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Abstract. The aim of the paper is to provide conditions ensuring the ex-

istence of non-trivial non-negative periodic solutions to a system of doubly

degenerate parabolic equations containing delayed nonlocal terms and satis-
fying Dirichlet boundary conditions. The employed approach is based on the

theory of the Leray-Schauder topological degree theory, thus a crucial purpose

of the paper is to obtain a priori bounds in a convenient functional space,
here L2(QT ), on the solutions of certain homotopies. This is achieved under

different assumptions on the sign of the kernels of the nonlocal terms. The
considered system is a possible model of the interactions between two biologi-

cal species sharing the same territory where such interactions are modeled by

the kernels of the nonlocal terms. To this regard the obtained results can be
viewed as coexistence results of the two biological populations under different

intra and inter specific interferences on their natural growth rates.

1. Introduction. In this paper we consider a system of doubly degenerate para-
bolic equations with delayed nonlocal terms and Dirichlet boundary conditions of
the form

`m,p[u] =

[
a−

∫
Ω

K1(ξ, t)u2(ξ, t− τ1)dξ +

∫
Ω

K2(ξ, t)v2(ξ, t− τ2)dξ

]
u in QT ,

`n,q[v] =

[
b+

∫
Ω

K3(ξ, t)u2(ξ, t− τ3)dξ −
∫

Ω

K4(ξ, t)v2(ξ, t− τ4)dξ

]
v in QT ,

u(x, t) = v(x, t) = 0, for (x, t) ∈ ∂Ω× (0, T ),

u(·, 0) = u(·, T ) and v(·, 0) = v(·, T ),

(1)
and we look for continuous weak solutions. Here `m,p[u] := ut−div(|∇um|p−2∇um)
(`n,q[v] is similarly defined), Ω is an open bounded domain of RN with smooth
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boundary ∂Ω, QT := Ω × (0, T ), T > 0, τi ∈ (0,+∞), m,n > 1, sm = |s|m−1s,
p, q > 2, and Ki, a, b ∈ L∞(QT ), i = 1, 2, 3, 4, are extended to Ω×R by T -periodicity.

Let A[u] := div(|∇um|p−2∇um) and observe that

1. if m = 1 then A[u] = div(|∇u|p−2∇u),
2. if m > 1 and, if we set l := (m − 1)(p − 1), the operator A[u] becomes
mp−1 div(|u|l|∇u|p−2∇u), which is the operator considered by Ivanov in [10]
and in [11].

Following [10] and [11] we say that each of the equations of 1 is of

1. slow diffusion type if m > 1
p−1 ,

2. normal diffusion type if m = 1
p−1 ,

3. fast diffusion type if m < 1
p−1 .

Since we assume p > 2 and m > 1, only the slow diffusion occurs here. As pointed
out in [22] for a single equation, with m = 1 and p > 2, the slow diffusion in the
biological models is more realistic, since the speed of propagation of perturbations in
the degenerate case is finite while in the non-degenerate case is infinite. Specifically,
[22] deals with a periodic optimal control problem governed by a parabolic Volterra-
Lotka type equation, where the Laplacian is replaced by the p-Laplacian with p > 2.
Furthermore, in the case when m = 1, several authors, see [1] and [18], studied the
existence of positive steady state solutions u(x), x ∈ Ω ⊂ RN , N ≥ 3, for an
equation involving the p-Laplacian and governing the population density of one
biological species whose reproduction follows the logistic growth in presence of an
harvesting term (see [6] for a system of two evolution equations). Parabolic systems
with the p-Laplacian, p > 1, have been extensively studied in [4].

For problem 1 when n = m > 1 and p = q = 2 the authors in [5] proved
the existence of non-negative periodic solutions (u, v), with u 6= 0 and v 6= 0,
representing the population densities of two interacting biological species sharing
the same territory Ω ⊂ RN . This coexistence problem was studied under different
conditions on the sign of the functions Ki, i = 1, 2, 3, 4, which model the different
kinds of interaction between the species, in particular if the species are cooperative,
i.e. K2,K3 ≥ 0, or competitive, i.e. K2,K3 ≤ 0. In [5] the system is formed by two
equations of the porous media type and some relevant results of the related theory,
see [21], were employed. In the case of a single equation, with m > 1 and p = 2,
Huang, Wang and Ke in [9] provided conditions to ensure the existence of non-
trivial non-negative periodic solutions when the right hand side contains a coercive
nonlocal term of general type. The same problem has been solved in [26] whenm = 1
and p > 2. Wang and Gao in [23] extended these existence results to the case of
a doubly degenerate equation, namely when m > 1 and p > 2. In turn, all these
results extend those of Allegretto and Nistri obtained in [2] for m = 1 and p = 2.
Many other papers deal with the problem of the existence of periodic solutions for
degenerate parabolic equations, we cite here among others, [15], [16], [24] and [25].
In all the above cited papers the approach is based on the same topological tools
employed to solve 1. Finally, we mention a very recent paper [14] which deals with
a biological aggregation model of some biological species such as insect swarms and
bacterial colonies. The model is represented by an evolution equation in R with
nonlinear diffusion, which takes into account both of the tendency of the species to
aggregate, when the gradient of the density of population increases, and of the anti-
crowding effect when the density increases. Due to this second effect the resulting
equation is of the porous medium type; while, following the existing literature on the
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subject, the aggregation effect is modeled by means of a nonlocal term depending
on the density through a suitable kernel. The paper shows that, for compactly
supported non-negative smooth initial data, the gradient of the density blows up in
finite time.

In this paper we deal with the general problem 1 which is a possible model of the
interactions of two biological species, with density u and v respectively, disliking
crowding, i.e. m,n > 1, see [7], [8] and [17], and whose diffusion involves as in
[1], [18] and [22] the p-Laplacian, in our case p, q > 2. As pointed out before, this
situation corresponds to the slow diffusion, see e.g. [10] and [11]. In 1 a and b are the
natural growth rates of the populations. The nonlocal terms

∫
Ω
Ki(ξ, t)u

2(ξ, t−τi)dξ
and

∫
Ω
Ki(ξ, t)v

2(ξ, t−τi)dξ evaluate a weighted fraction of individuals that actually
interact at time t > 0. The functions K1, K4 are supposed to be non-negative and
they measure the competition for food among each species. While K2, K3 model
the influence of a population on the other one. The delayed densities u, v at time
t − τi, that appear in the nonlocal terms, take into account the time needed to an
individual to become adult, and, thus to interact and to compete. Therefore, the
term on the right hand side of each equation in 1 denotes the actual increasing rate
of the population at (x, t) ∈ QT .

Due to the double degeneracy of the equations of the system 1 we follow the
standard technique of the parabolic regularization to obtain a family of regularized
non-degenerate systems. These systems will depend on two parameters ε, η > 0
(see 2 in the sequel), and by the Leray-Schauder topological degree theory we will
establish the existence of a family of non-negative, periodic solutions (uεη, vεη) with
non-trivial components. Our approach, based on the topological degree, requires
a priori bounds in some functional space, in our case L2(QT ), on all the possible
solutions of a suitable defined homotopy joining the original problem with a simpler
problem for which the topological degree is different from zero in an open set defined
by means of the a priori bounds and not containing zero. To this goal is devoted
the first part of Section 2, which ends with the main existence result of the paper:
Theorem 2.4. Precisely, by means of a condition involving the a priori bounds and
the first eigenvalue of the Laplacian with Dirichlet boundary conditions, we prove
that the solution (uεη, vεη) of the regularized system converges as ε, η → 0 to a non-
negative periodic solution pair (u, v) of 1 such that u 6= 0 and v 6= 0. In other words,
Theorem 2.4 provides a general coexistence result for the two biological species
whose dynamics is modeled by 1. As pointed out before, the crucial assumption for
all the results of Section 2 are represented by the a priori bounds in L2(QT ) on the
solutions of the considered homotopies, Lemma 2.3 provides a condition ensuring
that such a priori bounds are indeed in L∞(QT ). In Section 3, under different
assumptions on the sign of the functions Ki, i = 1, 2, 3, 4, we present several results
establishing the sought-after a priori bounds for the coexistence result. Specifically,
assuming that Ki(x, t) ≥ ki > 0, i = 1, 4, for a.a. (x, t) ∈ QT : the so-called coercive
case, Theorem 3.1 provides a precise evaluation of the constants of the a priori
bounds in L2(QT ) for (uεη, vεη) whatever the sign of Ki, i = 2, 3, in QT . In the non-
coercive case, namely in the case when we allow the functions Ki, i = 1, 4, to vanish
on a subset of QT of positive measure, under the assumption that Ki ≤ 0 (weak
competitive case), orKi ≤ −ki < 0 (strong competitive case), i = 2, 3, Theorems 3.2
and 3.3 respectively guarantee the needed a priori bounds for Theorem 2.4. Finally,
in Theorem 3.4, under more restrictive assumptions on m,n, p and q, also in the
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non-coercive case we obtain a priori bounds for Theorem 2.4 independently on the
sign of the functions Ki, i = 2, 3.

We point out that the results in this paper concern only the strict doubly degen-
erate case: m,n > 1 and p, q > 2, this is due to the arguments employed to show
that we obtain neither trivial nor semi-trivial periodic solutions. In fact, the con-
stants that bounds from below the norms of our solutions (i.e. r0 of Proposition 2.2
and λν in 25) are not well defined in the limit cases, that is when any of the two
equations of 1 fails to be doubly degenerate (i.e. when either one of m,n is 1 or
one of p, q is 2). However, one can handle all the possible limit cases by examining
which kind of degeneracy (if any) appears in each equation of 1 and by employing
the corresponding estimation strategy as it is exploited in [2, 5, 9, 23, 26] or in the
present paper. Therefore in what follows, unless otherwise stated, we assume that
m,n > 1 and p, q > 2.

2. The regularized problem. Throughout the paper we assume that a, b,Ki ∈
L∞(QT ), i = 1, 2, 3, 4, in 1. We now recall the definition of a weak solution to 1.

Definition 2.1. A pair of functions (u, v) is said to be a weak solution of 1 if

u, v ∈ C(QT ), um ∈ Lp
(
0, T ;W 1,p

0 (Ω)
)
, vn ∈ Lq

(
0, T ;W 1,q

0 (Ω)
)

and (u, v) satisfies

0 =

∫∫
QT

{
−u∂ϕ

∂t
+ |∇um|p−2∇um∇ϕ− auϕ

+uϕ

∫
Ω

[K1(ξ, t)u2(ξ, t− τ1)−K2(ξ, t)v2(ξ, t− τ2)]dξ

}
dxdt

and

0 =

∫∫
QT

{
−v ∂ϕ

∂t
+ |∇vn|q−2∇vn∇ϕ− bvϕ

+vϕ

∫
Ω

[−K3(ξ, t)u2(ξ, t− τ3) +K4(ξ, t)v2(ξ, t− τ4)]dξ

}
dxdt,

for any ϕ ∈ C1(QT ), ϕ(x, T ) = ϕ(x, 0) for any x ∈ Ω, and ϕ(x, t) = 0 for any
(x, t) ∈ ∂Ω× [0, T ].

