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Abstract. In this note we apply the theory of Association Schemes to com-

pute the dimension of the subspace U of the 196,884-dimensional Conway-

Norton-Griess algebra generated by the Majorana axes associated to the 2A-
involutions of the Monster group that are contained in the Harada-Norton

group.

1. Introduction

Let G be a finite group generated by a G-stable set T of involutions, V a real
commutative (not necessarily associative) algebra equipped with a positive definite
symmetric bilinear form and

φ : G→ Aut(V )

a faithful representation of G on V (that is, for every g ∈ G, gφ is an isometry of
V that preserves the algebra product). Let further

ψ : T → V \ {0}

be an injective map such that for every g ∈ G and t ∈ T ,

(1) (tψ)(gφ) = (g−1tg)ψ.

The tuple

R := (G,T, V, φ, ψ)

is called a Majorana representation of G if R satisfies certain properties (axioms
M1-M7 in [7], which, for brevity, we don’t state explicitly, as they won’t be used
in the sequel of this paper). The elements of Tψ are called Majorana axes while
the automorphisms in Tφ are called Majorana involutions.

Given a Majorana representation R := (G,T, V, φ, ψ) of a group G and a subset
T0 of T , it can be easily seen that

R := (H,T0, V, φ|H , ψ|T0)

is a Majorana representation of H := 〈T0〉.
The fundamental example of a Majorana representation is given by the faithful

representation of Monster group M on the Conway-Norton-Griess algebra VM of
dimension 196884, T being the set of 2A-involutions ofM . The concept of Majorana
representation has been introduced by A. Ivanov in [9, Chapter 8] to provide an
axiomatic framework for that representation.

By the above remark, any group H isomorphic to a subgroup H∗ of the Monster
group generated by a subset of 2A-involutions, inherits a Majorana representation
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by restricting the one of M to H∗. In that case, the Majorana representation of H
is said to be based on the embedding H → H∗ in the Monster.

Majorana representations of many groups have alredy been investigated. The
axioms of Majorana representation impliy that the Majorana representations of the
dihedral group D2N , with 2 ≤ N ≤ 6, coincide with the Norton-Sakuma algebras of
type NX, X ∈ {A,B,C} (see [14] and [7]). Majorana representations of the groups
A4, A5, A6, A7, L3(2), L2(11) have been studied in [7], [10], [11, 12], [13] and [5]
respectively. Moreover, in [2] further properties of a Majorana representation s of
A12 are proved.

The purpose of this paper is to begin the investigation of Majorana representa-
tions of the Harada-Norton group HN . By the above remark, HN has a unique
(up to equivalence) Majorana representation based on its embedding in M , since
HN is uniquely (up to equivalence) embedded into M as the subgroup generated
by the 2A-involutions centralizing a 5A-element [3]. Thus, for the remainder of this
paper, let

(HN,T, V, φ, ψ)

be the Majorana representation of HN based on its embedding in M , (in particular,
using the notations of [3], T is the set of 2A-involutions of HN). We prove the
following.

Theorem 1. Let (HN,T, V, φ, ψ) be the Majorana representation of HN based on
its embedding in M . The R-subspace 〈Tψ〉 of V is an R[HN ]-module of dimension
18 316, with irreducible submodules of dimensions 1, 8910 and 9405.

The proof relies on the following elementary result on Euclidean spaces:

Lemma 2. Let E be a real Euclidean space with scalar product ( , ) and let v1, . . . , vm
be vectors of E. Then the dimension of 〈v1, . . . , vm〉 is equal to the rank of the Gram
matrix ((vi, vj))i,j

Let T = {t1, . . . , tn},
γij := (tiψ, tjψ),

and let
Γ = (γij)ij

be the Gram matrix of ( , ) associated to the n-tuple (t1, . . . , tn). By Lemma 2, we
have that

(2) rank(Γ) = dimR(〈tψ | t ∈ T〉).
Note Γ is a |T | × |T | matrix and, in our case, |T | = |HN : CHN (t)| = 1539000

(see [3]) making a direct computation of its rank quite hard to perform. On the
other hand, the theory of Association Schemes allows us to reduce that computation
to a much more manageable case.

Let
T0, . . . , Td

be the orbitals of G on T , that is the orbits of G on T × T . From equation (1) and
the definition of γij we have that

γij = γhk if (ti, tj) and (th, tk) belong to the same orbital of G on T.

Therefore, set, for k ∈ {0, . . . , d}
(3) γk := (tψ, sψ) for (t, s) ∈ Tk
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and for every k ∈ {0, . . . , d} let Ak be the matrix whose i, j-entry aij(k) is as follows

aij(k) =

{
1 if the pair (ti, tj) is in Tk
0 otherwise

Since T0, . . . , Td is a partition of T × T , Equation (3) yields that

(4) Γ =

d∑
k=0

γkAk,

The pair (T, {T0, . . . , Td}) is an association scheme (see [1]), and the matrices
A0, . . . , Ad are called the adjacency matrices. They are a basis for the centralizer
algebra C, that is the centralizer in Mn×n(R) of the subalgebra generated by the
permutation matrices associated to the elements of HN in the action of HN on T .
Moreover, for all i, j ∈ {0, . . . , d} there exist integers pkij such that

(5) AiAj =

d∑
k=0

pkijAk.

