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Abstract

The issue of socially responsible machine learning has never been more pressing. An
entire field of machine learning is dedicated to investigating the societal aspects of
automated decision–making systems and providing technical solutions for algorith-
mic fairness. However, any attempt to improve the fairness of algorithms must be
examined under the lens of potential societal harm. In this thesis, we study existing
approaches to fair classification and shed light on their various limitations.

First, we show that relaxations of fairness constraints used to simplify the learning
process of fair models are too coarse, since the final classifier may be distinctly unfair
even though the relaxed constraint is satisfied. In response, we propose a new and
provably fair method that incorporates the fairness relaxations in a strongly convex
formulation.

Second, we observe an increased awareness of protected attributes such as race or
gender in the last layer of deep neural networks when we regularize them for fair out-
comes. Based on this observation, we construct a neural network that explicitly treats
input points differently because of protected personal characteristics. With this ex-
plicit formulation, we can replicate the predictions of a fair neural network. We argue
that both the fair neural network and the explicit formulation demonstrate disparate
treatment—a form of discrimination in anti-discrimination laws.

Third, we consider fairness properties of the majority vote—a popular ensemble
method for aggregating multiple machine learning models to obtain more accurate
and robust decisions. We algorithmically investigate worst-case fairness guarantees
of the majority vote when it consists of multiple classifiers that are themselves already
fair. Under strong independence assumptions on the classifiers, we can guarantee a
fair majority vote. Without any assumptions on the classifiers, a fair majority vote
cannot be guaranteed in general, but different fairness regimes are possible: on the
one hand, using fair classifiers may improve the worst-case fairness guarantees. On
the other hand, the majority vote may not be fair at all.
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Zusammenfassung

Die Frage des sozial verantwortlichen maschinellen Lernens ist so dringlich wie nie
zuvor. Ein ganzer Bereich des maschinellen Lernens hat es sich zur Aufgabe gemacht,
die gesellschaftlichen Aspekte automatisierter Entscheidungssysteme zu untersuchen
und technische Lösungen für algorithmische Fairness bereitzustellen. Jeder Versuch,
die Fairness von Algorithmen zu verbessern, muss jedoch unter dem Blickwinkel
eines möglichen gesellschaftlichen Schadens untersucht werden. In dieser Arbeit un-
tersuchen wir bestehende Ansätze für faire Klassifikationsverfahren und beleuchten
deren unterschiedliche Einschränkungen.

Als Erstes zeigen wir, dass Relaxierungen von Fairness, die verwendet werden, um
den Lernprozess von fairen Modellen zu vereinfachen, zu grob sind, da der endgültige
Klassifikator unfair sein kann, obwohl die relaxierte Bedingung erfüllt ist. Als Ant-
wort darauf schlagen wir eine neue und beweisbar faire Methode vor, die die Fairness-
Relaxierungen in einer stark konvexen Formulierung wiederverwendet.

Zweitens beobachten wir ein erhöhtes Bewusstsein für geschützte Merkmale wie
Rasse oder Geschlecht in der letzten Schicht tiefer neuronaler Netze, wenn wir sie für
faire Ergebnisse regularisieren. Auf Basis dieser Beobachtung konstruieren wir ein
neuronales Netz, das die Eingabepunkte wegen geschützter persönlicher Merkmale
explizit unterschiedlich behandelt. Mit dieser expliziten Formulierung können wir
die Vorhersagen eines fairen neuronalen Netzwerks replizieren. Wir behaupten, dass
sowohl das faire neuronale Netzwerk als auch die explizite Formulierung Disparate
Treatment aufzeigen—eine Form der Diskriminierung in vielen Antidiskriminierungs-
gesetzen.

Drittens betrachten wir die Fairness-Eigenschaften des Mehrheitsvotums - einer
beliebten Ensemble-Methode zur Aggregation mehrerer Modelle maschinellen Ler-
nens. Wir untersuchen algorithmisch Worst-Case-Garantien für die Fairness des Mehr-
heitsvotums, wenn es aus mehreren Klassifikatoren besteht, die selbst schon fair sind.
Unter starken Unabhängigkeitsannahmen an die Klassifikatoren können wir ein faires
Mehrheitsvotum garantieren. Ohne irgendwelche Annahmen an die Klassifikatoren
kann ein faires Mehrheitsvotum im Allgemeinen nicht garantiert werden, aber es sind
verschiedene Fairness-Regime möglich: Einerseits kann die Verwendung fairer Klas-
sifikatoren die Fairness-Garantien für den Worst-Case verbessern. Andererseits kann
es sein, dass das Mehrheitsvotum überhaupt nicht fair ist.
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Chapter 1

Introduction

In 2018 the German Parliament initiated an Enquete Commission to identify the chal-
lenges and benefits of artificial intelligence on the well-being of society and each in-
dividual (BT Drucksache 19/2978, 2018). The commission’s goal was to develop a
national strategy by formulating specific recommendations for future action. To that
end, the commission consulted experts in the fields of economics, health, law, ethics,
and computer science to lay the foundations for an informed political debate. The
guiding principle of the commission was a human-centered AI that should respect
human dignity and benefit society as a whole.

The commission was founded due to a growing concern about the impact of AI
systems. Automated decision-making systems (ADMs) are increasingly assisting or
replacing human decision-makers in deciding who gets a loan, who is pulled over
by the police, or who is investigated for health insurance fraud. Although ADMs
often outperform humans in evaluating large amounts of data, they do not fulfill the
hope of providing decisions that are free of human biases. On the contrary, they have
been shown to behave unfairly or discriminatory toward certain groups of people,
often reinforcing historical patterns of discrimination or adopting implicit biases of
past human decision-makers. If used carelessly, ADMs can deprive certain groups of
important goods and opportunities.

Two years after its founding, the commission published its findings and policy
recommendations in a final report (BT Drucksache 19/23700, 2020). The report specif-
ically addresses discrimination in AI: “In recent years, much research has been done
on discrimination detection and prevention in AI systems. The next step, the transfer
of these findings into everyday software development, should be promoted so that
the findings can be implemented as quickly and as widely as possible [. . .].” (BT
Drucksache 19/23700, 2020, p. 63). As an example for policy makers worldwide, this
report expresses the urgent need to regulate artificial intelligence in a way that allows
society to leverage the benefits and avoid potential harm. With a call for explainable,
transparent, and privacy–preserving AI, the report references recent advances in ma-
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2 CHAPTER 1. INTRODUCTION

chine learning research1. In particular, it points out the challenges of discrimination
and unfair treatment posed by automated decision-making systems.

Fundamentally, fairness–aware machine learning is concerned with the question
about how we want to make consequential decisions about humans and what we con-
sider to be “good” decisions (Barocas et al., 2019). Typically, fairness–aware machine
learning evolves around technical solutions that aim to satisfy some notion of justice or
fairness, but it also opens up new ways of reasoning about what just and fair decisions
are. As the report above shows, policy makers as well as philosophers and lawyers
rely heavily on future research about fair AI systems from computer scientists. In the
end, society and policy makers need to decide how and if we deploy automated sys-
tems and which notions of justice and fairness are to be respected. From a machine
learning perspective, it is essential to understand suggested fairness–aware methods
as solutions to unfair decision–making and test them under the same standards that
they seek to meet.

In this thesis, we investigate existing fairness methods in automated decision-
making. We identified three limitations of fairness, which we present in three chapters.
Our focus is on fairness notions that are derived from legal anti-discrimination theo-
ries that can be found for example in European and U.S. American law (Altman, 2020;
Barocas and Selbst, 2016).

1. In Chapter 2, we consider fairness approaches that use relaxed formulations of
a given fairness notion to reduce computational costs. We find that these relax-
ations are too relaxed to guarantee a fair decision-making processes.

2. We show in Chapter 3 that neural networks, which were trained to provide fair
outcomes, treat people differently based on implicitly learned protected personal
traits.

3. When several decision-making processes are available, we can make more accu-
rate decisions by aggregating the outcomes in a majority vote. In Chapter 4 we
provide worst-case fairness guarantees and show that the decision of the major-
ity vote is not guaranteed to be fair.

We begin this introductory chapter by discussing a few examples from recent years
of high-stakes decisions which sparked discussions about their fairness and societal
impact (Section 1.1). As a starting point for fairness–aware machine learning, we use
existing anti-discrimination legislation. In Section 1.2 we shortly present the legal
frameworks of disparate treatment and disparate impact. Motivated by the legal do-
main, we formulate statistical fairness notions and consider the question how to do
machine learning such that we satisfy a given fairness notion (Section 1.3). We close
with the contributions of this thesis in Section 1.5.

1For example the ACM Conference on Fairness, Accountability, and Transparency.
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1.1 Discriminatory Automated Decision-making

Automated decision-making has become a central tool in several human-centered ap-
plications such as financial lending, employment, public services, health insurance, or
education. In the following, we present a few examples of discriminatory or harmful
decision-making starting with the well-known example of recidivism risk scores.

Pretrial recidivism scores. In 2016 ProPublica, a non-profit newspaper, published
an article about a system that estimates the risk of a defendant to commit new crimes
in the future (Angwin et al., 2016). The assessments about the risk of recidivism can be
used to decide if a defendant is set free or detained until the final trial. Angwin et al.
(2016) found that these risk scores falsely categorize black defendants as high risk
more often than white defendants. On the other hand, white defendants are falsely
labeled low risk more often than black defendants. Northpointe (now Equivant, the
owner of the system called COMPAS) answered by pointing out that the interpretation
of the risk scores is the same for black and white defendants: Given a risk score the
probability to re-offend is the same for both groups (Dieterich et al., 2016). Interest-
ingly, both sides of the argument are true since they are based on two different statisti-
cal fairness notions, which have since been proven to be mutually exclusive (Choulde-
chova, 2017; Kleinberg et al., 2017).

University admission. In 2014 the Students for Fair Admissions (SFFA) represent-
ing a group of anonymous Asian-Americans filed a lawsuit against Harvard College.
The SFFA claims that Harvard’s admission process violates Title VI of the Civil Rights
Act by using racial quotas to the disadvantage of Asian-Americans. The key argu-
ment of the expert report by the SFFA (Arcidiacono, 2019) is based on counterfactual
reasoning. If we consider an Asian-American student, such that the chance of admis-
sion is 25%, the same student would have a chance of 36%, if we would only change
the race attribute to ‘white’, but fix all other features of the student. Harvard, on the
other hand, argues that due to the large pool of talented students, it is important to
consider a range of valuable information other than test scores, which the statistical
model of the SFFA does not deem relevant for admission. In addition, Harvard argues
with the notion of demographic parity (see Section 1.3.1) by pointing out that 23% of
the student body is Asian-American while Asian-Americans represent 6% of the U.S.
population.

Computer Vision. Buolamwini and Gebru (2018) have shown that facial analysis al-
gorithms are performing worse for darker skin tones than for brighter skin tones. Buo-
lamwini and Gebru (2018) evaluate commercially available facial analysis algorithms
in gender classification tasks and observe large disparities in classification accuracy.
In particular, darker-skinned females are misclassified much more often than lighter
males. The study notes that the datasets are mostly composed of light-skinned sub-
jects, but even after balancing accuracy disparities can be observed.
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A recent example of the disparate impact of facial detection algorithms was discov-
ered in the wake of the Covid pandemic. Feathers (2021) reports that facial detection
algorithms used for online exam surveillance are much less likely to detect the faces of
darker-skinned students than of light-skinned students. As a result, it becomes a chal-
lenge for them to take high-stakes tests without triggering the surveillance software.

A multitude of high-stakes decisions and applications of automated systems have
been discussed in recent years. For a comprehensive collection of harmful and dis-
criminatory decision-making, we refer the reader to various accessible books such as
Eubanks (2018); Kearns and Roth (2019); Noble (2018); O’Neil (2016). A detailed and
technical overview of fairness in machine learning is provided in Barocas et al. (2019).

1.2 Fairness Notions from Anti-discrimination Laws

To determine if an automated system is discriminatory, we need to define what con-
stitutes discrimination and how to measure it. An obvious, but not extensive source
for notions of fairness are existing anti-discrimination laws. In the following section,
we familiarize the reader with common terminology from the legal domain that has
inspired many notions of fairness in machine learning. Typically, these laws address
high-stakes decisions about humans such as employment, college admission, lending,
criminal justice, and access to welfare and social security.

Anti-discrimination is often tested along two popular discrimination theories: (1)
disparate impact and (2) disparate treatment (Barocas and Selbst, 2016). The European
counterparts are called direct and indirect discrimination (Altman, 2020; Lidell and
O’Flaherty, 2018). These concepts can be found in Title VII of the Civil Rights Act
in the US (Statute, 1991), which protects from employment discrimination by private
parties (Harned and Wallach, 2019), but also in other anti-discrimination laws such as
the European Racial Equality Directive (2000/43/EC), the British Race Relations Act
(1965), or the German Allgemeines Gleichbehandlungsgesetz (2006).

A popular article by Barocas and Selbst (2016), cited in both law and machine
learning, lays out the possible liability of automated decision-processes with respect
to Title VII. For more details, we refer the reader to Barocas and Selbst (2016) and for
an overview of European anti-discrimination theories we refer to the handbook on
European non-discrimination law (Lidell and O’Flaherty, 2018). For a philosophical
treatise on the topic, we refer to Altman (2020). In the following, we stick to the U.S.
American terminology and provide a short summary of the essential terms. First, we
discuss who these laws are meant to protect.

Protected Groups. According to anti-discrimination laws a treatment is discrimina-
tory when it is based on certain protected attributes (AGG, 2006; Lidell and O’Flaherty,
2018; Statute, 1991). The handbook on European non-discrimination law (Lidell and
O’Flaherty, 2018) defines a protected ground as an objective and identifiable trait, or
a status that distinguishes one person from another, and it may not be the basis for
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differences in treatment. As protected grounds the handbook lists sex, racial or eth-
nic origin, age, disability, religion or belief and sexual orientation. In this thesis, we
will often refer to the protected attribute without further specifiying it. It is important
to note, however, that it is common to assume that every individual can be uniquely
sorted into these traits based on some underlying truth. Conceptually, this might be
desirable, but this overlooks the fact that these traits are not binary, or categorical, or if
there even exists such an objective property. Race, for example, was historically used
to define social groups as a basis for social injustices and oppression. The definition
of race as a protected attribute reinforces this social construct, even though there is no
biological footing (see Barocas and Selbst (2016, Chapter 5) and references therein).

1.2.1 Disparate Treatment

A decision-making process exhibits disparate treatment if the decisions are based on a
protected attribute. Either (a) similarly situated people are formally or explicitly treated
differently, or (b) there is an intent to discriminate (Barocas and Selbst, 2016) with the
chosen decision-making process.

The first case is straight forward. When an employer differentiates applicants by
explicitly using the protected attribute, the policy itself proves the differential treat-
ment (Harned and Wallach, 2019). The same argument can be applied for machine
learning methods if they formally require the protected attribute as input. Even if
harmful discrimination was not intended, for example in affirmative action measures,
it can constitute a disparate treatment violation2.

In practice, however, it is more relevant to prove the intent to discriminate rather
than showing formal discrimination, since it can easily be hidden. It is hard to prove
that an employer rejected a person because of race if the decision process is not written
down or the employer simply denies using race as a selection criterion. For machine
learning algorithms, it is widely known that the explicit use of the protected attribute
can be masked by inferring the protected attribute from proxy variables, such as a
photograph in a CV, or the postal code (Supreme Court, 1999). It is easy to construct
a system that does not formally require the protected attribute, but internally uses the
inferred protected attribute (Lipton et al., 2018). In Chapter 3, we will show that in fact
neural networks implicitly learn to predict the protected attribute in order to obtain
fair outcomes.

In addition to masking the intent do discriminate, there might not even be a con-
scious plan to discriminate. People can also be treated differently due to unconscious
human biases. This can happen, for example, in a working environment, where an
employer requires a higher performance from one gender for the same salary, or sim-
ply the same kind of praise. The employer itself might not be aware of the implicit

2Title VII states that explicitly considering race can be sometimes allowed for affirmative action. The
EEOC states that employers may take affirmative action if an adverse impact, that does not constitute
a business necessity, is proved. However, Barocas and Selbst (2016) note that under current political
circumstances in the US, any affirmative action measure is under close scrutiny and likely to be decided
unconstitutional.
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bias, but the employees are treated differently. Barocas and Selbst (2016) note that
unconscious disparate treatment is not appropriately addressed in law and therefore,
proving the intent to discriminate is a hard legal exercise.

1.2.2 Disparate Impact

If there is no intent to discriminate, or it is hard to prove, we can instead focus on the
outcome of the decision process with disparate impact concept. A (facially neutral)
decision-making process suffers from disparate impact if it disproportionately harms
a protected group, for example when the acceptance rate for a job is lower in one
protected group than the other. If an applicant for a job can show that the employer
could have used an alternative employment procedure, which meets the requirements
of a successful business, but has a less discriminatory adverse impact, the original
employment procedure is unlawful. However, this also means that a certain degree of
disparate impact is allowed if the employment practice is related to job performance
and thus a business necessity (Barocas and Selbst, 2016).

As a guideline, the U.S. Equal Employment Opportunity Commission (EEOC),
which is responsible for enforcing Title VIIs mandate, suggests the four-fifth rule, which
would require an employer to make sure that the acceptance rate of a protected group
is not lower than 80% of the acceptance rate of another group (Equal Employment
Opportunity Commission (EEO), 1978). In machine learning, a large focus has been
on mitigating disparate impact since it is easier to observe the outcomes instead of un-
derstanding the process itself. In Section 1.3.1, we will look at several fairness notions
related to disparate impact and machine learning approaches that aim to fulfill them.

General Note on Fairness. The term ’fairness’ which has come to describe this field,
is a placeholder term for different concepts around fairness, justice, and discrimina-
tion. Above we described legal concepts that can give rise to notions of algorithmic
fairness. However, legislation is not a framework for morality and laws alone can-
not offer the full picture of fairness. That is why philosophical theories about justice
and fairness have influenced the literature on fair decision-making as well. Popular
theories on distributive justice are John Roemer’s Equality of Opportunity (Roemer,
1998) and Theories of Distributive Justice (Roemer, 1996), as well as John Rawls’ A
Theory of Justice (Rawls, 1996, 2001), or H. Peyton Young’s Equity (Young, 1995). For
an overview on justice theories, we refer the reader to Sandel (2009) or the correspond-
ing lectures. A connection to computer science and a roadmap of fairness notions and
philosophical theories is laid out in Binns (2018).

1.3 Binary Classification and Observational Fairness

Impactful decision-making can often be formulated in terms of a binary classifica-
tion task like granting a loan, admitting someone for college, or detaining someone in
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prison. Typically, one of the two outcomes is more beneficial than the other and dis-
parate impact can occur when the beneficial outcome is disproportionately granted to
one group. In this thesis we consider the supervised learning task of classification and
focus on observational fairness notions that aim to mitigate disparate impact. We de-
fine four observable random variables that represent the input features, the protected
attribute, the target label, and the prediction.

X ∈ X are the input features to the model. We assume that X ⊂ Rd only includes
non-protected information, which can be used by the machine learning model
without restrictions. In case of granting a loan, this information can include the
income, education, or previous payment history.

Y ∈ Y is the target label. The goal is to predict Y from given input features X as well
as possible. Since we consider binary classification, we have Y = {−1, 1}. Typi-
cally, Y = 1 denotes the more desirable outcome like being granted the loan.

S ∈ S is the protected attribute, such as race or gender, which could be determined
by the discussed anti-discrimination laws. We assume S = {−1, 1} throughout
this thesis, but typically, an extension to multiple labels is straight-forward. We
evaluate the fairness of a given classifier with respect to the protected attribute
S. If not mentioned specifically, the labels of the protected attribute do not codify
an advantage or disadvantage or a ’good’ or ’bad’ group membership.

Ŷ ∈ Y is the predicted label of a binary classification model h : X → Y with Ŷ = h(X).

For this section we assume that a binary classifier h : X → Y and thus its predic-
tions are already given. In order to determine the fairness of h we formulate observa-
tional fairness notions using only the joint distribution of the random variables above.
In the next section, we shortly address how to learn a fair classifier.

1.3.1 Mitigating Disparate Impact through Observational Fairness

The notion of disparate impact refers to the idea that facially neutral decision processes
should not disproportionately affect one of the protected groups. It is up to interpre-
tation how to actually measure the disparate impact of a machine learning model.
The popular class of observational fairness criteria considers (conditional) independence
statements of the three random variables Y, S, and Ŷ (Barocas et al., 2019). This class
summarizes a variety of fairness notions that have been suggested in recent years.
By neglecting the classifier itself and focusing only on the observable predictions Ŷ,
we can formulate criteria about how the output should be related to the protected
attribute and the target label.

• Independence: The variables Y and S satisfy independence if Ŷ ⊥⊥ S.

• Separation: The variables Ŷ, Y and S satisfy separation if Ŷ ⊥⊥ S | Y.
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• Sufficiency: The variables Ŷ, Y and S satisfy sufficiency if Y ⊥⊥ S | Ŷ.

In the following, we discuss popular fairness notions as a derivation from the in-
dependence statements. We formulate them over the joint distribution of X, S and Y,
hence, we assume that there exists a joint distribution DZ over Z = X × S × Y , from
which we can draw examples (X, S, Y) ∼ DZ . Often, we use the shorthand P for
P(X,S,Y)∼DZ .

Demographic Parity. A binary classifier h : X → Y fulfills demographic parity
(or statistical parity) (Calders and Verwer, 2010; Feldman et al., 2015; Kamishima et al.,
2012; Zafar et al., 2017a) if for all s ∈ S

P
(X,S,Y)∼DZ

[h(X)=1|S = s] = P
(X,S,Y)∼DZ

[h(X)=1] . (1.1)

Demographic parity requires that the probability of obtaining the more beneficial out-
come be equal for every protected group. In our setting, where the label is binary,
demographic parity implies that the probability of a negative outcome is also equal
for every group. Since we assume that the protected attribute is binary, we can say
that a classifier h : X → Y is demographic–parity–fair when

P
(X,S,Y)∼DZ

[h(X)=1|S=1] = P
(X,S,Y)∼DZ

[h(X)=1|S=−1] . (1.2)

In practice, perfect fairness will hardly occur and several classifiers will vary in
their degree of fairness. We measure the violation of demographic parity with the
difference of demographic parity (DDP) (Calders and Verwer, 2010; Wu et al., 2019):

DDP(h) = P
(X,S,Y)∼DZ

[h(X)=1|S=1]− P
(X,S,Y)∼DZ

[h(X)=1|S=−1] . (1.3)

The DDP is positive when the favored group is S= 1 and negative when it is S=−1.
When we have DDP(h) = 0, the classifier h is demographic–parity–fair.

It is also common to consider the ratio of the positive rates, also known as the
p%-rule (Biddle, 2005; Zafar et al., 2017a), which has its root in the four-fifth rule men-
tioned above (Equal Employment Opportunity Commission (EEO), 1978):

p
100

=
P [h(X) = 1|S = −1]
P [h(X) = 1|S = 1]

.

In this case, p = 100 corresponds to a demographic–parity–fair classifier. If we
have p ≥ 80 corresponding to the 80% rule (Equal Employment Opportunity Com-
mission (EEO), 1978), the positive rate of group S = −1 is at least as high as 80% of
the other group’s positive rate.

Disadvantages. The notion of demographic parity is often aspired to because of its
technical, but also intuitive simplicity. We might believe in a state of the world where
the ability to pay back a loan or perform well in a job does not depend on certain
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personal traits. If, however, these personal traits actually matter in the current state
of the world due to historical discrimination, demographic parity might express our
belief about how the state of world should be.

Nevertheless, several disadvantages of demographic parity have been dis-
cussed (Hardt et al., 2016). The goal of demographic parity can be undermined by
applying two differently accurate models on the protected groups. In hiring, for ex-
ample, the acceptance rate could be equal for two protected groups, but the company
hires qualified candidates from group A and only random candidates from group B.
By accepting unqualified candidates, the drop out rate will be higher for group B than
for group A due to unsatisfactory performance. Additionally, the data that is created
will feed back into the bias of the data.

Even if the company does not act with ill intent and wants to correct historical
disadvantages with demographic parity, the final job performance of group B might
be worse than group A because the lack of opportunities has led to less qualified can-
didates. Again, the drop out rate for group B will be higher. It is unclear in these
scenarios what the long–term impact of demographic parity will be. Liu et al. (2018)
showed that blindly enforcing demographic parity can harm the group that was meant
to be protected.

Finally, note that demographic parity does not allow the perfect classifier Ŷ = Y,
if the rate of qualification is different in each group: P[Y=1|S=1] 6= P[Y=1|S=−1].
Again, the long–term impact is unclear if demographic parity were enforced in such a
scenario.

Equal Odds and Equal Opportunity. In the example of granting a loan, the company
is generally interested in granting loans to people who can pay them back. If the bank
acknowledges that the probability of paying back the loan is higher for one of the
protected groups, the bank can argue that for profitability the ability to pay back the
loan has to be taken into account. However, apart from differences in the outcome
caused by the true target label, the decision should not depend on the protected group.

In the case of binary classification, the criterion of separation is equivalent to equal
odds (Hardt et al., 2016). A classifier h satisfies equal odds if

P[h(X) = 1|Y = y, S = 1] = P[h(X) = 1|Y = y, S = −1] for all y ∈ Y . (1.4)

In other words, equal odds is fulfilled if both the true positive and the false positive
rates are equal across protected groups. This directly implies equal true negative and
false negative rates.

We can relax equal odds if the bank determines it more important to obtain a loan
when it is deserved than to obtain a loan by mistake. Then, we can require that the
chance to obtain a loan deservedly should be equal for all protected groups. A classi-
fier h is fair with respect to equality of opportunity (Hardt et al., 2016) if

P[h(X) = 1|Y = 1, S = 1] = P[h(X) = 1|Y = 1, S = −1] . (1.5)
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Again, instead of only considering exact equality of opportunity, we use a fairness
score called difference of equality of opportunity (DEO) (Donini et al., 2018):

DEO(h) = P[h(X) = 1|Y = 1, S = 1]−P[h(X) = 1|Y = 1, S = −1] . (1.6)

This quantity is positive when the favoured group is s=1 and negative when it is s=
−1. When DEO(h) = 0, the classifier h is fair with respect to equality of opportunity.

