COMPUTING THE DIMENSION OF A MAJORANA REPRESENTATION OF THE HARADA-NORTON GROUP

CLARA FRANCHI, ALEXANDER A. IVANOV, MARIO MAINARDIS

Abstract

In this note we apply the theory of Association Schemes to compute the dimension of the subspace U of the 196,884-dimensional Conway-Norton-Griess algebra generated by the Majorana axes associated to the 2Ainvolutions of the Monster group that are contained in the Harada-Norton group.

1. Introduction

Let G be a finite group generated by a G-stable set T of involutions, V a real commutative (not necessarily associative) algebra equipped with a positive definite symmetric bilinear form and

$$
\phi: G \rightarrow A u t(V)
$$

a faithful representation of G on V (that is, for every $g \in G, g \phi$ is an isometry of V that preserves the algebra product). Let further

$$
\psi: T \rightarrow V \backslash\{0\}
$$

be an injective map such that for every $g \in G$ and $t \in T$,

$$
\begin{equation*}
(t \psi)(g \phi)=\left(g^{-1} t g\right) \psi \tag{1}
\end{equation*}
$$

The tuple

$$
\mathcal{R}:=(G, T, V, \phi, \psi)
$$

is called a Majorana representation of G if \mathcal{R} satisfies certain properties (axioms M1-M7 in [7], which, for brevity, we don't state explicitly, as they won't be used in the sequel of this paper). The elements of $T \psi$ are called Majorana axes while the automorphisms in $T \phi$ are called Majorana involutions.

Given a Majorana representation $\mathcal{R}:=(G, T, V, \phi, \psi)$ of a group G and a subset T_{0} of T, it can be easily seen that

$$
\mathcal{R}:=\left(H, T_{0}, V,\left.\phi\right|_{H},\left.\psi\right|_{T_{0}}\right)
$$

is a Majorana representation of $H:=\left\langle T_{0}\right\rangle$.
The fundamental example of a Majorana representation is given by the faithful representation of Monster group M on the Conway-Norton-Griess algebra V_{M} of dimension 196884, T being the set of $2 A$-involutions of M. The concept of Majorana representation has been introduced by A. Ivanov in [9, Chapter 8] to provide an axiomatic framework for that representation.

By the above remark, any group H isomorphic to a subgroup H^{*} of the Monster group generated by a subset of $2 A$-involutions, inherits a Majorana representation

[^0]by restricting the one of M to H^{*}. In that case, the Majorana representation of H is said to be based on the embedding $H \rightarrow H^{*}$ in the Monster.

Majorana representations of many groups have alredy been investigated. The axioms of Majorana representation impliy that the Majorana representations of the dihedral group $D_{2 N}$, with $2 \leq N \leq 6$, coincide with the Norton-Sakuma algebras of type $N X, X \in\{A, B, C\}$ (see [14] and [7]). Majorana representations of the groups $A_{4}, A_{5}, A_{6}, A_{7}, L_{3}(2), L_{2}(11)$ have been studied in [7], [10], [11, 12], [13] and [5] respectively. Moreover, in [2] further properties of a Majorana representation s of A_{12} are proved.

The purpose of this paper is to begin the investigation of Majorana representations of the Harada-Norton group $H N$. By the above remark, $H N$ has a unique (up to equivalence) Majorana representation based on its embedding in M, since $H N$ is uniquely (up to equivalence) embedded into M as the subgroup generated by the $2 A$-involutions centralizing a $5 A$-element [3]. Thus, for the remainder of this paper, let

$$
(H N, T, V, \phi, \psi)
$$

be the Majorana representation of $H N$ based on its embedding in M, (in particular, using the notations of [3], T is the set of $2 A$-involutions of $H N$). We prove the following.

Theorem 1. Let ($H N, T, V, \phi, \psi$) be the Majorana representation of $H N$ based on its embedding in M. The \mathbb{R}-subspace $\langle T \psi\rangle$ of V is an $\mathbb{R}[H N]$-module of dimension 18 316, with irreducible submodules of dimensions 1,8910 and 9405.

