
Bernoulli 21(1), 2015, 401–419
DOI: 10.3150/13-BEJ572

Beyond first-order asymptotics for Cox
regression
DONALD A. PIERCE1 and RUGGERO BELLIO2

1Department of Public Health, 3181 S.W. Sam Jackson Park Road, Mail code GH153, Portland, OR 97239-
3098, USA. E-mail: pierce.don.a@gmail.com
2Department of Economics and Statistics, via Tomadini, 30/A IT-33100, Udine, Italy.
E-mail: ruggero.bellio@uniud.it

To go beyond standard first-order asymptotics for Cox regression, we develop parametric bootstrap and
second-order methods. In general, computation of P -values beyond first order requires more model speci-
fication than is required for the likelihood function. It is problematic to specify a censoring mechanism to
be taken very seriously in detail, and it appears that conditioning on censoring is not a viable alternative to
that. We circumvent this matter by employing a reference censoring model, matching the extent and tim-
ing of observed censoring. Our primary proposal is a parametric bootstrap method utilizing this reference
censoring model to simulate inferential repetitions of the experiment. It is shown that the most important
part of improvement on first-order methods – that pertaining to fitting nuisance parameters – is insensitive
to the assumed censoring model. This is supported by numerical comparisons of our proposal to parametric
bootstrap methods based on usual random censoring models, which are far more unattractive to implement.
As an alternative to our primary proposal, we provide a second-order method requiring less computing
effort while providing more insight into the nature of improvement on first-order methods. However, the
parametric bootstrap method is more transparent, and hence is our primary proposal. Indications are that
first-order partial likelihood methods are usually adequate in practice, so we are not advocating routine use
of the proposed methods. It is however useful to see how best to check on first-order approximations, or
improve on them, when this is expressly desired.

Keywords: censoring; conditional inference; Cox regression; higher-order asymptotics; parametric
bootstrap; partial likelihood

1. Introduction

Generally, inferences beyond first order require fuller specification of the probability model than
is needed for the likelihood function and first-order methods; see Cox and Hinkley [11], Sec-
tion 2.3. For survival data, a rather broad condition on censoring mechanisms referred to as
‘independent censoring’ is adequate to allow computation of the likelihood function and from
this many forms of first-order inference. In principle, methods beyond first order require more
precise specification of the censoring mechanism. A problem is that usual random censoring
models are seldom intended to be realistic, while at the same time implementation of them for
going beyond first-order methods can be quite cumbersome.

We propose use of a reference censoring model for bootstrap and related purposes. This
matches the general extent and timing of observed censoring, but differs from the type of models
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that are customarily specified – while not actually required – for first-order methods. In par-
ticular, this reference model is progressive Type II censoring; see, for example, Crowley [12],
Kalbfleisch and Prentice [22], Section 3.2, Lawless [23], Section 2.2.1.3, where a fixed num-
ber are censored following each failure, with these fixed numbers matching the analysis dataset.
Jiang and Kalbfleisch [19], in mutually independent work, proposed use of this same reference
censoring model. Its primary virtues are in matching the observed pattern of censoring, and that
implementing it for inferential purposes beyond first order requires only the rank-based summary
data that is sufficient for partial likelihood, which is not the case for customary random censor-
ing models. We give considerable attention to the possible effects of discrepancy between some
‘actual’, or customarily assumed, censoring model and the reference censoring model.

Our primary proposal is a parametric bootstrap method, detailed in Section 2.2. For an hypoth-
esized value of the interest parameter ψ , and an associated estimate of the nuisance parameters,
one can generate bootstrap data under this reference censoring model. These parameters pertain
only to the relative risk function, e.g. exp(ziθ), in contrast to the situation of the following para-
graph. Inference is based on tail frequencies in bootstrap trials of likelihood ratios for testing the
hypothesis on ψ . The null distribution of P -values would to third order be uniform [0,1] if the
true censoring model were our reference model.

This is compared to a more direct parametric bootstrap approach proposed by Davison and
Hinkley [13], page 351, Algorithms 7.2, 7.3, based on more conventional random censoring
models. This requires estimating, for plug-in bootstrap use, further nuisance parameters pertain-
ing to a censoring distribution and baseline hazard, issues foreign to Cox regression that our
proposal avoids. The dependence on an estimate of the baseline hazard is due to assumed censor-
ing models depending directly on time, rather than only on the rank-based data summary. We find
that inferences are similar under these two methods, while the Davison and Hinkley approach is
more cumbersome and prone to difficulties in fitting the models in bootstrap trials.

We further provide in Section 4 a second-order asymptotic method providing inferences sim-
ilar to our main proposal but with far less computation, at some loss of transparency, while pro-
viding additional insight into the nature of improvement on first-order methods. This method also
relies on the reference censoring model. Connections, in general, between this second-order ap-
proach and parametric bootstrapping are considered by Davison, Hinkley and Young [14]. Such
second-order methods were employed by Pierce and Peters [28] and Pierce and Bellio [26] to
elucidate the dependence of P -values on aspects of the model that are not required for likelihood
methods, in particular censoring models and stopping rules. In the latter paper, they showed that
for fully parametric settings in survival analysis, a specific model for censoring is not required
for second-order inferences. Their argument does not fully apply for partial likelihood in Cox
regression, but it does apply to a major part of the improvement on first-order methods, namely
that part pertaining to effects of fitting nuisance parameters.

In Section 3, we compare to our parametric bootstrap proposal the similar method of Jiang
and Kalbfleisch [19]. Their method obtains confidence intervals with far less computational time
than our proposal, largely since ours is for testing an hypothesis and must be numerically inverted
for a confidence interval. However, some approximations are made in the Jiang and Kalbfleisch
method that result in less accurate and less powerful inferences.