Predictive Parity. The last observational fairness criteria sufficiency in binary classi-
fication is referred to as predictive parity (Zafar et al., 2017b). A classifier h satisfies
predictive parity if

P[Y = 1|h(X) = y, S = 1] = P[Y = 1|h(X) = y, S = −1] for all y ∈ Y . (1.7)

For the other fairness notions above, we have seen that they can be defined in terms
of the confusion table between target labels Y and predictions Ŷ. Similarly, predictive
parity requires equal positive predictive values and equal negative predictive values.
Predictive Parity can be relaxed into positive predictive parity (equal positive predictive
values) or negative predictive parity (equal negative predictive values).

In this spirit, we can formulate more observational fairness criteria by matching
other rates that can be formed from the confusion table (Barocas et al., 2019), for ex-
ample equal (balanced) classification rates (Chouldechova, 2017; Friedler et al., 2019)
or equal false discovery rate (Zafar et al., 2017b).

1.3.2 Discussion

Fairness through Unawareness. It is well known that the naive idea of removing the
protected attribute from the input features is not helpful to construct classifiers that
are in some sense fair or objective. The main reasons are proxies or redundant encod-
ings that can be used to predict the protected attribute (Dwork et al., 2012). Avoiding
redundant encodings in the features can be desirable since it would be impossible to
determine the protected attribute and hence, construct a biased classifier f . In practice,
however, this does not happen. A few proxy variables that are only slightly correlated
with the protected attribute are enough to predict it with high accuracy (Barocas et al.,
2019). For that reason new methods have been suggested to artificially construct a
representation of the features that does not contain redundant encodings (Alvi et al.,
2019; Madras et al., 2018; Zemel et al., 2013). Nevertheless, Grgić-Hlača et al. (2018)
argue for fairness through unawareness in certain scenarios. They propose to evaluate
human judgments about the use of individual input features in order to measure the
procedural unfairness (a form of avoiding disparate treatment) and remove undesir-
able features.

Often, fairness through unawareness is interpreted to avoid disparate treatment
since the classifier’s decisions are not based on the protected attribute. Harned and
Wallach (2019) extend this idea with the distinction between training a model and its
deployment. If the decision-making process is “unaware” of the protected attribute
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during deployment, that is when the decisions are made, the decision-making process
is not based on the protected attribute. Therefore, it does not constitute disparate
treatment. During training, on the other hand, the protected attribute can be used, for
example in a regularizer or in fairness constraints, to find a fair classifier. Lipton et al.
(2018) calls such approaches disparate learning processes (DLPs) and questions their
treatment parity. In Chapter 3 we cover this topic in more depth.

In the next section, we think about how to find fair classifiers. In this thesis we
consider mostly DLPs (Donini et al., 2018; Goh et al., 2016; Manisha and Gujar, 2020;
Wu et al., 2019; Zafar et al., 2017a,b) such as regularizer approaches or constraint opti-
mization.

Impossiblilty Results. In the recidivism example in Section 1.1 we have seen that
the opposing parties were arguing on the basis of two different observational fair-
ness notions. ProPublica’s Angwin et al. (2016) argument was based on separation by
comparing the false positive rates between the protected groups. Equivant on the
other hand defended with sufficiency by pointing out that the COMPAS risk scores re-
flect the risk of recidivism equally well for both protected groups. The idea to find
risk scores that would satisfy both sides would be in vain: since the ProPublica arti-
cle various works have found that separation and sufficiency are impossible to fulfill
simultaneously (Chouldechova, 2017; Kleinberg et al., 2017). Other impossibility re-
sults in the general terms of independence, sufficiency, and separation can be found
in Barocas et al. (2019). Kim et al. (2020) provide a tool to diagnose the trade-offs of
different combinations of group fairness criteria that are derived from the confusion
table such as equal odds, calibration, or demographic parity. This tool allows a general
understanding of the incompatibility of group fairness definitions.

1.4 Learning Fair Classifiers–Regularizers and Relaxations

Our goal in fair binary classification is to obtain a mapping h : X → Y that is fair with
respect to the protected attribute S while remaining accurate on the target label Y. The
problem of learning fair classifiers has mainly been addressed in three ways. First,
pre-processing approaches alter the labels of the examples or their representation to
increase the intrinsic fairness of a dataset. A classifier learned on this modified data
is then more likely to be fair (Calmon et al., 2017; Dwork et al., 2012; Feldman et al.,
2015; Kamiran and Calders, 2012; Madras et al., 2018; Zemel et al., 2013). Second, post-
hoc procedures transform existing accurate but unfair classifiers into fair classifiers
(Chzhen et al., 2019; Hardt et al., 2016; Kamiran et al., 2010; Menon and Williamson,
2018; Woodworth et al., 2017).

Finally, direct in-processing methods learn a fair and accurate classifier in a single
step (Agarwal et al., 2018; Calders and Verwer, 2010; Cotter et al., 2019; Donini et al.,
2018; Goh et al., 2016; Kamishima et al., 2012; Manisha and Gujar, 2020; Wu et al., 2019;
Zafar et al., 2017a,b). Among these a straightforward approach is to add a regularizer
to the standard training objective (Bechavod and Ligett, 2017; Bendekgey and Sud-
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derth, 2021; Beutel et al., 2019; Kleindessner et al., 2021; Lohaus et al., 2020; Manisha
and Gujar, 2020; Risser et al., 2021; Wick et al., 2019). In this chapter, we focus on the
in-processing approaches with a focus on regularizers and relaxed formulations of the
fairness constraints.

We seek to find an accurate classifier h∗ with a fairness disparity |Λ(h)| less than a
tolerance τ ∈ [0, 1], where Λ(h) is a fairness measure such as the DDP or DEO. Given
a function class F , the fair and accurate classifier h∗ is the solution to the following
problem:

min
h∈F

L(h) , such that |Λ(h)| ≤ τ,

where L(h) = E(X,S,Y)∼DZ [`(h(X) , Y)] is the true risk of h for some loss function
` : X × Y → R. In practice, we only have access to a set D̂Z = {(xi, si, yi)}n

i=1
of n i.i.d. examples drawn from DZ . Hence, we consider the empirical version of this
problem:

min
h∈F

L̂(h) , such that
∣∣∣Λ̂(h)

∣∣∣ ≤ τ, (1.8)

where L̂(h) = 1
n ∑(x,s,y)∈D̂Z `(h(x) , y) is the empirical risk and Λ̂(h) the empirical fair-

ness measure. The constrained problem can be rewritten into its Lagrangian (Ben-
dekgey and Sudderth, 2021) with the KKT conditions:

min
h∈F

L(h) + λΛ(h). (1.9)

The main difficulty involved in learning a fair classifier is to ensure that |Λ(h)| ≤ τ
since the constraints Λ(h) are typically discontinuous, although note that there always
exists a trivial solution to (1.8) since the constant classifier, i.e. only positive predic-
tions, is fair with respect to the observational criteria above. In order to reduce the
computational complexity of (1.8), the constraints can be replaced by continuous and
convex fairness relaxations. In Chapter 2 we analyze how well the relaxations achieve
fairness; in Chapter 3 we employ a relaxation as a regularizer in the form of (1.9).

Decision Boundary Covariance. Zafar et al. (2017a) learn convex margin-based clas-
sifiers fθ : X → Y , such as a logistic regression or an SVM, by minimizing a convex
loss L( fθ) over the parameters θ. In order to avoid increasing the complexity with a
non-convex fairness constraint, Zafar et al. (2017a) propose the decision boundary co-
variance, a convex and linear relaxation for demographic parity (specifically, the p%-
rule (Biddle, 2005; Equal Employment Opportunity Commission (EEO), 1978)). To
that end, Zafar et al. (2017a) consider the signed distance to the decision boundary
dθ : X → R, where dθ ≥ 0 corresponds to fθ = 1 and dθ < 0 corresponds to fθ = −1.
Decision boundary fairness introduced by Zafar et al. (2017a) states that the distance
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to the decision boundary should not correlate with the protected attribute. We re-
quire the covariance between decision boundary distance and protected attribute to
be small:

Cov(S, dθ(X)) = E [(S−E [S]) dθ(X)]−E [S−E [S]]E [dθ(X)] (1.10)
= E [(S−E [S]) dθ(X)]

∝ E [dθ(X) | S = 1]−E [dθ(X) | S = −1] .

We can reformulate optimization problem (1.8) and replace the constraint
|DDP( f )| ≤ τ with |Cov(S, dθ(X))| ≤ τ in order to obtain a convex optimization prob-
lem in θ. For example in logistic regression or linear SVM, where we have dθ(x) = θTx,
the constraint θT ( 1

n ∑n
i=1 [(si − s̄) xi]

)
is linear in θ.

Surrogate Functions for Fairness. In the following we define a class of fairness re-
laxations for classifiers of the form h(x) = 1(dθ(x) > 0). The DDP measure for demo-
graphic parity for instance is then equivalent to

DDP(dθ) = E
(X,S,Y)∼DZ

[1(dθ(X) > 0)|S=1]− E
(X,S,Y)∼DZ

[1(dθ(X) > 0)|S=−1] . (1.11)

In order to relax the discontinuous indicator function, we simply replace it by a con-
tinuous and monotonically non-decreasing surrogate function g : R → R (Agarwal
et al., 2018; Bendekgey and Sudderth, 2021; Cotter et al., 2019; Goh et al., 2016; Wu
et al., 2019; Zafar et al., 2017b), for example for demographic parity we have

Λg(dθ) = E
(X,S,Y)∼DZ

[g(dθ(X)) |S=1]− E
(X,S,Y)∼DZ

[g(dθ(X)) |S=−1] . (1.12)

Several other methods can be recovered by choosing g. With g(s) = s, we recover
Equation (1.10). With g(s) = min(0, s) for instance, we recover the relaxation for
equality of opportunity by Zafar et al. (2017b) which is motivated by the decision
boundary covariance by Zafar et al. (2017a):

Cov(S, g(dθ(X)) | Y = 1) ∝ E [g(dθ) | Y = 1, S = 1]−E [g(dθ) | Y = 1, S = −1] .
(1.13)

The constraint is not convex, but if the loss function is convex, a local optimum can
be found with convex-concave programming (Zafar et al., 2017b). Zafar et al. (2017b)
propose several other surrogate functions as relaxations for matching criteria of mis-
classification rates.

Based on a theoretical analysis of previous work using relaxations, Bendekgey and
Sudderth (2021) propose to use the sigmoid g(s) = σ(s) with σ(s) = 1/(1 + e−s) and
the log-sigmoid g(s) = − log σ(−s). The sigmoid function σ(s) = 1/(1 + e−s) also
recovers the regularizer by Wick et al. (2019) which we use in Chapter 3.
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1.5 Thesis Contributions

In the introduction, we have discussed the need of policy makers for future research to
enforce regulations that are often based on rather vague terms: in a second recommen-
dation, the Enquete commission of the German Parliament demands a “requirement
for Transparency, Interpretability and Explainability of AI decisions” (BT Drucksache
19/23700, 2020). To this end, it is essential to understand the proposed solutions to
unfair decision-making. In this doctoral thesis, we focus on limitations of fairness
methods using relaxed fairness constraints or regularizers, and of observational fair-
ness guarantees when we aggregate various fair models.

In Chapter 2, we investigate various fairness approaches that are formulated as
a constrained optimization problem using relaxations of the fairness constraints. We
show that many existing relaxations are unsatisfactory: even if a model satisfies the
relaxed constraint, it can be surprisingly unfair. We propose a principled framework
to solve this problem. This new approach uses a strongly convex formulation and
comes with theoretical guarantees on the fairness of its solution. In practice, we show
that this method gives promising results on real data.

In Chapter 3, we apply fairness regularizers and a preprocessing method to neu-
ral networks on binary classification tasks. We show that deep neural networks that
satisfy demographic parity do so through a form of protected group awareness, and
that the more we force a network to be fair, the more accurately we can recover the
protected attribute from the internal state of the network. Based on this observation,
we propose a simple two-stage solution for enforcing fairness. First, we train a two-
headed network to predict the protected attribute (such as race or gender) alongside
the original task, and second, we enforce demographic parity by taking a weighted
sum of the heads. Our two-headed approach has near identical performance com-
pared to the regularization-based or preprocessing method, but has greater stability
and higher accuracy where near exact demographic parity is required. To cement the
relationship between the regularized and the two-headed approach, we show that an
unfair and optimally accurate classifier can be recovered by taking a weighted sum
of a fair classifier and a classifier predicting the protected attribute. We use this to
argue that the fairness approaches and our explicit formulation demonstrate disparate
treatment and that, consequentially, they are likely to be unlawful in a wide range of
scenarios under the US law.

In Chapter 4, we investigate the fairness properties of the majority vote ensemble
when the individual classifiers are already fair. Can we guarantee fair binary deci-
sions from the majority vote when the individual classifiers are fair? We answer this
question in two flavors: (1) under strong conditional independence assumptions, we
can guarantee fairness of the ensemble, and (2) under no independence assumptions,
we cannot guarantee fairness, but we provide worst-case bounds. The first result is
based on the well-known Condorcet Jury Theorem, which analyzes the accuracy of
the majority vote in the case of independent voters. The worst-case fairness bounds
are derived algorithmically using linear program formulations. We find that fairness
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constraints can help to reduce worst-case scenarios slightly, but overall, the fairness
properties of individual classifiers are largely at risk in a majority vote.

1.5.1 Publications

This thesis is based on the following publications.

Chapter 2: Lohaus, M., Perrot, M., von Luxburg, U. (2020) Too Relaxed to Be Fair.
In International Conference of Machine Learning (ICML). https://proceedings.mlr.pr
ess/v119/lohaus20a.html

Chapter 3: Lohaus, M., Kleindessner, M., Kenthapadi, K., Locatello, F., Russell,
C. (2022) Are Two Heads the Same as One? Identifying Treatment in Fair Neural
Networks. arXiv preprint arXiv:2204.04440. https://arxiv.org/abs/2204.04440

(Under submission).

Chapter 4 is based on yet unpublished work.

During my PhD, I also worked on projects about ordinal data and ordinal embed-
ding that were left out of this thesis since they are not related to my main line of work
on fairness. I was the main contributor on:

Lohaus, M., Hennig, P., von Luxburg, U. (2019) Uncertainty Estimates for Ordinal
Embedding. arXiv preprint arXiv:1906.11655. https://arxiv.org/abs/1906.11655

I was one of the main contributors on the following paper.

Chennuru Vankadara*, L., Lohaus*, M., Haghiri, S., Ul Wahab, F., von Luxburg, U.
(2021) Insights into Ordinal Embedding Algorithms: A Systematic Evaluation. arXiv
preprint arXiv:1912.01666. https://arxiv.org/abs/1912.01666 (Under submis-
sion).

I co-authored on the following paper on fairness in machine learning as well.

Zietlow, D., Lohaus, M., Balakrishnan, G., Kleindessner, M., Locatello, F.,
Schölkopf, B., Russell, C. (2022) Leveling Down in Computer Vision: Pareto Ineffi-
ciencies in Fair Deep Classifiers. In Conference on Computer Vision and Pattern Recogni-
tion (CVPR). https://arxiv.org/abs/2203.04913

https://proceedings.mlr.press/v119/lohaus20a.html
https://proceedings.mlr.press/v119/lohaus20a.html
https://arxiv.org/abs/2204.04440
https://arxiv.org/abs/1906.11655
https://arxiv.org/abs/1912.01666
https://arxiv.org/abs/2203.04913
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Chapter 2

Too Relaxed to Be Fair

In the literature, fair binary classification is often formulated as a constrained opti-
mization problem and solved using relaxations of the fairness constraints. These ap-
proaches work reasonably well for some applications. However, their relaxations are
quite coarse and we demonstrate that they can fail to find fair classifiers. In partic-
ular, there is typically no guarantee on the relationship between the relaxed fairness
and the true fairness of a solution: a classifier that is perfectly fair in terms of relaxed
fairness can be highly unfair in terms of true fairness (see Figure 2.1 for an illustration).

We propose a new principled framework to tackle the problem of fair classifica-
tion that is particularly relevant for scenarios where formal fairness guarantees are
required. Our approach is based on convex relaxations and comes with theoretical
guarantees that ensure that the learned classifier is fair up to sampling errors. Fur-
thermore, we use a learning theory framework for similarity-based classifiers to ex-
hibit sufficient conditions that guarantee the existence of a fair and accurate classifier.

2.1 Problem Setting

For the purpose of this chapter, we repeat some notation from Chapter 1 to slightly
adjust the fairness definitions since in this chapter we have classifiers of the form
h(x) = sign( f (x)) where f : X → R is a real valued function. Let X be a feature
space, Y = {−1, 1} a space of binary class labels, and S = {−1, 1} a space of binary
protected attributes. In this chapter we denote the random variables (x, s, y) ∼ DZ ,
which we draw from a distribution DZ over Z = X × S × Y , with lowercase letters.
Our goal in fair classification is to obtain a function f such that h : X → Y is fair with
respect to the protected attribute while remaining accurate on the class labels.

We revisit demographic parity and equality of opportunity and define them in terms of
the real valued function f .

17
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Figure 2.1: The goal is to separate the positive class (+) from the negative class (−)
while remaining fair with respect to two protected groups: the blue and the red
group. We evaluate the true fairness (DDP) and a linear fairness relaxation (Zafar,
Section 2.2.1) of three linear classifiers learned with no fairness constraint (Unconstr.,
orange), a linear relaxation of the fairness constraint (Linear Constr., green), and our
framework (SearchFair, red). We also plot the classifier obtained by translating Linear
(Linear (shifted), brown). It has the same relaxed fairness as Linear but a different true
fairness: the relaxation is oblivious to the intercept parameter. SearchFair finds the
fairest classifier.

Demographic Parity. A classifier f is fair for demographic parity when its predic-
tions are independent of the protected attribute (Calders and Verwer, 2010; Calders
et al., 2009). Formally, this can be written as

P
(x,s,y)∼DZ

[ f (x)>0|s=1] = P
(x,s,y)∼DZ

[ f (x)>0|s=−1] .

In practice, enforcing exact demographic parity might be too restrictive. Instead, we
consider a fairness score (Wu et al., 2019) called Difference of Demographic Parity
(DDP)

DDP( f ) = E
(x,s,y)∼DZ

[1( f (x) > 0)|s=1]− E
(x,s,y)∼DZ

[1( f (x) > 0)|s=−1] , (2.1)

where 1(a) is the indicator function that returns 1 when a is true and 0 otherwise. The
DDP is positive when the favoured group is s = 1 and negative when it is s = −1.
Given a threshold τ ≥ 0, we say that a classifier f is τ-DDP fair if |DDP( f ) | ≤ τ.
When τ = 0, exact demographic parity is achieved and we say that the classifier is
DDP fair.
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Equality of Opportunity. A classifier f is fair for equality of opportunity when its
predictions for positively labelled examples are independent of the protected attribute
(Hardt et al., 2016). Formally, it is

P
(x,s,y)∼DZ

[ f (x) > 0|y = 1, s = 1] = P
(x,s,y)∼DZ

[ f (x) > 0|y = 1, s = −1] .

Again, instead of only considering exact equality of opportunity, we use a fairness
score (Donini et al., 2018) called Difference of Equality of Opportunity (DEO):

DEO( f ) = E
(x,s,y)∼DZ

[1( f (x) > 0)|y = 1, s = 1]

− E
(x,s,y)∼DZ

[1( f (x) > 0)|y = 1, s = −1] . (2.2)

This quantity is positive when the favoured group is s=1 and negative when it is s=
−1. Given a threshold τ ≥ 0, we say that a classifier f is τ-DEO fair if |DEO( f ) | ≤ τ.
When τ = 0, exact equality of opportunity is achieved and we say that the classifier is
DEO fair.

It is worth noting that demographic parity and equality of opportunity are quite
similar from a mathematical point of view. In the remainder of the chapter, we focus
our exposition on DDP as results that hold for DDP can often be readily extended to
DEO by conditioning on the target label.

Learning a fair classifier. Given a function class F , a τ-DDP fair and accurate
classifier f ∗ is given as the solution of the following problem:

f ∗ = arg min
f∈F

|DDP( f )|≤τ

L( f ) ,

where L( f ) = E(x,s,y)∼DZ [`( f (x) , y)] is the true risk of f for a convex loss function
` : X × Y → R. In practice, we only have access to a set D̂Z = {(xi, si, yi)}n

i=1 of n
examples drawn from DZ . Hence, we consider the empirical version of this problem:

f β = arg min
f∈F

|DDP( f )|≤τ

L̂( f ) + βΩ( f ) , (2.3)

where Ω( f ) is a convex regularization term used to prevent over-fitting, β is a trade-
off parameter, and L̂( f ) = 1

n ∑(x,s,y)∈D̂Z `( f (x) , y) is the empirical risk. The challenge
in learning a fair classifier is to ensure that |DDP( f )| ≤ τ.

2.2 When Fairness Relaxations Fail

To obtain a τ-DDP fair classifier, most approaches consider the fully empirical version
of Optimization Problem 2.3:

min
f∈F

L̂( f ) + βΩ( f )

subject to |D̂DP( f ) | ≤ τ, (2.4)
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where the empirical version of DDP is:

D̂DP( f ) =
1
n ∑

(x,s,y)∈D̂Z
s=1

1( f (x) > 0)− 1
n ∑

(x,s,y)∈D̂Z
s=−1

1( f (x) > 0).

The main issue with this optimization problem is the non-convexity of the constraints
that makes it hard to find the optimal solution. A standard approach is then to first
rewrite the DDP in an equivalent, but easier to handle form and then replace the in-
dicator functions with a relaxation. Zafar et al. (2017a) and Donini et al. (2018) use a
linear relaxation to obtain a fully convex constraint. Zafar et al. (2017b) use a convex
relaxation that leads to a convex-concave constraint. Wu et al. (2019) combine a con-
vex relaxation with a concave one to obtain a fully convex problem. Below, we show
that these approaches only loosely approximate the true constraint and might lead to
suboptimal solutions (see Figure 2.2). Furthermore, when theoretical guarantees ac-
company the method, they are either insufficient to ensure that the learned classifier
is fair (Wu et al., 2019) or they make assumptions that are hard to satisfy in practice
(Donini et al., 2018).

2.2.1 Linear Relaxations

We first study methods that use a linear relaxation of the indicator function to obtain
a convex constraint in Optimization Problem 2.4. First, Zafar et al. (2017a) rewrite the
DDP with p1 = P(x,s,y)∼DZ (s = 1) the proportion of individuals in group s = 1:

DDP( f ) = E
(x,s,y)∼DZ

[1( f (x) > 0)|s = 1]− E
(x,s,y)∼DZ

[1( f (x) > 0)|s = −1]

= E
(x,s,y)∼DZ

[
s + 1

2
1( f (x) > 0)|s = 1

]
− E

(x,s,y)∼DZ

[
1− s

2
1( f (x) > 0)|s = −1

]
=

1
p1

E
(x,s,y)∼DZ

[
s + 1

2
1( f (x) > 0)

]
− 1

1− p1
E

(x,s,y)∼DZ

[
1− s

2
1( f (x) > 0)

]
= E

(x,s,y)∼DZ

[(
s + 1
2p1

− 1− s
2(1− p1)

)
1( f (x) > 0)

]
= E

(x,s,y)∼DZ

[(
(s + 1)(1− p1)− (1− s)p1

2p1(1− p1)

)
1( f (x) > 0)

]
= E

(x,s,y)∼DZ

[(
s + 1− 2p1

2p1(1− p1)

)
1( f (x) > 0)

]
= E

(x,s,y)∼DZ

[
1

p1(1− p1)

(
s + 1

2
− p1

)
1( f (x) > 0)

]
.
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Then, they consider a linear approximation of 1( f (x) > 0) and obtain the con-
straint: ∣∣∣∣∣∣ 1n ∑

(x,s,y)∈D̂Z

1
p̂1(1− p̂1)

(
s + 1

2
− p̂1

)
f (x)

∣∣∣∣∣∣ ≤ τ, (2.5)

where p̂1 is an empirical estimate of p1. In their original formulation, Zafar et al.
(2017a) get rid of the factor 1

p̂1(1− p̂1)
by replacing the right hand side of the constraint

with c = p̂1(1− p̂1)τ.
Similarly, Donini et al. (2018) rewrite the DDP with ps = P(x′,s′,y′)∼DZ (s

′ = s):

DDP( f ) = E
(x,s,y)∼DZ

[1( f (x) > 0)|s = 1]− E
(x,s,y)∼DZ

[1( f (x) > 0)|s = −1]

= E
(x,s,y)∼DZ

[s1( f (x) > 0)|s = 1] + E
(x,s,y)∼DZ

[s1( f (x) > 0)|s = −1]

= E
(x,s,y)∼DZ

[s1( f (x) > 0)|s = 1]
p1

p1
+ E

(x,s,y)∼DZ
[s1( f (x) > 0)|s = −1]

1− p1

1− p1

= E
(x,s,y)∼DZ

[
s
ps
1( f (x) > 0)|s = 1

]
p1 (Law of total expectation.)

+ E
(x,s,y)∼DZ

[
s
ps
1( f (x) > 0)|s = −1

]
(1− p1)

= E
(x,s,y)∼DZ

[
s
ps
1( f (x) > 0)

]
.

Then, using the same linear relaxation as Zafar et al. (2017a) of 1( f (x) > 0) and
with p̂s, an empirical estimate of ps, they obtain the constraint1∣∣∣∣∣∣ 1n ∑

(x,s,y)∈D̂Z

s
p̂s

f (x)

∣∣∣∣∣∣ ≤ τ. (2.6)

Both constraints 2.5 and 2.6 are mathematically close and only differ in terms of the
multiplicative factor in front of f (x) in the inner sum. Thus, they can be rewritten as

∣∣∣LRD̂DP( f )
∣∣∣ =

∣∣∣∣∣∣ 1n ∑
(x,s,y)∈D̂Z

C
(

s, D̂Z
)

f (x)

∣∣∣∣∣∣ ≤ τ.

where C
(

s, D̂Z
)

can be chosen to obtain any of the two constraints. In the following,
we use this general formulation to show that both formulations have shortcomings
that can lead to undesired behaviors.