Here and in the following we assume that the functions t→ u(·, t) and t→ v(·, t)
are extended from [0, T ] to R by T -periodicity so that (u, v) is a solution for all t.
Moreover, since um = |u|m−1u,m > 1, its derivative is m|u|m−1 and is positive for
u 6= 0, namely um is invertible on R. In what follows we omit the absolute value in
the derivative.

Due to the double degeneracy of the equation we consider, as in [23], the following
regularized (non-degenerate) problem:

`m,pε,η,1[u] =

[
a−

∫
Ω

K1(ξ, t)u2(ξ, t− τ1)dξ +

∫
Ω

K2(ξ, t)v2(ξ, t− τ2)dξ

]
u in QT

`n,qε,η,1[v] =

[
b+

∫
Ω

K3(ξ, t)u2(ξ, t− τ3)dξ −
∫

Ω

K4(ξ, t)v2(ξ, t− τ4)dξ

]
v in QT

u(·, t)|∂Ω = v(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),

u(·, 0) = u(·, T ) and v(·, 0) = v(·, T ),

(2)

where `m,pε,η,σ[u] := ut− div{[|(σmum−1 + ε)∇u|2 + η]
p−2
2 (σmum−1 + ε)∇u} (`n,qε,η,σ[v]

is similarly defined) with ε, η ∈ (0, 1/2) and σ ∈ [0, 1]. A solution (u, v) of 1 will
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be then obtained as the limit, for ε, η → 0, of the solutions (uεη, vεη) of 2, which

will be functions in Lp
(
0, T ;W 1,p

0 (Ω)
)
∩ C(QT ) and Lq

(
0, T ;W 1,q

0 (Ω)
)
∩ C(QT ),

respectively, satisfying 2 in the usual weak sense.
To deal with the existence of weak T -periodic solutions (uεη, vεη) of system 2,

with uεη, vεη ≥ 0 in QT , we introduce, for any ε, η ∈ (0, 1/2) , the map Gεη :
[0, 1]× L∞(QT )× L∞(QT )→ L∞(QT )× L∞(QT ) as follows:

(σ, f, g) 7→ (uεη, vεη) = Gεη(σ, f, g)

if and only if (uεη, vεη) solves the following uncoupled problem
`m,pε,η,σ[u] = f, in QT ,

`n,qε,η,σ[v] = g, in QT ,

u(·, t)|∂Ω = v(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),

u(·, 0) = u(·, T ) and v(·, 0) = v(·, T ).

(3)

The map Gεη is well defined since the elliptic part of the parabolic operators `m,pε,η,σ

and `n,qε,η,σ with Dirichlet boundary condition are m-accretive in L1(Ω) for any σ ∈
[0, 1] and ε, η > 0 sufficiently small. In fact, they satisfy the structure conditions of
[3] and so [3, Proposition 2.4] applies. Finally, [20, Proposition IV.4.1] ensures that
the solution (u, v) of 3 is unique. Consider now

f(α, β) :=

(
a−

∫
Ω

K1(ξ, ·)α2(ξ, · − τ1)dξ +

∫
Ω

K2(ξ, ·)β2(ξ, · − τ2)dξ

)
α

and

g(α, β) :=

(
b+

∫
Ω

K3(ξ, ·)α2(ξ, · − τ3)dξ −
∫

Ω

K4(ξ, ·)β2(ξ, · − τ4)dξ

)
β,

where α and β belong to L∞(QT ). Clearly, if the non-negative functions uεη, vεη ∈
L∞(QT ) are such that (uεη, vεη) = Gεη

(
1, f(uεη, vεη), g(uεη, vεη)

)
, then (uεη, vεη) is

also a solution of 2 (with uεη ≥ 0 and vεη ≥ 0) in QT . Hence, the existence of a
non-negative solution of 2 is equivalent to the existence of a fixed point (α, β) of
the map (α, β)→ Gεη

(
1, f(α, β), g(α, β)

)
with α ≥ 0 and β ≥ 0.

Let Tεη(σ, α, β) := Gεη
(
σ, f(α, β), g(α, β)

)
. Analogously to [5], by using classical

regularity results of [13], one can prove the next result for the regularized problem
3.

Lemma 2.2. Let (α, β) ∈ L∞(QT ) × L∞(QT ) and let ε, η ∈ (0, 1/2). Then
(uεη, vεη) = Tεη(σ, α, β) is a compact continuous map from [0, 1] × L∞(QT ) ×
L∞(QT )→ L∞(QT )× L∞(QT ). Moreover uεη, vεη ∈ C(QT ).

Our aim is to prove the existence of T -periodic solutions uεη, vεη ∈ C(QT ), uεη,
vεη > 0 in QT , of the regularized problem 2 for all ε > 0 and η > 0 small enough as
positive fixed points of the map (α, β) → Tεη(1, α, β). As a first step we prove the
following result.

Proposition 2.1. Assume that a, b,Ki ∈ L∞(QT ) for i = 1, 2, 3, 4. If the non-
trivial pair (uεη, vεη) solves

(u, v) = Gεη
(
σ, ρf(u+, v+) + (1− σ), ρg(u+, v+) + (1− σ)

)
, (4)

for some σ ∈ [0, 1] and ρ ∈ [0, 1], then

uεη(x, t) ≥ 0 and vεη(x, t) ≥ 0 for any (x, t) ∈ QT .
Moreover, if uεη 6= 0 or vεη 6= 0 then uεη > 0 or vεη > 0 in QT , respectively.
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Proof. Assume that (uεη, vεη) solves 4 with uεη 6= 0 for some σ ∈ [0, 1] and ρ ∈ [0, 1].
We first prove that uεη ≥ 0. Multiplying the first equation of 3, where f(α, β) is
replaced by ρf(u+

εη, v
+
εη) + (1 − σ), by u−εη := min{0, uεη}, integrating on QT and

passing to the limit in the Steklov averages (uεη)h ∈ H1(QT−δ), δ, h > 0, in the
standard way [13, p. 85], we obtain∫∫

QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 ∇(σumεη + εuεη)∇u−εη =

∫∫
QT

(1− σ)u−εη

by the T -periodicity of uεη and taking into account that u+
εη u
−
εη = 0. Hence we

obtain ∫∫
QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 (σmum−1

εη + ε)|∇u−εη|2 ≤ 0,

that is

0 ≥ 4σm

(m+ 1)2

∫∫
QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 |∇(u−εη)

m+1
2 |2

+ ε

∫∫
QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 |∇u−εη|2

and so, in particular,∫∫
QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 |∇u−εη|2 ≤ 0. (5)

Since [|∇(σumεη + εuεη)|2 + η]
p−2
2 > 0, 5 implies that

|∇u−εη|2 = 0

a.e. in QT . Thus ∫∫
QT

|∇u−εη|2 = 0.

The Poincaré inequality gives

0 ≤
∫

Ω

|u−εη|2 ≤ c
∫

Ω

|∇u−εη|2,

for some c > 0. Integrating over (0, T ), we have

0 ≤
∫∫

QT

|u−εη|2 ≤ c
∫∫

QT

|∇u−εη|2 = 0,

which, together with the boundary conditions and the fact that u−εη ∈ C(QT ),

implies u−εη(x, t) = 0 for all (x, t) ∈ QT . Thus uεη(x, t) = u+
εη(x, t) ≥ 0 for all

(x, t) ∈ QT . Now we prove that uεη > 0 in QT . Since uεη is non-trivial, there exists
(x0, t0) ∈ Ω × (0, T ] such that uεη(x0, t0) > 0. Let ψ ∈ C∞0 (Ω) be a non-negative
function such that 0 < ψ(x0) < uεη(x0, t0) and, for M > 0, let z be a solution of

zt −∆(σzm + εz) +Mz = 0, (x, t) ∈ Ω× (t0, t0 + T ] ,

z(·, t)|∂Ω = 0, for t ∈ [t0, t0 + T ],

z(·, t0) = ψ(·).

Since a−
∫

Ω
K1(ξ, ·)u2

εη(ξ, · − τ1)dξ +
∫

Ω
K2(ξ, ·)v2

εη(ξ, · − τ2)dξ ∈ L∞(QT ), we can
choose M large enough so that, by the comparison theorem,

uεη(x, t) ≥ z(x, t) for any (x, t) ∈ Ω× [t0, t0 + T ].
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By the maximum principle, z(x, t) > 0 for any (x, t) ∈ Ω × [t0, t0 + T ]. Therefore,
by T -periodicity, uεη(x, t) > 0 for all (x, t) ∈ QT . In the same way, one can prove
that vεη 6= 0 implies vεη(x, t) > 0 for all (x, t) ∈ QT .

Observe that if ρ = 0, by using the arguments of the proof of Proposition 2.1
to show that u−εη = 0, it can be shown that (u, v) = Gεη(1, 0, 0) if and only if
(u, v) = (0, 0).

The following result guarantees that the solutions (uεη, vεη) of 2 we are going to
find are not bifurcating from the trivial solution (0, 0) as ε and η range in (0, 1/2).
To this aim assume that

1

T

∫∫
QT

e2
1a > µ1 and

1

T

∫∫
QT

e2
1b > µ1 (6)

and let r0 be the following positive quantity

min


(

1

2m

) 1
m−1

,

(
1

2n

) 1
n−1

,

(∫∫
QT

e2
1a− Tµ1

M1

) p
p−2

,

(∫∫
QT

e2
1b− Tµ1

M2

) q
q−2

 .

Here µ1 is the first eigenvalue of the problem{
−∆z = µz, x ∈ Ω,

z = 0, x ∈ ∂Ω,

e1 is the associated positive eigenfunction such that ‖e1‖L2(Ω) = 1,

M1 :=‖K1‖L1 + ‖K2‖L1

+ 2
p2−4
2p max

Ω
|∇e1|2(|Ω|T )

2
p (‖a‖L1 + ‖K2‖L1 |Ω|+ T |Ω|)

p−2
p

and

M2 :=‖K3‖L1 + ‖K4‖L1

+ 2
q2−4
2q max

Ω
|∇e1|2(|Ω|T )

2
q (‖b‖L1 + ‖K3‖L1 |Ω|+ T |Ω|)

q−2
q .

Proposition 2.2. Assume that 6 is satisfied. If the non-trivial pair (uεη, vεη) solves
(u, v) = Gεη

(
σ, f(u+, v+) + (1− σ), g(u+, v+) + (1− σ)

)
, for some σ ∈ [0, 1], then

max{‖uεη‖L∞ , ‖vεη‖L∞} ≥ r0.

