in an interleaved test-then-train evaluation. The VFDT
is a state-of-the-art online learner, which uses the Hoeffding
bound to incrementally construct a decision tree for streaming
data. We used the VFDT implementation of scikit-multiflow
[28] in our experiments. Note that we consider a simple binary
classification scenario in all our experiments, since it should
be handled well by all models.

We optimized the hyperparameters of ERICS in a grid
search. The search space was either chosen empirically or
according to [4]. Table II lists all hyperparameters per data
set. The hyperparameters “Epochs”, “LR (learning rate) µ”
and “LR σ” control the training of the Probit model, which
we adopted from [4].

A. Data Sets

In order to evaluate the timeliness and precision of a concept
drift detection model, we require ground truth. Consequently,
we generated multiple synthetic data sets using the scikit-
multiflow package [28]. Detailed information about each gen-
erator can be obtained from the corresponding documentation.
We exhibit the properties of all data sets in Table I. Note that
we simulated multiple types of concept drift. Specifically, we
produced sudden concept drifts with the SEA generator. To
this end, we specified a drift duration (width parameter) of
1. We alternated between the classification functions 0-3 to
produce the different concepts. With the Agrawal generator,
we simulated gradual drift of different duration. Again, we
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alternated between the classification functions 0-3 to shift
the data distribution. With the rotating Hyperplane generator,
we simulated an incremental drift over the full length of
the data set. We generated 20 features with the Hyperplane
generator, out of which 10 features were subject to concept
drift by a magnitude of 0.5. Finally, we produced a Mixed drift
using the Agrawal generator. The Mixed data contains both
sudden and gradual drift, which we obtained by alternating
the classification functions 0-4. All synthetic data sets contain
10% noisy data. We obtained 100,000 observations from each
data stream generator.

In addition, we evaluated the proposed framework on real
world data. However, since real world data usually does not
provide any ground truth information, we had to artificially
induce concept drift. For this reason, we applied the method-
ology of [7] to induce sudden concept drift in five well-
known data sets from the online learning literature. First, we
randomly shuffled the data to remove any natural (unknown)
concept drifts. Next, we ranked all features according to their
information gain. We then selected the top 50% of the ranked
features and randomly permuted their values. In this way, we
generated sudden drifts after every 20% of the observations.
Specifically, we introduced concept drift to the real-world data
sets Spambase, Adult, Human Activity Recognition (HAR),
KDD 1999 and Dota2, which we took from the UCI Machine
Learning repository [6]. Note that we drew a random sample
of 100,000 observations from the KDD 1999 data to allow for
feasible computations.

Besides, we used the MNIST data set to evaluate partial
concept drift detection at the input level. We selected all
observations that are either labelled 3 or 8, since these numbers
are difficult to distinguish. In the first half of the observations,
we treated 3 as the true class. In the second half of the
observations, we switched the true class to 8. In this way,
we simulated a sudden concept drift of all input features.

For all real world data sets, we normalized the continuous
features to the range [0, 1] and one-hot-encoded the categorical
features. In the Adult data set, we imputed all NaN-values by
a new category unknown. Moreover, we altered the labels of
the HAR data set to simulate binary classification between
the class moving (original labels walking, walking downstairs
and walking upstairs) and non-moving (original labels sitting,
laying and standing). We trained the online predictive models
(Probit and VFDT) in batches of the following size: For
Spambase and HAR we chose a batch size of 10. Adult was
processed in batches of size 50. For all remaining data sets,
we trained on batches of 100 observations.

B. Delay, Recall and Precision

In our first experiment, we applied the concept drift detec-
tion models to all synthetic and real-world data sets. Figure
3 exhibits the drift alerts of every model. The blue vertical
lines and shaded areas indicate periods of concept drift. Each
black vertical line corresponds to one drift alert. Most models
identify concept drift in early iterations. This is due to the
initial training phase of the predictive model and therefore

TABLE III
AVERAGE DELAY IN NUMBER OF BATCHES

Drift Detection Models

Datasets ERICS ADWIN DDM EWMA FHDDM MDDM RDDM

SEA 52.75 34.55 16.45 0.26 178.61 178.58 7.42
Agrawal 71.33 16.80 0.00 0.31 0.023 0.20 137.22
Hyperplane 2.00 42.27 2.23 2.36 11.24 11.22 2.42
Mixed 34.00 27.95 0.34 11.55 75.26 75.25 227.98
Spambase 7.35 79.0 60.23 29.96 71.63 71.58 117.45
Adult 2.61 63.15 488.39 172.57 488.39 488.39 488.39
HAR 13.05 372.45 372.45 1.55 372.45 372.45 77.10
KDD 22.01 50.35 0.00 0.55 100.25 100.21 13.21
Dota 44.04 25.32 514.72 43.40 3.56 3.54 116.46

Mean 27.68 79.09 161.65 29.17 144.60 144.60 131.96
Rank 1 3 7 2 5 5 4

has no practical relevance. For the upcoming evaluations, we
have therefore ignored all drift alerts in the first 80 batches.

By Figure 3, the proposed framework ERICS performs well
in all data sets. Given the low complexity of the underlying
Probit model, some concept drifts do not infer a change of
the parameter distribution immediately. This can be seen in
small delays, such as for the Agrawal data, for example. Still,
ERICS achieves the smallest average delay of all concept drift
detection models, which is shown in Table III.

Strikingly, ERICS generally seems to produce fewer false
alarms than related models. We find support for this intuition
by examining the average recall (Figure 4) and precision
(Figure 5) over all data sets. Similar to [29], we evaluated
the detected drifts for different detection ranges. The detection
range corresponds to the number of batches after a known drift,
during which we consider an alert as a true positive. Whenever
there is no drift alert in the detection range, we count this as a
false negative. Besides, all drift alerts outside of the detection
range are false positives. We used these scores to compute
the recall and precision values. Again, we find that ERICS
tends to struggle in the early stages, right after a drift happens.
As mentioned before, we attribute this to the slowly updating
Probit model that we used for illustration. The VFDT, which
is used by all related models, is much more complex and can
thus adapt to changes faster. Additionally, we must treat some
recall scores with care. For example, in four data sets, the
DDM model detects drift in almost every time step. Hence, it
achieves perfect recall, although the drift alerts are not reliable
at all. Still, ERICS ultimately outperforms all related models
in terms of both recall and precision. The superiority of our
framework is even more apparent, if we look at the harmonic
mean of precision and recall, which is the F1 score that we
show in Figure 6.

C. Detecting Drift at the Input Level

As mentioned before, by using a Probit model and treating
parameters as independently Gaussian distributed, we are able
to associate concept drift with specific input features. By
means of illustration, we apply ERICS to a sample of the
MNIST data set, which we induced with concept drift. In
Figure 7, we exhibit the mean of all observations correspond-
ing to the true class before and after the concept drift (left
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(a) SEA (b) Agrawal (c) Hyperplane

(d) Mixed (e) Spambase (f) Adult

(g) HAR (h) KDD (i) Dota

Fig. 3. Drifts Alerts. For all data sets, we illustrate the drift alerts obtained from each concept drift detection model. The blue vertical lines and shaded areas
correspond to known concept drifts. Each black marker stands for one drift alert. Early drift alerts can be attributed to the initial training of the predictive
model and were therefore ignored. Notably, ERICS (ours) seems to detect most concept drifts, while triggering considerably fewer false alarms than most
related models. We find support for this intuition in the remaining figures.

Fig. 4. Recall. We show the average recall over all data sets for different
detection ranges. ERICS (ours) ultimately detects more than 90% of the known
concept drifts. The apparent disadvantage of ERICS in early batches can be
attributed to the slower update speed of the Probit model as compared to the
VFDT [27], which was used by the remaining concept drift detection methods.
Besides, the recall scores should be considered with care, since some methods
tend to detect drift at almost every time step and are thus not reliable.

subplots). We also show the absolute difference between those
mean values. In the outer most subplot on the right, we
illustrate the drift alerts per input feature in the first 15 batches
after the concept drift. The color intensity corresponds to the
number of drift alerts (where many alerts correspond to darker
patterns). Strikingly, the frequency of drift alerts closely maps
the absolute difference between the two concepts. This shows
that ERICS is generally able to identify the input features that

Fig. 5. Precision. We show the average precision over all data sets for different
detection ranges. ERICS (ours) tends to identify concept drift later than some
related models. Therefore, we count fewer true positives in small detection
ranges, which leads to lower precision. However, for larger detection ranges,
our framework is more precise than any other model in the evaluation.

are most affected by concept drift. We expect this pattern to
become even clearer, when using more complex base models.

VI. CONCLUSION

In this work, we proposed a novel and generic framework
for the detection of concept drift in streaming applications.
Our framework monitors changes in the parameters of a
predictive model to effectively identify distributional changes
of the input. We exploit common measures from information
theory, by showing that real concept drift corresponds to
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Fig. 6. F1: We illustrate the F1 measure, which is the harmonic mean of
the precision and recall shown in earlier plots. Here, the advantage of ERICS
(ours) is most apparent, since it significantly outperforms all related methods
for a detection range greater than 30 batches.

Fig. 7. Partial Drift Detection. By choosing an appropriate base model and
parameter distribution, ERICS can attribute concept drift to individual input
features. We selected all observations of MNIST with the label 3 or 8 and
induced concept drift by changing the true class after half of the observations.
In the left subplots, we exhibit the mean of the true class before and after
the concept drift. The third subplot depicts the absolute difference of these
mean values. In the right subplot, we show the alerts of ERICS in the first
15 batches after the concept drift. The color intensity corresponds to the
frequency of drift alerts per input feature. Strikingly, the drift alerts seem
to map the absolute difference between both concepts. This suggests, that
ERICS does indeed identify concept drift for those input features that are
most affected by a distributional change.

changes of the uncertainty regarding the optimal parameters.
Given an appropriate parameter distribution, the proposed
framework can also attribute drift to specific input features. In
experiments, we highlighted the advantages of our approach
over multiple existing methods, using both synthetic and real-
world data. Strikingly, ERICS detects concept drift with less
delay on average, while outperforming existing models in
terms of both recall and precision.
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Abstract

High-performing predictive models, such as neural nets, usu-
ally operate as black boxes, which raises serious concerns
about their interpretability. Local feature attribution methods
help to explain black box models and are therefore a powerful
tool for assessing the reliability and fairness of predictions.
To this end, most attribution models compare the importance
of input features with a reference value, often called baseline.
Recent studies show that the baseline can heavily impact the
quality of feature attributions. Yet, we frequently find simplis-
tic baselines, such as the zero vector, in practice. In this pa-
per, we show empirically that baselines can significantly alter
the discriminative power of feature attributions. We conduct
our analysis on tabular data sets, thus complementing recent
works on image data. Besides, we propose a new taxonomy
of baseline methods. Our experimental study illustrates the
sensitivity of popular attribution models to the baseline, thus
laying the foundation for a more in-depth discussion on sen-
sible baseline methods for tabular data.

Introduction
Neural nets and other complex predictive models perform
well in a variety of applications. In practice, however, com-
plex black-box models can give rise to serious concerns
about interpretability. Feature weighting and local attribu-
tion methods help to explain complex models and thus im-
prove the interpretability of predictions (Haug et al. 2020;
Kasneci and Gottron 2016; Lundberg and Lee 2017; Ribeiro,
Singh, and Guestrin 2016; Shrikumar, Greenside, and Kun-
daje 2017; Sundararajan, Taly, and Yan 2017). Accord-
ingly, feature attributions are an important step towards more
transparent and fair machine learning.

Local attribution methods usually assess the importance
of features with respect to a reference input or baseline value
(Sundararajan and Najmi 2019; Izzo et al. 2020). The base-
line is closely related to the concept of missingness, i.e. the
(approximate) neutral value that a feature would take, if it
were considered missing. For example, Lundberg and Lee
(2017) replace the missing values in a sampled feature coali-
tion with their expected value and Sundararajan, Taly, and
Yan (2017) propose to use a black image as baseline in ob-
ject recognition tasks.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The concept of missingness is domain-specific and may
therefore vary in practice. For example, suppose xi ∈
[0, 255] denotes one pixel of an image. Here, xi = 0 is a
black pixel, which may indeed be considered missing infor-
mation. However, suppose that xi ∈ {0, 1, 2, 3} is a nom-
inal feature. In this case, xi = 0 does not represent miss-
ingness. Accordingly, the zero baseline considered in this
example would render the generated attributions meaning-
less. Indeed, several authors have recently expressed con-
cerns about the appropriateness of popular baseline methods
(Sundararajan and Najmi 2019; Sturmfels, Lundberg, and
Lee 2020; Izzo et al. 2020). In practice, a baseline should
be selected with respect to the data distribution at hand.

In this paper, we propose a novel taxonomy of baseline
methods, which may help compare and select baselines in
research and practice. Along the taxonomy, we briefly intro-
duce common baseline methods (Lundberg and Lee 2017;
Sundararajan and Najmi 2019; Izzo et al. 2020; Sturmfels,
Lundberg, and Lee 2020). In a next step, we investigate the
effect of different baselines on the feature attributions gener-
ated by four state-of-the-art attribution models. Our experi-
ments focus on tabular data sets, which are often used as
benchmarks in the explainability and fairness literature. We
thereby complement and extend a recent study of Sturmfels,
Lundberg, and Lee (2020), which illustrates the effects of
different baselines for the classification of images. Our re-
sults suggest that the baseline can have a dramatic impact on
the discriminative quality of the generated feature attribu-
tions. Strikingly, there was no universally best-performing
baseline method. However, certain baselines rarely yielded
discriminative feature attributions, suggesting that they may
not be suitable for tabular data.

In summary, our contribution is two-fold: We categorize
existing baseline methods into a new taxonomy. Besides, we
provide an experimental evaluation of common baselines us-
ing several attribution models and tabular data sets. Hence,
our work may serve as a reference for a deeper discussion of
baseline methods in the context of tabular data and a more
principled choice of baselines in practical applications.

A Taxonomy of Baseline Methods
Many different baseline methods have been introduced in re-
cent years (Sundararajan and Najmi 2019; Izzo et al. 2020;
Sturmfels, Lundberg, and Lee 2020). Yet, to the best of our
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Table 1: Baseline Taxonomy. We categorize common baseline methods according to the Definitions 1 and 2.

Baseline Name Static/Dynamic Deterministic/Stochastic
Constant (e.g. zero baseline) static deterministic
Maximum Distance (Sturmfels, Lundberg, and Lee 2020) dynamic deterministic
Blurred (Fong and Vedaldi 2017; Sturmfels, Lundberg, and Lee 2020) dynamic stochastic
Gaussian (Smilkov et al. 2017; Sturmfels, Lundberg, and Lee 2020) dynamic stochastic
Uniform (Sturmfels, Lundberg, and Lee 2020) dynamic stochastic
Expectation (Lundberg and Lee 2017) static stochastic
Neutral (Izzo et al. 2020) static deterministic

knowledge, there is no generally accepted scheme for cate-
gorising and comparing these methods. To this end, we pro-
pose a novel taxonomy.

Let xi, xj ∼ X be two arbitrary observations. Suppose
we apply a baseline method B to obtain a baseline corre-
sponding to each observation, i.e. B(xi, xj) = bxi , bxj . We
then define
Definition 1 (Static or Dynamic Baseline) A baseline
method B is static, if ∀i, j : bxi

= bxj
. Otherwise, B is

dynamic, i.e. ∃i, j : bxi 6= bxj .
Intuitively, a static baseline method provides the same base-
line value for every observation, whereas a dynamic baseline
method may provide different values.

Next, suppose that we run the baseline method B(xi) two
times for the observation xi, which corresponds toB1(xi) =
b1xi

(first run) and B2(xi) = b2xi
(second run). We then de-

fine
Definition 2 (Deterministic or Stochastic Baseline) A
baseline method B is deterministic, if the probability
Pr(b1xi

= b2xi
) = 1. Otherwise, B is stochastic, i.e.

Pr(b1xi
= b2xi

) < 1.
Intuitively, a deterministic baseline method always produces
the same baseline with respect to an observation xi when-
ever it is called. On the other hand, a stochastic baseline
method may be subject to variation.

Categorizing Common Baseline Methods
Next, we briefly introduce some popular and recent baseline
methods. Table 1 shows the categorization of all methods
according to the taxonomy defined above (Definition 1-2).

The constant baseline is a prominent static and determin-
istic baseline. As the name suggests, the constant baseline is
a fixed value that is specified once. Note that the zero base-
line (i.e. black image) mentioned earlier is an instantiation
of the constant baseline.

The maximum distance baseline corresponds to an obser-
vation that is furthest away from the observation in question
by the `1-norm (Sturmfels, Lundberg, and Lee 2020). No-
tably, the maximum distance baseline is dynamic and deter-
ministic.

The blurred baseline was originally introduced for image
data (Sturmfels, Lundberg, and Lee 2020). Specifically, this
baseline method applies a Gaussian blur filter to the observa-
tion in question (Fong and Vedaldi 2017). Note that the filter
blurs each input feature with respect to its adjacent features.

Accordingly, the blurred baseline requires an inherent sense
of neighbourhood among input features, which might not al-
ways be evident in tabular data. In general, however, we may
apply the blurred baseline to (numeric) tabular data as well.
The blurred baseline method is dynamic and stochastic.

Similar to the blurred baseline, the Gaussian baseline in-
troduces noise to the original observation. To this end, one
specifies a Gaussian distribution per input feature, which is
centered at the original input value (Smilkov et al. 2017;
Sturmfels, Lundberg, and Lee 2020). One then draws ran-
dom samples from the generated distributions. Hence, the
Gaussian baseline is dynamic and stochastic.

Likewise, we may draw random samples from uniform
distributions per input feature. The uniform distributions are
defined in the valid range of the original features (Sturm-
fels, Lundberg, and Lee 2020). Again, the uniform baseline
is dynamic and stochastic.

Lundberg and Lee (2017) specified the baseline as a func-
tion of the expectation of a reference sample. We call this the
expectation baseline, which is static and stochastic as the ref-
erence sample is usually drawn randomly from the training
data.

Finally, Izzo et al. (2020) argue that a baseline should lie
on the decision boundary of the predictive model. Given that
the decision boundary does not shift, this neutral baseline
is static and deterministic. At the time of writing this paper,
the neutral baseline was only specified for certain neural net-
work architectures and no open source implementation was
available. For this reason, we did not consider the neutral
baseline in our experiments.

Experiments
Next, we evaluated the baseline methods shown in Table 1.
As mentioned above, we did not consider the recently pro-
posed neutral baseline (Izzo et al. 2020) in this evaluation.
All experiments were conducted on an NVIDIA GeForce
GTX 1050 TI GPU with Intel i5 7500 CPU and 16Gb RAM.
Our machine ran Linux Fedora 32 and Python 3.7.6.

We selected four state-of-the-art local attribution methods
to illustrate the effect of different baselines. Specifically, we
used KernelSHAP (Lundberg and Lee 2017), DeepSHAP
(Lundberg and Lee 2017), DeepLift (Shrikumar, Greenside,
and Kundaje 2017) and Integrated Gradients (IG) (Sun-
dararajan, Taly, and Yan 2017). Note that the authors of
SHAP, Lundberg and Lee (2017), substitute missing features
based on the training distribution, which we called expecta-
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Table 2: Data Sets. “Feature Types” describes the data types included in the data set (cont. = continuous, cat. = categorical).
“Class Imbalance” indicates whether the target distribution is imbalanced. For imbalanced data sets, we indicate the proportion
of observations that belong to the positive class in parentheses. Note that in the Communities data, we have removed features
with a high proportion of missing values to ensure valid evaluations. Besides, we have obtained a random sample of 50,000
observations from the Fraud Detection data set.

Dataset # Observations # Features Feature Types # Classes Class Imbalance
Human Activity Recognition (Dua and Graff 2017) 10,299 561 cont. 6 no
Fraud Detection (Dal Pozzolo et al. 2014) 50,000 30 cont. 2 yes (99.8% pos. class)
Communities (Dua and Graff 2017) 1,993 100 cat./cont. 2 yes (72% pos. class)
Spambase (Dua and Graff 2017) 4,601 57 cont. 2 no
COMPAS (Angwin et al. 2016) 7,214 11 cat./cont. 2 no

tion baseline above. Lundberg and Lee (2017) thereby aim
to align their work with earlier methods that approximate
the Shapley value. Still, it is worth considering the SHAP
framework in our evaluation, as some applications may re-
quire different baselines. In contrast, DeepLift and IG leave
the choice of a baseline to the user, apart from suggesting the
zero vector as a meaningful baseline for image recognition
tasks. Note that all open source packages readily allow the
user to set a baseline.

We used a top-K ablation test to quantify the discrimina-
tive power of the generated feature attributions regarding the
different baselines. Accordingly, we masked K percent of
the most highly attributed input features with random noise
and measured the effect on the generated F1 score. The F1
score is the harmonic mean of precision and recall and pro-
vides valid results, even if the target class is imbalanced. Ab-
lation tests are a popular and intuitive evaluation technique
for feature attribution methods. Still, ablation tests should
always be considered with care, since they do not consider
feature interactions. In general, the evaluation of explana-
tion models is subject to ongoing discussions in the research
community.

For DeepSHAP, DeepLIFT and IG we trained a simple
neural network with one hidden layer and a ReLu activa-
tion, using a sigmoid activation function at the output layer.
Note that we deliberately chose a shallow architecture, since
complex nets tend to mitigate noise at the input. In this way,
we wanted to maintain the effect that masking certain in-
put features had on predictive performance, thus providing
an unbiased view of the effect of the different baselines. Fi-
nally, since KernelSHAP is model agnostic, we applied it to
a Support Vector Machine.

As discussed above, the blurred baseline assumes some
form of neighbourhood among input features. Since tabular
data is usually ordered arbitrarily, we computed the blurred
baseline for 1,000 feature permutations and averaged the re-
sults. Accordingly, we examined every feature with respect
to different neighbouring features, thereby mitigating the ef-
fect of the initial ordering of the features.

All experiments are also available on our GitHub page.1

1https://github.com/ITZuern/On-Baselines-for-Local-Feature-
Attributions

Data Sets
A summary of all data sets can be found in Table 2. We stan-
dardized (zero mean, unit variance) the continuous features
of each data set. Besides, we encoded every non-numeric
categorical feature in integers. Finally, we split all data sets,
with 80% of the observations used for training and 20% for
testing.

The Human Activity Recognition (HAR) data set contains
sensor signals of a waist-mounted accelerometer and gyro-
scope from different participants who performed six distinct
physical activities. Since KernelSHAP’s computation time
grows exponentially with the number of features, we per-
formed the ablation test of KernelSHAP on HAR with a
stratified sample of 400 observations to enable reproducibil-
ity of our results with limited hardware.

The Fraud Detection (Dal Pozzolo et al. 2014) data set
contains benign and fraudulent credit card transactions.
We used a processed version2 of the data set containing
the timestamp and amount of each transaction, along with
28 features generated by a Principal Component Analysis
(PCA) of the original transaction details. Since Fraud De-
tection is a very large data set, we used a random sample of
50,000 observations to compute the experiment in reason-
able time. Note that the random sample has approximately
maintained the class imbalance of the full data set.

The Communities and Crime (Dua and Graff 2017) data
set (in the following referred to as Communities) contains
socio-economic and law enforcement data on communities
in the USA. Our goal was to predict the amount of violent
crimes per 100,000 inhabitants. To be precise, we have con-
sidered all communities with a crime rate of >= 30% as
high risk and others as low risk. We then classified the obser-
vations according to these two labels. Note that we removed
any feature that had more than 1,000 (≈ 50%) missing val-
ues, in order to guarantee valid results.

The Spambase (Dua and Graff 2017) data set consists of
information about genuine and spam emails.