Samuelsen [30] considers “exact” inference in Cox regression, suggesting with considerable
reservation a method based on “exact” logistic regression involving, in turn, those at risk just
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prior to each failure, and another method related to our main proposal but only applicable for
Type II censoring at the end of the follow-up. In Section 5, we consider issues that arise in his
former proposal, also of interest for other reasons, and obtain further evidence that this exact
logistic regression approach is not satisfactory.

By Cox regression, we mean partial likelihood for survival data (Cox [9]) with the relative risk
not being necessarily loglinear. The setting of interest involves inferences about functions of θ in
hazard functions of form ν(t; zi, θ) = ν0(t)RR(zi, θ) involving covariate vectors zi , where often
RR(zi, θ) = exp(ziθ). Censoring is assumed, as usual, to be ‘independent’, meaning roughly that
conditionally on the past, and on covariates, the failure and censoring times are independent. See
Kalbfleisch and Prentice [22], Sections 1.3, 6.2, and Andersen et al. [2], Section III.2. Kalbfleisch
and Prentice summarize this usefully as independent censoring meaning that “the probability
of censoring at each time t depends only on the covariate x [of the failure time model], the
observed pattern of failures and censoring up to time t in the trial, or on random processes that are
independent of the failure times in the trial”. In this, covariates can play a primary role. Censoring
based on an indicator prognostic of failure, even indirectly, will violate the independence unless
such a covariate is correctly included in the model.

We are only interested in use of the usual partial likelihood estimation, but with inferences
improving on usual first-order approximations. Our approach is also applicable when there is
stratification on the baseline hazard. We consider inference about a scalar function ψ(θ) of the
relative risk parameters, framed in terms of testing any specified value for this, with confidence
intervals to be taken as ψ -values not rejected. Our methods are based on the signed likelihood
ratio statistic

rψ = sgn(ψ̂ − ψ)
[
2
{
�(θ̂) − �(θ̂ψ)

}]1/2
, (1)

where �(θ) is the partial log likelihood function, and (θ̂ , θ̂ψ ) are respectively, the unconstrained
maximum partial likelihood estimator and that constrained by the hypothesis ψ(θ) = ψ . Under
the hypothesis the limiting distribution of rψ is standard normal, so first-order likelihood-based
P -values are �(rψ) and 1 − �(rψ), and the aim here is to improve on that approximation. For
the parametric bootstrap approach, we use the bootstrap distribution of rψ within the progressive
Type II censoring framework, with censoring design adapted to the analysis dataset. For higher-
order asymptotics, we follow that approach and then provide along lines usually employed for
fully parametric models modifications to rψ that are closer to standard normal.

Our aim is for practical settings, and for our main results we intentionally avoid those with
such small sample size that the behavior of the inference is dominated by discreteness of partial
likelihood or by infinite parameter estimates. For practical purposes, inadequacy of first-order
methods results more from effects of fitting nuisance parameters in the relative risk than from
very small sample sizes. We provide some limited simulations indicating that, aside from situ-
ations with relatively large numbers of nuisance parameters, first-order methods are reasonably
accurate.
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2. The general considerations

2.1. Some issues of a conditional approach

Write c = (c0, c1, . . . , cm) for the censoring configuration, that is, the number of censorings be-
tween successive failure times. Our initial aim was to condition on this, but we found that this
conditioning is not a satisfactory way to ‘eliminate’ the need to specify a censoring model. In
the first place, there needs to be further specification regarding which individuals are censored.
Further, the marginal distribution of c will generally depend on all the parameters including the
baseline hazard. Although this does not preclude conditioning on c, it raises issues regarding the
loss of power due to conditioning on c. Having found that such conditioning does not readily
resolve the need for specifying a censoring model, we turned to use of a reference censoring
model for hypothetical (or bootstrap) repetitions of the experiment, in particular that of a pro-
gressive Type II censoring model adapted to the observed censoring configuration. This inability
to resolve the issue by only conditioning complicates showing that the proposal performs well
under more general censoring models.

Our reference censoring model is closely related to the classical Kalbfleisch and Prentice [21]
result that the partial likelihood, as a function of the data, provides exactly the probability distri-
bution of the rank-based data sufficient for partial likelihood. That is, the partial likelihood is an
ordinary likelihood for the rank-based reduction of the data, which is useful for several needs in
this paper, most particularly for validating the second-order asymptotics in Section 4. There are
some details of the Kalbfleisch and Prentice result, considered further in Kalbfleisch and Prentice
[22], Section 4.7.1, that we should briefly summarize here, and we quote or paraphrase some of
their writing.

Suppose that k items labeled (1), . . . , (k) give rise to the observed failure times t(1) < · · · < t(k)

with corresponding covariates Z(1), . . . ,Z(k), and suppose further that ci items with unobserved
failure times ti1, . . . , tici

are censored in the interval [t(i), t(i+1)). The sets of possible rank sum-
maries at issue can be represented as

(A) t(1) < · · · < t(k);
(B) t(i) < ti1, . . . , tici

(i = 0,1, . . . , k).
(2)

The relations (B) mean that the composition of all the risk sets is specified in this rank summary,
and (A) means that the identity of the item that fails is specified. By these quantities being “spec-
ified” means only that the covariate values are known, the meaning of a ‘rank-based’ summary.
It is straightforward to compute the probability of (B), conditional on (A), in terms involving the
baseline hazard λ0(t). In multiplying this by the probability of (A), the baseline hazard cancels.
The result is that the probability of the rank-based event (2) is given by the partial likelihood as
a function of the data, so the partial likelihood is an ordinary likelihood for the rank-based data.
More details on this are in the journal article of Kalbfleisch and Prentice [21] than in the textbook
Kalbfleisch and Prentice [22], Section 4.7.1.