Moreover deg
(

(u, v)− Tεη(1, u+, v+), Br, 0
)

= 0 for all r ∈ (0, r0).

Proof. By contradiction, assume that for some σ ∈ [0, 1] and r ∈ (0, r0) there
exists a pair (uεη, vεη) 6= (0, 0) such that (uεη, vεη) = Gεη

(
σ, f(u+

εη, v
+
εη) + (1 −

σ), g(u+
εη, v

+
εη) + (1− σ)

)
with ‖uεη‖L∞ ≤ r and ‖vεη‖L∞ ≤ r. Assume that uεη 6= 0

and take φ ∈ C∞0 (Ω). Since by Proposition 2.1 we have uεη > 0 in QT , we can
multiply the equation

`m,pε,η,σ[uεη] =

[
a−

∫
Ω

K1(ξ, t)u2
εη(ξ, t− τ1)dξ

+

∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
uεη + (1− σ)

(7)
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by φ2/uεη, integrate over QT and pass to the limit in the Steklov averages in order
to obtain

−
∫∫

QT

φ2

uεη
div{[|∇(σumεη + εuεη)|2 + η]

p−2
2 ∇(σumεη + εuεη)}

=

∫∫
QT

[
aφ2 + (1− σ)

φ2

uεη

]
−
∫∫

QT

φ2

[∫
Ω

K1(ξ, t)u2
εη(ξ, t− τ1)dξ

]
dxdt

+

∫∫
QT

φ2

[∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
dxdt

(8)

by the T -periodicity of uεη. Moreover, a straightforward computation shows that

−
∫∫

QT

φ2

uεη
div{[|∇(σumεη + εuεη)|2 + η]

p−2
2 ∇(σumεη + εuεη)}

=

∫∫
QT

∇
(
φ2

uεη

)
[|∇(σumεη + εuεη)|2 + η]

p−2
2 ∇(σumεη + εuεη)

=

∫∫
QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 (mσum−1

εη + ε)

[
|∇φ|2 − u2

εη

∣∣∣∣∇( φ

uεη

)∣∣∣∣2
]

≤
∫∫

QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 (mσum−1

εη + ε)|∇φ|2.

Since r < (1/2m)1/(m−1) and ε < 1/2, then mσum−1
εη +ε ≤ mum−1

εη +ε < 1/2+ε < 1
and

−
∫∫

QT

φ2

uεη
div{[|∇(σumεη + εuεη)|2 + η]

p−2
2 ∇(σumεη + εuεη)}

<

∫∫
QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 |∇φ|2

≤2
p−2
2

∫∫
QT

|∇(σumεη + εuεη)|p−2|∇φ|2 + (2η)
p−2
2

∫∫
QT

|∇φ|2.

Since η < 1/2 and applying the Hölder inequality with s := p/(p− 2), it follows

−
∫∫

QT

φ2

uεη
div{[|∇(σumεη + εuεη)|2 + η]

p−2
2 ∇(σumεη + εuεη)}

<2
p−2
2

∫∫
QT

|∇(σumεη + εuεη)|p−2|∇φ|2 +

∫∫
QT

|∇φ|2

≤2
p−2
2 ‖∇φ‖2Lp(Ω)T

2
p

[∫∫
QT

|∇(σumεη + εuεη)|p
] p−2

p

+

∫∫
QT

|∇φ|2.

(9)

Hence, combining 8 and 9, we obtain∫∫
QT

φ2

[
a−

∫
Ω

K1(ξ, t)u2
εη(ξ, t− τ1)dξ +

∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
dxdt

<2
p−2
2 ‖∇φ‖2Lp(Ω)T

2
p

[∫∫
QT

|∇(σumεη + εuεη)|p
] p−2

p

+

∫∫
QT

|∇φ|2.
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Taking φ(x)→ e1(x) in H1
0 (Ω) one has

0 <2
p−2
2 ‖∇e1‖2Lp(Ω)T

2
p

[∫∫
QT

|∇(σumεη + εuεη)|p
] p−2

p

+

∫∫
QT

|∇e1|2

−
∫∫

QT

e2
1

[
a−

∫
Ω

K1(ξ, t)u2
εη(ξ, t− τ1)dξ +

∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
dxdt

=2
p−2
2 ‖∇e1‖2Lp(Ω)T

2
p

[∫∫
QT

|∇(σumεη + εuεη)|p
] p−2

p

+ µ1T −
∫∫

QT

ae2
1

+

∫∫
QT

[K1(ξ, t)u2
εη(ξ, t− τ1)−K2(ξ, t)v2

εη(ξ, t− τ2)]dξdt.

(10)
Now we estimate the term [

∫∫
QT
|∇(σumεη+εuεη)|p](p−2)/p. Multiplying 7 by (σumεη+

εuεη), integrating over QT , using the T -periodicity and passing to the limit in the
Steklov averages, one has∫∫

QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 |∇(σumεη + εuεη)|2

≤
∫∫

QT

[
a+

∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
uεη(umεη + uεη)dxdt

+ (1− σ)

∫∫
QT

(umεη + uεη)

≤
∫∫

QT

a(um+1
εη + u2

εη) +

∫ T

0

[∫
Ω

um+1
εη

] [∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
dt

+

∫ T

0

[∫
Ω

u2
εη

] [∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
dt+

∫∫
QT

(umεη + uεη)

≤‖a‖L1(rm+1 + r2) +

∫ T

0

[∫
Ω

um+1
εη

] [∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
dt

+

∫ T

0

[∫
Ω

u2
εη

] [∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
dt+ |Ω|T (rm + r).

By Hölder’s inequality:∫∫
QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 |∇(σumεη + εuεη)|2

≤‖a‖L1(rm+1 + r2) +

∫ T

0

[∫
Ω

um+1
εη

] [∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
dt

+

∫ T

0

[∫
Ω

u2
εη

] [∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
dt+ |Ω|T (rm + r)

≤‖a‖L1(rm+1 + r2) + |Ω|‖K2‖L1rm+3 + |Ω|‖K2‖L1r4 + |Ω|T (rm + r).

Since r < 1, we obtain∫∫
QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 |∇(σumεη + εuεη)|2

≤2r(‖a‖L1 + |Ω|‖K2‖L1 + T |Ω|).
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Thus∫∫
QT

|∇(σumεη + εuεη)|p ≤
∫∫

QT

[|∇(σumεη + εuεη)|2 + η]
p−2
2 |∇(σumεη + εuεη)|2

≤2r(‖a‖L1 + ‖K2‖L1 |Ω|+ T |Ω|)

and [∫∫
QT

|∇(σumεη + εuεη)|p
] p−2

p

≤ [2r(‖a‖L1 + ‖K2‖L1 |Ω|+ T |Ω|)]
p−2
p .

The previous inequality, 10 and the Hölder inequality imply∫∫
QT

ae2
1 − µ1T <2

p−2
2 ‖∇e1‖2Lp(Ω)T

2
p

[∫∫
QT

|∇(σumεη + εuεη)|p
] p−2

p

+

∫∫
QT

[K1(ξ, t)u2
εη(ξ, t− τ1)−K2(ξ, t)v2

εη(ξ, t− τ2)]dξdt

≤2
p2−4
2p ‖∇e1‖2Lp(Ω)T

2
p r

p−2
p (‖a‖L1 + ‖K2‖L1 |Ω|+ T |Ω|)

p−2
p

+ (‖K1‖L1 + ‖K2‖L1)r2

≤r
p−2
p
[
2
p2−4
2p max

Ω
|∇e1|2(|Ω|T )

2
p (‖a‖L1 + ‖K2‖L1 |Ω|+ T |Ω|)

p−2
p

+ ‖K1‖L1 + ‖K2‖L1

]
.

(11)
Thus

r
p−2
p

0 ≤
∫∫
QT

ae2
1 − µ1T

M1
≤ r

p−2
p

that is a contradiction. The same argument applies if vεη 6= 0.
Let us now fix any r ∈ (0, r0). We just proved that

(u, v) 6= Gεη
(
σ, f(u+, v+) + (1− σ), g(u+, v+) + (1− σ)

)
,

for all (u, v) ∈ ∂Br and for all σ ∈ [0, 1]. Hence the topological degree of (u, v) −
Gεη

(
σ, f(u+, v+)+(1−σ), g(u+, v+)+(1−σ)

)
is well defined in Br for all σ ∈ [0, 1].

From the homotopy invariance of the Leray-Schauder degree, we have

deg
(
(u, v)− Tεη(1, u+, v+), Br, 0

)
= deg

(
(u, v)−Gεη(0, f(u+, v+) + 1, g(u+, v+) + 1), Br, 0

)
and the last degree is zero since the equation

(u, v) = Gεη
(
0, f(u+, v+) + 1, g(u+, v+) + 1

)
admits neither trivial nor non-trivial solutions in Br.

The next lemma is crucial to prove Proposition 2.3.

Lemma 2.3. Let K > 0 and assume that u is a non-negative periodic continuous
function such that

ut − div{[|∇(um + εu)|2 + η]
p−2
2 ∇(um + εu)} ≤ Ku, for a.e. (x, t) ∈ QT

and u(·, t)|∂Ω = 0, for t ∈ [0, T ]. Then there exists R > 0 and independent of ε and
η such that

‖u‖L∞ ≤ R.
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Proof. We follow Moser’s technique to show the stated a priori bounds. Multiplying

ut − div{[|∇(um + εu)|2 + η]
p−2
2 ∇(um + εu)} ≤ Ku

by us+1, with s ≥ 0, and integrating over Ω, we have

K‖u(t)‖s+2
Ls+2(Ω) ≥

1

s+ 2

d

dt
‖u(t)‖s+2

Ls+2(Ω)

+

∫
Ω

[|∇(um + εu)|2 + η]
p−2
2 ∇(um + εu)∇us+1,

namely

K‖u(t)‖s+2
Ls+2(Ω) ≥

1

s+ 2

d

dt
‖u(t)‖s+2

Ls+2(Ω)

+ (s+ 1)

∫
Ω

[|∇(um + εu)|2 + η]
p−2
2 (mum−1 + ε)us|∇u|2.

Since p > 2, m > 1 and

u(m−1)(p−2)|∇u|p−2 ≤ (mum−1 + ε)p−2|∇u|p−2 ≤ [|∇(um + εu)|2 + η]
p−2
2 ,

we have

1

s+ 2

d

dt
‖u(t)‖s+2

Ls+2(Ω) +

∫
Ω

u(p−1)(m−1)+s|∇u|p ≤ K‖u(t)‖s+2
Ls+2(Ω).

