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 14 

Abstract:  In red varieties, color change of the berry from green to red is one of the first events 15 

associated to ripening and is often used as an indicator of veraison by viticulturists. Water deficit 16 

can accelerate the ripening process and increase the accumulation of pigments in the berry skin. 17 

The impact of water deficit on the timing and progression of berry color change in the vineyard 18 

was little investigated. Here we present the results of three years of observations (2011-2013) on 19 

the progression of color change in Merlot vines subjected to water deficit (WD) or irrigation (C) 20 

regimes. Water deficit did not affect the date when berries started changing color in 2011 and 21 

2012, but pigmentation begun three days earlier in WD than in C vines in 2013. Water deficit 22 

accelerated the pigmentation process in all the years and WD berries completed color change 23 

five days before C on average.  24 

Key words: anthocyanins, deficit irrigation, berry ripening, Vitis vinifera L. 25 
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Introduction 27 

In grapevine, berry development follows a double sigmoid growth curve divided into two 28 

growth phases (Stage I and III) separated by a lag phase (Stage II) during which expansion slows 29 

(Coombe 1992). The onset of berry ripening is commonly known as “veraison” and is associated 30 

with the transition from Stage II to Stage III (Coombe 1992) normally observed around 8–10 31 

weeks after blooming. At this stage, significant physico-chemical changes occur in the berry, 32 

including softening, the resumption of growth, the decrease of organic acid concentration, and 33 

the accumulation of sugars and anthocyanins (in red-grape varieties). As a first noticeable sign of 34 

ripening, veraison is considered one of the major phenological stage. The date of veraison is 35 

usually recorded in commercial vineyards and used as a phenological reference for the 36 

application of several viticultural practices and for the prediction of the harvest period. As 37 

reviewed by Coombe (1992), within a vineyard, besides remarkably varying from year to year, 38 

veraison date varies between vines, between clusters, and between berries within each cluster. 39 

Differences in the timing of flowering and fertilization have been suggested as factors causing 40 

this asynchrony (Coombe 1992). However, Gouthu and Deluc (2015) recently reported that the 41 

seed weight-to-berry weight ratio also affects the timing of ripening initiation; with berries with a 42 

higher seed weight-to-berry weight ratio starting ripening later than berries with a lower ratio.  43 

As a result of the berry to berry variability, veraison in a vineyard is often considered to 44 

occur when 50 % of the berries are exhibiting ripening signs such as softening and translucent 45 

color in white-grapes or red pigmentation in red-grapes. Indeed, in red-varieties, the change in 46 

color is observed when the berry is at 9 or 10 Brix (Keller 2010) and is a reliable indicator of the 47 

shift of the berry metabolism observed at the onset of ripening. The change in berry pigmentation 48 
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at veraison can be from green to pink, red, purple, or blue hues accordingly with the profile and 49 

concentration of anthocyanins synthesized (Castellarin and Di Gaspero 2007); however, in this 50 

manuscript we will name any berry that has changed color from green to pink, red, purple, or 51 

blue as red berry, and we will refer to the berry color change from green to red as the 52 

pigmentation process. 53 

Recent studies indicated that the blooming-veraison interval is strongly determined by the 54 

genetic background of the given variety (Costantini et al 2008). The reduction of the blooming-55 

veraison interval through viticultural practices would be helpful to accelerate the entrance of the 56 

berries into the ripening phase, allowing the berries to have more time to ripe. This would be 57 

particularly valuable in viticultural areas characterized by a short growing season or a cool 58 

climate. Deficit irrigation treatments imposed from early stages of fruit development can 59 

accelerate sugar accumulation and advance harvest date (Shellie et al. 2006, Castellarin et al. 60 