Finally, COMPAS (Angwin et al. 2016) is an algorithm
that evaluates the risk of recidivism and is known to be bi-
ased against black defendants. The COMPAS data set con-
tains the personal information of the defendants. For our ex-
periments, we used a preprocessed version3 of COMPAS.

2https://www.kaggle.com/mlg-ulb/creditcardfraud
3https://www.kaggle.com/danofer/compass
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(a) DeepLift (Shrikumar, Green-
side, and Kundaje 2017) on Hu-
man Activity Recognition
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(b) IG (Sundararajan, Taly, and
Yan 2017) on Human Activity
Recognition
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(c) KernelSHAP (Lundberg and
Lee 2017) on Human Activity
Recognition
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(d) DeepSHAP (Lundberg and
Lee 2017) on Human Activity
Recognition
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(e) DeepLift (Shrikumar, Green-
side, and Kundaje 2017) on Fraud
Detection
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(f) IG (Sundararajan, Taly, and
Yan 2017) on Fraud Detection
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(g) KernelSHAP (Lundberg and
Lee 2017) on Fraud Detection
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(h) DeepSHAP (Lundberg and
Lee 2017) on Fraud Detection
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(i) DeepLift (Shrikumar, Green-
side, and Kundaje 2017) on Com-
munities
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(j) IG (Sundararajan, Taly, and
Yan 2017) on Communities
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(k) KernelSHAP (Lundberg and
Lee 2017) on Communities
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(l) DeepSHAP (Lundberg and
Lee 2017) on Communities
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(m) DeepLift (Shrikumar, Green-
side, and Kundaje 2017) on
Spambase
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(n) IG (Sundararajan, Taly, and
Yan 2017) on Spambase
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(o) KernelSHAP (Lundberg and
Lee 2017) on Spambase
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(p) DeepSHAP (Lundberg and
Lee 2017) on Spambase
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(q) DeepLift (Shrikumar, Green-
side, and Kundaje 2017) on Com-
pas
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(r) IG (Sundararajan, Taly, and
Yan 2017) on Compas
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(s) KernelSHAP (Lundberg and
Lee 2017) on Compas
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(t) DeepSHAP (Lundberg and
Lee 2017) on Compas

Figure 1: Top K ablation tests: We conducted ablation tests for every data set, attribution model and baseline method (subplots).
One might have to zoom into the subplots. Specifically, we masked K percent (x-axis) of the most highly attributed features
with random noise and monitored the change in the F1 score (y-axis). A large decrease in F1 indicates discriminative feature
attributions with respect to the predictive model. Notably, there are significant differences between the baseline methods.
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(a) DeepLift (Shrikumar, Greenside, and Kun-
daje 2017) on average over all data sets
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(b) IG (Sundararajan, Taly, and Yan 2017) on av-
erage over all data sets
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(c) KernelSHAP (Lundberg and Lee 2017) on av-
erage over all data sets
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(d) DeepSHAP (Lundberg and Lee 2017) on av-
erage over all data sets

Figure 2: Average ablation tests: Here we depict the ablation test results averaged over all tabular data sets. The lines corre-
spond to the mean decrease in F1 and the shaded areas are the respective standard deviation. Strikingly, we observe that the
constant, blurred, Gaussian and expectation baseline produce competitive results, whereas the uniform and maximum distance
baseline tend to generate less discriminative feature attributions.

Note that the blurred, Gaussian and uniform baseline as-
sume continuity of features. Nevertheless, we decided to
keep the categorical features of the COMPAS and Commu-
nities data set, since we did not perceive a significant change
of the ablation tests compared to an evaluation without cat-
egorical features.

Results and Discussion
As described above, we performed ablation tests to measure
the quality of the attributions on different baselines. The
computation times of every baseline and attribution model
can be found on our Github page.

Figure 1 exhibits the detailed results of every ablation test.
Note that if a baseline were to produce discriminative attri-
butions, we would see a sharp decline in F1 scores (since
we mask the most important features). In general, we find
that all attribution models were very sensitive to the differ-
ent baselines. In the following, we discuss some of the most
important findings. Please note again, that this experimental
study is intended as a basis for a more in-depth analysis of
baselines on tabular data. Accordingly, the following obser-
vations and hypotheses apply in the context of our experi-
ment, but do not necessarily apply in general.

The maximum distance and uniform baselines often strug-
gled to outperform the random baseline. This is in con-

trast to the results of Sturmfels, Lundberg, and Lee (2020),
where the uniform baseline achieved competitive results in
the ablation test on image data. A possible explanation is
as follows: The uniform distribution might not be complex
enough to approximate the data generating distribution of
heterogeneous tabular data sufficiently well. As a result, the
generated baseline values might lie outside the data gener-
ating distribution and therefore produce non-discriminative
attributions. Likewise, the maximum distance baseline may
not be representative of the data. In fact, the maximum dis-
tance baseline may return an outlier value.

On the other hand, the expectation and Gaussian baselines
performed well in general. The expectation baseline closely
approximates the data generating distribution, since it com-
putes the expectation over a sample of training observations.
Since many natural phenomena follow a normal distribution,
we expect that the Gaussian baseline also approximates the
data generating distribution sufficiently well. These results
suggest that feature attributions become more discrimina-
tive, the closer a baseline follows the data generating dis-
tribution. We leave a detailed analysis for future work.

The constant and blurred baseline showed almost iden-
tical performance. Note that by applying a blur filter, we
reduce the variance among input features. Accordingly, the
blurred baseline approaches a constant value (low variance)
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the stronger we set the blur effect.
For the extremely imbalanced Fraud Detection data, all

baselines performed equally well. Note that Fraud Detec-
tion comprises features which were generated in a Princi-
pal Component Analysis. Hence, by removing the features
that correspond to the first principal components, we remove
much of the discriminative information, which would ex-
plain the sharp drop in the predictive performance. However,
the ablation test does not explicitly consider class imbal-
ances. Hence, these results should be considered with care.

KernelSHAP values are theoretically optimal, but require
an exponentially increasing number of feature coalition sam-
ples. As Lundberg, Erion, and Lee (2018) acknowledge,
SHAP values can thus be challenging to compute. Accord-
ingly, the performance of KernelSHAP decreases as the data
dimensionality increases, if we can not adjust the number of
coalition samples accordingly. This effect can be observed
across all baseline methods both in the Communities data
set and, to a greater extent, in the HAR data set. Note that
the performance of KernelSHAP may be improved by run-
ning our experiments on more-advanced hardware.

In summary, our experiments illustrated that the expec-
tation, blurred, constant and Gaussian baselines frequently
produce discriminative attributions on tabular data. The uni-
form and maximum distance baselines generally perform
worse in the ablation test, suggesting that they may not be
a sensible choice in practice. The average ablation test re-
sults in Figure 2 support these findings. Still, other evalua-
tion methods, such as randomization tests (Adebayo et al.
2018), could be considered in the future to substantiate our
findings. As indicated in previous work (Sturmfels, Lund-
berg, and Lee 2020; Shrikumar, Greenside, and Kundaje
2017) and supported by our results, the appropriateness of
a baseline method depends strongly on the data distribution
at hand. Therefore, it might also be interesting to consider
dynamic baseline methods that can be used even if the data
generating distribution changes (Haug and Kasneci 2020).
In general, we argue that a conceptual comparison of base-
line methods is needed to enable more principled decisions
in practice. In this context, the proposed taxonomy of base-
lines can be an important guideline.

Conclusion
In this work, we provided a first empirical comparison of
common baseline methods for local attributions on tabular
data sets. Additionally, we proposed a novel taxonomy of
baseline methods. In this way, we complemented existing
studies on image data. Our results show that the baseline can
have a dramatic impact on the quality of generated feature
attributions. In general, we argue that the selection and de-
velopment of sensible baseline methods should receive more
attention in research and practice.
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Abstract—Data streams are ubiquitous in modern business and
society. In practice, data streams may evolve over time and cannot
be stored indefinitely. Effective and transparent machine learning
on data streams is thus often challenging. Hoeffding Trees have
emerged as a state-of-the art for online predictive modelling.
They are easy to train and provide meaningful convergence
guarantees under a stationary process. Yet, at the same time,
Hoeffding Trees often require heuristic and costly extensions to
adjust to distributional change, which may considerably impair
their interpretability. In this work, we revisit Model Trees for
machine learning in evolving data streams. Model Trees are able
to maintain more flexible and locally robust representations of
the active data concept, making them a natural fit for data stream
applications. Our novel framework, called Dynamic Model Tree,
satisfies desirable consistency and minimality properties. In
experiments with synthetic and real-world tabular streaming data
sets, we show that the proposed framework can drastically reduce
the number of splits required by existing incremental decision
trees. At the same time, our framework often outperforms state-
of-the-art models in terms of predictive quality – especially
when concept drift is involved. Dynamic Model Trees are thus
a powerful online learning framework that contributes to more
lightweight and interpretable machine learning in data streams.

Index Terms—machine learning, data stream, model tree,
concept drift, interpretability

I. INTRODUCTION

Large-scale data streams are integral to most modern web-
based applications such as online credit scoring, e-commerce
or social media. Accordingly, the demand for powerful stream-
ing machine learning models has increased. In practice,
streaming or online learning models have to cope with limited
hardware capacity and drifts of the data generating concept.
Efficient, accurate and interpretable machine learning for
evolving data streams is thus a major challenge.

Unlike traditional batch learning models, online learning
models are updated incrementally. In this way, online learning
models can be trained without the entire data set being avail-
able in main memory. Consequently, online learning models
enable machine learning in practical applications that generate
a potentially unlimited amount of data, e.g. large sensor
systems or credit card transactions.

Online learning models usually have to cope with limited
hardware capacity and drifts of the data generating concept.
Changing customer preferences or emerging social media
trends are prominent examples of such concept drift. In

the worst case, concept drift may render previously learned
concepts obsolete.

Accordingly, online learning models must provide discrim-
inative predictions and adjust to concept drift, while reducing
overall resource consumption. In addition, much attention has
recently been paid to the interpretability of machine learning
models [1], [2]. In particular, high-stakes applications and
regulations (e.g. the EU General Data Protection Regulation
GDPR) require models to be interpretable. For example, if
a model is used to predict the risk of recidivism or the
probability of a loan default, it can be crucial to be able
to describe the model in understandable terms. However,
compared to other domains such as image recognition [3],
relatively little attention has been paid to the interpretability of
machine learning models in evolving data streams. As one of
the first works, we therefore briefly outline important aspects
of interpretable online learning below.

A. On “Interpretability” in Evolving Data Streams

In general, we distinguish between post-hoc explainability
and intrinsic interpretability [4]. The former concerns dedi-
cated methods, e.g. local feature attributions [5]–[8], that allow
to explain complex (black-box) models. Conversely, we speak
of intrinsic interpretability when the internal mechanics of the
predictive model are inherently understandable to a human.

Interpretability has varying domain-specific definitions [2]
and cannot be measured in a standardized way [4]. Hence,
interpretability is often represented by heuristic measures such
as model size or complexity [9]. Intuitively, it is easier for
humans to attribute meaning to individual model parameters
when complexity is low. That is, the less complex a model is,
the easier it is to interpret. For example, linear models and
decision trees are typically considered highly interpretable.
Specifically, the interpretability of linear models can be linked
to their sparsity, i.e., the number of nonzero parameters. Sim-
ilarly, the interpretability of decision trees can be quantified
by the number of split nodes or the depth of the tree [10].

Since online learning models are incrementally updated,
the parameters and model complexity can change between
time steps. Therefore, in order to achieve interpretable online
learning, we argue that it is not sufficient to deliver low
complexity at each individual time step. Rather, changes in
model complexity must also be comprehensible to humans.
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Fig. 1: Hoeffding Tree vs. Model Tree: A Hoeffding Tree (HT, red) aims for maximum node purity regarding the target
(here we assume a binary target, i.e. white, grey circles). A Model Tree (MT, green), on the other hand, trains simple (linear)
models at every leaf node (with parameters θt), and aims to minimize the estimated loss. Above, the dotted lines represent
binary splits of the corresponding trees, and the dashed, green lines indicate the linear functions of the Model Tree. Model
Trees are capable to maintain more flexible representations of the active data concept (Pt(Y |X)), while being more robust to
small local variations. As a consequence, Model Trees tend to make more principled split decisions and remain shallower than
Hoeffding Trees of similar predictive quality, as illustrated by this simplified example.

Ultimately, this requires that all updates to an interpretable
online model are understandable. For example, the model
should be able to answer questions like “Why have you
removed this ensemble component at time step t?” or “Why
have you split this node at time step u?”. In this sense, online
interpretability is closely related to the robustness to noise and
adaptability to concept drift. For example, model adaptations
could be made understandable by linking them to changes
of the (approximate) data concept or, ideally, corresponding
events in the real world.

Although this discussion is certainly not exhaustive, it serves
as a first guide for the development of inherently interpretable
online machine learning methods. Note that a more formal
definition of online interpretability is beyond the scope of this
paper and is left for future work.

B. The State-Of-The-Art in Online Machine Learning

Incremental decision trees have emerged as the state-of-
the-art for online machine learning. The Hoeffding Tree is
one of the most prominent frameworks. Hoeffding Trees use
Hoeffding’s inequality to decide at which time step, i.e. after
how many observations, a leaf node will be split [11]–[14].
A Hoeffding Tree comes asymptotically arbitrarily close to
a hypothetical, batch-trained decision tree, given that the
data generating process is stationary. Similar to batch-trained
decision trees, Hoeffding Trees benefit from high efficiency
and transparency.

However, the basic Hoeffding Tree algorithm, VFDT [11],
may grow indefinitely. This behaviour can considerably impair
the performance of the VFDT and – in the above sense –
its interpretability. In general, such infinite growth can be
avoided, e.g. by extending the Hoeffding Tree with dedicated
drift detection strategies [13]. However, such extensions often

increase the complexity and make split or prune decisions less
intuitive. Moreover, Hoeffding Trees suffer practical limita-
tions. For example, the way in which Hoeffding’s inequality
and heuristic purity measures are used within the framework
has been repeatedly questioned [15]–[17].

C. Model Trees As An Alternative to Hoeffding Trees

In this work, we revisit Model Trees as an alternative to
Hoeffding Trees [18]–[21]. Model Trees have much in com-
mon with regular decision trees, but contain simple predictive
models in place of each (leaf) node. Hence, similar to an
ensemble, Model Trees are a collection of weak learners
that are combined in a structured way through a set of
binary decisions. However, unlike Hierarchical Mixtures of
Experts, Model Trees use only a single feature to split at each
inner node. Accordingly, Model Trees preserve much of the
simplicity of a regular decision tree.

Owing to the simple models, Model Trees are able to apply
a less rigid separation of observations in the leaf nodes. In
this way, Model Trees are generally more flexible regarding
the active data concept than existing frameworks like the
Hoeffding Tree (see Figure 1). In particular, Model Trees can
represent linear relationships with only a few splits. Hence,
Model Trees can usually achieve high predictive quality while
using a simple and robust representation.

Replacing regular leaf nodes with simple models in an oth-
erwise unmodified tree increases complexity. However, Model
Trees often remain extremely shallow and thus interpretable, as
we show in experiments. In addition, unlike Hoeffding Trees,
Model Trees allow feature weights for different subgroups to
be extracted directly from the simple models. In comparison
to majority weighting schemes, this can be an advantage for
local feature-based explanations.
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D. Our Contribution

In this paper, we introduce a novel online learning frame-
work called Dynamic Model Tree. We show that the simple
models of a Model Tree can be leveraged to define node-
specific gain functions. These gain functions guarantee sensi-
ble consistency and minimality properties, which contribute to
more intuitive and interpretable online learning. Compared to
existing state-of-the-art methods such as Hoeffding Trees or
earlier incremental Model Trees [20], [21], Dynamic Model
Trees adapt to concept drift by design. In particular, the
proposed framework does not rely on Hoeffding’s inequality,
heuristic purity measures or explicit concept drift detection
mechanisms. Consequently, the Dynamic Model Tree elimi-
nates some of the most fundamental weaknesses of existing
online decision trees.

In summary, the contributions of this work are as follows:
• We specify valuable properties related to the consistency

and minimality of incremental decision trees (Section III).
Combined, these properties lead to more interpretable
online learning as described above.

• We introduce the Dynamic Model Tree framework (Sec-
tion IV). In particular, we define generic gain functions
that guarantee the above-mentioned properties and can be
efficiently approximated via gradients [19].

• We propose an effective implementation of the Dynamic
Model Tree that uses Generalized Linear Models and the
negative log-likelihood loss (Section V).

• We evaluate the Dynamic Model Tree on multiple syn-
thetic and real-world tabular data sets with different types
of concept drift (Section VI). While maintaining high
efficiency, our implementation often outperforms existing
classifiers in terms of predictive quality and complexity.

II. RELATED WORK

Incremental decision trees are a powerful class of online
predictors. In the following, we briefly outline state-of-the-art
algorithms based on the Hoeffding Tree, along with their lim-
itations. Moreover, we discuss previous works on incremental
Model Trees. For more information about online learning, we
refer to recent surveys [22]–[24].

A. Variations of the Hoeffding Tree

The Very Fast Decision Tree (VFDT) is the first and basic
implementation of a Hoeffding Tree [11]. As mentioned above,
it has practical limitations. In particular, the VFDT assumes
that a relatively small set of past and current observations
is representative of all future observations – a misconception
under realistic streaming conditions. Accordingly, the VFDT
grows indefinitely and does not revisit old split decisions,
which can impair its interpretability.

Most of the limitations of the basic VFDT can be over-
come, e.g. by using regularization [25], different probabilistic
inequalities [15], gain measures [16], [17] or tricks in the
implementation [26]. To increase the predictive performance
under concept drift, the Hoeffding Tree may also be augmented
with adaptation strategies like alternate tree growth [12],

sliding windows [13] or a dynamic replacement of inner nodes
[14]. In addition, ensembles of Hoeffding Trees, e.g. Bagging
or Boosting [27], [28], can increase the predictive performance
of the basic models at the cost of higher overall complexity.

The Hoeffding Tree has gained popularity due to its rigorous
convergence guarantees, efficiency, extensibility and accessi-
bility via packages like MOA [29] or scikit-multiflow [30].
However, the inherent limitations of the basic architecture may
ultimately leave users in doubt about the reliability of the
Hoeffding Tree. Hence, we argue that a different framework
is needed, which offers a similar level of efficiency and ex-
tensibility, but is more flexible and interpretable in a dynamic
online environment.

B. Incremental Model Trees

Hoeffding Trees have been augmented with simple mod-
els, such as Naı̈ve Bayes [31] and Perceptrons [32]. Such
extensions often provide considerable improvements in pre-
dictive performance compared to majority-weighted leaves.
Surprisingly, however, the more general family of Model Trees
has received only little attention in online learning scenarios.
Notable exceptions include the work by [20], which is aimed at
stationary applications, and the FIMT-DD model [21]. FIMT-
DD was introduced as a solution for online regression tasks.
Similar to Hoeffding Trees, FIMT-DD applies Hoeffding’s
inequality to split at the inner nodes. Specifically, FIMT-DD
aims to find the split that gives the largest reduction in the
standard deviation of the target variable. To avoid infinite
growth, FIMT-DD employs explicit concept drift detection via
the Page-Hinkley test and offers various adaptation strategies.
The FIMT-DD model and the Dynamic Model Tree proposed
in this work have fundamental differences, which we outline
in Section V.

III. PRELIMINARIES AND PROPERTIES FOR ONLINE
DECISION TREE LEARNING

A data stream can be represented by a potentially infinite
series of time steps 1, .., t, .., T . Let Xt ∈ Rnt×m be the
matrix of observations at time step t, where nt ≥ 1 is the
number of observations and m ≥ 1 is the number of features.
We denote Yt ∈ Rnt the corresponding labels at time step
t. The observations and labels are drawn from a distribution
Pt(X,Y ), which we call the active concept at time step t.
Concept drift is defined as a change in the active concept
between two time steps, i.e. Pt1(X,Y ) ̸= Pt2(X,Y ).

Suppose that an incremental decision tree is parameterized
by Θt at time step t. We assume that the parameters Θt are
given by the context and therefore leave them unspecified. As
described in the introduction, we generally aim for models that
are discriminative and interpretable. Given our understanding
of interpretable online learning and the example in Figure
1, we argue that for equal predictive power, the smaller tree
should be preferred. In this context, we identify two crucial
properties for training incremental decision trees.

Let Ωt be a set of time indices up to time step t. Let
XΩt

, YΩt
be sets of corresponding observations and labels
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and, for simplicity, let L(Ωt) be the shorthand notation for
L(ΘΩt , YΩt , XΩt), which denotes the estimated loss of an
incremental decision tree with respect to Ωt. As before, we
assume that the parameters ΘΩt

are given by the context.

Property 1 (Consistency with Parent Splits). Suppose we
perform a split at time step t. Let LC(Ωt) be the new
estimated loss after the split. An incremental decision tree
algorithm is consistent with parent splits regarding the set Ωt,
if LC(Ωt) ≤ L(Ωt).

Accordingly, we must avoid splits that would increase the
estimated loss. This property primarily concerns the predictive
quality of the obtained tree and is a common objective.
Additionally, by choosing an adequate loss function that
approximates the active data concept (which we discuss in
Section V), Property 1 enables interpretable split decisions.

With the goal of low model complexity, i.e. high inter-
pretability, we add a second property:

Property 2 (Model Minimality). Suppose there exists a sub-
tree of the incremental decision tree at time step t, whose
loss is denoted by Lalt(Ωt). An incremental decision tree
algorithm preserves model minimality regarding the set Ωt,
if for L(Ωt) = Lalt(Ωt) it retains the tree with fewer number
of parameters.

Hence, we are bound to replace a complex tree, whenever
it contains a simpler subtree that has equal predictive quality
regarding Ωt. For practical purposes, this means that we have
to prune or replace nodes or branches of the tree that no longer
improve the estimated loss (since the number of parameters per
node is usually fixed). Consequently, Property 2 also implies
a mechanism to adapt to concept drift.

IV. DYNAMIC MODEL TREE

In this paper, we extend Model Trees to a novel framework
for adaptive predictive modelling in dynamic data streams that
adheres to the aforementioned properties.

A Dynamic Model Tree is constructed in a similar fashion
as regular decision trees. That is, we begin with a single root
node and gradually grow and prune the tree over time. Each
node of a Dynamic Model Tree can be represented by a set of
time indices St ⊆ {1, . . . , t} corresponding to the observations
that have reached the node up to time step t. Other than
existing Model Trees, a Dynamic Model Tree maintains simple
predictive models at both leaf and inner nodes (see Figure 2).
These models are used to identify optimal split candidates
(i.e., feature-value combinations) and make predictions. Let
XSt , YSt be the observations and labels, and ΘSt the param-
eters of the simple model at a node corresponding to the time
indices in St. We aim to find the parameters that minimize a
loss function L(·) ≥ 0:

Θ∗
St

= argmin
ΘSt

L(ΘSt
, YSt

, XSt
)

= argmin
ΘSt

∑

t∈St

L(θt, Yt, Xt) (1)

(3)
?
≥ 0

Ct ⊆ St Ct = St\Ct

St ⊆ {1, . . . , t}

M
S

(a) Leaf Node

M
I

(4)
?
≥ 0 ∨ (5)

?
≥ 0

Ct ⊆ It Ct = It\Ct

It ⊆ {1, . . . , t}

(b) Inner Node

Fig. 2: DMT Nodes: Both inner and leaf nodes of a Dynamic
Model Tree contain simple models M that are incrementally
trained during a subset of time steps St and It, respectively.
At every time step t, we check at the leaf nodes whether there
is a new split candidate with positive gain (3) (green, see also
Algorithm 1). Similarly, we check at the inner nodes whether
the gains (4) or (5) are positive, i.e., whether we must replace
the current split (blue) and thus prune the old branch.