A primary subtlety in this result is that the values ci , corresponding to our censoring configu-
ration, cannot be interpreted simply as part of the data summary, but rather these must be fixed
in the censoring mechanism. In this regard, Kalbfleisch and Prentice [22], Section 4.7.1, note
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that for a general censoring mechanism the joint probability of relations (2) would depend on
the censoring mechanism and the baseline hazard λ0(t). Only for progressive Type II censoring
with the ci fixed in advance will the probability of the rank-based data summary be given by the
partial likelihood function. It is also implicit in their calculations of the probability of (2) that the
individuals to be censored following each failure are chosen uniformly at random from the cor-
responding risk set. The issues of this paragraph may be somewhat clarified by the development
of Alvarez-Andrade, Balakrishnan and Bordes [1], who use martingale arguments to derive the
partial likelihood function as giving the probability of relations (2).

2.2. Specifics of our proposed method

Our proposal is based on a direct simulation of the data-generating model, though employing
a reference censoring model, with the interest parameter at its hypothesized value and nuisance
parameters at the associated estimates. This is often referred to as a “parametric bootstrap”, since
it uses nuisance parameter estimates from the analysis dataset. The reference censoring model
approach is to fix, according to the analysis dataset, the censoring configuration c for repetitions
of the experiment, and assume uniform probability distributions over each risk set R[t+(i)] for
which individuals are censored. This is the same reference set as the “weighted permutation”
re-sampling employed by Jiang and Kalbfleisch [19], in terms of a special martingale filtration
based on the analysis dataset. In the words of Jiang and Kalbfleisch, this inferential reference set
“imitates the observed history [of the analysis dataset]”, and “reproduces the aggregate failure
and censoring patterns at all [observed] failure and censoring times”. That they must also assume
distributions over each risk set for which individuals are censored suggests that a martingale
approach will not resolve the difficulties in bona fide conditioning.

The specifics of our proposal, in algorithmic form, are as follows:

1. Taking the interest parameter ψ at the hypothesized value, first generate an uncensored
sample of failure times using any baseline hazard, modulated by the relative risk corre-
sponding to the constrained estimator θ̂ψ . Then reduce the data to ranks, that is, the time-
sorted covariates and failure indicators required for partial likelihood, which renders im-
material the choice of baseline hazard; a suitable choice is to take this as constant.

2. For the censoring configuration c of the analysis dataset, censor at random the specified
number of individuals following each failure, using a uniform distribution over each risk
set. This can be done in terms of ranks obtained in Step 1. Carrying this out involves
removing from subsequent risk sets those that are censored at each stage.

3. This provides a dataset for one trial of the simulation; and for the parametric bootstrap
we compute the partial likelihood ratio statistic rψ by fitting both the null hypothesis and
unrestricted models.

4. From this simulation, we approximate the desired P -values as the bootstrap simulation
frequency of rψ -values more extreme than that for the analysis dataset.

Since the partial likelihood under progressive Type II censoring is an ordinary likelihood for the
rank reduction of the data, standard theory for the likelihood ratio parametric bootstrap applies
(DiCiccio, Martin and Stern [15], Lee and Young [24]). In particular, if the actual censoring
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distribution were of this type, then the distribution of P -values under the hypothesis would, to
third order, have a uniform [0,1] distribution. In Section 4, we provide some results pertaining
to the actual censoring mechanism not being of this form.

2.3. Relation to the Jiang and Kalbfleisch proposal

The resampling of Jiang and Kalbfleisch [19] is equivalent to the bootstrap resampling obtained
in Steps 1 and 2, though in line with their aims for a confidence interval they use the uncon-
strained estimator θ̂ in Step 1, rather than an hypothesized value of ψ and the constrained es-
timator θ̂ψ . However, Step 1 is implemented differently in not generating failure times, but by
selecting which individual in each risk set is to fail in the re-sampling, with probabilities propor-
tional to the relative risk corresponding to θ̂ . That the conditional distribution of which individual
fails in the risk set follows that model is the basis for partial likelihood. In this respect, their im-
plementation has the advantage of lending itself more readily to time-dependent covariables.

Their proposal is very different in regard to Steps 3 and 4 above. With the aim of a confidence
interval from a single bootstrap result, they utilize an approximate pivotal quantity P(ψ,data),
whose distribution is approximately the same for ψ -values of statistical interest and for all values
of the nuisance parameter. They employ for this purpose the score statistic, estimating by para-
metric bootstrap its distribution when θ = θ̂ of the analysis dataset, and from this computing a
confidence interval for ψ by the usual pivotal method. The basic idea for this type of parametric
bootstrap was proposed by Hu and Kalbfleisch [18], and in the published discussion of that paper
was criticized on grounds that P(ψ,data) may not be suitably pivotal to higher order. They also
employ a further approximation in regard to the nuisance parameter. If the ‘pivotal’P(ψ,data)
were taken as the usual score statistic, then the constrained maximum likelihood estimator of
the nuisance parameter would be required for each bootstrap trial. To an approximation, this can
be avoided by using a first-order Taylor’s approximation at ψ̂ of the analysis dataset. This is
computationally much faster than our Step 3, which involves fitting both the unconstrained and
constrained estimator in each bootstrap trial.

So altogether, their proposal involves two approximations: choice of an approximate pivotal
and the expansion to approximate the constrained maximum likelihood estimator. These result
in much faster bootstrap calculations than ours, and arrives at a confidence interval rather than
a test of a specified hypothesis for ψ . Our second-order asymptotic method is computationally
as fast as their proposal for a single bootstrap result, but provides only a P -value for a specified
hypothesis rather than a confidence interval. The two approximations made in their proposal
result in somewhat less power, reflected by somewhat wider confidence intervals, than when
our hypothesis test is inverted to obtain a confidence interval. We assess this comparison for an
example in the following section.