The proof relies on the following elementary result on Euclidean spaces:
Lemma 2. Let E be a real Euclidean space with scalar product (,) and let v_{1}, \ldots, v_{m} be vectors of E. Then the dimension of $\left\langle v_{1}, \ldots, v_{m}\right\rangle$ is equal to the rank of the Gram $\operatorname{matrix}\left(\left(v_{i}, v_{j}\right)\right)_{i, j}$

Let $T=\left\{t_{1}, \ldots, t_{n}\right\}$,

$$
\gamma_{i j}:=\left(t_{i} \psi, t_{j} \psi\right),
$$

and let

$$
\Gamma=\left(\gamma_{i j}\right)_{i j}
$$

be the Gram matrix of (,) associated to the n-tuple $\left(t_{1}, \ldots, t_{n}\right)$. By Lemma 2, we have that

$$
\begin{equation*}
\operatorname{rank}(\Gamma)=\operatorname{dim}_{\mathbb{R}}(\langle\mathrm{t} \psi \mid \mathrm{t} \in \mathrm{~T}\rangle) \tag{2}
\end{equation*}
$$

Note Γ is a $|T| \times|T|$ matrix and, in our case, $|T|=\left|H N: C_{H N}(t)\right|=1539000$ (see [3]) making a direct computation of its rank quite hard to perform. On the other hand, the theory of Association Schemes allows us to reduce that computation to a much more manageable case.

Let

$$
T_{0}, \ldots, T_{d}
$$

be the orbitals of G on T, that is the orbits of G on $T \times T$. From equation (1) and the definition of $\gamma_{i j}$ we have that

$$
\gamma_{i j}=\gamma_{h k} \text { if }\left(t_{i}, t_{j}\right) \text { and }\left(t_{h}, t_{k}\right) \text { belong to the same orbital of } G \text { on } T \text {. }
$$

Therefore, set, for $k \in\{0, \ldots, d\}$

$$
\begin{equation*}
\gamma_{k}:=(t \psi, s \psi) \text { for }(t, s) \in T_{k} \tag{3}
\end{equation*}
$$

and for every $k \in\{0, \ldots, d\}$ let A_{k} be the matrix whose i, j-entry $a_{i j}(k)$ is as follows

$$
a_{i j}(k)= \begin{cases}1 & \text { if the pair }\left(t_{i}, t_{j}\right) \text { is in } T_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Since T_{0}, \ldots, T_{d} is a partition of $T \times T$, Equation (3) yields that

$$
\begin{equation*}
\Gamma=\sum_{k=0}^{d} \gamma_{k} A_{k} \tag{4}
\end{equation*}
$$

The pair $\left(T,\left\{T_{0}, \ldots, T_{d}\right\}\right)$ is an association scheme (see [1]), and the matrices A_{0}, \ldots, A_{d} are called the adjacency matrices. They are a basis for the centralizer algebra \mathcal{C}, that is the centralizer in $M_{n \times n}(\mathbb{R})$ of the subalgebra generated by the permutation matrices associated to the elements of $H N$ in the action of $H N$ on T. Moreover, for all $i, j \in\{0, \ldots, d\}$ there exist integers $p_{i j}^{k}$ such that

$$
\begin{equation*}
A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k} \tag{5}
\end{equation*}
$$

The matrix B_{i} of size $d+1$ whose j, k entry is $p_{i j}^{k}$ is called $i-t h$ intersection matrix. Clearly B_{i}^{t} is the matrix associated to the endomorphism induced by A_{i} on \mathcal{C} via left multiplication with respect to the basis $\left(A_{0}, \ldots, A_{d}\right)$, in particular B_{i} has the same eigenvalues as A_{i}.

Since the permutation character associated to the action of $H N$ on T is multiplicity free, the centralizer algebra \mathcal{C} is commutative and the matrices A_{0}, \ldots, A_{k} are simultaneously diagonalizable by a real invertible matrix D. Thus from Equation (4) we get:

$$
\begin{equation*}
D^{-1} \Gamma D=\sum_{k=0}^{d} \gamma_{k} D^{-1} A_{k} D \tag{6}
\end{equation*}
$$

where all the matrices $D^{-1} \Gamma D$, and $D^{-1} A_{k} D$ for $k \in\{0, \ldots, 8\}$, are diagonal.
Now, clearly $\operatorname{rank}(\Gamma)\left(=\operatorname{rank}\left(\mathrm{D}^{-1} \Gamma \mathrm{D}\right)\right)$ is equal to the number of nonzero entries of $D^{-1} \Gamma D$. Since the coefficients γ_{k} are given by the Norton-Sakuma Theorem (see [9]), in order to compute the rank of Γ we are reduced to compute the eigenvalues of the matrices B_{k} and their multiplicities in the matrices A_{k}.