1Donini et al. (2018) originally consider τ-DEO fairness rather than DDP. In the constraint, instead of
drawing the examples from DZ , they use the conditional distribution DZ |y=1. However, this does not
change the intrinsic nature of the constraint, and the issues raised here remain valid.
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Linear relaxations are too loose. In Figures 2.2a and 2.2b we illustrate the behav-
iors of D̂DP( f ) and LRD̂DP( f ). In the figures, we consider linear classifiers of the form
f (x) = −x2 + a1x1 + a0 where a1 controls the slope of the classifier and a0 the intercept.
The underlying data is the same as in Figure 2.1. It shows that the linear relaxation
of DDP can behave completely differently compared to the true DDP. It is particularly
striking to notice that the intercept does not have any influence on the constraint. This
behavior can be formally verified.

Let f be a predictor of the form f (x) = g(x) + b where b is the intercept.
Then, LRD̂DP( f ) is independent of changes in b since 1

n ∑(x,s,y)∈D̂Z C
(

s, D̂Z
)
= 0 for

both constraints presented above. For the formulation of Donini et al. (2018) with
C
(

s, D̂Z
)
= s

p̂s
, we have

1
n ∑

(x,s,y)∈D̂Z

s
p̂s

= ∑
(x,s,y)∈D̂Z

s
ns

= ∑
(x,s=1,y)∈D̂Z

1
n1
− ∑

(x,s=−1,y)∈D̂Z

1
n−1

= 0.

Recall that p̂s =
ns
n , where ns is the number of samples with protected attribute s.

Second, we consider Zafar et al. (2017a) with C
(

s, D̂Z
)
= 1

p̂1(1− p̂1)

( s+1
2 − p̂1

)
.

1
n ∑

(x,s,y)∈D̂Z

1
p̂1(1− p̂1)

(
s + 1

2
− p̂1

)
= n ∑

(x,s,y)∈D̂Z

1
n1n−1

(
s + 1

2
− n1

n

)

=
n

n1n−1

 ∑
(x,s=1,y)∈D̂Z

(
1− n1

n

)
− ∑
(x,s=−1,y)∈D̂Z

n1

n


=

n
n1n−1

 ∑
(x,s=1,y)∈D̂Z

(n−1

n

)
− n1n−1

n

 = 0.

Theoretical guarantees for linear relaxations are not satisfactory. Donini et al.
(2018) study a sufficient condition under which the linear fairness relaxation LRD̂DP( f )

of a function f is close to its true fairness, that is it holds that
∣∣∣D̂DP( f )

∣∣∣ ≤∣∣∣LRD̂DP( f )
∣∣∣+ ∆̂. The condition that needs to be satisfied by f is

1
2 ∑

s′∈{−1,1}

∣∣∣∣∣∣∣∣
1
2 ∑

(x,s,y)∈D̂Z
s=s′

(sign( f (x))− f (x))

∣∣∣∣∣∣∣∣ ≤ ∆̂.

Unfortunately, the left hand side of this condition is non-convex and thus, it is difficult
to use in practice. In particular, when they learn a classifier with their linear relaxation,
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(a) DDP. (b) Linear. (c) Convex-concave.

(d) Wu - Lower. (e) Wu - Upper.

Figure 2.2: Consider linear classifiers for the dataset in Figure 2.1. The decision bound-
aries are of the form x2 = a1x1 + a0 where a1 controls the slope and a0 the intercept.
For given intercepts and slopes, we plot normalized values of (a) the DDP score (yel-
low is fair), (b) the linear relaxation (Section 2.2.1), (c) the convex-concave relaxation
(Section 2.2.2), (d) the concave Wu lower bound, and (d) the convex Wu upper bound
(Section 2.2.2). The black dotted area in (a) corresponds to trivial constant classifiers—
the predicted class is the same for all points. The colored crosses correspond to the
classifiers in Figure 2.1. A good relaxation should capture the true DDP reasonably
well, in particular the yellow regions should match. However, none of the considered
relaxations manage to achieve this.

Donini et al. (2018) do not ensure that it also has a small ∆̂. They only verify this
condition when the learning process is over, that is when a classifier f has already
been produced. However, at this time, it is also possible to compute D̂DP( f ) directly,
so the bound is not needed anymore.

If one could show that for a given function class F , there exists a small ∆̂ such
that the condition holds for all f ∈ F , then any classifier learned from this function
class would be guaranteed to be fair when

∣∣∣LRD̂DP( f )
∣∣∣ is small. However, it is not

clear whether such function class exists. Nevertheless, this argument hints that for



24 CHAPTER 2. TOO RELAXED TO BE FAIR

linear relaxations of the fairness constraint, the complexity of the function class largely
controls the DDP that can be achieved.

Linear relaxations should not be combined with complex classifiers. We demon-
strate that, if the class of classifiers F is complex, then the linear relaxation constraint
has almost no influence on the outcome of the optimization problem. In Figure 2.3, we
compare the performance, in terms of empirical DDP and accuracy, of several models
learned by Optimization Problem 2.4 equipped with the linear relaxation for different
parameters β (for regularization) and τ (for fairness). Intuitively, one would expect
that varying τ leads to changes in the fairness level while varying β leads to changes
in accuracy. However, this is not the case: τ only has an effect on the result when β is
sufficiently large. It means that the fairness of the model is mainly controlled by the
regularization parameter rather than the fairness one.

This would not be an issue if the fairness of complex classifiers was small. Unfortu-
nately, high-complexity models have a high capacity to alter their decision boundaries.
It means that to achieve both high accuracy and high fairness at the same time, they
tend to alter their prediction margin for a few selected examples. While this might not
affect the accuracy by a lot, the linear relaxation is sensible to this kind of changes and
thus can be largely improved—which is what the optimization aims for. However,
altering labels of individual points does not have a big influence on the true DDP: it
remains high. This effect is reduced when one learns models of low capacity, which
have less freedom to deliberately change labels of individual points. Overall, linear
relaxations are mainly relevant for simple classifiers and tend to have little effect on
complex ones. We outline this undesirable behavior in the experiments.

2.2.2 Other Relaxations

In the previous section we demonstrated that linear relaxations are not sufficient to
ensure fairness of the learned classifier. We now focus on two approaches that use
non-linear relaxations of the indicator function to stay close to the original fairness
definition.

Convex-concave relaxation. In a second paper, Zafar et al. (2017b) use the same
fairness formulation as Zafar et al. (2017a), but, instead of a linear relaxation of the
indicator function, they use a non-linear relaxation.2 Hence, given p̂1 defined as in
Section 2.2.1, they obtain the constraint:

∣∣∣CCRD̂DP( f )
∣∣∣ =

∣∣∣∣∣∣ 1n ∑
(x,s,y)∈D̂Z

( s+1
2 − p̂1

)
p̂1(1− p̂1)

min (0, f (x))

∣∣∣∣∣∣ ≤ τ.

In Figure 2.2c we give an illustration of CCRD̂DP( f ). It more closely approximates the

original D̂DP( f ) than the linear relaxation. Nevertheless, it remains quite far from

2Zafar et al. (2017b) originally consider other notions of fairness than DDP, among them is the τ-
DEO fairness (Equation (5) in their paper). Instead of drawing the examples from DZ , they consider the
conditional distribution DZ |y=1.
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(a) DDP. (b) Accuracy.

Figure 2.3: We consider a similarity-based classifier (Section 2.4) with rbf kernel and
1000 train and test points from the Adult dataset. Using a varying regularization pa-
rameter β and fairness parameter τ, we train several classifiers using the linear fair-
ness relaxation (Section 2.2.1). We plot the empirical test DDP of the learned models
in Figure 2.3a (red and blue are bad, yellow is good) and their accuracy in Figure 2.3b
(red is bad, green is good). We can see that, if β is small (complex model), the fair-
ness relaxation parameter τ has no influence on the DDP score. For higher values of β
(simpler models), decreasing τ improves the DDP. Best viewed in color.

the original definition—in particular for classifiers that are not constant. Moreover,
using such a convex relaxation leads to a convex-concave problem that turns out to be
difficult to optimize without guarantees on the global optimality.

Lower-upper relaxation with guarantees. To derive their fairness constraint, Wu
et al. (2019) propose to first equivalently rewrite the DDP as follows:

DDP( f ) = E
(x,s,y)∼DZ

[1( f (x) > 0)|s = 1]− E
(x,s,y)∼DZ

[1( f (x) > 0)|s = −1]

= E
(x,s,y)∼DZ

[
s
ps
1( f (x) > 0)

]
(Formulation of Donini et al. (2018).)

= E
(x,s,y)∼DZ

[
1(s = 1)

p1
1( f (x) > 0)− 1(s = −1)

1− p1
1( f (x) > 0)

]
= E

(x,s,y)∼DZ

[
1(s = 1)

p1
1( f (x) > 0) +

1(s = −1)
1− p1

1( f (x) < 0)− 1
]

,

where p1 is defined as in Section 2.2.1. Replacing the indicator functions with a convex
surrogate other than the linear one would lead to a convex-concave problem due to
the absolute value in the constraint. Instead, Wu et al. (2019) propose to use a con-
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vex surrogate function κ for the requirement DDP( f ) < τ and a concave surrogate
function δ for DDP( f ) > −τ. The corresponding relaxation is

DDPκ( f ) = E
(x,s,y)∼DZ

[
1(s = 1)

p1
κ( f (x)) +

1(s = −1)
1− p1

κ(− f (x))− 1
]

,

and DDPδ( f ) is defined analogously by simply replacing κ with δ. It leads to the
following convex problem:

min
f∈F

L̂( f ) + βΩ( f ) (2.7)

subject to D̂DPκ( f ) ≤ τκ

−D̂DPδ( f ) ≤ τδ.

Individually, the relaxations are far from the original fairness constraint (as illustrated
in Figures 2.2e and 2.2d) but the idea is that combining the upper bound and the
lower bound will help to learn a fair classifier. However, one needs to choose τκ and
τδ appropriately. To address this, Wu et al. (2019) show that choosing

τκ = ψκ

(
τupper − D̂DP

+)
+ D̂DP

−
κ

τδ = ψδ

(
τlower + D̂DP

−)
+ D̂DP

+

δ ,

guarantees that −τlower ≤ D̂DP( f ) ≤ τupper. Here D̂DP
+

and D̂DP
−

are the worst
possible scores of D̂DP( f ): they are attained by those functions in the given function

class that advantage either group s = −1 or group s = 1 the most. The values D̂DP
−
κ

and D̂DP
+

δ are defined in the same way for the relaxed scores. The functions ψκ and
ψδ are invertible functions that depend on the selected surrogate.

While this solution is appealing at a first glance, it turns out that Optimization
Problem 2.7 is often infeasible for meaningful values of τupper and τlower as the con-
straints form disjoint convex sets. To illustrate this, consider κ(x) = max{0, 1 + x}
and δ(x) = min{1, x} as proposed by Wu et al. (2019) and the dataset used in Fig-
ure 2.1. Then, if τupper = τlower ≤ 1.13, the problem is infeasible. If τlower = 0 and
τupper ≤ 1.95 the problem is also infeasible. Overall, the guarantees are often mean-
ingless: they either make statements about the empty set (no feasible solution) or they
are too loose to ensure meaningful levels of fairness.

2.3 SearchFair: A New Approach with Guaranteed Fairness

In the previous section, we have seen that existing approaches use relaxations of the
fairness constraint that lead to tractable optimization problems but have little con-
trol over the true fairness of the learned model. For this reason, we propose a new
framework that solves the problem of finding provably fair solutions: given a convex
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(a) DDP. (b) Accuracy.

Figure 2.4: We consider a similarity-based classifier (Section 2.4) with rbf kernel and
1000 train and test points from the Adult dataset. Using a varying regularization pa-
rameter β and fairness parameter λ, we train several classifiers using Optimization
Problem 2.8 with the same loss, convex relaxation, and regularization as SearchFair in
the experiments. We plot the empirical test DDP of the learned models in (a) (red and
blue are bad, yellow is good) and their accuracy in (b) (red is bad, green is good). We
can see that, given a fixed regularization β, we can move from positive DDP (small λ,
in red) to a negative DDP (large λ, in blue) with a region of perfect fairness in between
(in yellow).

approximation of the fairness constraint, our method is guaranteed to find a classifier
with a good level of fairness.

We consider the following optimization problem:

f β

D̂Z
(λ) = arg min

f∈F
L̂( f ) + λRD̂DP( f ) + βΩ( f ) , (2.8)

where RD̂DP( f ) is a convex approximation of the signed fairness constraint, that is
we do not consider the usual absolute value. In other words, we obtain a trade-off
between accuracy and fairness that is controlled by two hyperparameters λ ≥ 0 and
β > 0 and, given β fixed, we can vary λ to move from strongly preferring one group
to strongly preferring the other group. Our goal is then to find a parameter setting
that is in the neutral regime and does not favor any of the two groups. The main
theoretical ingredient for this procedure to succeed is the next theorem, which states
that the function λ 7→ DDP

(
f β

D̂Z
(λ)
)

is continuous under reasonable assumptions on
the data distribution, the candidate classifiers, and the convex relaxation.

Theorem 1 (Continuity of DDP
(

f β

D̂Z
(λ)
)

). Let F be a function space, we define the set

of learnable functions as FΛ =
{

f ∈ F : ∃λ ≥ 0, f = f β

D̂Z
(λ)
}

. Assume that the following
conditions hold:
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(i) Optimization Problem 2.8 is m-strongly convex in f ,

(ii) ∀ f ∈ F , RD̂DP( f ) is bounded in [−B, B],

(iii) ∃ρ, a metric, such that (FΛ, ρ) is a metric space,

(iv) ∀x ∈ X , g( f ) : f 7→ f (x) is continuous,

(v) ∀ f ∈ FΛ, f is Lebesgue measurable and the set {x : (x, s, y) ∈ Z , s = 1, f (x) = 0} is
a Lebesgue null set, as well as {x : (x, s, y) ∈ Z , s = −1, f (x) = 0},

(vi) the probability density functions fZ|s=1 and fZ|s=−1 are Lebesgue-measurable.

Then, the function λ 7→ DDP
(

f β

D̂Z
(λ)
)

is continuous.

The proof of this theorem is given in the next section. The conditions (i) - (vi) are
of a technical nature, but not very restrictive: Condition (i) can be satisfied by using
a strongly convex regularization term, for example the squared L2 norm. Condition
(ii) can be satisfied by assuming that X is bounded. Condition (iii) is, for example,
satisfied by any Hilbert Space equipped with the standard dot product. This includes,
but is not restricted to, the set of linear classifiers. Condition (iv) ensures that small
changes in the hypothesis, with respect to the metric associated to F , also yield small
changes in the predictions. Condition (v) ensures that the number of examples for
which the predictions are zero is negligible, for example this happens when the de-
cision boundary is sharp. Condition (vi) is satisfied by many usual distributions, for
example the Gaussian distribution.

We demonstrate the continuous behavior of DDP on a real dataset in Figure 2.4.
We plot the DDP score and the accuracy of classifiers learned with Optimization Prob-
lem 2.8 for varying parameters λ and β. Given a fixed β, the results support our
theoretical findings: there is a smooth transition between favouring the group s = 1
with small λ and favouring the group s = −1 with higher λ. In between, there is al-
ways a region of perfect fairness. In the next corollary, we formally state the conditions
necessary to ensure the existence of such a DDP-fair classifier.

Corollary 1 (Existence of a DDP-fair classifier). Assume that the conditions of Theorem 1
hold and that the convex approximation RD̂DP( f ) is chosen such that for Optimization Prob-
lem (2.8) there exist

(i) λ+ such that DDP
(

f β

D̂Z
(λ+)

)
>0,

(ii) λ− such that DDP
(

f β

D̂Z
(λ−)

)
<0.

Then, there exists at least one value λ0 in the interval [min (λ+, λ−) , max (λ+, λ−)] such
that DDP

(
f β

D̂Z
(λ0)

)
= 0.

Proof. This corollary is a direct consequence of the intermediate value theorem and
the continuity of DDP proven in Theorem 1.
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This suggests a very simple framework to learn provably fair models. First, we
choose a convex fairness relaxation (e.g. the one proposed by Wu et al. (2019)). Then,
we choose a lower bound λmin and an upper bound λmax that fulfill the assumptions of
Corollary 1, that is sign

(
DDP

(
f β

D̂Z
(λmin)

))
6= sign

(
DDP

(
f β

D̂Z
(λmax)

))
(empirically,

λ = 0 and 1 are good candidates). Then, we use a binary search to find a λ0 between
λmin and λmax such that DDP

(
f β

D̂Z
(λ0)

)
= 0. We call this procedure SearchFair and

summarize it in Algorithm 1.
Finally, SearchFair theoretically requires to evaluate the true population fairness

DDP
(

f β

D̂Z
(λ)
)

on the underlying distribution DZ . In practice, we follow the example
of existing fairness constraints (Woodworth et al., 2017) and simply approximate this
quantity by its empirical counterpart D̂DP

(
f β

D̂Z
(λ)
)

. If RD̂DP( f ) is chosen correctly
then setting λmin = 0 and λmax = 1 usually works. The number of iterations C is
used to control how close to 0 the fairness measure should be. Note that, instead of
a number of iterations, it is also possible to choose a stopping criterion, for example
when DDP falls below a threshold.

Example of convex relaxation. One example of a convex relaxation is to use the
bounds proposed by Wu et al. (2019). When no fairness regularizer is used, we eval-
uate the fairness of the resulting classifier and choose an approximation accordingly.
More precisely, with λ = 0 if DDP( f (λ)) > 0 we use the upper bound with hinge loss:

RD̂DP( f ) =
1
n ∑
(x,s,y)∈D̂Z

[
1(s=1)

p1
max (0, 1 + f (x)) +

1(s=−1)
1− p1

max (0, 1− f (x))− 1
]

.

If DDP( f (λ)) < 0, we use the negative lower bound with hinge loss:

RD̂DP( f ) = − 1
n ∑

(x,s,y)∈D̂Z

[
1(s = 1)

p1
min (1, f (x))− 1(s = −1)

1− p1
min (1,− f (x)) + 1

]
.

With λmin = 0 and λmax = 1 this choice often ensures that sign(DDP( f (λmin))) 6=
sign(DDP( f (λmax))). We use this approach in all our experiments in this chapter.

Note that we give an example where the relaxations are in fact upper and lower
bounds of the DDP score. However, we want to stress that any convex approximation
would work as long as the conditions of Corollary 1 like sign

(
DDP

(
f β

D̂Z
(λmin)

))
6=

sign
(

DDP
(

f β

D̂Z
(λmax)

))
are respected.

Satisfying the conditions of Theorem 1. The strong convexity of the optimization
problem (condition (i)) can be ensured by choosing a strongly convex regularization
term (we adopt this strategy in our experiments).

Satisfying conditions (ii) to (v) mainly depends on our choice of function class
F . For example, linear classifiers satisfy all the conditions as long as X is bounded
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Algorithm 1 SearchFair: A binary search framework for fairness

Input: A set D̂Z = (xi, si, yi)
n
i=1 of n labelled examples, a regularization parameter

β > 0, λmin and λmax the lower and upper bounds for λ, a convex fairness regularizer
RD̂DP(·), a number of iterations C.
Output: A fair classifier.

1: if DDP
(

f β

D̂Z
(λmin)

)
> 0 and DDP

(
f β

D̂Z
(λmax)

)
< 0 then

2: λ+ = λmin and DDP+ = DDP
(

f β

D̂Z
(λmin)

)
.

3: λ− = λmax and DDP− = DDP
(

f β

D̂Z
(λmax)

)
.

4: search possible = True
5: else if DDP

(
f β

D̂Z
(λmin)

)
< 0 and DDP

(
f β

D̂Z
(λmax)

)
> 0 then

6: λ− = λmin and DDP− = DDP
(

f β

D̂Z
(λmin)

)
.

7: λ+ = λmax and DDP+ = DDP
(

f β

D̂Z
(λmax)

)
.

8: search possible = True
9: else

10: search possible = False
11: end if
12: if search possible then
13: for c = 1, . . . , C do
14: λ = 1

2 (λ− + λ+)

15: DDPλ = DDP
(

f β

D̂Z
(λ)
)

.
16: if DDPλ > 0 then
17: λ+ = λ and DDP+ = DDPλ.
18: else
19: λ− = λ and DDP− = DDPλ.
20: end if
21: end for
22: if |DDP−| < |DDP+| then
23: return f β

D̂Z
(λ−)

24: else
25: return f β

D̂Z
(λ+)

26: end if
27: else
28: Either choose new values for λmin and λmax, or choose a new fairness regularizer

RD̂DP( f ).
29: end if

(which is the case in most machine learning applications) and the classifier f 0(x) =
0Tx, where 0 is the vector of all zeros, is not part of the set of learnable functions FΛ
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(otherwise condition (v) would be violated). To verify that f 0 /∈ FΛ, it is sufficient to

verify that the equation
dL̂( f 0)

d f + λ
dR

D̂DP( f 0)
d f + β

dΩ( f 0)
d f = 0 with β fixed has no solutions

for λ ∈ [λmin, λmax]. Note that, in practice, this is usually easy to verify and can be
achieved by correctly choosing RD̂DP( f ). Note that the similarity-based classifiers that
we use in our experiments are a particular form of linear classifiers and thus satisfy
conditions (ii) to (v).

Finally, condition (vi) depends on the data distribution and should be satisfied for
most non-degenerate problems.

2.3.1 Proof of Theorem 1

To prove Theorem 1 , that is to show the continuity of the function λ 7→ DDP
(

f β

D̂Z
(λ)
)

,
we need technical Lemmas 1 and 2. The first one shows that the function λ 7→
f β

D̂Z
(λ) is continuous. The second one shows that for particular function classes,

f 7→ Px∼DX [ f (x) ≤ 0] is a continuous function. Before proving them, we first recall
the definition of a m-strongly convex function.

Definition 1 (m-strongly convex functions). A function f : X 7→ R is called m-strongly
convex with parameter m > 0 if for all x, y ∈ X and t ∈ [0, 1]

f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y)− m
2

t(1− t) ‖x− y‖2
2 .

We can now prove our two technical lemmas.

Lemma 1 (Continuity of λ 7→ f β

D̂Z
(λ)). Assume that Optimization Problem 2.8 is m-

strongly convex and that RD̂DP( f ) is bounded in the interval [−B, B]. Given a training set
D̂Z and a regularization parameter β > 0, the function:

λ 7→ f β

D̂Z
(λ)

is continuous and there exists a constant C =
√

8B
m such that:∥∥∥ f β

D̂Z
(λ)− f β

D̂Z

(
λ′
)∥∥∥
F
≤ C

√
|λ− λ′|.

Proof. Let gλ( f ) = L̂( f ) + λRD̂DP( f ) + βΩ( f ) and gλ′( f ) = gλ( f ) + εRD̂DP( f ) with
ε > 0 and ε = λ′ − λ. For the sake of readability, for the remainder of the proof, we
write f β

D̂Z
(λ) as f (λ). Since Optimization Problem 2.8 is m-strongly convex, it holds

that:

gλ
(
t f (λ) + (1− t) f

(
λ′
))

+ εRD̂DP

(
t f (λ) + (1− t) f

(
λ′
))

≤ tgλ( f (λ)) + (1− t)gλ
(

f
(
λ′
))

+ tεRD̂DP( f (λ)) + (1− t)εRD̂DP

(
f
(
λ′
))

− m
2

t(1− t)
∥∥ f (λ)− f

(
λ′
)∥∥2
F .
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In particular, for t = 1
2 :

m
8

∥∥ f (λ)− f
(
λ′
)∥∥2
F

≤ 1
2

gλ( f (λ)) +
1
2

gλ
(

f
(
λ′
))

+
1
2

εRD̂DP( f (λ)) +
1
2

εRD̂DP

(
f
(
λ′
))

− gλ

(
1
2

f (λ) +
1
2

f
(
λ′
))
− εRD̂DP

(
1
2

f (λ) +
1
2

f
(
λ′
))

≤ 1
2

gλ( f (λ))− 1
2

gλ

(
1
2

f (λ) +
1
2

f
(
λ′
))

+
1
2

gλ
(

f
(
λ′
))

+
1
2

εRD̂DP

(
f
(
λ′
))
− 1

2
gλ

(
1
2

f (λ) +
1
2

f
(
λ′
))

− 1
2

εRD̂DP

(
1
2

f (λ) +
1
2

f
(
λ′
))

+
1
2

εRD̂DP( f (λ))− 1
2

εRD̂DP

(
1
2

f (λ) +
1
2

f
(
λ′
))

≤ 1
2

gλ( f (λ))− 1
2

gλ

(
1
2

f (λ) +
1
2

f
(
λ′
))

+
1
2

gλ′
(

f
(
λ′
))
− 1

2
gλ′
(

1
2

f (λ) +
1
2

f
(
λ′
))

+
1
2

εRD̂DP( f (λ))− 1
2

εRD̂DP

(
1
2

f (λ) +
1
2

f
(
λ′
))

.

Since f (λ) and f (λ′) respectively minimize gλ( f ) and gλ′( f ), it holds that

1
2

gλ( f (λ))− 1
2

gλ

(
1
2

f (λ) +
1
2

f
(
λ′
))
≤ 0

1
2

gλ′
(

f
(
λ′
))
− 1

2
gλ′
(

1
2

f (λ) +
1
2

f
(
λ′
))
≤ 0

which, in turns, implies

m
8

∥∥ f (λ)− f
(
λ′
)∥∥2
F ≤

1
2

εRD̂DP( f (λ))− 1
2

εRD̂DP

(
1
2

f (λ) +
1
2

f
(
λ′
))

⇔
∥∥ f (λ)− f

(
λ′
)∥∥2
F ≤

8
2m

εRD̂DP( f (λ))− 8
2m

εRD̂DP

(
1
2

f (λ) +
1
2

f
(
λ′
))

(RD̂DP( f ) ∈ [−B, B])

⇔
∥∥ f (λ)− f

(
λ′
)∥∥2
F ≤

8B
m

ε (ε ≤ |λ′ − λ|)

⇒
∥∥ f (λ)− f

(
λ′
)∥∥2
F ≤

8B
m
∣∣λ′ − λ

∣∣
⇒

∥∥ f (λ)− f
(
λ′
)∥∥
F ≤

√
8B
m

√
|λ′ − λ|.