We assume independence between time steps; a simplifying,
yet common assumption in data stream learning that has been
shown to work well in practice. Accordingly, we can update
the parameters θt independently at every time step using
gradient descent. The optimal parameters from the previous
time step can be used as prior parameters at time step t.
Accordingly, at every time step, we forward incoming observa-
tions to a corresponding leaf node, updating each simple model
along the path. Once we have updated all relevant simple
models, we attempt to grow or prune the Dynamic Model Tree.
To this end, we require gain measures that account for the
aspired consistency with parent splits and model minimality.

A. Loss-Based Gain Functions

Typically, decision tree algorithms aim for maximum node
purity with respect to the target variable. For this purpose,
split decisions are usually based on heuristic purity measures
such as the Information Gain or the Gini index. However, the
simple models of a Dynamic Model Tree offer a fundamental
advantage in terms of the proposed properties. Instead of
relying on heuristic measures, we may directly select the split
candidate that reduces the overall loss of our tree. Conse-
quently, any update of the model complexity can be directly
linked to a change in the loss, providing better interpretability
as described in Section I-A.

Suppose we are at a leaf node of the tree. Let St be the
corresponding set of time indices observed at this leaf node.
Our goal now is to find a new split candidate, i.e., a feature-
value pair, to further split the observations. We can represent
each split candidate by a set of time indices that would have
been passed to the left child Ct ⊆ St and the right child C̄t =
St\Ct. For the sake of illustration, we assume binary splits.
However, our exposition can readily be extended to non-binary
trees. Our goal is to select the split candidate that maximizes
the improvement of the current loss:

C∗
t = argmax

Ct

GSt,Ct
, with (2)

GSt,Ct
= L(ΘSt

, YSt
, XSt

)

− L(ΘCt
, YCt

, XCt
)− L(ΘC̄t

, YC̄t
, XC̄t

) (3)
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With (3), the proof of consistency to parent splits is almost
trivial:

Lemma 1. Every new split with a gain GSt,Ct ≥ 0 due to (3)
implies consistency with parent splits (Property 1).

Proof. The loss of a Dynamic Model Tree at time step t
corresponds to the sum of losses at each leaf node, i.e.
L(Ωt) =

∑
Jt⊆Ωt

L(ΘJt
, YJt

, XJt
), where every set Jt rep-

resents a leaf node. Suppose there exists a leaf node St, such
that GSt,Ct ≥ 0 for some split candidate Ct. A split on Ct

corresponds to a new loss LC(Ωt) = L(Ωt)−GSt,Ct
, which

implies LC(Ωt) ≤ L(Ωt).

To satisfy model minimality (Property 2), we also need to
evaluate existing splits of the Dynamic Model Tree. Specifi-
cally, we may replace an existing inner node with either a new
split candidate or a leaf node. In both cases, we would prune
the old branch (subtree). Suppose there is a subtree whose
root corresponds to an inner node of the original tree. As
before, we represent this inner node by a set of time indices
It. Likewise, each leaf node of the subtree is represented by a
set Jt, such that the union of all Jt is equal to It. We then try
to find an alternate split candidate (represented by Ct ⊆ It,
C̄t = It\Ct), i.e. a substitute for the inner node It, which
offers an improvement in terms of the loss:

GIt,Ct =
∑

Jt⊆It

L(ΘJt , YJt , XJt)

− L(ΘCt
, YCt

, XCt
)− L(ΘC̄t

, YC̄t
, XC̄t

) (4)

If the gain (4) is positive, we can prune the old subtree and
add a new inner node with two new leaf nodes in its place.
Alternatively, we may make the current inner node a leaf. To
this end, we need to compare the loss at the inner node with
the loss of the current subtree. The corresponding gain is

GIt =
∑

Jt⊆It

L(ΘJt , YJt , XJt)− L(ΘIt , YIt , XIt). (5)

If both gains (4) and (5) are positive and GIt ≥ GIt,Ct , we
apply the second option, replacing the inner node with a leaf
node, to obtain the overall smaller tree. Notably, (4) and (5)
allow us to maintain the minimality of a Dynamic Model Tree:

Lemma 2. Greedy replacement of inner nodes, wherever
GIt,Ct ≥ 0 due to (4) or GIt ≥ 0 due to (5), implies model
minimality (Property 2).

Proof. Let It represent an inner node of the Dynamic Model
Tree. There exists a subtree whose root is the inner node It.
We may prune this subtree by replacing the inner node It with
a different split candidate or a leaf. The gain G corresponds to
(4) or (5) respectively. Accordingly, Lalt(Ωt) = L(Ωt)−G is
the loss of the potential alternate tree with the subtree replaced.
Note that the alternate tree is guaranteed to have an equal or
lower number of nodes and, since the number of parameters
per node is fixed, an equal or lower number of parameters.
Since Lalt(Ωt) = L(Ωt) implies that G = 0, by assumption
we would replace the Dynamic Model Tree by the alternate

tree with the smaller number of parameters. This procedure
may be repeated from the bottom to the root of the tree.

B. Candidate Loss Approximation

To compare the gains (3) or (4) of different split can-
didates, we require loss estimates L(ΘCt

, YCt
, XCt

) and
L(ΘC̄t

, YC̄t
, XC̄t

) for each candidate. However, due to limited
resources, we usually cannot train the simple models corre-
sponding to every potential split candidate. For this purpose,
we adopt an efficient gradient-based approximation.

The authors in [19] argue that we may warm-start opti-
mizing the parameters of a split candidate ΘCt

with a single
gradient step on the parameters of the current node ΘSt :

ΘCt
≈ ΘSt

− λ

|Ct|
∇ΘSt

L(ΘSt
, YCt

, XCt
) (6)

The first order Taylor polynomial at the point ΘSt then
gives a good approximation to the loss of the split candidate
L(ΘCt

, YCt
, XCt

). Accordingly, we write

L(Θ, YCt
, XCt

) ≈ L(ΘSt
, YCt

, XCt
)

+ (Θ−ΘSt
)T∇ΘSt

L(ΘSt
, YCt

, XCt
)

(6)⇒ L(ΘCt , YCt , XCt) ≈ L(ΘSt , YCt , XCt)

− λ

|Ct|
∥∇ΘSt

L(ΘSt
, YCt

, XCt
)∥22.

(7)

With (7) we can approximate the loss of different split
candidates without maintaining corresponding simple models.
Moreover, we can reuse the gradient calculated during the
optimisation of the parent model, which further increases
efficiency. Finally, note that other work has successfully used
gradient-based split finding [33].

C. Basic Algorithm And Complexity

Algorithm 1 depicts the general procedure at a leaf node of
the Dynamic Model Tree. For inner nodes, we compute the
gain functions (4) and (5) in line 12. In line 19, we then replace
the inner node with a new split or a leaf (depending on which
gain is greater). Otherwise, the general update procedure is
equivalent for both types of nodes. We update the nodes of
the tree in a bottom-up fashion.

The time complexity of Algorithm 1 for updating one node
without fitting the simple model is O(mntc +m2vc), where
c is the number of classes, m is the number of features, nt is
the sample size at time step t and v is the maximal number of
unique values of a feature. Depending on the choice of simple
model, the time complexity might increase. If the maximal
number of unique values is large, i.e. v ≫ nt, then the first
term becomes negligible, leading to a complexity of O(m2vc).
In practice, decision tree algorithms often reduce computation
time by limiting the number of eligible split candidates. This
can be particularly important when we deal with large numbers
of (continuous) features. We propose a simple method in
Section V.

The memory complexity per node of the Dynamic Model
Tree is O(m2vc). As before, the memory requirements of the
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Algorithm 1 Dynamic Model Tree - General Update Proce-
dure at a Leaf Node at Time Step t

Input: Observations and labels Xt, Yt; Simple model Mθt ;
Likelihoods, gradients and counts of time step t− 1.

Output: Updated likelihoods, gradients and counts.
*** Increment the loss, gradient and count at the
node. ***

1: L(ΘSt , YSt , XSt)←
L(ΘSt−1 , YSt−1 , XSt−1)+L(θt, Yt, Xt)

2: ∇ΘSt
L(ΘSt

, YSt
, XSt

)←
∇ΘSt−1

L(ΘSt−1
, YSt−1

, XSt−1
)+∇θtL(θt, Yt, Xt)

3: nSt ← nSt−1 + len(Yt)
*** Update the statistics of split candidates and compute
the gains (NOTE: The right child statistics corresponding
to the set C̄t can be obtained as the difference between the
statistics of the left child (Ct) and the parent node (St).
They therefore do not need to be stored separately.)- ***

4: Gmax ← −1
5: Ctop ← None
6: for all split candidates C do
7: Y C

t ⊆ Yt; XC
t ⊆ Xt

8: L(ΘSt , YCt , XCt)←
L(ΘSt−1 , YCt−1 , XCt−1)+L(θt, Y

C
t , X

C
t )

9: ∇ΘSt
L(ΘSt

, YCt
, XCt

)←
∇ΘSt−1

L(ΘSt−1
, YCt−1

, XCt−1
)+∇θtL(θt, Y

C
t , X

C
t )

10: nCt
← nCt−1

+ len(Y C
t )

11: L(ΘCt , YCt , XCt)← (7)
12: GSt,Ct

← (3)
13: if (GSt,Ct

> Gmax) then
14: Gmax ← GSt,Ct

15: Ctop ← C
16: end if
17: end for

*** Split or retain the leaf node. ***
18: if Gmax ≥ 0 then
19: Split on candidate Ctop
20: end if

Dynamic Model Tree scale with the number of split candidates
considered.

D. Differences Between DMT and Earlier Methods

Dynamic Model Trees differ clearly from earlier work. A
major difference lies in the way Dynamic Model Trees handle
concept drift. While purity-based adaptation strategies usually
require dedicated drift detection models to identify concept
drift [34], a Dynamic Model Tree does not. In fact, adaptation
to concept drift is automatically handled via the proposed
gain functions. As a consequence, Dynamic Model Trees only
have few hyperparameters that need to be optimized, while
providing a similar level of flexibility as earlier works.

FIMT-DD is one of the most popular existing Model Tree
frameworks for data streams [21]. In the following, we briefly
highlight key differences between FIMT-DD and the Dynamic

Model Tree. Like a Hoeffding Tree, FIMT-DD relies on a pu-
rity measure (Standard Deviation Reduction) and Hoeffding’s
inequality to compare split candidates. That is, in FIMT-DD,
“the process of learning linear models in the leaves will not
explicitly reduce the size of the (...) tree” [21]. In addition,
FIMT-DD requires a dedicated concept drift detection method
(Page Hinkley) to adapt to change. As mentioned before, the
Dynamic Model Tree neither requires a heuristic measure nor
a separate concept drift detection model.

Other than FIMT-DD, the Dynamic Model Tree continues
to update the simple models at the inner nodes even after
splitting. This may increase the computation time, but allows
us to compute the loss concerning the active concept on
different hierarchies. In this way, the proposed framework can
effectively identify and adjust to global and local concept drift.

E. Limitations

Typically, incremental decision trees like VFDT [11] or
FIMT-DD [21] primarily occupy memory for saving statistics
in the leaf nodes. Dynamic Model Trees also require memory
to store statistics for every inner node. For example, while
VFDT occupies O(lmvc) memory, a Dynamic Model Tree
requires O((l + i)m2vc), where l and i are the number of
leaf and inner nodes, m is the number of features, v is the
maximal number of unique values per feature and c is the
number of classes. However, Dynamic Model Trees usually
remain shallow due to the model minimality property, which
reduces the overall computational gap to other methods.

Likewise, Dynamic Model Trees can have a longer training
time per node, depending on the selected simple model type.
The choice of appropriate simple models also affects the
general performance of the tree. With random initial weights,
a simple model may take some time to achieve good predictive
quality. However, this mainly affects the root node of the
Dynamic Model Tree, since all other simple models are warm-
started with the optimized parameters of the parent node.
In addition, if the simple models are non-robust or biased,
the split and prune decisions of the proposed framework
will suffer. In general, however, inadequate model types can
be quickly identified by comparing the predictive error to
benchmarks (e.g. the VFDT).

V. IMPLEMENTATION

The Dynamic Model Tree offers a large degree of flexibil-
ity. In particular, our framework may be implemented with
different simple models and loss functions to account for
different applications. For illustration, we propose an effective
implementation of the Dynamic Model Tree for binary and
multi-class classification.

A. Simple Models

We use logit and multinomial logit models (softmax) to
represent binary and categorical target variables, respectively.
Both models belong to the family of Generalized Linear
Models (GLM) and are widely used in practice due to their
efficiency and transparency. We train the simple models by
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stochastic gradient descent with a constant learning rate. In
the future, one might experiment with different base models,
optimization strategies or online feature selection [35].

B. Loss Function

Owing to the proposed gain functions, changes in a Dy-
namic Model Tree are directly linked to changes in the
empirical loss. Although purity-based splits usually also lead
to a reduction in error, splits based on a change in loss can
be very powerful in terms of interpretability.

To this end, we recall that concept drift between two time
steps t1 and t2 corresponds to a change in the active concept,
i.e. Pt1(X,Y ) ̸= Pt2(X,Y ). Online learning models need to
adjust to concept drift in order to maintain high predictive
performance. Accordingly, we are mainly interested in concept
drift that shifts the optimal decision boundary. This form
of concept drift is called real concept drift and is defined
as Pt1(Y |X) ̸= Pt2(Y |X) [36]. Since the true distribution
Pt(Y |X) is generally unknown, our best approximation of
the active data concept is the likelihood P (Yt|Xt, θt) [34]. In
this context, the negative log-likelihood L(ΘSt

, YSt
, XSt

) =
−∑t∈St

logP (Yt|Xt, θt) is a straight-forward choice for the
loss function.

If a simple model performs well, we can generally assume
that the likelihood is a good approximation of the data-
generating concept. Accordingly, we may assume that the
negative log-likelihood loss changes as a consequence of
concept drift. For this reason, the negative log-likelihood loss
allows us to associate any (major) change in the gains (3)-
(5) with a local change in the approximate data concept.
Compared to popular purity measures, this enables a much
higher degree of online interpretability, as discussed in the
introduction.

C. Threshold for Robust Model Updates

In practice, an online learning model will be subject to small
variations and noise. It may therefore be useful to specify a
threshold on the gain functions to avoid excessive updates.

If we set a threshold for the gains defined in (4) and
(5), we need to relax the model minimality (Property 2): We
recall that the loss of a minimal alternate model is given
by Lalt(Ωt) = L(Ωt) − G, where L(Ωt) is the loss of the
current tree and G corresponds to (4) or (5) (see Lemma 2 and
Proof). Consequently, if we prune the inner node whenever
G ≥ threshold ≥ 0, we retain the minimal model for
Lalt(Ωt) ≤ L(Ωt)−threshold. This relaxation can sometimes
be sensible, since a non-robust tree may be equally undesirable
than an overly complex tree. Besides, if the threshold is
reasonably small, changes of the loss due to concept drift
will usually trigger model updates after a few iterations. To
set a threshold, one only needs to adjust line 18 of the basic
procedure shown in Algorithm 1.

By using the negative log-likelihood loss, we enable a
natural threshold in terms of the Akaike Information Criterion:

AIC = 2k − 2ℓ(Θ), (8)

where ℓ is the log-likelihood and k is the number of free
(estimated) parameters. The AIC is a popular test statistic for
model selection problems. It estimates the relative amount of
information lost among competing models. Given two models
i and j where AICi ≤ AICj , the quantity exp([AICi −
AICj ]/2) is proportional to the relative probability that model
j minimizes the estimated information loss. Therefore, if we
set a threshold for this quantity, we can control the tolerated
probability that model j actually has the minimum AIC instead
of model i.

We can apply this methodology to our split and prune
strategy. For example, when attempting to split, we compare
the simple models representing the current node (St) and the
potential split (Ct, C̄t). The corresponding AICs are

AICSt = 2kSt − 2ℓ(ΘSt , YSt , XSt), (9)
AICCt = 2(kCt + kC̄t

)

− 2
(
ℓ(ΘCt , YCt , XCt) + ℓ(ΘC̄t

, YC̄t
, XC̄t

)
)
, (10)

where kSt , kCt and kC̄t
denote the numbers of free parameters

of the corresponding models. Let ϵ ∈ [0, 1] be a user-specified
hyperparameter. We apply the following test:

exp([AICCt
−AICSt

]/2) ≤ ϵ
⇔ exp

(
kCt + kC̄t

− ℓ(ΘCt , YCt , XCt)− ℓ(ΘC̄t
, YC̄t

, XC̄t
)

− kSt
+ ℓ(ΘSt

, YSt
, XSt

)
)
≤ ϵ

(3)⇔ exp
(
kCt

+ kC̄t
− kSt

−GSt,Ct

)
≤ ϵ

⇔ exp(−GSt,Ct) ≤
ϵ

exp(kCt
+ kC̄t

− kSt
)

⇔ −GSt,Ct
≤ log(ϵ)− kCt

− kC̄t
+ kSt

⇔ GSt,Ct
≥ kCt

+ kC̄t
− kSt

− log(ϵ) (11)

If we use the same simple model type at every node (e.g.
logit models as proposed earlier), then (11) simplifies to
GSt,Ct ≥ k−log(ϵ). Similarly, we can calculate thresholds for
the remaining gain functions, which we omit for brevity. Note
that the hyperparameter ϵ controls the trade-off between quick
and robust updates. In this way, we can adjust the sensitivity
of the Dynamic Model Tree.

D. Algorithmic Considerations

We implemented the Dynamic Model Tree in Python.1

Note that the Dynamic Model Tree is able to handle both
batch-incremental and instance-incremental online learning. In
the following, we discuss important algorithmic details and
propose a sensible hyperparameter configuration.

In practice, the number of unique split candidates may grow
quickly – in particular for continuous variables. This is a
problem that most incremental decision trees have in common.
To overcome potential memory overload, our framework may
be extended with advanced strategies like Binary Search Trees
(see their application in FIMT-DD [21], for example). For
illustration, however, we have chosen a simpler technique.

1https://github.com/haugjo/dynamic-model-tree
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TABLE I: Data sets. We used state-of-the-art tabular streaming
data sets with different types of concept drift. TüEyeQ [37],
as well as Insects-Abrupt and Insects-Incremental [38] have
been obtained from the sources referenced in the respective
papers. The remaining real-world data sets have been obtained
from https://www.openml.org. We included the original refer-
ence wherever available. The synthetic data sets have been
generated with scikit-multiflow [30]. Here we also indicate the
type of concept drift generated (abrupt or incremental).

Name #Samples #Features #Classes (#Majority)

Electricity 45,312 8 2 – (26,075)
Airlines 539,383 7 2 – (299,119)
Bank [39] 45,211 16 2 – (39,922)
TüEyeQ [37] 15,762 76 2 – (12,975)
Poker-Hand [40] 1,025,000 10 9 – (513,701)
KDDCup 494,020 41 23 – (280,790)
Covertype [40] 581,012 54 7 – (283,301)
Gas [41] 13,910 128 6 – (3,009)
Insects-Abrupt [38] 355,275 33 6 – (101,256)
Insects-Incremental [38] 452,044 33 6 – (134,717)
SEA (synthetic, abrupt) 1,000,000 3 2
Agrawal (synthetic, incremental) 1,000,000 9 2
Hyperplane (synthetic, incremental) 500,000 50 2

Specifically, we store only a fixed number of statistics
corresponding to the candidates with largest estimated gain
(we recommend a default value of three times the number
of features). At every time step, we allow a fixed percentage
of the saved candidate statistics to be replaced by newly
observed candidates. This is similar to the VFDT algorithm
[11], which drops split candidates that diverge too far from the
current maximal gain. We recommend a default replacement
rate of 50%, which provided good results throughout all our
experiments.

Since we limit the number of split candidates in main
memory, we need to approximate the gain of newly observed
candidates from the current sample. Note that the initial
approximation can be biased if the current batch is not
representative of the active concept. Specifically, such initial
bias might occur if the batch size is small or the data is very
noisy. Once stored, however, the statistics are updated at each
successive time step, mitigating any initial bias over time. In
addition, a split candidate that was rejected or deleted in the
past can be added again in the future, e.g. if its importance
has changed after concept drift. In experiments, we obtained
good results for this simple approximation scheme.

Additionally, we propose a learning rate of 0.05 to train
the binary and multinomial logit models and a threshold of
ϵ = 10e− 8 for the AIC-based confidence test.

Finally, note that we might be able to improve the effi-
ciency of the Dynamic Model Tree by using parallelization
or distributed computation. We leave a detailed discussion of
more advanced implementation techniques for future work.

VI. EXPERIMENTS

We evaluated the Dynamic Model Tree in multiple experi-
ments on synthetic and real-world streaming classification data
sets. Specifically, we compared the proposed framework to the
related Model Tree architecture FIMT-DD [21] and different

versions of the Hoeffding Tree. We begin with a description of
the experimental setup, including the data sets, related methods
and performance measures. Afterwards, we summarize our
most important findings.

A. Environment and Evaluation Strategy

All models and experiments were implemented in Python
(3.8.5) and run on an AMD Ryzen Threadripper 3960X (24x
3.8GHz) CPU with 128Gb RAM under Ubuntu 18.04. In
addition, we used the following packages: numpy (1.20.1),
pandas (1.2.4), matplotlib (3.4.2), scikit-learn (0.24.2) and
scikit-multiflow (0.5.3). We specified a random state to guar-
antee the reproducibility of all results.

We performed a prequential (test-then-train) evaluation [43],
which is the most common evaluation strategy for data stream
learning. A disadvantage of data stream evaluations compared
to regular batch evaluations is the lack of statistical signif-
icance. To be precise, since we cannot alter the order of
observations without introducing artificial concept drift, we
cannot obtain results for different permutations or samples of
the data set. There are approaches where multiple instances
of a classifier are trained in parallel [44]. However, they are
very computationally intensive. Accordingly, we ask readers to
be aware that statistical significance, although being standard
in other areas of machine learning, is uncommon in the data
stream literature.

At each iteration of the prequential evaluation, we processed
a batch of 0.1% of the data. We also examined other batch
sizes to ensure that the reported results are representative.

B. Data Sets

Typically, online classifiers are evaluated on tabular data
sets. Machine learning with heterogeneous and evolving tab-
ular data is challenging and has recently attracted attention in
other areas such as deep learning [45]. In our experiments,
we used state-of-the-art tabular streaming data sets, which we
briefly describe in the following. We obtained most real-world
data sets from https://www.openml.org. A summary of the data
sets and their properties can also be found in Table I.

The Electricity data set describes price changes in the
Australian New South Wales Electricity Market. The prices
are not fixed, but adjust over time to the varying supply
and demand. In the Airlines data set, the goal is to predict
whether a flight will be delayed, given information about its
scheduled departure. The Bank Marketing data set incorporates
information about a marketing campaign of a Portuguese bank
institute [39]. Here, the goal is to predict whether a customer
will subscribe a deposit. Poker-Hand is a popular multiclass
classification data set that consists of variables describing
different poker hands [40]. Covertype contains information
about several forest cover types that need to be distinguished
[40]. The Gas data set contains drifting measurements of
chemical sensors that are used to classify different types of gas
[41]. The KDD Cup 1999 data set was introduced as part of a
data mining competition. The data set contains features about
network connections that are used for intrusion detection. We
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TABLE II: F1 Measure (higher is better). We show the mean and standard deviation of the F1 measures observed over time
in all data sets. For reference, we also provide the results of two ensemble classifiers separated from the stand-alone models
by horizontal lines. We highlight the top result of each data set in bold letters. The average performance across all data sets is
shown in the rightmost column. Note that the standard deviation also captures the variation caused by concept drift. It should
therefore not be taken as an indication of the robustness to noise. The proposed Dynamic Model Tree frequently outperforms
the remaining classifiers in terms of the predictive power and performs best on average.