As usual, we shall choose the indexes of the orbitals so that T_{0} is the diagonal and B_{0} is the identity matrix. Moreover, by [8, Lemma 2.18.1(ii)] there is a unique orbital of size $|T| \cdot 1408$. We choose T_{1} to be that orbital so that, again by [8, Lemma 2.18.1(ii)], the first intersection matrix B_{1} is as follows:

$$
B_{1}=\left(\begin{array}{rrrrrrrrr}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1408 & 53 & 32 & 18 & 4 & 2 & 0 & 0 & 0 \\
0 & 50 & 0 & 2 & 12 & 0 & 2 & 0 & 0 \\
0 & 450 & 32 & 100 & 32 & 50 & 32 & 0 & 0 \\
0 & 350 & 672 & 112 & 160 & 100 & 92 & 160 & 0 \\
0 & 504 & 0 & 504 & 288 & 356 & 312 & 320 & 0 \\
0 & 0 & 672 & 672 & 552 & 650 & 720 & 640 & 1280 \\
0 & 0 & 0 & 0 & 360 & 250 & 240 & 288 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 10 & 0 & 128
\end{array}\right) .
$$

Having B_{1}, the Theory of Association Schemes enables us to obtain the eigenvalues of all matrices A_{i}, for every $i \in\{0, \ldots, d\}$, and their multiplicities, and, as a by-product, also all the other intersection matrices.

2. Computing eigenvalues

Let U be the permutation module associated to the action of $H N$ on T and let

$$
U=U_{0} \dot{+} \ldots \dot{+} U_{r}
$$

be the decomposition of U into the direct sum of maximal common eigenspaces of the adjacency matrices A_{i}. Since, for each i, the rows of the matrices A_{i} have constant sum (say k_{i}), we have that $\left\langle{ }^{t}(1,1, \ldots, 1)\right\rangle$ is a (common) k_{i}-eigenspace for A_{i}, for each i. As usual, we choose U_{0} to be that eigenspace. By [1, Theorem 3.1], $r=d=8$ and, for each $i \in\{0, \ldots, 8\}, U_{i}$ is an irreducible $\mathbb{R}[H N]$-module.

For $i, j \in\{0, \ldots, 8\}$, let $p_{i j}$ be the eigenvalue of A_{j} on U_{i} and let $P:=\left(p_{i j}\right)$ be the first eigenmatrix of the association scheme (T, \mathcal{R}).

Lemma 3. The matrix P is the following

$$
P=\left(\begin{array}{rrrrrrrrr}
1 & 1408 & 2200 & 35200 & 123200 & 354816 & 739200 & 277200 & 5775 \\
1 & 128 & 200 & 0 & 1600 & -2304 & 0 & 0 & 375 \\
1 & 28 & -50 & -50 & -100 & 396 & -750 & 450 & 75 \\
1 & 16 & 4 & -56 & -136 & -288 & 504 & 0 & -45 \\
1 & -32 & 40 & -80 & 80 & 576 & -240 & -360 & 15 \\
1 & -47 & -50 & 250 & 350 & -504 & 0 & 0 & 0 \\
1 & -112 & 300 & 1000 & -2200 & -864 & -1800 & 3600 & 75 \\
1 & 208 & -50 & 2200 & -2800 & 2016 & 4200 & -6300 & 525 \\
1 & 208 & 100 & 1000 & 1400 & 2016 & -4200 & 0 & -525
\end{array}\right)
$$

Proof. Note that since A_{0} is the identity matrix, $p_{i 0}=1$ for all i 's. Moreover, $p_{0 i}=k_{i}$ for all i 's by the choice of U_{0} and the numbers $k_{i}=\left|T_{i}\right|$ are known (see [8, Lemma 2.12.1]) .

By straightforward computation we get that the eigenvalues of B_{1} are 1408, 128, $28,16,-32,-47,-112,208,208$.

Let us set

$$
\left(\lambda_{0}, \ldots, \lambda_{8}\right)=(1408,128,28,16,-32,-47,-112,208,208)
$$

For each $h \in\{0, \ldots, 8\}$, let \mathcal{S}_{h} be the linear system

$$
\begin{equation*}
\left(B_{1}-\lambda_{h} I d\right)^{t}\left(1, \lambda_{h}, x_{2}, \ldots x_{8}\right)=0 \tag{7}
\end{equation*}
$$

Let us consider Equation (5) with $i=1$ and multiply each term by D on the right and D^{-1} on the left. We get

$$
\begin{equation*}
\left(D^{-1} A_{1} D\right)\left(D^{-1} A_{j} D\right)=\sum_{h=0}^{d} p_{i j}^{h}\left(D^{-1} A_{h} D\right) \tag{8}
\end{equation*}
$$

Since matrices $D^{-1} A_{h} D$ are diagonal whith eigenvalues $p_{0 h}, \ldots, p_{8 h}$ on the common eigenspaces U_{0}, \ldots, U_{8}, from Equation (8) we get for every $h \in\{0, \ldots, 8\}$ the relations

$$
\begin{equation*}
\lambda_{k} p_{k j}=\sum_{h=0}^{d} p_{i j}^{h} p_{k h} . \tag{9}
\end{equation*}
$$

Thus, for each $h \in\{0, \ldots, 8\}$, the system \mathcal{S}_{h}, admits the 7 -tuple $\left(p_{h 2}, \ldots, p_{h 8}\right)$ as a solution.