2.3. SEARCHFAIR: A NEW APPROACH WITH GUARANTEED FAIRNESS 33

Choosing C =
√

8B
m concludes the proof.

Lemma 2 (Continuity of f 7→ Px∼DX [ f (x) ≤ 0]). Let F be a space of real valued functions
f : X → R. Assume that the following conditions hold:

(i) there exists a metric ρ such that (F , ρ) is a metric space,

(ii) ∀x ∈ X , the function g( f ) : f 7→ f (x) is continuous,

(iii) ∀ f ∈ F , f is Lebesgue measurable and the set {x : x ∈ X , f (x) = 0} is a Lebesgue null
set,

(iv) the probability density functions fX is Lebesgue-measurable.

We have that:

P
x∼DX

[ f (x) ≤ 0]

is a continuous function in f ∈ F .

Proof. We have that:

P
x∼DX

[ f (x) ≤ 0] = E
x∼DX

[1( f (x) ≤ 0)] =
∫
X
1( f (x) ≤ 0) fX (x) dx =

∫
X

h( f , x) dx.

To show that this function is continuous, we apply Theorem 5.6 in Elstrodt (1996). To
this extent, we need to show that all the conditions hold.

• Condition a: ∀ f ∈ F , h( f , ·) ∈ L1.
The function f (x) 7→ 1( f (x) ≤ 0) is Borel measurable and the function f is
Lebesgue measurable. By composition, the function x 7→ 1( f (x) ≤ 0) is also
Lebesgue measurable. As the product of two Lebesgue measurable functions, h
is also Lebesgue measurable. Furthermore, we have:∫

X
|h( f , x)| dx ≤

∫
X

fX (x) dx = 1 < ∞

which is the desired condition.

• Condition b: h(·, x) is continuous in f0 ∈ F for µ-almost all x ∈ X .
Since ∀x ∈ X , g( f ) : f 7→ f (x) is continuous in f0, 1( f (x) ≤ 0) is also a contin-
uous function in f0 expect for the set {x : x ∈ X , f (x) = 0} which is a Lebesgue
null set.

• Condition c: There exists a neighbourhood U of f0 and an integrable function
u : X → [0, ∞) such that ∀ f ∈ U we have h( f , ·) ≤ u µ-a.e..
Taking u = fX satisfy the condition with U = F .

Since all the conditions hold, we have that Px∼DX [ f (x) ≤ 0] is continuous at f0. Fur-
thermore, given our assumptions on F , this remains true ∀ f0 ∈ F . This concludes the
proof.
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We are now ready to prove Theorem 1.

Proof. Recall that DDP is defined as follows:

DDP( f ) = P
(x,s,y)∼DZ |s=1

[ f (x) > 0]− P
(x,s,y)∼DZ |s=−1

[ f (x) > 0] .

Applying Lemma 2, we have that c : FΛ → R, c( f ) = P(x,s,y)∼DZ |s=1
[ f (x) > 0] and

c′ : FΛ → R, c′( f ) = P(x,s,y)∼DZ |s=−1
[ f (x) > 0] are continuous functions. It implies

that the function q : FΛ → R defined as q( f ) = DDP( f ) is continuous.
Then, using Lemma 1 and recalling that the composition of two continuous func-

tions is also continuous gives the theorem.

We use the same proof technique to prove the continuity of DEO as stated in the
next theorem. The main differences are in conditions (v) and (vi) where we only need
to consider the positively labelled examples.

Theorem 2 (Continuity of DEO
(

f β

D̂Z
(λ)
)

). Let F be a function space, we define the set

of learnable functions as FΛ =
{

f ∈ F : ∃λ ≥ 0, f = f β

D̂Z
(λ)
}

. Assume that the following
conditions hold:

(i) Optimization Problem 2.8 is m-strongly convex in f ,

(ii) for all f ∈ F , RD̂DP( f ) is bounded in the interval [−B, B],

(iii) there exists a metric ρ such that (FΛ, ρ) is a metric space,

(iv) ∀x ∈ X , the function g( f ) : f 7→ f (x) is continuous,

(v) ∀ f ∈ FΛ, f is Lebesgue measurable and the sets {x : (x, s, y)∈Z , y=1, s=1, f (x)=0}
and {x : (x, s, y) ∈ Z , y = 1, s = −1, f (x) = 0} are Lebesgue null sets,

(vi) the probability density functions fZ|y=1,s=1 and fZ|y=1,s=−1 are Lebesgue-measurable.

Then, the function λ 7→ DEO
(

f β

D̂Z
(λ)
)

is continuous.

Proof. Analogous to the proof of Theorem 1.

With these results, we can also prove the existence of a DEO-fair classifier similar
to Corollary 1.

Corollary 2 (Existence of a DEO-fair classifier). Let F be a function space, we define the
set of learnable functions as FΛ =

{
f ∈ F : ∃λ ≥ 0, f = f β

D̂Z
(λ)
}

. Assume that Theorem 2

holds and that there exist two hyperparameters λ+ and λ− such that DEO
(

f β

D̂Z
(λ+)

)
> 0

and DEO
(

f β

D̂Z
(λ−)

)
< 0.

Then, there exists at least one value λ0 ∈ [min (λ+, λ−) , max (λ+, λ−)] such that
DEO

(
f β

D̂Z
(λ0)

)
= 0.

Proof. This corollary is a direct consequence of the intermediate value theorem and
the continuity of DEO proven in Theorem 2.
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2.4 Towards Classifiers that are Fair and Accurate

In the last section, we presented a method that is guaranteed to find a DDP fair clas-
sifier. However, there is one important catch: we did not make any statement about
the classification accuracy of this solution. Here, we take a step in this direction by
proposing some sufficient conditions that ensure the existence of a classifier that is
both fair and accurate. To this end, we focus on a particular set of classifiers: the fam-
ily of similarity-based functions. Given a similarity function K : X ×X → [−1, 1] and
a set of points S =

{
(x′1, s′1, y′1), . . . , (x′d, s′d, y′d)

}
, we define a similarity based classifier

as f (x) = ∑d
i=1 αiK(x, x′i). The goal is then to learn the weights αi.

A theory of learning with such functions has been developed by Balcan et al.
(2008). By defining a notion of good similarities, they provide sufficient conditions
that ensure the existence of an accurate similarity-based classifier. Here, we build
upon this framework and we introduce a notion of good similarities for both accu-
racy and fairness. Hence, in Definition 2 we give sufficient conditions that ensure the
existence of a classifier that is—within a guaranteed margin—fair and accurate at the
same time.

Definition 2 (Good Similarities for Fairness). A similarity function K is (ε, γ, τ)-good for
convex, positive, and decreasing loss ` and (µ, ν)-fair for demographic parity if there exists
a (random) indicator function R(x, s, y) defining a (probabilistic) set of “reasonable points”
such that, given that ∀x ∈ X , g(x) = E(x′,s′,y′)∼DZ [y

′K(x, x′) |R(x′, s′, y′)], the following
conditions hold:

(i) E
(x,s,y)∼DZ

[
`

(
yg(x)

γ

)]
≤ ε,

(ii)

∣∣∣∣∣ P
DZ |s=1

[g(x) ≥ γ]− P
DZ |s=−1

[g(x) ≥ γ]

∣∣∣∣∣ ≤ µ,

(iii) P
(x,s,y)∼DZ

[|g(x)| ≥ γ] ≥ 1− ν,

(iv) P
(x,s,y)∼DZ

[R(x, s, y)] ≥ τ.

Roughly speaking, a similarity is good for classification if examples of the same
class are on average closer to each other than examples of different classes up to a
certain margin. Moreover, it is good for fairness if this margin is independent of group
membership. Given such a similarity, we can prove the existence of a fair and accurate
classifier as is summarized in the next theorem.

Theorem 3 (Existence of a fair and accurate separator). Let K ∈ [−1, 1] be a (ε, γ, τ)-
good and (µ, ν)-fair metric for a given convex, positive and decreasing loss ` with lipschitz
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constant L. For any ε1 > 0 and 0 < δ < γε1
2(L+ (̀0)) , let S =

{
(x′1, s′1, y′1), . . . , (x′d, s′d, y′d)

}
be

a set of d examples drawn from DZ with

d ≥ 1
τ

[
L2

γ2ε2
1
+

3
δ
+

4L
δγε1

√
δ(1− τ) log(2/δ)

]
.

Let φS : X → Rd be a mapping with φS
i (x) = K(x, x′i), for all i ∈ {1, . . . , d}. Then, with

probability at least 1− 5
2 δ over the choice of S, the induced distribution over φS(X )× S ×Y

has a linear separator α such that

E
(x,s,y)∼DZ

[
`

(
y
〈
α, φS(x)

〉
γ

)]
≤ ε + ε1,

and, with p1 = P(x,s,y)∼DZ [s = 1],

|DDP(α)| ≤ µ + (ν + 2δ)max
(

1
p1

,
1

1− p1

)
.

Proof. Let S =
{
(x′1, s′1, y′1), . . . , (x′d, s′d, y′d)

}
be a sample of size d drawn from DZ and

let φS : X → Rd be a mapping defined as φS
i (x) = K(x, x′i), for all i ∈ {1, . . . , d}.

Recall that |K(x, x)| ≤ 1 for all x. It implies that
∥∥φS

∥∥
∞ ≤ 1. Furthermore, let α ∈ Rd

be defined as αi =
y′i R(x′i ,s

′
i ,y
′
i)

d1
with d1 = ∑i R(x′i , s′i, y′i) which ensures that ‖α‖1 = 1.

The proof is in two parts. First, we show the bound on the target criterion, that is,
given d chosen as in the theorem, we show that

P
S∼Dd

Z

[
E

(x,s,y)∼DZ

[
`

(
y
〈
α, φS(x)

〉
γ

)]
≤ ε + ε1

]
≥ 1− δ.

Second, we show a bound on the true DDP, that is, given d chosen as in the theorem,
we show that

|DDP(α)| ≤ µ + ν max
(

1
p1

,
1

1− p1

)
where p1 = P(x,s,y)∼DZ [s = 1].

Bound on the target criterion. For any example (x, s, y) ∼ DZ , we have

y
〈

α, φS(x)
〉
=

∑d
i=1 yy′iR(x′i , s′i, y′i)K(x, x′i)

d1

which is an empirical average of d1 terms with R(x′i , s′i, y′i) = 1 and

−1 ≤ yy′iR
(
x′i , s′i, y′i

)
K
(
x, x′i

)
≤ 1.
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Using Hoeffding’s inequality, we can show that

P
S∼Dd

Z

[
y
〈

α, φS(x)
〉
≤ E

(x′,s′,y′)∼DZ

[
yy′K

(
x, x′

)
|R
(
x′, s′, y′

)]
− t
]
≤ exp

(
− t2d1

2

)

which implies that, with probability at least 1− δ2

4 , we have

y
〈

α, φS(x)
〉
≥ E

(x′,s′,y′)∼DZ

[
yy′K

(
x, x′

)
|R
(
x′, s′, y′

)]
−

√
2 log

( 4
δ2

)
d1

.

This inequality holds for any (x, s, y) ∼ DZ and thus we have that

P
S∼Dd

Z

y
〈

α, φS(x)
〉
≤ E

(x′,s′,y′)∼DZ

[
yy′K

(
x, x′

)
|R
(
x′, s′, y′

)]
−

√
2 log

( 4
δ2

)
d1

 ≤ δ2

4

⇒E

P

y
〈

α, φS(x)
〉
≤ E

[
yy′K

(
x, x′

)
|R
(
x′, s′, y′

)]
−

√
2 log

( 4
δ2

)
d1

 ≤ δ2

4

⇒ E
S∼Dd

Z

 P
(x,s,y)∼DZ

y
〈

α, φS(x)
〉
≤E

[
yy′K

(
x, x′

)
|R
(
x′, s′, y′

)]
−

√
2 log

( 4
δ2

)
d1

 ≤ δ2

4
.

Then, applying Markov’s inequality, we obtain that

P
S∼Dd

Z

 P
(x,s,y)∼DZ

y
〈

α, φS(x)
〉
≤E

[
yy′K

(
x, x′

)
|R
(
x′, s′, y′

)]
−

√
2 log

( 4
δ2

)
d1

 ≥ δ

 ≤ δ

4
,

which implies

P
S∼Dd

Z

P

y
〈

α, φS(x)
〉
≤E

[
yy′K

(
x, x′

)
|R
(
x′, s′, y′

)]
−

√
2 log

( 4
δ2

)
d1

 ≤ δ

 ≥ 1− δ

4
.

In other words, with a probability at least 1− δ
4 at most δ fraction of points violate

y
〈

α, φS(x)
〉
≥ E

(x′,s′,y′)∼DZ

[
yy′K

(
x, x′

)
|R
(
x′, s′, y′

)]
−

√
2 log

( 4
δ2

)
d1

. (2.9)
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Therefore, let g(x) = E(x′,s′,y′)∼DZ [y
′K(x, x′) |R(x′, s′, y′)], with a probability at

least 1 − δ
4 for at least 1 − δ fraction of points, which do not violate (2.9), we have,

for our decreasing loss ` (for example the hinge loss, `(w) = max (0, 1− w)):

`

(
y
〈
α, φS(x)

〉
γ

)
≤ `

yg(x)−
√

2 log
(

4
δ2

)
d1

γ


≤ `

(
yg(x)

γ

)
+ L

∣∣∣∣∣∣ 1
γ

√
2 log

( 4
δ2

)
d1

∣∣∣∣∣∣
≤ `

(
yg(x)

γ

)
+

L
γ

√
2 log

( 4
δ2

)
d1

.

For at most a δ fraction of points violating (2.9), we use a bound on the worst case
loss derived from its lipschitzness.

`

(
y
〈
α, φS(x)

〉
γ

)
≤ L

∣∣∣∣∣y
〈
α, φS(x)

〉
γ

∣∣∣∣∣+ `(0)

≤ L max
x

∣∣〈α, φS(x)
〉∣∣

γ
+ `(0) (Cauchy-Schwarz Inequality.)

≤ L max
x

‖α‖1

∥∥φS(x)
∥∥

∞
γ

+ `(0)

≤ `(0) +
L
γ

(γ ≤ 1.)

≤ L + `(0)
γ

.

Altogether, we obtain with a probability of at least 1− δ
4 over S that

E
(x,s,y)∼DZ

[
`

(
y
〈
α, φS(x)

〉
γ

)]

≤ E

L + `(0)
γ

1(x violates (2.9)) +

`

(
yg(x)

γ

)
+

L
γ

√
2 log

( 4
δ2

)
d1

1(x satisfies (2.9))


≤ (L + `(0)) δ

γ
+ E

(x,s,y)∼DZ

[
`

(
yg(x)

γ

)]
+

L
γ

√
2 log

( 4
δ2

)
d1

(def. of good similarity.)

≤ (L + `(0)) δ

γ
+ ε +

L
γ

√
2 log

( 4
δ2

)
d1

(δ < γε1
2(L+ (̀0)) .)

≤ ε1

2
+ ε +

L
γ

√
2 log

( 4
δ2

)
d1

.
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Furthermore, the number d1 of reasonable landmarks follows a binomial distribu-
tion B(d, p) with p ≥ τ. With our choice of d, we have that

P
S∼Dd

Z

 L
γ

√
2 log

( 4
δ2

)
d1

≤ ε1

2

 ≥ 1− δ

4
.

Using the union bound, we obtain with a probability of at least 1− δ
2 over S that

E
(x,s,y)∼DZ

[
`

(
y
〈
α, φS(x)

〉
γ

)]
≤ ε + ε1.

Bound on the fairness criterion For any example (x, s, y) ∼ DZ , we have

〈
α, φS(x)

〉
=

∑d
i=1 y′iR(x′i , s′i, y′i)K(x, x′i)

d1
,

which is an empirical average of d1 terms with R(x′i , s′i, y′i) = 1 and

−1 ≤ y′iR
(

x′i , s′i, y′i
)

K
(
x, x′i

)
≤ 1.

Let g(x) = E(x′,s′,y′)∼DZ [y
′K(x, x′) |R(x′, s′, y′)]. Using the same kind of argument

than in the first part of the proof, that is applying Hoeffding’s inequality followed
by Markov’s inequality, we can show that

P
S∼Dd

Z

 P
(x,s,y)∼DZ

∣∣∣〈α, φS(x)
〉
− g(x)

∣∣∣ ≥
√

2 log
( 8

δ2

)
d1

 ≤ δ

 ≥ 1− δ

4
.

Furthermore, notice that the number d1 of reasonable landmarks follows a binomial
distribution B(d, p) with p ≥ τ. With our choice of d, with probability at least 1− δ

4
over the choice of S, it implies that√

2 log
( 8

δ2

)
d1

≤ γ.

As a consequence, we have that

P
S∼Dd

Z

[
P

(x,s,y)∼DZ

[∣∣∣〈α, φS(x)
〉
− g(x)

∣∣∣ ≥ γ
]
≤ δ

]
≥ 1− δ

2
. (2.10)
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To derive a bound on |DDP(α)|, we first derive bounds on
P(x,s,y)∼DZ

[ 〈
α, φS(x)

〉
≥ 0

∣∣ s = 1
]

and P(x,s,y)∼DZ
[ 〈

α, φS(x)
〉
≥ 0

∣∣ s = −1
]
. No-

tice that:

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0

∣∣∣ s = 1
]

≥ P
(x,s,y)∼DZ

[
g(x) ≥ γ ∩

∣∣∣〈α, φS(x)
〉
− g(x)

∣∣∣ ≤ γ
∣∣∣ s = 1

]
≥ 1− P

(x,s,y)∼DZ

[
g(x) < γ ∪

∣∣∣〈α, φS(x)
〉
− g(x)

∣∣∣ > γ
∣∣∣ s = 1

]
(Union’s bound.)

≥ 1− P
(x,s,y)∼DZ

[ g(x) < γ| s = 1]− P
(x,s,y)∼DZ

[ ∣∣∣〈α, φS(x)
〉
− g(x)

∣∣∣ > γ
∣∣∣ s = 1

]
(P [A|B] ≤ P[A]

P[B] )

≥ P
(x,s,y)∼DZ

[ g(x) ≥ γ| s = 1]− P
(x,s,y)∼DZ

[ ∣∣∣〈α, φS(x)
〉
− g(x)

∣∣∣ > γ
∣∣∣ s = 1

]
≥ P

(x,s,y)∼DZ
[ g(x) ≥ γ| s = 1]−

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1
,

where p1 = P(x,s,y)∼DZ [s = 1]. With a symmetric argument, we have that

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
< 0

∣∣∣ s = 1
]
≥

P
(x,s,y)∼DZ

[ g(x) ≤ −γ| s = 1]−
P(x,s,y)∼DZ

[∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
]

p1
.

With P(x,s,y)∼DZ
[ 〈

α, φS(x)
〉
< 0

∣∣ s = 1
]
= 1 − P(x,s,y)∼DZ

[ 〈
α, φS(x)

〉
≥ 0

∣∣ s = 1
]

and 1−P(x,s,y)∼DZ [ g(x) ≤ −γ| s = 1] = P(x,s,y)∼DZ [ g(x) ≥ −γ| s = 1], we have

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0

∣∣∣ s = 1
]

≤ P
(x,s,y)∼DZ

[ g(x) ≥ −γ| s = 1] +
P(x,s,y)∼DZ

[∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
]

p1
.

Furthermore, we have that

P
(x,s,y)∼DZ

[ g(x) ≥ −γ| s = 1] ≤ P
(x,s,y)∼DZ

[−γ ≤ g(x) ≤ γ ∪ g(x) ≥ γ| s = 1]

(Using the union bound and by definition of a good similarity.)

≤ ν

p1
+ P

(x,s,y)∼DZ
[ g(x) ≥ γ| s = 1] .
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This implies that

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0

∣∣∣ s = 1
]
≤ ν

p1
+

P
(x,s,y)∼DZ

[ g(x) ≥ γ| s = 1] +
P(x,s,y)∼DZ

[∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
]

p1
.

In a similar fashion, we have that

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0

∣∣∣ s = −1
]
≥ P

(x,s,y)∼DZ
[ g(x) ≥ γ| s = −1]

−
P(x,s,y)∼DZ

[∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
]

1− p1

and

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0

∣∣∣ s=−1
]
≤ ν

1−p1
+ P
(x,s,y)∼DZ

[ g(x) ≥ γ| s=−1]

+
P(x,s,y)∼DZ

[∣∣〈α, φS(x)
〉
−g(x)

∣∣ > γ
]

1− p1
.

These inequalities imply an upper bound on DDP(α),

DDP(α) = P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0

∣∣∣ s = 1
]
− P

(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0

∣∣∣ s = −1
]

≤ ν

p1
+ P

(x,s,y)∼DZ
[ g(x) ≥ γ| s = 1] +

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1

− P
(x,s,y)∼DZ

[ g(x) ≥ γ| s = −1] +
P(x,s,y)∼DZ

[∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
]

1− p1

(By definition of a good similarity.)

≤ ν

p1
+ µ +

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1

+
P(x,s,y)∼DZ

[∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
]

1− p1

and, similarly these inequalities imply a lower bound on DDP(α),

DDP(α) ≥ − ν

1− p1
− µ−

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1

−
P(x,s,y)∼DZ

[∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
]

1− p1
.
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Then, using Inequality 2.10 and the union bound, we obtain that

P
S∼Dd

Z

[
DDP(α) ≤ ν

p1
+ µ +

δ

p1
+

δ

1− p1

]
≥ 1− δ

In a similar fashion, we also obtain that

P
S∼Dd

Z

[
DDP(α) ≥ − ν

1− p1
− µ− δ

p1
− δ

1− p1

]
≥ 1− δ

We can combine both inequalities with the union bound to obtain

P
S∼Dd

Z

[
|DDP(α)| ≤ µ + (ν + 2δ)max

(
1
p1

,
1

1− p1

)]
≥ 1− 2δ

Using the union one last time to combine the fairness bound and the target crite-
rion bound gives the theorem.

2.5 Experiments

In this section, we empirically evaluate SearchFair by comparing it to 5 baselines on 6
real-world datasets. In all the experiments, SearchFair either reliably finds the fairest
classifier and is comparable to a very recent non-convex optimization approach.

Datasets. We consider 6 different datasets: CelebA (Liu et al., 2015), Adult (Kohavi
and Becker, 1996), Dutch (Zliobaite et al., 2011), COMPAS (Larson et al., 2016), Com-
munities and Crime (Redmond and Baveja, 2002), and German Credit (Dua and Graff,
2017). We present results for CelebA, Adult, and COMPAS in this chapter. In Ap-
pendix A, we give detailed descriptions of the other datasets, how we pre-process the
data, and the sizes of the train and test splits. Note that we remove the protected
attribute s from the set of features x so that it is not needed at decision time.

We pre-process the datasets by normalizing and centering continuous variables.
For categorical values, we use a one-hot encoding. We select a fixed number of ran-
domly selected points for training, and use the rest of the points for testing.

CelebA. The CelebA dataset (Liu et al., 2015) contains 202, 599 images of celebrity
faces from the web. In addition to the image data, there exist 40 binary attribute labels
describing the content of the images, such as ‘Black Hair’, ‘Bald’, and ‘Eyeglasses’.
We use 38 of those descriptions as features, the sex as the protected attribute, and
the attribute ‘Smiling’ as the class label. We use 10, 000 randomly selected points for
training.
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Adult. The Adult dataset (Kohavi and Becker, 1996) contains data from the U.S. 1994
Census database. There are 48, 842 instances with 14 features, among others age and
education, including the two protected attributes sex and race. We apply the pre-
processing of Wu et al. (2019): we consider sex with values male and female as the
protected attribute and use 9 features for training, dropping FNLWGT, EDUCATION,
CAPITAL-GAIN, CAPITAL-LOSS. The goal is to predict the income: y = 1 if it is more
than fifty thousand U.S. Dollars, y = −1 otherwise. We use 10, 000 randomly selected
points for training.

Dutch. The Dutch dataset (Zliobaite et al., 2011) contains data from the 2001 Nether-
lands Census and consists of 60, 420 data points which are characterized by 12 features.
We use gender as the protected attribute and predict low income or high income as it is
determined by occupation. Hence, we learn with the remaining 10 features. We use
10, 000 randomly selected points for training.

Baselines. We compare SearchFair to 5 baselines. For 3 of them, we use Optimiza-
tion Problem 2.4 with hinge loss and a squared `2 norm as the regularization term.
As a function class F , we use similarity-based classifiers presented in Section 2.4 with
either the linear or the rbf kernel and with 70% (at most 1000) of the training examples
as reasonable points. As a fairness constraint, we use either the linear relaxation of
Zafar et al. (2017a) (Zafar), the linear relaxation of Donini et al. (2018) (Donini), or no
constraint at all (Unconst). The fourth baseline is a recent method for non-convex con-
strained optimization by Cotter et al. (2019) (Cotter). Our last baseline is the constant
classifier (Constant) that always predicts the same label but has perfect fairness.

SearchFair. 3 For SearchFair we also use the hinge loss, a squared `2 norm as the reg-
ularization term (it is strongly convex), and similarity-based classifiers. As a convex
approximation of the fairness constraint, we use the bounds with hinge loss proposed
by Wu et al. (2019) (see Section 2.3for details).

Metrics. Our main goal is to learn fair classifiers. Hence, our main evaluation met-
rics are the empirical DDP and DEO scores on the test set (lower is better). As a sec-
ondary metric (in case of ties in the fairness scores), we consider the classification per-
formance of the models and we report the errors on the test set (lower is better). All
the experiments are repeated 10 times and we report the mean and standard deviation
for all the metrics.