Model \ Data Set Electricity Airlines Bank TüEyeQ Poker KDD Covertype Gas Insects-Abr. Insects-Inc. SEA Agrawal Hyperplane Mean

DMT (ours) 0.76 ± 0.20 0.63 ± 0.05 0.88 ± 0.11 0.79 ± 0.20 0.44 ± 0.05 0.99 ± 0.01 0.80 ± 0.09 0.82 ± 0.27 0.73 ± 0.10 0.73 ± 0.08 0.88 ± 0.02 0.82 ± 0.08 0.84 ± 0.04 0.78 ± 0.10
FIMT-DD [21] 0.78 ± 0.20 0.55 ± 0.12 0.88 ± 0.14 0.76 ± 0.22 0.41 ± 0.08 0.99 ± 0.01 0.81 ± 0.10 0.79 ± 0.28 0.73 ± 0.08 0.72 ± 0.08 0.78 ± 0.10 0.64 ± 0.13 0.76 ± 0.05 0.74 ± 0.12
VFDT (MC) [11] 0.76 ± 0.20 0.64 ± 0.06 0.87 ± 0.15 0.77 ± 0.22 0.47 ± 0.05 0.96 ± 0.10 0.72 ± 0.13 0.29 ± 0.37 0.64 ± 0.14 0.67 ± 0.10 0.86 ± 0.03 0.77 ± 0.11 0.65 ± 0.03 0.70 ± 0.13
VFDT (NBA) [31] 0.80 ± 0.15 0.65 ± 0.05 0.88 ± 0.13 0.77 ± 0.21 0.50 ± 0.03 0.99 ± 0.01 0.85 ± 0.09 0.77 ± 0.27 0.71 ± 0.10 0.72 ± 0.07 0.86 ± 0.04 0.79 ± 0.10 0.73 ± 0.02 0.77 ± 0.10
HT-ADA [13] 0.77 ± 0.21 0.62 ± 0.07 0.88 ± 0.13 0.77 ± 0.23 0.47 ± 0.05 0.96 ± 0.10 0.67 ± 0.19 0.22 ± 0.35 0.59 ± 0.15 0.64 ± 0.13 0.89 ± 0.02 0.84 ± 0.08 0.66 ± 0.03 0.69 ± 0.13
EFDT [14] 0.77 ± 0.20 0.60 ± 0.09 0.88 ± 0.14 0.77 ± 0.23 0.47 ± 0.05 0.99 ± 0.01 0.74 ± 0.14 0.55 ± 0.39 0.68 ± 0.11 0.65 ± 0.10 0.87 ± 0.04 0.82 ± 0.09 0.69 ± 0.03 0.73 ± 0.12

Forest Ens. [42] 0.81 ± 0.14 0.64 ± 0.05 0.89 ± 0.13 0.78 ± 0.20 0.50 ± 0.02 0.99 ± 0.01 0.74 ± 0.19 0.80 ± 0.33 0.72 ± 0.09 0.72 ± 0.08 0.90 ± 0.02 0.80 ± 0.08 0.64 ± 0.03 0.76 ± 0.10
Bagging Ens. [27] 0.81 ± 0.17 0.65 ± 0.05 0.89 ± 0.13 0.78 ± 0.21 0.53 ± 0.03 0.99 ± 0.04 0.72 ± 0.23 0.67 ± 0.40 0.74 ± 0.10 0.75 ± 0.07 0.90 ± 0.02 0.84 ± 0.08 0.72 ± 0.04 0.77 ± 0.12

TABLE III: No. of Splits (lower is better). Complexity – quantified here by the mean and standard deviation of the number of
splits (as described in Section VI-D2) – is often used as an indicator of the interpretability of a model. Model Trees (FIMT-DD
and DMT) tend to remain shallower than Hoeffding Trees, due to the flexibility provided by the linear leaf models.

Model \ Data Set Electricity Airlines Bank TüEyeQ Poker KDD Covertype Gas Insects-Abr. Insects-Inc. SEA Agrawal Hyperplane Mean

DMT (ours) 6.5 ± 3.1 35.7 ± 16.7 2.3 ± 1.0 1.4 ± 0.8 9.0 ± 0.0 24.8 ± 6.3 10.7 ± 4.0 9.3 ± 3.5 9.1 ± 3.5 9.1 ± 3.5 35.1 ± 25.3 75.4 ± 34.4 2.2 ± 1.3 17.7 ± 8.0
FIMT-DD [21] 52.0 ± 30.1 4.9 ± 3.9 75.5 ± 47.3 1.0 ± 0.0 17.7 ± 10.2 24.8 ± 6.4 13.7 ± 8.2 6.0 ± 0.0 7.4 ± 3.1 10.6 ± 5.9 1.0 ± 0.0 65.8 ± 71.5 8.0 ± 10.3 22.2 ± 15.1
VFDT (MC) [11] 37.8 ± 22.3 323.3 ± 182.4 21.9 ± 13.9 10.6 ± 6.8 84.7 ± 50.6 25.6 ± 13.0 356.8 ± 201.7 0.7 ± 0.7 41.3 ± 23.7 53.5 ± 32.5 588.4 ± 339.8 628.3 ± 371.0 277.9 ± 162.4 188.5 ± 109.3
VFDT (NBA) [31] 76.7 ± 44.6 647.6 ± 364.7 44.8 ± 27.7 22.3 ± 13.7 856.3 ± 506.0 637.3 ± 310.8 2861.1 ± 1613.4 11.1 ± 5.1 295.2 ± 165.7 380.3 ± 227.6 1177.8 ± 679.7 1257.6 ± 742.1 556.8 ± 324.9 678.8 ± 386.6
HT-ADA [13] 3.4 ± 2.1 12.7 ± 6.8 5.6 ± 3.4 2.3 ± 1.6 58.0 ± 28.1 25.4 ± 12.8 3.1 ± 2.9 0.2 ± 0.4 8.0 ± 5.0 21.5 ± 12.9 131.4 ± 69.8 158.2 ± 79.2 188.7 ± 101.4 47.6 ± 25.1
EFDT [14] 10.9 ± 4.5 15.2 ± 7.5 9.5 ± 3.4 2.8 ± 1.4 10.0 ± 6.6 24.7 ± 9.2 9.4 ± 4.3 4.7 ± 2.7 17.3 ± 7.8 15.9 ± 10.4 109.9 ± 70.3 89.7 ± 66.2 31.0 ± 17.4 27.0 ± 16.3

TABLE IV: No. of Parameters (lower is better). For the sake of completeness and to account for the difference between
majority weighting and linear leaf models, we depict the number of parameters (mean ± standard deviation) as another
measure of complexity (as described in Section VI-D2). In general, heuristic measures like the number of splits or parameters
do not always give a clear indication of the interpretability of a model and should thus be considered with care. A more reliable
indication of interpretability is provided by theoretical properties such as Property 1 and 2.

Model \ Data Set Electricity Airlines Bank TüEyeQ Poker KDD Covertype Gas Insects-Abr. Insects-Inc. SEA Agrawal Hyperplane Mean

DMT (ours) 33 ± 14 146 ± 67 27 ± 8 92 ± 31 80 ± 0 970 ± 238 474 ± 162 939 ± 320 237 ± 82 238 ± 82 71 ± 51 381 ± 172 80 ± 33 290 ± 97
FIMT-DD [21] 238 ± 136 22 ± 15 649 ± 402 76 ± 0 150 ± 83 971 ± 239 597 ± 332 640 ± 0 198 ± 74 275 ± 140 3 ± 0 333 ± 358 229 ± 262 337 ± 157
VFDT (MC) [11] 77 ± 45 648 ± 365 45 ± 28 22 ± 14 170 ± 101 52 ± 26 715 ± 403 2 ± 1 84 ± 47 108 ± 65 1178 ± 680 1258 ± 742 557 ± 325 378 ± 219
VFDT (NBA) [31] 349 ± 201 2,594 ± 1,459 388 ± 236 896 ± 526 6,943 ± 4,099 24,016 ± 11,695 116,270 ± 65,543 1,105 ± 470 7,023 ± 3,930 9,042 ± 5,397 2,357 ± 1,359 6,292 ± 3,710 14,224 ± 8,285 14,731 ± 8,224
HT-ADA [13] 8 ± 4 27 ± 14 12 ± 7 6 ± 3 144 ± 78 52 ± 26 7 ± 6 1 ± 1 17 ± 10 44 ± 26 264 ± 140 377 ± 193 378 ± 203 103 ± 55
EFDT [14] 23 ± 9 31 ± 15 20 ± 7 7 ± 3 21 ± 13 50 ± 18 20 ± 9 10 ± 5 36 ± 16 33 ± 21 221 ± 141 180 ± 132 63 ± 35 55 ± 33

shuffled the KDD data set, because it was initially grouped by
class labels. Since KDD does not involve known concept drift,
shuffling the data is required to obtain an even distribution of
classes over time and enable a fair evaluation.

It is usually difficult to determine the exact period of
concept drift in a real-world streaming process. In fact, we
cannot access such information for any of the above-mentioned
data sets. Two recent exceptions are the TüEyeQ [37] and
Insects [38] data collections. From TüEyeQ, we used the
sociodemographic data about all subjects participating in an IQ
test. The classification task is to decide whether a subject fails
or passes an IQ-related task. The data set is divided in four task
blocks with increasing difficulty within each block, resembling
a natural concept drift. The Insects data comprises sensor
information from monitoring of flying insect species. The
measurements were obtained in a non-stationary but control-
lable environment. That is, by changing the temperature and
humidity, the authors in [38] were able to generate different
types of concept drift. We used the imbalanced Insects data
sets with abrupt and incremental drift.

In addition, we created synthetic data streams with scikit-
multiflow [30]. Specifically, we used the AGRAWALGener-
ator, HyperplaneGenerator and SEAGenerator to obtain syn-
thetic data with different types of concept drift. For detailed

information about each data generator, we refer to the cor-
responding documentation. Each synthetic data stream was
sampled with 0.1 probability of noisy inputs (this corresponds
to the “perturbation” parameter of the scikit-multiflow classes).

The resulting Hyperplane data set is subject to a continuous
incremental concept drift over all observations. The Agrawal
data set contains incremental drift between the observations
100,000-200,000, 300,000-500,000 and 800,000-900,000, but
is otherwise stable. The SEA data set has three abrupt concept
drifts at the observations 200,000, 400,000, 600,000 and
800,000.

Finally, we factorised the categorical string variables of all
data sets. In addition, we normalized the features before use
(range [0, 1]). Otherwise, we did not pre-process the data sets.

C. Related Algorithms and Hyperparameters

As mentioned before, we compared the Dynamic Model
Tree to different versions of the Hoeffding Tree. Specifically,
we obtained results for the basic VFDT [11] and two of its
extensions, the adaptive Hoeffding Tree (HT-Ada) [13] and
the Extremely Fast Decision Tree (EFDT) [14]. Unlike VFDT,
both extensions contain a mechanism to adapt to concept drift.

Since it is generally not possible to optimize hyperparame-
ters in a data stream, we applied the default configurations sug-
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gested by the corresponding scikit-multiflow implementations.
These implementations have been heavily optimized over the
years. Since our goal was to compare the originally proposed
models, and in order to allow a fairer comparison with
our implementation, we disabled some of the optimizations
of scikit-multiflow. In particular, we did not use bootstrap
sampling in the leaves of the HT-Ada algorithm. Moreover, we
used majority voting in the leaf nodes of the Hoeffding Trees.
However, to give an indication of the possible improvement
introduced by simple predictive models in the leaves of a Ho-
effding Tree, we also report the results of a VFDT augmented
with adaptive Naı̈ve Bayes models [31]. Finally, to improve
the efficiency of the EFDT algorithm, we set the minimum
number of observations between re-evaluations to 1,000.

For the sake of completeness, we also looked at two state-of-
the-art ensembles of the Hoeffding Tree, an Adaptive Random
Forest [42] and a Leveraging Bagging Ensemble [27]. Both
ensembles were trained with 3 basic Hoeffding Tree classifiers
as weak learners. We configured the weak learners in the same
way as the stand-alone VFDT model. Otherwise, we used
the default parameters of the ensembles specified in scikit-
multiflow.

In addition, we evaluated FIMT-DD [21]. To the best of
our knowledge, there is no publicly available Python imple-
mentation of a FIMT-DD classification model. Therefore, we
implemented the classifier based on the description in the
paper.2 Our implementation uses the second drift adjustment
strategy proposed by the authors, i.e., it deletes branches
where the Page Hinkley test issues an alert. We used a default
learning rate of 0.01 for the simple models and a threshold of
0.01 for the significance test based on Hoeffding’s inequality.
Besides, we specified a threshold of 0.05 to break ties between
split candidates with similar gain.

Finally, note that we only allowed binary splits in all
incremental decision trees. The Dynamic Model Tree was
configured in the way described in Section V.

D. Performance Measures

1) Predictive Performance: Classification error and accu-
racy are common measures for evaluating online classifiers.
However, both measures might produce biased results for
imbalanced data. As our evaluation incorporates many imbal-
anced data sets, we report the F1 measure instead. The F1
measure is the harmonic mean of precision and recall and
provides reliable results even for strong imbalances.

2) Interpretability/Complexity: Since there is no common
measure of interpretability, one usually resorts to heuristics.
For example, one can compare the number of parameters
in linear models or the number of nodes in decision trees.
Unfortunately, in our case there is no clear separation be-
tween model families. In particular, a comparison between
the complexities of Hoeffding and Model Trees is difficult,
as their leaf nodes offer different degrees of expressiveness.

2The FIMT-DD implementation can also be accessed via Github at https:
//github.com/haugjo/dynamic-model-tree

TABLE V: Computation Time in Seconds (lower is better).
We show the mean and standard deviation of the computation
time for one test/train iteration over all data sets.

DMT (ours) FIMT-DD VFDT (MC) VFDT (NBA) HT-ADA EFDT

0.53 ± 0.21 1.12 ± 0.57 0.06 ± 0.03 0.14 ± 0.03 0.34 ± 0.08 17.23 ± 6.33

Hence, we consider the number of splits in our evaluation,
which we calculated as follows: Each inner node counted
as one split. Majority-weighted leaf nodes did not contribute
to the total number of splits. Conversely, the leaf classifiers
can be considered as another final split of the observations.
Accordingly, we counted one more split for binary classifiers
and c more splits for multiclass classifiers, where c is the
number of classes. Compared to measuring the total number of
nodes, the number of splits accounts for the different leaf types
of Hoeffding Trees and Model Trees. For completeness, we
also report the number of parameters. Specifically, we counted
one parameter per inner node corresponding to the split value.
We counted leaf nodes as either one (majority class) or m
(linear model weights; Naı̈ve Bayes conditional probabilities)
additional parameters, where m is the number of features.3

In practice, it depends on a given application whether the
simple leaf models should be considered as limiting inter-
pretability or not. That is, as mentioned earlier, simple models
can offer significant advantages in terms of local feature-based
explainability. Accordingly, we generally consider the number
of splits to be a more reliable indication of the interpretability
of incremental decision trees. Still, instead of giving too much
importance to heuristics, one should aim for online learning
models that have meaningful interpretability properties, such
as those proposed in this paper.

3) Computational Efficiency: Computational efficiency de-
pends on the respective implementation and hardware con-
figuration. As we used both scikit-multiflow and custom
implementations, we did not focus on computational efficiency
in the experiments. However, for the sake of completeness,
we provide the average computation time for one train/test-
iteration of each model in Table V.

E. Results

In the following, we discuss our most important findings.
1) Predictive Performance: Table II shows the average

F1 measure of all models and data sets. Using simple leaf
models instead of majority voting has generally improved the
obtained F1 score (see DMT, FIMT-DD and VFDT (NBA)).
This advantage is most evident in the Hyperplane data set.
The Hyperplane data was generated by rotating a decision
hyperplane in multidimensional space. Thus, after a few splits,
the observations can be linearly separated sufficiently well
by the simple models. Although no model achieved good
predictive quality on Poker, the VFDT with Naı̈ve Bayes has
a higher average score than the Model Trees, suggesting that
a different simple model type may improve the results.

3For multinomial classification, we counted the parameters corresponding
to each class.
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(h) TüEyeQ (Abrupt Drifts), Log Number of Splits

Fig. 3: Performance and Complexity Under Concept Drift. We show the F1 scores and the log number of splits for four data
sets with known concept drift. We indicate the types of concept drift in parentheses. Specifically, we show the mean and
standard deviation (shaded area) for a sliding window aggregation with a window size of 20. The Dynamic Model Tree has
less performance degradation and recovers faster after a concept drift, while often remaining shallower than existing models.

In general, FIMT-DD and the Dynamic Model Tree obtained
similar F1 scores. However, our framework outperformed
FIMT-DD for Airlines and the synthetic data sets. Looking at
the behavior of FIMT-DD over time, its disadvantage can often
be attributed to slow growth (e.g., Airlines, Agrawal, SEA) or
aggressive pruning (e.g., Agrawal, Hyperplane). Accordingly,
a less strict split threshold, different purity measures, and
alternative pruning strategies could be explored in the future.
Similarly, the Dynamic Model Tree may perform poorly in
the first time steps if the random initial weights have not yet
converged. This effect is noticeable in the averaged result of
Electricity, since it is a relatively small data set. To speed up
the initial training of the simple models, one may experiment
with dynamic learning rates. As can be seen from the Gas
data set, the VFDT and HT-Ada implementations may have

difficulty finding optimal split candidates for high-dimensional
and continuous feature sets. Both models remained extremely
shallow and obtained poor predictive performance. In such
cases, where it is difficult or infeasible to find a good split
value among all possible candidates, the simple leaf models
can provide an advantage. Besides, HT-Ada was not compet-
itive for Covertype and Insects-Abrupt. Here, pruning near
the root caused temporary declines of the F1 score. Such
behaviour might be avoided by a less aggressive pruning
strategy or a more robust drift detection scheme.

Our framework obtained either the best or second best
average F1 score for all data sets with known concept drift
(TüEyeQ, Insects-Abrupt, Insects-Incremental, SEA, Agrawal
and Hyperplane). We depict the detailed results of four data
sets in Figure 3. The Dynamic Model Tree often suffers
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Fig. 4: Predictive Performance vs. Model Complexity. Above,
we compare the F1 measure and the logarithm of the number
of splits of each incremental decision tree. The number of
splits is an indication of model complexity, which in turn is a
common proxy for the interpretability. That is, fewer splits can
usually be associated with higher interpretability. Each point
corresponds to the average measure of one data set. Detailed
results can be found in the Tables II and III. Ideally, we aim for
a large F1 score and a small number of splits, corresponding to
a value in the top left quadrant. While achieving competitive
F1 scores, the Dynamic Model Tree generally manages to
reduce the number of splits compared to the Hoeffding Trees.

only minor performance deterioration after a concept drift.
Compared to the other models, our framework usually recovers
faster from both abrupt and incremental concept drift. The
effect is most notable in the SEA and Insects data set.

In summary, the proposed Dynamic Model Tree (DMT) is
among the best performing models for most data sets. In fact,
our framework ranks first place on average, even when the
more powerful ensemble models are taken into account.

2) Complexity and Interpretability: As described above, we
report the number of splits (Table III) and the number of
parameters (Table IV) as indicators for the interpretability
of a model. Model Trees often maintain a shallower tree
structure than Hoeffding Trees. This effect can be attributed to
the additional flexibility provided by the simple models. For
example, the synthetic Hyperplane and SEA data sets can both
be separated by a hyperplane. The Dynamic Model Tree was
able to represent these linear relationships with fewer splits
than the Hoeffding Trees, while achieving similar or higher
predictive quality. The complexities of the Dynamic Model
Tree and FIMT-DD often varied. We attribute this effect to
the loss-based gains that allow our framework to meet the
consistency with parent splits and model minimality properties.
Specifically, while the Dynamic Model Tree will only retain a
split, if it is beneficial in terms of the loss, FIMT-DD retains
a split as long as the Page Hinkley test does not detect a
concept drift. This may lead to overly complex trees that
offer only slight or no improvements in terms of the F1 score
(see Electricity and Bank). Likewise, if there is no significant
difference according to the Hoeffding bound, FIMT-DD does

TABLE VI: Experiment Summary. We provide a concise
summary of our experiments. For more detailed results, please
see the remaining tables and plots. We ranked all methods
according to four categories. Both predictive performance
categories are based on the results in Table II. The second
category reflects the average performance for the data sets with
known concept drift. The complexity and efficiency scores are
based on the average results in the Tables III and V. We used
the following methodology: The best and worst models per
category have received a score of ++ and – – respectively.
The other methods have received a score of + or – depending
on whether they were above or below the median.

Overall Pred. Performance Complexity/ Computational
Model \ Category Pred. Performance For Known Drift Interpretability Efficiency

DMT (ours) ++ ++ ++ –
FIMT-DD [21] + – + –
VFDT (MC) [11] – – – – ++
VFDT (NBA) [31] + + – – +
HT-Ada [13] – – – – +
EFDT [14] – + + – –

not split a node, even though this might reduce the expected
loss (see Airlines and SEA). In addition, FIMT-DD aims to
reduce the standard deviation of the target and can therefore
obtain leaf nodes that are extremely imbalanced towards one
class. While this would be beneficial for majority weighting,
it could make training simple (linear) models more difficult.
Ultimately, this may reduce the predictive performance of
FIMT-DD compared to a Dynamic Model Tree, even though
both models have similar complexity (see Agrawal).

The Dynamic Model Tree ranks first for the average number
of splits and third for the more conservative number of
parameters. Indeed, Figure 3 shows that the complexity of the
Dynamic Model Tree typically remains low over time, while
other methods such as VFDT produce increasingly larger trees.
Besides, the Dynamic Model Tree can adapt to different types
of concept drift without drastically changing its complexity.

In general, our results demonstrate that high predictive per-
formance and low complexity need not be mutually exclusive
in an evolving data stream. The relationship of predictive
performance and complexity is also shown in Figure 4. A
summary of our experiments is depicted in Table VI.

VII. CONCLUSION

In this paper, we introduced the Dynamic Model Tree,
a flexible and interpretable framework for machine learning
on large-scale evolving data streams. A Dynamic Model
Tree adheres to sensible properties that make it a reliable
choice even in highly challenging streaming scenarios. Our
experiments show that the proposed framework can achieve
state-of-the-art performance with a fraction of the complexity
of many previous methods. In particular, the Dynamic Model
Tree automatically adapts to different types of concept drift,
without the need for complex model extensions common in
existing frameworks. Accordingly, we hope that our work
will support the current trend towards more efficient and
interpretable machine learning.
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ABSTRACT
As complex machine learning models are increasingly used in sen-
sitive applications like banking, trading or credit scoring, there
is a growing demand for reliable explanation mechanisms. Local
feature attribution methods have become a popular technique for
post-hoc and model-agnostic explanations. However, attribution
methods typically assume a stationary environment in which the
predictive model has been trained and remains stable. As a result,
it is often unclear how local attributions behave in realistic, con-
stantly evolving settings such as streaming and online applications.
In this paper, we discuss the impact of temporal change on local
feature attributions. In particular, we show that local attributions
can become obsolete each time the predictive model is updated or
concept drift alters the data generating distribution. Consequently,
local feature attributions in data streams provide high explanatory
power only when combined with a mechanism that allows us to de-
tect and respond to local changes over time. To this end, we present
CDLEEDS, a flexible and model-agnostic framework for detecting
local change and concept drift. CDLEEDS serves as an intuitive
extension of attribution-based explanation techniques to identify
outdated local attributions and enable more targeted recalculations.
In experiments, we also show that the proposed framework can
reliably detect both local and global concept drift. Accordingly, our
work contributes to a more meaningful and robust explainability
in online machine learning.