Now, for $h \neq 7,8$, by elementary theory of linear systems, we see that \mathcal{S}_{h} have a unique solution. Thus it is $\left(p_{h 2}, \ldots, p_{h 8}\right)$ and, solving the systems $\mathcal{S}_{0}, \ldots, \mathcal{S}_{6}$, we get the first seven rows of the matrix P.

In particular we get that $k_{1}=1408, k_{2}=2200, k_{3}=35200, k_{4}=123200$, $k_{5}=354816, k_{6}=739200, k_{7}=277200$, and $k_{8}=5775$.

We are now left with the last two rows of the matrix P, corresponding to the eigenvalue 208 of B_{1}.

The set of solutions of the system \mathcal{S}_{7}

$$
\left(B_{1}-208 I d\right)^{t}\left(1,208, x_{2}, \ldots, x_{8}\right)=0
$$

is

$$
\left\{\left.\left(25-\frac{x}{7}, 1600+\frac{8 x}{7},-700-4 x, 2016,8 x,-3150-6 x, x\right) \right\rvert\, \text { where } x \in \mathbb{R}\right\} .
$$

Therefore, for suitable $x, y \in \mathbb{R}$, we can write the last two rows of the matrix P as follows

$$
\begin{aligned}
& 1,208,25-\frac{x}{7}, 1600+\frac{8 x}{7},-700-4 x, 2016,8 x,-3150-6 x, x \\
& 1,208,25-\frac{y}{7}, 1600+\frac{8 y}{7},-700-4 y, 2016,8 y,-3150-6 y, y
\end{aligned}
$$

Set $m_{i}=\operatorname{dim}_{\mathbb{R}}\left(U_{i}\right)$. The m_{i} 's can be computed from the rows of P using the formula [BI, Theorem 4.1]:

$$
m_{i}=\frac{|T|}{\sum_{j=0}^{d} k_{i}^{-1} p_{i j}^{2}}
$$

from which we get $m_{1}=16929, m_{2}=267520, m_{3}=653125, m_{4}=365750$, $m_{5}=214016, m_{6}=8910$.

Comparing those values with the decomposition of the permutation module into irreducibles, we get that

$$
m_{1}+m_{2}=12749=3344+9405
$$

so that we may assume

$$
m_{7}=3344 \text { and } m_{8}=9405
$$

By the Column Orthogonality Relation of the first eigenmatrix [1, Theorem 3.5]

$$
\sum_{k=0}^{d} m_{k} p_{k i} p_{k j}=|T| k_{i} \delta_{i j}
$$

applied with $(i, j)=(0,8)$ and $(i, j)=(8,8)$, we get the quadratic system

$$
\left\{\begin{array}{l}
3344 x+9405 y=-3182025 \\
3344 x^{2}+9405 y^{2}=3513943125
\end{array}\right.
$$

whose solutions are

$$
(x, y)=(525,-525) \text { or }(x, y)=(1575 / 61,62475 / 61) .
$$

Finally, to determine which of the two solutions is the right one, we use the formula in [BI, Theorem 3.6]

$$
\begin{equation*}
p_{i j}^{h}=\frac{1}{|T| k_{h}} \operatorname{tr}\left(A_{i} A_{j} A_{h}\right) \tag{10}
\end{equation*}
$$

(note that, by [4], the matrices A_{i} 's are symmetric since the Frobenius-Schur indicator of the permutation character of $H N$ on T is +1 [3]). In fact, we can compute $\operatorname{tr}\left(A_{i} A_{j} A_{h}\right)$ by using the matrix P and we know that $p_{i j}^{h}$ is an integer number.

Only in the case when $(x, y)=(525,-525)$ we get an integer value for the entries $p_{2, j}^{k}$ of the matrix B_{2}.