2007), promote the biosynthesis and concentration of anthocyanins in the berry skin (Castellarin 61 

et al 2007, Ollé et al. 2011). Also, observations made on berries of vines subjected to water 62 

deficit from fruit set to veraison, indicate that water deficit may induce an earlier beginning and 63 

an earlier end of the color change process (Hardie and Considine 1976, Castellarin et al. 2007), 64 

hence favoring a longer ripening period. Here we present the results of three years of 65 

observations (2011-2013) on the progression of berry pigmentation under water deficit (WD) and 66 

well-watered (C) conditions in a Merlot vineyard.  67 

Materials and Methods 68 

The experiment was conducted in 2011, 2012 and 2013 at the University of Udine 69 

experimental station “A. Servadei” (46°02’ N, 13°13’ E; elevation 88 m), in a 18 years-old 70 
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vineyard of ‘Merlot’ grafted onto SO4 rootstock. The experimental site and design was described 71 

in detail in Herrera et al. (2015). Briefly, to maintain the vines under a fully-controlled water 72 

regime, four rows of 85 m in length were covered with an EVA (ethylene-vinyl-acetate) film 73 

using an open-side tunnel structure of 5 m in height. Only the central rows were included in the 74 

trial. Water was supplied by a sub-surface drip irrigation system and, with the exception of 75 

irrigation scheduling, vines were managed according to standard commercial practice that 76 

included inter-row cover-crop maintenance, weed removal, pesticide application, and nutrient 77 

management. An automated weather station, located 100 m from the experimental site, recorded 78 

maximum, minimum and average daily temperature, precipitation, relative humidity, wind speed 79 

and radiation. 80 

Two water regimes were established from 31, 24, and 25 days after anthesis (DAA) in 81 

2011, 2012, and 2013, respectively: i) Well-watered (C=Control), in which vines were irrigated 82 

weekly at 100% of ETc to maintain midday stem water potential (Ψstem) between −0.4 and −0.6 83 

MPa; and ii) Water Deficit (WD), in which irrigation was withheld from 25-31 DAA and, when 84 

Ψstem was lower than −1.4 MPa, irrigation was managed to maintain Ψstem between −1.2 and −1.4 85 

MPa until harvest. Each treatment was replicated four times in experimental plots of 10 vines 86 

each in a completely randomized design. Vine water status was estimated weekly using midday 87 

measurements Ψstem as in Herrera et al. (2015). 88 

Monitoring berry pigmentation process 89 

For monitoring the berry pigmentation process in the vineyard a tagging method was 90 

employed. In each experimental plot, ten clusters were randomly selected, tagged, and numbered 91 

at 40 DAA when all the berries were still green in color. Within each cluster, five berries were 92 
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randomly selected, tagged, and numbered with progressive numbers; thus, a total of 40 clusters 93 

and 200 berries were considered for each treatment. These tagged berries were observed every 2 94 

days from the start of berry color change (~50-55 DAA) until the day all tagged berries on all 95 

tagged clusters were red. At the first observed change in color from a green to a pink, red, purple, 96 

or blue hue the berry was categorized as red. The date when a given berry was classified as red 97 

was recorded as the veraison date for that berry. In parallel to the above described methodology, 98 

we performed a visual estimation of the percentage of berries that had changed color within each 99 

tagged clusters at each date of observation; in this case considering all the berries of the cluster 100 

and not only the five tagged berries. The results of this visual estimation were then compared 101 

with the results obtained considering the tagged berries. 102 

Statistical Analyses 103 

The effect of water deficit on the velocity of the pigmentation process in the population 104 

of berries was assessed using a survival analysis technique (Rich et al. 2010) performed with 105 

JMP® software (JMP 7.0, SAS Institute Inc., NC, USA). Survival analysis is commonly used in 106 

medicine and microbiology to study follow-up times from a defined starting point to the 107 

occurrence of a given event; for example, the time from the beginning to the end of a remission 108 

period or the time from the diagnosis of a disease to death. The survival function S(t) is defined 109 

as the probability of surviving at least to time t. In our case “surviving” equals to remain green, 110 

as the event of interest is the berry color change from green to red. The graph of S(t) against t is 111 

called the survival curve. The Kaplan–Meier method can be used to estimate this curve from the 112 

observed survival times without the assumption of an underlying probability distribution. We 113 
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used this method to calculate the survival function in both, C and WD treatments and were tested 114 

for significant differences using the log-rank test (p < 0.05) (Rich et al. 2010).  115 