3. Numerical investigation

We consider some embellishment of an example from Brazzale, Davison and Reid [7], Sec-
tion 7.7, to illustrate points made so far. For their example, they specify some random censoring
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Table 1. Null distribution of first-order P -values (based on 50 000 samples). Table entries are empirical
tail frequencies as percentages

Nominal <1% <2.5% <5% <10% >10% >5% >2.5% >1%

n = 12 1.6 3.8 6.9 12.9 11.0 6.3 3.1 1.4
n = 20 1.5 3.6 6.6 12.4 10.0 5.3 2.7 1.2
n = 40 1.3 3.0 5.9 11.2 10.0 5.0 2.6 1.1
n = 20,4 NP 3.1 5.9 9.7 15.9 14.5 8.8 5.4 2.9
n = 40,4 NP 1.7 3.7 7.1 12.9 12.8 7.3 4.0 2.0
n = 40,9 NP 3.0 5.6 9.2 15.0 15.3 9.4 5.9 3.1

models, and an issue is to see how use of our reference censoring model for repetitions of the
experiment performs under these more commonly-used censoring models. They consider some
higher-order asymptotics issues, to which we return in Section 5.

Their example, pertaining to Cox regression with sample size n = 20, has two parts corre-
sponding to: (a) a single binary covariate taking its values in 3:1 ratio, with 12.5% random cen-
soring, and (b) five Gaussian covariates, of which one carries the interest parameter, with 30%
random censoring. We add to these extensions regarding sample size and covariate number, to
investigate particular needs of this paper. In particular, for the setting (a) involving no nuisance
parameters, we extend also to n = 12 and n = 40. As in their example, the response times are
unit exponential random variates. Half of the observations on the larger treatment arm are subject
to censoring at times uniformly distributed on [0, 4], resulting in expected 12.5% censoring for
the entire sample. For extensions of setting (b) involving nuisance parameters, they consider 4
nuisance parameters for n = 20, and we extend also to n = 40 with either 4 or 9 nuisance parame-
ters defined similarly. In simulations, the values of these nuisance parameters are zero. As in their
example for (b) all observations, which are distributed as exponential with mean unity without
regard to covariates, are subject to censoring at times uniformly distributed on [0, 3.25], resulting
in expected 30% censoring. For Tables 1 and 2, the hypothesis is that the interest parameter in
the log relative risk is zero.

Table 2. Null distribution of first-order and bootstrap P -values (based on 50 000 samples)

Nominal <1% <2.5% <5% <10% >10% >5% >2.5% >1%

n = 20,4 nuisance parameters
rψ 3.1 5.9 9.7 15.9 14.5 8.8 5.4 2.9
Reference CM 1.0 2.6 5.1 10.3 10.1 5.1 2.6 1.0
Davison & Hinkley 1.2 2.9 5.6 10.9 10.6 5.5 2.9 1.1

n = 40,9 nuisance parameters
rψ 3.0 5.6 9.2 15.0 15.3 9.4 5.9 3.1
Reference CM 1.1 2.6 5.2 10.2 10.1 5.2 2.5 1.0
Davison & Hinkley 1.1 2.7 5.4 10.4 10.2 5.3 2.7 1.1
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First, we give some indication of the performance of usual first-order methods using the like-
lihood ratio statistic. These results are presented in Table 1, where our interpretation is that
first-order likelihood ratio methods are reasonably adequate for the settings with relatively few
nuisance parameters, but less so for the settings where there are a large number of these in re-
lation to the number of failures, that is, the settings of lines 4 and 6 of Table 1. Thus, the main
conclusion we draw regarding first-order methods is that for purposes of evaluating methods of
this paper, it is most useful to consider settings with moderate sample sizes and relatively many
nuisance parameters in the relative risk.

For settings with no nuisance parameters, or relatively few, these results are consonant with
those of Johnson et al. [20] that are in terms of Wald-type inferences rather than likelihood
ratio. As usual, such results for Wald-type inferences are hampered by the lack of invariance to
parametrization.

Table 2 illustrates the performance of our reference censoring model parametric bootstrap
proposal (‘reference CM’), and the random censoring bootstrap proposal of Davison and Hinkley
[13] for the setting of rows 4 and 6 of Table 1. For the latter, the function censboot of the R (R
Core Team [29]) package boot (Canty and Ripley [8]) is used with the option sim = “cond”,
meaning that observed censoring times are used as potential censoring times in bootstrap trials.
In this paper, for all such simulations, that is, parametric bootstrapping, we use 10 000 trials.

At the end of Section 2.2, it was noted that when the true censoring model is progressive Type
II, the distribution of P -values is to third order uniform [0,1]. The indication from our simu-
lations is that the accuracy maintains for usual random censoring models, and some theoretical
basis for that is given at the end of Section 4. A program employing the routines censboot
and coxph failed in more than 1% of the bootstrap trials for about 3% of the simulated datasets.
The P -values were computed by ignoring those bootstrap trials. Many of these failures, how-
ever, reflected only infinite parameter estimates with convergent likelihood. More seriously, the
P -values for a small fraction of the datasets may have been erroneous, without failures in fitting,
and this is explained in more detail below. We do not think these problems have serious effect on
results in Table 2, but they became more serious when we used those routines for fitting under
parameter values alternative to the hypothesis, as in the following. For this purpose, we employed
a routine different from censboot, as explained below.

We indicate in Figure 1 that, sample-by-sample, the P -values from the two proposals in the
bottom lines of Table 2 are quite similar. For each panel of that figure we select, from the cal-
culations for Table 2, about 500 analysis samples where the P -values are less than 0.20. Thus
the point of our proposal is far less to improve on the random censoring bootstrap than to obtain
similar results far more easily.

In Figure 2, we present more limited results of this nature under the alternative, i.e. when the
true value of ψ differs from the hypothesized value. We employ a different form of censoring
model of some interest, discussed below. In this figure, we compare P -values from our reference
censoring model proposal and those of the bootstrap employing the actual censoring model, for
240 simulated samples with both methods being used for each simulation sample. The true value
of ψ is taken as zero and the hypothesis being tested on each trial is that ψ is equal to the 95%
Wald upper confidence limit. Again we see that, sample-by-sample, the P -values from the two
methods are similar. The value of the alternative is allowed to vary between simulation trials,
since the aim is not to estimate powers for the two methods, but to show more fundamentally
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Figure 1. Sample-wise comparison of reference censoring model and Davison & Hinkley P -values, for
the setting of n = 20 with 4 nuisance parameters (left), and n = 40 with 9 nuisance parameters (right).

that the inferences from the two methods are quite similar. For this aim, it was more effective to
be always carrying out tests that have interesting P -values.