CCS CONCEPTS
• Computing methodologies→ Online learning settings.

KEYWORDS
online machine learning; explainable machine learning; concept
drift detection; local feature attributions
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1 INTRODUCTION
Data streams are abundant in modern applications such as financial
trading, social media, online retail, sensor-driven production or
urban infrastructure [19]. To perform machine learning on large
amounts of streaming data, we require powerful and efficient online
learning models. Likewise, if we are to use online machine learning
for high-stakes decisions, e.g. in online credit scoring or healthcare
[49], we need reliable mechanisms to explain the model and its
predictions. However, the explainability of online machine learning
models has received only little attention in the past.

Online machine learning is generally more challenging than
its offline counterpart. Aside from limited resources and real-time
demands, online learning models must deal with changing envi-
ronments and, in particular, concept drift, i.e., a shift in the data
generating distribution [24]. Concept drift can manifest itself in
most practical applications. For example, an online retailer must
adapt product recommendations to changing customer preferences.
Similarly, social media platforms need to consider the shifting in-
terests of their users. If we do not account for concept drift, the
performance and reliability of online learning methods can suffer.

Due to stricter regulations and increased public awareness, in-
terest in mechanisms for explainable machine learning has gained
momentum in recent years. In this context, local feature attribution
methods have become one of the most popular families of post-hoc
explanation models [31, 34, 41, 42]. Local attribution methods aim
to quantify the local importance of input features in the prediction.
Traditionally, local attribution methods are used to explain the com-
plex predictive model once it is trained and stationary. However, in
data streams, concept drift requires that we continue updating the
predictive model; accordingly, its explanation must also be updated.
For example, we need to ensure that the explanations we give to a
credit applicant are still meaningful after we update the predictive
model with new customer data. However, although local attribution
methods are commonly used, it is usually unclear how they behave
in a realistic and dynamic online environment.
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(a) t=1: The classes are separated with
an accuracy ≈ 85%.

(b) t=2: Virtual concept drift of the
positive class (the conditional target
distribution remains unaffected).

(c) t=3: Real concept drift (the
conditional target distribution has
changed).

(d) t=4: Virtual and real concept drift.

Figure 1: Local Attributions in a Synthetic Data Stream.Concept drift can cause drastic changes of the local feature attributions
obtained in a streaming application, which we illustrate above with synthetic data. We used a logistic regression classifier and
the SHAP attribution framework [34]. Each plot depicts one of four time steps. The left subplots show the current data batch
(250 observations), the decision boundary (between the green and blue areas) and the mean SHAP attribution of the current
(red arrow) and previous time step (yellow arrow). The right subplots show the kernel density estimate of the observations.
Both real and virtual concept drift change the decision boundary and thus the expected attribution between time steps.

Figure 2: Local Attributions in a Real-World Setting. We
trained a logistic regression classifier on the TüEyeQ data
set [30], which comprises sociodemographic information of
315 subjects in an IQ test. The data set contains natural con-
cept drifts by switching between 4 blocks of IQ-related tasks.
Above, we show the median SHAP attributions [34] of the 5
input features with the highest variation over time. Online
training and concept drift lead to drastic changes in the at-
tributions of this real-world stream of tasks (i.e., solving IQ
test items). For example, the task-id has a greater (negative)
importance in later task blocks that are more difficult to
solve (for more information about the features see [30]). To
achieve better feature-based explanations in online scenarios,
we need to identify such (local) changes of the attributions.

1.1 Local Attributions Under Concept Drift
Indeed, a simple example shows that local attributions for an in-
crementally trained machine learning model can change signifi-
cantly over time. For illustration, we generated an artificial two-
dimensional data set that underlies different types of concept drift
(we discuss the two fundamental types of concept drift more for-
mally in Section 3). Figure 1 illustrates four time steps from the
training procedure of a logistic regression model. Strikingly, the
expected feature attributions (SHAP values [34], red and yellow
arrows) changed drastically due to shifts in the decision boundary
of the classifier (green and blue areas), which in turn were caused
by concept drift. This example shows that local attributions gener-
ated at a certain point in time may lose their validity after a single
update of the predictive model. In fact, we observe such behavior in
real-world settings. For example, the SHAP attributions of a recent

IQ study [30] underlie considerable change over time (Figure 2). For
the long-term acceptance of machine learning models in sensitive
applications, one has to address such changes in the data.

Ideally, local feature attribution methods should account for
changes in a data stream by design, e.g., through robustness to small
model variations or efficient incremental update procedures. How-
ever, most existing attribution methods produce point estimates
and rely on costly sampling- or permutation-based approximations
[34, 42]. Thus, without knowledge of the hidden dynamics under-
lying a data stream – and in particular concept drift – we would
have to recalculate the local attributions over and over again to
ensure their validity. Given the scale of most data streams, however,
it is typically infeasible to simply recompute all past attribution
vectors at every time step. In fact, since incremental updates, e.g.,
via stochastic gradient descent, often only alter parts of the model,
recalculation of all previous attributions would often be unneces-
sary. Therefore, in order to efficiently establish local feature attribu-
tions in data streams, enable more informed decisions, and provide
an overall higher degree of explainability, we require an effective
mechanism to detect local changes over time. Indeed, we argue that
(local) change detection should be part of any sensible strategy for
explainable machine learning in evolving data streams.

1.2 Our Contribution
In this paper, we introduce a novel framework for Change Detec-
tion for Local Explainability in Evolving Data Streams (CDLEEDS).
CDLEEDS serves as a generic and model-agnostic extension of local
attribution methods in data streams. The proposed change detec-
tion strategy arises naturally from the behavior of local attribution
methods in the presence of incremental model updates and concept
drift. In fact, we show that due to a fundamental property of many
attribution methods, local change can be reliably detected without
computing a single attribution score. We propose an effective im-
plementation of CDLEEDS via adaptive hierarchical clustering. In
experiments, we show that our approach can help to significantly
reduce the number of recalculations of a local attribution over time.
CDLEEDS is also one of the first drift detection methods capable
of detecting concept drift at different levels of granularity. Thus,
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CDLEEDS can have general value for online machine learning appli-
cations – even outside the context of explainability. For illustration,
we compared our model with several state-of-the-art drift detec-
tion methods. Notably, CDLEEDS was able to outperform existing
methods for both real-world and synthetic data streams.

In summary, this paper is one of the first to discuss local explain-
ability and, in particular, local feature attributions in evolving data
streams. We propose a powerful and flexible framework capable
of recognizing local and global changes in the online learning and
attribution model. In this way, our work enables more meaningful
and robust use of local feature attribution methods in data streams
and is thus an important step towards better explainability in the
practical domain of online machine learning.

In Section 2, we introduce related work. In Section 3, we formally
examine the behavior of local attributions under concept drift. We
then present CDLEEDS and an effective implementation in Sec-
tion 4. Finally, in Section 5, we demonstrate CDLEEDS in several
experiments on binary and multiclass tabular streaming data sets.

2 RELATEDWORK
In the following, we briefly outline related work on local attribution
methods, explainability in data streams and concept drift detection.

Local Feature Attributions. Local attribution methods are one of
the most popular and widely used explanation techniques. Most
frameworks are based on a similar intuition: a complex (black-box)
predictive model can be locally approximated sufficiently well by a
much simpler, usually linear, explanation model. Model-agnostic
frameworks like LIME [42] and SHAP [34] belong to the most
popular attribution methods and have inspired a variety of follow-
up work [1, 13, 29, 33, 47]. Additionally, there are model-specific
attribution methods that exploit the inner mechanics of the complex
model. In particular, a large literature has formed on gradient-based
attribution techniques for Deep Neural Networks [3, 31, 45, 48]. For
more detailed information, we refer to recent surveys [2, 4, 12, 22].

Explainability in Data Streams. Compared to the explanation of
offline (black-box) models, relatively little attention has been paid
to the explainability of predictions in dynamic data streams. Bosnić
et al. [10]were among the first to describe that explanations in a data
stream must actually consist of a series of individual explanations
that can change over time. Demšar and Bosnić [14] later argued that
the dissimilarity of periodically generated feature attributions may
be used to detect concept drift. Finally, Tai et al. [50] briefly discuss
feature-based explainability in the context of sketching. Still, given
the abundance of streaming applications in practice, explainable
machine learning for data streams should receive more attention.

Concept Drift Detection. Concept drift detection has traditionally
served as a tool to prevent deterioration in predictor performance
following distributional changes. As such, global concept drift de-
tection methods have been integrated into state-of-the-art online
learning frameworks, such as the Hoeffding Tree [8]. Most mod-
ern drift detection methods are based on changes in the observed
predictive error of the online learning model [5, 6, 18]. In this con-
text, many approaches use sliding windows for more robust or
statistically significant drift detection [7, 39, 43]. Alternatively, a
more recent approach monitors changes in the inherent uncertainty

of model parameters to detect global and feature-specific (partial)
concept drift [25]. For more information about global concept drift
detection, we refer to the comprehensive surveys of Gama et al.
[20], Gonçalves Jr et al. [21], Webb et al. [52], Zliobaite [54].

In contrast, the potential explanatory power of concept drift de-
tection has been largely neglected. Accordingly, there are only few
methods capable of local concept drift detection. For example, Gama
and Castillo [17] integrate an error-based concept drift detection
scheme into the inner nodes of an incremental decision tree. In this
way, they are able to detect concept drifts in specific input regions,
represented by the branches of the tree. However, as mentioned
earlier, we need a mechanism that is able to detect instance-level
changes to enable better explainability in a data stream.

3 ONLINE LEARNING AND LOCAL
ATTRIBUTION – FORMAL INTRODUCTION

Data streams are defined by a series of time steps 1, . . . , 𝑡, . . . ,𝑇 .
At each time step, we obtain an observation 𝑥𝑡 ∈ R𝑚 and a corre-
sponding label 𝑦𝑡 ∈ R, where𝑚 is the number of features. Our goal
is to incrementally train an online predictive model 𝑓\𝑡 (𝑥𝑡 ). That
is, we aim to optimize the model parameters \𝑡 at every time step
𝑡 given the new training observation (we may also use batches of
training data). Since the parameters \𝑡 are defined by the selected
model, we write 𝑓\𝑡 (𝑥𝑡 ) = 𝑓𝑡 (𝑥) to simplify the exposition.

Wemay represent the observations and labels by two correspond-
ing random variables 𝑋 and 𝑌 . The data generating concept at time
step 𝑡 is defined by the joint probability distribution 𝑃𝑡 (𝑌,𝑋 ). Typ-
ically, we assume that the observations are drawn independently
from the data generating distribution. Although this independence
assumption can be violated in practice, it has proven effective in
many applications [26]. Concept drift describes a change of the
joint probability between two time steps 𝑡1 and 𝑡2 [52], i.e.,

𝑃𝑡1 (𝑌,𝑋 ) ≠ 𝑃𝑡2 (𝑌,𝑋 ) ⇔ 𝑃𝑡1 (𝑌 |𝑋 )𝑃𝑡1 (𝑋 ) ≠ 𝑃𝑡2 (𝑌 |𝑋 )𝑃𝑡2 (𝑋 ). (1)

In general, we distinguish two fundamental types of concept drift.
Real concept drift corresponds to a change in the conditional proba-
bility distribution 𝑃𝑡 (𝑌 |𝑋 ), while 𝑃𝑡 (𝑋 ) remains stable. Conversely,
virtual concept drift describes a shift in 𝑃𝑡 (𝑋 ), while 𝑃𝑡 (𝑌 |𝑋 )
remains unchanged. Other than real concept drift, virtual con-
cept drift does not change the optimal decision boundary. In prac-
tice, we are therefore mostly interested in real concept drift, i.e.
𝑃𝑡1 (𝑌 |𝑋 ) ≠ 𝑃𝑡2 (𝑌 |𝑋 ). Nevertheless, virtual concept drift may affect
the (learned) decision boundary of our online learning model [37].
This effect can be seen in our introductory example in Figure 1b.
Moreover, we can distinguish between local and global concept
drift. While global concept drift affects the entire (or large regions)
of the input space, local concept drift is locally bounded. Hence, it
is often more difficult to detect local concept drift.

In practice, the true data generating distribution is usually un-
known. Hence, the online predictive model is often our best approx-
imation of the active concept [25]. That is, we typically assume that
the predictive model at time step 𝑡 approximates the conditional
target probability well, i.e. 𝑃𝑡 (𝑌 |𝑋 ) ≈ 𝑓𝑡 (𝑥). This simplifying as-
sumption is the fundamental basis of most existing concept drift
detection methods [5, 7, 25]. Therefore, instead of explicitly learn-
ing the true data generating distribution, we can detect concept
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drift directly from a change in the predictive model:

𝑓𝑡1 (𝑥) ≠ 𝑓𝑡2 (𝑥) (2)

Notably, since Eq. (2) allows us to detect concept drift based on
changes in the decision boundary, we can also detect the changes
caused by virtual concept drift as described above.

3.1 Local Attribution Accuracy and Its
Implication for Online Learning

Local attribution methods allow us to explain complex predictive
models by quantifying the local importance of input features in
the prediction. Let 𝜙𝑥𝑖 ,𝑓 ∈ R𝑚 be the local attribution vector corre-
sponding to an observation 𝑥𝑖 and a model 𝑓 . Typically, the gen-
erated feature attribution vector 𝜙𝑥𝑖 ,𝑓 adheres to a set of sensible
properties. A fundamental property shared by most state-of-the-
art attribution methods is local accuracy [34], also known as local
fidelity [42] or summation to delta [45].

Local accuracy describes that the attribution vector must account
for the difference between the local model outcome and a baseline
value. We can adopt the generic definition of Lundberg and Lee
[34] for the online case and define local accuracy accordingly as

𝑓𝑡 (𝑥𝑖 ) = 𝜙0
𝑡 +

𝑚∑
𝑗=1

𝜙
𝑗
𝑥𝑖 ,𝑓𝑡

, (3)

where 𝜙0
𝑡 ∈ R is the baseline outcome at time step 𝑡 and 𝜙 𝑗

𝑥𝑖 ,𝑓𝑡
is

the attribution of feature 𝑗 . Note that Lundberg and Lee [34] used
an additional vector representation of missing features. In general,
however, we can assume that the observation to be explained has
no missing features.

The baseline value 𝜙0
𝑡 is set to represent missing discriminative

information, i.e., ideally it is a value for which the prediction is
neutral. For example, in image recognition, the zero vector is often
used as a baseline [48]. Alternatively, we might use the expectation
𝜙0 = E𝑋 0 [𝑓 (𝑥)] over a static sample of training observations 𝑋 0

as our baseline [34]. The choice of the baseline can drastically alter
the generated attributions and should thus be selected with care
[28]. In particular, for data streams where our understanding of
missingness may change over time, we might need to update 𝜙0

𝑡
between time steps. We propose an effective baseline in Section 4.3.

In the introductory experiments, we have shown that local fea-
ture attributions may lose their validity due to incremental model
updates and concept drift. With the above definitions in place, we
can now express this behavior in more formal terms. Suppose the
predictive model has changed between two time steps 𝑡1 and 𝑡2 ac-
cording to (2). We know that there must exist at least one data point
𝑥𝑖 such that 𝑓𝑡1 (𝑥𝑖 ) ≠ 𝑓𝑡2 (𝑥𝑖 ). By definition of local accuracy, a shift
of the local model outcome 𝑓𝑡 (𝑥𝑖 ) implies a shift of the baseline 𝜙0

𝑡
and/or the local attribution vector 𝜙𝑥𝑖 ,𝑓𝑡 and vice versa:

𝑓𝑡1 (𝑥𝑖 ) ≠ 𝑓𝑡2 (𝑥𝑖 )
(3)⇔ 𝜙0

𝑡1 +
𝑚∑
𝑗=1

𝜙
𝑗
𝑥𝑖 ,𝑓𝑡1

≠ 𝜙0
𝑡2 +

𝑚∑
𝑗=1

𝜙
𝑗
𝑥𝑖 ,𝑓𝑡2

(4)

In other words, any change in the decision boundary of the model,
e.g., due to concept drift or incremental updates, is guaranteed to
change either the baseline and/or at least one local attribution score.
Therefore, as before, we argue that local attribution methods in

data streams need a mechanism to detect such local changes in
order to provide meaningful explanations over time.

4 THE CDLEEDS FRAMEWORK
We present CDLEEDS, a novel framework for local change detec-
tion that allows us to identify outdated attributions and enable
more efficient and targeted recalculations for temporally adjusted
explanations in data streams. In general, our goal is to identify
whether a local attribution vector 𝜙𝑥𝑖 ,𝑓𝑡 has changed between two
time steps 𝑡1 and 𝑡2. Based on the local accuracy property, we can
immediately formulate a naïve scheme for local change detection:

𝑚∑
𝑗=1

𝜙
𝑗
𝑥𝑖 ,𝑓𝑡1

≠
𝑚∑
𝑗=1

𝜙
𝑗
𝑥𝑖 ,𝑓𝑡2

(3)⇔ 𝑓𝑡1 (𝑥𝑖 ) − 𝜙0
𝑡1 ≠ 𝑓𝑡2 (𝑥𝑖 ) − 𝜙0

𝑡2 . (5)

By calculating the right part of Eq. (5) for a given observation 𝑥𝑖 in
all successive time steps, we are able to detect local change over time.
Indeed, since we only require the baseline 𝜙0

𝑡 and model outcome
𝑓𝑡 (𝑥𝑖 ), this simple method allows us to detect local changes without
calculating a single attribution vector. However, this approach may
be too costly if we want to detect changes for a large number of
observations (because we would have to repeatedly obtain predic-
tions 𝑓𝑡 (𝑥𝑖 ), e.g., for an entire user base). Moreover, since we are
comparing snapshots at individual time steps, this naïve approach
might be prone to noise. Therefore, we need to modify this basic
change detection method to make it more reliable and efficient.

4.1 Spatiotemporal Neighborhoods
In practice, it may often be sufficient to detect changes in the close
proximity of a given observation. Specifically, if we can detect
concept drift in the neighborhood of an observation 𝑥𝑖 with high
confidence, it is likely that the attribution of 𝑥𝑖 has changed. To this
end, we need a meaningful understanding of neighborhood in data
streams. Intuitively, we would like a neighborhood to include close
previous observations. In this context, we introduce the notion of
spatiotemporal neighborhood:

Definition 1 (Spatiotemporal 𝛾-Neighborhood (STN)). Let
sim(·) be a sensible similarity measure (e.g., cosine similarity or
RBF kernel). A spatiotemporal 𝛾-neighbourhood with respect to an
observation 𝑥𝑖 is defined by a set of time steps Ω (𝑥𝑖 ,𝛾 ) = {𝑡 ∈
{1, . . . ,𝑇 } | sim(𝑥𝑡 , 𝑥𝑖 ) ≥ 𝛾}.

More intuitively, a spatiotemporal 𝛾-neighborhood, STN for
short, is a set of time steps corresponding to previous observa-
tions similar to the observation in question. With the parameter 𝛾
we can control the minimal similarity and thus the boundedness of
the STN. If we are able to detect changes in the STN of an observa-
tion 𝑥𝑖 with reasonably large 𝛾 , we can assume that the attribution
of that observation has changed. Accordingly, we can rephrase the
naïve change detection method from Eq. (5) in a more robust way:

E
𝑢∈Ω (𝑥𝑖 ,𝛾 )<𝑡

[𝑓𝑢 (𝑥𝑢 ) − 𝜙0
𝑢 ] ≠ E𝑣∈Ω (𝑥𝑖 ,𝛾 )≥𝑡

[𝑓𝑣 (𝑥𝑣) − 𝜙0
𝑣 ], (6)

where Ω (𝑥𝑖 ,𝛾 )<𝑡 = {𝑢 ∈ {1, . . . , 𝑡 −1} | sim(𝑥𝑢 , 𝑥𝑖 ) ≥ 𝛾} and Ω (𝑥𝑖 ,𝛾 )≥𝑡 =
{𝑣 ∈ {𝑡, . . . ,𝑇 } | sim(𝑥𝑣, 𝑥𝑖 ) ≥ 𝛾} denote the STNs of 𝑥𝑖 for different
intervals before and after the time step 𝑡 . With Eq. (6), we can
now compare time intervals instead of individual snapshots, which
usually leads to more robust and reliable detections. Note that we
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can scale the time intervals, and hence the size of the STNs, by
limiting the set of relevant time steps. For example, to obtain the
STN in an interval of size 𝑤 before time step 𝑡 , we can specify
Ω
(𝑥𝑖 ,𝛾 )
<𝑡 = {𝑢 ∈ {𝑡 − 𝑤, . . . , 𝑡 − 1} | sim(𝑥𝑢 , 𝑥𝑖 ) ≥ 𝛾}. Similar to

existing concept drift detection methods that use sliding windows
(see Section 2), the size of the specified time intervals affects the
performance. If the interval is chosen too small, the method may
not be robust and produce false alarms. On the other hand, if the
interval is chosen too large, certain changes may be missed. In
order to achieve a higher degree of flexibility, we therefore only
limit the maximum size of an STN in our implementation, but not
the eligible time intervals.

In order to detect local change over time, we can incrementally
update the STNs Ω (𝑥𝑖 ,𝛾 )<𝑡 and Ω (𝑥𝑖 ,𝛾 )≥𝑡 . As a result, we avoid having to
consider (predict) old observations repeatedly, which considerably
reduces the resource consumption compared to the initial naïve
scheme. In fact, since we can process observations in a single pass,
we fulfill a central requirement of online machine learning [15].

Instead of comparing expectations directly, as shown in Eq. (6),
we may also use a hypothesis test to detect significant changes over
time. Note that we have assumed independent streaming observa-
tions (see Section 3). Moreover, the expectations in Eq. (6) tend to
be normally distributed for large sample sizes, i.e., for large STNs,
according to the central limit theorem. Therefore, if we specify
reasonably large STNs, we may apply the unpaired two-sample
t-test (which we did in our implementation).

4.2 Finding Representative Neighborhoods
With Adaptive Hierarchical Clustering

Data streams produce a large number of observations for which we
may need to detect changes in the explanation. Although Eq. (6) pro-
vides an efficient mechanism for detecting changes at a point 𝑥𝑖 , the
construction of STNs for all observations to be explained can lead to
a high computational cost. For practical reasons, we may instead se-
lect a representative set of observations for whichwemaintain STNs
over time, which in turn serve as an approximation to the STNs of
all observations. Specifically, since we are interested in grouping
similar data points according to Definition 1, we aim to identify a
set of representative observations 𝐶𝑡 = {𝑐1, . . . , 𝑐𝑛, . . . , 𝑐𝑁 }, such
that each 𝑐𝑛 is similar to a large group of current observations. This
problem is very similar to online clustering [11, 53], where each
𝑐𝑛 denotes the centroid of a cluster Γ𝑐𝑛 = {𝑥𝑖 | sim(𝑥𝑖 , 𝑐𝑛) ≥ 𝛾}.
Accordingly, if we obtain an STN with respect to 𝑐𝑛 in a given
interval, e.g. Ω (𝑐𝑛,𝛾 )<𝑡 , we can assume that it is also representative
of all observations in the cluster, and hence

∀𝑥𝑖 ∈ Γ𝑐𝑛 : E
𝑢∈Ω (𝑥𝑖 ,𝛾 )<𝑡

[𝑓𝑢 (𝑥𝑢 )−𝜙0
𝑢 ] ≈ E𝑢∈Ω (𝑐𝑛,𝛾 )<𝑡

[𝑓𝑢 (𝑥𝑢 )−𝜙0
𝑢 ] . (7)

Note that Eq. (7) holds equivalently for Ω (𝑐𝑛,𝛾 )≥𝑡 .
On this basis, we propose a simple hierarchical and dynamic

clustering of observations in a binary tree. The root of the clustering
tree contains all observations from a specified interval, implemented
as a sliding window. The centroid corresponds to the mean value
of these observations. If the similarity radius of the current node
is smaller than 𝛾 , we split the node by choosing the two most
dissimilar data points as the new children (i.e., a binary split). The

Algorithm 1 update() - General update procedure at a node 𝑛 of
the CDLEEDS hierarchical clustering approach.