This implies

K(s+ 2)‖u(t)‖s+2
Ls+2(Ω) ≥

d

dt
‖u(t)‖s+2

Ls+2(Ω)

+
s+ 2

[m(p− 1) + s+ 1]p

∫
Ω

∣∣∣∇um(p−1)+s+1
p

∣∣∣p . (12)

For ε and η fixed and k = 1, 2, . . . , setting

sk := 2pk +
pk − p
p− 1

+m− 1, αk :=
p(sk + 2)

m(p− 1) + sk + 1
, wk := u

m(p−1)+sk+1

p ,

we obtain by 12

d

dt
‖wk(t)‖αkLαk (Ω) +

sk + 2

[m(p− 1) + sk + 1]p
‖∇wk(t)‖pLp(Ω) ≤ K(sk + 2)‖wk(t)‖αkLαk (Ω).

(13)
Observe that since sk → +∞, as k → +∞, there exists k0 such that αk ∈ (1, p) for
all k ≥ k0. By the interpolation and the Sobolev inequalities, it results

‖wk(t)‖Lαk (Ω) ≤ ‖wk(t)‖θkL1(Ω)‖wk(t)‖1−θkLs(Ω) ≤ C‖wk(t)‖θkL1(Ω)‖∇wk(t)‖1−θkLp(Ω)

for all k ≥ k0. Here θk = (s − αk)/[αk(s − 1)], s > p is fixed (say s = p∗ if
p < n, where p∗ := np/(n − p)) and C is a positive constant. Using the fact that
‖wk(t)‖L1(Ω) = ‖wk−1(t)‖αk−1

Lαk−1 (Ω)
and defining xk−1 := supt∈R ‖wk−1(t)‖Lαk−1 (Ω),

one has

‖wk(t)‖
p

1−θk
Lαk (Ω) ≤C‖wk−1(t)‖

pαk−1
θk

1−θk
Lαk−1 (Ω)

‖∇wk(t)‖pLp(Ω)

≤Cx
pαk−1

θk
1−θk

k−1 ‖∇wk(t)‖pLp(Ω),



12 GENNI FRAGNELLI, PAOLO NISTRI AND DUCCIO PAPINI

for all k ≥ k0. Thus, by 13,

d

dt
‖wk(t)‖αkLαk (Ω) ≤K(sk + 2)‖wk(t)‖αkLαk (Ω)

− C sk + 2

[m(p− 1) + sk + 1]p
‖wk(t)‖

p
1−θk
Lαk (Ω)x

pαk−1
θk
θk−1

k−1

=

(
K − C

(m(p− 1) + sk + 1)p
‖wk(t)‖

p
1−θk

−αk
Lαk (Ω) x

pαk−1
θk
θk−1

k−1

)
× (sk + 2)‖wk(t)‖αkLαk (Ω),

(14)

for all k ≥ k0. By the positiveness of wk it results that the map t 7→ ‖wk(t)‖αkLαk (Ω)

is increasing, hence 14 implies

‖wk(t)‖Lαk (Ω) ≤
(
K

Mk
x
pαk−1

θk
1−θk

k−1

)ηk
, (15)

for all k ≥ k0, where ηk := (1−θk)[p−αk(1−θk)] and Mk := C/[m(p−1)+sk+1]p.
By definition of xk and 15 we get

xk ≤
(
K

Mk

)ηk
xνkk−1

for all k ≥ k0, with νk := pαk−1θk/[p− αk(1− θk)].

If xk−1 ≤ 1, using the fact that xk−1 = supt∈R ‖u(t)‖
m(p−1)+sk−1+1

p

sk−1+2 , one has

‖u‖L∞ ≤ 1. Now, assume xk−1 > 1 and observe that there exists k0 such that,
for all k ≥ k0, ηk := (1 − θk)/[p − αk(1 − θk)] ≤ 1/(pθ) and νk ≤ p. Here θ :=
(s−p)/[p(s−1)]. Without loss of generality, assume k0 = max{k0, k0}. Then, there
exists a positive constant A such that

xk ≤
(
K

C

)ηk
[m(p− 1) + sk + 1]pηkxνkk−1

≤
(
K

C

)ηk (
mp+

2pk+1

p− 1

)pηk
xνkk−1

≤Ap
k+1
θ xpk−1

for all k ≥ k0. Thus

log xk ≤ logA+
k + 1

θ
log p+ p log xk−1

≤ logA

k−k0−1∑
i=0

pi +
log p

θ

k+1∑
i=k0+2

ipk+1−i + pk−k0 log xk0

≤ log p

θ
pk+1−(k−k0)(k0+2)

[
(k + 1)(k + 2)

2
− (k0 + 1)(k0 + 2)

2

]
+ logA

1− pk−k0
1− p

+ pk−k0 log xk0 .

It follows

xk ≤ A
1−pk−k0

1−p p
pk+1−(k−k0)(k0+2)

θ

[
(k+1)(k+2)

2 − (k0+1)(k0+2)
2

]
xp

k−k0

k0
.
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Since xk = supt∈R ‖u(t)‖
m(p−1)+sk+1

p

sk+2 , we obtain

sup
t∈R
‖u(t)‖L∞(Ω) ≤ lim sup

k→∞
‖u(t)‖sk+2

≤ lim sup
k→∞

{
A

p
m(p−1)+sk+1

1−pk−k0
1−p x

pk−k0+1

m(p−1)+sk+1

k0

×p
p[k+2−(k−k0)(k0+2)]

θ(m(p−1)+sk+1)

[
(k+1)(k+2)

2 − (k0+1)(k0+2)
2

]}
=: R,

where R is a positive constant independent of ε and η as claimed.

Next, we show that the map I −Gεη : {1} × L∞(QT )× L∞(QT ) → L∞(QT )×
L∞(QT ) has the Leray - Schauder topological degree different from zero in the cone
of non-negative functions.

Proposition 2.3. Assume that K1(x, t),K4(x, t) ≥ 0 for a.e. (x, t) ∈ QT and that
there are C1, C2 > 0 such that

‖uεη‖2L2 ≤ C1 and ‖vεη‖2L2 ≤ C2 (16)

for all solution pairs (uεη, vεη) of

(u, v) = Gεη
(
1, ρf(u+, v+), ρg(u+, v+)

)
(17)

and all ε, η ∈ (0, 1/2) and ρ ∈ (0, 1] . Then there is a constant R > 0 such that

‖uεη‖L∞ , ‖vεη‖L∞ < R

for all solution pairs (uεη, vεη) of 17 and all ε, η ∈ (0, 1/2) and ρ ∈ (0, 1]. Moreover,
one has that

deg
(
(u, v)−Gεη

(
1, ρf(u+, v+), ρg(u+, v+)

)
, BR, 0

)
= 1.

Proof. Assume uεη 6= 0, thus uεη > 0 and vεη ≥ 0 in QT by Proposition 2.1.
Multiplying by uεη the first equation of 2, where f(u, v) is replaced by ρf(u, v),
integrating over Ω and using the Steklov averages (uεη)h, δ, h > 0 we obtain

ρ

[
‖a‖L∞(QT ) + ‖K2‖L∞(QT )

∫
Ω

(vεη)2
h(ξ, t− τ2)dξ

]
≥
∫

Ω
{|[m(uεη)m−1

h + ε]∇(uεη)h|2 + η}
p−2
2 [m(uεη)m−1

h + ε]|∇(uεη)h|2∫
Ω

(uεη)2
h

+
1

2

d

dt
log

∫
Ω

(uεη)2
h.

(18)

Since t 7→ ‖u(t)‖L2(Ω) is continuous in [0, T ], there exist t1 and t2 in [0, T ] such that∫
Ω

u2
εη(x, t1)dx = min

t∈[0,T ]

∫
Ω

u2
εη(x, t)dx

and ∫
Ω

u2
εη(x, t2)dx = max

t∈[0,T ]

∫
Ω

u2
εη(x, t)dx.

Integrating 18 between t1 and t2 and passing to the limit as h→ 0 we obtain

1

2
log

maxt∈[0,T ]

∫
Ω
u2
εη(x, t)dx

mint∈[0,T ]

∫
Ω
u2
εη(x, t)dx

≤ T‖a‖L∞ + ‖K2‖L∞C2,
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or, equivalently,

max
t∈[0,T ]

∫
Ω

u2
εη(x, t)dx ≤ C min

t∈[0,T ]

∫
Ω

u2
εη(x, t)dx, (19)

where C is independent of ε, η and ρ. Hence, there is a constant γ > 0, independent
of ε, η and ρ, such that

max
t∈[0,T ]

∫
Ω

u2
εη(x, t)dx ≤ γ.

Otherwise, inequality 19 would imply that the solutions uεη are unbounded in
L2(QT ) as ε, η range in (0, 1/2) and ρ in (0, 1], against our assumption 16. Of
course, an analogous inequality holds for vεη.

Now, we have

`m,pε,η,1[uεη] ≤
(
‖a‖L∞ + ‖K2‖L∞ max

t∈[0,T ]

∫
Ω

v2
εη(x, t)dx

)
uεη

≤(‖a‖L∞ + γ‖K2‖L∞)uεη,

(20)

that is

∂uεη
∂t
− div{[|(mum−1

εη + ε)∇uεη|2 + η]
p−2
2 (mum−1

εη + ε)∇uεη} ≤ Kuεη,

where K := ‖a‖L∞ + γ‖K2‖L∞ and `m,pε,η,1 is given in 2. By Lemma 2.3 we conclude

that ‖uεη‖L∞ ≤ R1 for some R1 > 0 independent of ρ, η and ε. Analogously,
‖vεη‖L∞ ≤ R2 for some constant R2 > 0. Therefore it is enough to choose R >
max{R1, R2}.

The homotopy invariance property of the Leray-Schauder degree implies that

deg
(
(u, v)− Tεη(1, u+, v+), BR, 0

)
= deg

(
(u, v)−Gεη(1, ρf(u+, v+), ρg(u+, v+)), BR, 0

)
,

for any ρ ∈ [0, 1]. If we take ρ = 0, using the fact that Gεη at ρ = 0 is the zero map,
it results

deg
(
(u, v)− Tεη(1, u+, v+), BR, 0

)
= deg

(
(u, v), BR, 0

)
= 1.

The next result is our main tool to obtain coexistence results for 1.

