
Mechanizing Type Environments in weak HOAS

Alberto Ciaffaglione, Ivan Scagnetto

Università di Udine
Dipartimento di Matematica e Informatica
via delle Scienze, 206 - 33100 Udine, Italia

Abstract

We provide a paradigmatic case study, about the formalization of System F<:’s
type language in the proof assistant Coq. Our approach relies on weak HOAS,
for the sake of producing a readable and concise representation of the object
language. Actually, we present and discuss two encoding strategies for typing
environments which yield a remarkable influence on the whole formalization.
Then, on the one hand we develop System F<:’s metatheory, on the other hand
we address the equivalence of the two approaches internally to Coq.

Keywords: Type Theory, Logical Frameworks, HOAS, POPLmark Challenge

1. Introduction

Encoding in a sound way an object language and developing its metatheory
are not the only goals in the field of Computer-Aided Formal Reasoning. In fact,
if the formal representation of a system is too cumbersome or too far away from
its “informal” counterpart, using the computer to prove theorems is not com-
pelling enough for the casual user, compared to carrying out proofs with paper
and pencil. Therefore, since the dawn of the first logical frameworks and proof
assistants, there is an ongoing debate about different encoding techniques and
tools for a convenient and “user friendly” activity of formal proof development.

Type theory-based logical frameworks (LFs) provide several useful mecha-
nisms which are automatically made available by the underlying metalanguage:
unification, pattern matching, recursive functions definition, natural deduction-
style reasoning, etc. Moreover, some systems like, e.g., the Edinburgh LF [1],
go a little further, suggesting an encoding methodology known as Higher-Order
Abstract Syntax (HOAS), where the variables of the object language are identi-
fied with the metavariables of the underlying typed λ-calculus, and the binders
are represented by functional constants. In this way, the basic notions of α-
conversion and capture-avoiding substitution are delegated to the metalanguage
of the framework, with the consequence that the resulting encodings are rather
concise, elegant and reminiscent of the original counterparts on paper.

However, it is well-known that the advantages of encodings based on HOAS
often thin out as soon as the proof development process starts. In particular,

Preprint submitted to Theoretical Computer Science July 3, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/53359086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this happens when one wants to reason formally about the metatheory of the
object language, so that it is necessary to handle at the proof level some of the
notions delegated to the underlying metalanguage (e.g., bound variables and
capture-avoiding substitution). In the literature, there is a lot of work which
is devoted to recover some degree of expressivity for HOAS-based encodings, in
several settings: namely, layered approaches [2], well-formedness (a.k.a. validity)
predicates [3], nominal calculi [4], axiomatic theories [5, 6], new frameworks with
built-in support for programming with HOAS [7], and so on.

In this paper, we adopt the weak variant [8] of the HOAS methodology and
work in the inductive setting of the Coq proof assistant [9], to focus on a common
problem encountered in encoding and reasoning formally about a wide range of
formal systems: that is, the representation of a typing environment (i.e., the
data structure recording the associations between the free variables occurring in
a proof and their types). In order to provide a significative, sufficiently general1

and, we hope, compelling case study, we take as object system the type language
of System F<: (already used as a test-bed for the famous POPLmark Challenge
[10]), and in particular we address its algorithmic subtyping.

Our first achievement is a weak HOAS formalization of System F<:’s sub-
typing system and the subsequent solutions to the POPLmark Challenge parts
1A (i.e., reflexivity and transitivity of subtyping) and 1B (extension to the lan-
guage enriched with record types). This contribution is carried out by adopting
the “traditional” encoding of type environments as lists of pairs, with the result
that the subtyping is managed via a deep, sequent-style encoding.

On the other hand, we observe that the type systems beneath type theory-
based logical frameworks are usually given in natural deduction-style; hence,
their implementations give rise to natural deduction proof systems. Since these
systems help the user in finding the proof term by means of a top-down process,
it may be convenient to encode also the object language by following this pat-
tern. Moreover, a natural deduction representation favors a smoother treatment
of the hypotheses used in proof developments (such as, e.g., the assumptions
related to the typing enviroment), allowing one to delegate them to the un-
derlying metalanguage. Thus, we rephrase System F<:’s subtyping in natural
deduction-style, by providing an alternative representation of the typing envi-
ronment. Precisely, we render the typing assumptions contained in the envi-
ronment by means of an auxiliary “bookkeeping” judgment [11, 12, 13, 14, 15],
which simply records the existence of such assumptions. Thus, as a second,
independent result, we prove formally that the consequent shallow encoding of
System F<:’s subtyping is adequate (i.e., both sound and complete) w.r.t. the
deep one used in the first part to address the POPLmark Challenge 1A. Even
if such a correspondence between encodings based on “explicit” and “implicit”
derivation contexts seems to be known in the “folklore”, we are not aware of
any mechanization within logical frameworks.

Throughout the whole formal development, we use the Theory of Contexts

1From the point of view of the typical issues to be faced when mechanizing a formal system.

2

(ToC) to be able to reason formally in weak HOAS about variables, binders,
etc. The ToC, introduced in [5] as a set of axioms about basic properties of
names/variables, was proved sound by means of a categorical model [16].

Despite the peculiar nature of System F<:, we believe that our achievements
about the two encoding strategies are portable to other settings as well, since
their applicability is rather independent from the particular object system taken
as a case study. Notice also that the role of the type environment is very
significant, as it is involved in both static and dynamic properties of languages.

We consider the present work as a contribution to the ongoing deep vs.
shallow debate raised by the seminal paper [17], where the authors introduced
the dichotomy between deep and shallow approaches in the quest for the most
concise/elegant/usable/etc. adequate encoding. Originally, a deep encoding was
defined as “representing syntax as a type within a mechanized logic”. Today,
the difference between the two approaches is measured according to the amount
of machinery delegated to the metalanguage, i.e., how close (how shallow), or
how far (how deep) the encoding is w.r.t. the logical framework considered [18].
Thus, a “shallow encoding” aims at delegating to the framework as much as
possible the notions and mechanisms of the object language. The benefit of this
approach is twofold. From the practical point of view, it yields more concise and
elegant encodings, freeing the user from the burden of representing and handling
explicitly extra machinery. Moreover, it often offers a deeper insight on the
object system itself, because it entails a “standardization process” on the object
language constructs. This is indeed the case with the use of HOAS for encoding
binders (and the related α-conversion and capture-avoiding substitution).

Synopsis. Sections 2.1 and 6.1 contain the presentation of material from [10],
therefore can be skipped by the reader familiar with the POPLmark Challenge.
In Section 2 we introduce System F<:’s type language on paper: its syntax,
the subtyping relation (both in sequent and in natural deduction-style) and
the statement of the first task of the Challenge. In Section 3 we present the
deep encoding of the object system in Coq. We devote the Section 4 to a brief
excursus about the Theory of Contexts, which we use in the formal development
throughout the rest of the paper. The solution to the POPLmark Challenge
1A is described in Section 5, and extended to record types (version 1B) in
Section 6. In Section 7 we discuss the limits of the deep encoding approach,
paving the way to the alternative shallow encoding presented in Section 8. The
internal adequacy and the tradeoffs between the two encodings are carried out
in Section 9. Concluding remarks, related and future work are discussed in
Section 10. A major part of the present paper is based on the publications
[19, 20], while the development in Coq is available as a web appendix [21].

2. A paradigmatic case study: System F<:

In this section we illustrate the object system taken as case study in this
paper, i.e., System F<:’s type language, and the development of its metatheory
on paper. In Section 2.1 we define System F<:’s syntax and subtyping, then we

3

focus on the transitivity property of the latter, which forms the core of the first
task of the POPLmark Challenge [10]. In the following Section 2.2 we rephrase
the Challenge by addressing System F<:’s well-scoping discipline, which is left
implicit, on purpose, in the reference paper [10]. In the last Section 2.3 we refor-
mulate again System F<:’s subtyping, by pursuing a shallow encoding approach,
to be exploited in the final part of the paper, starting from Section 8.

We remark that the other mechanisms left implicit in [10], i.e., α-conversion
and capture-avoiding substitution of variables for variables, will be addressed
directly through Coq’s metalanguage, and therefore discussed in later sections.

2.1. The POPLmark Challenge 1A

The first task of the Challenge focuses on System F<:’s type language, that we
consider in its pure version in this section, i.e., without record types (Challenge
1A). The syntax of types features variables (taken, as usual, from an infinite
set of distinct symbols V ar), the constant Top (the supertype of any type),
functions, and bounded quantification (i.e., universal types):

Type : S, T ::= X type variable Top maximal type
S → T function type ∀X<:S. T universal type

Universal types, which form in fact the individual characteristic of F<:, arise
by combining polymorphism and subtyping: on the one hand types such as
∀X.T are intended to specify the type of polymorphic functions; on the other
hand bounded universal quantifiers such as ∀X<:S carry subtyping constraints.
Actually, the universal type ∀X<:S. T has the effect of binding the occurrence
of X in T , but not in S. The type environments are formed by subtyping
constraints too, involving type variables and types:

Env : Γ ::= ∅ empty type environment
Γ, X<:T type variable binding

Type variables within environments have to respect a scoping discipline: only
fresh variables can be introduced, that is, X/∈dom(Γ); moreover, such variables
cannot occur free in the type they are bound to, i.e., X/∈fv(T); finally, the
variables that appear free in T must be already collected in the environment Γ.
Hence, a typical two-variable well-scoped environment is, e.g., X<:Top, Y <:X
(notice that we will give formal definitions in the next Section 2.2).

Algorithmic subtyping Γ ` S<:T , i.e., “S is a subtype of T under assump-
tions Γ”, captures the intuition that an instance of S may be safely used wher-
ever an instance of T is expected. It is defined by induction and it is intended
to concern only well-scoped types (i.e., when Γ ` S<:T is derived, all the type
variables that occur free in S and T have to be in the domain of Γ):

Γ ` S <: Top
(Top)

Γ ` X <: X
(Refl)

X<:U ∈ Γ Γ ` U <: T
Γ ` X <: T

(Trans)

Γ ` T1 <: S1 Γ ` S2 <: T2
Γ ` S1 → S2 <: T1 → T2

(Arr)
Γ ` T1 <: S1 Γ, X<:T1 ` S2 <: T2

Γ ` ∀X<:S1.S2 <: ∀X<:T1.T2
(All)

4

The Challenge focuses on the algorithmic version of subtyping because its
ultimate goal is the experimentation of implementations of the formalized defini-
tions. Actually, being syntax-directed, algorithmic subtyping is easier to reason
with than its equivalent, more familiar declarative presentation, where the rules
(Refl) and (Trans) are replaced by the following ones:

X<:U ∈ Γ
Γ ` X <: U

(1)
Γ ` S <: S

(2)
Γ ` S <: T Γ ` T <: U

Γ ` S <: U
(3)

In fact, the first task of the Challenge addresses the relationship between
the two subtyping versions, as it consists to prove that the transitivity property
(3) is a derivable property within the algorithmic system (the same is required
for reflexivity (2), a goal which is less problematic, though).

The proof of the transitivity is challenging essentially in two respects: it has
to be proved together with the narrowing property, and the whole proof requires
a mutual and nested induction proof argument2.

Proposition 1 (Transitivity). Let be Γ∈Env, and S,Q, T,X,M,N, P∈Type:
1) If Γ ` S<:Q and Γ ` Q<:T , then Γ ` S<:T .
2) If Γ, X<:Q,∆ `M<:N and Γ ` P<:Q, then Γ, X<:P,∆ `M<:N .