Require: Observation 𝑥𝑡 ; Prediction-baseline difference 𝑦𝑡 − 𝜙0
𝑡 .

*** A node comprises an age counter, a sliding window of observa-
tions used for clustering, a sliding window of prediction-baseline
differences used for change detection, and a centroid. ***
*** The sliding windows𝑊𝑛 , 𝑉𝑛 have a user-defined size and
correspond to an STN at the centroid, i.e. Ω (𝑐𝑛,𝛾 ) = {𝑢 ∈ {𝑡 −
𝑤, . . . , 𝑡} | sim(𝑥𝑢 , 𝑐𝑛) ≥ 𝛾}. ***

1: age𝑛 ← age𝑛 + 1
2: 𝑊𝑛 ← Remove oldest entry and append 𝑥𝑡 .
3: 𝑉𝑛 ← Remove oldest entry and append 𝑦𝑡 − 𝜙0

𝑡 .
4: 𝑐𝑛 ← mean(𝑊𝑛)

5: if 𝑛 is a leaf node then
6: if ∃𝑥𝑢 ∈𝑊𝑛 : sim(𝑥𝑢 , 𝑐𝑛) < 𝛾 then
7: *** Split the node by using the most dissimilar points in𝑊𝑛

as the centroids of the new children. ***
8: 𝑛left, 𝑛right ← Split the node 𝑛.
9: *** Assign each observation to the closest child node. ***
10: for 𝑥𝑢 ∈𝑊𝑛 do
11: 𝑛child ← arg max

[𝑛left,𝑛right ]

(
sim(𝑥𝑢 , 𝑐𝑛left ), sim(𝑥𝑢 , 𝑐𝑛right )

)
12: 𝑛child .update(𝑥𝑢 , 𝑦𝑢 − 𝜙0

𝑢 )
13: age𝑛child ← age𝑛
14: end for
15: else
16: *** Identify change at the node by testing for a significant

difference in𝑉𝑛 . According to Eq. (6), we compare the means
of the first and second (equally sized) halves of 𝑉𝑛 .***

17: 𝑉 ∗𝑛 = mean(𝑉𝑛 [: |𝑉𝑛 |/2])
18: 𝑉 ∗∗𝑛 = mean(𝑉𝑛 [|𝑉𝑛 |/2 :])
19: if ℎ0 : 𝑉 ∗𝑛 = 𝑉 ∗∗𝑛 can be rejected for significance 𝛼 then
20: Alert local change at 𝑛.
21: end if
22: end if
23: else
24: *** Forward 𝑥𝑡 to the closest child. ***
25: 𝑛child ← see line 11.
26: 𝑛child .update(𝑥𝑡 , 𝑦𝑡 − 𝜙0

𝑡 )
27: age𝑛child ← age𝑛

*** Check if the split is outdated and should be pruned. ***
28: if age𝑛 −min

(
age𝑛left , age𝑛right

) ≥ threshold then
29: Prune the branch at 𝑛 and make 𝑛 a leaf node.
30: Test for change at 𝑛 as in line 16 - 21.
31: end if
32: end if

observations of the parent node are then assigned to the most
similar child.We continue the procedure for the children recursively
until the similarity radius for each leaf node is greater or equal 𝛾 .

Virtual concept drift can shift high-density regions in the input
space (see Figure 1). Therefore, the clustering should adjust accord-
ingly. For this purpose, we maintain an internal age counter for
each node, which is updated as soon as the node receives a new
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observation. If a child node has not received any observations for a
while, its age differs from the age of the parent node, indicating an
outdated split that can be pruned.

To identify change for a given observation, we then only need to
retrieve the most similar leaf node of the current tree and test for
change as specified in Eq. (6) using the STNs of the corresponding
centroid (see Eq. (7)). The general procedure at a node of the tree
is described in Algorithm 1. A corresponding implementation is
available at https://github.com/haugjo/cdleeds.

The proposed hierarchical clustering provides clusters with in-
creasing granularity. In the context of explainable online learning,
this is an advantage as we are able to detect change at different hi-
erarchies. For example, to detect global change, we can combine the
test results of leaf nodes with Fisher’s method [16]. In this context,
we would correct the significance level 𝛼 for multiple hypothesis
testing, using the mean false discovery rate 𝛼corr = 𝛼 (𝑁 + 1)/(2𝑁 ),
where 𝑁 is the number of independent tests at the leaf nodes.

4.3 Further Algorithmic Decisions
The generic clustering method proposed above requires us to make
choices during implementation. A central component of the clus-
tering is the similarity measure. The cosine similarity and the (neg-
ative) Euclidean distance are commonly used to measure the sim-
ilarity of vectors. However, the cosine similarity is a measure of
orientation and does not take into account the magnitude of the
input features, which are relevant for local attributions. Conversely,
the Euclidean distance is very sensitive to the dimensionality and
magnitude of a vector. This can make it difficult to establish a mean-
ingful threshold 𝛾 - especially since dimensionality and magnitude
can change in practice due to concept drift. For this reason, we use
the Radial Basis Function (RBF) kernel in our implementation (with
variance parameter 1/𝑚, where𝑚 is the number of features). The
RBF kernel ranges from zero to one (when the vectors are equal)
and is frequently used as a measure of similarity in machine learn-
ing. Due to the boundedness of the RBF kernel, it is generally much
easier to specify and interpret the parameter 𝛾 .

Moreover, we use the exponentially weighted moving average
to obtain our baseline, i.e., 𝜙0

𝑡 = 𝑓𝑡 (EWMA𝑡 ) with EWMA𝑡 = 𝛽𝑥𝑡 +
(1 − 𝛽)EWMA𝑡−1, where 𝛽 ∈ [0, 1] is the decay factor. Compared
to using a static sample of observations [28, 34], the EWMA has
the advantage of reducing the weight of old observations over time.
In this way, our baseline automatically adjusts to concept drift.

4.4 Complexity and Limitations
The memory complexity of the proposed hierarchical clustering
is O(𝐾𝑡𝑤), where 𝑤 is the size of the sliding windows and 𝐾𝑡 is
the number of nodes at time step 𝑡 . Moreover, the computational
complexity of constructing the hierarchical clustering for 𝑇 data
points is O(𝑇 log𝑇 ). Accordingly, CDLEEDS has a higher resource
consumption than existing methods for global concept drift detec-
tion. However, the proposed framework is much more powerful
because it can detect both global and local change.

The selection of an appropriate similarity threshold 𝛾 is not
trivial. If we set 𝛾 too small, we get large neighborhoods that do
not capture local behavior. If we set 𝛾 too high, the cluster tree may
become too deep to be maintained in a real-time application. To

Table 1: Data Sets.We used popular and open-sourced classi-
fication data sets in our experiments (obtained fromopenml.
org, original sources are included where available). TüEyeQ
[30] and Insects [46] comprise natural concept drift. We in-
duced the remaining real-world streaming data sets with
artificial concept drift [44]. Finally, we generated synthetic
data streams with scikit-multiflow [35] (indicated by “(s.)”).

Name #Samples #Features # Classes Data Types Drift Types
TüEyeQ [30] 15,762 77 2 cont., cat. abrupt
Bank-Marketing [36] 45,211 16 2 cont., cat. abrupt
Electricity [23] 45,312 8 2 cont., cat. abrupt
Adult [32] 48,840 54 2 cont., cat. abrupt
Airlines 539,383 7 2 cont., cat. abrupt
KDD Cup 1999 494,020 41 23 cont., cat. abrupt
Covertype [9] 581,012 54 7 cont., cat. abrupt
Insects [46] 355,275 33 6 cont. abrupt
SEA (s.) 500,000 3 2 cont. abrupt
Agrawal-Gradual (s.) 500,000 9 2 cont. gradual
Agrawal-Mixed (s.) 500,000 9 2 cont. abrupt, gradual

address the latter problem, decision tree algorithms often specify
a maximum depth. Limiting the depth may result in STNs at leaf
nodes that have a lower similarity than originally specified by 𝛾
(because we cannot further partition the observations). However,
to enable more efficient computations, it can often be useful to limit
the maximum size of the cluster tree. For example, if we want to
use CDLEEDS for global change detection, we do not need the same
local granularity as for local change detection.

Similarly, it can be difficult to set a reasonable significance level
for hypothesis testing. If the significance level is too small, wemight
miss certain concept drifts. On the other hand, if the significance
level is too high, we might produce many false alarms. However, in
our experiments, we obtained good results for common significance
levels such as 0.01 and 0.05.

Concept drift detection methods are sensitive to hyperparameter
settings, and CDLEEDS is no exception. Therefore, it is generally
advisable to perform hyperparameter optimization on an initial,
stationary training set to learn what degree of variation to expect
under a reasonably stable data concept. In addition, it can be useful
to re-evaluate the initial hyperparameters at regular intervals.

5 EXPERIMENTS
We evaluated the proposed framework in three experiments. In
Section 5.3, we show that the proposed hierarchical clustering al-
gorithm is able to identify meaningful spatiotemporal neighbor-
hoods and adapt to local virtual concept drift. In Section 5.4, we
demonstrate that CDLEEDS can be used to reduce the number of
recalculations of local attributions over time. In this context, we
also illustrate the local change detection of CDLEEDS. Finally, in
Section 5.5, we compare CDLEEDS to state-of-the-art methods for
global concept drift detection. For illustration, we used a binary
and multi-class classification setting, which is well handled by most
drift detectors. If not mentioned otherwise, we trained a Hoeffding
Tree with adaptive Naïve Bayes models at the leaf nodes in the
default configuration of scikit-multiflow [35]. All models and ex-
periments were implemented in Python (3.8.5) and run on an AMD
Ryzen Threadripper 3960X CPU with 128GB RAM under Ubuntu
18.04.
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5.1 Data Sets
Unfortunately, there are few real-world data sets with known con-
cept drift. Therefore, one usually has to rely on synthetically gener-
ated streaming data to evaluate concept drift detection approaches
[27]. In our experiments, we used a mixture of popular real-world
data sets with both natural and synthetic concept drift, as well as
synthetic streaming data sets. We normalized all data sets before
use. A list of the data sets and their properties is shown in Table 1.

One of the few real-world data sets with natural and known
concept drift is TüEyeQ [30], which we already mentioned in the
introduction. Recently, Souza et al. [46] presented several data sets
with sensormeasurements of flying insect species. The classification
task is to identify the correct insect. By changing environmental
parameters such as humidity and temperature, Souza et al. [46]
produced different types of concept drift. In our experiment, we
used the unbalanced Insect data set with abrupt concept drift.

Moreover, we imputed popular real-world streaming data sets
obtained from openml.org with synthetic concept drift. In particular,
we adopted the method due to Sethi and Kantardzic [44] based on
the Mutual Information. Specifically, in order to simulate concept
drift, we randomly permuted the values of the top 50% of features
with highest Mutual Information with the target. We repeated the
procedure to generate multiple synthetic drifts per data set.

We also generated synthetic data streams using scikit-multiflow
[35]. In particular, we generated data streams with abrupt concept
drift (SEA), gradual concept drift (Agrawal-Gradual), and mixed,
i.e., abrupt and gradual, concept drift (Agrawal-Mixed). We did
not balance the classes of the generated data sets and specified
perturbation=0.1 for all generators. Otherwise, we used the default
configuration of scikit-multiflow.

5.2 Hyperparameters for CDLEEDS
We performed a grid search on the Bank-Marketing data set to
identify hyperparameters for CDLEEDS. To obtain unbiased re-
sults, we used the same set of hyperparameters in all experiments.
Specifically, we set the similarity threshold to 𝛾 = 0.95, the sig-
nificance level of the t-test to 𝛼 = 0.01, the decay factor of the
EWMA-baseline to 𝛽 = 0.001, the maximum size of the sliding win-
dows (STNs) to 200 observations, and the maximum age of a node
to 100 observations before pruning. If not mentioned otherwise, we
limited the depth of the hierarchical clustering to 5.

5.3 1st Experiment - CDLEEDS Clustering
Under Local Virtual Concept Drift

In a first experiment, we investigated the ability of the hierarchical
clustering method to adapt to local virtual concept drift. Figure 3
shows the TSNE representation of the clustering for two exemplary
data sets. Specifically, we collected samples over two time intervals
(upper/lower plots). After the first time interval, we simulated a
local virtual concept drift. That is, we ignored all new observations
that would have been assigned to the red cluster and continued the
online training without these observations. In this way, we tested
the ability of CDLEEDS to identify and prune obsolete leaves and
branches. We limited the maximum depth of the cluster tree to 3 for
this experiment. Notably, Figure 3 shows that CDLEEDS managed
to form meaningful clusters over time. Moreover, our age-based

(a) Bank-Marketing (b) Airlines

Figure 3: CDLEEDS Clustering - Adjusting to Local Virtual
Concept Drift. We trained CDLEEDS on 4,000 observations
from two real-world data streams. After processing the first
2,000 observations, we simulated a local virtual concept drift
by ignoring all observations that would have fallen into the
red cluster during the rest of the training process. Above,
we depict the TSNE representation [51] of observations be-
fore (upper) and after (lower) the concept drift. The learned
clusters are indicated by different colors. The centroids are
shown as corresponding “x”markers. Notably, the proposed
clustering method was able to learn meaningful (i.e., spa-
tially coherent) clusters for both data sets over time.

pruning strategy was able to correctly identify the obsolete (red)
cluster. We observed similar results for all remaining data sets.

5.4 2nd Experiment - Local Change Detection
for More Efficient Feature Attributions

CDLEEDS is a local change detection framework that can help make
local attribution methods in data streams more feasible. In this
experiment, we demonstrate the ability of the proposed framework
to detect local changes, in particular those caused by concept drift.
Figure 4 illustrates the number of spatiotemporal 𝛾-neighborhoods,
i.e., leaf nodes, maintained by CDLEEDS for four exemplary data
sets. We also show the number of detected local changes over time.
We did not limit the maximum depth of the hierarchical clustering
for this experiment. Consequently, at each time step, all leaf nodes
corresponded to valid STNs with 𝛾 = 0.95 as defined in Def. 1.

Based on Figure 4, we can make several interesting observations.
As in the previous experiment, we find that the hierarchical clus-
tering method is able to adapt to concept drift by pruning obsolete
leaves and branches or creating new ones. This adaptation is most
evident after the last concept drift in the Adult data set. Notably,
during this period, CDLEEDS issued only few local change alerts,
suggesting that the last concept drift in Adult is a virtual rather
than a real concept drift. Early change detections can generally be
attributed to the initial training of the predictive model and cluster
tree and would thus be ignored in practice. In general, the known
concept drifts are accompanied by a substantial increase in the
detected local drifts. Moreover, Figure 4 shows that there is usually
relatively little local change when the data generating distribution
is stable.
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(a) Electricity (b) Bank-Marketing

(c) Adult (d) Airlines

Figure 4: Local Change Detection with CDLEEDS. We show
the CDLEEDS clustering on 4 data sets. In particular, we de-
pict the total number of STNs over time (blue) and the num-
ber of STNs for which we detected local change (green). The
red vertical lines indicate known global concept drifts. In all
cases, the CDLEEDS clustering changed in complexity after
a concept drift and/or detected an increasing number of lo-
cal changes. Yet, concept drift often only affected a subset of
the STNs. Moreover, in times of stable data concepts, there
were usually only a few STNs underlying changes (caused
by the continued incremental model updates). With this in-
sight, we could considerably reduce the number of local at-
tributions that have to be recalculated after each update.

We can use this insight to make the recomputation of local
attributions more efficient. In particular, we argue that it is usually
sufficient to recompute old attributions when there has been a
corresponding local change. To support our argument, we computed
SHAP attributions [34] for four different data streams. This time we
used a logistic regression model, as the SHAP implementation for
linear models is much more efficient. Also, we only performed this
experiment on the small data sets, as calculating and storing SHAP
values for large data streams is not feasible on most machines.

We conducted the experiment as follows: At time step 𝑡 = 0,
we computed the SHAP attributions for a random sample of 100
observations. We then recomputed the SHAP attribution of an ob-
servation in subsequent time steps, only if the observation had been
assigned to a new leaf in the hierarchical clustering, or if a corre-
sponding local change had been detected. Figure 5 shows SHAP
attributions for two observations in each data stream. Strikingly,
the CDLEEDS-based recomputations approximate the actual SHAP
attributions well. Indeed, for the entire sample of 100 observations,
we observed an average deviation from the true SHAP attribution
of only 0.10 ± 0.15 for Adult, 0.16 ± 0.10 for Bank-Marketing, 0.45 ±
0.29 for TüEyeQ, and 0.11 ± 0.11 for Electricity. Given attributions
of up to 17.5 (see Adult) or -24 (see Electricity), these deviations
become negligible. At the same time, CDLEEDS was able to con-
siderably reduce the number of recalculations. We observed an
average reduction in recalculations of 80.05% ± 0.53% for Adult,
95.71% ± 0.05% for Bank-Marketing, 95.97% ± 0.12% for TüEyeQ,
and 56.11% ± 0.11% for Electricity (in % of all time steps).

Our experiments show that periodic recalculations of local at-
tributions are generally necessary, since attributions can change

(a) Adult - Reduction of recalc.:
92.82% upper plot, 62.40% lower plot,
80.05% ± 0.53% on average (100 obs.).

(b) Bank-Mark. - Reduction of recalc.:
99.85% upper plot, 88.77% lower plot,
95.71% ± 0.05% on average (100 obs.).

(c) TüEyeQ - Reduction of recalc.:
99.96% upper plot, 89.90% lower plot,
95.97% ± 0.12% on average (100 obs.).

(d) Electricity - Reduction of recalc.:
70.26% upper plot, 51.23% lower plot,
56.11% ± 0.11% on average (100 obs.).

Figure 5: Feasible Local Attributions in Data Streams with
CDLEEDS. From a random sample of 100 observations per
data set, we show the SHAP attributions [34] of the two ob-
servations that required the fewest (top) and most (bottom)
recalculations over time. For reasons of readability, we only
display the attribution of the feature with the largest aver-
age value. However, note that we observed similar results
for all observations and features. The blue line indicates
the SHAP attributions that we obtained by using CDLEEDS
to trigger recalculations (detected local changes are indi-
cated by greenmarkers). The grey background pattern corre-
sponds to the actual SHAP attribution at each time step. By
using CDLEEDS, the average number of recalculations can
be significantly reduced without affecting the explanatory
power compared to the actual feature attributions.

considerably in the streaming setting. However, the number of recal-
culations actually performed can be significantly reduced through
CDLEEDS. In addition, the detected changes, along with the recal-
culated attributions, may carry valuable explanatory information.
For example, in Figure 5(c), drastic changes in the local attributions
and corresponding alerts by CDLEEDS indicate a sudden concept
drift around 𝑡 = 2500 (which might be due to a new, e.g., more diffi-
cult, type of IQ task [30]). In general, as claimed above and shown
in our experiments, CDLEEDS can make local attribution-based
explainability in data streams more efficient and expressive.

5.5 3rd Experiment - Using CDLEEDS for
Global Concept Drift Detection

CDLEEDS is designed as a framework for detecting local change.
However, as suggested in Section 4.2, we might also use CDLEEDS
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to detect global concept drift by applying a simple strategy based on
Fisher’s method for combining p-values. For the sake of complete-
ness, we thus compared CDLEEDS with several state-of-the-art
global concept drift detection models. In particular, we compared
our approach to ADWIN [7], DDM [18], ECDD [43], MDDM-A [40]
and RDDM [6], all of which attempt to detect concept drift through
changes in the error rate. Moreover, we compared CDLEEDS to
ERICS [25], which detects concept drift by monitoring changes
in the distributions of model parameters. We used the original
ERICS implementation provided by the authors [25]. The remain-
ing implementations are openly available via the tornado package
[38]. We applied the same hyperparameter search as for CDLEEDS.
Accordingly, we specified delta = 0.1 for ADWIN [7], as well as
window_mvg_average = 90 and beta = 0.001 for ERICS [25]. Other
than that, however, we could use the default hyperparameters.

5.5.1 Evaluation Measures. We examined the delay, recall, and
false discovery rate (FDR) of each drift detection method [27]. The
delay corresponds to the time steps until a known concept drift is
first detected. The recall quantifies the proportion of known concept
drifts that themodel detected. And the FDR is the proportion of false
positives among all detected drifts. Note that only the combination
of recall and FDR provides ameaningful evaluation, as eachmeasure
can be easily optimized on its own. Therefore, we report the mean
of recall and (1-FDR) in Table 2. To compute the recall and FDR, we
need to define a time interval after known concept drift in which
we count a drift alert as a true positive. In the experiments, we used
several intervals with lengths between 1% and 10% of the original
data set size. Table 2 shows the means and standard deviations for
the different interval sizes. In addition, to give the classifier time for
initial training, we did not include drift alerts that occurred within
the first 1,000 observations.

5.5.2 Results. In general, we find that there are considerable dif-
ferences between all concept drift detection methods and data sets,
both regarding the combined recall and FDR in Table 2 and the
delay in Table 3. As described above, this effect might be mitigated
by (periodically) optimizing the hyperparameter configurations for
each data set. However, such performance differences can often
be observed in practice because concept drift detection methods
are usually sensitive to the predictive model and data distribution
at hand. For this reason, it is generally advisable to use multiple
methods in parallel for more robust global concept drift detection.

Naturally, the more elaborate drift detectors CDLEEDS (2.32
milliseconds) and ERICS [25] (3.68 ms) had a larger average update
time than the error rate-based drift detectors (ADWIN [7] = 0.14
ms, DDM [18] = 0.12 ms, ECDD [43] = 0.12 ms, MDDM-A [40]
= 0.14 ms, and RDDM [6] = 0.12 ms). However, the computation
times should be treated with care, as they generally depend on the
implementation and hardware configuration at hand.

Despite its relative simplicity, the CDLEEDS-based approach
to global concept drift detection competes with powerful existing
methods such as ADWIN [7], ECDD [43] or ERICS [25]. In par-
ticular, CDLEEDS received the best average score and the second
best average ranking on the combined recall and FDR measure. At
the same time, CDLEEDS was usually also able to achieve a short
delay. In summary, our results suggest that CDLEEDS, although

Table 2: Global Concept Drift Detection – Part 1. CDLEEDS
was developed for local change detection, in particular to
detect obsolete local attributions. However, as a byproduct,
CDLEEDS can also be used to detect global concept drift. The
results of this additional experiment are shown in this and
the following table. The missing values correspond to test
runs inwhich amethod did not raise an alert. ERICS [25] can
only process binary target variables, so no results are avail-
able for the multi-class data sets. Here we show the mean
of recall + (1 - false discovery rate) (%; mean ± standard de-
viation; higher is better). Strikingly, CDLEEDS can compete
with state-of-the-art methods for concept drift detection.