Theorem 2.4. Assume that K1(x, t),K4(x, t) ≥ 0 for a.e. (x, t) ∈ QT and that
there are C1, C2 > 0 such that

‖uεη‖2L2 ≤ C1 and ‖vεη‖2L2 ≤ C2 (21)

for all solution pairs (uεη, vεη) of

(u, v) = Gεη
(
1, ρf(u+, v+), ρg(u+, v+)

)
(22)

and all ε, η ∈ (0, 1/2) and ρ ∈ (0, 1] . If

θ(C1, C2) := min

{
1

T

∫∫
QT

e2
1a− µ1 −

k2C2

T
,

1

T

∫∫
QT

e2
1b− µ1 −

k3C1

T

}
> 0,

(23)
where the non-negative constants k2, k3 are such that −k2 ≤ K2(x, t) and −k3 ≤
K3(x, t) for a.e. (x, t) ∈ QT , then problem 1 has a T -periodic non-negative solution
(u, v) with non-trivial u, v.
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Proof. By assumption θ(C1, C2) > 0 and so 6 holds. Moreover, there is R > r > 0,
independent of ε and η, such that

deg
(
(u, v)−Gεη(1, f(u+, v+), g(u+, v+)), BR \Br, 0

)
= 1,

for any ε, η ∈ (0, 1/2), by Proposition 2.2 and the excision property of the topological
degree.

Let us fix any ε, η ∈ (0, 1/2). There is σ0 = σ0(ε, η) ∈ (0, 1) such that still

deg
(
(u, v)−Gεη(σ, f(u+, v+) + (1− σ), g(u+, v+) + (1− σ)), BR \Br, 0

)
= 1

for all σ ∈ [σ0, 1], by the continuity of Leray-Schauder degree. This implies that
the set of solution triples (σ, u, v) ∈ [0, 1]× (BR \Br) such that

(u, v) = Gεη
(
σ, f(u+, v+) + (1− σ), g(u+, v+) + (1− σ)

)
(24)

contains a continuum Sεη with the property that

Sεη ∩
[
{σ} ×

(
BR \Br

)]
6= ∅ for all σ ∈ [σ0, 1].

Now, all the pairs (u, v) such that (1, u, v) ∈ Sεη are T -periodic solutions of 2 with
(u, v) 6= (0, 0) and, hence, satisfy 21. Since the L2-norm is continuous with respect
to the L∞-norm and Sεη is a continuum, for every ν > 0 there is σν ∈ [σ0, 1) such
that

‖u‖2L2 ≤ C1 + ν and ‖v‖2L2 ≤ C2 + ν

for all (u, v) with (σ, u, v) ∈ Sεη and σ ∈ [σν , 1]. Observe that, if (σ, u, v) ∈ Sεη for
σ < 1, then u and v are positive solutions of 24. Moreover, if ν is sufficiently small,
then we still have θ(C1 + ν, C2 + ν) > 0.

Now, setting

Kp :=‖K1‖L1 + 2
p2−4
2p max

Ω
|∇e1|2(|Ω|T )

2
p (‖a‖L1 + ‖K2‖L1 |Ω|+ T |Ω|)

p−2
p

Kq :=‖K4‖L1 + 2
q2−4
2q max

Ω
|∇e1|2(|Ω|T )

2
q (‖b‖L1 + ‖K3‖L1 |Ω|+ T |Ω|)

q−2
q ,

we can prove that, if ν is sufficiently small, then

‖u‖L∞ , ‖v‖L∞ ≥min

{[
1

2m

] 1
m−1

,

[
1

2n

] 1
n−1

,

[
Tθ(C1 + ν, C2 + ν)

Kp

] p
p−2

,

[
Tθ(C1 + ν, C2 + ν)

Kq

] q
q−2

}
=: λν

(25)

for all u, v such that (σ, u, v) ∈ Sεη and σ ∈ [σν , 1). Indeed, let (u, v) be a solution
of 24. Arguing by contradiction, assume that ‖u‖L∞ < λν and proceeding as in the
proof of Proposition 2.2 (see 11 and recall that u > 0 since (u, v) solves 24 with
σ < 1) we obtain the inequality∫∫

QT

e2
1a− µ1T < λ

p−2
p

ν Kp + k2(C2 + ν).

Thus, the definition of θ implies that

Tθ(C1 + ν, C2 + ν) ≤
∫∫

QT

e2
1a− µ1T − k2(C2 + ν) < λ

p−2
p

ν Kp,

which is a contradiction with the definition of λν . The same argument shows that
‖v‖L∞ ≥ λν .
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Now, if we let σ → 1 and ν → 0, then we obtain that 2 has at least a solution
(uεη, vεη) such that ‖uεη‖L∞ , ‖vεη‖L∞ ≥ λ0, since Sεη is a continuum and λν → λ0

as ν → 0.
Finally, we show that a solution (u, v) of 1 with non-trivial u, v ≥ 0 is obtained

as a limit of (uεη, vεη) as ε, η → 0 since λ0 is independent of ε and η.

Since uεη, vεη are Hölder continuous in QT , bounded in C(QT ) uniformly in
ε, η > 0 and the structure conditions of [19] (see also [11]) are satisfied for the
equations of system 1, whenever ε, η ∈

(
0, 1

2

)
, [19, Theorem 1.2] applies to conclude

that the inequality

|uεη(x1, t1)− uεη(x2, t2))| ≤ Γ(|x1 − x2|β + |t1 − t2|
β
2 )

holds for any (x1, t1), (x2, t2) ∈ QT , where the constants Γ > 0, β ∈ (0, 1) are
independent of ‖uεη‖L∞ . The same inequality holds for vεη. Therefore, by the

Ascoli-Arzelà Theorem, a subsequence of (uεη, vεη) converges uniformly in QT to a
pair (u, v) satisfying

λ0 ≤ ‖u‖L∞ , ‖v‖L∞ ≤ R.

Moreover, from 20 we have

∂uεη
∂t
− div{[|∇(umεη + εuεη)|2 + η]

p−2
2 ∇(umεη + εuεη)} ≤ Cuεη, (26)

where C is a positive constant independent of ε and η. Multiplying 26 by umεη+εuεη,
integrating over QT and passing to the limit in the Steklov averages (uεη)h, one has∫∫

QT

|∇umεη|p ≤
∫∫

QT

(|∇umεη|2 + η)
p−2
2 |∇umεη|2

≤
∫∫

QT

[|∇(umεη + εuεη)|2 + η]
p−2
2 |∇(umεη + εuεη)|2

≤C
∫∫

QT

(um+1
εη + εu2

εη)

≤M,

(27)

and∫∫
QT

|∇(umεη + εuεη)|p ≤
∫∫

QT

[|∇(umεη + εuεη)|2 + η]
p−2
2 |∇(umεη + εuεη)|2

≤C
∫∫

QT

(um+1
εη + εu2

εη)

≤M,

(28)

by the T -periodicity of uεη, its non-negativity and its boundedness in L∞(QT ).
Here M is positive and independent of ε and η. An analogous estimates hold for
vεη.

By 27, the sequences umεη, v
n
εη are uniformly bounded in Lp

(
0, T ;W 1,p

0 (Ω)
)

and

in Lq
(
0, T ;W 1,q

0 (Ω)
)
, respectively. Thus, up to subsequence if necessary, (umεη, v

n
εη)

weakly converges in Lp
(
0, T ;W 1,p

0 (Ω)
)
×Lq

(
0, T ;W 1,q

0 (Ω)
)

and in C(QT )×C(QT ) to

(h, k) = (um, vn). In particular (um, vn) ∈ Lp
(
0, T ;W 1,p

0 (Ω)
)
× Lq

(
0, T ;W 1,q

0 (Ω)
)
.
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We finally claim that the pair (u, v) satisfies the identities

0 =

∫∫
QT

{
−u∂ϕ

∂t
+ |∇um|p−2∇um · ∇ϕ− auϕ

+uϕ

∫
Ω

[K1(ξ, t)u2(ξ, t− τ1)−K2(ξ, t)v2(ξ, t− τ2)]dξ

}
dxdt

and

0 =

∫∫
QT

{
−v ∂ϕ

∂t
+ |∇vn|q−2∇vn · ∇ϕ− bvϕ

+vϕ

∫
Ω

[−K3(ξ, t)u2(ξ, t− τ3) +K4(ξ, t)v2(ξ, t− τ4)]dξ

}
dxdt,

for any ϕ ∈ C1(QT ), ϕ(x, T ) = ϕ(x, 0) for any x ∈ Ω and ϕ(x, t) = 0 for any
(x, t) ∈ ∂Ω × [0, T ], that is (u, v) is a generalized solution of 1. The approach for
doing this is standard, in the sequel we report it for the reader’s convenience. By
28, there exists a positive constant M such that∫∫

QT

|∇(umεη + εuεη)|p ≤M and

∫∫
QT

|∇(umεη + εuεη)|2 ≤M.

Thus, by the Hölder inequality with r := 2(p−1)
p , one has∫∫

QT

|[|∇(umεη + εuεη)|2 + η]
p−2
2 ∇(umεη + εuεη)|

p
p−1

≤Mp

[∫∫
QT

|∇(umεη + εuεη)|p +

∫∫
QT

|∇(umεη + εuεη)|
p
p−1

]
≤M,

for some other positive constants M and Mp. This implies that there exists H ∈(
L

p
p−1 (QT )

)N
such that [|∇(umεη + εuεη)|2 + η]

p−2
2 ∇(umεη + εuεη) weakly converges to

H in
(
L

p
p−1 (QT )

)N
as ε, η → 0. Now it is easy to prove that

0 =

∫∫
QT

{
−u∂ϕ

∂t
+H · ∇ϕ− auϕ

+uϕ

∫
Ω

[K1(ξ, t)u2(ξ, t− τ1)−K2(ξ, t)v2(ξ, t− τ2)]dξ

}
dxdt

(29)

for any ϕ ∈ C1(QT ), ϕ(x, T ) = ϕ(x, 0) for any x ∈ Ω and ϕ(x, t) = 0 for any

(x, t) ∈ ∂Ω× [0, T ] (and, by density, for any T -periodic ϕ ∈ Lp
(
0, T ;W 1,p

0 (Ω)
)
). It

remains to prove that for every ϕ ∈ C1(QT )∫∫
QT

|∇um|p−2∇um · ∇ϕ =

∫∫
QT

H · ∇ϕ. (30)

To this aim consider the matrix function H(Y ) := (|Y |2 + η)
p−2
2 Y . Then

H ′(Y ) = (|Y |2 + η)
p−2
2 I + (p− 2)(|Y |2 + η)

p−4
2 Y Y T

is a positive definite matrix and, taken v ∈ Lp
(
0, T ;W 1,p

0 (Ω)
)
, there exists a matrix

Y such that

0 ≤〈H ′(Y )(∇(umεη + εuεη)−∇v),∇(umεη + εuεη)−∇v〉
=〈H(∇(umεη + εuεη))−H(∇v),∇(umεη + εuεη)−∇v〉
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The previous inequality is equivalent to

0 ≤
∫∫

QT

{
[|∇(umεη + εuεη)|2 + η]

p−2
2 ∇(umεη + εuεη)

−(|∇v|2 + η)
p−2
2 ∇v

}
· ∇[(umεη + εuεη)− v],

for all v ∈ Lp
(
0, T ;W 1,p

0 (Ω)
)
. Multiplying by umεη + εuεη the first equation of 2,

integrating over QT and using the periodicity of uεη, one has∫∫
QT

[|∇(umεη + εuεη)|2 + η]
p−2
2 |∇(umεη + εuεη)|2

=

∫∫
QT

[
a−

∫
Ω

K1(ξ, t)u2
εη(ξ, t− τ1)dξ

+

∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
(um+1
εη + εu2

εη)dxdt.