Proof. 1), 2) are proved together, by induction on the structure of the type Q.
1) The proof for transitivity proceeds by an inner induction on the structure

of the derivation Γ ` S<:Q, with a case analysis on the final rule of such a
derivation and on that of the second hypothesis Γ ` Q<:T . We illustrate the
crucial case when both the derivations end with an application of the (All) rule
(where it holds S≡∀X<:S1.S2, Q≡∀X<:Q1.Q2, T≡∀X<:T1.T2):

...
Γ ` Q1<:S1

...
Γ, X<:Q1 ` S2<:Q2

Γ ` ∀X<:S1.S2 <: ∀X<:Q1.Q2
(All)

...
Γ ` T1<:Q1

...
Γ, X<:T1 ` Q2<:T2

Γ ` ∀X<:Q1.Q2 <: ∀X<:T1.T2
(All)

To conclude Γ ` ∀X<:S1.S2 <: ∀X<:T1.T2 via the (All) rule, two premises are
needed: first, Γ ` T1<:S1 may be derived by induction hypothesis from the
third and the first subderivations; however, the induction hypothesis cannot be
applied to the second and fourth ones (to deduce Γ, X<:T1 ` S2<:T2), because
their environments are different. Hence, the narrowing property, i.e., the outer
induction hypothesis (being Q1 structurally smaller than Q) has to be exploited,
to derive Γ, X<:T1 ` S2<:Q2 from the second and the third subderivations. To
construct the required derivation Γ, X<:T1 ` S2<:T2 from this last hypothesis
and the fourth subderivation, it is necessary to apply again the outer induction
hypothesis (i.e., the transitivity itself, with Q2 structurally smaller than Q).

2) Similarly, the proof for narrowing proceeds by an inner induction on the
structure of the derivation Γ, X<:Q,∆ `M<:N , again with a case analysis on

2The proof of transitivity is reported in [10, 22], albeit not in a fully detailed fashion.

5

the final rule applied. The treatment of this “twin” property is even subtler
when the last rule applied is (Trans), and M is exactly X:

...
Γ, X<:Q,∆ ` Q<:N

Γ, X<:Q,∆ `M ≡ X<:N
(Trans)

Now, Γ, X<:P,∆ ` Q<:N is derived by induction hypothesis, and Γ, X<:P,∆ `
P<:Q via a straightforward weakening property. This time, the outer induction
hypothesis has to be exploited with the same Q; that is, the transitivity property
is used to deduce Γ, X<:P,∆ ` P<:N from the two inferred derivations. In the
end, an application of the (Trans) rule allows to obtain Γ, X<:P,∆ ` X<:N .

2.2. System F<: in sequent-style

We give now an alternative presentation of System F<:’s subtyping, by mak-
ing explicit the scoping discipline, which is implicit in the formulation [10] re-
ported in the previous Section 2.1. While carrying out this step, we are mainly
inspired by the features provided by logical frameworks based on type theory.

On the one hand, we keep using the same syntax for types of Section 2.1;
on the other hand, we perform small changes on the subtyping system, and we
prove that the new version is equivalent to the original one. Afterwards, we
update the statement and the proof of Challenge 1A. The formalization in Coq

of the resulting system and metatheory will be discussed in Sections 3, 4, 5.
We manage the type environment as a concrete collection, made of pairs

variable-type in the form 〈X,T 〉 ∈ V ar×Type; therefore, we have to capture
formally two concepts related to the environment itself. First, we define the
closure of types T w.r.t. environments Γ (a sort of compatibility) via the relation
closed ⊆ Type×Env, to state that the free variables of T have to appear in the
domain of Γ. Second, the well-formedness of environments ok ⊆ Env prescribes
that, when a new pair 〈X,T 〉 makes an environment Γ grow, X must both be
fresh w.r.t. Γ and not appear in T , and T has to be closed w.r.t. Γ. In what
follows, we write fv(T) for the type variables occurring free in a type T , and
overload the symbols “∈, /∈” in a way which is clear from the context.

Definition 1 (Closure, Well-formedness). For Γ=〈X1, T1〉,..., 〈Xn, Tn〉∈Env,
T∈Type, the domain of Γ and the predicates closed, ok are defined as follows:

dom(Γ) , {X1, . . . , Xn} closed(T,Γ) , ∀Y. Y ∈fv(T)⇒ ∃U. 〈Y,U〉∈Γ

ok(∅)
(ok·∅)

ok(Γ) X/∈dom(Γ) closed(T,Γ)

ok(Γ, 〈X,T 〉)
(ok·pair)

Notice that we do not need the condition X/∈fv(T) among the premises of the
(ok·pair) rule, because it can be derived from the second and the third hypothe-
ses. Finally, the main subtype judgment Γ ` S<:T is rendered as sub(Γ, S, T),
where sub is a predicate defined on 3-tuples, sub ⊆ Env×Type×Type.

6

Definition 2 (Subtyping). Assume Γ∈Env, S, T, U, S1, S2, T1, T2, X, Y ∈Type.
Then, the predicate sub is defined by induction, as follows3:

ok(Γ) closed(S,Γ)

sub(Γ, S, Top)
(top)

ok(Γ) 〈X,U〉 ∈ Γ

sub(Γ, X,X)
(var)

〈X,U〉 ∈ Γ sub(Γ, U, T)

sub(Γ, X, T)
(trs)

sub(Γ, T1, S1) sub(Γ, S2, T2)

sub(Γ, S1 → S2, T1 → T2)
(arr)

sub(Γ, T1, S1) ok(Γ, 〈Y, T1〉)⇒ sub((Γ, 〈Y, T1〉), S2{Y/X}, T2{Y/X})
sub(Γ,∀X<:S1.S2,∀X<:T1.T2)

(all)

It is apparent that we have obtained a sequent-style encoding of subtyping,
i.e., a formal system whose set of inference rules manipulate derivation asser-
tions made of premises (Γ) and conclusions (S<:T). It is also immediate that
our presentation of subtyping is equivalent to the original one of Section 2.1:
informally arguing, we observe that we are using the same type environments
and that we have formalized their well-formedness and a kind of compatibility
between them and the types. In fact, we have enriched the subtyping rules with
side-conditions to make them fully formal, as required by the Challenge [10].

Now we can address the Challenge 1A (Proposition 2 below), ensuring that
our version of subtyping fulfills the required properties. Notice that it is nec-
essary to add two premises to the reflexivity statement w.r.t. [10], because this
is a property whose proof, in absence of hypothetical subtyping derivations, is
carried out on the structure of a type; therefore, we have to assume the consis-
tency of both the environment and the type considered. Before the main result
we state two preliminary lemmas, to connect each other the three judgments
defined in this section, and to address the environment. In the following, given
an environment Γ, perm(Γ) stands for any permutation of its components.

Lemma 1 (Auxiliary judgments). Let be Γ∈Env, and S, T∈Type:
1) sub(Γ, S, T)⇒ ok(Γ);
2) sub(Γ, S, T)⇒ closed(S,Γ) ∧ closed(T,Γ).

Proof. Both the points are proved by induction on the structure of the derivation
of sub(Γ, S, T); the proof of point 2) requires point 1).

Lemma 2 (Environment). Let be Γ,∆∈Env, and X,P,Q, S, T∈Type:
1) Well-formedness: ok(Γ, 〈X,Q〉,∆) ∧ sub(Γ, P,Q)⇒ ok(Γ, 〈X,P 〉,∆);
2) Permutation: sub(Γ, S, T) ∧ ok(perm(Γ))⇒ sub(perm(Γ), S, T);
3) Weakening: sub(Γ, S, T) ∧ ok(Γ,∆)⇒ sub((Γ,∆), S, T).

Proof. 1) By induction on the structure of ∆, and Lemma 1(2). 2) By induction
on the derivation of sub(Γ, S, T), and Lemma 1(1). 3) By induction on the
derivation of sub(Γ, S, T), and point 2).

3Notice in the (all) rule the substitution of Y for the free occurrences of X, written {Y/X}.

7

Proposition 2 (Challenge 1A). Let be Γ,∆∈Env, S,Q, T,X,M,N, P∈Type:
Reflexivity: ok(Γ) ∧ closed(S,Γ)⇒ sub(Γ, S, S).
Transitivity: sub(Γ, S,Q) ∧ sub(Γ, Q, T)⇒ sub(Γ, S, T).
Narrowing: sub((Γ, 〈X,Q〉,∆),M,N)∧sub(Γ, P,Q)⇒ sub((Γ, 〈X,P 〉,∆),M,N).

Proof. (Reflexivity) By induction on the structure of S. (Transitivity and Nar-
rowing) Simultaneously, by induction on the structure of Q; we point out here
some extra details w.r.t. Proposition 1, depending on the cases of Q.

(Transitivity) [Q=Top]: via Lemma 1(2). [Q=Y]: by inner induction on
the derivation of sub(Γ, S, Y). [Q=U→V]: by inner induction on the deriva-
tion of sub(Γ, S, U→V), Lemma 1(2), and the outer induction hypothesis, i.e.,
the transitivity statement itself, used twice with U and V , which are struc-
turally smaller than Q. [Q=∀Y <:U.V]: by inner induction on the derivation
of sub(Γ, S,∀Y <:U.V), Lemma 1(2), and the outer induction hypothesis, this
time both the narrowing statement with U and the transitivity with V , where,
again, both U and V are structurally smaller than Q (see also Proposition 1).

(Narrowing) All the cases require an inner induction on the derivation of
sub((Γ, 〈X,Q〉,∆),M,N), and Lemmas 1(1), 2(1). When the (trs) rule is
matched by such an induction, all the cases but the Q=Top one need the appli-
cation of the outer induction hypothesis, i.e., the transitivity with the starting Q
(see Proposition 1). Moreover, when (trs) is matched, the Q=Top case requires
the Lemma 1(2), and the other cases the Weakening property (Lemma 2(3)).

2.3. System F<: in natural deduction-style

In this section we rephrase System F<:’s algorithmic subtyping of Section 2.1
in a slightly different way than in Section 2.2, by adopting a natural deduction
encoding approach. The introduction of such a variant, as discussed in Section
1, is an attempt to pursue a (more) shallow representation of the object system.

As it is well-known, a formal system in natural deduction-style is defined
by a set of inference rules which manipulate conclusions, such as A, whereas
sequent-style systems handle derivation assertions made of premises and con-
clusions, such as Γ ` A. Therefore, a natural deduction formal proof of Γ ` A
is represented by a tree whose root is labeled with A and whose set of leaves
form the derivation context Γ. In this section we render System F<:’s subtyping
Γ ` S<:T via the judgment subN (S, T), where subN is a predicate defined on
pairs, subN ⊆ Type×Type. Actually, the typing environment Γ is represented
through associations between variables and types, by means of the bookkeeping
predicate book ⊆ V ar×Type, where we keep using V ar as the set of variables.
A suitable collection of these kinds of associations forms in fact our “global”
derivation context ∆, that is intended to play the role of Γ. To address the
scoping discipline, we add the predicate closedN ⊆ Type, which states that the
free variables appearing in a type T must be recorded in the context ∆:

closedN (T) , ∀Y. Y ∈fv(T)⇒ ∃U. book(Y,U)

It is then possible to define System F<:’s subtyping in natural deduction-
style, which actually looks more concise than in the previous Section 2.2.

8

Definition 3 (Subtyping, bis). Assume S, T, U, S1, S2, T1, T2, X, Y ∈Type. In
the (allN) rule below, let fresh(Y) stand for the two conditions Y /∈fv(S1) ∪
fv(T1) ∪ (fv(S2)\{X}) ∪ (fv(T2)\{X}) and there does not exist any V ∈Type
different from T1 such that book(Y, V)4. Then, the predicate subN is defined by:

closedN (S)

subN (S, Top)
(topN)

book(X,U) subN (U, T)

subN (X,T)
(trsN)

book(X,U)

subN (X,X)
(varN)

subN (T1, S1) subN (S2, T2)

subN (S1→S2, T1→T2)
(arrN)

[fresh(Y) ∧ book(Y, T1)]
...

subN (T1, S1) subN (S2{Y/X}, T2{Y/X})
subN (∀X<:S1.S2,∀X<:T1.T2)

(allN)

The (allN) rule is a conditional one, as it depends on a premise which is
formed, in turn, by a premise and a conclusion. We have written such an
hypothetical premise within square brackets, according to Gentzen’s original
notation, to bear in mind that it must be discharged, i.e., cancelled, in the
course of a formal proof because it represents a local hypothesis. To convey
to the reader the meaning of the (allN) rule, we display here the derivation of
subN (∀X<Top.X, ∀X<Z.Y) in the context book(Y, Top), book(Z, Y)5:

book(Z, Y)

closed(Z)
(def.)

subN (Z, Top)
(topN)

[book(X,Z)](1)

book(Z, Y)

book(Y, Top)

subN (Y, Y)
(varN)

subN (Z, Y)
(trsN)

subN (X,Y)
(trsN)

subN (∀X<Top.X, ∀X<Z.Y)
(allN)(1)

We can address the well-scoping by proving that, when subN (S, T) is derived,
the free variables in S and T have to be “booked” in the derivation context ∆.