Chi-square test (p < 0.05) was used to assess significant differences between the 116 

proportion of green and red berries in C and WD at each observation date. 117 

Results 118 

Climate, phenology and vine water status 119 

Seasonal climatic conditions were different among the three years of experiments 120 

(Supplemental Table 1). Generally, the summers in 2012 and 2013 were warmer than in 2011 121 

and the historical mean (1991–2013). However, monthly mean air temperatures during August 122 

(when veraison occurred) were warmer than in the 1991–2013 period in all three years and 123 

similar among years. Growing degree day (GDD) accumulation calculated from 1 April to 30 124 

September were similar between 2011 and 2012 (1947 and 1935 GDD, respectively) and higher 125 

than 2013 (1785 GDD) and the historical average (1721 GDD). 126 

Bud-break was observed on April 10 in 2011 and 2012 and on April 17 in 2013 (Table 1). 127 

Anthesis occurred earlier in 2011 (May 22) than in 2012 and 2013 (June 3 and June 7, 128 

respectively). Veraison (50% of red berries in the vineyard) was recorded 70, 60, and 65 DAA in 129 

2011, 2012 and 2013, respectively. Grapes from C and WD were harvested on September 14 130 

(115 DAA), September 18 (107 DAA), and September 25 (110 DAA) in 2011, 2012, and 2013, 131 

respectively. 132 

The deficit irrigation treatment significantly reduced the midday stem water potential 133 

(Ψstem) of grapevines (Figure 1). In all the years considered, the Ψstem of C vines remained 134 

consistently higher than -0.60 MPa during the whole season, while it decreased progressively 135 
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after irrigation was withheld in WD vines. WD Ψstem was lower than C Ψstem from 51, 40, and 38 136 

DAA in 2011, 2012 and 2013, respectively; at these stages, WD Ψstem was recorded -0.70, -0.95, 137 

and -0.66 MPa. Differences were mainly related with the time when irrigation treatments were 138 

applied, as in 2011 the treatments were imposed 31 DAA, a week later than 2012 (24 DAA) and 139 

2013 (25 DAA). 140 

Impact of water deficit on berry pigmentation process 141 

First colored berries in C vines were observed at 64, 55, and 59 DAA, and all the berries 142 

had changed color by 87, 71, and 77 DAA in 2011, 2012, and 2013, respectively (Figure 2). On 143 

the other hand, first colored berries in WD vines were observed 65, 55 and 56 DAA in 2011, 144 

2012 and 2013, respectively, and all the berries had changed color by 81 DAA in 2011 and 68 145 

DAA in 2012 and 2013. Hence, in two out of three years, there was no significant difference 146 

between irrigation treatments in the date of first color change. In 2013, first color occurred 3 147 

days earlier in the WD than in the C irrigation treatment. Each year, the rate of berry color 148 

change was greater in vines under WD than C irrigation treatment. WD berries completed the 149 

pigmentation process 7, 3 and 6 days before C vines in 2011, 2012 and 2013, respectively 150 

(Figure 1). The survival analysis (p < 0.05) confirmed that this increase in the speed was 151 

significant in all three years (Supplemental Figure 1). 152 

The same phenomenon described above was observed when pigmentation was assessed 153 

by visually estimating the percentage of red berries on the entire clusters (Supplemental Figure 154 

2). A significant linear regression (p < 0.001) was observed between the percentages of red 155 

berries determined by observing the five berries that were tagged per cluster and the ones 156 

determined by observing the entire cluster (Figure 3). 157 
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Discussion 158 

In the three years of this study, C and WD vines had significantly different levels of water 159 

deficit prior to veraison, and the pre-veraison water deficit accelerated the rate of berry color 160 

change in the vineyard. When pre-veraison water deficit was milder (Ψstem = -0.7 MPa from 40 to 161 

50 DAA in 2011), significant differences in the percentage of red berries between the irrigation 162 

treatments were observed later during development than when the deficit was more severe (Ψstem 163 