Note that by Equation (10) we may now also compute all the intersection matrices B_{i} 's.
Lemma 4. The coefficients γ_{k} in the formula (6) are given in the following table

k	$\left\|t^{C_{G}(s)}\right\|$	$(s t)^{G}$	$\gamma_{k}=(s \psi, t \psi)$
0	1	1	1
1	1408	$5 A$	$3 / 2^{7}$
2	2200	$2 A$	$1 / 8$
3	35200	$3 A$	$13 / 2^{8}$
4	123200	$4 B$	$1 / 2^{6}$
5	354816	$5 E(5 A)$	$3 / 2^{7}$
6	739200	$6 A$	$5 / 2^{8}$
7	277200	$4 A$	$1 / 2^{5}$
8	5775	$2 B$	0

Proof. For each k, the coefficient γ_{k} have been defined in (3) and by the Conway-Norton-Sakuma Theorem (see for example [9]) it depends only on the conjugacy class of the product $t s$, for (t, s) in the orbital T_{k}. The correspondence that associates to each orbital T_{k} of $H N$ on T the conjugacy class of the products $t s$ where $(t, s) \in T_{k}$ has been determined by Segev [14] and is given by the first two columns of the table.

Now set $\bar{\Gamma}:=D^{-1} \Gamma D$ and $\bar{A}_{k}:=D^{-1} A_{k} D$ for each $k \in\{0, \ldots, 8\}$.
By Lemma 4, Equation (6) becomes

$$
\bar{\Gamma}=\bar{A}_{0}+\frac{3}{2^{7}} \bar{A}_{1}+\frac{1}{8} \bar{A}_{2}+\frac{13}{2^{8}} \bar{A}_{3}+\frac{1}{2^{6}} \bar{A}_{4}+\frac{3}{2^{7}} \bar{A}_{5}+\frac{5}{2^{8}} \bar{A}_{6}+\frac{1}{2^{5}} \bar{A}_{7}+0 \bar{A}_{8}
$$

which gives the following eigenvalues of $\bar{\Gamma}$ on the subspaces U_{0}, \ldots, U_{8} respectively

$$
70875 / 2,0,0,0,0,0,875 / 8,0,225 / 4
$$

Hence

$$
\operatorname{dim}_{\mathbb{R}}(\langle T \psi\rangle)=m_{0}+m_{6}+m_{8}=1+9405+8910=18316
$$

References

[1] E. Bannai and T. Ito Algebraic Combinatorics I. Association Schemes, Benjamin-Cummings Lect. Notes, Menlo Park 1984.
[2] A. Castillo-R , A. A. Ivanov, The axes of a majorana representation of A_{12}, preprint.
[3] J. H. Conway, R. T. Cortis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Simple Groups, Clarendon Press, Oxford (1985).
[4] P. J. Cameron, Permutation Groups, London Mathematical Society Student Texts 45, Cambridge univ. Press, Cambridge (1999).
[5] S. Decelle, The $L_{2}(11)$-subalgebra of the Monster algebra, J. Ars Math. Contemp. 7.1 (2014) 83-103.
[6] The GAP Group, Gap - Groups Algorithms and programming, Version 4.4.12, http://www.gap-system.org (2008)
[7] A. A. Ivanov, D. V. Pasechnik, Á. Seress and S. Shpectorov, Majorana representations of the symmetric group of degree 4, J. Algebra, 324 (2010), 2432-2463
[8] A. A. Ivanov, S. A. Linton, K. Lux, J. Saxl and L. H. Soicher, Distance transitive graphs of the sporadic groups, Comm. Alg. 23 (1995), 3379-3427.
[9] A. A. Ivanov, The Monster Group and Majorana Involutions, Cambridge Univ. Press, Cambridge, Cambridge Tracts in Mathematics 176 (2009).
[10] A. A. Ivanov and Á. Seress, Majorana representations of A_{5}, Math. Z. 272 (2012) 269-295.
[11] A. A. Ivanov, On Majorana representations of A_{6} and A_{7}, Comm. Math. Phys. 306 (2011) 1-16.
[12] A. A. Ivanov, Majorana representations of A_{6} involving $3 C$-algebras, Bull. Math. Sci. 1 (2011) 356-378.
[13] A. A. Ivanov and S. Shpectorov, Majorana representations of $L_{3}(2)$, Adv. Geom., 14 (2012), 717-738.
[14] S. P. Norton, The Monster algebra: some new formulae, in Moonshine, the Monster and Related Topics, Contemp. Math. 193, AMS, Providence, RI, (1996) 297-306.
[15] S. Sakuma, 6-transposition property of τ-involutions of vertex operator algebras, Int. Math. Res. Not. IMRN 2007, n.9, Art. ID rnm 030, 19 pp.

[^0]: Date: November 26, 2013.