Hyperparameters. Zafar, Donini and Cotter use a fairness parameter, that we call
τ, to control the fairness level. Since our goal is to learn classifiers that are fair, we
set τ = 0 such that perfect fairness is required. For SearchFair, there is no fairness
parameter since λ0 is automatically searched for between a lower bound λmin and an

3The code is freely available online: github.com/mlohaus/SearchFair.

github.com/mlohaus/SearchFair
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upper bound λmax. We set λmin = 0 and λmax = 1 as these values usually lead to
classifiers with fairness scores of opposite sign (as needed). We use 10 iterations in the
binary search.

We use 5-fold cross validation to choose other hyperparameters. For Cotter,
only the width of the rbf kernel has to be tuned since we use the framework of
the original paper with no regularization term. For all remaining methods we
need to choose the regularization parameter β and the width of the rbf kernel.
These values are respectively chosen in the sets

{
10−6, 10−5, 10−4, 10−3, 10−2} and

{10−dlog de−1, 10−dlog de, d−1, 10−dlog de+1,10−dlog de+2}, with d the number of features.
We select the set of parameters that lead to the most accurate classifier on average over
the 5 folds. Indeed, the fairness level is automatically taken care of by the methods.

Results. We present the results for 3 out of 6 datasets in Figure 2.5. The other re-
sults are deferred to Appendix A as they follow the same trend. We make two main
observations. First, SearchFair always obtains fairness values that are very close to
zero. It learns the fairest classifiers out of all the methods and is only matched by Cot-
ter, the non-convex approach. This sometimes comes with a small increase in terms
of classification error. For example, in order to achieve perfect DDP fairness on the
Adult dataset, SearchFair, and all the other fair methods, yield classifiers close to the
trivial constant one. Second, the complexity of the model greatly influences the per-
formances of the linear relaxations. For example, using the complex rbf kernel almost
always results in an increase in the fairness score of Zafar and Donini. This is partic-
ularly striking for Adult and Dutch where the linear kernel yields reasonable fairness
scores. Note that this trend is not always respected. For example, on CelebA, using an
rbf kernel improves the fairness score compared to the linear kernel. However, neither
of them obtain reasonable fairness levels in the first place.

Discussion on hyperparameter selection. Apart from the hyperparameter selection
method used in our experiments, one can think of other cross validation procedures.
For example, Donini et al. (2018) proposed NVP, a cross validation method where one
selects the set of hyperparameters that gives the fairest classifier while obtaining an
average accuracy above a given threshold. Similarly, one could select the set of hyper-
parameters that yields the most accurate classifier under a given fairness threshold.
In Appendix A, we report results that empirically show that these more complex pro-
cedures tend to improve the fairness of the baselines (SearchFair remains competitive
on all the datasets). Unfortunately, they also blur the dividing line between hyperpa-
rameters that control the fairness of the model and the ones that control its complexity.
In other words, it becomes unclear whether fairness is achieved thanks to the relax-
ation or thanks to the choice of hyperparameters (we already evoked this issue in
Figure 2.3). We believe that it is better to have a method that is guaranteed to find
a fair classifier for any given family of models and does not rely on a complex cross
validation procedure.
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2.6 Conclusion

In this chapter, we have shown that existing approaches to learn fair and accurate
classifiers have many shortcomings. They use loose relaxations of the fairness con-
straint and guarantees that relate the relaxed fairness to the true fairness of the so-
lutions are either missing or not sufficient. We empirically demonstrated how these
approaches can produce undesirable models. If “fair machine learning” is supposed
to be employed in real applications in society, we need algorithms that actually find
fair solutions, and ideally come with guarantees. We made a first step in this direction
by proposing SearchFair, an approach that uses convex relaxations to learn a classifier
that is guaranteed to be fair.



Chapter 3

Disparate Treatment in Neural
Networks

Autonomous systems that make substantive decisions about people must often con-
form to relevant anti-discrimination legislation. Within the US legal system, two of
the most common tests of anti-discrimination legislation are referred to as disparate
treatment and disparate impact (Chapter 1, King and Hemenway (2020)). Importantly,
it has been argued (Barocas and Selbst, 2016) that there are a large range of scenarios
where disparate treatment is unlawful even when performed as a remedy to disparate
impact. This is in marked departure from the EU and the UK where considerably
more latitude exists when rectifying indirect discrimination (analogous to disparate
impact) (Wachter et al., 2021).

Consequentially, disparate treatment doctrine prevents a wide range of actions in-
tended to address sustained inequality (Bent, 2019). Of particular relevance to our
work is a 1991 amendment to Title VII (Statute, 1991). This amendment explicitly pro-
hibits the “use [of] different cutoff scores for . . . employment related tests on the basis
of race, color, religion, sex, or national origin”, even if done for reasons of affirmative
action. In this chapter, we examine the relationship between existing methods for en-
forcing demographic parity, and methods for demographic parity that alter the cutoff
score on the basis of inferred race or gender, raising fundamental questions about the
legality of existing approaches for enforcing demographic parity.

In particular, we examine the behavior of deep neural networks trained to enforce
demographic parity, either by using a regularizer (i.e., an additional loss term) or by
preprocessing (Kamiran and Calders, 2012). There are two plausible routes for how
these networks might exhibit demographic parity. Such models could either (i) learn
an internal representation that is unpredictive with respect to the protected attribute,
or (ii) they could learn to distinguish between groups and tune a separate classifier for
each group in a way that happens to result in a demographically fair outcome.

In the context of US law, it is vital to understand which of these cases occurs in
practice. If the learned algorithms treat people differently on the basis of their race
or gender, this may correspond to disparate treatment. We find that networks trained

47
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last-layer representation 
 of unconstrained model

last-layer representation of a model
 regularized for demographic parity

last-layer representation of a model 
 with explicit protected group awareness

Group 0
Group 1

Figure 3.1: Feature representations of unconstrained (left), fairness-regularized
(center), and group-aware (right) ResNet50 models. The plots show tSNE (van der
Maaten and Hinton, 2008) embeddings of the last-layer representations of CelebA
celebrity images. Each plot shows a classifier trained to identify if people are smil-
ing, with red points corresponding to individuals labeled male, and blue female. The
additional use of fairness constraints at training causes a mixed manifold of men and
women (left) to separate into largely disjoint sets (center). Similar behavior is observed
when training a two-headed model (right) to predict both gender and ‘smiling’.

to satisfy demographic parity fall into this second case. Moreover, we show that the
more strongly demographic parity is enforced, the more predictive the internal repre-
sentation is of the protected attribute; see Figure 3.1.

Building on the observation that the protected attribute is implicitly learned, we
train a neural network with a second classification head that explicitly predicts the
protected attribute, and use the second head response to directly reduce demographic
disparity. Compared to regularized approaches, our training strategy provides better
interpretability and improved stability when demographic parity is strongly enforced.

Formally, we consider an ex-post method of enforcing demographic parity over a
standard classifier f trained without consideration of fairness. Our method makes a
positive decision if the inequality

f (x) ≥ a1g(x) + a2 (3.1)

is observed, where x is a datapoint, such as a photograph for a curriculum vitae, g is a
predictor of the protected attribute, and a1, a2 ∈ R are tunable parameters that control
the accuracy-fairness trade-off. Note that this classifier is constructed to explicitly
treat people differently based on their perceived protected attribute (as represented
by the response g(x)), and hence, demonstrates disparate treatment (cf. Section 3.3
and Figure 3.2).

We compare this classifier f to a fair classifier r, which is trained with a fairness
regularizer or preprocessing to approximately satisfy demographic parity, and show
that f and r are tightly related. We conclude that r also demonstrates disparate treat-
ment. In summary, we make the following contributions in this chapter.
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input image
x ∈ Rd

Computer
vision

backbone
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group
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Fair classification
with weighted sum
f (x) + a1g(x) + a2

After

training

Figure 3.2: Our simple two-headed model for demographic parity, which exhibits
explicit disparate treatment. We add two heads to a pretrained backbone: the target
classifier f , and the group classifier g, which predicts the protected attribute. We
jointly train both heads and the backbone. After training, we estimate coefficients a1
and a2 such that the weighted sum f (x) + a1g(x) + a2 is accurate and fair.

1. The internal state of r is strongly predictive of the protected attribute, and as the
emphasis on fairness increases, so does the predictive accuracy for the protected
attribute (Section 3.2).

2. The formulation of eq. (3.1) is an effective approach for creating demographic–
parity–fair classifiers. Namely, we show that on computer vision datasets, the
performance of eq. (3.1) closely tracks the optimal accuracy-fairness trade-offs
of Lipton et al. (2018) without requiring explicit access to the protected attribute
(Section 3.3).

3. Decisions of the fair model r, which makes a positive decision if r(x) ≥ 0, are
well-approximated by f (x) + a1g(x) + a2 and demonstrate the same accuracy-
fairness trade-off. Similarly, decisions made by an unconstrained classifier are
closely approximated by r(x)− b1g(x)− b2 (Section 3.4.1).1

4. Using this close relationship between fair model and the unconstrained model in
eq. (3.1) we are able to identify individuals who have been systematically disad-
vantaged by decisions made by the fair classifier, and who would have received
a positive decision, if their apparent race or gender were different. This allows
us to conclude that the demographic–parity–fair method also exhibits disparate
treatment (Section 3.4.2). Legal implications are discussed in Section 3.5.

3.1 Preliminaries

3.1.1 Background on Fair Classification

We define a binary classifier as a function h : X → {0, 1} which, given a data-
point x from a feature space X , aims to accurately predict the datapoint’s ground-
truth label y ∈ Y = {0, 1}. We consider thresholded classifiers of the form h(x) =

1As we are interested in mimicking discrete yes/no decisions rather than continuous classifier responses,
the two statements are not equivalent.
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1( f (x) > 0) where f is a continuous function f : X → R. We require that h be as ac-
curate as possible, while remaining fair with respect to a protected attribute s ∈ S =
{0, 1}2. We assume a joint distribution P over X × Y × S from which we can draw
(X, Y, S) ∼ P. We focus on the well-known notion of demographic parity (aka sta-
tistical parity; (Dwork et al., 2012; Feldman et al., 2015; Kamiran and Calders, 2012))
defined as:

Definition 3 (Demographic Parity). A binary classifier h : X → {0, 1} exhibits demo-
graphic parity under a distribution P if its prediction h(X) is independent of the protected
attribute S, that is

P(h(X) = 1|S = 0) = P(h(X) = 1|S = 1).

We measure the violation of demographic parity by the demographic disparity (DDP), given
by

DDP = DDP(h; P) := P(h(X) = 1|S = 1)−P(h(X) = 1|S = 0). (3.2)

Regularized Fair Classification. One common approach for learning a fair classifier
is to add a regularizer to the standard training objective (Bendekgey and Sudderth,
2021; Beutel et al., 2019; Kleindessner et al., 2021; Lohaus et al., 2020; Manisha and
Gujar, 2020; Risser et al., 2021; Wick et al., 2019, e.g.,). Such regularizers are used to
enforce numerous fairness definitions and typically impose a continuous relaxation
of a discrete fairness measure such as the DDP (3.2). The regularizer used by (Wick
et al., 2019) is a sigmoid-based relaxation of the squared value of (3.2), evaluated on
the training dataset {(xi, si, yi)}n

i=1, which is an i.i.d. sample from P:

R̂DP( f ) :=
( 1
|{i : si = 1}| ∑

i∈[n]:si=1
σ( f (xi))−

1
|{i : si = 0}| ∑

i∈[n]:si=0
σ( f (xi))

)2
. (3.3)

The fairness regularizer trades-off fairness against the accuracy of the classifier via
a hyperparameter λ. In the main body of the paper, we only report results for the
regularizer R̂DP( f ).

We also consider a similar regularizer (Manisha and Gujar, 2020), denoted by R̂abs
DP ,

where the squaring function is replaced by the absolute value, that is

R̂abs
DP ( f ) :=

∣∣∣∣∣ 1
|{s : si = 1}| ∑

i∈[n]:si=1
σ( f (xi))−

1
|{s : si = 0}| ∑

i∈[n]:si=0
σ( f (xi))

∣∣∣∣∣ . (3.4)

We follow (Bendekgey and Sudderth, 2021; Wick et al., 2019) in applying the regu-
larizer (3.3) to the sigmoid output of the networks. This differs from approaches such

2In this chapter, we stick to the annotations available in the CelebA or FairFace dataset (compared
to the other chapters). These are externally assigned binary labels, but in principle, our method in Sec-
tion 3.3 works for multiple / non-binary protected groups.
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as (Donini et al., 2018; Zafar et al., 2017a), which enforce fairness constraints on logits
representing real-valued margin distances and have recently been criticized for being
easy to satisfy without requiring the classifier to make fair decisions (Lohaus et al.,
2020).

Preprocessing: Massaging the Dataset. We also examine a preprocessing
method (Kamiran and Calders, 2012), which alters target labels prior to training. Mas-
saging ‘promotes’ negative points from the disadvantaged group to the positive label
if they have a high positive class probability as calculated by a unconstrained classifier
and ‘demotes’ positive points from the advantaged group to the negative label if they
have a low positive class probability. The number of points whose label is flipped is
controlled by a parameter λ ∈ [0, M], where λ = M results in the same fraction of
positive points for both groups.

3.1.2 Implicit Disparate Treatment

Lipton et al. (2018) examined the popular claim that machine learning models that do
not use protected information at test time cannot exhibit disparate treatment (Donini
et al., 2018; Goh et al., 2016; Harned and Wallach, 2019; Manisha and Gujar, 2020;
Wu et al., 2019; Zafar et al., 2017a,b). Lipton et al. (2018) recommended caution
and observe that if the protected attribute s is a deterministic function s = g(x) of
the non-protected features x, any sufficiently powerful ML model can learn a func-
tion f (x, s) = f̃ (x) with f̃ (x) = f (x, g(x)). They argue that even though the pro-
tected attribute is not provided at test time, such a model would constitute a case
of disparate treatment since it makes decisions based on the implicitly reconstructed
protected attribute. However, beyond a synthetic experiment in which a classifier dis-
criminates based on hair length (as a proxy of gender), they do not study whether–and
how–implicit disparate treatment happens in practice. We complement their work by
providing strong evidence that deep neural networks suffer from disparate treatment
even when not explicitly using the protected attribute at test time.

Lipton et al. (2018) proposed a postprocessing method that requires protected at-
tributes at test time to apply per-group decision thresholds on the classifier response.
These thresholds are greedily chosen. Lipton et al. (2018) proved that their approach
finds optimal thresholds under a given fairness constraint. We compare to them in Sec-
tion 3.3.

3.1.3 Computer Vision and Anti-discrimination Law

We evaluate on standard computer vision datasets. There are two reasons for this:
first, large organizations are increasingly aware of the ramifications of releasing data
and reluctant to release data that might reveal gender or racial biases. Computer
vision remains one of the few areas of modern machine learning where large high-
dimensional datasets continue to be released alongside race- or gender-based annota-
tions. As such, the use of these datasets is perhaps more representative of fair machine
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learning as it can be practiced within industry, rather than the use of low-dimensional
historic datasets that are common to the field. The second reason concerns the recent
shift in the way computer vision is used. US anti-discrimination law is primarily con-
cerned with decisions made in the contexts of employment, education, and housing.
However, in the past year, we have seen the rise of online proctoring systems that
attempt to detect cheating by using computer vision systems to determine where a
person is looking. Automatically identifying an individual as cheating can have long-
term impact on continued access to education. While the systems are proprietary and
little information about them is publicly available, some are known to exhibit racial
biases (Feathers, 2021). AI systems are also being used to determine if workers are
smiling sufficiently (Vincent, 2021), and it is likely a matter of time until similar tech-
nology is used to evaluate the job performance of customer-facing workers. As such,
it is vital that we understand how such systems interact with an individual’s rights
and with anti-discrimination legislation.

3.1.4 Datasets and Technical Details

CelebA dataset. The CelebA dataset (Liu et al., 2015) contains 202, 599 images of
celebrity faces with 40 binary annotations, such as WEARING GLASSES, SMILING or
MALE. We use the Aligned&Cropped subset and its standard split into train, test,
and validation data. We center-crop the images and resize them to 224× 224. During
training, we randomly crop and flip images horizontally. We use (Ramaswamy et al.,
2021) as reference for choosing target and protected labels.

FairFace dataset. The FairFace dataset (Karkkainen and Joo, 2021) contains 108, 501
images collected from the YFCC-100M Flickr dataset and are annotated with GEN-
DER, RACE, and AGE. We binarize the attribute RACE into WHITE and the union of all
other groups. From AGE, we build several binary attributes: BELOW 20, BELOW 30,
and BELOW 40. In our experiments, we use the provided validation data with 1.25
padding as our test data, and from the provided train data, we prepared our own
random and balanced validation split. We center-crop the images and resize them to
224× 224. During training, we crop randomly, and randomly flip the images horizon-
tally (p=0.5).

Models. Given a fixed target attribute and protected attribute, we train all pa-
rameters of a pretrained ResNet50 (He et al., 2016) or MobileNetV3-Small (Howard
et al., 2019) backbone provided by PyTorch with the binary cross entropy loss.
MobileNetV3-Small contains 2.8M parameters and is more resource friendly than the
much bigger ResNet50. Hence, for some experiments we only used MobileNetV3-
Small to save computation time. The dimension m of the last-layer representation
z ∈ Rm is m = 2048 for the ResNet50 and m = 1024 for MobileNetV3-Small.

We train all models, including our two-headed approach, with the Adam Opti-
mizer (Kingma and Ba, 2017) (learning rate is 10−4 on CelebA and 10−5 on FairFace,
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batchsize is 64) for a total of 20 epochs and select the model with the highest aver-
age precision achieved on the validation set. In addition, we employ a learning rate
scheduler that reduces the learning rate by a factor of 10 if there is no progress on the
validation loss for more than 8 epochs. To have meaningful regularizer losses for each
batch, we use stratified batches, such that the prevalence of the protected attribute is
roughly the same as the overall prevalence. For the classification loss, we use binary
cross entropy loss with a sigmoid activation.

If we train the models with one of our two fairness regularizers, the range for the
fairness parameter λ is [0, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 30]. For the Massaging prepro-
cessing method, the range is [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

3.2 Protected Attribute Awareness in Fair Networks

We develop tools and statistical tests that allow us to understand if deep networks
enforce demographic parity by either (i) learning an internal representation that is un-
predictive with respect to the protected attribute, or (ii) by learning a representation
that separates groups, thus allowing each group to be treated differently in a way
that results in a fair outcome. For both regularized and preprocessing approaches,
awareness of the protected attribute increases as fairness is more strongly enforced.
To measure how well a network separates the protected groups, we examine how ac-
curately a linear classifier can recover the protected attribute from the responses of the
last layer of a neural network trained to enforce demographic parity. As we increase
the fairness parameter λ, the accuracy of predicting the protected attribute from the
last layer is approaching the performance of a model that is explicitly trained to do so.
In this section, we present results for the fairness regularizer defined in (3.3). Results
for the other regularizer and for the preprocessing method Massaging (Kamiran and
Calders, 2012) are presented in Appendix B.1.

Experimental Setup We choose a target and a protected attribute from 9 binary at-
tributes of the CelebA dataset. For each distinct pair of target and protected attribute,
we train 12 models — corresponding to fairness parameter λ ∈ {0, 0.1, 0.5, 1, 2, 3, 4,
5, 10, 15, 20, 30}. For every model, we train a linear classifier using logistic regression
to predict the protected attribute from the model’s frozen last-layer representation; we
refer to such a classifier as protected attribute classifier or group classifier.

Evaluation For each pair of target and protected attribute, we evaluate if increasing
λ increases the accuracy of a linear classifier trained on the last layer. We test for a
monotonic relationship using the Kendall-tau correlation τ (Kendall, 1945).

We perform this test on 12 datapoints consisting of two values: the fairness param-
eter λ and the accuracy of the protected attribute classifier that predicts the protected
attribute from the last-layer representation. Additionally, we compute a two-sided p-
value for the null hypothesis of independence between λ and the accuracy. Since the
regularized approach can collapse to a trivial near-constant classifier when λ is too
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Figure 3.3: Kendall-tau rank correlations between fairness parameter λ and accu-
racy of protected attribute classifier. For each pair of protected attribute (row) and
target (column), we train 12 regularized ResNet50 models while varying the fairness
parameters λ. Given their fixed last-layer representations, we train linear classifiers
to predict the protected attribute. From the resulting 12 pairs of λ and protected at-
tribute accuracy, we test for a monotonic relationship between λ and group accuracy
by computing the Kendall-tau rank correlation. The color and size of a square corre-
spond to the value and magnitude of the correlation coefficient. For almost all tasks,
the accuracy of predicting the protected attribute increases as the fairness parame-
ter increases.

large, we discard models with accuracy in the lowest quartile between the accuracy of
a constant classifier and the accuracy of an unconstrained classifier.

Results. Figure 3.3 summarizes our results. For 71 out of 72 experiments the
Kendall-tau correlation shows a positive correlation between λ and the protected at-
tribute accuracy. In 62 out of the 72 experiments, we can reject the null hypothesis of
independence at a significance level of p < 0.05. The correlation in those experiments
shows a very strong monotonic relationship with a correlation higher than 0.49. For
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Figure 3.4: (Right) Increase in protected attribute awareness. For target ATTRAC-
TIVE and protected attribute MALE, we show how the linear separability of gender
increases together with the regularization strength. For all experiments, the net-
work is first trained with fairness constraints, and the group classifier is subsequently
trained on the frozen last-layer representation to predict the protected attribute. (Left)
Maximum increase of protected attribute accuracy. Compared to the unconstrained
model, we show the highest difference to the second head accuracy of fair models.

nine experiments, we observe lower but still positive values of the correlation coeffi-
cient τ and higher p-values. Only when the protected attribute is ATTRACTIVE and the
target is BANGS, we find a negative correlation, but with an insignificant p-value of
p = 0.64. The right panel of Figure 3.4 depicts the behavior of one specific experiment.
For this experiment, the protected attribute is MALE and the target is ATTRACTIVE. As
we increase the fairness parameter λ, we see a monotone increase in the group clas-
sifier accuracy (up to 8%). The maximum difference in group accuracy between the
unconstrained model and the fairer models is shown in the left panel.

Conclusion. Increasing the fairness regularization of neural networks makes it
easier to recover the protected attribute. We often find a strong monotonic relation-
ship between the fairness parameter and the ability to recover the protected attribute
using information in the last layer. Moreover, this relationship was always statisti-
cally significant when MALE was the protected attribute. As Lipton et al. (2018) ob-
served that disparate treatment can occur if a system is able to infer the protected
attribute (cf. Section 3.1.2), this increase in accuracy is a cause for concern. However,
it does not guarantee that knowledge of the protected attribute is used and that dis-
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parate treatment is occurring. Sections 3.3 and 3.4 build on this initial analysis and
show that it occurs in practice.

3.3 A new fairness method: Explicit Group Awareness to En-
force Demographic Parity

To understand if and how existing approaches use knowledge of the protected at-
tribute, we contrast their behavior with that of a novel approach that explicitly infers
the protected attribute and rescores individuals with it. As well as analyzing other
existing approaches, the approach is valuable for its ability to efficiently find accurate
classifiers with a particular demographic disparity, and it’s reliability in generating
classifiers with extremely low demographic disparity.

Model Construction. We consider a standard network backbone (e.g., ResNet 50),
with two heads. The first head f : X → R outputs a score for predicting the target
attribute and the second head g : X → R a score for the protected attribute (see Fig-
ure 3.2 for a sketch). We present the esults with a ResNet50 in this chapter, and include
further results with the MobileNetV3-Small architecture in Appendix B.2.

The first head f is trained to minimize binary cross entropy, while g minimizes the
mean squared error. This results in second-head outputs that are close to the binary
labels {0, 1} rather than a calibrated score. We minimize the objective:

L̂( f , g) =
1
n

(
n

∑
i=1

L̂BCE(σ( f (xi)), yi) + (g(xi)− si)
2

)
.

We train the two heads directly, rather than using a regularizer or preprocessing
to achieve fairness. After training, we combine the two heads f and g to create a
new fair scoring function F that maximizes accuracy on the original classification task
while enforcing fairness. The function F takes the form F(x) = f (x) + a1g(x) + a2 for
coefficients a1, a2 ∈ R. Note that at test time F can be compressed into a single head,
that is if f (x) = w f · z(x) + b f and g(x) = wg · z(x) + bg, with z(x) being the last-layer
representation, then F(x) = (w f + a1wg) · z(x) + (b f + a1bg + a2).

To find coefficients a1 and a2 such that the predictions of the thresholding rule
1(F(x) > 0) are fair and maximally accurate, we perform a grid search on validation
data. The grid search procedure of our two-headed approach chooses all combina-
tions of a1 and a2 from a grid of 200 equidistant points between −15 and 15. Going
through all combinations, we choose the most accurate model that matches a given
demographic disparity. We continue to search in the interval of the grid points which
are closest to the current solution by forming another grid of 200 equidistant points in
this interval. We continue this recursion 4 times. We compare our approach to Lip-
ton et al. (2018) who’s similar approach provided optimal per-group thresholds but
requires explicit knowledge of the protected attributes at test time.
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Figure 3.5: Comparison of different fairness approaches. We compare our group
aware model to a fairness-regularized model (left plot) and the approach of Lipton
et al. (2018) (right plot) on when predicting the target ATTRACTIVE with respect to
the protected attribute MALE. For all methods, we observe the typical trade-off: as
the model becomes fairer (DDP is closer to 0), the target accuracy for ATTRACTIVE de-
creases. All methods obtain similar accuracy for a particular DDP value. However, the
regularizer approach is unable to achieve near perfect fairness and saturates around
a DDP value of −0.1. Note that Lipton et al. (2018) requires the protected attribute
at test time, while we infer the protected attribute. More datapoints are shown in the
scatter plot for Lipton et al. (2018), and our approach because they can be generated by
varying thresholds without retraining. In contrast, the regularized approach, requires
a full-retraining for every choice of fairness parameter.

If the group classifier g is perfect, our approach and Lipton’s coincide. If g does
not predict the protected attribute well, the classifier that our procedure yields can
perform only worse than the one obtained from the approach of (Lipton et al., 2018)
(at best, the two classifiers are the same; cf. Theorem 4 in their paper). In our computer
vision setting, however, the accuracy of predicting the protected attribute is typically
very high (e.g., on MALE from CelebA, we achieve an accuracy of around 98%), and,
as we show, the performance of our approach is very close to that of (Lipton et al.,
2018).