Generally, a major reason for censoring is the end of follow-up, and this is the mechanism
employed for the simulation leading to Figure 2. For a prototypical clinical trial setting, patients

Figure 2. Sample-wise comparison of P -values from our reference censoring model proposal and the
censoring model based on the ‘clinical trial’ considerations, in the setting with n = 20 and 4 nuisance
parameters.
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are enrolled at random during some period, say the first 2 years. Follow-up continues for 5 more
years, say, at which time all remaining subjects are censored. For simulation, a constant failure
rate value was chosen to yield 30% censoring. Analysis time is the interval from enrollment
until failure or censoring. The primary distinction between this censoring model and the random
censoring model employed above is that, after enrollment is complete, the potential censoring
times for all subjects are known. Thus these can be taken as fixed for the bootstrap trials, rather
than only for the observed censoring times as in censboot. Nevertheless, implementing this
entails use of an estimate of the baseline hazard, since the censoring model involves times rather
than only ranks.

For the parametric bootstrap using this censoring model, the analog of the Davison and Hink-
ley proposal employed so far, we have not used the routine censboot for results in Figure 2.
This is because the censoring model differs from that used for Table 2 and Figure 1 and it is
not required to estimate a censoring distribution. We have also modified the simulation of failure
times for the following reason. Not surprisingly, with sample sizes as small as n = 20 and 30%
censoring, a method using nonparametric estimation of the baseline hazard can fail, unless more
smoothing is employed than by censboot. For example, this happens when there are several
censorings following the last failure, so that any nonparametric estimator of the baseline hazard
is then undefined after decreasing to a value considerably greater than zero. The censboot
routine places the substantial undefined mass just after the last failure time, resulting in P -values
considerably different than those using the true survival distribution, or those from our reference
censoring model proposal. This problem was more serious in testing under the alternative for Fig-
ure 2 than under the null hypothesis of Figure 1. In the routine used for Figure 2, we employed
in bootstrap trials somewhat more smoothing to deal with this, fitting a Weibull distribution to
the incomplete nonparametric estimate of the baseline survival distribution.

We now offer some comparison to the Jiang and Kalbfleisch [19] proposal. For obtaining a
confidence interval, their procedure is about twice as fast than our bootstrap method. Half of this
is due to employing an approximate pivotal so that only one bootstrap run is required, and the re-
maining half is due to using an approximate score to avoid model fitting on bootstrap trials. These
approximations were considered in more detail in Section 2.3. Our aim is to evaluate the effect of
these approximations for the example above involving n = 20 with 4 nuisance parameters. The
censoring model for data generation was that described at the beginning of this section, and used
for Tables 1 and 2. We also present operating characteristics for the first-order method based on
the normal approximation to the distribution of rψ . Table 3 presents in column 1 the estimated
probability of coverage for a 95% lower confidence limit for one of the relative risk parameters
when the true value is zero, based on simulation of 10 000 datasets for the Jiang and Kalbfleisch
method, and taking first-order and our bootstrap values from Tables 1 and 2. In order to evaluate
what corresponds to the ‘length’ of the one-sided confidence interval, we present in column 2
the probability of the interval covering the false value −0.50, based on 2000 datasets. This par-
ticular false value was chosen to be roughly in the center of the distribution of lower confidence
limits. The number of trials is smaller than for other purposes here, since the computations are
extensive, so standard errors are reported.

The coverage probability in column 1 for the Jiang and Kalbfleisch method, for which the stan-
dard error is 0.25%, could be considered as adequate, but as anticipated the method is slightly
inferior compared to our more computationally intensive method that does not employ an ap-
proximate pivotal quantity. It should be borne in mind that this example was chosen specifically
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Table 3. Coverage probability for 3 methods. First column: based on 50 000 samples for rψ and reference
censoring model bootstrap, and 10 000 samples for the Jiang & Kalbfleisch method. Second column: based
on 2000 samples

Method Coverage (%) true value 0 Coverage (%) of −0.50

rψ 88.7 58 ± 1
Jiang & Kalbfleisch 93.6 64 ± 1
Reference CM 94.8 42 ± 1

to place considerable stress on first-order methods, and hence to challenge methodology for im-
provement. In their paper, they consider only examples with n = 50 or 60, with either no nuisance
parameters or only one. In the final column of Table 3 it is seen that as expected, due to the ap-
proximations resulting in far less computational time, their confidence intervals are somewhat
longer than ours, that is the probability of covering the false value ψ = −0.5 is about 50% larger.

4. Higher-order asymptotics

For the reference censoring model approach, or use of any specified censoring model, P -values
that we have above approximated using the parametric bootstrap can also be approximated using
the type of higher-order asymptotics developed by Barndorff-Nielsen [4,5], Barndorff-Nielsen
and Cox [6] and others. A comprehensive textbook treatment is given in Severini [33]. The
basic issues regarding censoring models are the same as for the parametric bootstrap. For our
progressive Type II censoring model, the higher-order asymptotics are valid for Cox regression
partial likelihood since this corresponds to ordinary likelihood for the rank-based data. Extension
to other censoring models is considered later in this section, and further in the Discussion.

The higher-order asymptotic methods consist of modifying the directed likelihood ratio (1) to
have more nearly a standard normal distribution. This is given by r∗

ψ of (3) that is used as in (5)
below. To implement this for our setting involves simulation to approximate certain likelihood
covariances. This differs from the parametric bootstrap in that no model fitting is involved in the
simulation, which can be important when there are convergence difficulties in fitting. Further, the
required number of simulation trials is smaller than for the bootstrap since this is for estimating
covariances rather than tail probabilities more directly. This form of asymptotics has been found
in many investigations to be remarkably accurate, and for our setting this is borne out in numeri-
cal results of Table 4. It also provides useful insights by separating the effects of fitting nuisance
parameters from those due to limited adjusted information.