The matrix Bi of size d+1 whose j, k entry is pkij is called i−th intersection matrix.

Clearly Bt
i is the matrix associated to the endomorphism induced by Ai on C via

left multiplication with respect to the basis (A0, . . . , Ad), in particular Bi has the
same eigenvalues as Ai.

Since the permutation character associated to the action of HN on T is multi-
plicity free, the centralizer algebra C is commutative and the matrices A0, . . . , Ak

are simultaneously diagonalizable by a real invertible matrix D. Thus from Equa-
tion (4) we get:

(6) D−1ΓD =

d∑
k=0

γkD
−1AkD,

where all the matrices D−1ΓD, and D−1AkD for k ∈ {0, . . . , 8}, are diagonal.
Now, clearly rank(Γ) (= rank(D−1ΓD)) is equal to the number of nonzero en-

tries of D−1ΓD. Since the coefficients γk are given by the Norton-Sakuma Theorem
(see [9]), in order to compute the rank of Γ we are reduced to compute the eigen-
values of the matrices Bk and their multiplicities in the matrices Ak.

As usual, we shall choose the indexes of the orbitals so that T0 is the diagonal
and B0 is the identity matrix. Moreover, by [8, Lemma 2.18.1(ii)] there is a unique
orbital of size |T | · 1408. We choose T1 to be that orbital so that, again by [8,
Lemma 2.18.1(ii)], the first intersection matrix B1 is as follows:

B1 =



0 1 0 0 0 0 0 0 0
1408 53 32 18 4 2 0 0 0

0 50 0 2 12 0 2 0 0
0 450 32 100 32 50 32 0 0
0 350 672 112 160 100 92 160 0
0 504 0 504 288 356 312 320 0
0 0 672 672 552 650 720 640 1280
0 0 0 0 360 250 240 288 0
0 0 0 0 0 0 10 0 128


.
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Having B1, the Theory of Association Schemes enables us to obtain the eigen-
values of all matrices Ai, for every i ∈ {0, . . . , d}, and their multiplicities, and, as
a by-product, also all the other intersection matrices.

2. Computing eigenvalues

Let U be the permutation module associated to the action of HN on T and let

U = U0+̇ . . . +̇Ur

be the decomposition of U into the direct sum of maximal common eigenspaces
of the adjacency matrices Ai. Since, for each i, the rows of the matrices Ai have
constant sum (say ki), we have that 〈t(1, 1, . . . , 1)〉 is a (common) ki-eigenspace for
Ai, for each i. As usual, we choose U0 to be that eigenspace. By [1, Theorem 3.1],
r = d = 8 and, for each i ∈ {0, . . . , 8}, Ui is an irreducible R[HN ]-module.

For i, j ∈ {0, . . . , 8}, let pij be the eigenvalue of Aj on Ui and let P := (pij) be
the first eigenmatrix of the association scheme (T,R).

Lemma 3. The matrix P is the following

P =



1 1408 2200 35200 123200 354816 739200 277200 5775
1 128 200 0 1600 −2304 0 0 375
1 28 −50 −50 −100 396 −750 450 75
1 16 4 −56 −136 −288 504 0 −45
1 −32 40 −80 80 576 −240 −360 15
1 −47 −50 250 350 −504 0 0 0
1 −112 300 1000 −2200 −864 −1800 3600 75
1 208 −50 2200 −2800 2016 4200 −6300 525
1 208 100 1000 1400 2016 −4200 0 −525


Proof. Note that since A0 is the identity matrix, pi0 = 1 for all i’s. Moreover,
p0i = ki for all i’s by the choice of U0 and the numbers ki = |Ti| are known (see [8,
Lemma 2.12.1]) .

By straightforward computation we get that the eigenvalues of B1 are 1408, 128,
28, 16, −32, −47, −112, 208, 208.

Let us set

(λ0, . . . , λ8) = (1408, 128, 28, 16,−32,−47,−112, 208, 208).

For each h ∈ {0, . . . , 8}, let Sh be the linear system

(7) (B1 − λhId) t(1, λh, x2, . . . x8) = 0.

Let us consider Equation (5) with i = 1 and multiply each term by D on the
right and D−1 on the left. We get

(8) (D−1A1D)(D−1AjD) =

d∑
h=0

phij(D
−1AhD).

Since matrices D−1AhD are diagonal whith eigenvalues p0h, . . . , p8h on the common
eigenspaces U0, . . . , U8, from Equation (8) we get for every h ∈ {0, . . . , 8} the
relations

(9) λkpkj =

d∑
h=0

phijpkh.
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Thus, for each h ∈ {0, . . . , 8}, the system Sh, admits the 7-tuple (ph2, . . . , ph8)
as a solution.