Thus ∫∫
QT

[|∇(umεη + εuεη)|2 + η]
p−2
2 ∇(umεη + εuεη) · ∇v

+

∫∫
QT

(|∇v|2 + η)
p−2
2 ∇v · ∇[(umεη + εuεη)− v]

≤
∫∫

QT

[
a−

∫
Ω

K1(ξ, t)u2
εη(ξ, t− τ1)dξ

+

∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
(um+1
εη + εu2

εη)dxdt.

Letting ε, η → 0 and using 28, we have∫∫
QT

[
H · ∇v + |∇v|p−2∇v · ∇(um − v)

]
≤
∫∫

QT

[
a−

∫
Ω

K1(ξ, t)u2(ξ, t− τ1)dξ +

∫
Ω

K2(ξ, t)v2(ξ, t− τ2)dξ

]
um+1dxdt

On the other hand, take um = ϕ in 29 and obtain∫∫
QT

H · ∇um

=

∫∫
QT

[
a−

∫
Ω

K1(ξ, t)u2(ξ, t− τ1)dξ +

∫
Ω

K2(ξ, t)v2(ξ, t− τ2)dξ

]
um+1dxdt.

This implies

0 ≤
∫∫

QT

(H − |∇v|p−2∇v) · ∇(um − v). (31)

Taking v := um − λϕ, with λ > 0 and ϕ ∈ C1(QT ), we get

0 ≤
∫∫

QT

(H − |∇(um − λϕ)|p−2∇(um − λϕ)) · ∇ϕ.

Letting λ→ 0 yields

0 ≤
∫∫

QT

(H − |∇um|p−2∇um) · ∇ϕ.
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If in 31 we take v := um + λϕ, with λ > 0, ϕ ∈ C1(QT ) and letting again λ → 0,
then ∫∫

QT

(H − |∇um|p−2∇um) · ∇ϕ ≤ 0.

Thus 30 holds.

Remark 2.1. Proposition 2.2, with assumption 6, does not guarantee that both
components of a non-trivial solution (uεη, vεη) of the regularized problem 2 are
positive and, in fact, the proof of such a positivity is one of the main issues we
had to handle in the proof of the previous theorem with the help of the stronger
assumption θ(C1, C2) > 0. However, if the cooperative case K2(x, t),K3(x, t) ≥ 0,
i.e. k2 = k3 = 0, is considered, then we have that

θ(C1, C2) = min

{
1

T

∫∫
QT

e2
1a− µ1,

1

T

∫∫
QT

e2
1b− µ1

}
= θ0

and the condition θ0 > 0 is equivalent to 6. In particular, coexistence in the
cooperative case follows from θ0 > 0 and a priori bounds on (uεη, vεη), even if the
constants C1, C2 are not explicitly known.

Remark 2.2. The assumption θ(C1, C2) > 0 is used to show 25 and, therefore,
grants the non-triviality of both the components of the non-negative T -periodic
solution (u, v) that is given by Theorem 2.4. From a biological point of view, this
hypothesis requires that the growth rates a, b of the species are sufficiently large with
respect to the terms that model the competition between them. In other words, it
reasonably states that the competitive interaction between the two species should
not prevail the growth capacity of the species if extinction has to be avoided.

However, when we proved the lower bounds 25, we used the estimate 11 for the
first equation of the system in order to show that ‖u‖L∞(QT ) was not smaller than
λν and, implicitly, we used for ‖v‖L∞ the analogous estimate that holds for the
second equation. On the other hand, if we use the second equation for ‖u‖L∞ (and
the first equation for ‖v‖L∞) we obtain a different choice for λν and, in particular,
for η. In fact, we can prove a version of Theorem 2.4 with

ζ(C1, C2) := min

{
1

T

∫∫
QT

e2
1a− µ1 −

k1C1

T
,

1

T

∫∫
QT

e2
1b− µ1 −

k4C2

T

}
> 0

(32)
in place of θ(C1, C2) > 0, where 0 ≤ Ki(x, t) ≤ ki a.e. in QT for i = 1, 4. Specifi-
cally, it turns out that

λν := min

{[
1

2m

] 1
m−1

,

[
1

2n

] 1
n−1

,

[
Tζ(C1 + ν, C2 + ν)

K ′p

] p
p−2

,

[
Tζ(C1 + ν, C2 + ν)

K ′q

] q
q−2

}
in 25, where

K ′p :=‖K2‖L1 + 2
p2−4
2p max

Ω
|∇e1|2(|Ω|T )

2
p (‖a‖L1 + ‖K2‖L1 |Ω|+ T |Ω|)

p−2
p

K ′q :=‖K3‖L1 + 2
q2−4
2q max

Ω
|∇e1|2(|Ω|T )

2
q (‖b‖L1 + ‖K3‖L1 |Ω|+ T |Ω|)

q−2
q .
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We observe that also the assumption ζ(C1, C2) > 0 has a biological meaning: it
requires that the competition inside each species does not prevail on the growth rate
of the species itself. The feasibility of the two conditions 23 and 32 depends on the
constants C1, C2. As we will see in Section 3 there are cases, namely Theorems 3.1
and 3.3, in which one of them is never satisfied (see the next Remark 3.1).

3. A priori bounds in L2(QT ). We apply Theorem 2.4 by looking for explicit
a priori bounds in L2(QT ) for the solutions of the approximating problems 2 in
different situations. We consider two main different cases. In the first one, which we
call the “coercive case”, we assume that Ki(x, t) ≥ ki > 0 a.e. in QT for i = 1, 4. In
the second one, the “non-coercive case”, we allow the non-negative functions K1,K4

to vanish on sets with positive measure. We distinguish also between cooperative
and competitive situations by imposing sign conditions on K2,K3 and having in
mind the biological interpretation of model 1.

3.1. The coercive case.

Theorem 3.1. Assume that

1. there are constants ki > 0, i = 1, 4, and ki, ki ≥ 0, i = 2, 3, such that
k1k4 > k2k3 and

Ki(x, t) ≥ ki for i = 1, 4 and − ki ≤ Ki(x, t) ≤ ki for i = 2, 3,

for a.e. (x, t) ∈ QT ;
2. condition 23 of Theorem 2.4, that is θ(C1, C2) > 0, is satisfied with

C1 =
Tk4

k1k4 − k2k3

(
‖a‖L∞ +

k2

k4

‖b‖L∞
)

C2 =
Tk1

k1k4 − k2k3

(
‖b‖L∞ +

k3

k1

‖a‖L∞
)
.

Then problem 1 has a non-negative T -periodic solution (u, v) with non-trivial u, v.

Proof. We just need to show that ‖uεη‖2L2 ≤ C1 and ‖vεη‖2L2 ≤ C2 for any solution
(uεη, vεη) of 22. Then, assume uεη 6= 0, thus uεη > 0 and vεη ≥ 0 in QT by
Proposition 2.1. Multiplying the first equation of 2

`m,pε,η,1[uεη] =

[
a−

∫
Ω

K1(ξ, t)u2
εη(ξ, t− τ1)dξ +

∫
Ω

K2(ξ, t)v2
εη(ξ, t− τ2)dξ

]
uεη

by up−1
εη , integrating over Ω and using the Steklov averages (uεη)h ∈ H1(QT−δ),

δ, h > 0, it results

‖a‖L∞ −
∫

Ω

K1(ξ, t)(uεη)2
h(ξ, t− τ1)dξ +

∫
Ω

K2(ξ, t)(vεη)2
h(ξ, t− τ2)dξ

≥
∫

Ω
{|∇[(uεη)mh + ε(uεη)h]|2 + η}

p−2
2 ∇[(uεη)mh + ε(uεη)h]∇(uεη)p−1

h∫
Ω

(uεη)ph

+
1

p

d

dt
log

∫
Ω

(uεη)ph .
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Integrating the equation 18 over [0, T ], and passing to the limit as h → 0, by the
T -periodicity of uεη, we have that

∫ T

0

∫
Ω

[|∇(umεη + εuεη)|2 + η]
p−2
2 ∇(umεη + εuεη)∇up−1

εη∫
Ω
upεη

≤T‖a‖L∞ − k1‖uεη‖2L2 + k2‖vεη‖2L2 .

Now ∫
Ω

[|∇(umεη + εuεη)|2 + η]
p−2
2 ∇(umεη + εuεη)∇up−1

εη

=

∫
Ω

[|∇(umεη + εuεη)|2 + η]
p−2
2 (mum−1

εη + ε)(p− 1)up−2
εη |∇uεη|2

≥
∫

Ω

(mum−1
εη + ε)p−1up−2

εη |∇uεη|p

≥εp−1

∫
Ω

up−2
εη |∇uεη|p

=εp−1

[
p

2(p− 1)

]p ∫
Ω

∣∣∣∣∇u 2(p−1)
p

εη

∣∣∣∣p .
Setting µp the first positive eigenvalue of the problem{

−div(|∇z|p−2∇z) = µ|z|p−2z, x ∈ Ω

z = 0, x ∈ ∂Ω,
(33)

(see, for example, [12]), using the Hölder and the Poincaré inequalities and the fact
that p > 2, one has

‖uεη‖2(p−1)
Lp(Ω) ≤|Ω|

p−2
p ‖uεη‖2(p−1)

L2(p−1)(Ω)

=|Ω|
p−2
p

∥∥∥∥u 2(p−1)
p

εη

∥∥∥∥p
Lp(Ω)

≤|Ω|
p−2
p

µp

∥∥∥∥∇u 2(p−1)
p

εη

∥∥∥∥p
Lp(Ω)

,

thus ∫
Ω

[|∇(umεη + εuεη)|2 + η]
p−2
2 ∇(umεη + εuεη)|∇uεη|p−1

≥εp−1

[
p

2(p− 1)

]p ∫
Ω

∣∣∣∣∇u 2(p−1)
p

εη

∣∣∣∣p
≥µpε

p−1

|Ω|
p−2
p

[
p

2(p− 1)

]p(∫
Ω

upεη

) 2(p−1)
p

.

Since by the Jensen inequality,

∫
Ω

up−2
εη ≤ |Ω|

2
p

(∫
Ω

upεη

) p−2
p

=

(∫
Ω

upεη

) 2(p−1)
p −1

,
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then ∫ T

0

∫
Ω

[|∇(umεη + εuεη)|2 + η]
p−2
2 ∇(umεη + εuεη)∇up−1

εη∫
Ω
upεη

≥µpε
p−1

|Ω|
p−2
p

[
p

2(p− 1)

]p ∫ T

0

(∫
Ω

upεη

) 2(p−1)
p −1

≥µpε
p−1

|Ω|

[
p

2(p− 1)

]p ∫∫
QT

up−2
εη .