CDLEEDS ERICS ADWIN DDM ECDD MDDM-A RDDM
TüEyeQ 0.57 ± 0.04 0.61 ± 0.04 0.50 ± 0.17 0.38 ± 0.16 0.57 ± 0.18 0.28 ± 0.17 0.36 ± 0.26
Bank-Mark. 0.58 ± 0.01 0.56 ± 0.03 0.45 ± 0.00 - 0.56 ± 0.03 0.75 ± 0.00 0.63 ± 0.00
Electricity 0.40 ± 0.00 0.56 ± 0.02 0.45 ± 0.06 - 0.26 ± 0.00 0.00 ± 0.00 0.25 ± 0.00
Adult 0.66 ± 0.04 0.57 ± 0.03 0.41 ± 0.24 0.25 ± 0.00 0.56 ± 0.02 0.00 ± 0.00 0.07 ± 0.00
Airlines 0.62 ± 0.06 0.61 ± 0.06 0.70 ± 0.07 0.63 ± 0.00 0.57 ± 0.09 0.37 ± 0.05 0.35 ± 0.00
SEA 0.60 ± 0.09 0.19 ± 0.01 0.65 ± 0.05 0.85 ± 0.09 0.60 ± 0.05 0.78 ± 0.08 0.83 ± 0.03
Agrawal-Grad. 0.68 ± 0.02 0.70 ± 0.03 0.75 ± 0.02 0.42 ± 0.00 0.70 ± 0.02 0.67 ± 0.00 0.32 ± 0.01
Agrawal-Mix. 0,55 ± 0.12 0.62 ± 0.04 0.69 ± 0.04 0.55 ± 0.00 0.63 ± 0.04 0.65 ± 0.06 0.40 ± 0.00
KDD Cup 0.59 ± 0.13 - 0.45 ± 0.21 0.12 ± 0.00 0.61 ± 0.05 - 0.40 ± 0.15
Covertype 0.49 ± 0.08 - 0.49 ± 0.02 0.33 ± 0.00 0.61 ± 0.06 0.28 ± 0.00 0.47 ± 0.05
Insects 0.62 ± 0.06 - 0.68 ± 0.11 - 0.51 ± 0.08 0.62 ± 0.08 0.52 ± 0.08
Mean Measure 0.58 ± 0.06 0.55 ± 0.03 0.56 ± 0.09 0.44 ± 0.03 0.56 ± 0.06 0.44 ± 0.05 0.42 ± 0.05
Mean Ranking 2.9 3.1 2.6 4.1 3.2 4.4 4.8

Table 3: Global Concept Drift Detection – Part 2. Below we
depict the drift detection delay (no. of observations; lower is
better). As in the previous table, missing values correspond
to test runs in which a method did not issue a single alert.

CDLEEDS ERICS ADWIN DDM ECDD MDDM-A RDDM
TüEyeQ 940 39 357 1,049 282 973 819
Bank-Mark. 238 7 4,586 - 181 4,582 4721
Electricity 5,859 98 4,656 - 9,097 13,643 13,643
Adult 204 2 1,851 14,701 60 14,701 14,702
Airlines 819 20 144 81,262 4,482 54,043 54,035
SEA 2,517 75,032 675 27,959 76 25,897 1,410
Agrawal-Grad. 13,251 30 5,987 100,415 328 12,869 101,306
Agrawal-Mix. 10,163 27 1,315 36,515 173 2,417 33,691
KDD Cup 5,412 - 20,177 98,829 550 - 25,312
Covertype 11,316 - 27,817 116,227 366 58,408 14,878
Insects 152 - 4,160 - 6,091 2,050 17,552
Mean Ranking 3.3 1.8 3.1 6.1 2.3 4.6 5.0

being originally designed for local change detection, might also be
a valuable alternative to popular global drift detection methods.

6 CONCLUSION
To the best of our knowledge, this is the first work to formally
investigate the mechanisms underlying changes in local feature
attributions in data streams. It turns out that for sensible attribu-
tion methods that respect the local accuracy criterion, attribution
changes are a direct consequence of incremental model updates
and concept drift. CDLEEDS, the framework proposed in this work,
can reliably detect such changes both locally and globally, thereby
enabling more efficient and reliable use of attribution methods in
online machine learning. Indeed, the proposed framework can com-
pete with state-of-the-art concept drift detection methods, which
we have demonstrated in extensive experiments on publicly avail-
able data sets. Accordingly, CDLEEDS is a flexible tool that enables
more efficient, robust, and meaningful explainability in data stream
applications.
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Abstract

Due to the unspecified and dynamic nature of data streams, online machine
learning requires powerful and flexible solutions. However, evaluating online
machine learning methods under realistic conditions is difficult. Existing work
therefore often draws on different heuristics and simulations that do not
necessarily produce meaningful and reliable results. Indeed, in the absence of
common evaluation standards, it often remains unclear how online learning
methods will perform in practice or in comparison to similar work. In this paper,
we propose a comprehensive set of properties for high-quality machine learning in
evolving data streams. In particular, we discuss sensible performance measures
and evaluation strategies for online predictive modelling, online feature selection
and concept drift detection. As one of the first works, we also look at the
interpretability of online learning methods. The proposed evaluation standards are
provided in a new Python framework called float. Float is completely modular
and allows the simultaneous integration of common libraries, such as
scikit-multiflow or river, with custom code. Float is open-sourced and can be
accessed at https://github.com/haugjo/float. In this sense, we hope that
our work will contribute to more standardized, reliable and realistic testing and
comparison of online machine learning methods.

Keywords: data streams; online machine learning; evaluation framework;
concept drift detection; online feature selection

1 Introduction
Data-driven or web-based applications like social media, e-commerce, and trading

systems often generate and operate on large-scale evolving data streams. Unlike

traditional (offline) batch machine learning, online learning methods must be able

to process a potentially unlimited stream of observations and adjust to changes in

the data generating process [1, 2, 3]. Therefore, it can be crucial to gain a solid

understanding of a model’s strengths and weaknesses before it is deployed – in

particular in critical applications like online banking, autonomous driving or fraud

detection. However, due to the unspecified behaviour of data streams, it is often

unclear how online learning methods can be evaluated under realistic conditions.

Unlike traditional batch-trained machine learning methods, online learning mod-

els can only access a fraction of the data at every given time step. Accordingly,

common evaluation strategies that require the data to be available in main memory

(e.g., cross-validation) are not applicable out of the box. Instead, we usually resort

to sequential and simulation-based evaluation schemes. Although some evaluation

strategies have emerged in the past [10, 11, 12], we still lack a comprehensive and
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Table 1: Inconsistency of Evaluations in Online Machine Learning. Due

to non-standardized evaluation strategies, test results reported in the data stream

literature can diverge by a considerable margin. For example, below we show the

accuracy for the standard Hoeffding Tree [4] on four data sets, as reported in five

different papers. In the extreme case, the reported accuracy scores differ up to

13.51 percent points. Incidentally, the Covertype and Poker data sets are strongly

imbalanced. Hence, accuracy is not an ideal evaluation measure to begin with.

Such inconsistencies in experiment design and reported measures can be highly

misleading – especially for beginners in the field of online machine learning.

Dataset [5] [6] [7] [8] [9] Max. Diff.

Spambase - - - 80.35 85.47 5.12
Poker - 73.62 76.07 - - 2.45
Electricity - 75.35 79.20 - 77.62 3.85
Covertype 66.83 68.30 80.31 80.34 73.71 13.51

well-defined standard for the benchmarking of online learning methods [13]. Indeed,

aside from online predictive modelling, there are hardly any evaluation standards

for concept drift detection and online feature selection.

As a consequence, there can be considerable differences in the evaluation methods

used in existing work. For example, Table 1 depicts test results from five different

research papers. Specifically, we compare the accuracy of a Very Fast Decision Tree

[14] for four data sets as reported in the respective papers. Due to different evalu-

ation strategies and unspecified behaviour, the results vary considerably. Without

common evaluation standards and frameworks, empirical results are often only valid

in a very restricted environment and are generally not comparable.

In this work, we discuss good practices and standards for the evaluation of on-

line learning methods. We summarize and extend popular evaluation strategies for

data stream learning and introduce a comprehensive catalogue of requirements and

performance measures. In particular, we propose important properties for online

predictive models, online feature selection and concept drift detection. Although

our focus is on online classification, most of the proposed properties also apply

directly to regression or unsupervised tasks. Additionally, we briefly discuss the

selection of adequate data sets, which remains an open issue.

To make the proposed evaluation standards more accessible, we introduce a new

Python framework for Frictionless Online Analysis and Testing (float). Float is

a lightweight and high-level framework that automates and standardizes inherent

tasks of online evaluations. Float’s modular architecture and evaluation pipeline

simplify the integration of custom code with common online learning libraries such

as scikit-multiflow [15] or river [16]. Moreover, float provides a variety of useful

visualizations. The proposed framework is distributed under the MIT license via

Github and the Python packaging index PyPI.

In summary, we contribute a comprehensive set of properties and performance

measures that allow for a more standardized and realistic evaluation of online

learning methods. The new Python framework, float, provides high-level access to

the proposed standards and enables a quicker, more comparable and more reliable

benchmarking in research and practice.
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In Section 2, we introduce basic online learning concepts. In Section 3, we briefly

review previous studies on the evaluation of data stream learning. Afterwards, we

discuss general evaluation strategies in Section 4 and propose a comprehensive set

of properties for online predictive models, concept drift detection and online feature

selection in Section 5. In this context, we also discuss the interpretability of models

in the presence of incremental updates and concept drift. We provide relevant open-

source resources for streaming data in Section 6. Finally, we introduce the float

framework and illustrate its use in Section 7.

2 Online Learning Preliminaries
A data stream can be represented by a (potentially infinite) series of time steps.

At each time step t, the data stream produces observations xt ∈ Rnt×mt and cor-

responding labels yt ∈ Rnt , where nt is the number of observations and mt is the

number of features. The joint probability distribution Pt(X,Y ) denotes the active

data concept at time step t, where X and Y are random variables corresponding to

the observations and labels.

The active concept may evolve over time. Specifically, concept drift describes a

change in the joint probability distribution between two time steps, i.e., Pt1(X,Y ) 6=
Pt2(X,Y ). In general, we distinguish between real concept drift, i.e., Pt1(Y |X) 6=
Pt2(Y |X), and virtual concept drift, i.e., Pt1(X) 6= Pt2(X). Unlike virtual concept

drift, real concept drift affects the decision boundary. Note that there is a broader

categorization of concept drift in the literature, e.g., based on its magnitude, length,

or recurrences [17, 1].

In general, online machine learning deals with the same tasks as its offline counter-

part. This includes supervised tasks like classification and regression or unsupervised

tasks like clustering.

3 Related Work
Data streams are subject to external influences and temporal change. Therefore, it is

often difficult to set up a testing environment that allows for meaningful evaluation

of online learning methods. Various evaluation strategies and best practices have

been developed in the past. While we discuss these strategies in more detail in

Section 4 and 5, we provide a brief overview of existing work below.

The work of [14] was among the first to talk about important criteria for data

stream mining. Much later, the authors in [10] discussed issues that arise in the

evaluation of online learning methods. This work was later extended [11]. More

recently, the work of [18] summarized the advantages and disadvantages of different

evaluation strategies in the context of data stream classification.

Although the criteria proposed in the above works are broadly applicable, addi-

tional challenges can arise in more specific contexts. For example, the papers of [19]

and [1] discussed evaluation strategies, measures and data sets that can be used to

evaluate concept drift detection and adaptation techniques. Likewise, the authors

in [20] proposed important criteria regarding the preprocessing of streaming data,

including online feature selection. Besides, the works of [13] and [21] investigated

the reliable evaluation of ensemble methods, which are a prominent group of high-

performing online predictive models. Finally, the survey of [22] provided a summary

of popular data streaming tools and benchmarks in the context of big data mining.
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Although various evaluation standards have been proposed over the years, most

of them are either outdated, have a narrow focus, or remain superficial. In this

paper, we provide a concise summary of the most popular evaluation practices in

online machine learning. As one of the first works, we discuss and propose evaluation

properties and measures for predictive modelling, feature selection and concept drift

detection in non-stationary data streams. This work may thus guide beginners and

experts alike in the conception of more standardized benchmarks and experiments.

4 Evaluation Strategies
To train and evaluate a machine learning model, we require data. Traditionally,

we have access to a training data set during development. This data set is split in

a meaningful way (e.g., once in a holdout validation or k times in a k-fold cross-

validation). We then train the model on the training set and evaluate it on the test

set. In data streams, however, we do not have access to a complete data set at any

time. In addition, the data generating distribution can change. As a result, online

learning models need to be continuously updated over time. Therefore, it would not

be sensible to evaluate an online learning model at a specific point in time, i.e., at

a single training stage using a static train/test split. Selecting an adequate time

step would also be difficult in practice, since a data stream is potentially infinite.

Rather, we need to evaluate online learning models periodically. On this basis,

several evaluation strategies have been proposed, which we illustrate in Figure 1

and discuss below.

4.1 Periodical Holdout Evaluation

In a periodical holdout evaluation, we test the online predictive model at frequent

intervals. The holdout set comprises test observations that represent the active

concept. Since the active concept evolves, the holdout set should be updated over

time. For example, we may replace old instances in the holdout set as we progress.

Between the periodic evaluations, we continue updating the model, but do not

test its performance. The test frequency is usually controlled via a hyperparame-

ter. Depending on the test frequency, a holdout evaluation might miss particularly

short-term data concepts. Moreover, holdout evaluations yield only snapshots of

the system at particular time steps. That is, there is no guarantee that the holdout

evaluation at a time step t is also representative for t− 1 and t+ 1. Therefore, we

believe that a holdout evaluation should generally only be used when both the data

distribution and the predictive model are known to be stable.

4.2 Prequential Evaluation

Unlike a periodical holdout evaluation, a prequential strategy (also known as test-

then-train) evaluates the predictive model at each time step. Specifically, new obser-

vations are first used to test and then update the model. This is the most common

evaluation strategy in practice. A prequential evaluation gives a more pessimistic

performance estimate than the holdout evaluation [10]. In particular, the prequen-

tial evaluation also takes into account all early performance measurements, which

are often poor due to the initial training of the model.

To mitigate this effect, one may introduce a forgetting mechanism via sliding

windows or fading factors [11]. In the sliding window approach, we aggregate the
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Figure 1: Evaluation Strategies for Online Machine Learning. Since online

predictive models are trained incrementally, traditional (e.g., sampling-based)

evaluation strategies are not applicable. Instead, we can use periodic holdout,

prequential, or distributed k-fold evaluation, which we describe in Section 4. For

each of the strategies, at each time step we first test the model (pink), which

yields a performance measure γ ∈ R, and then update the model (green). In a

periodic holdout evaluation, we maintain a test set (Xtest, Ytest) that may be

updated over time (indicated by dashed arrows). In a distributed k-fold evalu-

ation, we train k instances of the model in parallel (indicated by quotes). The

instances to be trained and tested are randomly selected according to one of

three schemes (cross-/split-/bootstrap-validation). In the bootstrap validation

scheme, ω specifies a training weight drawn from the Poisson distribution.

measurements obtained in a time window. Any measurement that falls outside the

specified window no longer contributes to the performance estimate. In a fading

factor approach (i.e., exponentially weighted averaging), the influence of old mea-

surements decreases over time according to the specified fading (or decay) factor.

Unlike a sliding window, a fading factor approach is memory-less, meaning that old

measurements do not need to be saved.

4.3 Distributed k-Fold Evaluation

Cross-validation is one of the most popular evaluation techniques in offline learning

environments because it provides more robust results than a traditional holdout

evaluation. However, cross-validation and other sampling techniques are generally

not applicable in a data stream, since we cannot access the entire data set and the

data distribution is subject to change [10]. Therefore, the periodical holdout and
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Table 2: Evaluation Properties for Data Stream Methods. Below we summa-

rize all properties and corresponding performance measures introduced in Section 5

for the evaluation of machine learning methods in evolving data streams. In general,

we recommend to use a prequential evaluation strategy or, if statistical significance

is required, a more costly k-fold distributed cross validation [18] (Section 4). With

the novel Python framework float (Section 7), we can run standardized experiments

and evaluate these properties in a few lines of code.

Property Meaningful Evaluation Measures

Predictive Performance Generalization error;
F1 measure or κ-statistic [18] (for classification)

Computational Efficiency Computation time (for training and testing);
RAM-Hours [6]

Algorithmic Stability Noise Variability (Eq. (1))
Concept Drift Adaptability Drift Performance Deterioration (Eq. (2));

Drift Restoration Time (Eq. (3))
Interpretability Complexity over time, e.g. no. of parameters/splits [23]

Concept Drift Detection

Detection Truthfulness Detected Change Rate (Eq. (4));
False Discovery Rate (Eq. (5));
Mean Time Between False Alarms [12]

Detection Timeliness Delay (no. of time steps); Mean Time Ratio (Eq. (6)) [12]

Online Feature Selection

Feature Set Stability Adjusted Nogueira stability (Eq. (7)) [24, 25]
Feature Selectivity Reduction rate (in % of the original feature dimensionality)

prequential strategies described above are commonly used even though they do not

provide statistical significance. Indeed, hypothesis testing is rather uncommon in

the data stream literature.

As an alternative, the authors in [18] proposed a k-fold distributed evaluation

strategy that allows us to perform hypothesis testing for online learning models. To

this end, we need to run k instances of the same predictive model in parallel. Each

streaming observation is distributed to one or multiple model instances according

to one of three validation schemes. In the cross-validation scheme, at every time

step, we randomly pick one classifier instance for testing and use the remaining ones

for training. Conversely, the split-validation scheme trains one randomly selected

model instance per time step and tests all others. Finally, in the bootstrap-validation

scheme, we sample weights from a Poisson distribution for each classifier instance.

The weights indicate whether a model instance is used for testing (zero weight)

or training (weight greater than zero). Note that the Poisson weight also controls

the influence of an observation during training. For example, with a sample weight

of 3, we would use an observation three times to update the corresponding model

instance. In this way, the bootstrap validation scheme simulates random sampling

with replacement [18].

The experiments of [18] showed that the k-fold distributed cross-validation strat-

egy gives reliable results for different hypothesis tests. However, the distributed

k-fold evaluation is usually much more costly than a periodical holdout or prequen-

tial evaluation.
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5 Properties for Online Machine Learning Methods
As described above, evolving data streams bring several challenges. Next, we trans-

late these challenges into a set of fundamental properties and requirements for

online machine learning. In addition, we discuss meaningful performance measures

to evaluate each property. We begin with general properties and then address spe-

cific aspects of concept drift detection and online feature selection. Unless stated

otherwise, we do not impose any restrictions on the functional form of the online

predictive model. That is, we assume that the predictive model can be queried but

otherwise remains a black-box. Consequently, the proposed properties are directly

applicable to any online learning framework. In combination, these properties en-

able online learning methods that can be effectively used under real-world streaming

conditions.

5.1 General Properties

In the following, we specify general properties for high-quality online learning meth-

ods. The importance of each property may depend on the application at hand. We

list all properties along with recommended performance measures in Table 2.

5.1.1 Predictive Performance and Generalization

High predictive performance, i.e., low generalization error, is a central goal of any

predictive machine learning method. In general, this property describes the ability

of a model to correctly predict the target of previously unobserved test data. As

discussed in Section 4, we need to choose between different strategies to periodi-

cally evaluate an online predictive model. In this context, we can apply the same or

slightly adjusted performance measures as for offline learning. For example, com-

monly used measures for online classification are the 0-1 loss and the accuracy

(which only gives valid results for balanced target distributions). For more robust

results on imbalanced data, one may use a combination of precision and recall (e.g.,

F1) [1], variations of the κ-statistic [18] or an adaptation of the Area Under the

Curve of the Receiver Operating characteristic (AUC) [26].

5.1.2 Computational Efficiency

To model data streams in theory, we usually apply a logical notion of time, i.e.,

we treat time as a sequence of discrete steps (see Section 2). However, in practice,

streaming observations can arrive in very quick succession. For example, large scale

web-based applications such as credit card transactions may produce many new

observations per second. In order to avoid a backlog and update the model in

real-time, incoming observations should be processed at the rate they arrive [10].

Likewise, online applications often have limited access to hardware capacities, e.g.,

in a distributed or embedded system. Therefore, it can be crucial that online learning

models are efficient and use few resources.

Measuring the computation time is relatively simple with standard packages (e.g.,

the time-package in Python). The computation times for model training and testing

should be monitored independently [20]. To quantify the memory usage, the authors

in [6] proposed to use RAM-hours. One RAM-hour corresponds to one Gigabyte

of RAM used for one hour. However, during development, it can be difficult to
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accurately monitor the RAM usage of a particular model or process. Moreover,

existing software packages for monitoring memory usage are often inaccurate or

extremely slow. Indeed, both the estimated computation time and memory usage

depend heavily on the implementation and the given hardware specifications. Hence,

efficiency estimates are generally only comparable if they were obtained under the

same conditions. A theoretical analysis of model complexity often provides a more

reliable indication of computational efficiency.

5.1.3 Algorithmic Stability

Real-world data is subject to noise, e.g., due to faulty network connections or (hu-

man) errors in data collection. If a model is susceptible to noise, its performance

usually suffers. Unlike batch learning methods, online learning models must be able

to distinguish noise and outliers from concept drift. This can be difficult because

both noise and concept drift manifest as previously unobserved behaviour. Surpris-

ingly, the stability of online learning methods has received little attention in the

past.

Stability is often estimated by calculating the variability of the model output for

perturbed inputs. That is, we can manipulate an input observation with artificial

noise (e.g., sampled from some probability distribution) and monitor the change in

a performance measure. To the best of our knowledge, there is no common estimate

of stability for data stream methods. Therefore, we define the noise variability at

time step t:

NVt =
1

N

N∑

n=1

L
(
yt, ft(xt + zn)

)
− L

(
yt, ft(xt)

)
, (1)

where N is the number of times we sample noise zn ∼ Z (e.g., Z = N (0, 1)),

L is a performance measure function and ft is the model at time step t. If the

noise variability is small for most time steps, i.e., a large number of perturbed

observations, we can assume that the online learning model is stable. Nevertheless,

it can be difficult to find a meaningful noise distribution Z, so this measure should

be used with caution. In general, more attention should be paid to evaluating the

stability of machine learning models in data streams.

5.1.4 Concept Drift Adaptability

In general, we can deal with concept drift either by passive model adaptation or by

active drift detection. In the former approach, the model is adjusted over time, e.g.,

through continuous updates or the use of sliding windows. Conversely, in the active

approach, we aim to identify the exact time of concept drift using a dedicated drift

detection method [27]. Each time we actively detect a concept drift, we re-train the

model (or parts of it). Accordingly, active drift detection can, but need not, be part

of the drift adaptation process of the online learning model. Next, we discuss the

general evaluation of model performance in the presence of concept drift. Note that

active drift detection methods should be evaluated in terms of additional properties,

which we present in Section 5.2.

Online learning models should be robust enough to suffer only minor performance

deterioration after concept drift, and flexible enough to quickly recover previous
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performance. To the best of our knowledge, we currently lack sensible definitions

of corresponding measures. Accordingly, given a concept drift at time step td, we

define drift performance deterioration as:

DPDtd =
1

W

(
W−1∑

w=0

L
(
ytd+w, ŷtd+w

)
−

W∑

w=1

L
(
ytd−w, ŷtd−w

)
)
, (2)

where W is the size of a time window, L is a performance measure and ŷt = ft(xt)

is the prediction of the model ft for the observation xt. The DTDtd corresponds

to the difference between the mean performance in a window of size W before and

after a known concept drift at td. Similarly, we define the drift restoration time:

DRTtd = tres − td,with (3)

tres = min

{
t | t ≥ td and L

(
yt, ŷt

)
≤ 1

W

W∑

w=1

L
(
ytd−w, ŷtd−w

)
}

The DRTtd corresponds to the first time step after a known drift td, at which the

average predictive performance before the drift has been restored. In the definition of

tres in Eq. (3), we have assumed that the measure L is decremental, i.e., small values

returned by L correspond to a good performance. If L were instead incremental (i.e.,

a higher L is better), we would need to replace the “≤” condition with “≥”.