Lemma 3 (Scoping). Let be S, T∈Type: subN (S, T)⇒ closedN (S)∧closedN (T)

Proof. By induction on the derivation of subN (S, T).

The formalization in Coq of the present, natural deduction-style subtyping
will be discussed in Section 8, while in Section 9 will be addressed its relationship
w.r.t. the sequent-style subtyping version introduced in Section 2.2.

4Notice that we need the first condition to capture that “∀” binds the occurrence of X in
S2, T2 but not in S1, T1, and the second one to guarantee the consistency of the context ∆.

5In natural deduction, local hypotheses are indexed with the rules they are discharged by.

9

3. A first encoding with explicit type environments

In this section we encode in Coq the sequent-style formulation of System
F<:’s type language, that we have presented on paper in Section 2.2.

3.1. Higher-order representation of syntax and binders

To avoid an explicit representation of the notion of free and bound variables
(and the related machinery of α-conversion and capture-avoiding substitution
of variables for variables), we adopt a weak HOAS encoding approach [3, 8, 5],
using a distinct non-inductive type for variables, and representing binders with
constants of functional type. In the following, Var will be the non-inductive
type encoding System F<:’s variables; hence, variables like X, Y , . . . will be
represented by Coq’s metalanguage variables X, Y, . . . of type Var. Next, we
define the inductive type Tp to encode System F<:’s types, with four constructors
for the maximal type, variables6, function and universal types (see Section 2.1):

Parameter Var: Set.

Inductive Tp: Set := var: Var -> Tp | top: Tp

| arr: Tp -> Tp -> Tp | fa : Tp -> (Var -> Tp) -> Tp.

Coercion var: Var >-> Tp.

As anticipated, the “∀” binder is rendered by the constructor fa, which is higher-
order (as it takes as second argument a function from Var to Tp). This choice
allows us to represent the binder correctly, by delegating to Coq the management
of the bound variable X in the expression ∀X<:S. T . To be more precise, if we
denote with S the encoding of S and with T[X] the encoding of T (where the
occurrence of the bound variable X, corresponding to X, is explicitly denoted by
the square brackets), the representation of ∀X<:S. T is given by (fa S (fun

X:Var => T[X])). In fact, the variable X is bound by the metalanguage func-
tional construct fun; hence, α-conversion and capture-avoiding substitution of
variables for variables are automatically dealt with by Coq’s metalanguage.

3.2. Type environments as lists of pairs

According to the sequent-style approach to the representation of the sub-
typing relation, introduced in Section 2.2, type environments are managed as
“explicit”, concrete structures. Therefore we encode them as lists of pairs, whose
components belong to the types Var and Tp, respectively:

Definition envTp: Set := (list (Var * Tp)).

This choice is quite intuitive and natural, except for the fact that now, obviously,
the encoded environments grow “toward the left” (i.e., the head of the list),
while environments grow on paper toward the right.

To reason about variables, types and type environments, we need to formal-
ize the auxiliary predicates introduced in Section 2.2, i.e., the (non)occurrence

6Notice that var is declared as a coercion operator, which avoids to type explicitly the
constructor, where a variable should stand for a term of type Tp.

10

of variables into types, the freshness of variables/presence of pairs inside en-
vironments, and the well-scoping of types w.r.t. the environments themselves.
First, we introduce the inductive predicates isin7 and notin:

Inductive isin (X:Var): Tp -> Prop :=

isin_var: isin X X

| isin_arr: forall S T:Tp, isin X S \/ isin X T -> isin X (arr S T)

| isin_fa : forall S:Tp, forall U:Var->Tp, isin X S \/

(forall Y:Var, X<>Y -> isin X (U Y)) -> isin X (fa S U).

Inductive notin (X:Var): Tp -> Prop :=

notin_top: notin X top

| notin_var: forall Y:Var, X<>Y -> notin X Y

| notin_arr: forall S T:Tp, notin X S -> notin X T -> notin X (arr S T)

| notin_fa : forall S:Tp, forall U:Var->Tp, notin X S ->

(forall Y:Var, X<>Y -> notin X (U Y)) -> notin X (fa S U).

The intuitive meaning of (isin X T) is that the variable X occurs free in T,
X∈fv(T) in Section 2.2, while (notin X T) stands for the opposite concept,
X/∈fv(T). The two definitions are syntax-driven, with just one introduction
rule for each constructor of type Tp (apart from the top case for isin). Thus,
a legitimate question is whether our encodings of isin and notin are indeed
sound, e.g., if isin is the opposite of notin and vice versa. Since the type of
variables is open (i.e., non-inductive), we will be able to carry out such a formal
check in Coq once we will have introduced the Theory of Contexts (in Section 4).

In the following we will use notin ho, built on top of predicate notin, stating
that a variable does not occur in a term with a hole (see Section 4):

Definition notin_ho:= fun X: Var => fun S: Var->Tp =>

forall Y: Var, X<>Y -> (notin X (S Y)).

Concerning the environments, we proceed by encoding the freshness of a
variable X/∈dom(Γ) (Gfresh), the presence of a constraint 〈X,T 〉∈Γ (isinG),
and the closure of a type closed(T,Γ) (Gclosed) w.r.t. them:

Inductive Gfresh (X:Var): envTp -> Prop :=

GfVoid: Gfresh X nil

| GfGrow: forall G:envTp, forall Y:Var, forall T:Tp,

Gfresh X G -> X<>Y -> Gfresh X (cons (Y,T) G).

Inductive isinG (X:Var) (T:Tp): envTp -> Prop :=

checkG: forall G:envTp, forall y:Var, forall U:Tp,

(X=Y /\ T=U) \/ isinG X T G -> isinG X T (cons (Y,U) G).

Definition Gclosed (T:Tp) (G:envTp): Prop :=

forall X:Var, (isin X T) -> exists U:Tp, isinG X U G.

We can then state inductively the well-formedness of environments:

7It is worth noticing that the clause X<>Y is not strictly needed in the isin fa constructor
in order to have a sound encoding. However, it is useful during the proof development, in
particular when using inversion tactics, to provide “freshness” information about the Y variable
used to “fill the hole” of type U.

11

Inductive okEnv: envTp -> Prop :=

okVoid: okEnv nil

| okGrow: forall G:envTp, forall x:Var, forall T:Tp,

okEnv G -> Gfresh X G -> Gclosed T G -> okEnv (cons (X,T) G).

3.3. Encoding the subtyping system

The representation of the subtyping relation, sub in Section 2.2, follows
closely its counterpart on paper, apart from the constructor for the universal
type subG fa, which is accommodated via an hypothetical premise about a
locally quantified variable, which makes the encoding higher-order:

Inductive subGTp: envTp -> Tp -> Tp -> Prop :=

subG_top: forall G:envTp, forall S:Tp,

okEnv G -> Gclosed S G -> subGTp G S top

| subG_var: forall G:envTp, forall X:Var, forall U:Tp,

okEnv G -> isinG X U G -> subGTp G X X

| subG_trs: forall G:envTp, forall X:Var, forall U T:Tp,

isinG X U G -> subGTp G U T -> subGTp G X T

| subG_arr: forall G:envTp, forall S1 S2 T1 T2:Tp,

subGTp G T1 S1 -> subGTp G S2 T2 ->

subGTp G (arr S1 S2) (arr T1 T2)

| subG_fa : forall G:envTp, forall S1 T1:Tp,

forall S2 T2:Var->Tp, subGTp G T1 S1 ->

(forall X:Var, okEnv (cons (X,T1) G) ->

subGTp (cons (X,T1) G) (S2 X) (T2 X)) ->

subGTp G (fa S1 S2) (fa T1 T2).

In the statement of the constructor subG fa, which formalizes the (all) rule
of Section 2.2, a new8 variable X is generated by the metalanguage, and the
hypothetical premise that such X, coupled with T1, extends correctly the current
environment G, is provided. These grant that X is really fresh w.r.t. G, and that
X does not appear in T1 (remember that X is not bound in T1 in universal types
such as ∀X<:T1. T2 encoded by (fa T1 T2)). Finally, it is necessary to bind
the occurrences of X, potentially appearing in the second-order types S2 and T2:
this is grasped by instantiating S2 and T2 with the fresh variable X.

4. The Theory of Contexts

Having chosen a weak HOAS approach for the representation of System
F<:’s “∀” binder, we cannot rely on Coq’s support for inductive types to deal

8The freshness of X is granted by the scoping rules of Coq. This means that if, by chance,
S2 or T2 contained an occurrence of a free variable with the same name, the locally bound X

would be automatically renamed by the system, in order to avoid captures. However, such
notion of freshness, being delegated to the metalanguage, is not available at the object level.
When we need to handle it within a proof development, we must explicitly add some premises
using the notin/notin ho predicates (see, e.g., the shallow encoding of the subtyping relation
in Section 8.2 and, in particular, the encoding of the universal binder rule).

12

with variable-related mechanisms and properties (see, e.g., [8, 5]). Indeed, since
binders are represented by constants of functional type, Var (i.e., the type of
variables) cannot be inductive, otherwise exotic terms9 may rise. Hence, we
adopt and instantiate the Theory of Contexts (ToC [23, 16]), namely, a type-
theoretic axiomatization which has been proposed to give a metalogical account
of the fundamental notions of variable and context10 as they appear in HOAS.
Remarkably, when the ToC is instantiated in a weak HOAS setting, it is still
compatible with recursive and inductive environments of popular type theory-
based logical frameworks and proof assistants (e.g., the Coq system).

In the following, the expression M [·] will denote a context, i.e., a term with
holes, like, e.g., M [·] ≡ (· → ·) → Top for a context with one kind of hole with
two occurrences of the latter. Then, the contextM [·] filled in by a variableX will
be denoted by M [X] ≡ (X→X)→ Top (i.e., all the occurrences of the hole will
be filled in by X). Contexts, like M [·] above, are represented in a weak HOAS
setting by functional terms of type Var->T (where Var is the type representing
variables and T is the type representing the syntactic category of terms). Hence,
the instantiation M [X] is rendered as the application (M X). We can have of
course more than one kind of hole (each kind with its set of occurrences) like,
e.g., N [·][∗] ≡ ∀Y <:T.(· → ∗) → (· → Y); in this case N [X][Z] gives rise to
the term ∀Y <:T.(X→Z)→ (X→Y). Again, in a weak HOAS setting, contexts
with two holes like N [·][∗] above are represented by functional terms of type
Var->Var->T, and the application N [X][Z] is rendered as (N X Z).

The notion of context can be easily extended to typing environments and,
more in general, lists or sets of terms. We present now the informal intended
meaning of ToC’s axioms, together with their instantiation in our encoding.

Decidability of equality over variables. Given any variables X and Y , it is always
possible to decide whether X = Y or X 6= Y (the symbol “=” stands for Leibniz
equality). In our case, the instantiation in Coq is:

Axiom LEM_Var: forall X Y:Var, X=Y \/ X<>Y.

where LEM stands for Law of Excluded Middle11.

Freshness/Unsaturation. Given any term M , there exists a variable X which
does not occur free in it (i.e., there are infinitely many variables). We need this
property for syntactical terms of type Tp:

Axiom unsat: forall T:Tp, exists X:Var, notin X T.

An informal justification of this axiom is that, being the syntax of the encoded
language finitary (i.e., terms are built via a finite number of constructors), one

9Exotic terms are legal terms derivable in the LF at hand, which do not correspond to any
entity of the object language. Hence, they hinder the adequacy of the encoding [3].

10Contexts are “terms with holes”, where the holes can be filled in by variables.
11This is the minimal classical flavor that we require to reason about (free) occurrences of

variables. Such an assumption is very close to the common practice, “on paper”, with nominal
systems like, e.g., process algebras or typing systems.