Experimental Setup. We train the regularizer approach with the same range of 12
parameter values as in Section 3.2. Since the computational cost of training 12 models
is much higher than training one model of our two head approach or one uncon-
strained model for Lipton, we compute solutions with our grid search or Lipton’s
greedy search for 20 equidistant fairness constraints between perfect fairness and the
fairness of the unconstrained classifier.

Results. Figure 3.5 compares the accuracy-fairness trade-off of our approach, the
regularizer approach and Lipton et al. (2018) for a range of fairness parameters. All
three methods offer similar accuracy for a particular choice of demographic disparity.
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However, for the regularized model, it is difficult to control this trade-off or to find
extremely fair solutions. In contrast, our approach and (Lipton et al., 2018) allow easy
selection of a model with a particular demographic disparity. While the performance
of our approach and (Lipton et al., 2018) is similar, we do not require the protected
attribute at test time.

Table 3.1 reports the accuracy obtained under strict fairness constraints. In the first
block of rows, we require the minimum fairness improvement compared to the uncon-
strained classifier to be 50%, that is we want, in absolute value, the DDP to be at most
half of the DDP of the unconstrained classifier. For all methods, we choose the most
accurate model among the models that are fair enough. In the second block, we want
the DDP to be at most 20% of the DDP of the unconstrained model. With respect to the
accuracy-fairness trade-off all methods perform comparably. However, if we require a
substantial reduction of unfairness, the regularizer approach and preprocessing often
fail to find a valid solution. In contrast, Lipton et al. (2018) and our approach, always
find sufficiently fair solutions due to their direct search for per-group thresholds.

Conclusion. Our method has several advantages compared to standard ap-
proaches. (i) The latter requires training a new model for every fairness parameter
λ, which might make tuning λ very expensive until a desirable level of fairness is
reached. Our approach on the other hand requires a single explicit model and the
output scores of the two heads. (ii) We make the influence of the group classifier in
the final decision explicit and transparent. Due to the simple weighted sum, we can
determine the different group-wise decision thresholds. In summary, our approach
reliably finds high accuracy solutions for a given demographic disparity without
requiring the protected attribute at test time.

3.4 Disparate Treatment in Fair Networks

Here we examine the tight relationship between our explicit approach and the behav-
ior of fair networks. Given a fair neural network, we aim to recover the corresponding
unconstrained model using only the fair network and the protected attribute classi-
fier from our explicit approach presented in Section 3.3. Similarly, we reconstruct the
fair network with our group-aware method by building a weighted sum of the target
classifier and the protected attribute classifier. These reconstructed decisions allow us
to identify individuals treated differently based on inferred group membership and
demonstrate disparate treatment.3

3.4.1 Fair Networks Behave like the Explicit Approach

We recover the predictions of the fair model rλ by using the target task head f and
group classifier g. We use logistic regression to find parameters a1, a2 ∈ R such
that 1( f (x) + a1g(x) + a2 > 0) accurately replicates 1(rλ(x) > 0). Given fixed f and

3In this chapter, we report results for the regularized approach (3.3). Appendix B.3 reports prepro-
cessing results.
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Figure 3.6: Left: Reconstructing the fair classifier. For a range of parameters λ (x-axis)
we find a1 and a2 so that f + a1g + a2 mimics the predictions of a regularized classi-
fier rλ. For the entire range of fairness parameters, the predictions of the regularized
model are closely recovered by the two-headed approach. Right: Recovering the un-
constrained classifier. We find parameters b1 and b2 such that rλ − b1g− b2 recovers
the predictions of an unconstrained classifier h. From the fair model rλ and the pro-
tected attribute classifier g we can replicate an unconstrained classifier’s predictions,
as accurately as another unconstrained model. In this example we predict ATTRAC-
TIVE, the protected attribute is MALE, and we use a ResNet50. Random Baseline. We
also measure the disagreement among retrained models initialized with different ran-
dom seeds. For the left figure, we retrain the fair model for each λ, on the right, we
retrain the unconstrained model.

g, we repeat this process using five different initial random seeds of rλ. Next, we
show that it is possible to recover the predictions of the unconstrained model h with a
weighted sum of the fair classifier rλ and the group classifier g. We run logistic regres-
sion to find b1, b2 ∈ R such that 1(rλ(x)− b1g(x)− b2 > 0) recovers the prediction
y = 1(h(x) > 0).

Coefficients a1 and a2, or b1 and b2 are found using validation data. We learn new
coefficients for every λ and random seed; repeating this second experiment for five
unconstrained models trained with different random seeds.

For both experiments, a substantial challenge lies in the random behavior of deep
learning classifiers. Training a deep network is a nonconvex problem, and the solution
found is highly dependent on its initial seed. To take this instability into account, we
provide baselines that measure how decisions vary when retraining networks. We
retrain regularized networks for every choice of λ in the first experiment, and retrain
the unregularized network in the second.
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Results. In Figure 3.6 we show ResNet50 models trained to predict ATTRACTIVE; the
protected attribute is MALE (see Appendix B.3 for other tasks). The left panel evalu-
ates how accurately our explicit approach recovers the predictions of the regularized
model rλ. We find that most of the error in recovering predictions can be attributed
to classifier instability, and that retraining a classifier from scratch with a new random
seed gives similar disagreement to using our reconstructed classifier. In the right panel
of Figure 3.6, we plot the reconstruction accuracy of rλ − b1g− b2 with respect to the
unconstrained classifier. By simply adding the group classifier response g(x) to rλ(x),
we obtain the predictions of the unconstrained classifier. Compared to the baseline,
we recover the unconstrained classifier responses for all rλ with similar fidelity to
simply retraining the target classifier from scratch.

3.4.2 Identifying Disparate Treatment in Deep Networks

We can now quantify the disparate treatment of a neural network. By exploiting our
explicit estimation of the protected attribute, we can ask the counterfactual question:
how would the decision have changed if the individual had belonged to the other
group?

Experimental Setup. As described in the previous subsection, we find the closest
weighted sum f + a1g + a2 of the two heads that best replicates the decisions of a
given model rλ. Then, for every individual x in the test set, we replace the group
classifier response g(x) with the median output of the group that x does not belong to.
We evaluate how many times the prediction changes when the second head output is
replaced by this counterfactual.

Results. Figures 3.7 and 3.8 show the proportion of individuals for whom their pre-
diction changes. For the fairest models in the left panel of Figure 3.7, up to 30% of
all individuals receive a different outcome when their second head output g(x) is re-
placed by the median output of the other group. This is substantially more than the
number of changed predictions, which we obtain when retraining with a different
random seed (roughly 7% of the points).

As expected, the proportion of changed predictions linearly increases with model
fairness (governed by the parameter λ). Similar behavior occurs for both the regular-
ized approach (Figure 3.7, left) and preprocessing (Figure 3.8, right).

While the behavior of our two-headed system is difficult to distinguish from that
of a retrained fair classifier, the disagreement between retrained classifiers means that
we can not point to an individual and conclude that they received a different decision
because of their protected attribute. Nonetheless, in scenarios where changing the
protected attribute alters a much greater proportion of decisions than the proportion
of decisions where the classifiers disagree (see Figure 3.7 left, in contrast to center) we
can conclude that it is likely particular individuals suffered disparate treatment.
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(a) ResNet50 with regularizer R̂DP pre-
dicting target attribute ATTRACTIVE.
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(b) ResNet50 with regularizer R̂DP predict-
ing target attribute SMILING.

Figure 3.7: Uncovering disparate treatment—proportion of changed predictions un-
der counterfactual group classifier. How many individuals are treated differently
based on their protected attribute? Using our two-headed approach, we replace the
group classifier output g(x) of an individual x from group s ∈ {0, 1} with the median
output ḡ1−s of the other group 1− s. We plot the proportion of all points where the la-
bel changes (orange curves), and the proportion of points in each protected group for
which the prediction either changed from 0 to 1 or changed from 1 to 0 (red and blue
curves with markers pointing up or down). Left: As the fairness parameter increases
and fairness of the regularized model improves (DDP closer to 0 is fairer), the pro-
portion of changed predictions increases. For the fairest model, around 30% of points
would obtain a different outcome if their perceived gender changed. Moreover, when
the positive label is a benefit, only the disadvantaged group benefits and only the ad-
vantaged group is harmed from a changed protected attribute. Right: We also observe
cases where there is a only small change in demographic disparity and no substantial
proportion of points are treated differently based on the protected attribute.

Conclusion. When fair networks show the same behavior as our explicit aware-
ness model, we can analyze the influence of group membership. Using our explicit
approach, we can evaluate how fair networks systematically treat individuals differ-
ently on the basis of their protected attribute.
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(a) MobileNetV3-Small with regular-
izer R̂DP predicting target attribute AT-
TRACTIVE.
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(b) MobileNetV3-Small with Massag-
ing preprocessing predicting target at-
tribute ATTRACTIVE.
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(c) MobileNetV3-Small with regular-
izer R̂DP predicting target attribute
SMILING.

0.15 0.10 0.05
DDP

0.00

0.05

0.10

0.15

0.20

fra
cti

on
 o

f p
oi

nt
s 

in
 g

ro
up

 s 
or

 o
ve

ra
ll

overall
s = 0, pred 0 1
s = 1, pred 0 1
s = 0, pred 1 0
s = 1, pred 1 0
random baseline

(d) MobileNetV3-Small with Massag-
ing preprocessing predicting target at-
tribute SMILING.

Figure 3.8: Uncovering disparate treatment—proportion of changed predictions un-
der counterfactual group classifier. We perform our analysis described in Section 3.4.2
on CelebA with target attributes ATTRACTIVE and SMILING and protected attribute
MALE. For both the regularizer and the preprocessing (Kamiran and Calders, 2012),
up to 35% of all points would receive a different outcome if their inferred attribute
changed for the task ATTRACTIVE. As expected, only in one group negative predic-
tions change into positive predictions; at the same time only for the other group posi-
tive prediction change to negative predictions.
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3.5 Legal Implications of our Analysis

The analysis set out in this section is restricted to areas where the doctrine of disparate
treatment is relevant. This includes areas where decisions are made concerning an
individual’s access to: education, employment, and housing. We start by noting that
by design our two-headed approach exhibits disparate treatment. It assigns individ-
uals into different racial or gender-based groups and uses this to alter cutoff scores in
a way that explicitly violates Title VII (Statute, 1991) as outlined in the introduction.
What is less straightforward is the relationship of the methods that we have shown to
have the same systematic behavior as our new approach.

Overview Our argument can be decomposed into three parts. We address each point
in detail below:

1. Disparate treatment may occur even if the treatment is based on inferred at-
tributes (such as race or sex) rather than explicitly provided attributes.

2. Our explicit formulation (Section 3.3) exhibits the behavior used to indirectly
identify disparate treatment.

3. Other fairness approaches considered exhibit the same behavior as our explicit
approach, and as the relevant tests for disparate treatment are based on system-
atic behavior, these approaches also exhibit disparate treatment.

Finally, we explicitly identify the individuals likely disadvantaged by enforcing fair-
ness, and consider circumstances where the use of such systems may be acceptable,
and look at existing legal arguments.

1. Implicit Disparate Treatment Multiple machine learning papers (Agarwal et al.,
2018; Donini et al., 2018; Perrone et al., 2021; Zafar et al., 2017a) have asserted that
machine learning systems that do not explicitly take into account knowledge of the
protected attribute at prediction time cannot be performing disparate treatment. From
a legal perspective, this is an oversimplification. Many of the legal tests for disparate
treatment involve a demonstration of intent to treat protected groups differently (King
and Hemenway, 2020), and it is irrelevant if knowledge of the groups is given as data
from a trusted party or inferred from a photograph or other data. As an example of
case law supporting this, (Hellman, 2020) gives Hunt v. Cromartie (Supreme Court,
1999) where the plaintiffs demonstrated that location was used as a proxy for race in
an instance of disparate treatment. The situation considered here is even more extreme
than that of Hunt v. Cromartie. As we use photographic data as input, to deny that
disparate treatment can occur here is the same as denying that disparate treatment can
occur on the basis of an individual’s appearance.
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2. The Disparate Treatment of Our Approach Systems which explicitly alter scoring
on the basis of race or gender are widely acknowledged as being examples of disparate
treatment, with (Hellman, 2020) writing that there is such wide agreement that it is not
worth discussing. While creating a system that makes explicit use of a protected at-
tribute when making decisions demonstrates intent, it is not the only way to do so. In
particular, as it is difficult to explicitly demonstrate intent when someone is either un-
able or unwilling to explain honestly why they made decisions, the courts recognize
indirect evidence of the form: “. . . evidence, whether or not rigorously statistical,
that employees similarly situated to the plaintiff other than in the characteristic (preg-
nancy, sex, race, or whatever) on which an employer is forbidden to base a difference
in treatment received systematically better treatment” (Troupe v. May Dept. Stores,
1994). By design, our approach explicitly treats ‘similarly situated’ individuals, i.e.
those who receive a similar score f (x) from a classifier trained without consideration
of their protected attribute, differently by changing their score and adding the term
a1g(x) + a2 which explicitly depends on their inferred protected attribute.

3. The Disparate Treatment of Other Approaches As the implicit argument of the
previous section relies on the systematic behavior of a decision-making system, it can
be directly applied to systems trained to satisfy a fairness constraint. In such cases, we
only know that the system enforces the constraint, but not necessarily how. However,
as we are only concerned with the system behaviour, i.e. the decisions made, if the
system is closely mimicked by our approach, the same argument applies, and we can
identify those individuals with similar scores f (x) who probably4 receive different
decisions by virtue of their race or gender.

Identifying Disadvantaged Individuals We can therefore identify individuals that
are likely to have received an unfavorable decision by virtue of their inferred protected
attribute. As we can recover a close approximation of the decisions of the fair model
of the form r(x) ≈ f (x)− a1g(x)− a2, individuals who initially receive a score f (x) in
the region f (x) ∈ [a2, a1 + a2) are likely to receive different decisions by virtue of their
inferred race or gender g(x)5.

Potential Mitigation One possible defense is to reject the relevance of the classifier
f trained on ground-truth data without fairness considerations, and to claim that in-
dividuals with similar f (x) scores are not in fact “similarly situated” (Troupe v. May
Dept. Stores, 1994). It is always possible to generate some classifier6 f from an existing
classifier r, by subtracting any arbitrary terms of the form a1g(x) + a2 from r(x). As

4As the reconstruction is not exact, we cannot be certain, however, note that the evidence provided
does not even need to be rigorously statistical (Troupe v. May Dept. Stores, 1994).

5This relies on g(x) being close to an indicator function with 94% of function responses being either 0
or 1 with a tolerance of ±0.1.

6Here, we consider f an arbitrary classifier, and not necessarily the unconstrained classifier trained
on the data.



66 CHAPTER 3. DISPARATE TREATMENT IN NEURAL NETWORKS

such, the existence of f is insufficient to conclude that the existing classifier r exhibits
disparate treatment, and we also need to know that individuals with similar scores
f (x) are “similarly situated”. As such, where this unaware classifier f was trained on
data that does not correspond to a direct measure of performance, and is known to
be systematically biased (Barocas and Selbst, 2016; Wachter et al., 2021), there is lit-
tle reason to believe that individuals with similar scores are also “similarly situated”.
This argument was proposed outside of algorithmic fairness by Selmi (2013) who ar-
gued that a stronger defense could have been mounted in (Supreme Court, 2009) by
challenging the predictive value of the test.

Existing Legal Arguments A full summary of the existing debate is out of scope for
what is primarily a machine learning paper, and as such we touch upon three papers
to indicate the range of opinions. Kroll et al. (2017) argued that protected attributes
should not be used as part of the decision-making system, but that the use of ML
fairness methods that use protected attributes at training time was less likely to be
considered an instance of disparate treatment than an ex post correction that explic-
itly alters the score of individuals with a particular race or gender. In particular, Kroll
et al. (2017) considered (Troupe v. May Dept. Stores, 1994) and similar judgements
and concluded that compared to ex-post measures7 “incorporating nondiscrimination
in the initial design of algorithms is the safest path that decision makers can take.”
This argument hinges upon an explicit lack of understanding of the behavior of ML
systems, i.e., without knowing the details of how an opaque fair system behaves it is
not possible to say that it exhibits disparate treatment. Hellman (2020) argued that
as disparate treatment depends upon intent, in certain circumstances, the use of pro-
tected attributes can be acceptable at decision time. Bent (2019) offered two main
arguments: First, that as disparate treatment hinges upon intent, the combined use of
racial data (even if only at training time) with any form of fairness constraints shows
an expressed intent to treat different races differently, and should also be considered
disparate treatment8 9.

In response to Bent (2019), we note that: (i) bias-preserving fairness metrics
(Wachter et al., 2020) (i.e., the majority of existing fairness metrics) ensure that clas-
sifiers are sufficiently accurate for all groups, by matching the distribution of errors
over different groups. (ii) Kroll et al. (2017) also argued that in (Supreme Court, 2009)

7Ex-post methods adjust an already generated scoring system by choosing different thresholds for
members of different groups.

8Bent (2019) argues that this should hold for any form of fairness constraint, not just the forms of
demographic parity we consider.

9The second argument Bent (2019) considers is the difference between running an algorithm with and
without race-based fairness constraints. Bent argues that any individual receiving a change in decision
should be considered evidence of a difference in treatment. This argument is problematic due to the non-
deterministic behavior of deep learning algorithms. As shown in Figures 3.6 and 3.7, simply rerunning
the same algorithm with a different seed can result in significant changes in labels assigned to the test set,
and what is needed is evidence of a systematic change in treatment over and above the expected intrinsic
variability. Inherently, such evidence cannot come from considering a single individual, but must occur
at the population level.
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the court’s lack of concern regarding the use of race to determine that the scoring
mechanism was equally effective for all racial groups indicated that this was a legit-
imate use of racial data. Putting these two arguments together, it seems likely that
enforcing many forms of fairness need not be a form of disparate treatment, and that
it depends instead on specific facts of implementation and particularly if it is possible
to identify individuals who are systematically disadvantaged by the fact of their race
under a fair system.

Our position lies midway between Kroll et al. (2017) and the first argument of Bent
(2019), and is simply that a blanket decision if algorithmic fairness violates disparate
treatment is inappropriate and depends upon the facts of the particular ML system
considered and the data it is deployed on. Our position is that the improved under-
standing from using the techniques set out in this chapter is sufficient to determine
that some ML fairness systems also exhibit disparate treatment (see Section 3.2 and
Figure 3.1); and, more importantly, the decisions made by a fair regularized classi-
fier are indistinguishable from those training a classifier designed to exhibit disparate
treatment (see Section 3.3).

Conclusion. While it may not be possible to determine a priori if a particular fair-
ness definition gives rise to disparate treatment, our decomposition of existing fair
classifiers into an unconstrained classifier f (x), and a second head that rescores the
response using inferred race or gender, strongly aligns with the legal definition of dis-
parate treatment. As such, we believe that this decomposition will be of value in deter-
mining the legality of deploying fair systems in practice. From a practical perspective,
this disparate treatment is most strongly observed when the unconstrained classifier
f has high demographic disparity, and demographic parity is strongly enforced. This
makes it unlikely for any of the considered fairness methods to be appropriate tools
to enforce equity without legal reform.

3.6 Other Related Work

Exploiting Disparate Treatment Oneto et al. (2019) propose to infer the protected
attribute from non-protected features and to use the inferred attribute to learn “group
specific” models, as a way to enforce equalized odds. While their approach is similar
to our two-headed approach presented in Section 3.3, their interpretation is quite the
opposite from ours: they consider their approach as a means of overcoming disparate
treatment while we argue that such an approach should not be treated differently than
an approach that explicitly uses protected information. Other papers proposed the
use of protected information for learning group-dependent models, when doing so is
legally acceptable and the protected information is available to improve performance
and / or fairness (Dwork et al., 2018; Klare et al., 2012; Ustun et al., 2019).

Bias and Bias Amplification in Deep Neural Networks Numerous papers have
found deep networks discriminate based on protected groups (Albiero et al., 2020; Bal-
akrishnan et al., 2020; Buolamwini and Gebru, 2018; Feldman and Peake, 2021; Klare
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et al., 2012) and may even amplify bias present in the training data (Burns et al., 2018;
Jia et al., 2020; Prates et al., 2020; Wang and Russakovsky, 2021; Wang et al., 2019b;
Zhao et al., 2017). Deep models have also been found to “overlearn”, that is they learn
representations encoding concepts that are not part of the learning objective; e.g., en-
coding race when trained to predict gender (Serna et al., 2020; Song and Shmatikov,
2020). (Song and Shmatikov, 2020) argued that overlearning is problematic from a pri-
vacy perspective as it reveals sensitive information. However, they did not consider if
it allows models to disparately treat different groups. To detect unintended classifier
bias, (Balakrishnan et al., 2020; Denton et al., 2019) synthesized counterfactual images
by changing latent factors of a generative model, corresponding to attributes such as
race, and seeing how performance alters. This is related to our approach, however,
they do not examine how fair models alter this behavior, and our decomposition of
models into two heads allows us to reason counterfactually without generating im-
ages.

Bias Mitigation Methods In the last few years, a plethora of fairness notions, that
is definitions of fairness-concerning bias, along with methods for mitigating such bias
have been proposed, both in supervised and unsupervised learning. The methods in
supervised learning are usually categorized into three groups: preprocessing meth-
ods, in-processing methods, and postprocessing methods (see (Caton and Haas, 2020;
Mehrabi et al., 2021) for survey papers). In this chapter we study methods from each of
the three groups (cf. Section 3.1): the regularizer approach belongs to the group of in-
processing methods (and so does our strategy proposed in Section 3.3), the massaging
method of (Kamiran and Calders, 2012) is a preprocessing method, and the strategy
of (Lipton et al., 2018) is a postprocessing method. While the earlier papers on fair ML
mainly considered tabular data, more recently, bias mitigation has also been studied
in the context of deep learning (Du et al., 2020; Ramaswamy et al., 2021; Wang et al.,
2019a,b, 2020). Fazelpour and Lipton (2020) discuss a broader human-centered view
going beyond altering algorithms with parity metrics.

Fair Representation Learning This line of work proposes techniques to learn data
representations such that an ML model trained on top of such a representation is fair,
without enforcing the latter model to be fair (Adel et al., 2017; Alvi et al., 2019; Beutel
et al., 2017; Edwards and Storkey, 2016; Feng et al., 2019; Jia et al., 2018; Louizos et al.,
2016; Madras et al., 2018; Moyer et al., 2018; Raff and Sylvester, 2018; Xie et al., 2017;
Zemel et al., 2013; Zhao and Gordon, 2019). These techniques come in various flavors,
and depending on the concrete design they are considered either as preprocessing or
in-processing methods. When aiming for demographic-parity-fair classifiers, they try
to learn representations that do not contain any information about the protected at-
tribute, or are independent of the attribute. Hence, for these techniques one should
not observe the phenomenon of attribute awareness we found for networks regular-
ized to satisfy demographic parity or trained on massaged datasets, at least not when
examining the final representation layer. However, it is an interesting question for
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future work whether methods for fair representation learning suffer from attribute
awareness in earlier network layers.

3.7 Conclusion

This chapter makes two contributions to the literature. First, our two-headed approach
for enforcing fairness offers a more efficient and reliable way of enforcing a chosen
degree of demographic parity. Unlike regularization-based approaches that require
multiple training runs with different regularization parameters to find a desired trade-
off, our approach allows for joint training of both heads once, and then a search for
the desired trade-off by tuning weights using precomputed network responses on a
validation set. As such, it is possible to efficiently find a family of classifiers of varying
fairness and accuracy for little more compute than simply training an unfair classifier
in the first place.

Second, we have shown how existing methods for enforcing demographic parity
in deep networks learn a latent representation that is more predictive of the protected
attribute. We have shown a close coupling between the behavior of these approaches
to the explicit two-headed model. This tight coupling allows us to identify individuals
who are likely to be systematically favored or disfavored by virtue of their protected
attribute and to conclude that existing methods for enforcing fairness also enforce
disparate treatment.

In hindsight, our findings are perhaps unsurprising. The existing methods con-
sidered can be seen as altering the labels10 assigned to individuals in the training set,
on the basis of their protected attribute, and as the trained network generalizes from
training to test data it brings this behavior with it. Still, it requires the comparison
to our two-headed approach to confirm these intuitions and to demonstrate that dis-
parate treatment of this kind not only happens on training data, but also on test data.
We wish to emphasize that we have provided tools for identifying disparate treatment,
and shown that the use of some fairness methods on some datasets exhibit disparate
treatment. Our findings do not imply that all methods for enforcing demographic par-
ity suffer from disparate treatment, merely that some can, and that caution should be
used when deploying such methods.

While our analysis presents several challenges to deploying fair ML systems in the
US, it is consistent with other rulings on discrimination in US law. In general, the US
requires that considerations of equity and affirmative action are satisfied by shaping
an entire process to be more inclusive, and not simply by imposing race or gender-
based quotas on outcomes (Fazelpour and Lipton, 2020; Joshi, 2018). However, the
opaque nature of ML makes it extremely challenging to define fair algorithms without
formulating the definitions in terms of outcomes. For this reason, we believe that legal
reform is needed to explicitly allow the use of fair ML techniques as a tool to reduce
disparate impact and increase equity.

10Regularized approaches do so by enforcing a soft quota, while preprocessing explicitly relabels indi-
viduals.
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Chapter 4

The Fairness of Crowds: If the Few
are Fair, are the Many?

Recent work about fairness in algorithmic decision-making has typically considered a
single machine learning model. In practice, however, multiple models are combined
in ensembles in order to boost the performance on a given task such as classification.
The main idea of combining multiple models in an ensemble is to compensate the
errors of a single model by the other models, and to leverage the Wisdom of Crowds
to obtain more accurate and robust ensemble predictions. A popular, yet simple, ap-
proach for aggregating the predictions of various models into one prediction is the
majority vote (Grofman et al., 1983), which is known to improve prediction accuracy
under certain conditions. From a fairness perspective, it remains unclear whether the
majority vote improves fairness properties when every single model is already fair. In
this chapter, we analyze if there is a Fairness of Crowds: If we have a set of fair models,
is the majority vote ensemble fair? And if not, how much fairness do we lose?