The following results are presented for the more general setting as developed in Barndorff-
Nielsen and Cox [6], Section 6.6, rather than attempting to specialize to our partial likelihood
setting. It should be noted that the formulas are far less to provide recipes for calculation, than
to indicate primary concepts of the methodology. In particular, for many of the formulas to make
sense, the data must first be represented to second order as (θ̂ , a), the maximum likelihood es-
timator along with a suitable approximate ancillary. For this reason, the formulas found little
practical use until the development by Skovgaard [36,37] of approximations in terms in terms of
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the approximate ancillary based on ı̂−1ĵ arising in the formulas to follow. Fraser, Reid and Wu
[17] developed a different approach to the approximation, less general and perhaps difficult to
apply to the present setting.

The Barndorff-Nielsen adjustment (Barndorff-Nielsen and Cox [6], Section 6.6), has general
form

r∗
ψ = rψ + r−1

ψ log(uψ/rψ) = rψ + NPψ + INFψ, (3)

where uψ involves derivatives of the likelihood function with respect to parameter estimates,
holding fixed a notional ancillary. This means a suitable complement to the maximum likeli-
hood estimator to provide a second-order sufficient statistic; see Barndorff-Nielsen and Cox [6],
Section 2.5. We will often suppress the subscript ψ , in phrases similar to “the r∗ method”. Sim-
ilarly, we will sometimes suppress the subscripts on NPψ and INFψ . The nuisance parameter
adjustment NPψ corresponds to the modified profile likelihood LMP(ψ), which was developed
in theory not directly related to r∗, and applies to vector parameters ψ as well; see Barndorff-
Nielsen [3] and Barndorff-Nielsen and Cox [6], Section 8.2. For scalar parameter ψ , the exact
relation is LMP(ψ) = exp(−rψNPψ)LP (ψ). The information adjustment INFψ allows for lim-
ited adjusted information for ψ , more specifically pertaining to the skewness of the score statistic
for inference about ψ ; see Pierce and Peters [27].

The quantities in (3) are specifically

NPψ = r−1
ψ log(Cψ), INFψ = r−1

ψ log(
×
uψ /rψ),

with

×
uψ = ĵ

−1/2
ψψ |ν

[
∂{�P (ψ) − �P (ψ̂)}

∂ψ̂

]
,

Cψ =
∣∣∣∣∂

2�(ψ, ν̂ψ)

∂ν̂ ∂ν

∣∣∣∣/{|j̃νν ||ĵνν |}1/2.

We note that

∂{�P (ψ) − �P (ψ̂)}
∂ψ̂

= ∂�(θ̂ψ)

∂ψ̂
− ∂�(θ̂)

∂ψ̂
− ∂2�(θ̂ψ)

∂ψ̂ ∂ν

{
∂2�(θ̂ψ)

∂ν̂ ∂ν

}−1{∂�(θ̂ψ )

∂ν̂
− ∂�(θ̂)

∂ν̂

}
;

see Barndorff-Nielsen and Cox [6], equation 6.106. Here θ is represented as (ψ, ν), where ν is
any version of the nuisance parameter, and j̃νν and ĵνν are the observed information matrices
for ν evaluated at the constrained and unconstrained maximum likelihood estimates, ĵ

−1/2
ψψ |ν is the

observed adjusted information for ψ as defined in Section 9.3(iii) of Cox and Hinkley [11]. The
partial derivatives in the above expressions are generally referred to as sample-space derivatives,
where for instance

∂�(θ̂ψ)

∂ψ̂
= ∂�(θ; ψ̂, ν̂, a)

∂ψ̂

∣∣∣∣
θ=θ̂ψ

.

Skovgaard [36,37] derived second-order approximations to these quantities that avoid difficult
partial derivatives. These results were further developed by Severini [32], without the reliance
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made by Skovgaard on curved exponential families. We first express these in rather casual but
useful notation as

∂�(θ̂ψ )

∂θ̂ ∂θ

.= cov
θ̂

{
U(θ̂),U(θ̂ψ)

}
ı̂−1ĵ ,

∂�(θ̂ψ)

∂θ̂
− ∂�(θ̂)

∂θ̂

.= cov
θ̂

{
U(θ̂),
(�̂)

}
ı̂−1ĵ ,

where U is the score ∂�/∂θ , and 
 is a log likelihood difference defined below. Here ĵ and ı̂

are the observed and expected information matrices for the full parameter, evaluated at θ̂ . More
precisely

cov
θ̂

{
U(θ̂),U(θ̂ψ)

} = covθ1

{
U(θ1),U(θ2)

}
,

(4)
cov

θ̂

{
U(θ̂),
(�̂)

} = covθ1

{
U(θ1), �(θ2) − �(θ1)

}
,

where following computation of the expectations, θ1 and θ2 are respectively, evaluated at the
unconstrained and constrained maximum likelihood estimators for the analysis dataset θ̂ and θ̂ψ .
The covariances in (4) can be approximated by simulation. A key aspect of the Skovgaard result
is that the quantity ı̂−1ĵ captures adequately the ancillary information. Quantities above differ
from usual information calculations through involving covariances of scores at two different
parameter values.