13

single term (of type Tp, in this case) can only contain a finite number of distinct
variables. Hence, imagining to have an enumeration of variables (i.e., a bijective
correspondence between variables and natural numbers), you can always pick
a fresh variable, choosing one associated to an index greater than the maximal
natural number related to the free variables occurring in the term at hand.

Moreover, since we work in a setting with typed variables, we adopt also the
following variant, whose pattern was introduced for the first time in [13]:

Axiom unsat’: forall T U:Tp, exists X:Var,

notin X T /\ notin X U /\ envBook X U.

where the fresh variable is required to be typed in the current environment (this
is precisely the purpose of the predicate envBook which will be introduced in
Section 8.1)12. This axiom will be needed when we will have to deal with typing
derivations in our shallow encoding of System F<: (see Section 8). In fact, when
the sub fa constructor is involved (see Section 8.2) and we are required to
reason by “going through” the binder fa (i.e., we “access” the inner subterms),
we have to instantiate the functional arguments and the schematic judgments
over a suitably fresh variable which can be associated to the right type in an
extension of the current environment. The axiom unsat’ will provide such a
variable for us, adding another appropriate envBook-hypothesis.

Extensionality. Two term contexts are equal if they are equal on a fresh variable;
that is, if M [X]=N [X] and X/∈fv(M [·]) ∪ fv(N [·]), then M=N :

Axiom tp_ext: forall X:Var, forall S T:Var->Tp,

notin_ho X S -> notin_ho X T -> (S X)=(T X) -> S=T.

Similarly, we need the extensionality also for environment contexts:

Axiom envTp_ext: forall X:Var, forall G G’:Var->envTp,

notin_envTp_ho X G -> notin_envTp_ho X G’ ->

G X = G’ X -> G = G’.

β-expansion. It is always possible to split a term into a context applied to a
variable13; that is, given a term M and a variable X, there is a context N [·]
such that N [X]=M and X/∈fv(N [·]). We need the β-expansion both at the
level of first-order contexts (i.e., terms with one kind of hole) and at the level
of second-order contexts (i.e., terms with two kinds of holes):

Axiom tp_exp: forall S:Tp, forall X:Var,

exists S’:Var->Tp, notin_ho X S’ /\ S=(S’ X).

Axiom ho_tp_exp: forall S:Var->Tp, forall X:Var,

exists S’:Var->Var->Tp,

notin_ho X (fun Y:Var => (fa top (S’ Y))) /\ S=(S’ X).

12If the bottom type (i.e., the non-inhabited type representing False) is available, our axiom
must be changed to exclude it, by enforcing forall T U:Tp, U<>bottom -> exists X:Var...

13In presence of binders, such a property is not derivable.

14

Starting from an idea of M. Hofmann [24], the consistency of ToC’s axioms
has been proved in [16], through the construction of a categorical model. As
far as we know, a proof realization of the axioms in Coq does not exist; indeed,
taking an inductive type like nat as the type of names/variables would give rise
to ”exotic terms” (i.e., Coq’s canonical forms not corresponding to any entity
of the object language), with a consequent loss of the encoding’s adequacy.
However, there is a mechanization of the ToC in Isabelle/HOL [34].

The properties formalized by the ToC have emerged from practical reasoning
about process algebras, and have been proved to be quite useful in a number of
situations. The scenario where they are exploited follows the general pattern of
fresh-renaming lemmas. These allow to state that certain properties (subtyping
relations in our case) are invariant under the substitution of variables with fresh
ones. These kinds of properties cannot be derived in standard type theories using
HOAS-based encodings, but need the use of β-expansion and extensionality.

Ultimately, the combined effect of ToC’s axioms is that of recovering the
capability of reasoning by structural induction over contexts. We explain this
fact by means of an individual example, about the monotonicity of the predicate
isin, which is needed in several cases within our formal development:

Lemma isin_mono: forall T:Var->Tp, forall X Y:Var,

X<>Y -> isin X (T Y) -> (forall Z: Var, X<>Z -> isin X (T Z)).

A direct way to prove the lemma would be by higher-order induction on the
structure of T:Var->Tp; however, Coq does not provide such a principle. More-
over, a näıve (i.e., first-order) induction on (T Y) does not work, since there is
no way to infer something on the structure of context T from the structure of (T
Y) (notice that Y can occur free in T). Hence, we prove a preliminary lemma:

Lemma pre_isin_mono: forall n:nat, forall U:Tp,

lntp U n -> forall V:Var, forall T:Var->Tp,

notin_ho V T -> U=(T V) ->

forall X Y:Var, X<>Y -> isin X (T Y) ->

forall Z:Var, X<>Z -> isin X (T Z).

where lntp counts the number of constructors of type Tp occurring in a term:

Inductive lntp: Tp -> nat -> Prop :=

| lntp_top: lntp top 1

| lntp_var: forall X:Var, lntp X 1

| lntp_arr: forall T T’:Tp, forall n1 n2:nat,

lntp T n1 -> lntp T’ n2 -> lntp (arr T T’) (S (plus n1 n2))

| lntp_fa : forall T:Tp, forall U:Var->Tp, forall n1 n2:nat,

lntp T n1 -> (forall X:Var, lntp (U X) n2) ->

lntp (fa T U) (S (plus n1 n2)).

We introduce lntp because the plain induction principle, automatically provided
by Coq for terms of type Tp, is not powerful enough. Indeed, the latter provides
only the inductive hypothesis for proper subterms, while we need induction even
on fresh renamings of proper subterms.

Therefore, (lntp U n) states that the term U is “built” using n constructors
of the inductive type Tp. This fact allows us to argue by complete induction

15

on n in the proof of pre isin mono, thus recovering the structural information
about U via inversion of the instance (lntp U n). So far, we can apply β-
expansion to infer the existence of a context U’:Var->Tp such that U=(U’ V),
where V does not occur free in U’. Then, by applying the extensionality property,
we can deduce that T=U’ and, since U’ is not a variable but a concrete λ-
abstraction, we “lift” structural information to the level of functional terms.
Such an information can be finally used to solve the current goal, via rewriting.

To be more concrete, let us consider the case (lntp U 1). By inverting this
hypothesis, we get the case (among other ones) where the equalities U=(T V)

and U=top hold. Then, by considering the context U’=(fun X:Tp => top), we
can state that (T V)=top=(U’ V); hence we infer (T V)=((fun X:Tp => top)

V). Finally, we “lift” such structural information to higher-order terms, via the
extensionality axiom: namely, we deduce T=(fun X:Tp => top), i.e., we get
the structural information we need about T.

Capitalizing on the Theory of Contexts, we are now able to prove formally
in Coq a bunch of useful lemmas about the predicates isin and notin and, in
particular, that they are indeed opposite (see Section 3.2). First of all, we can
prove the following separation lemma, stating that, given a type T, the set of
variables occurring in T is disjoint from the set of variables not occurring in it:

Lemma Sep: forall T:Tp, forall X Y:Var, isin X T -> notin Y T -> (X<>Y).

The proof is carried out by structural induction on T using the unsat axiom in
the case of the fa constructor; in this case the proof development is as follows:

T : Tp

t : Var -> Tp

H : forall v X Y : Var, isin X (t v) -> notin Y (t v) -> X <> Y

IHT : forall X Y : Var, isin X T -> notin Y T -> X <> Y

X : Var

Y : Var

H2 : notin Y T

H3 : forall y : Var, Y <> y -> notin Y (t y)

H1 : isin X T \/ (forall y : Var, X <> y -> isin X (t y))

============================

X <> Y

where H2 and H3 represent the fact that notin Y (fa T t) and H1 amounts to
the hypothesis that isin X (fa T t). Inverting H1, the first subcase (i.e., when
isin X T) is in fact trivial (a simple application of the inductive hypothesis
IHT). Instead, the other subcase is more subtle:

...

H : forall v X Y : Var, isin X (t v) -> notin Y (t v) -> X <> Y

...

H3 : forall y : Var, Y <> y -> notin Y (t y)

H0 : forall y : Var, X <> y -> isin X (t y)

============================

X <> Y

16

It is apparent that, in order to use the higher-order inductive hypothesis H, we
must exhibit a variable wich must be fresh w.r.t. both X and Y. This is where
the axiom unsat comes into play; indeed, by eliminating (unsat (arr X Y)),
we obtain the needed fresh variable and we can conclude applying H (and then
H0, H3). The only way to act without the unsat axiom would be to rephrase
the lemma (and all the other statements depending on the axiom) by adding a
suitable premise and stating the existence of suitably fresh variable(s)14. In our
opinion, this would be very impractical and cumbersome for the user.

From the separation leamma Sep we can then derive the following results,
characterizing the two predicates as opposite:

Lemma isin_not_notin: forall T:Tp, forall X:Var, isin X T -> ∼notin X T.

Lemma notin_not_isin: forall T:Tp, forall X:Var, notin X T -> ∼isin X T.

In the end, we may infer the following property, which turns out to be very handy
when we consider occur-checking problems, playing the role of an instance of
the “law of excluded middle”:

Lemma LEM_OC: forall T:Tp, forall X:Var, isin X T \/ notin X T.

5. A formal development of System F<:’s metatheory

In this section we illustrate the formal development carried out in the Coq

system in order to achieve the POPLmark Challenge’s 1A task, i.e. reflexivity,
transitivity and narrowing of subtyping (Section 2.2, Proposition 2).

5.1. Basic properties

The auxiliary lemma mostly used throughout the script is the following:

Lemma Gclosed_lemma: forall G:envTp, forall S T:Tp,

subGTp G S T -> Gclosed S G /\ Gclosed T G.

which is in fact the internal counterpart of Lemma 1.2, proved on paper. Its in-
tuitive meaning is that, if we derive (subGTp G S T) (under such an hypothesis
we are able to deduce first that G is a well-formed environment, Lemma 1.1),
then all the variables occurring free in S and T belong to the domain of G. The
proof is carried out by induction on the derivation of (subGTp G S T), using
unsatG when we need a fresh variable in the environment G:

Lemma unsatG: forall G:envTp, exists X:Var, Gfresh X G.

As the reader may guess, the proof of unsatG relies heavily upon the axiom
unsat of the ToC (see Section 4). Actually, given an environment G, the idea is
just to scan the variable declaration list (X1,T1), . . . , (Xn,Tn) in G, to build an
arrow type (arr X1 (arr ... (arr Xn top) ...)). Then, by eliminating
unsat on this type, we can get a fresh variable not occurring into such type and,
consequently, not appearing in the domain of G:

14Of course, the needed inequalities and/or non-occurrence statements can vary according
to the lemma at hand.

17

Lemma domGtoT_notin: forall G:envTp, forall X:Var,

notin X (domGtoT G) -> Gfresh X G.

where domGtoT is a function, defined by recursion on G, which builds the men-
tioned arrow type from the variables that belong to its domain:

Fixpoint domGtoT (G:envTp):= match G with

| nil => top | (X,T)::G’ => (arr X (domGtoT G’)) end.

The proof of domGtoT notin is performed by induction on the structure of G,
using the axiom LEM Var to discriminate between the occurrences of variables.

5.2. Reflexivity, transitivity and narrowing

Coming to the pursued task 1A of the POPLmark Challenge, the reflexivity
property requires that the type under investigation is closed w.r.t. the starting
environment, and the latter to be well-formed (see Proposition 2):

Lemma reflexivity: forall T:Tp, forall G:envTp,

okEnv G -> Gclosed T G -> subGTp G T T.

The proof is a straightforward induction on the structure of T, resorting to
LEM Var15 when it is needed to discriminate between free variables, and using
the monotonicity of the “occurrence” predicate isin (see Section 4).

Transitivity and narrowing are proved together, via an outer induction on
the structure of the type Q, which is then isolated in front of them:

Theorem trans_narrow: forall Q:Tp,

(forall S:Tp, forall G:envTp,

(subGTp G S Q) -> forall T:Tp, (subGTp G Q T) -> (subGTp G S T)) /\

(forall G’:envTp, forall M N:Tp,

(subGTp G’ M N) -> forall D G:envTp, forall X:Var, forall P:Tp,

G’=(app D (cons (X,Q) G)) -> subGTp G P Q ->

subGTp (app D (cons (X,P) G)) M N).