= -0.95 and -1.04 MPa from 40 to 50 DAA in 2012 and 2013, respectively). On the other hand, 164 

in 2013, when water deficit was more severe at pre-veraison stages than in the other two seasons, 165 

pigmentation started earlier in WD than in C vines, and differences in the percentage of red 166 

berries between the irrigation treatments were significant across the pigmentation process. Our 167 

results indicate that the earlier achievement of berry red pigmentation in Merlot vines subjected 168 

to water deficit is related to a faster transition from 100% green to 100% red berries rather than 169 

an earlier beginning of berry pigmentation process in the vineyard. In an experiment with potted 170 

‘Cabernet Franc’ vines subjected to several irrigation treatments, Hardie and Considine (1976) 171 

reported that the berries of vines subjected to pre-veraison water deficit from 44 DAA to 76 172 

DAA, began to change color five days earlier and completed the color transition in a shorter 173 

period than the berries of irrigated vines (control) and berries of vines subjected to early (from 22 174 

DAA to 44 DAA) pre-veraison water deficit followed by restored irrigation prior to veraison. 175 

Authors hypothesized that an induction of a high sugar concentration through temporary 176 

shriveling might explain the early coloration of berries subjected to water deficit, however, in our 177 

study, no shriveling was observed in WD berries. Castellarin et al. (2007) reported that water 178 

deficit imposed from fruit set until the end of veraison (77 DAA), induced an earlier beginning 179 

and end of color change in Cabernet Sauvignon berries. Despite these studies were based on few 180 
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observations within a single experimental season and did not report any detailed data on the 181 

progression of color change, the anticipation of the beginning of color change appeared to be the 182 

major driver of the earlier completion of the berry pigmentation. In this study, Merlot vines 183 

subjected to water deficit did not start the pigmentation process before than irrigated vines two 184 

out of three years. Interestingly, pigmentation started three days earlier in WD than in C in the 185 

season when water deficit was more severe before and at veraison, suggesting that the level of 186 

severity of water deficit might be critical for determining an earlier beginning of color change. 187 

Some authors showed that water deficit decouples the anthocyanin/sugar accumulation during 188 

ripening (Castellarin et al. 2007, Sadras and Moran 2012, Herrera et al. 2015, Shellie et al. 189 

2015); although in this study we did not couple the observations on color change with sugar 190 

analysis on the same berries, our results suggest that the uncoupling observed in other works 191 

might be related to the accelerated berry color change observed here, and the faster pigmentation 192 

to an enhanced anthocyanin biosynthesis from the onset of berry pigmentation. The hormone 193 

abscisic acid (ABA) might play a critical role in regulating the acceleration of berry 194 

pigmentation under water deficit. ABA concentration in the berry increases remarkably at 195 

veraison (Owen et al. 2009) and several studies indicated that ABA stimulates the synthesis of 196 

anthocyanins in grapevine by promoting the expression of key biosynthetic genes (Jeong et al. 197 

2004, Gambetta et al. 2010). Water deficit increases the ABA concentration in the berry 198 

(Hochberg et al. 2015) as well as the expression of ABA signaling genes at veraison, potentially 199 

involved in the regulation of ripening (Gambetta et al 2010). 200 

  201 
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Conclusion 202 

Our study quantified the impact of water deficit on the timing of the beginning of 203 

pigmentation in red grapes and showed that water deficit accelerates the transition of the berries 204 

from a green to a red hue. Overall these results indicate that water deficit generally hastens the 205 

beginning of ripening in the vineyard, favoring an extension of the ripening period than under 206 

well-water conditions. This extension possibly contribute in determining the different fruit 207 

composition often observed at harvest under water deficit that can translate into improved 208 

sensory features of the derived wines. 209 
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Table 1  Dates of the major phenological stages recorded in 
the experimental vineyard in 2011, 2012, and 2013. 

Phenology stage 2011 2012 2013 
Budbreak 99a 100 106 
Anthesis (50% capfall) 141 154 157 
Veraison (50%)b 210 214 220 
Harvest 256 261 267 
a Dates are given as day of the year (DOY) 
b Veraison stage is referred to the well-watered control (C) 
treatment. 
 