For either r∗
ψ or the Skovgaard approximation to it, the sense of the final approximation can be

usefully expressed as follows. For this, we write Y as a random dataset, as y the observed value,
and indicate explicitly the dependence of rψ and r∗

ψ on the data. Then we have that

P
{
rψ(Y ) < rψ(y);ψ(θ) = ψ

} = �
{
r∗
ψ(y)

}[
1 + Op

{
(ψ̂ − ψ)n−1/2}], (5)

which to this order does not depend on the nuisance parameter in the relative risk. For the present
context n is best thought of as the number of failures. Thus, for deviations ψ̂ − ψ = Op(n−1/2)

the relative error is O(n−1) and for large deviations the error is O(n−1/2). The large deviation
property is important in ruling out second-order approximations that suffer from being overly
local. The above bound also holds when conditioning on suitable ancillary statistics, in particular
that based on ı̂−1ĵ ; see Skovgaard [35]. The justification for (5) is a combination of the result
(7.5) of Severini [33] and results in Section 4 of Skovgaard [36].

To approximate the covariances (4) in our setting one may carry out Steps 1 and 2 of the
algorithm given for the parametric bootstrap, but keeping track only of the required likelihood
quantities so that their covariances can be computed following the simulation. Steps 3 and 4 are
not required, and no model fitting is involved in this simulation, which avoids not only computing
effort but possible convergence difficulties. Note that in this simulation the resampling is done
under the unconstrained estimator θ̂ . As noted, estimation of these covariances requires far fewer
bootstrap trials than for the parametric bootstrap. For accurate results, it is important that ı̂ be
approximated from the same simulation samples as the other covariances, even when a formula
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Table 4. Null distribution of P -values for the higher-order method based on r∗
ψ (based on 50 000 samples)

Nominal % tail <1% <2.5% <5% <10% >10% >5% >2.5% >1%

n = 20,4 nuisance parameters
rψ 3.1 5.9 9.7 15.9 14.5 8.8 5.4 2.9
Bootstrap (reference CM) 1.0 2.6 5.1 10.3 10.1 5.1 2.6 1.0
r∗
ψ (reference CM) 1.0 2.5 4.9 9.7 9.5 4.8 2.5 1.0

n = 40,9 nuisance parameters
rψ 3.0 5.6 9.2 15.0 15.3 9.4 5.9 3.1
Bootstrap (reference CM) 1.1 2.6 5.2 10.2 10.1 5.2 2.5 1.0
r∗
ψ (reference CM) 0.8 2.1 4.3 9.0 8.9 4.3 2.1 0.8

for it is known. This is because, as laid out in Sections 2 and 3 of Severini [32], when ı̂ is approx-
imated in this manner the leading terms of what is being approximated, and the covariance-based
approximations, are identical.

We illustrate these methods by continuing with the example of Table 2. Recall that the true
censoring model for the analysis datasets differs from our reference progressive Type II model
used for the second-order and bootstrap calculations, and were described early in Section 3.
Table 4 indicates that the second-order and parametric bootstrap P -values are quite similar. The
results in the last line of that table, though probably adequate for practice, contain some entries
differing by 6–9 simulation standard errors from nominal values. We discuss that in the final
section.

With this method the nature of the improvements on first-order inference can be characterized
more clearly than for the parametric bootstrap. For each of the examples of Table 2, we describe
in Figure 3 the nature of the NP and INF adjustments for 200 simulated samples. This simulation
was carried out under the strategy used for Figure 2; that is, to focus on interesting P -values
we take the hypothesis being tested for each sample as the lower 95% Wald confidence limit
ψ̂ −1.645 SE(ψ̂). This means that the value of rψ varies only modestly around the value −1.645.

The NP adjustments are in magnitude about 4 and 8 times larger than the INF adjustments, for
the left and right panels of Figure 3, as indicated by the slopes of the regression lines. This reflects
an important point that is not restricted to the setting of this paper. Unless the sample size is quite
small the INF adjustment is usually minor, but when there are many nuisance parameters, relative
to the sample size, the NP adjustment can be substantial even for moderately large samples.
Whether or not this is the case depends on the particular setting, and is often difficult to predict
without making the computation. Consideration of this was first given in Section 3 of Pierce and
Peters [27] and has been further described by several others: for example, Brazzale, Davison and
Reid [7] and Sartori [31], Section 6.

Pierce and Bellio [26] employed these second-order asymptotics to investigate the inferential
effects of model specifications that do not affect the likelihood function. They found that for
ordinary likelihood, inferences are usually to second order unaffected by choice of censoring
models. On the other hand, they found that the effect of stopping rules is to second order carried
only by the INF adjustment, with the NP adjustment unaffected. Their argument for censoring
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Figure 3. Values of NPψ and INFψ for 200 trials for n = 20 with 4 nuisance parameters and n = 40 with 9
nuisance parameters, and for testing the hypothesis that ψ is equal to the 95% lower Wald confidence limit.
The slopes of the regression lines are 3.7 and 8.4.

models in ordinary likelihood does not fully apply to partial likelihood for survival data, since it
depends on the observations being stochastically independent. However the argument for the NP
part of the adjustment only requires that the contributions to the score are uncorrelated, which
is the case for partial likelihood. See, for example, Cox [10] but note that this is an essential
aspect of martingale theory. Many of the standard martingale developments need substantial
modification for partial likelihood, and this is treated by Fleming and Harrington [16]. The point
of this argument is that in terms of the second-order asymptotics, it is not necessary that the true
censoring model be the same as our progressive Type II reference censoring model.

5. Considering risk sets as fixed

There is an inferential frame of reference having the same likelihood function as the Cox re-
gression partial likelihood, which, though not conditional, has been and remains of considerable
interest. This consists of considering all the risk sets, i.e. those at risk just before each failure, as
fixed in hypothetical repetitions of the experiment. In particular, this is the basis for the “logistic
exact” inference for Cox regression proposed by Samuelsen [30], although with some reserva-
tions. The point of this section is to show that, although a definition of r∗ is temptingly very
simple for this frame of reference, it is not suitable for use for survival data, as the adjustments
r∗ − r are too small to be of the value we have seen throughout this paper.