The proof of transitivity is, apart from the use of the unsat axiom of the ToC
(to handle the fa constructor), similar to that on paper, via an inner induction
on the derivation of (subGTp G S Q). However, we have suffered a little from
the lack of “smart” support for nested inductions, having to rearrange the goal
statement and to enrich it with suitable equalities to purge the inconsistent cases
automatically generated by the nested application of the induction tactic.

The narrowing proof is carried out by an inner induction on the derivation of
(subGTp G’ M N), where the environment G’ is Coq’s list (app D (cons (X,Q)

G)), which is built by means of the append function app. We have dealt with
the subG var and subG trs subtyping rules by means of the LEM Var axiom,
but this proof requires extra care w.r.t. its statement on paper, in two respects.

First, as its formulation involves a structured environment, it is necessary
to prove some technical lemmas involving Coq’s lists and their relationship with

15We recall from Section 4 that LEM Var is the axiom stating that given any variables X
and Y , it is always possible to decide whether X = Y or X 6= Y .

18

the predicates Gfresh, isinG, Gclosed, okEnv. In carrying out such proofs,
we have taken partial advantage of Coq’s built-in list library, especially about
permutations, which are required by the Weakening property (Lemma 2.3).

Second, to master the sophisticated interdependence between the outer and
the inner structural inductions, we have exploited a slight elaboration of “modus
ponens”: ∀A,B : Prop. A ∧ (A ⇒ B) ⇒ A ∧ B (where A and B are intended
to play the role of transitivity and narrowing, respectively). In fact, when the
inner induction hypothesis for narrowing matches the rule subG trs, the outer
induction hypothesis (i.e., transitivity) has to be applied with the starting Q, not
with a structurally smaller type. Therefore, to handle the involved cases within
the outer induction (all but the Q=top one), we reduce to prove the transitivity
alone and the narrowing with the proof context enriched by the transitivity
additional hypothesis, instead of merely splitting the two main proofs.

6. Records in System F<:

In this section we upgrade our solution to the Challenge 1A to deal with
record types, i.e., we address the Challenge 1B, first on paper and then in Coq.

6.1. Records in [10]

Record types are formed by zero or an arbitrary, finite number of pairs:

Type : S, T ::= . . . {li : Ti}i∈1..n record type (li distinct, n∈N)

Algorithmic subtyping of Section 2.1 is so augmented with a corresponding rule:

{li}i∈1..n ⊆ {kj}j∈1..m if kj=li then Γ ` Sj<:Ti

Γ ` {kj : Sj}j∈1..m <: {li : Ti}i∈1..n
(Rcd)

6.2. Adding records on paper

We extend now our sequent-style formulation of System F<:’s subtyping
presented in Section 2.2. To cope formally with record types, we have to ensure
that their labels are pairwise distinct, by means of the (well-formation) predicate
wt ⊆ Type. Then, the subtyping relation sub can be completed accordingly.

Definition 4 (Record labels). For Γ=〈X1, T1〉,..., 〈Xn, Tn〉∈Env, T∈Type, the
predicate wt is defined by induction, as follows:

wt(Top)
(wt·top)

wt(S) wt(T)

wt(S → T)
(wt·arr)

wt(S) wt(T)

wt(∀X<:S.T)
(wt·all)

wt(X)
(wt·var)

distinct{l1, . . . , ln} for all i∈1..n, wt(Ti)

wt({li : Ti}i∈1..n)
(wt·rcd)

19

Definition 5 (Subtyping, with records). Assume Γ∈Env, I=1..n, J=1..m,
Tj , Si∈Type ∀j∈J, i∈I. The predicate sub of Definition 2 is augmented with:

ok(Γ) closed(S,Γ) wt(S) {li}i∈I⊆{kj}j∈J (kj=li)⇒sub(Γ, Sj , Ti)

sub(Γ, S≡{kj : Sj}j∈J , T≡{li : Ti}i∈I)
(rcd)

Notice that in this formal rule for record types (rcd) we have added three
premises w.r.t. its above formulation (Rcd). The first two ones are necessary to
extend the scope of Lemma 1 to the calculus with record types, while the third
premise addresses the distinctness of labels. We remark that it is sufficient to
require that the closed and wt conditions hold just for the “longer” record type
S, being the same properties for T derivable (see Lemma 4 below).

In fact, Lemmas 1 and 2 of Section 2.2 can be promptly extended to the
calculus with record types, provided the validity of the following Lemma.

Lemma 4 (Record types). Let be Γ∈Env, S≡{kj :Sj}j∈J , T≡{li:Ti}i∈I∈Type:
1) wt(S) ∧ {li}i∈I⊆{kj}j∈J ⇒ wt(T);
2) {li}i∈I⊆{kj}j∈J ∧ (kj=li⇒closed(Ti,Γ))⇒ closed(T,Γ).

Proof. 1), 2) By induction on the (list-like) structure of the record type T .

The only difference in the statement of the Challenge 1B w.r.t. the version
without record types (Challenge 1A, Proposition 2) concerns reflexivity. To
accommodate it with record types, we have actually added a third premise,
which prescribes that record types cannot contain doubled labels.

Proposition 3 (Challenge 1B). Let be Γ,∆∈Env, S,Q, T,X,M,N, P∈Type:

Reflexivity: ok(Γ) ∧ closed(S,Γ) ∧ wt(S)⇒ sub(Γ, S, S).
Transitivity: sub(Γ, S,Q) ∧ sub(Γ, Q, T)⇒ sub(Γ, S, T).
Narrowing: sub((Γ, 〈X,Q〉,∆),M,N)∧sub(Γ, P,Q)⇒ sub((Γ, 〈X,P 〉,∆),M,N).

Proof. (Reflexivity) By induction on S. The record case requires an inner in-
duction on the structure of the (list-like) collection of its pairs. (Transitivity
and Narrowing) Simultaneously, by induction on Q. When Q={li : Ti}i∈I , the
transitivity requires an inner induction on the derivation of sub(Γ, S,Q), while
the narrowing on sub((Γ, 〈X,Q〉,∆),M,N) and the use of Lemma 2(1).

6.3. Encoding records and subtyping

We enrich the inductive Tp of Section 3.1 to represent record types in Coq:

Definition Lab := nat.

Inductive Tp: Set := ... | rcd: list (Lab * Tp) -> Tp.

First, we define record’s labels via natural numbers, which provide us with the
possibility of comparing such labels; consequently, we manage records as lists of
pairs, formed by labels and, recursively, System F<:’s types (i.e., terms in Tp).

An encoding via lists is the most intuitive and natural, even if this choice
causes an immediate drawback. In fact, the recursive occurrence of types Tp

20

within lists is literally ignored16 by Coq, which therefore does not generate an
appropriate induction principle for the record type constructor. In other words,
when we come to prove properties by induction on the structure of types Tp, we
cannot exploit any inductive hypothesis for the types which potentially appear,
at some depth, inside records. An alternative approach, that we adopted in
previous contributions [13, 14, 15], introduces a mutual recursive Coq type in
place of Tp; in that case, all the constructors but the record one do not change,
whereas the record constructor becomes a different type, say Tp rcd, mutually
defined with Tp via two constructors: one for the empty record and a second
one for recursively defined records with at least one pair. Encoding the type Tp

by mutual recursion would cause to have to carry out some proofs by mutual
induction. This would add extra technicalites to the already challenging proofs
picked out by the Challenge (that have to be performed by mutual and nested
induction), with the risk of obscuring the focus of the Challenge itself.

In the present work we prefer to explore the encoding via lists, because
we can delegate a major part of the formal development about records to the
corresponding built-in library. Therefore, in Section 6.4 we will have to come
up with a solution to the lacking of the induction principle for record types.

The representation of the subtyping sub (Section 3.3) is extended as follows:

Inductive subGTp: envTp -> Tp -> Tp -> Prop := ...

| subG_rcd: forall G: envTp, forall P Q: list (Lab*Tp),

okEnv G -> Gclosed (rcd P) G ->

NoDup (proj_lab P) -> incl (proj_lab Q) (proj_lab P) ->

(forall p q:Lab*Tp, In p P /\ In q Q /\ (fst p = fst q) ->

subGTp G (snd p) (snd q)) ->

subGTp G (rcd P) (rcd Q).

The rule for records subG rcd is rendered via several tools which we find already
formalized in the built-in list library. NoDup is an inductive predicate checking
whether a list does contain distinct elements; incl is the set inclusion between
lists (in fact, there is no reason to adopt the “set” datatype, which would provide
less benefits than the “list” datatype). In is a trivial list-membership (recursive)
function, while fst and snd are the two destructors of the “pair” datatype.
Therefore, we have to define ex novo just the straightforward recursive function
proj lab, which collects the list of labels from a record type.

6.4. Proving reflexivity, transitivity and narrowing

We state here some remarks about the extra difficulties that arise in upgrad-
ing the proofs in Coq of Section 5.2 to deal with record types.

As anticipated in the Section 6.3 above, when proving the reflexivity we have
to face the lacking of induction principles for nested types, i.e., types occurring,
at any depth, in record types (the problem is caused by the encoding of records
via lists, a choice that we have motivated, though). The solution we adopt, à

16These types, occurring recursively in a list, are named nested types by the literature.

21

la Chlipala [25], is to enrich the induction principle Tp ind, provided by Coq to
reason by structural induction on Tp, with the extra Rcd case path:

Tp_ind: forall P: Tp->Prop, (P top) -> ...

(forall L: list (Lab * Tp), P (rcd L)) -> forall T:Tp, P T.

Hypothesis Rcd_case: forall P:Tp->Prop, forall L:list (Lab*Tp),

Rcd2Tp Lab Tp P L -> P (rcd L).

where we assume that a property P holds for a record type (rcd L) provided P
holds for any type occurring in L. The Rcd2Tp component is a recursive function
which scans the list of pairs L and applies the property P to its (right-hand)
types. Therefore, for proving the reflexivity of a type in Tp, we do not argue
through the induction principle Tp ind, but via its extension Tp ind ext:

Lemma Tp_ind_ext: forall P:Tp->Prop, (P top) -> ...

(forall L:list (Lab*Tp), forall p:Lab*Tp,

In p L -> P (snd p) -> P (rcd L)) -> forall T:Tp, P T.

While the presence of records does not affect substantially the narrowing
proof, it complicates the transitivity case. Actually, when the starting type Q is
a record (rcd L), the transitivity requires an application of the outer inductive
hypothesis to any of the types appearing in L, which are structurally smaller
than Q. Therefore, as for reflexivity above, we have to exploit the extended
induction principle Tp ind ext (in place of Tp ind) to deal with records.

In the end, the whole formal development to achieve the Challenge 1B has
a size which is 60% greater than the script necessary for the Challenge 1A.

7. Practical remarks

With the formal development carried out so far in Coq, we have provided a
Coq encoding of System F<:’s type language and a proof of the first task of the
POPLmark Challenge. However, we are not completely satisfied with the mech-
anization of the subtyping judgment, since carrying around a representation of
the type environment as a list is rather cumbersome. Actually, during the proofs
of System F<:’s metatheory (we consider Challenge 1A from now on), several
technical lemmas (corresponding to about the 33% of the Coq scripts and being
larger than the script with the main proofs) have been devoted to manipulate
such list, distracting us from the main theorem, as one can see in Table 1.

In the latter, the script about the properties of the Theory of Contexts (third
line: 16.22 KB) should not deceive the reader into thinking that also the ToC
is a substantial overhead. Indeed, all the proved properties (e.g., monotonicity
of isin and notin) could be assumed as axioms, like in [16], “freeing” about
8.83 KB, as their proofs are really routine. Moreover, while the derived prop-
erties about the ToC are intrinsically significant, the auxiliary lemmas about
the manipulation of the type environments are really trivial properties, which
would not be even mentioned in proofs with “pencil and paper”.

It is worth noticing that the choice of the logical framework is not completely
transparent w.r.t. the issue of handling efficiently a “list-like” type environment.