To identify and evaluate sensible model adaptations over time, and to compute

the above measures, we need ground truth information on known concept drifts.

Indeed, without ground truth, it would remain unclear whether model adaptations

and performance variations were caused by concept drift, noisy data, unstable model

behaviour or random effects. Unfortunately, there are few available real-world data

sets with known concept drift. We discuss the selection of adequate data sets in

Section 6.

5.1.5 Interpretability

Machine learning models are increasingly used in highly sensitive applications like

online banking, medical diagnoses or job application systems. With new data pro-

tection regulations (e.g., the General Data Protection Regulation of the European

Union), the transparency and interpretability of these models has gained consid-

erable attention [28, 29, 30, 31, 32]. Surprisingly, however, the interpretability of

online learning methods is still relatively unexplored.

In general, we say that a model is interpretable, if its internal mechanics can

be understood by a human. Unfortunately, there is no objective measure of inter-

pretability. Intrinsic interpretability is thus often linked to the complexity of a model

[28, 33], i.e., the lower the complexity, the higher the interpretability. For example,

linear models and shallow decision trees are widely considered to be inherently in-

terpretable. If we consider model complexity as an indicator of interpretability, we

can use different evaluation measures such as the depth and the number of splits

in a decision tree [34, 23], or the number of non-zero parameters in a linear model.

Still, such heuristics should be treated with caution, as they usually do not allow

for a comparison of different model families.
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Moreover, the complexity of an online learning model is generally subject to

change over time. Therefore, to achieve good interpretability in the above sense, the

changes and updates of model complexity should also be interpretable. For exam-

ple, the split and prune decisions in an incremental decision tree can be made more

interpretable by tying them to shifts in the approximate data concept via meaning-

ful properties [23]. Likewise, reliable concept drift detection methods could improve

the interpretability of online learning [27]. However, these temporal dynamics make

quantifying interpretability even more difficult. In general, the interpretability of

online learning models remains an open issue.

Digression: Post-Hoc Explanations in Data Streams Post-hoc explanation meth-

ods allow us to explain the predictions of complex and black-box models [35, 29].

Explanation methods like local feature attributions [36, 37, 38] can generally also be

used to explain (non-interpretable) online learning models. Moreover, these expla-

nations may be evaluated with common techniques, e.g., based on feature ablation

tests [39, 40]. However, most post-hoc explanation methods, as well as the corre-

sponding evaluation techniques, assume that the complex model has been trained

and is therefore stationary. Accordingly, for online learning models, these methods

can usually only provide a snapshot for a particular training phase. That is, we can

use them to explain the online learning model at a particular time step t. However,

there is generally no guarantee that the explanation at a given time step will be

valid in the future. Indeed, one should be aware of changes in post-hoc explanations

caused by incremental model updates and concept drift. Therefore, instead of trying

to explain black-box predictions at individual time steps, we should aim for online

learning models that are inherently interpretable.

5.2 Properties For Active Concept Drift Detection

In addition to predictive modelling, machine learning in data streams includes spe-

cific tasks required to preprocess streaming observations or deal with temporal

change. While the properties presented above generally also apply to these special

tasks, additional challenges and properties arise.

One such special task is active concept drift detection. Concept drift detection

methods are used to identify changes in the data generating distribution over time.

As mentioned earlier, concept drift detection methods often allow for more effective

retraining of obsolete parts of a model. This makes them a powerful tool for avoiding

performance degradation in the presence of concept drift. Concept drift detection

can also improve overall interpretability by revealing hidden dynamics in the data

stream. In general, a concept drift detection model should be able to detect concept

drift in time and with few false alarms [11, 19, 1]. As mentioned in Section 5.1.4, we

require ground truth information about known drifts to evaluate these properties.

5.2.1 Detection Truthfulness

Our goal is to detect every concept drift while minimizing the number of false

alarms. To evaluate this property, previous works adopt similar performance mea-

sures, albeit using different terminology [19, 12, 13]. For clarification, we define the

most important measures below.
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Let Td be the set of time steps corresponding to known concept drifts and let

T̂d be the set of detected drifts of a concept drift detection method. We begin by

defining the detected change rate:

DCR =
1

|Td|
∑

td∈Td

1

({
t ∈ T̂d | td ≤ t ≤ td +W

}
6= ∅
)
, (4)

where | · | is the cardinality of a set and 1 is an indicator function that returns 1 if

the condition in parentheses is met and 0 otherwise. The window size W can be used

to define an interval in which a drift detection is counted as a true positive. This

can be useful, as drift detection methods are usually not able to detect a concept

drift immediately – in particular, if the change has small magnitude. The missed

detection rate introduced in [12] is equal to 1−DCR.

The false discovery rate (also known as false positive rate or false alarm rate) is

another popular measure:

FDR = 1− 1

|T̂d|
∑

td∈Td

∣∣∣
{
t ∈ T̂d | td ≤ t ≤ td +W

}∣∣∣ (5)

Additionally, we may compute the time between false alarms [12], which is quantified

by the number of time steps (or the number of streaming observations) between false

drift detections. Good concept drift detection corresponds to a high time between

false alarms.

Each above measure can easily be optimised for itself. Specifically, if a method

detects concept drift at every time step, it would maximise the detected change rate.

Similarly, if a method does not detect a single concept drift, it would minimize the

false discovery rate and maximize the time between false alarms. Hence, for a reliable

evaluation of active concept drift detection, the measures must be combined.

5.2.2 Detection Timeliness

Aside from accurately detecting concept drifts, we also want to reduce the delay

between known drifts and corresponding detections. A short delay can be crucial in

practice to avoid long-term deterioration of predictive performance. The detection

delay measures the number of time steps (or alternatively the number of observa-

tions) between a known drift and the first corresponding detection [13].

The mean delay (MD), the mean time between false alarms (MTFA) and the

detected change rate (DCR, Eq. (4)) can also be aggregated in a mean time ratio

measure (MTR) [12]:

MTR =
MTFA

MD
×DCR (6)

The mean time ratio is a simple approach to combine the two fundamental prop-

erties of active concept drift detection. However, this measure should be used with

caution, as the time between false alarms and the delay are not normalized, which

can lead to very different mean time ratios depending on the data set at hand.

Unlike previous measures, the performance measures for active concept drift de-

tection only need to be calculated once at the end of the evaluation. Hence, these

results are not influenced by the evaluation strategy that we apply (see Section 4).
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5.3 Properties For Online Feature Selection

By reducing the input dimensionality, feature selection methods often allow for more

efficient and discriminative online learning. Similar to concept drift detection, online

feature selection poses additional requirements, which we discuss in the following.

5.3.1 Feature Set Stability

In offline learning scenarios, feature selection is usually performed once before model

training. Conversely, online feature selection models need to be updated over time,

since the importance of features may shift with concept drift. Yet, large variations

of the selected features between time steps can be perceived as unintuitive or non-

robust [25]. Besides, frequent changes to the selected features may entail excessive

and costly updates of the predictive model. Consequently, we generally aim for

stable feature sets over time – in particular, if the data concept is known to be

stable. In this sense, feature set stability is related to the general robustness to

noise property introduced above.

The stability of feature sets in offline learning scenarios has attracted attention

in the past [41, 42]. In [25], the authors proposed an adaptation of a popular offline

stability measure due to [24] for the evaluation of online feature selection methods.

Accordingly, let at ∈ {0, 1}m be the active feature vector at time step t, where m is

the total number of features. In the vector at, selected features are represented by

ones and unselected features are represented by zeros. The feature selection stability

at time step t for a sliding window of size w is then defined as:

FSSt,w = 1−
1
m

∑m
j=1 s

2
j

k
m

(
1− k

m

) , (7)

where k is the number of selected features and s2j = w
w−1 p̂j(1 − p̂j) is the unbi-

ased sample variance of the selection of feature j, with p̂j = 1
w

∑w−1
i=0 at−i,j . To

compute the stability between the consecutive feature sets at t − 1 and t, we can

set the window size to w = 2. The feature set stability due to (7) decreases, if the

total variability of the selected features
∑m
j=1 s

2
j increases. Conversely, the stability

is maximized if s2j = 0 for all features j, i.e., if the selected feature set remains

stationary over the full length of the sliding window.

Offline feature set stability measures do not take into account concept drift, where

we would normally tolerate some degree of variability. Hence, stability measures

adopted from the offline literature, as proposed above, should be considered with

care. In general, measuring the stability of feature sets in the presence of concept

drift is an open problem.

5.3.2 Feature Selectivity

With most online feature selection methods, the size of the returned feature set must

be specified in advance. However, if a feature selection method is able to automati-

cally determine the ideal feature set size, the reduction rate could be another useful

evaluation measure [20]. Specifically, the reduction rate indicates the percentage of

original features that has not been selected. Given similar predictive performance,

the smaller feature set, i.e., the larger reduction rate, is generally preferable.
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5.4 Additional Considerations

In the following, we briefly list additional properties and considerations that should

be taken into account when developing and evaluating online machine learning

methods. Although each individual point would deserve its own section, this is

beyond the scope of this paper.

• Label Delay: In practice, labelling information is often costly and only be-

comes available some time after the corresponding observation. In fraud pre-

vention scenarios, for example, a fraudulent transaction may not be recognized

for several days or weeks. For the sake of simplicity, we often assume that the

labels for all observations are available immediately. However, powerful online

learning methods should be able to handle delayed label information.

• Normalization: Normalization can dramatically improve the performance of

a predictive model. Unfortunately, it is not possible to normalize streaming

data in one go. In fact, feature scales might shift over time due to concept drift.

Accordingly, if the feature scales are not known in advance, the information

used to normalize incoming observations should be iteratively updated. In

this context, one should also take care of outliers, which can considerably

impact the normalization (e.g., in the common min-max scaling). In general,

the normalization of streaming observations should receive more attention.

• Imbalanced Targets: The target class of streaming data might be heav-

ily imbalanced (e.g., in the context of detecting credit card fraud). Indeed,

imbalances might be subject to temporal change. For example, credit card

transactions have a higher frequency in the evenings and during weekends.

Therefore, we require online learning methods to robustly handle imbalanced

target distributions. Likewise, we need to select performance measures that

are meaningful in the presence of imbalances, e.g. the F1 measure for classi-

fication.

• Feature/Concept Evolution: Concept drift may alter the set of features

and classes that we observe over time. We call these phenomena feature evolu-

tion and concept evolution, respectively [43]. For example, new trending topics

(i.e., classes) on social media might temporarily produce new hashtags (i.e.,

features). The occurrence of feature evolution and concept evolution poses

additional difficulties for online machine learning methods.

6 Finding Real-World Benchmark Data Sets
Many evaluation measures presented above require ground truth information about

known concept drift in order to be calculated. However, it is often impossible to

obtain ground truth from real-world processes. Although there are approaches to

induce artificial concept drift to real-world data sets [44, 27], we argue that there

is a fundamental shortage of adequate benchmark data sets for the evaluation of

online learning methods.

Indeed, synthetically generated data streams still dominate the literature. Gener-

ating synthetic data with various kinds of concept drift is straight-forward through

packages like scikit-multiflow [15] or river [16]. A comprehensive collection of syn-

thetic data streams has been proposed by the authors in [45].

Yet, there is as series of real-world data sets that are frequently used for the evalu-

ation of online learning methods. The authors in [46] provide an extensive summary
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and discussion of some of the most popular real-world data sets for online learning.

In addition, they propose a collection of insect classification data sets, which com-

prise natural concept drift. The Insects data sets comprise sensor information from

flying insect species, obtained in a controlled environment. By adjusting the tem-

perature and humidity, the authors obtained different types of natural concept drift.

Another recently published data set with known concept drift is TüEyeQ [47, 48].

TüEyeQ comprises sociodemographic information about participants in an IQ test.

The data contains natural concept drifts by switching between different task blocks

and increasing difficulty within each block.

Finally, there are various public sources from which streaming data sets can be

obtained:

• https://www.openml.org/search?type=data (search for ”data stream” or

”concept drift”)

• https://sites.google.com/view/uspdsrepository [46]

• https://github.com/ogozuacik/concept-drift-datasets-scikit-mul

tiflow

• https://github.com/vlosing/driftDatasets

7 The “float” Evaluation Package
Along with this paper, we introduce float. Float is a modular Python framework for

simple and more standardized evaluations of online learning methods. Our frame-

work provides easy and high-level access to popular evaluation strategies and mea-

sures, as described above. In this way, float handles large parts of the evaluation

and reduces the possibility of human error. Float enables joint integration of pop-

ular Python libraries and custom functionality. Accordingly, float is a meaningful

extension of comprehensive libraries like scikit-multiflow [15] or river [16]. In this

sense, float is not intended to be another library of state-of-the-art models. Rather,

our goal is to provide tools for creating high-quality experiments and visualisations.

7.1 Access and Code Quality

Float is distributed under the MIT license. The framework can currently be ac-

cessed via Github (https://github.com/haugjo/float) or the Python packaging

index Pypi (https://pypi.org/project/float-evaluation/). The source code

of float is fully documented according to the Google docstring standard. The docu-

mentation can also be accessed at https://haugjo.github.io/float/. To ensure

the quality and readability of our source code, we applied the PEP8 formatting

standard. Moreover, we created an extensive set of unit tests to validate all core

functionality. The test suite is available on Github.

7.2 Modularity

The source code of float is completely modular. We encapsulate related functionality

in Python classes. Specifically, there are classes for online prediction, concept drift

detection, and online feature selection, as well as corresponding classes for their

evaluation. Users can integrate their own models by inheriting from abstract base

classes. The evaluation strategies discussed in Section 4 are implemented as pipelines

(which are also Python classes). The pipelines allow users to specify custom experi-

ments and run any combination of concept drift detection, online feature selection,
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and predictive models. Indeed, with float it is possible to configure a pipeline that

combines custom models and common Python packages. For example, within the

same pipeline, we may load a data set via the scikit-multiflow FileStream [15], im-

plement a custom online classifier, and use scikit-learn metrics for the evaluation.

Besides, float provides a number of visualisations that can be used to illustrate the

results of the pipeline run. Float also includes various recent and state-of-the-art

online learning methods that are not part in any of the major libraries yet. We plan

to extend the set of available performance measures, preprocessing techniques, and

evaluation strategies in the future and welcome contributions by the community.
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(b) Noise Variability (with respect to F1), see Eq. (1).

0 200 400 600 800 1000 1200 1400
Time Step t

0

2

4

6

8

10

Dr
ift

 R
es

to
ra

tio
n 

Ti
m

e

Perceptron
Hoeffding Adaptive Tree

(c) Drift Restoration Time (in mean no. of time steps), see Eq. (3).

Figure 2: Illustrating Results with Float. The float framework contains a

visualisation module that provides adaptations of common plot types such as line,

scatter or bar plots. In this way, float enables a quick and intuitive visualisation

of the results stored in an evaluator object. Above, we see the results of the

example described in Section 7.3.1.
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7.3 Usage

It is neither meaningful nor feasible to describe all modules and configurations of

float in this paper. However, on Github we provide detailed documentation and mul-

tiple exemplary experiments in the form of Jupyter notebooks that can help users

to familiarize themselves with the float framework and its modules. For illustration,

we describe a simple experiment with float below.

7.3.1 Exemplary Experiment

In this example, we want to train an online predictive model on the TüEyeQ data

set [47]. The classification task is to decide whether a task was passed or failed

given a vector of task-specific features and socio-demographic information about

the corresponding subject (77 features in total). Note that we will not optimize any

hyperparameters of the models involved, as this is only an illustrative experiment.

However, for practical applications, float allows us to run multiple configurations of

a predictive model in parallel for effective hyperparameter optimization.

We start by comparing a Perceptron model and a Hoeffding Adaptive Tree [49].

The source code for this first experiment is provided in Figure 3. We load the data

set file with the DataLoader module of float. Then we set up the two predictive

models. In order to use implementations of scikit-multiflow [15], we need to wrap

the corresponding objects within a SkmultiflowClassifier object. Next, we specify

the PredictionEvaluator object, which calculates and stores the performance mea-

sures of both models. In particular, we instruct the evaluator to compute the F1

measure, the noise variability (Eq. (1)), and the drift restoration time (Eq. (3)).

For the latter measure, we need information about known concept drifts, which we

provide as a hyperparameter. We also specify the batch size that we will use in the

prequential evaluation. Note that we can specify any hyperparameter of a measure

function directly in the constructor of the float evaluator object. For example, we

may set the zero division parameter of the scikit-learn f1 score function, as well as

the reference measure and n samples parameters of the noise variability measure.

In addition to the raw performance measurements, we also want to obtain the per-

formance aggregated in a sliding window. To this end, we specify a sliding window

size of 25. Finally, we set up a prequential pipeline and provide all previously ini-

tialised objects. We use 100 observations to pre-train the online learning models

before starting the prequential evaluation with a batch size of 10.

To compare the performance of the two classifiers, we show the aggregated F1

score, the noise variability and the drift restoration time in Figure 2 (using the

line plot type of float). All displayed measures are stored in the evaluator object.

Based on the predictive performance of the classifiers, we can clearly see the concept

drift in TüEyeQ. In particular, we observe that the predictive performance of the

classifiers within each task block starts to suffer when the IQ-related tasks become

more difficult to solve. However, the drift restoration time only increase for the

last two concept drifts. In general, the Perceptron algorithm performs worse than

the Hoeffding Adaptive Tree in terms of F1, but slightly better in terms of noise

variability and drift restoration time. Since the Perceptron model does not actively

adapt to concept drift, we might further improve performance by using a drift

detection method to trigger active retraining.
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from skmultiflow.trees import HoeffdingAdaptiveTreeClassifier
from skmultiflow.neural_networks import PerceptronMask
from sklearn.metrics import f1_score
from float.data import DataLoader
from float.prediction.evaluation import PredictionEvaluator
from float.prediction.evaluation.measures import noise_variability ,

mean_drift_restoration_time
from float.pipeline import PrequentialPipeline
from float.prediction.skmultiflow import SkmultiflowClassifier

# Load a data set from main memory with the DataLoader module.
# Alternatively , we can provide a scikit -multiflow FileStream ...
# ... object via the ’stream ’ attribute.
data_loader = DataLoader(path=’./ datasets/iq.csv’,

target_col=-1)
known_drifts = [4707 , 9396 , 13570] # Known drift positions

# Set up online classifiers .
# Note that we need a wrapper to use scikit - multiflow functionality .
models = [SkmultiflowClassifier(model=PerceptronMask (),

classes=
data_loader.stream.target_values),

SkmultiflowClassifier(model=
HoeffdingAdaptiveTreeClassifier (),

classes=
data_loader.stream.target_values)]

# Set up an evaluator object for the classifiers :
# Specifically , we want to measure the f1_score , ...
# ... the noise_variability and the drift_restoration_time .
# The arguments of the measure functions can be directly added to ...
# ... the evaluator object constructor , e.g. we may specify ...
# ... the number of samples ( n_samples ) and the reference_measure ...
# ... used to compute the noise_variability .
evaluator = PredictionEvaluator(measure_funcs=[f1_score ,

noise_variability ,
mean_drift_restoration_time],

window_size=25 ,
zero_division=0,
reference_measure=f1_score ,
n_samples=15,
batch_size=10,
known_drifts=known_drifts)

# Set up a pipeline for a prequential evaluation of the classifiers .
pipeline = PrequentialPipeline(data_loader=data_loader ,

predictor=models ,
prediction_evaluator=evaluator ,
n_max=data_loader.stream.n_samples ,
batch_size=10,
n_pretrain=100)

# Run the experiment .
pipeline.run()

Figure 3: Conducting Data Stream Experiments in Float. Here we show

the source code for a simple experiment performed with the proposed float evalu-

ation framework. More experiments and a detailed documentation can be found

on our Github page.
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Figure 4: Plotting Concept Drift Detection and Online Feature Selec-

tion. Float provides special plot types for evaluating concept drift detection

methods and online feature selection models. Above we compare the detected

drifts and the most frequently selected features as described in the simple exper-

iment in Section 7.3.1.

For the following experiments, we no longer provide the corresponding source

code in order to maintain brevity. However, the general process of specifying float

objects remains the same. In addition, the float documentation contains detailed

experiment notebooks for each of the modules used.

We start by comparing two popular concept drift detection methods: an Adaptive

Sliding Window (ADWIN) [50] and a Page-Hinkley test [51]. As before, we want to

use the corresponding implementation of scikit-multiflow. Float also offers wrapper

classes for concept drift detectors from related libraries. We specify a ChangeDe-

tectionEvaluator object to compute the detected change rate (Eq. (4)), the false

discovery rate (Eq. (5)) and the delay. We set a window size of 500 within which we

count a drift alarm as a true positive. Float allows the comparison of multiple drift

detection models using a special plot type, as shown in Figure 4. With a detected

change rate of 0.33%, a false discovery rate of 0.85% and an average delay of 852

observations, the Page-Hinkley test outperforms ADWIN in the TüEyeQ dataset,

although no model performs particularly well. Indeed, if we use Page-Hinkley to

reset the Perceptron (which can be done by setting the reset after drift parameter

of the SkmultiflowClassifier to True), we get no improvement in the average F1

score. Hence, we continue without concept drift detection.
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Figure 5: Comparing Multiple Properties via the Spider Chart. The float

visualisation module contains a spider chart that provides a concise comparison

of competing models in terms of various properties. Here we show a summary of

the experimental results described in Section 7.3.1.

Finally, we would like to investigate whether we can achieve improvements in

any of the performance measures through online feature selection. Accordingly,

we compare the online feature selection models FIRES [25] and OFS [52]. Both

model implementations are provided by float. As before, float includes a dedicated

FeatureSelectionEvaluator, which we use to compute the feature set stability (Eq.

(7)) of each approach. In this example, we want to select 25 features. The most

frequently selected features can again easily be compared with the float visualization

module (see Figure 4). The FIRES model outperforms OFS in terms of the feature

set stability (0.99 for FIRES and 0.86 for OFS). Moreover, FIRES improves the

drift restoration time from 0.5 to 0.4, while OFS worsens the value to 1.08. For

the Perceptron, feature selection also leads to a small improvement in the average

F1 score. Since the Hoeffding Adaptive Tree performs implicit feature selection, a

dedicated feature selection model does not improve performance. Therefore, in our

final configuration, we compare the Perceptron in combination with FIRES with the

stand-alone Hoeffding Adaptive Tree. We use the spider chart of float to compare

both models one last time with regard to various criteria (see Figure 5). In our

example, the Perceptron with FIRES has advantages in terms of computation time

and drift restoration time, but performs worse than the Hoeffding Adaptive Tree

regarding the F1 measure. Both models show little variability with noisy inputs. The

proposed float framework allowed us to compare these models in a standardized way

and with little effort.

8 Conclusion
Evolving data streams are found in most large-scale and everyday web applications.

In this work, we revisited the challenges of evaluating machine learning methods for

dynamic data streams. We proposed a comprehensive set of evaluation properties

and performance measures that, unlike previous work, extend to the specific tasks

of online feature selection and concept drift detection. To enable a more transparent

and standardized comparison of online learning methods, we introduced float. Float

is a modular and extensible Python framework that can automate major parts of
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the simulation and evaluation process and provides a flexible basis for extensive

benchmarking. The experiments shown in this paper only give a brief impression

of the power and versatility of float. We believe that our work can serve as an

important reference for the evaluation of online learning models. With this in mind,

we hope that this work will help raise awareness of the importance and practical

use of online machine learning and data streams.
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