4.1 Introduction

Ensemble learning is a state-of-the-art approach for solving a wide range of machine
learning tasks and, consequentially, it is often the leading approach in popular ma-
chine learning competitions (Sagi and Rokach, 2018). The ensemble learning paradigm
is counting on the Wisdom of Crowds (Surowiecki, 2005): if we ask many individuals
for their opinion on a matter, we can expect better decisions from the crowd than
from any individual. This intuition has led to several approaches, such as Random
Forests (Breiman, 2001), Boosting (Schapire, 1990, 1999), Bagging (Breiman, 1996), XG-
Boost (Chen and Guestrin, 2016), and many more (Friedman, 2001; Sagi and Rokach,
2018; Wolpert, 1992).

These ensemble approaches are built by training multiple machine learning mod-
els, called base learners, such as decision trees, neural networks, or logistic regression
classifiers. The base learners can be trained in parallel, for example deep decision
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trees for Random Forests, or in succession—simple decision stumps for Adaboost.
There are various ways to aggregate the predictions of the base learners into one en-
semble prediction like weighting them, or learning a meta-classifier on the predictions
(see Sagi and Rokach (2018) for an overview). In this chapter, we assume that we are
given a set of trained base learners and we focus on majority voting as the aggregation
scheme, a very old and popular strategy for decision making.

A first theoretical justification for the majority vote has been given in Condorcet’s
Jury Theorem, presented in 1785 by the Marquis de Condorcet, Marie Jean Antoine
Nicalos de Caritat (Shapley and Grofman, 1984). Condorcet considers a jury of voters
that are supposed to make a “correct” binary decision with a majority vote. If the deci-
sion of a single jury member is correct with a probability greater than 0.5, the probabil-
ity of a correct decision by the jury can be increased by simply adding new members
to the jury. Then, a correct decision from the jury is more likely than a correct decision
from any single member. This result is obtained by a crucial assumption–Condorcet
assumes that the jury members vote independently of each other. More recent work
that is dedicated to understanding the majority vote has relaxed this assumption and
has considered different dependencies between the classifiers (Battiti and Colla, 1994;
Kuncheva et al., 2003; Lam and Suen, 1997; Matan, 1996).

In this work, we are concerned with the fairness properties of the majority vote.
In particular, we want to understand how fair the majority vote is when we are given
a set of fair base learners that have been trained with the multitude of fairness ap-
proaches for binary classification (Agarwal et al., 2018; Cotter et al., 2019; Donini et al.,
2018; Goh et al., 2016; Hardt et al., 2016; Iosifidis and Ntoutsi, 2019; Lohaus et al., 2020;
Manisha and Gujar, 2020; Perrone et al., 2021; Wick et al., 2019; Zafar et al., 2017a). Do
the fairness properties of the individual classifiers transfer to the majority vote ensem-
ble? In this preliminary work on this question, we make the following contributions.

1. Inspired by Condorcet’s Jury Theorem, we prove for the group fairness notions
demographic parity and equality of opportunity that a majority vote ensemble
of fair classifiers retains the fairness property under strong independence as-
sumptions (Section 4.5).

2. In Section 4.6, we drop all independence assumptions on the base learners. We
present an algorithmic framework to construct the worst-possible configuration
of base learners and thus, determine how unfair the majority vote ensemble can
become when the individual classifiers are fair.

3. In Section 4.7, we evaluate fairness bounds on demographic parity and equality
of opportunity. As a result, we show that in the worst case the ensemble can
exhibit considerable unfairness, but the worst-case guarantees can be improved.
In some cases, a reasonably accurate ensemble cannot be fair at all.
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S=1

S=−1

Recruiter 1 Recruiter 2 Recruiter 3

Y=−1 Y=1
Positive Predictions

Y=−1 Y=1 Y=−1 Y=1 Y=−1 Y=1

Majority Vote

Y=1

Figure 4.1: Majority vote of three job recruiters. We visualize the voting behavior of
three recruiters on applicants from Group S = 1 (upper half of the box), applicants
from Group S = −1 (lower half), qualified applicants Y = 1 (right quadrants), and
unqualified applicants Y = 1 (left quadrants). Green areas correspond to the fraction
of applicants that a recruiter accepts (positive prediction), for example Recruiter 1
accepts 30% from Group −1. For the majority vote it is important where the boxes
are colored in green because the majority vote accepts a candidate only if at least two
recruiters accept. In the plot this means that an area in the majority vote is only green
if this area is green in at least two of the three boxes. Each recruiter is accepting
applicants from both groups at the same rate–the size of the green areas is the same
in the upper and lower half. However, the majority vote accepts Group 1 at a higher
rate than Group −1.

4.2 Motivational Example

Imagine three recruiters interviewing potential employees for a company. Their task
is to suggest qualified applicants and reject unqualified ones. Currently, each re-
cruiter works on their own. In the past, the assessment of Recruiter 1 about an ap-
plicant‘s qualification was correct in 79% of all cases, with an overall acceptance rate
of 30% (see Figure 4.1 for a visualization). Recruiter 2 and 3 were correct in 72.5% and
75% of all cases, with an acceptance rate of 50% and 25%, respectively. More impor-
tantly, all recruiters have not shown any bias with respect to two protected groups:
there is Group 1 and Group −1. Applicants from both groups have had the same
chance to be accepted.

In order to improve the quality of the interviewing process1, the company requests
that the three recruiters work together and make their decision about an applicant
with a majority vote: at least two recruiters need to agree on suggesting the candidate
to the company.

And indeed, the freshly founded jury correctly judges an applicant’s qualification
85.75% of the time. However, even though each individual recruiter is fair, the jury
is not: an applicant from Group 1 is now 13.5% more likely to be accepted than an

1The overall accuracy of the previous approach is 75.5%, if we assume that each recruiter is equally
likely to interview an applicant.



74 CHAPTER 4. THE FAIRNESS OF CROWDS

applicant from Group −1. Moreover, a qualified applicant from Group 1 is 15% more
likely to be accepted than a qualified applicant from Group −1. The majority vote
ensemble of the three recruiters is more accurate, but unfair.

In Figure 4.1, we visualize the votes of each recruiter to show why the their fairness
properties are lost in the majority vote. The recruiters mostly vote for the same qual-
ified applicants on Group −1. Recruiter 1 and 3 have more contrary opinions about
qualified candidates on Group 1. Thus, on both groups the recruiters do not vote in-
dependently of each other. In Section 4.5, we investigate the ensemble fairness when
the recruiters make decisions independently of each other on every protected group.

Even though we observed in Figure 4.1 that the majority vote can be unfair, we
do not know how unfair it could be in the worst case. Can we construct other voting
patterns (color the boxes differently) with the same accuracies and acceptance rates
for each recruiter, but with worse ensemble fairness? In Section 4.6, we provide al-
gorithmic bounds on the worst-case fairness when no assumptions are made on the
independence of the individual classifiers.

4.3 Related Work

There is few work that focuses on the specific fairness properties of model aggregation.
Most related to us is the work by Grgić-Hlača et al. (2017). They consider the fairness of
random ensembles, which classify a data point by randomly picking a classifier from
a diverse set of classifiers. This is a common scenario in decision-making, for instance
in our example above one recruiter was randomly assigned to an applicant before
the company decided to use the majority vote. Grgić-Hlača et al. (2017) show for
demographic parity, equality of opportunity, and equal odds that the whole ensemble
is fair when each single classifier is fair. This cannot be guaranteed for sufficiency
notions like predictive parity. These findings are not easily transferable to different
aggregation schemes of base learners. In this work, we address similar questions for
the setting of a majority vote aggregation instead of a random selection.

Dwork and Ilvento (2018) analyze fairness under the composition of classifiers in
a setting, where each classifier solves a different task (predicting gender or predicting
age), but they compete for the same unit of benefit such as an ad placement. For this
scenario, Dwork and Ilvento (2018) show that the composition (the placement of the
final ad) need not be fair, even though each classifier is fair.

The technical tools that we use to analyze the fairness of ensembles are inspired by
Matan (1996) and Narasimhamurthy (2003) that both analyze best and worst cases of
the majority vote accuracy when given the performance of binary classifiers. Matan
(1996) prove exact bounds as a function of the individual performances for the more
general ‘k-out-of-n’ majority vote. Even though Narasimhamurthy (2003) do not pro-
vide explicit formulations of the worst and best case, they provide an algorithmic
framework by formulating the lower and upper bounds as linear programs. In our
work, we extend this framework to compute fairness bounds for the majority vote.
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Within the related PAC-Bayesian framework, fairness guarantees have been analyzed
by Oneto et al. (2019).

While many approaches for fairness-aware methods have been proposed in recent
years, few past works have considered the development of fair ensemble methods,
such as fair random forests (Grari et al., 2020; Raff et al., 2018), fair boosting classi-
fiers (Bhaskaruni et al., 2019; Iosifidis and Ntoutsi, 2019), or more general fair ensem-
ble frameworks for arbitrary model classes (Alves et al., 2020; Iosifidis et al., 2019).

Grari et al. (2020) train a gradient tree boosting classifier while minimizing the abil-
ity of a neural network to predict the protected attribute from the classifiers’ outputs.
The weights that are assigned during gradient tree boosting are reduced if it tells us
much about the protected attribute. Raff et al. (2018) introduce fair random forests
by introducing a new GINI measure which discourages the selection of features that
correlate with the target label or a protected attribute.

Iosifidis and Ntoutsi (2019) have developed an in-processing fairness approach
by altering the weight updates in the classical Adaboost. Only empirically, their
new method Adafair can improve the fairness with respect to equal odds. Similarly,
Bhaskaruni et al. (2019) propose an Adaboost variant where the weighting considers
only fairness, which is measured for each data point in a local k–neighborhood. In
experiments, this comes at a high cost of accuracy.

4.4 Setup and Notation for Ensembles

In this section, we introduce the ensemble setting and recall important notation and
fairness notions that we presented in Chapter 1. Let X be a feature space, Y = {−1, 1}
the binary label space, and S = {−1, 1} the binary protected attribute. We consider
an ensemble classifier H : X → Y , also called strong classifier, and base learners
hj : X → Y with j ∈ [T], where [T] denotes the set {1, . . . , T}. Assume that we can
draw examples (X, S, Y) ∼ DZ from a distribution DZ over Z = X ×S ×Y . In order
to build a strong classifier, we fuse the base learner’s output for an input point x with
the majority vote:

H(x) =

1 if
T
∑

i=1
hi(x) ≥ 0,

−1 otherwise.
(4.1)

Therefore, if at least dT/2e base learners output the positive label, the overall predic-
tion is positive.

Recap: Fair Binary Classification. We focus on the statistical group fairness notions
demographic parity and equal opportunity. If the predictions of a given classifier h are
independent of the protected attribute, the classifier h : X → Y is fair with respect to
demographic parity. More formally, it holds that

P
(X,S,Y)∼DZ

[h(X)=1|S=1] = P
(X,S,Y)∼DZ

[h(X)=1|S=−1] .
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We measure the violation of demographic parity with the difference of demographic par-
ity:

DDP(h) = P
(X,S,Y)∼DZ

[h(X)=1|S=1]− P
(X,S,Y)∼DZ

[h(X)=1|S=−1] .

A classifier h is fair with respect to equal opportunity if its predictions of positive
examples are independent of the protected attribute, that is if

P
(X,S,Y)∼DZ

[h(X)=1|Y = 1, S = 1] = P
(X,S,Y)∼DZ

[h(X)=1|Y = 1, S = −1] .

Again, we measure the fairness violation with the difference of equal opportunity:

DEO(h) = P
(X,S,Y)∼DZ

[h(X)=1|Y = 1, S = 1]− P
(X,S,Y)∼DZ

[h(X)=1|Y = 1, S = −1] .

4.5 Ensembles of Conditionally Independent Fair Classifiers
are Fair

The Condorcet Jury Theorem in its original form (Grofman et al., 1983) assumes that
every member of the jury makes a correct decision with probability p and that the
number of jury members is odd. Most importantly, the jury members are assumed to
vote independently. Condorcet shows that the majority vote is more accurate when
more members are added to the jury (the ensemble). The results have been generalized
to any number of jury members or heterogeneous performance (Lam and Suen, 1997;
Shapley and Grofman, 1984).

In the following, we say that the classifier outputs are independent (Kuncheva,
2014, p. 113), if for any subset of classifiers A ⊂ [T] with A = {i1, . . . , iK} the joint
probability can be factorized as

P (hi1(X) = ŷi1 , . . . , hiK(X) = ŷiK) = P (hi1(X) = ŷi1) · ... ·P (hiK(X) = ŷiK) . (4.2)

Under these assumptions, we can directly compute the ensemble accuracy. With the
original assumptions of the Jury Theorem—P (h1(X) = Y) = ... = P (hT(X) = Y) = p
and T odd— we can compute

P (H(X) = Y) =
T

∑
k= T+1

2

(
T
k

)
pk(1− p)T−k. (4.3)

Condorcet’s Jury Theorem further states that, if p > 0.5, we have P (H(X) = Y) → 1
as T → ∞.

We analyze the majority vote with respect to its fairness by making similarly strong
assumptions on the independence of the base learners. In the following proposition,
we consider a set of demographic–parity–fair base learners. We need the assumption
of Condorcet and joint independence conditioned on S.
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Proposition 1. Given a set of classifiers h1, ..., hT. Assume that the classifier outputs are
independent in the sense of (4.2) and jointly independent conditioned on S. If every classifier
is fair with respect to demographic parity, then the majority vote ensemble H is demographic-
parity-fair.

Proof. Similar to the proof of Condorcet’s Jury Theorem, we can express the positive
rate of the majority vote on group s in terms of the positive rates of each base learner
using the joint independence conditional on S:

P (H(X) = 1 | S = s) = P

(
T

∑
i=1

hi(X) ≥ 0 | S = s

)

=
T

∑
k=dT/2e

P

(
T

∑
i=1

hi(X) = k | S = s

)

=
T

∑
k=dT/2e

∑
K⊆[T]
k=|K|

P
(
hi(X)=1 ∀i ∈ K, hj(X)=−1 ∀j ∈ K | S= s

)

=
T

∑
k=dT/2e

∑
K⊆[T]
k=|K|

∏
i∈K

P (hi(X)=1 | S= s)∏
j∈K

1−P
(
hj(X)=1 | S= s

)
.

Since the base learners are fair with respect to demographic parity, we have

P (hi(X) = 1 | S = s) = P (hi(X) = 1)

for all i ∈ [T]. Using the joint independence of the base learners, we can ‘reverse’
the above steps and imply that P (H(X) = 1 | S = s) = P (H(X) = 1), and thus, the
strong classifier H is demographic–parity–fair.

We prove the same result for equality of opportunity by conditioning on Y = 1
since we only care about the positive rate on the positive class to fulfill equality of
opportunity.

Proposition 2. Given a set of classifiers h1, ..., hT. Assume that the classifier outputs are
independent in the sense of (4.2) conditioned on Y = 1 and jointly independent conditioned
on S and Y = 1. If every classifier is fair with respect to equality of opportunity, then the
majority vote ensemble H is also fair with respect to equality of opportunity.

The conclusions of Propositions 1 and 2 follow almost directly from the strong as-
sumptions we make. The base learners (a) predict the positive label independently of
the protected attribute because they are fair, (b) act independently of each other, and
(c) act independently of each other when the protected attribute is known. Taken to-
gether these strong conditions are sufficient. It is not sufficient if we only assume that
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S=1

S=−1

h1 h2 h3

Positive Predictions

Majority Vote

Figure 4.2: Majority vote of three independent and fair classifiers. Similar to Fig-
ure 4.1, we have three fair classifiers with positive rates 0.5, 0.5, 0.3. We can confirm
that the classifier outputs are independent, for example in the middle of the top half
we have a voting pattern with P(h1 = 1, h2 = 1, h3 = 1) = 0.075, which also equals
0.520̇.3. However, the majority vote is unfair with a DDP = 0.5 − 0.3 = 0.2. With
respect to Proposition 1, we see that the conditional independence assumption is not
fulfilled since h1 and h2 are not independent on group S = 1.

the base learners are independent (without conditioning on S). Since we cannot im-
ply P

(
hi(X) = ŷi, hj(X) = ŷj | S = s

)
= P (hi(X) = ŷi | S = s)P

(
hj(X) = ŷj | S = s

)
if P

(
hi(X) = ŷi, hj(X) = ŷj

)
= P (hi(X) = ŷi)P

(
hj(X) = ŷj

)
for two classifiers hi, hj,

the base learners could be dependent once the protected attribute is known and we
can use this to construct an unfair majority vote. In Figure 4.2, we construct three
independent and fair classifiers similar to Example 4.2. The majority vote is unfair,
since the classifiers are not independent on each group. Similarly, we can construct an
example where the majority vote is fair, but the base learners are neither independent
nor conditionally independent.

At the end of this section, a remark is in order about the fact that the strong inde-
pendence assumptions are not realistic. We cannot expect the base learners to give in-
dependent outputs in practice. Typically, the classifiers are trained on the same dataset
instead of collecting new random samples from the data distribution. Although bag-
ging attempts to create independent classifiers by training each base learner on a boot-
strap sample of the train data, this does not guarantee that the classifiers give inde-
pendent outputs. With the goal of a good ensemble performance, independence is not
even always desirable since certain patterns of dependencies result in more accurate
ensembles (Kuncheva et al., 2003). One line of work investigates several measures of
diversity of ensembles and the question how diverse ensembles need to be for a good
overall performance (Krogh and Vedelsby, 1994; Kuncheva and Whitaker, 2003; Tang
et al., 2006).

Due to the unrealistic independence assumptions that we identified as sufficient
conditions for fairness, we will drop any independence assumption in the next section.
In two example, we have seen that majority votes can be unfair, but we do not know
yet how unfair the majority vote can be in the worst case.
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4.6 Worst-case Fairness Bounds

In Figures 4.1 and 4.2 we have seen that the ensemble fairness can deteriorate, even
though fair classifiers are combined, since they lack the strong independence assump-
tions from the previous section. In this section we make no independence assump-
tions at all and we investigate what the worst fairness violation in a majority vote
could be if the fair base learners depend on each other arbitrarily. We provide algo-
rithmic worst-case fairness bounds as the solutions to different linear programs.

Depending on what we know from each base learner, we can consider different
cases. In Example 4.2, we know the acceptance rates, the accuracy, and the fact that
each recruiter is fair. In order to understand the notation, we will start off with an
easier case and then move on to more general notation to address the example.

We will first familiarize the reader with the main idea and the notation needed.

Notation. The majority vote ensemble has a finite number of possible voting patterns
2T. We fix the order of the base learners h1, . . . , hT according to the indices 1, . . . , T. Us-
ing this order we first encode a specific voting pattern in a binary number, for example
1102 corresponds to h1(X) = 1, h2(X) = 1, and h3(X) = 0 reading the binary number
from left to right. Second, we enumerate all possible voting patterns of T classifiers
with an index in {0, . . . 2T − 1}. A given index i ∈ {0, . . . 2T − 1} uniquely determines
the voting pattern since we convert the index i into the corresponding voting pattern
with the operator bin(i, T), which converts an integer into a binary number with T
bits (Narasimhamurthy, 2003).

The algorithmic bounds are achieved by “moving around” the probability mass
of all possible voting patterns—this corresponds to moving around the green areas in
Figure 4.1. We introduce a variable x = [x0, ..., x2T−1]

ᵀ, where xi ∈ [0, 1] corresponds
to the probability of the voting pattern bin(i, T). By the law of total probability the
probabilities of all voting patterns sum to one:

1 = ∑
ŷ1,...,ŷT∈{−1,1}

P (h1(X) = ŷ1, ..., hT(X) = ŷT)

=
2T−1

∑
i=0

xi = 1ᵀx.

Since the vector x includes the probabilities of all possible voting patterns, we can
use x to evaluate the probability of meaningful voting patterns, for instance voting pat-
terns where the majority of base learners votes positive. The probability of a positive
prediction by the majority vote ensemble is then given by the sum of the probabilities
of all these voting patterns. Using our binary encoding, we define a constant vector
cmaj ∈ {0, 1}2T

, where for all i ∈ {0, . . . 2T − 1} we have

(cmaj)i =

{
1 number of 1’s in bin(i, T) is at least dT/2e,
0 otherwise.

(4.4)
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With cmaj we have P (H(X) = 1) = cᵀmajx. Similarly, we express the positive rate
of a single base learner by summing up all voting patterns, where the base learner
votes positive. For every base learner hj with j ∈ [T], we define a constant vector
aj ∈ {0, 1}2T

such that

(aj)i =

{
1 j’th digit in bin(i, T) is 1,
0 otherwise.

(4.5)

Then, we can compute the positive rate of hj with P
(
hj(X) = 1

)
= aᵀ

j x.

Minimal and maximal positive rate. Let us use the established notation in a first
example to find the minimal and maximal positive rate of the majority vote ensemble
H when we are given the positive rates pi := P (hi = 1) of the base learners for all i ∈
[T].2 With the voting patterns A = [a1, ..., aT ]ᵀ and the positive rates p = [p1, ..., pT],
we need to constrain x such that Ax = p. We maximize or minimize the positive rate
cᵀmajx with a linear program which reads

min/max cᵀmajx
0 ≤ x ≤ 1
1ᵀx = 1
Ax = p.

(4.6)

In Figure 4.3, left panel, we assume that p = pi for all i ∈ [T] and we plot the
minimal and maximal positive rate as a function of p. As p approaches one, that is
when all classifiers constantly predict 1, the minimal and maximal positive rate of the
majority vote go to one as well. On the other hand, as p approaches zero, the positive
rate of the majority vote goes to zero. The largest gap between minimal and maximal
positive rate is achieved when p is around 0.5 and T is sufficiently large.

In the following two cases, we extend the established notation to answer the original
research question: What is the maximal and minimal unfairness of the majority vote
classifier H given certain pieces of information about the base learners?

4.6.1 Case 1: Given Fair Base Learners and their Positive Rates.

In the first case, we are given the positive rates of demographic–parity–fair classifiers.
Due to demographic parity, the positive rate of each base learner is the same for each
group; we have P (hi = 1 | S = s) = P (hi = 1) = pi for all base learners hi. Since we
do not know the accuracy of the base learners (for simplicity), we can optimize the
positive rates on each group separately. Hence, the minimally (maximally) achievable

2Note that this setting is equivalent to minimizing/maximizing the accuracy of the strong classifier
when we encode a ‘positive’ prediction as a correct prediction and the positive rate of a base learner as
the accuracy of the base learner (Narasimhamurthy, 2003).
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Figure 4.3: (Left) Bounds on the positive rate. Using the LP 4.6 we plot the mini-
mal and maximal positive rate of the majority vote given 5 homogeneous base learn-
ers (transparent: 101 base learners) with the same positive rate p. We also compute
the majority vote positive rate with Equation 4.3 when the base learners are indepen-
dent. According to Condorcet’s Jury Theorem adding more base learners increases the
overall positive rate if p > 0.5 (the transparent blue curve has a steeper slope). (Right)
Bounds on DDP. Given 5 (or 101 in transparent) classifiers that are fair with respect to
demographic parity, we can use the bounds on the positive rate from the left plot and
compute the extreme DDP values. In other words, for a fixed p, the vertical distance
between the green and red curve in the left plot is the largest DDP that the majority
vote can achieve.

positive rate of the ensemble is the same for both groups and we need to minimize
and maximize (4.6) only once.

We denote the minimal and maximal solution of (4.6) with πmin and πmax, respec-
tively. Following the arguments above, note that πmin denotes the minimal positive
rate that the majority vote can achieve on both group s = 1 and group−1, and overall.
Importantly, the majority vote can assume the minimal positive rate on one group and
the maximal positive rate on the other.

We can now maximize (minimize) the fairness measure DDP(H) of the ensemble
by maximizing the positive rate on one group and minimizing it on the other group;
recall DDP(H) = P (H(X) = 1 | S = 1) − P (H(X) = 1 | S = −1). Using the argu-
ment above that πmin and πmax are the extreme values for both groups, we can bound
the ensemble DDP(H):

πmin − πmax ≤ DDP(H) ≤ πmax − πmin.
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In Figure 4.3, we plot the above upper and lower bound for the setting where each
base learner has the same positive rate p = pi for all i ∈ [T]. As p approaches 1 the
bounds approach 0 (fairness!) from above and below—the majority vote is necessarily
fair when all base learners only predict the positive label. Similarly, the majority is fair
if the base learners never predict the positive label at all. The largest fairness violations
can be achieved when p is around 0.5.

4.6.2 Case 2: Given Fair Base Learners and their Positive Rates and Accu-
racy.

We can now extend our notation to address the setting of Example 4.2, where we are
given the positive rates and the accuracy of each fair base learner. The accuracy infor-
mation requires us to formulate a more general version of LP (4.6), since we cannot
arbitrarily distribute positive predictions anymore. We need to consider the true la-
bels and the fact that changing predictions in one group, changes the accuracy overall.
To this end, we extend our notation and introduce more variables.

• We split the probabilities x ∈ [0, 1]2
T

of all voting patterns into 4 different cases
depending on the class label and the protected group. The vector α(s) ∈ [0, 1]2

T

corresponds to the joint probabilities of all voting patterns, the event Y = 1
and S = s, that is α

(s)
i = P(voting pattern is bin(i, T), Y = 1, S = s). Similarly,

β(s) ∈ [0, 1]2
T

represents the joint probabilities of all voting patterns, the event
Y = 0 and S = s. Respecting the law of total probability, we have α(1) + α(−1) +
β(1) + β(−1) = x.

• The vector p = [p1, ..., pT] contains the positive rates pj = P(hj(X) = 1). If the
base learners are demographic–parity–fair these rates are also the group-wise
positive rates.

• The vector q = [q1, ..., qT] contains the accuracies qj = P(hj(X) = Y) for all
j ∈ [T].