22

Basic syntax definitions (34 lines) 1.42 KB
Subtyping encoding (50 lines) 2.37 KB
ToC (axioms, measure predicate and properties about variables
like, e.g., monotonicity of isin and notin, 383 lines) 16.22 KB
Type environment properties (technical lemmas, 591 lines) 17.41 KB
Part 1A of the POPLmark Challenge (458 lines) 16.32 KB

Table 1: Coq scripts statistics.

Indeed, Gacek [31] developed in Abella a quite compact and elegant solution of
the task 1A (and 2A) of the POPLmark Challenge, encoding the type environ-
ment with list-based structures and predicates.

Starting from these practical considerations, in the second part of the paper
we will introduce an alternative encoding of System F<:, along the lines de-
picted in Section 2.3, i.e., by adopting a natural deduction-encoding style, thus
delegating the handling of the type environment directly to the Coq system.

8. A second encoding with implicit type environments

In this section we provide an alternative encoding of subtyping, by formal-
izing in Coq the natural deduction-style version introduced in Section 2.3.

8.1. The bookkeeping technique in Coq

The book predicate, introduced as a bookkeeping representation of the typing
environment, is realized in Coq via the following declaration:

Parameter envBook: Var -> Tp -> Prop.

Again (as for Var, see Section 3.1), we define envBook as an open, i.e., non-
inductive type. This allows us to “mimic” the assumptions we make on paper,
when we say “let us assume the constraints X1<:T1, . . . , Xn<:Tn”, by introduc-
ing the following declarations, for suitable metavariables Xi:Var and Ti:Tp:

Parameter d1:envBook X1 T1. ... Parameter dn:envBook Xn Tn.

The next step is to exploit the bookkeeping formalization to encode the
closure of types, i.e., the predicate closed of Section 2.3:

Definition closed (T:Tp): Prop := forall X:Var,

isin X T -> exists U:Tp, envBook X U.

Obviously, our bookkeeping approach must be regulated in some way, oth-
erwise it may be possible to introduce inconsistencies. Indeed, the user might
feel free to declare “at will” new hypotheses of type (envBook ...) (e.g., to
enrich the current typing environment) and the latter could be in contradiction
with some previous statements (e.g., the user could end with a set of hypotheses
stating that a given variable is associated to two distinct types). In fact, having
delegated the representation of the typing environment to the metalanguage (via

23

the type (envBook ...)), we cannot enforce in Coq a reliable soundness disci-
pline. However, we can capitalize on the approach adopted in the Edinburgh LF,
where encodings were always accompanied by their adequacy theorems [1, 26].
In our case, we can proceed as follows.

Theorem 1. Given an environment Γ=X1<:T1, . . . , Xn<:Tn, there is a bijec-
tion between System F<:’s valid derivations of shape Γ ` S<:T and canonical
forms D of type (sub S T), such that the following holds (we denote with X1,. . . ,
Xn, T1,. . . , Tn, S, T the encodings of X1, . . . , Xn, T1, . . . Tn, S, T , respectively):

X1:Var,...Xn:Var,H1:(envBook X1 T1),...Hn:(envBook Xn Tn)`Coq D:(sub S T)

Proof. The bijection is defined by induction on System F<:’s formulas and
derivations. The proof consists of a straightforward induction on derivations in
System F<: and on derivations of canonical forms of type (sub S T) in Coq.

In this way, the bookeeping assumptions are clearly tied to a valid environment
in the object language, hence inconsistencies cannot arise. Note that we will
return to this topic at the end of Section 9.3.

8.2. A shallow encoding of the subtyping system

The representation of the natural deduction-style subtyping relation, subN
in Section 2.3, is the following (to be compared with subGTp, Section 3.3):

Inductive subTp: Tp -> Tp -> Prop :=

| sub_top: forall S:Tp, closed S -> subTp S top

| sub_var: forall X:Var, forall U:Tp, envBook X U -> subTp X X

| sub_trs: forall X:Var, forall U T:Tp,

envBook X U -> subTp U T -> subTp X T

| sub_arr: forall S1 S2 T1 T2:Tp, subTp T1 S1 -> subTp S2 T2 ->

subTp (arr S1 S2) (arr T1 T2)

| sub_fa : forall S1 T1:Tp, forall S2 T2:Var->Tp, forall L:list(Var),

subTp T1 S1 ->

(forall X:Var, notin X S1 -> notin X T1 -> notin_list X L ->

notin_ho X S2 -> notin_ho X T2 ->

(envBook X T1 -> subTp (S2 X) (T2 X))

) -> subTp (fa S1 S2) (fa T1 T2).

The most notable difference w.r.t. the deep encoding of Section 3.3 (apart
from the obvious disappearance of the occurrences of envTp objects) is in the
constructor sub fa, which formalizes the (allN) rule. As for the constructor
subG fa, a new variable X is generated by the metalanguage, but in the present
case the hypothetical premises about X look quite different (see Definition 3).

First of all, we remark that now the condition of freshness of X w.r.t. the
derivation context ∆ is not available at the object level. Therefore, we have to
state explicitly that X must not appear neither in the type T1, to which it is
associated in the derivation context ∆ via the bookkeeping predicate envBook,
nor in S1, through the premises notin X S1 and notin X T1 (notice that such
constraints are implicitly assured by the okEnv-premise in the deep encoding).

24

The same condition has to be enforced for the second-order types S2 and T2, by
means of the second-order non-occurrence predicate notin ho.

Correspondingly, we require that the new X is fresh w.r.t. the (names of
the variables distributed in the) whole current derivation context ∆. Again,
such constraint must be explicitly stated, and we capture it by the requirement
that X does not appear in some list of variables L (formalized via the predicate
notin list, defined by a straightforward induction). This approach is bor-
rowed from the encoding of Milner’s π-calculus in [8], where the list was used
in schematic judgments to ensure the freshness of the locally quantified vari-
ables w.r.t. all (i.e., not only those actually involved in the proof) the names
occurring in the global environment. In fact, L is intended to be supplied, in
the course of a formal proof, by inspecting the ∆ at hand. Of course, such a
list is usually the empty one, because in most cases it suffices just to care about
the variables occurring in the object terms at hand. However, there is no risk
of inconsistencies, whatever list we choose, because the schematic variable X is
locally bound after L, and therefore X differs from all variables in L.

The technique of using schematic judgments where the locally bound variable
is taken to be fresh w.r.t. a finite list of variables comes as a very handy tool
also in other settings, like, e.g., in locally nameless encodings, where it is called
cofinite quantification [27]. Moreover, the ultimate gist of this approach relies
on the notion of finite support of Nominal Logic [28, 4], where terms are assumed
to use only finitely many variables.

9. Internal adequacy

The “non-standard” encoding of typing environments proposed in Section 8
raises urgently the question about its consistency. Indeed, the possibility of
declaring “at will” hypotheses of type (envBook X T) induces an excessive de-
gree of freedom, with the danger of yielding an inconsistent set of assumptions
(e.g., two envBook-judgments assigning different types to the same variable).
Indeed, by comparing the definition of subGTp (Section 3.3) with subTp (Sec-
tion 8.2), the reader can notice that all the conditions about the typing environ-
ment in the deep encoding (e.g., well-formedness) do not have a direct counter-
part in the shallow representation. In fact, the bookkeeping predicate envBook

essentially delegates to the proof environment of the metalanguage the treat-
ment of the object language typing environment. For instance, in the sub fa

rule we need to enforce explicitly the freshness conditions about the quanti-
fied variable X, by means of the notin, notin ho and notin list17 predicates;
such constraints are instead provided in the deep encoding by the hypotheti-
cal premise about the environment well-formedness. Thus, to encode a given
environment assumption like, e.g., 〈X<:T 〉∈Γ, all we can do is to introduce
a constant d of a suitable type (envBook X T). The latter can then be used

17As already noticed in Section 8, the list L may take into account any variable in the
current typing environment, not only those directly involved in the judgments at hand.

25

and possibly discharged at some point during the proof development process,
according to the usual rules of the Coq system. However, such an assumption is
not structured in a datatype (such as, e.g., a list) nor handled by a mechanism
available at object level. Hence, the user is actually free to represent arbitrary
typing environments, simply introducing new constants of envBook-type. This
is exactly the excessive degree of freedom we were speaking about at the begin-
ning of this section. Therefore, to avoid the derivation of absurdities, we need a
way to impose a kind of discipline, i.e., we must define a formal mechanism to
validate or discard subtyping derivations carried out in our shallow encoding.

In this section we achieve such a goal by establishing a formal correspondence
in Coq (i.e., an internal adequacy) between the shallow encoding presented in
Section 8 and the corresponding deep version introduced in Section 3. Such an
adequacy amounts to the following lemmas:

Lemma exp2imp: forall G:envTp, forall S T:Tp,

subGTp G S T -> (book2Prop (envTp2envBook G)) -> subTp S T.

Lemma imp2exp: forall S T:Tp, subTp S T -> forall G:envTp, okEnv G ->

(forall X:Var,forall U:Tp,envBook X U <-> isinG X U G) -> subGTp G S T.

In exp2imp, two recursive functions are used to “translate”, respectively, the
typing environment G, involved in the hypothetical derivation (subGTp G S T),
into a list of envBook-predicate instances (envTp2envBook: envTp -> list

Prop) and the latter into a conjunction of hypotheses of the form (envBook

X T). Their combined effect is, given a typing environment in list form, the
generation of the equivalent bookkeeping assumptions, to deduce (subTp S T).

Dually, in lemma imp2exp, we may prove (subGTp G S T) starting from a
derivation of (subTp S T) (in turn, deduced from a set of envBook-assumptions),
provided that the explicit environment G is well-formed (i.e., (okEnv G) holds)
and it is equivalent to the following envBook-assumptions:

forall X:Var, forall U:Tp, envBook X U <-> isinG X U G

The intuitive meaning of this hypothesis is that (envBook X U) holds if and
only if the pair (X, U) belongs to G.

9.1. Completeness

The proof of lemma exp2imp is easily carried out by induction on the deriva-
tion of (subGTp G S T), with the help of the following auxiliary properties:

1. Γ ` S<:T implies that Γ is well-formed:
forall G S T, subGTp G S T -> okEnv G

2. The “closedness” (Gclosed) of a type w.r.t. a typing environment Γ in the
deep encoding implies the closedness (closed) in the shallow encoding,
when the bookkeeping assumptions are generated according to Γ:

forall S G, Gclosed S G ->

(book2Prop (envTp2envBook G)) -> closed S

3. If 〈X,U〉∈Γ and we generate our bookkeeping assumptions from such a Γ,
there will be one of those stating that X has type U :

forall G X U, isinG X U G ->

(book2Prop (envTp2envBook G)) -> (envBook X U)

26

We can conclude that the correspondence lemma relating a subtyping derivation
in the deep encoding to its shallow counterpart is straightforward to prove.

9.2. Soundness

On the other hand, deriving in Coq the proof of lemma imp2exp is definitely
more challenging. Actually, passing from a derivation of (subTp S T) and the
related envBook-assumptions to a derivation of (subGTp G S T), where the en-
vironment G is determined by the envBook-hypotheses and must be well-formed,
requires proving a suitable collection of auxiliary lemmas about occurrences of
variables, and that all the auxiliary judgments are preserved by fresh variable-
renamings. In fact, such renamings require a complete induction principle on
the number of constructors used in a derivation, as Coq’s built-in induction

scheme is not powerful enough. As already pointed out in Section 4, the reason
for this fact is that the latter provides only the inductive hypothesis for proper
subterms, while we need induction even on fresh renamings of proper subterms.

To convey to the reader what we mean by “fresh variable-renaming”, we
list the main auxiliary lemmas we have proved (see the scripts in [21]). In what
follows, we use the metavariables Γ,Γ′∈Env, U,U ′, T, T ′, S∈Type, X,Y, Z∈V ar.

Lemma 5 (Gfresh rw). If Γ=Γ′[Z] (with Z fresh in Γ′[·]), X 6=Z and X/∈dom(Γ),
then for all Y (such that X 6=Y) X/∈dom(Γ′[Y]).