Now, for h 6= 7, 8, by elementary theory of linear systems, we see that Sh have
a unique solution. Thus it is (ph2, . . . , ph8) and, solving the systems S0, . . . ,S6, we
get the first seven rows of the matrix P .

In particular we get that k1 = 1408, k2 = 2200, k3 = 35200, k4 = 123200,
k5 = 354816, k6 = 739200, k7 = 277200, and k8 = 5775.

We are now left with the last two rows of the matrix P , corresponding to the
eigenvalue 208 of B1.

The set of solutions of the system S7
(B1 − 208Id) t(1, 208, x2, . . . , x8) = 0

is

{(25− x

7
, 1600 +

8x

7
,−700− 4x, 2016, 8x,−3150− 6x, x) | where x ∈ R}.

Therefore, for suitable x, y ∈ R, we can write the last two rows of the matrix P
as follows

1, 208, 25− x

7
, 1600 +

8x

7
,−700− 4x, 2016, 8x,−3150− 6x, x

1, 208, 25− y

7
, 1600 +

8y

7
,−700− 4y, 2016, 8y,−3150− 6y, y.

Set mi = dimR(Ui). The mi’s can be computed from the rows of P using the
formula [BI, Theorem 4.1]:

mi =
|T |∑d

j=0 k
−1
i p2ij

from which we get m1 = 16929, m2 = 267520, m3 = 653125, m4 = 365750,
m5 = 214016, m6 = 8910.

Comparing those values with the decomposition of the permutation module into
irreducibles, we get that

m1 +m2 = 12749 = 3344 + 9405,

so that we may assume

m7 = 3344 and m8 = 9405.

By the Column Orthogonality Relation of the first eigenmatrix [1, Theorem 3.5]

d∑
k=0

mkpkipkj = |T |kiδij ,

applied with (i, j) = (0, 8) and (i, j) = (8, 8), we get the quadratic system{
3344x+ 9405y = −3182025
3344x2 + 9405y2 = 3513943125

whose solutions are

(x, y) = (525,−525) or (x, y) = (1575/61, 62475/61).

Finally, to determine which of the two solutions is the right one, we use the
formula in [BI, Theorem 3.6]

(10) phij =
1

|T |kh
tr(AiAjAh)
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(note that, by [4], the matrices Ai’s are symmetric since the Frobenius-Schur indi-
cator of the permutation character of HN on T is +1 [3]). In fact, we can compute
tr(AiAjAh) by using the matrix P and we know that phij is an integer number.

Only in the case when (x, y) = (525,−525) we get an integer value for the entries
pk2,j of the matrix B2. �

Note that by Equation (10) we may now also compute all the intersection ma-
trices Bi’s.

Lemma 4. The coefficients γk in the formula (6) are given in the following table

k |tCG(s)| (st)G γk = (sψ, tψ)
0 1 1 1
1 1408 5A 3/27

2 2200 2A 1/8
3 35200 3A 13/28

4 123200 4B 1/26

5 354816 5E(5A) 3/27

6 739200 6A 5/28

7 277200 4A 1/25

8 5775 2B 0

Proof. For each k, the coefficient γk have been defined in (3) and by the Conway-
Norton-Sakuma Theorem (see for example [9]) it depends only on the conjugacy
class of the product ts, for (t, s) in the orbital Tk. The correspondence that asso-
ciates to each orbital Tk of HN on T the conjugacy class of the products ts where
(t, s) ∈ Tk has been determined by Segev [14] and is given by the first two columns
of the table. �

Now set Γ := D−1ΓD and Ak := D−1AkD for each k ∈ {0, . . . , 8}.
By Lemma 4, Equation (6) becomes

Γ = A0 +
3

27
A1 +

1

8
A2 +

13

28
A3 +

1

26
A4 +

3

27
A5 +

5

28
A6 +

1

25
A7 + 0A8,

which gives the following eigenvalues of Γ on the subspaces U0, . . . , U8 respectively

70875/2, 0, 0, 0, 0, 0, 875/8, 0, 225/4.

Hence

dimR(〈Tψ〉) = m0 +m6 +m8 = 1 + 9405 + 8910 = 18 316.

References

[1] E. Bannai and T. Ito Algebraic Combinatorics I. Association Schemes, Benjamin-Cummings
Lect. Notes, Menlo Park 1984.

[2] A. Castillo-R , A. A. Ivanov, The axes of a majorana representation of A12, preprint.
[3] J. H. Conway, R. T. Cortis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite

Simple Groups, Clarendon Press, Oxford (1985).

[4] P. J. Cameron, Permutation Groups, London Mathematical Society Student Texts 45, Cam-

bridge univ. Press, Cambridge (1999).
[5] S. Decelle, The L2(11)-subalgebra of the Monster algebra, J. Ars Math. Contemp. 7.1 (2014)

83-103.
[6] The GAP Group, Gap - Groups Algorithms and programming, Version 4.4.12,

http://www.gap-system.org (2008)



COMPUTING THE DIMENSION OF A MAJORANA REPRESENTATION OF HN 7
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