This frame of reference leads to a multinomial probability model defined on each risk set, with
the probabilities of which individual fails proportional to the relative risk. This seems to be what
Cox [9] originally had in mind, although it was quickly realized that this is not a conditional
frame of reference. Indeed, if there were no censoring fixing all the risk sets allows no data
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Table 5. Null distribution of P -values for the r∗ method with fixed risk sets (based on 50 000 samples)

Nominal % tail <1% <2.5% <5% <10% >10% >5% >2.5% >1%

n = 20,4 nuisance parameters
rψ 3.1 5.9 9.7 15.9 14.5 8.8 5.4 2.9

r∗
ψ (fixed risk set) 2.6 5.3 9.0 15.2 13.5 7.8 4.7 2.4

r∗
ψ (reference CM) 1.0 2.5 4.9 9.7 9.5 4.8 2.5 1.0

n = 40,9 nuisance parameters
rψ 3.0 5.6 9.2 15.0 15.3 9.4 5.9 3.1

r∗
ψ (fixed risk set) 2.5 5.0 8.3 14.0 15.5 9.4 5.9 3.0

r∗
ψ (reference CM) 0.8 2.1 4.3 9.0 8.9 4.3 2.1 0.8

variation for purposes of partial likelihood. Unless censoring is quite heavy, the risk sets remain
to be substantially determined by failures. These difficulties turn out to have a large bearing on
the higher-order asymptotics. They were resolved by the martingale approach to Cox regression,
in which the risk sets are fixed successively but not simultaneously.

We have seen throughout this paper that a useful definition of r∗ for survival data is possible,
and in extreme situations the improvement over r is substantial. This does not happen with the
definition of r∗ appropriate for the fixed risk set frame of reference. Thus, although the product
multinomial formulation is a probability model for some experiment, it is unsuitable for going
beyond first order in analysis of survival data.

In Table 5 we show, for the two examples of Table 4, results of using r∗ for the fixed risk set
frame of reference, along with those of the r∗ method proposed in Section 4, labeled “reference
CM” for the progressive Type II reference censoring model employed. The fixed-risk-set r∗
performs very little better than the first order r , even though the proposal of Section 4 results in
substantial improvement.

We now show that the r∗ method for the fixed risk-set frame of reference, even though not
usually suitable for Cox regression, is very simple in form. The resulting product multinomial
setting falls in the simple framework for the higher-order asymptotics laid out by Pierce and
Peters [27], that is, full rank exponential families in terms of canonical parameters. In this case,
we have that

INFψ = r−1
ψ log(wψ/rψ),

(6)
NPψ = r−1

ψ log
(
ρ

1/2
ψ

)
,

where wψ is the Wald statistic for the canonical multinomial interest parameter and ρψ is the
determinant ratio of canonical nuisance parameter information matrices, namely

ρψ = |jνν(θ̂)|
|jνν(θ̂ψ )| .
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When the relative risk is loglinear as indicated initially in Section 1, the parameters ψ and ν are
coordinates of θ . Thus the ingredients for computing are readily available from the usual partial
likelihood fitting. The adjustments (6) are those considered in Brazzale, Davison and Reid [7].

Considering the risk sets as fixed can be useful for a parametric bootstrap when all the risk sets
are very large, and their composition is mainly determined by censoring or competing risks. That
is, when the events under study are rare. The difficulty with considering the risk sets as fixed is
that they are in part determined by failures. This aspect becomes negligible, though, in settings
as just described. Such settings commonly arise in epidemiology, but less frequently in clinical
trials. What transpires is that the adjustments in (6) seem always quite small, which is reflecting
statistical issues for these types of settings.

6. Discussion

Any method for going beyond first order for Cox regression must involve some form of spec-
ification of the censoring model. Usual random censoring models are seldom intended to be
realistic, but only to specify a concrete model compatible with independent censoring. But even
if such a model were realistic, utilizing it for inference beyond first order would usually involve
unattractive estimation of censoring distributions and the baseline hazard. It appears to us that
the only highly tractable approach is to utilize some kind of reference censoring model, chosen to
match primary aspects of the observed censoring. We have proposed such a reference censoring
model, and shown that to second order the dominant aspect of adjustment to first-order methods
is independent of the choice of reference censoring model. Our conclusions in these matters are
compatible with those of Jiang and Kalbfleisch [19], based on mutually independent work.

We are not advocating routine use of the methods of this paper, as ordinarily first-order meth-
ods seem adequate for practical purposes. When one does desire some confirmation of this, the
second-order methods of Section 4 involve far less computation than the parametric bootstrap
method of Section 3, and the results of these two approaches are similar. The parametric boot-
strap method is considerably more transparent, which we consider important. It appears that,
not surprisingly, in extreme situations the parametric bootstrap results are slightly more accurate
than the second-order ones. This is because the second-order methods rely on the distribution of
rψ being not terribly far from standard normal, which is nearly always the case in practice. One
could probably construct extreme examples where the improvement of the parametric bootstrap
over the second-order method is greater than we have seen in this paper.

We would not want to leave readers with the impression that the higher-order asymptotics of
Section 4 applies to Cox regression only for our reference progressive Type II censoring model.
Mykland and Ye (U. Chicago Statistics Dept. TR 332, 1995) showed that under usual conditions
of independent censoring, Bartlett identities of all orders are satisfied for Cox regression partial
likelihood. Mykland [25] showed that this result is adequate to establish that adjustments of affine
form r

†
ψ = {rψ −E(rψ)}/SD(rψ) are standard normal to second order, and in usual settings these

are second-order equivalent to r∗
ψ . Moreover, it follows from Severini [34] that for likelihood-like

objects that are not true likelihoods, the first two Bartlett identities are enough to validate the NP
adjustment referred to above.

The proposed methods apply directly to stratified Cox regression, by adapting within each
stratum to the observed censoring configuration. An R package and STATA routine are available
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at http://www.science.oregonstate.edu/~piercedo/. For either package, the required user effort is
essentially the same as for ordinary Cox regression.
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