 
 
 

Supplemental Table 1  Mean air temperature (°C) and cumulated growing degree days (GDD) in 2011, 
2012 and 2013 in the experimental site. 

 Mean air temperature (°C)  Cumulated GDD (°C) 

Month 2011 2012 2013 Mean 
1991-2013 

 
2011 2012 2013 Mean 

1991-2013 

Jan 3.2 3.0 4.3 3.7  0 0 0 0.3 
Feb 5.2 2.3 3.9 4.5  0 0 0 0.8 
Mar 8.7 11.6 7.3 8.6  22.8 62.2 0.9 20.0 
Apr 15.0 12.1 13.8 12.7  172.3 136.0 123.5 109.5 
May 19.1 17.6 15.8 17.6  455.8 371.1 292.9 344.7 
Jun 21.2 22.3 21.0 21.1  793.0 740.3 617.8 671.8 
Jul 22.0 24.4 25.6 23.0  1164.4 1185.8 1101.1 1075.0 

Ago 24.0 24.8 23.6 22.9  1597.7 1643.1 1523.6 1474.5 
Sep 21.7 19.7 18.7 18.2  1947.6 1935.1 1785.1 1721.6 
Oct 12.9 14.4 14.8 13.7  2043.1 2082.0 1935.1 1843.1 
Nov 8.4 10.6 9.9 8.8  2068.2 2119.6 1978.2 1870.6 
Dec 5.0 3.5 5.8 4.4  2068.2 2119.6 1979.1 1871.8 
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Figure 1  Midday stem water potential (Ψstem, 
MPa) of irrigated (C) and water deficit (WD) 
Merlot grapevines in (A) 2011, (B) 2012, and 
(C) 2013. Ψstem values are given as means and 
standard errors within the given period of time 
(DAA). Arrows indicate the date of imposed 
irrigation treatments. Pigmentation period 
indicate the time lapse between the first colored 
berry observed and 100% red berries, 
irrespective of the treatments.  

 

A
J

E
V

 P
A

P
E

R
S

 I
N

 P
R

E
S

S
  

 •
  

 A
J

E
V

 P
A

P
E

R
S

 I
N

 P
R

E
S

S
  

 •
  

 A
J

E
V

 P
A

P
E

R
S

 I
N

 P
R

E
S

S
 



American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2016.15083 
AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal  

or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 

 

14 
 

 

Figure 2  Effect of water deficit on the 
progression of berry pigmentation (% of red 
berries) assessed by observing tagged 
berries in (A) 2011, (B) 2012, and (C) 2013. 
Each point is the mean of four plots (50 
berries each) at a given observation date. 
Bars represent the standard error (n = 4). 
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Figure 3  Relationship between the percentage of red berries determined by observing five tagged berries 
per cluster (200 berries per plot) and the percentage of red berries estimated by visually assessing 
pigmentation in tagged clusters (10 clusters per plot) at each sampling date in 2011, 2012, and 2013. 
Regression was performed considering the data from all the three years together. 
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Supplemental Figure 1  Kaplan-Meier 
surviving curves in well-watered (C) and non-
irrigated (WD) vines in (A) 2011, (B) 2012, 
and (C) 2013. The Log-Rank test parameters 
are shown in the graphs. p < 0.05 identifies a 
significant difference between C and WD 
survival curves. 

 

A
J

E
V

 P
A

P
E

R
S

 I
N

 P
R

E
S

S
  

 •
  

 A
J

E
V

 P
A

P
E

R
S

 I
N

 P
R

E
S

S
  

 •
  

 A
J

E
V

 P
A

P
E

R
S

 I
N

 P
R

E
S

S
 



American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2016.15083 
AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal  

or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 

 

17 
 

 

 

Supplemental Figure 2  Effect of water 
deficit on the progression of berry 
pigmentation (% of red berries per cluster) 
assessed by estimating the percentage of red 
berries in tagged clusters in (A) 2011, (B) 
2012, and (C) 2013. Each point is the mean 
of four plots (10 cluster per plot) at a given 
observation date. Bars indicate the standard 
error (n = 4). 
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