In other words, the previous lemma states that the non-occurrence of X in
dom(Γ) is preserved by renamings of different variables. Dually, the next lemma
allows us to rename variables with fresh ones, preserving the occurrence condi-
tions in typing environments.

Lemma 6 (isinG rw). If X/∈fv(Γ′[·]), Γ=Γ′[X] and 〈X,U〉∈Γ (for a suitable
U), then for each fresh variable Y (X 6=Y and Y /∈fv(Γ′[·])) there exists a suitable
U ′ such that 〈Y, U ′〉∈Γ′[Y].

Fresh renamings preserve also the closed property w.r.t. a given environment Γ.

Lemma 7 (Gclosed rw). If closed(T,Γ), X/∈fv(Γ′[·]) ∪ fv(T ′[·]), Γ=Γ′[X],
T=T ′[X], then closed(T ′[Y],Γ′[Y]), where Y is any variable such that X 6=Y
and Y /∈fv(Γ′[·]) ∪ fv(T ′[·]).

The next lemma ensures that a well-formed environment is still well-formed
when we rename some variables in it.

Lemma 8 (okEnv rw). If Γ is well-formed, X/∈fv(Γ′[·]) and Γ=Γ′[X], then
Γ′[Y] is well-formed for all variables Y such that X 6=Y and Y /∈fv(Γ′[·]).

Finally, the lemma subGTp rw states that renaming the last variable in the
domain of an environment used to derive a subtyping relation preserves the
validity of the latter (where, of course, we must rename all the occurrences of
the old variable with the new one).

27

Lemma 9 (subGTp rw). If sub((Γ, 〈X,U〉), S[X], T [X]) and X/∈fv(S[·])∪fv(T [·]),
then sub((Γ, 〈Y,U〉), S[Y], T [Y]) for all the variables Y such that X 6=Y and
Y /∈fv(S[·]) ∪ fv(T [·]).

The common gist of all the previous lemmas is that variables are like place-
holders; in particular, the actual name of a variable (X,Y, . . .) is not important
as long as its uniqueness is preserved in the current typing environment. If this
holds, then the key properties of our encoding are not affected by swapping a
given variable for a new one, provided the latter is suitably fresh. This is funda-
mental in HOAS-based encodings, in order to deal appropriately with binders
and schematic judgments in the activity of proof development.

We have proved the mentioned renaming properties either by structural in-
duction on the environment G (Gfresh rw, okEnv rw), or by complete induction
on the number of Tp-constructors (isinG rw, Gclosed rw), or else by complete
induction on the number of subGTp-constructors (subGTp rw), i.e., by complete
induction on the number of the subtyping rules used in the derivation, by means
of a suitable measure judgment, following the same pattern of lntp in Section 4.

Obviously, the reader may find in the Coq script other auxiliary lemmas, but
they are either mere variants of those described or very trivial properties.

9.3. Deep vs. shallow

The ultimate metatheoretical result of the previous section, i.e., the Coq

internal correspondence between our shallow and deep encodings of subtyping,
is in fact not completely satisfactory under a practical perspective. Actually,
if one picked out two individual types and wanted to prove that the former
is a subtype of the latter, it would be nice to carry out the proof using the
shallow encoding (because of the simpler handling of the typing environment)
and then “to validate” such a proof by “translating” it, internally in Coq, to
its counterpart in the deep encoding, via the imp2exp lemma (to ensure the
consistency of the bookkeeping assumptions). Unfortunately, this is not feasible,
since the second premise of the lemma cannot be demonstrated in Coq:

forall X:Var, forall U:Tp, envBook X U <-> isinG X U G

It is apparent that we are not able to prove such a statement, due to the presence
of the universal quantifications: having delegated to Coq’s metalanguage the
handling of typing assumptions, we cannot enumerate them at the object level.

Moreover, the nature of the unsat’ axiom (see Section 4) could suggest
the potential presence of an infinite set of envBook-assumptions in our shallow
proof environment18, while envTp-objects in a deep environment are always
finite lists. However, this is not the case from a practical point of view, because
in any concrete derivation we can apply the unsat’ axiom only a finite number
of times (in fact, derivations of subTp judgments are finite inductive objects).

18We recall that the axiom states that, given any two types T and U, we can always assume
a fresh (w.r.t. T and U) variable X of type U in the current set of envBook-assumptions.

28

This is precisely the main reason that allows us to exploit our adequacy result
as a protocol for verifying the soundness of a concrete formal development carried
out via the shallow encoding, just by using the two premises of the imp2exp

lemma (the first one is (okEnv G)) in a different way. Since the two premises
actually formalize the equivalence between the set of bookkeeping assumptions
in the shallow encoding and the explicit environment G in the deep one, it is
sufficient to build “manually” the equivalent structured environment G via the
set of the bookkeeping assumptions actually used in the shallow derivation at
hand, and prove that G is well-formed (i.e., (okEnv G) is derivable in Coq).

We illustrate this insight through the example of Section 2.3, about the
derivation of subN (∀X<Top.X, ∀X<Z.Y) from book(Y, Top), book(Z, Y):

Lemma sampleShallow: forall Y Z:Var, envBook Y top -> envBook Z Y ->

subTp (fa top (fun X:Var => X)) (fa Z (fun X:Var => Y)).

Now, it is sufficient to build the corresponding environment and prove that it is
well-formed in the deep encoding (provided the involved variables are distinct):

Lemma envWF: forall Y Z:Var, Y <> Z -> okEnv ((Z,(var Y))::(Y,top)::nil).

Indeed, the careful user can act even faster, just inspecting the bookkeeping
assumptions and verifying informally, on paper, that they correspond to a well-
formed environment. The alternative is using tout court the deep encoding:

Lemma sampleDeep: forall Y Z:Var, Y <> Z ->

subGTp ((Z,(var Y))::(Y,top)::nil)

(fa top (fun X:Var => X)) (fa Z (fun X:Var => Y)).

The proof of this goal, compared to the one carried out for the shallow en-
coding, has the following drawbacks. Obviously, addressing formally the well-
formedness issue (which may occur more than once per proof) cannot be skipped.
Second, looking for a variable-type association requires to scan the list-like en-
vironment (an operation which has linear complexity), whereas in the shallow
case one is allowed to pick out the right assumption directly, by means of trivial
tactics (i.e., assumption in Coq).

However, the simplicity of the shallow approach has a drawback; actually,
the bookkeeping predicate can represent only one “global” typing environment
at a time. This is not sufficient, e.g., in the narrowing property (see Section 2.1),
where one must deal first with an environment where X<:Q and then with the
same environment where X<:P . Obviously, P 6=Q would lead to two distinct
assumptions, namely, (envBook X Q) and (envBook X P), which is inconsis-
tent. In fact, one could resort to hypothetical judgments in order to limit the
scope of such conflicting envBook-assumptions, but this would raise other issues
which, for instance, prevent one to argue by induction on subTp-derivations.
The ultimate reason of the mentioned problems is that the narrowing property
is strictly tied to a manipulation of the type environment; hence, delegating the
latter to the metalanguage does not allow to reason about it at the object level.

29

Further discussion. Despite the “practical” considerations addressed above, the
most serious criticism which can be raised against our shallow encoding is that
it does not seem to be independent from the deep one. So far indeed, the only
apparent formal way to ensure the consistency of a subtyping derivation in the
shallow approach is to relate the bookkeeping assumptions to a well-formed
environment in the deep approach. However, this is not the case, since this
fact can be viewed as the “formal” counterpart of the adequacy Theorem 1
we have introduced in Section 8.1. In fact, adequacy theorems are common
practice, according to [1], when using open judgments19 and encodings in natural
deduction-style, in order to relate in a sound and complete way object languages
and their representations in the logical framework at hand. It is clear that, with
Theorem 1, the consistency of derivations in the logical framework is strictly
tied to a syntactic check on the proof term D; namely, the only variables of type
(envBook ...) occurring free in the latter must be among those representing
the valid typing environment on paper. In other words, the user is not free to
introduce at will new hypotheses without breaking the contract established by
the adequacy statement. This approach is perfectly compliant with well-known
encodings within Edinburgh’s LF (see, e.g., the ones about first-order logic in
[1]). The interested reader may also refer to [18] for a broader discussion about
shallow encodings and the notion of adequacy.

On the other hand, trying to recover some form of “control” over a concept
which has been delegated to the meta-level (namely, the typing environment)
would mean to introduce in Coq other constructs, trying to impose a kind of
discipline on bookkeeping assumptions:

1. Functionality (the same variable cannot be assigned two different types):

Definition funcBook (E:Var->Tp->Prop): Prop :=

forall X:Var, forall S T:Tp, (E X S) -> (E X T) -> S=T.

2. Scoping discipline (see Section 2.3):

Definition scopeBook (E:Var->Tp->Prop): Prop :=

forall X:Var, forall S:Tp, (E X S) ->

forall Y:Var, (isin Y S) -> exists T:Tp, (E Y T).

The following step would be to render subTp a parametric judgment that takes
a bookkeeping predicate as input and features the well-formedness of such pred-
icate as premise of each introduction rule:

Definition goodBook (E:Var->Tp->Prop): Prop :=

(funcBook E) /\ (scopeBook E).

Inductive subTp’ (E:Var->Tp->Prop): Tp->Tp->Prop := ...

| subTp’_var: forall X:Var, forall U:Tp,

(goodBook E) -> (E X U) -> (subTp’ E X X) ...

19As already remarked in Section 8.1, our envBook predicate is an open judgment.

30

However, this approach would be too cumbersome for an interactive and user-
friendly tool (especially from the point of view of a novice user), ultimately
forcing one to implement the bookkeeping predicate as a list-like structure of
assumptions to prove effectively the well-formedness premise. In other words,
we would fall back into a “deep” rendering of the typing environment.

Concluding, we can say that the deep encoding is better suited for developing
the metatheory of an object system (in this paper we have actually addressed
the first task of the POPLmark Challenge), while the shallow encoding is more
handy for animating and testing, i.e., for addressing the interactive perspective
of experimenting with the language, an activity which may become the goal
once the formal properties of the object system have been guaranteed.

10. Related work and conclusion

In [13, 14, 15], the first author and his coworkers experimented with the ap-
plication of the bookkeeping technique, combined with weak HOAS and the ToC,
to formalize in Coq the type soundness of the functional and imperative Abadi
and Cardelli’s ς-calculus. The present work can be seen as an advancement,
w.r.t. those contributions, in the following respects. First, we have formally
justified the bookkeeping technique internally in Coq, by proving its adequacy
w.r.t. the more traditional, i.e., deep, representation approach. Moreover, by
carrying out such an effort, we have implicitly pushed the shallow approach
to its limits, pointing out that it is better suited for experimentation purposes
(e.g., to carry out derivations with ground terms, see Section 9.3). We leave for
future work the goal of providing some automatization for the different phases of
our methodology, so that it might be benefited by non-expert users too. In this
direction, it could be fruitful to explore the possibility of porting the encoding
to alternative environments supporting HOAS, e.g., the Abella system.

Higher-Order Abstract Syntax. The gist of the weak HOAS approach to encode
languages with binders is to reconcile the advantage of delegating to the met-
alanguage the representation of the binders themselves, the treatment of (free
and bound) variables, the related machinery of α-conversion and freshness of
variables with the (co)inductive features of type theories, like Coq, that support
traditional functional programming. Obviously, like in all compromises, beside
the points in favour (readability, elegance and conciseness of the encoding),
there are some drawbacks.

First of all, we are forced to keep Var as an open (i.e., non-inductive) type
to rule out exotic terms and at the same time retain the induction and recursion
principles automatically provided by the system. However, such principles are
not extended to higher-order (i.e., functional) terms; whence, ToC’s axioms
allow to regain at object level the capability of reasoning about the syntactic
structure of such terms. In [29], instead, exotic terms are ruled out by means of
a validity judgment, which holds only for legal (i.e., non-exotic) ones. Moreover,
such a validity judgment allows the authors to generate an inductive principle
for higher-order terms. It is interesting to notice that an analogous higher-order

31

inductive principle can be generated also from the axioms of the ToC. Indeed,
a form of extensionality is also taken as a fundamental property in [29].