Thus

µpε
p−1

|Ω|

[
p

2(p− 1)

]p
‖uεη‖p−2

Lp−2 ≤ T‖a‖L∞ − k1‖uεη‖2L2 + k2‖vεη‖2L2 . (34)

The same procedure, when it is applied to the second equation of 2, leads to

µqε
q−1

|Ω|

[
q

2(q − 1)

]q
‖vεη‖q−2

Lq−2 ≤ T‖b‖L∞ − k4‖vεη‖2L2 + k3‖uεη‖2L2 . (35)

Hence from 34 and 35 we have

‖uεη‖2L2 ≤
T‖a‖L∞ + k2‖vεη‖2L2 − µpε

p−1

|Ω|

[
p

2(p−1)

]p
‖uεη‖p−2

Lp−2

k1

,

‖vεη‖2L2 ≤
T‖b‖L∞ + k3‖uεη‖2L2 − µqε

q−1

|Ω|

[
q

2(q−1)

]q
‖vεη‖q−2

Lq−2

k4

.

These two inequalities imply that(
1− k2k3

k1k4

)
‖uεη‖2L2 <

T

k1

(
‖a‖L∞ +

k2

k4

‖b‖L∞
)

(
1− k2k3

k1k4

)
‖vεη‖2L2 <

T

k4

(
‖b‖L∞ +

k3

k1

‖a‖L∞
)

for any ε, η ∈ (0, 1/2) and the desired bounds follow since k2k3 < k1k4.

As immediate consequences of the previous results we obtain the following corol-
laries for the cooperative and the competitive cases.

Corollary 3.1. Assume that

1. there are constants ki > 0, i = 1, 4, and ki ≥ 0, i = 2, 3, such that k1k4 > k2k3

and

Ki(x, t) ≥ ki for i = 1, 4 and 0 ≤ Ki(x, t) ≤ ki for i = 2, 3,

for a.e. (x, t) ∈ QT ;
2. condition 6 holds,

then problem 1 has a non-negative T -periodic solution (u, v) with non-trivial u, v.

Corollary 3.2. Assume that

1. there are constants ki > 0, i = 1, 4, and ki ≥ 0, i = 2, 3, such that

Ki(x, t) ≥ ki for i = 1, 4 and − ki ≤ Ki(x, t) ≤ 0 for i = 2, 3,

for a.e. (x, t) ∈ QT ;
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2. condition 23 of Theorem 2.4, that is θ(C1, C2) > 0, is satisfied with

C1 =
T

k1

‖a‖L∞ and C2 =
T

k4

‖b‖L∞ ,

then problem 1 has a non-negative T -periodic solution (u, v).

We observe that the condition k2k3 < k1k4 of Theorem 3.1 is crucial to establish
the a priori L2-bounds on the solution pairs (uεη, vεη) of 2. Roughly speaking this
condition guarantees that the terms in the equations that contribute to the growth
of the respective species do not prevail on the whole on those limiting the growth.

On the other hand, when the strict positivity of the functions K1 and K4 is
relaxed, obtaining the needed a priori bounds becomes more difficult (at least with
our approach). In fact, we are able to obtain simple a priori bounds in the non-
coercive case when some sign condition is imposed on the functionsK2 andK3 (weak
and strong competition, see Subsections 3.2 and 3.3), but we have to impose the
technical restriction min{n(q−1),m(p−1)} > 3 to obtain a result like Theorem 3.1
with no sign condition on the functions K2 and K3 (and with rather complicated
constants C1, C2, see Subsection 3.4).

3.2. The non-coercive case: weak competition.

Theorem 3.2. Assume that

1. Ki(x, t) ≥ 0, i = 1, 4 and −ki ≤ Ki(x, t) ≤ 0, i = 2, 3 for a.e. (x, t) ∈ QT
and for some non-negative constants ki, i = 2, 3;

2. condition 23 of Theorem 2.4, that is θ(C1, C2) > 0, is satisfied with

C1 = |Ω|T
{

1

µp

[
m(p− 1) + 1

p

]p
‖a‖L∞

} 2
m(p−1)−1

and

C2 = |Ω|T
{

1

µq

[
n(q − 1) + 1

q

]q
‖b‖L∞

} 2
n(q−1)−1

,

where µp and µq are defined in 33. Then problem 1 has a T -periodic non-negative
solution (u, v) with non-trivial u, v.

Proof. We begin by finding the bound for the non-negative solutions uεη of the first

equation of 22. Since, by the Hölder inequality with r := m(p−1)+1
2 ,∫

Ω

u2
εηdx ≤ |Ω|

m(p−1)−1
m(p−1)+1

(∫
Ω

um(p−1)+1
εη dx

) 2
m(p−1)+1

,

and, by the Poincaré inequality,∫
Ω

(
u
m(p−1)+1

p
εη

)p
≤ 1

µp

∫
Ω

∣∣∣∣∇um(p−1)+1
p

εη

∣∣∣∣p
=

1

µp

{
[m(p− 1) + 1]

p

}p ∫
Ω

u(m−1)(p−1)
εη |∇uεη|p

≤Cp
∫

Ω

(mum−1
εη + ε)p−1|∇uεη|p

≤Cp
∫

Ω

[|∇(umεη + εuεη)|2 + η]
p−2
2 (mum−1

εη + ε)|∇uεη|2,
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where Cp := {[m(p− 1) + 1]/p}p /µp, we obtain

|Ω|
m(p−1)−1
m(p−1)+1C

2
m(p−1)+1
p

{∫
Ω

[|∇(umεη + εuεη)|2 + η]
p−2
2 (mum−1

εη + ε)|∇uεη|2
} 2
m(p−1)+1

≥
∫

Ω

u2
εη.

Integrating over [0, T ] it results

|QT |
m(p−1)−1
m(p−1)+1

{
Cp

∫∫
QT

[|∇(umεη + εuεη)|2 + η]
p−2
2 (mum−1

εη + ε)|∇uεη|2
} 2
m(p−1)+1

≥‖uεη‖2L2 ,

by Hölder’s inequality with r = m(p−1)+1
2 . Multiplying the first equation of 22 by

uεη, integrating in QT and passing to the limit in the Steklov averages (uεη)h, we
obtain ∫∫

QT

[|∇(umεη + εuεη)|2 + η]
p−2
2 (mum−1

εη + ε)|∇uεη|2 ≤ ‖a‖L∞‖uεη‖2L2

by the T -periodicity of uεη and the non-positivity of the function K2. Thus

‖uεη‖2L2 ≤ T |Ω| (Cp‖a‖L∞)
2

m(p−1)−1 .

In an analogous way we obtain that

‖vεη‖2L2 ≤ T |Ω|
{

1

µq

[
(n(q − 1) + 1)

q

]q
‖b‖L∞

} 2
n(q−1)−1

,

if vεη is a solution of the second equation of 22.

The arguments of the proof of Theorem 3.2 can be easily adapted to show the
following result for the case of a single equation with a non-coercive local term.

Corollary 3.3. Assume m > 1, p > 2 and that the function K is non-negative. If

1

T

∫∫
QT

e2
1a− µ1 > 0,

then the problem
ut − div(|∇um|p−2∇um) =

[
a−

∫
Ω

K(ξ, t)u2(ξ, t− τ)dξ

]
u,

u(·, t)|∂Ω = 0, for a.e. t ∈ (0, T ),

u(·, 0) = u(·, T ),

has a non-trivial T -periodic solution u ≥ 0.

3.3. The non-coercive case: strong competition.

Theorem 3.3. Assume that

1. Ki(x, t) ≥ 0, i = 1, 4 and −ki ≤ Ki(x, t) ≤ −ki < 0, i = 2, 3 for a.e.
(x, t) ∈ QT and for some positive constants ki, ki, i = 2, 3;
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2. condition 32, i.e. ζ(C1, C2) > 0, is satisfied with

C1 = T max

{
|Ω|T

[
1

µp

(
m(p− 1) + 1

p

)p
‖a‖L∞

] 2
m(p−1)−1

,
‖b‖L∞
k3

}

C2 = T max

{
|Ω|T

[
1

µq

(
n(q − 1) + 1

q

)q
‖b‖L∞

] 2
n(q−1)−1

,
‖a‖L∞
k2

}
.

Then problem 1 has a non-negative T -periodic solution (u, v) with non-trivial u, v.

Proof. If (uεη, vεη) is a solution of 22 with uεη ≡ 0, or respectively vεη ≡ 0, one can
argue as in the proof of Theorem 3.2 to obtain that

‖vεη‖2L2 ≤ |Ω|T
[

1

µq

(
n(q − 1) + 1

q

)q
‖b‖L∞

] 2
n(q−1)−1

,

or respectively,

‖uεη‖2L2 ≤ |Ω|T
[

1

µp

(
m(p− 1) + 1

p

)p
‖a‖L∞

] 2
m(p−1)−1

.

If uεη 6= 0, then uεη > 0 and vεη ≥ 0 in QT by Proposition 2.1. Moreover uεη ∈
C(QT ) and, hence, there exists t1 ∈ [0, T ] such that∫

Ω

u2
εη(x, t1)dx = min

t∈[0,T ]

∫
Ω

u2
εη(x, t)dx.

Multiplying the first equation of 22 by uεη, integrating over Ω and using the Steklov
averages (uεη)h we obtain

1

2

d

dt

∫
Ω

(uεη)2
h ≤

[
‖a‖L∞ − k2

∫
Ω

(vεη)2
h(ξ, t− τ2)dξ

] ∫
Ω

(uεη)2
h.

Hence, we have

d

dt

[
exp

{
2

∫ t

t1

(
k2

∫
Ω

(vεη)2
h(ξ, s− τ2)dξ − ‖a‖L∞

)
ds

}∫
Ω

(uεη)2
h(x, t)dx

]
≤ 0,

for t ≥ t1, which implies that

exp

{
2

∫ t

t1

[
k2

∫
Ω

(vεη)2
h(ξ, s− τ2)dξ − ‖a‖L∞

]
ds

}∫
Ω

(uεη)2
h(x, t)dx

≤
∫

Ω

(uεη)2
h(x, t1)dx

for t ≥ t1, and, passing to the limit as h→ 0 and taking t = t1 + T ,

exp

{
2k2

∫ t1+T

t1

∫
Ω

v2
εη(ξ, t− τ2)dξdt− 2T‖a‖L∞

}∫
Ω

u2
εη(x, t1 + T )dx

≤
∫

Ω

u2
εη(x, t1)dx

=

∫
Ω

u2
εη(x, t1 + T )dx.