• We define B = 1− A to indicate all voting patterns (indexed by the columns)
where a base learner (indexed by row) predicts the negative label.

We are only interested in a worst-case voting behavior of the base learners, so we
need to make sure that the underlying statistics of the dataset are not changed as a
means to to fulfill the accuracy constraints. In our more general LP, we fix the group
prevalences ws = P[S = s] and the joint probabilities P (Y = 1, S = s) in order to
determine the group sizes and the ratio of a positive label in each group.

Finally, we obtain the following optimization problem.
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max/min cᵀmaj

(
1

w1

(
α(1) + β(1)

)
− 1

w−1

(
α(−1) + β(−1)

))
(4.7)

0 ≤ α(1), α(−1), β(1), β(−1) ≤ 1 (need probabilities)

1ᵀ
(

α(1) + α(−1) + β(1) + β(−1)
)
= 1

1ᵀα(1) = P (Y = 1, S = 1) (dataset constraints)

1ᵀα(−1) = P (Y = 1, S = −1)

1ᵀ
(

α(1) + β(1)
)
= P (S = 1)

A
(

α(1) + α(−1) + β(1) + β(−1)
)
= p (positive rates)

A
(

α(1) + α(−1)
)
+ B

(
β(1) + β(−1)

)
= q (accuracies)

A
(

1
w1

(
α(1) + β(1)

)
− 1

w−1

(
α(−1) + β(−1)

))
= 0. (fairness)

The above optimization problem outputs the extreme DDP values for all possible
ensembles. Typically, we are interested in ensembles that perform at least as good as
the best base learner. We can compute the DDP bounds for an ensemble with fixed
accuracy a ∈ [0, 1] by adding the following constraint to the LP:

cᵀmaj

(
α(1) + α(−1)

)
+
(

1− cᵀmaj

) (
β(1) + β(−1)

)
= a. (ensemble accuracy)

In general, the above LP formulation provides great flexibility. Depending on
which information we assume certain constraints can be removed or new constraints
can be added. For example, we might be given only the accuracy of each base learner
and the fact that they are fair, but we drop the constraint that fixes the positive rates.
Instead of demographic parity as the optimization objective we can optimize any kind
of fairness measure that can be expressed linearly in terms of the probability vectors,
for example equal odds and equal accuracy. The flexibility of this approach is due to
the ’brute force’ decomposition into all possible voting patterns. However, this comes
at a computational cost since the number of constraints grows exponentially with the
number of classifiers T.

4.7 Experiments

In this section, we explore and summarize the main insights that optimization prob-
lem 4.7 provides. To this end, we fix the ensemble accuracy to a value a ∈ [0, 1]. We
minimize and maximize optimization problem 4.7 for every fixed ensemble accuracy
a in order to determine the minimal DDP (DEO) and the maximal DDP (DEO). Then,
we can plot the fairness bounds as a function of the ensemble accuracy. Recall that a
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Figure 4.4: Bounds on ensemble DDP. (Left) Given the accuracy and positive rates
of three fair base learners from Example 4.2, we can compute the minimal and maxi-
mal DDP for any fixed ensemble accuracy. The ensemble accuracy is bounded by the
left and right vertical lines as determined by a variation of LP (4.7). In this example,
demographic–parity–fair majority vote ensembles are possible for any ensemble accu-
racy. As the ensemble accuracy increases the lower bound approaches zero, while the
upper bound is around 0.25. Hence, the ensemble can at best be fair or it disadvan-
tages group S = −1. (Right) For different dataset statistics, we sample a set of five
fair classifiers. If we want the ensemble to be more accurate than the best base learner,
the majority vote cannot be fair since the lower bound moves above DDP = 0. The
transparent lines correspond to the fairness bounds, when we do not assume fair base
learners. The green upper bound, and thus the advantage for group S = 1, is signifi-
cantly reduced. Fair base learners can provide better worst-case fairness bounds.

positive DDP signifies that group S = 1 is advantaged and a negative DDP that group
S = −1 is advantaged. When the DDP is zero, the ensemble is fair.

Dataset Statistics. The linear program is controlled by constant dataset statistics.
We fix the group prevalence w1 = P(S = 1) and the group–wise positive rates p1,1 =
P(Y = 1 | S = 1) and p1,−1 = P(Y = 1 | S = −1). In the motivational example, we
have assumed p1,1 = 0.5, p1,−1 = 0.4, and w1 = 0.5, and we use three classifiers (the
recruiters) with positive rates p = [0.3, 0.5, 0.25] and accuracies q = [0.79, 0.725, 0.75].
We provide bounds on the DDP and DEO of the example and an additional set of
dataset statistics.
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Figure 4.5: Bounds on ensemble DEO. (Left) Given the accuracies and positive rates
from Example 4.2, we compute bounds on the DEO. When the base learners are fair
(non-transparent) we can guarantee a better fairness compared to when they are not
fair (transparent). In particular, the ensemble with maximally feasible accuracy is
guaranteed to be fair when it is composed of fair base learners. (Right) In a second
example, we are given five base learners with different accuracies and positive rates.
The worst-case DEO is almost constant over all possible ensemble accuracies. The
lower bound can be improved significantly if the base learners are fair, this is we
can guarantee a smaller disadvantage of group S = 1 by more than 50%. Again, the
maximally accurate ensemble is fair, when the base learners are fair.

Bounds on Demographic Parity. The left panel of Figure 4.4 depicts the DDP bounds
of the Motivational Example 4.2. All points between the upper bound, the lower
bound, the minimal ensemble accuracy on the left, and the maximal ensemble on the
right, are possible outcomes of the majority vote. In this case, for any ensemble ac-
curacy a DDP–fair majority vote is possible, but, more importantly, the worst-case
bounds are such that the majority vote can exhibit distinct unfairness (a DDP of 0.25
means that the positive rate of group S = 1 is larger by 25%!).

As we increase the ensemble accuracy, the bounds on the DDP improve. Finally,
maximal accuracy can only be achieved when the majority vote is either fair or unfair
to group S = −1. This is due to the unbalanced dataset and the fairness notion, which
does not necessarily allow the perfect classifier—in this case, the perfect classifier has
DDP = 0.1. Consequently, the higher the expected ensemble accuracy is, the more
will the data statistics govern the bound (this can be seen more strongly in the right
panel).
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In the right panel, we fix the dataset statistics to p1,1 = 0.5, p1,−1 = 0.1, and
w1 = 0.5. We compute the bounds for five randomly chosen base learners with
q = [0.78, 0.66, 0.71, 0.61, 0.74] and p = [0.44, 0.62, 0.53, 0.63, 0.52]. In this example,
any ensemble with higher accuracy than the best base learner has to be unfair since
the lower bound on the DDP moves above zero when the ensemble accuracy is larger
than the best base learner’s accuracy.

In both plots, we also compute fairness bounds when we remove the fairness con-
straint in (4.7) while every input and every constraint remains the same. Now,the
base learners can be arbitrarily unfair. By removing this constraint, the worst-case
bounds (necessarily) become worse in both panels (see the transparent bounds). In
other words, if we know that the base learners are fair, we can guarantee fairer en-
sembles in absolute terms. In the right panel, we reduce in particular the possible
advantage of group S = 1. We want to emphasize at this point that we can only im-
prove the guarantees, but we cannot imply from these bounds that a majority vote of
fair classifiers is in general more fair than a majority vote of unfair classifiers.

Bounds on Equality of Opportunity. In Figure 4.5 we plot bounds on equality of
opportunity assuming both fair and unfair base learners. To this end, we change the
objective function of optimization problem 4.7 accordingly. In the left panel, we con-
sider our motivational example. First, we observe that a higher accuracy ensemble has
better fairness guarantees. In this case, we even have that the ensemble with maximal
accuracy is fair because the upper and lower bound coincide at DEO = 0. Second, we
again observe that the knowledge about fair base learners improves the worst-case
bounds compared to base learners with arbitrary fairness (in transparent). We even
lose the perfect fairness guarantee for the ensemble with maximal accuracy.

In the right panel, we have p1,1 = 0.1, p1,−1 = 0.1, and w1 = 0.75, with
q = [0.55, 0.68, 0.70, 0.72, 0.64] and p = [0.35, 0.36, 0.38, 0.2, 0.3]. In this example, the
fairness bounds are constant, but the worst-case lower bound on the DEO can be re-
duced by more than 50% if the base learners are fair. If the fair base learners attain the
most accurate ensemble, it is guaranteed to be fair.

4.8 Conclusion

In this chapter, we provided worst-case bounds of popular fairness measures for ma-
jority vote ensembles. In particular, we investigated the worst-case fairness guarantees
of the majority vote, when it is composed of fair base learners. We found that (1) fair
base learners can improve the worst-case fairness bounds, but that (2) a fair and ac-
curate majority vote is sometimes impossible to achieve. Even though the worst-case
fairness bounds can provide a certain fairness guarantee, they are often too large to
guarantee a (nearly) fair majority vote. Without any further assumptions on the de-
pendence between the base learners, we did not observe a fairness of crowds for the
setting, where each individual learner is fair.
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This work is a preliminary analysis of the fairness properties in ensembles and
it opens up interesting future research questions. In order to analyze the properties
of the majority vote, Kuncheva et al. (2003) have identified specific dependencies be-
tween the base learners, called the ’pattern of success’ and the ’pattern of failure’,
under which the majority vote improves or deteriorates accuracy. Since we found that
the majority vote does not attain the fairness properties of its base learners, it might
require a pattern of fairness. Based on the result in Proposition 1, a pattern of fairness
could state that any deviation from independence, like the pattern of success, must
occur in both protected groups to the same degree. However, actually incorporating
such a dependence during the parallel training of base learners is challenging.

Fair ensembles might also be achieved by a different aggregation scheme instead
of the majority vote. Our fairness bounds showed that any fairness considerations
during the training of the base learner can be in vain due the cancellation effects. As
a consequence, no effort should be put into training fair base learners, but instead,
in post-processing with fairness constraints. Incorporating fairness during training
might only be useful for ensembles where classifiers are trained dependently, such as
in Adaboost.
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Appendix A

Too Relaxed To Be Fair

In this appendix, we present detailed results from the experiments in Chapter 2 of all
6 datasets in Figures A.1– A.6. The overall trend of the results is the same as described
in the chapter and we discuss the results of each dataset in the corresponding figure.
Lastly, we present the results of the experiments under two different hyperparameters
selection methods in Figures A.7 and A.8. For all results, each experiment has been
repeated 10 times and we report the average and standard deviation of classification
error and absolute fairness scores DDP and DEO. Furthermore, we report the value
of the Donini linear relaxation (Section 2.2.1) on the test set to show the discrepancy
between the true and relaxed fairness (this metric was omitted in Chapter 2).

General setup. For all the methods except Cotter, as the set of functions F , we use
the similarity-based classifiers that were presented in Chapter 2. As similarities, we
consider both the linear and the rbf kernel. As reasonable points, we use a random
subset of 70% (at most 1000) of the training examples. As regularization term we use
a squared `2 norm (which is a strongly convex function). The loss function in the
empirical risk is the hinge loss, that is

`( f (x) , y) = max (0, 1− f (x) y) .

For the linear version of Cotter et al. (2019), we use the approach suggested
in their example on the Adult dataset. We use a single-layer neural network
where the input size is the number of features. The parameters are then learned
using the RATEMINIMIZATIONPROBLEM provided by the package TENSORFLOW-
CONSTRAINED-OPTIMIZATION. In order to use more complex classifiers based on the
rbf kernel, we precompute the kernel matrix between the training points and the rea-
sonable points. Then, the input size of the single-layer neural network is set to the
number of reasonable points. For both linear and complex classifiers, no further reg-
ularization is used. However, to obtain reasonable and stable results, the number of
epochs has to be carefully chosen. We use between 1000 and 5000 epochs depending
on the dataset, and for the minibatch size we use the default of 200 points.
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Compas–Figure A.4. The Compas dataset (Larson et al., 2016) contains 7214 points
with 53 features, such as name, age, degree of crime, and number of prior crimes. We
use the same pre-processing as Zafar et al. (2017b) and, in particular, we select the
same 5 features. The goal is to predict if a defendant has been arrested again within
two years of the decision. The protected attribute is race. It has been changed to
a binary attribute with the values ‘White’ and ‘NonWhite’. We use 5, 000 randomly
selected points for training.

Communities and Crime–Figure A.5. This dataset includes socio-economic data of
1994 communities in the United States (Redmond and Baveja, 2002). It consists of
128 attributes, of which we drop the name of the state, county, and community, and
features with missing values. Overall, we drop 29 features. We use the attribute
RACEPCTWHITE to construct a binary protected attribute. A community with a per-
centage of white residents higher than the mean 0.75 obtains the protected label 1,
otherwise the label is −1. The goal of this data set is to predict the number of vio-
lent crimes. We binarize the label by splitting VIOLENTCRIMESPERPOP at the mean of
0.24. We use 1, 500 randomly selected points for training.

German Credit–Figure A.6. There are 1000 records of german applicants for a credit
with 20 attributes (Dua and Graff, 2017). The goal is to classify the applicants in cred-
itworthy or not creditworthy. The categorical feature ‘personal status’ is changed into
the binary feature sex. We use it as the protected attribute and use the other 19 features
for training. We use 700 randomly selected points for training.

Toy dataset–Figure 2.1. The toy dataset set in Figure 2.1 consists of 600 points (for
the sake of readability, we only plot a random subset of 400 examples). We draw the
points from different Gaussian distributions. For the protected attribute (the dots), we
sample 150 points with negative label from a Gaussian with mean µ1 = [2,−2] and
covariance matrix Σ1 = [[1, 0], [0, 1]], and another 150 points for the positive class from
the mixture of two Gaussians, with µ2 = [3,−1] and Σ2 = [[1, 0], [0, 1]] and µ3 = [1, 4]
and Σ3 = [[0.5, 0], [0, 0.5]]. For the unprotected attribute (the crosses), we draw 150
points with positive label from a Gaussian with µ4 = [2.5, 2.5] and Σ4 = [[1, 0], [0, 1]],
and 150 points with negative label from a Gaussian with µ5 = [4.5,−1.5] and Σ5 =
[[1, 0], [0, 1]].

Cross Validation Procedure. We report the results for different cross validation pro-
cedures as discussed Chapter 2. In Figure A.7 we use a procedure called NVP pro-
posed by Donini et al. (2018). In a first step, we exclude the hyperparameters with
an accuracy score that is lower than 90% of the best accuracy score. Then, we choose
the set of hyperparameters with the best average fairness score. Finally, we use these
hyperparameters to train on the whole train set.

In Figure A.8 we report the results when we use a given fairness threshold. We
shortlist all hyperparameters with an absolute fairness score lower than 0.05 and,
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among them, choose the hyperparameters with the highest accuracy score. We re-
port average and standard deviation of classification error and absolute fairness scores
DDP and DEO over 10 repetitions. Note that we also report results for the approach
by Cotter et al. (2019) for comparison, even though the linear version does not tune
any hyperparameters. Using the rbf kernel on the other hand, we need to tune the
width of the kernel.
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Figure
A

.3:D
utch.T

he
grey

dashed
verticalline

depicts
the

classification
error

ofthe
constantclassifier,w

hich
is

perfectly
fair

for
both

D
D

P
and

D
EO

.In
term

s
of

D
EO

allthe
m

ethods
perform

equally
w

ellon
this

dataset
as

the
U

nconstrained
classifier

is
already

D
EO

fair.
O

n
the

other
hand,SearchFair

and
C

otter
obtain

a
low

D
D

P
regardless

of
the

com
plexity

of
the

m
odel.O

nce
again,even

though
allthe

fairness
m

ethods
learn

classifiers
w

ith
a

low
linear

relaxation,their
D

D
P

scores
vary

w
idely.Itconfirm

s
thatthere

is
no

guarantee
thata

low
relaxation

value
w

illlead
to

a
fair

classifier.
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Figure
A

.5:C
om

m
unities

and
C

rim
e.The

grey
dashed

verticalline
depicts

the
classification

error
ofthe

constantclassifier,
w

hich
is

perfectly
fair

for
both

D
D

P
and

D
EO

.O
verall,allthe

fairness
m

ethods
perform

sim
ilarly

w
ellin

term
s

of
D

EO
.

For
D

D
P,only

SearchFair
and

C
otter

are
able

to
learn

a
fair

classifier
for

both
the

linear
and

rbfkernel.O
nce

again,one
can

notice
thata

low
linear

relaxation
m

ightor
m

ightnotim
ply

a
D

D
P

fair
classifier.Indeed,the

D
D

P
scores

ofZ
afar,D

onini,
and

SearchFair
are

very
differentw

hile
their

linear
relaxation

scores
are

allclose
to

0.
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N
V

P
C

ross
V

alidation

(a)A
dult.

(b)D
utch.

(c)C
elebA

.

(d)C
om

pas.
(e)

C
om

m
unities

and
C

rim
e.

(f)G
erm

an
C

redit.

Figure
A

.7:W
e

use
a

procedure
called

N
V

P
(D

oninietal.,2018),w
here

w
e

choose
the

setofhyperparam
eters

w
ith

the
best

average
fairness

score
w

hile
having

an
accuracy

above
a

given
threshold.

O
verall,using

this
procedure

greatly
im

proves
the

perform
ances

ofthe
fairness

baselines.
H

ence,on
m

ostdatasets,they
now

obtain
classifiers

thatare
as

fair
as

the
ones

learned
by

SearchFair
and

C
otter.

N
evertheless,there

is
no

guarantee
thatthe

m
ethod

w
illsucceed

and
itindeed

fails
for

both
D

D
P

and
D

EO
on

C
elebA

(linear
kernel),and

for
D

EO
on

A
dult(linear

kernel).The
factthatN

V
P

succeeds
for

the
rbf

kerneland
som

etim
es

fails
for

the
linear

kernelhints
thatN

V
P

is
a

good
w

ay
to

address
the

com
plexity

issue
ofthe

linear
relaxations

butthatitdoes
notsolve

the
other

shortcom
m

ings.The
grey

dashed
verticalline

depicts
the

classification
error

ofthe
constantclassifier,w

hich
is

perfectly
fair

for
both

D
D

P
and

D
EO

.
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Appendix B

Disparate Treatment

In this appendix, we provide more detailed results that we omitted from main chap-
ter. In Section B.1, we complement the results on protected attribute awareness in
fair networks. In Section B.2, we apply our explicit approach to MobileNetV3-Small
and compare to all other fairness approaches. Finally, in Section B.3 we extend our
equivalence results to different target tasks, models, and fairness approaches.

B.1 Protected Attribute Awareness

In this section, we report further results on protected attribute awareness in fair neu-
ral networks. We plot last-layer tSNE visualizations for another CelebA task in Fig-
ure B.1 and for a FairFace task in Figure B.1. Similar to Figure 3.1 in Chapter 3, gender
is separated into two clusters when we regularize the model for demographic parity.

In Figure B.3, we plot the Kendall-tau correlations when using MobileNetV3-Small
for both of the two presented regularizers. As with a ResNet50 model, we observe a
strong association between fairness parameter and an increase in group awareness.
However, for the R̂abs

DP regularizer a positive association is less often significant than
for R̂DP. In Figure B.4, we apply Massaging preprocessing with a varying fairness
parameter. Results on FairFace are presented in Figures B.5 and B.6.
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last-layer representation 
 of unconstrained model

last-layer representation of a model
 regularized for demographic parity

last-layer representation of a model 
 with explicit protected group awareness

Group 0
Group 1

Figure B.1: tSNE (van der Maaten and Hinton, 2008) visualization of feature rep-
resentations of unconstrained (left), fairness-regularized with R̂DP (center), and
group-aware (Section 3.3) (right) Resnet50 models. Each point is colored according
to the protected attribute MALE, and we aim to classify the binary label ATTRACTIVE.
Similar to Figure 3.1 in Chapter 3, we observe that the fair model in the center and the
group aware model on the right separate the genders.

last-layer representation 
 of unconstrained model

last-layer representation of a model
 regularized for demographic parity

last-layer representation of a model 
 with explicit protected group awareness

Group 0
Group 1

Figure B.2: tSNE visualization of feature representations of unconstrained (left),
fairness-regularized (center), and group-aware (right) Resnet50 models. In this fig-
ure, we use the FairFace dataset. Each point is colored according to the protected
attribute GENDER, and we classify the binary label BELOW 30. Similar to CelebA, we
observe that gender is separated into disjoint clusters in fair and group aware models,
whereas they were mixed in the unconstrained model.
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(a) MobileNetV3-Small with regularizer R̂DP on CelebA.
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(b) MobileNetV3-Small with regularizer R̂abs
DP on CelebA.

Figure B.3: Kendall-tau correlation between fairness parameter and protected at-
tribute accuracy. Similar to the results in Chapter 3, where ResNet50 was used, we
also find for MobileNetV3-Small that group awareness is increasing as the fairness pa-
rameter is increased. In (b) we evaluate the regularizer R̂abs

DP and, although on fewer
tasks, observe a similar behavior.
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(a) MobileNetV3-Small with Massaging preprocessing on
CelebA.

Figure B.4: Kendall-tau correlation between fairness parameter λ and protected at-
tribute accuracy. Similar to the regularized approaches, we find an increased group
awareness for the Massaging preprocessing method, especially when the protected at-
tribute is MALE.
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(a) MobileNetV3-Small with regular-
izer R̂DP on FairFace.
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(b) MobileNetV3-Small with regular-
izer R̂abs

DP on FairFace.

Figure B.5: Kendall-tau correlation between fairness parameter λ and protected at-
tribute accuracy. Similar to the findings on the CelebA dataset, we also find an in-
creased group awareness on FairFace for the protected attributes RACE and GENDER.
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(a) ResNet50 with regularizer R̂DP on
FairFace.
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Figure B.6: (Left) Kendall-tau correlation between fairness parameter λ and pro-
tected attribute accuracy. (Right) Increase of protected attribute accuracy of the
group classifier learned on the last layer of ResNet50.
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(a) Demographic parity violation (DDP) of uncon-
strained ResNet50 on CelebA.
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Figure B.7: (Top) Demographic parity violation (DDP) of the unconstrained clas-
sifier. The increase in group awareness is more moderate for those tasks where the
unconstrained classifier is very unfair, for example for the task (column) MALE. How-
ever, this is not always the case as for protected attribute SMILING and target BANGS

for example. (Bottom) Maximum increase of protected attribute accuracy. Compared
to the unconstrained model, we show the highest difference to the second head ac-
curacy of fair models. Even though the unconstrained model is fair, for example for
a few target tasks when protected attribute is SMILING, the increase in second head
accuracy can still be large.
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B.2 Explicit Two-headed Approach.
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Figure B.8: Comparison of different fairness approaches using the MobileNetV3-
Small architecture. We compare our group aware model to fairness-regularized mod-
els (left plot) and the approach of Lipton et al. (2018) (right plot) on when predicting
the target ATTRACTIVE with respect to the protected attribute MALE. For all methods,
we observe the typical trade-off: as the model becomes fairer (DDP is closer to 0), the
target accuracy for ATTRACTIVE decreases. All methods obtain similar accuracy for a
particular DDP value. However, the regularizer R̂DP is unable to achieve near perfect
fairness and saturates around a DDP value of −0.1. The regularizer R̂abs

DP collapses to
a trivial fair solution. Note that Lipton et al. (2018) requires the protected attribute at
test time, while we infer the protected attribute.
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B.3 Fair Networks Behave like Explicit Approach.

In this section, we conduct the experiments from Section 3.4.1 on other tasks and com-
puter vision models. Predicting SMILING we use our two-headed approach to re-
construct fair models and recover the unconstrained model using a ResNet50 with
R̂DP regularizer (Figure B.9), using a MobileNetV3-Small with R̂DP regularizer (Fig-
ure B.10), and using a MobileNetV3-Small with Massaging preprocessing (Figure B.11).
In Figure B.12 and B.13, we recover the unconstrained model from fair ResNet50 and
MobileNetV3-Small models predicting either ATTRACTIVE or YOUNG. Overall, we are
able to replicate the behavior of fair models using both heads of our explicit approach
and to recover the unconstrained model from a fair model with the group classifier
head. Sometimes, as observed in Figure B.12 the unconstrained classifier cannot be
recovered from the fairest models within the performance of the random baseline.
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Figure B.9: Recovering the unconstrained classifier and reconstructing fair classi-
fiers. We train ResNet50 models with the R̂DP regularizer for the target SMILING and
protected attribute MALE. Again, we can reconstruct fair models with our two-headed
approach and we can recover the unconstrained model by adding the second head to
the fair model.
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Figure B.10: Recovering the unconstrained classifier and reconstructing fair clas-
sifiers. We train MobileNetV3-Small models with the R̂DP regularizer for the tar-
get SMILING and protected attribute MALE. Similarly to the analysis above with a
ResNet50, our observations hold for MobileNetV3-Small models as well.
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Figure B.11: Recovering the unconstrained classifier and reconstructing fair clas-
sifiers. We train MobileNetV3-Small models with the Massaging preprocessing for
the target SMILING and protected attribute MALE. When using Massaging, we can
reconstruct the resulting fair models with the two-headed approach. However, the
two-headed approach reconstructs the most fair models slightly less accurately than a
retrained fair model.
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(a) ResNet50 with R̂DP.
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(b) MobileNetV3-Small with
R̂DP.
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(c) MobileNetV3-Small with
Massaging.

Figure B.12: Recovering the unconstrained classifier. For different models and fair-
ness approaches for the target ATTRACTIVE and protected attribute MALE, we evalu-
ate how our two-headed approach can reproduce the behavior of the fair model. From
regularized ResNet50 models we can recover the unconstrained model well. From fair
regularized or massaged MobileNetV3-Small models we recover the unconstrained
model slightly worse than a retrained unconstrained model.
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(a) ResNet50 with R̂DP.
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(b) MobileNetV3-Small with
R̂DP.
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(c) MobileNetV3-Small with
Massaging.

Figure B.13: Evaluating reconstruction accuracy of our two-headed approach. For
different models and fairness approaches for the target YOUNG and protected attribute
MALE, we evaluate how identical our two-headed approach is. In this example, we
can recover the unconstrained model from fair models using the second head well.
The accuracy for fair ResNet50 models is below the random baseline.
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