The second major drawback of our approach is the need to reify at the object
level a notion which is very common in languages with binders: namely, many
statements are essentially sensitive only to distinctions between variable names
(i.e. they do not depend on the particular names themselves). This fact amounts
to the notion of equivariance20 [28]; fresh-renamings lemmas, like those in Sec-
tion 9.2, provide precisely with examples of equivariant properties: actually, the
need to derive them in Coq represents the price to pay for having delegated the
handling of the (freshness of) bound variables to the metalanguage.

The use of Higher-Order Abstract Syntax has been recently revitalized thanks
to a new encoding paradigm, i.e., Parametric HOAS (PHOAS), introduced in [6]
by “merging” weak HOAS with another HOAS technique [30] that resorts to
first-class polymorphism to reason about functional data structures. PHOAS is
essentially weak HOAS where the global type parameter representing variables
is replaced with a parameter bound locally. By adopting the PHOAS approach,
we could introduce an encoding of System F<:’s types as PTp = ∀V: ∗ . tp(V),
where tp(V) is an inductive family type defined by abstracting the Tp of Sec-
tion 3.1 w.r.t. the global parameter Var, and the quantified variable V represents
type variables which can be instantiated with different values throughout a de-
velopment (this form of parametricity allows one to rule out exotic terms).

On the one hand, the ability to choose ad-hoc variable types for different
contexts gives PHOAS some additional power both in functional programming
and in proving; on the other hand, according to the author of [6], PHOAS relies
on axioms “more complicated and language-specific” than those of the ToC.

The POPLmark Challenge. A major source of comparison is supplied by the
contributions submitted to the POPLmark Challenge web page [31], which col-
lects, at the time of writing, thirteen solutions to the first task, included ours.

Berghofer’s work in Isabelle/HOL, and two ones in Coq by Charguéraud and
Vouillon are based on the pure de Bruijn representation. The locally nameless
encoding, an approach that keeps de Bruijn indices to represent bound variables
and adopts (first-order) names to manage free ones, was first experimented in
Coq by Leroy, then refined by Chlipala, Charguéraud, and ported to Matita

by Ricciotti. The opposite choice of named variables is made by Stump, who
represents in Coq bound variables via names and free variables via de Bruijn
indices. An high-level encoding technique, introduced in Coq by Hirschowitz and
Maggesi, exploits nested abstract syntax to provide a categorical perspective. We
discuss now the approaches most related to the present contribution; note that
another reference is provided by the POPLmark Special Issue [32].

The full HOAS formalization carried out by Gacek in Abella introduces a
canonical representation of System F<:’s types (notice, in particular, the signa-
ture of the universal constructor “∀”, named all):

20More precisely, equivariance is a property of sentences of the form ∀~x.φ(~x), i.e.
∀π, ~x.(φ(~x)⇔ φ(π · ~x)), where π is a permutation action.

32

ty type. top ty. arrow ty -> ty -> ty. all ty -> (ty->ty) -> ty.

Since variables are encoded by metavariables of type ty, the extra specification
logic judgment bound:ty->ty->o has to be defined to cope with the environ-
ment assumptions, and a (simplified) environment well-formedness predicate
ctx:olist->prop is introduced to reason about subtyping. To make structural
induction on System F<:’s types feasible, a predicate wfty:ty->prop is added.

Another full HOAS encoding, performed at Carnegie Mellon University in
the Twelf system, uses the same signature for the syntax of System F<:’s types:

tp: type. ... forall: tp -> (tp->tp) -> tp.

Again, the environment assumptions require the introducion of a distinguished
judgment assm:tp->tp->type, but, differently from the above approach in
Abella, there is no explicit environment; therefore, a judgment var:tp->type

is defined to “mark” the types which play the role of variables.
Summing up, variables are represented by Abella’s and Twelf’s metavari-

ables belonging to the types ty and tp, which are introduced to encode the
syntax of System F<:’s types. Differently, we adopt a weak HOAS approach, by
choosing a separate, non-inductive type Var for representing variables:

Parameter Var: Set. Inductive Tp: Set := ... | fa: Tp -> (Var->Tp) -> Tp.

In this way, we keep the advantage of delegating α-conversion and substitution
of variables for variables to the metalanguage, while retaining Coq’s built-in
induction principle for Tp. Of course, in Abella and Twelf one has the extra
possibility of delegating to the metalanguage the substitution of terms (those
inhabiting ty and tp) for variables, while we should write an ad-hoc predicate.
However, this kind of substitution is not required to deal with subtyping.

Also the solution proposed by Urban and coworkers in Isabelle/HOL, based
on the Nominal (Logic) datatype package, is quite related to our approach:

atom− decl tyvrs
nominal− datatype ty =
| Tvar tyvrs | Top | Arrow ty ty (− → − [100, 100] 100)
| Forall � tyvrs� ty ty

In this signature of System F<:’s types, the variables are represented by atoms,
therefore the “∀” binder is encoded via the abstraction operator � . . . �. . . ;
this allows one to prove that α-equivalent types are equal. Then, a measure on
the size of types and the notion of capture-avoiding substitution are defined.

We remark that the intrinsic concepts of finite support and freshness play in
Nominal Logic (and the related proof assistant Nominal Isabelle) a role which is
similar to that of occurrence (isin) and non-occurrence (notin) predicates and
of the unsaturation axiom, which are bundled with our axioms of the Theory
of Contexts. Indeed, variables in our approach correspond to atoms in Nominal
Logic; moreover, both theories rely on the intuition that terms are finite objects;
hence, a single term cannot contain all the possible variables/atoms (which are
infinite), i.e., terms have a finite support. Hence, the unsaturation axiom is the
propositional counterpart of the fresh operator in Nominal Logic. Actually, this

33

is not fortuitous, since in [33] the relation between the intuitionistic Nominal
Logic and the Theory of Contexts is clearly explained by means of a translation
of terms, formulas and judgments of the former into terms and propositions of
the CCInd (the type theory beneath Coq), via a weak HOAS encoding. It turns
out that the (translation of the) axioms and rules of the intuitionistic Nominal
Logic are derivable in CCInd extended with the Theory of Contexts.

References

[1] R. Harper, F. Honsell, G. Plotkin, A Framework for Defining Logics, J. of
the ACM 40 (1) (1993) 143–184.

[2] A. D. Gordon, T. Melham, Five axioms of alpha-conversion, in: TPHOL,
vol. 1125 of LNCS, Springer, 173–190, 1996.

[3] J. Despeyroux, A. Felty, A. Hirschowitz, Higher-order abstract syntax in
Coq, in: TLCA, vol. 902 of LNCS, Springer, 124–138, 1995.

[4] A. M. Pitts, Nominal Logic, A First Order Theory of Names and Binding,
Information and Computation 186 (2003) 165–193.

[5] F. Honsell, M. Miculan, I. Scagnetto, An Axiomatic Approach to Metarea-
soning on Nominal Algebras in HOAS, in: ICALP, 2076 of LNCS, Springer,
963–978, 2001.

[6] A. Chlipala, Parametric Higher-order Abstract Syntax for Mechanized Se-
mantics, in: ICFP, ACM, 143–156, 2008.

[7] B. Pientka, J. Dunfield, Beluga: A Framework for Programming and Rea-
soning with Deductive Systems (System Description), in: Automated Rea-
soning, vol. 6173 of LNCS, Springer, 15–21, 2010.

[8] F. Honsell, M. Miculan, I. Scagnetto, π-calculus in (Co)Inductive Type
Theories, Theoretical Computer Science 253 (2) (2001) 239–285.

[9] The Coq Development Team, The Coq Proof Assistant, version 8.4, INRIA,
2012.

[10] B. E. Aydemir, et al., Mechanized Metatheory for the Masses: The
PoplMark Challenge, in: TPHOLs, vol. 3603 of LNCS, Springer, 50–65,
2005.

[11] R. Burstall, F. Honsell, Operational semantics in a natural deduction set-
ting, Logical Frameworks (1990) 185–214.

[12] F. Honsell, M. Miculan, A natural deduction approach to dynamic logic,
in: TYPES, vol. 1158 of LNCS, Springer, 165–182, 1996.

[13] A. Ciaffaglione, L. Liquori, M. Miculan, Reasoning on an imperative object-
based calculus in Higher Order Abstract Syntax, in: MERLIN, 1–10, 2003.

[14] A. Ciaffaglione, L. Liquori, M. Miculan, Imperative object-based calculi
in Co-inductive Type Theories, in: LPAR, vol. 2850 of LNAI, Springer,
59–77, 2003.

[15] A. Ciaffaglione, L. Liquori, M. Miculan, Reasoning about object-based cal-
culi in (Co)inductive type theory and the Theory of Contexts, J. Autom.
Reasoning 39 (1) (2007) 1–47.

[16] A. Bucalo, F. Honsell, M. Miculan, I. Scagnetto, M. Hofmann, Consistency
of the Theory of Contexts, J. Funct. Program. 16 (3) (2006) 327–372.

34

[17] R. J. Boulton, A. D. Gordon, M. J. Gordon, J. Harrison, J. Herbert,
J. Van Tassel, Experience with Embedding Hardware Description Lan-
guages in HOL, in: TPCD, vol. 10 of IFIP Transactions, 129–156, 1992.

[18] F. Honsell, 25 years of formal proof cultures: Some problems, some philos-
ophy, bright future, in: LFMTP, ACM, 37–42, 2013.

[19] A. Ciaffaglione, I. Scagnetto, A weak HOAS approach to the POPLmark
Challenge, in: LSFA, EPTCS 113, 109–124, 2012.

[20] A. Ciaffaglione, I. Scagnetto, Internal Adequacy of Bookkeeping in Coq,
in: LFMTP, ACM, 81–88, 2014.

[21] A. Ciaffaglione, I. Scagnetto, The Web Appendix of this paper,
http://www.dimi.uniud.it/ciaffagl/POPLmark/index.html, 2014.

[22] B. C. Pierce, Types and programming languages, MIT Press, 2002.
[23] F. Honsell, M. Miculan, I. Scagnetto, The Theory of Contexts for First

Order and Higher Order Abstract Syntax, ENTCS 62, 116–135, 2001.
[24] M. Hofmann, Semantical Analysis of Higher-Order Abstract Syntax, in:

LICS, IEEE, 204–213, 1999.
[25] A. Chlipala, Certified Programming with Dependent Types, Available at

http://adam.chlipala.net/cpdt/html/toc.html, 2013.
[26] A. Avron, F. Honsell, I. Mason, R. Pollack, Using Typed Lambda Calcu-

lus to Implement Formal Systems on a Machine, Journal of Automated
Reasoning 9 (3) (1992) 309–354.

[27] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, S. Weirich, Engi-
neering Formal Metatheory, in: POPL, ACM, 3–15, 2008.

[28] M. J. Gabbay, A. M. Pitts, A New Approach to Abstract Syntax with
Variable Binding, Formal Aspects of Computing 13, 341–363, 2001.

[29] J. Despeyroux, A. Hirschowitz, Higher-Order Abstract Syntax with induc-
tion in Coq, in: LPAR ’94, vol. 822 of LNCS, 159–173, 1994.

[30] G. Washburn, S. Weirich, Boxes Go Bananas: Encoding Higher-order Ab-
stract Syntax with Parametric Polymorphism, in: ICFP, ACM, 249–262,
2003.

[31] B. E. Aydemir, et al., The POPLmark Challenge Web Page, Available at
http://www.seas.upenn.edu/˜plclub/poplmark/, 2014.

[32] B. C. Pierce, S. Weirich, Special Issue on the POPLMark Challenge, J.
Autom. Reasoning 49 (3), 301–302, 2012.

[33] M. Miculan, I. Scagnetto, F. Honsell, Translating specifications from nom-
inal logic to CIC with the theory of contexts, in: MERLIN, 41–49, 2005.

[34] C. Röckl, D. Hirschkoff, S. Berghofer, Higher-Order Abstract Syntax with
Induction in Isabelle/HOL: Formalizing the pi-Calculus and Mechanizing
the Theory of Contexts, in: FOSSACS, vol. 2030 of LNCS, Springer, 364–
378, 2001.

35