Therefore we have that∫∫
QT

v2
εη =

∫ t1+T

t1

∫
Ω

v2
εη(ξ, t− τ2)dξdt ≤ T‖a‖L∞

k2
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by the T -periodicity of vεη.

If vεη 6= 0, then we can prove that ‖uεη‖2L2 ≤ T‖b‖L∞/k3 in a similar way.
Finally, Remark 2.2 allows to apply Theorem 2.4 with 23 replaced by 32.

Observe that the conditions k2 > 0 and k3 > 0 are essential to establish the a
priori bounds of the last theorem.

3.4. The non-coercive case: min{n(q− 1),m(p− 1)} > 3. In the case that
min{n(q − 1),m(p − 1)} > 3, we are able to find explicit bounds (although com-
plicated) without any assumption on the sign of the functions K2,K3, as shown in
the next result.

Theorem 3.4. Assume min{n(q − 1),m(p− 1)} > 3 and that

1. Ki(x, t) ≥ 0, i = 1, 4 and Ki(x, t) ≤ ki, i = 2, 3 for a.e. (x, t) ∈ QT and for
some positive constants ki, i = 2, 3;

2. condition 23 of Theorem 2.4, that is θ(C1, C2) > 0, is satisfied with

C1 =T

{
[n(q − 1)− 1][m(p− 1)− 1]

[n(q − 1)− 1][m(p− 1)− 1]− 4

[
(2M2

p‖a‖2L∞)
2

m(p−1)−1

+
(

2M2
pk

2

2(2M2
q ‖b‖2L∞)

2
n(q−1)−1

) 2
m(p−1)−1

]}1/2

,

C2 =T

{
[n(q − 1)− 1][m(p− 1)− 1]

[n(q − 1)− 1][m(p− 1)− 1]− 4

[
(2M2

q ‖b‖2L∞)
2

n(q−1)−1

+
(

2M2
q k

2

3(2M2
p‖a‖2L∞)

2
m(p−1)−1

) 2
n(q−1)−1

]}1/2

,

(36)

where

Mp =
|Ω|

m(p−1)−1
2

µp

[
m(p− 1) + 1

p

]p
and Mq =

|Ω|
n(q−1)−1

2

µq

[
n(q − 1) + 1

q

]q
.

(37)
Then problem 1 has a non-negative T -periodic solution (u, v) with non-trivial u, v.

Proof. Let (uεη, vεη) be a solution of 22. We have

µp

[
p

m(p− 1) + 1

]p ∫
Ω

um(p−1)+1
εη ≤

[
p

m(p− 1) + 1

]p ∫
Ω

∣∣∣∣∇um(p−1)+1
p

εη

∣∣∣∣p
≤
∫

Ω

(mum−1
εη + ε)p−1|∇uεη|p

≤
∫

Ω

[|∇(umεη + εuεη)|2 + η]
p−2
2 ∇(umεη + εuεη)∇uεη

(38)
by the Poincaré inequality. Since m > 1 and p > 2 it results(∫

Ω

u2
εη

)m(p−1)+1
2

≤ |Ω|
m(p−1)−1

2

∫
Ω

um(p−1)+1
εη .
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The previous inequality and 38 imply

µp

|Ω|
m(p−1)−1

2

[
p

m(p− 1) + 1

]p(∫
Ω

u2
εη

)m(p−1)+1
2

≤
∫

Ω

[|∇(umεη + εuεη)|2 + η]
p−2
2 ∇(umεη + εuεη)∇uεη.

(39)

Multiplying the first equation of 22 by uεη, integrating in QT and passing to the
limit in the Steklov averages (uεη)h, we obtain by the T -periodicity of uεη∫∫

QT

[|∇(umεη + εuεη)|2 + η]
p−2
2 ∇(umεη + εuεη)∇uεη

≤
∫ T

0

[
‖a‖L∞ + k2

∫
Ω

v2
εη(ξ, t− τ2)dξ

](∫
Ω

u2
εη

)
dt

≤

[∫ T

0

(
‖a‖L∞ + k2

∫
Ω

v2
εη(ξ, t− τ2)dξ

)2

dt

] 1
2
[∫ T

0

(∫
Ω

u2
εη

)2
] 1

2

.

(40)

By 39 and 40 it follows

∫ T

0

(∫
Ω

u2
εη

)m(p−1)+1
2

≤Mp

[∫ T

0

(
‖a‖L∞ + k2

∫
Ω

v2
εη(ξ, t− τ2)dξ

)2

dt

] 1
2
[∫ T

0

(∫
Ω

u2
εη

)2
] 1

2

,

where Mp is defined in 37. On the other hand,

∫ T

0

(∫
Ω

u2
εη

)2

≤ T
m(p−1)−3
m(p−1)+1

∫ T

0

(∫
Ω

u2
εη

)m(p−1)+1
2

 4
m(p−1)+1

by Hölder’s inequality with r = m(p−1)+1
4 . Therefore, setting U =

∫ T
0

(
∫

Ω
u2
εη)2 and

V =
∫ T

0
(
∫

Ω
v2
εη)2, these last two inequalities imply

U ≤T
m(p−1)−3
m(p−1)−1M

4
m(p−1)−1
p

[∫ T

0

(
‖a‖L∞ + k2

∫
Ω

v2
εη

)2
] 2
m(p−1)−1

≤T
m(p−1)−3
m(p−1)−1M

4
m(p−1)−1
p

[
2T‖a‖2L∞ + 2k

2

2V
] 2
m(p−1)−1

≤T
(
2M2

p‖a‖2L∞
) 2
m(p−1)−1 + T

m(p−1)−3
m(p−1)−1

(
2M2

pk
2

2

) 2
m(p−1)−1

V
2

m(p−1)−1

thanks to the fact that min{n(q − 1),m(p − 1)} > 3. In an analogous way we can
show that

V ≤ T
(
2M2

q ‖b‖2L∞
) 2
n(q−1)−1 + T

n(q−1)−3
n(q−1)−1

(
2M2

q k
2

3

) 2
n(q−1)−1

U
2

n(q−1)−1 ,
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where Mq is defined in 36. Hence,

U ≤T
m(p−1)−3
m(p−1)−1

(
2M2

pk
2

2

) 2
m(p−1)−1

[
T
(
2M2

q ‖b‖2L∞
) 2
n(q−1)−1

+T
n(q−1)−3
n(q−1)−1

(
2M2

q k
2

3U
) 2
n(q−1)−1

] 2
m(p−1)−1

+ T
(
2M2

p‖a‖2L∞
) 2
m(p−1)−1

≤T
(
2M2

p‖a‖2L∞
) 2
m(p−1)−1 + T

[
2M2

pk
2

2

(
2M2

q ‖b‖2L∞
) 2
n(q−1)−1

] 2
m(p−1)−1

+

(
T

[m(p−1)−2][n(q−1)−1]−2
[n(q−1)−1][m(p−1)−1] 2M2

pk
2

2

(
2M2

q k
2

3U
) 2
n(q−1)−1

) 2
m(p−1)−1

.

The last inequality has the form:

U ≤ α+ βU
4

[n(q−1)−1][m(p−1)−1] ,

with α, β > 0. Since m(p− 1) > 3 the function f(U) := α+ βU
4

[n(q−1)−1][m(p−1)−1] is
concave, and then

U ≤ f(U) ≤ f(U0) + f ′(U0)(U − U0), (41)

where U0 := β
[n(q−1)−1][m(p−1)−1]

[n(q−1)−1][m(p−1)−1]−4 . Using the fact that f(U0) = α+ U0 and 41, one
has

U ≤ [n(q − 1)− 1][m(p− 1)− 1]

[n(q − 1)− 1][m(p− 1)− 1]− 4
α+ β

[n(q−1)−1][m(p−1)−1]
[n(q−1)−1][m(p−1)−1]−4 .

A final application of Hölder’s inequality shows that ‖uεη‖2L2 ≤ T 1/2U1/2 = C1.
The argument for vεη proceeds in a similar way.

In the cooperative case we can ignore the explicit value of the constants in 36
and obtain the following cleaner looking corollary thanks to Remark 2.1.

Corollary 3.4. Assume that

1. min{n(q − 1),m(p− 1)} > 3;
2. Ki(x, t) ≥ 0 for i = 1, 4, for a.e. (x, t) ∈ QT , and there are positive constants

k2, k3 such that

0 ≤ Ki(x, t) ≤ ki for i = 2, 3,

for a.e. (x, t) ∈ QT ;
3. condition 6 holds,

then problem 1 has a non-negative T -periodic solution (u, v) with non-trivial u, v.

Another consequence of Theorem 3.4 is the following corollary for the competitive
case.

Corollary 3.5. Assume that

1. min{n(q − 1),m(p− 1)} > 3;
2. Ki(x, t) ≥ 0 for i = 1, 4, for a.e. (x, t) ∈ QT , and there are non-negative

constants k2, k3 such that

−ki ≤ Ki(x, t) ≤ 0 for i = 2, 3,

for a.e. (x, t) ∈ QT ;
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3. condition 23 of Theorem 2.4, that is θ(C1, C2) > 0, is satisfied with

C1 = T

{
[n(q − 1)− 1][m(p− 1)− 1]

[n(q − 1)− 1][m(p− 1)− 1]− 4

(
2M2

p‖a‖2L∞
) 2
m(p−1)−1

}1/2

,

C2 = T

{
[n(q − 1)− 1][m(p− 1)− 1]

[n(q − 1)− 1][m(p− 1)− 1]− 4

(
2M2

q ‖b‖L∞
) 2
n(q−1)−1

}1/2

,

where

Mp =
|Ω|

m(p−1)−1
2

µp

[
m(p− 1) + 1

p

]p
and Mq =

|Ω|
n(q−1)−1

2

µq

[
n(q − 1) + 1

q

]q
.

Then problem 1 has a non-negative T -periodic solution (u, v).

Remark 3.1. Observe that the a priori bounds C1, C2 in Theorem 3.1 do not allow
to replace the condition 23 with 32, since

min

{
k1k4

k1k4 − k2k3

,
k1k4

k1k4 − k2k3

}
≥ 1,

which implies that ζ(C1, C2) ≤ −µ1. Analogously, in Theorem 3.3 the condition 32
cannot be replaced by 23 since in this case we have that

min

{
k2

k2

,
k3

k3

}
≥ 1,

which implies that θ(C1, C2) ≤ −µ1. Finally, in the other cases, namely Theo-
rems 3.2 and 3.4, the constants C1, C2 allow to employ indifferently any of the two
conditions.
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[10] (MR1304096) A.V. Ivanov, Hölder estimates for equations of fast diffusion type, St. Peters-
burg Math. J., 6 (1995), 791–825.
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